
OSGi Application Development using GlassFish Server

Version 1.0

Table of Contents
1 Introduction:..3

1.1 New to OSGi?..3
1.2 Relationship between GlassFish Server & OSGi..4

2 OSGi Applications in GlassFish Server..4
2.1 Application Programming Interfaces (APIs)...5

3 Hybrid Application Bundle..6
3.1 Types of Hybrid Application Bundles..6
3.2 Hybrid Application Bundle Packaging and Deployment...7
3.3 Benefits of Hybrid Application Bundles..7

4 Web Application Bundle (WAB)...8
4.1 Structure of a WAB..8
4.2 WAB Metadata...8
4.3 WAB Life Cycle...9
4.4 Using OSGi Service...10
4.5 Fragment Bundle and WAB...10
4.6 Static Resources and WAB..10
4.7 Web Fragment and WAB...11
4.8 Supported technologies..11
4.9 WAR to WAB Conversion...11

5 EJB Application Bundle..12
5.1 Structure of EJB Application Bundle...12
5.2 Required Metadata...12
5.3 EJB Bundle Life Cycle..12
5.4 Consuming OSGi Service..12

6 Publishing an EJB as an OSGi Service...13
6.1 Export-EJB Manifest...13
6.2 Benefits of EJB based OSGi Service...14

7 Type-safe Injection of OSGi Services into Java EE Component..14
7.1 CDI...14
7.2 GlassFish Server OSGi/CDI Extension...14
7.3 Example...15

8 JPA in OSGi Application...15
8.1 Standalone Persistence Unit...16
8.2 Enhancement of JPA Entities...16

9 Java EE OSGi Services...16
9.1 HTTP Service...17
9.2 Transaction Service..18
9.3 JDBC Service...19
9.4 JMS Resource Service...19

10 Tools..19
10.1 Build Tools...19
10.2 Development Tools..20
10.3 Deployment Tools..20
10.4 Runtime Tools..21

10.4.1 Felix Remote Shell...21
10.4.2 GlassFish Server OSGi Web Console..22

11 Advanced Features...22
11.1 Setting Up an OBR..22
11.2 Using Alternative OSGi Runtime..23

11.2.1 Equinox..23
11.3 Embedded GlassFish..23

12 Future Direction...24
13 Additional Resources...24
14 References...24
15 Appendices..25

15.1 Appendix A – GlassFish OSGi/CDI API Javadoc...25
15.2 Appendix B – Setting up GlassFish Server to use OSGi/Java EE features (Only applicable
for GlassFish 3.1)...27
15.3 Appendix C - Samples...27
15.4 Appendix D - TODO..29
15.5 Appendix E - Revision History..29

1 Introduction:
GlassFish Server Open Source Edition (GlassFish Server in short) [1] is built using OSGi module
system [2] to provide features such as modularity, extensibility, and embedded support. OSGi is
not only used to implement these features, it is now available as a first-class feature to application
developers to deploy service oriented, modular, dynamic, extensible enterprise Java applications in
GlassFish Server. This document describes how users can leverage OSGi to build and deploy such
applications. In a nutshell, the following features of GlassFish Server are described in this
document:

• OSGi Applications running in GlassFish Server

• Hybrid (Java EE-enabled OSGi) application bundles

• Modular web applications

• Building enterprise quality OSGi service using EJB technology

• Shared/Standalone Persistence Unit

• Injection of OSGi Services in Java EE applications using CDI

• Consuming Java EE Services from OSGi applications.

All features described in this document are available in both web profile as well as full profile
distribution of GlassFish Server Open Source Edition. Please see the “Setting Up GlassFish to use
OSGi/Java EE features” for more details.

Enterprise Expert Group in OSGi has been very actively working on standardising use of Java EE
technologies in OSGi applications. So, some of the above mentioned features are standards based.

1.1 New to OSGi?

As described in OSGi Alliance Home Page [2],

“OSGi technology provides a service-oriented, component-based environment for developers and
offers standardized ways to manage the software lifecycle.”

An OSGi framework is a module system and service platform for the Java programming language
that implements a complete and dynamic component model, something that does not exist in
standalone Java/VM environments. An OSGi framework forms the core of an OSGi technology
based system. The framework provides a general-purpose, secure, and managed Java framework
that supports the deployment of extensible and downloadable applications known as bundles or
modules. The functionality of the Framework is divided in the following layers:

• Module Layer: Defines a modularization model, and is responsible for classloading and
enforcing visibility rules.

• Life Cycle Layer: Provides an API to control life cycle of bundles. The life cycle is
observable.

• Service Layer: Provides a programming model for defining and consuming services.
Service consumers and suppliers can be completely decoupled.

• Framework Services: Framework also comes with a few very basic Services such as
Package Admin Service, Start Level Service, etc..

• Security Layer: Defines a secure packaging format as well as the runtime interaction with
the Java security layer.

(Diagram #1: Various layers of OSGi System (Taken from OSGi Specification [3]))

OSGi application developers should consult OSGi Core framework specification [3] and many
other useful materials available in the Internet to become familiar with OSGi.

1.2 Relationship between GlassFish Server & OSGi

GlassFish Server runtime is implemented as a set of OSGi bundles. When GlassFish Server is
started, first an OSGi runtime is bootstrapped and then these implementation bundles are deployed
there. It is even possible to embed GlassFish Server inside an existing OSGi runtime. The default
OSGi runtime started by GlassFish Server is Apache Felix [4], which is a fully compliant
implementation of OSGi R4 version 4.2 Core Specification.

2 OSGi Applications in GlassFish Server
OSGi Applications are deployed as one or more OSGi bundle(s). GlassFish Server deployment and
administration infrastructure have been enhanced to allow users to deploy and manage their OSGi
bundles. GlassFish Server, being a fully compliant Java EE 6 container, not only provides the latest
and greatest Java EE APIs but also exposes the Java EE component model and application
framework to OSGi bundles. In other words, OSGi developers can now use Java EE component
model like JSF, JSP, EJB, CDI, etc. That is useful because OSGi developers are able to leverage
Java EE features while maintaining the benefits (and purity) of the OSGI service-based
programming model. Use of any of these technologies is optional. Java EE platform services like
the transaction service, http service, JMS, etc., are available as OSGi services, so OSGi bundles can
use them via OSGi service registry as well.

GlassFish Server enables interaction between OSGi services and Java EE components. This
interaction is bi-directional. OSGi services managed by OSGi framework can invoke Java EE
components managed by Java EE container and vice versa. Application developers can
declaratively export EJBs as OSGi services without having to write any OSGi code. That allows
any pure OSGi component, which is running without the Java EE context, to discover the EJB and
invoke it. That allows developers to write business components as EJBs so that they can take
advantage of Java EE platform features such as declarative security, transaction management,
dependency injection, etc., and yet allow them to be accessible to non-Java EE components.

Similarly, Java EE components can locate OSGi services provided by non-Java EE OSGi bundles
and use them as well. GlassFish Server extends the platform default injection framework called
Context and Dependency Injection (CDI) framework to make it a lot simpler for Java EE
components to consume dynamic OSGi services in a type-safe manner.

 (Diagram #2: GlassFish Process Constituents)

In this document, we classify OSGi bundles into two categories based on the features used by them:

• Plain vanilla OSGi bundles

These are bundles which do not contain any Java EE component in it.

• Java EE-enabled OSGi bundles (aka Hybrid Application Bundles)

These are OSGi bundles containing Java EE components in them. So, such a bundle is not
only an OSGi bundle, but also a Java EE archive.

2.1 Application Programming Interfaces (APIs)

APIs available to OSGi applications are of two types:

• OSGi APIs:

As stated earlier, GlassFish Server comes with an OSGi R4, version 4.2 compliant
framework, so all 4.2 core APIs are available. Moreover, GlassFish Server also comes
bundled with a number of general purpose OSGi services which users can use from their
bundle, such as:

• OSGi Configuration Admin Service [7]

• OSGi Event Admin Service [8]

• OSGi Declarative Service [9]

GlassFish uses the implementations of these services from Apache Felix. Please refer to the
Apache Felix documentation to learn more about these services.

OSGi/JavaEE Applications

Java SE Platform

GlassFish Bootstrapping Module

GlassFish JavaEE
Runtime Bundles

OSGi Framework (Felix)

HK2 Bundles

GlassFish OSGi/JavaEE Bundles

Java EE Applications

OSGi HTTP

OSGi
Deployer

OSGi Admin
Console, Shell

Cmpn
Bundles

OSGi EE ResOSGi JTA

OSGi Web OSGi EJB

OSGi JPA

OSGi CDI

• Java EE APIs:

A user-deployed OSGi bundle can not only use OSGi APIs, they can also use Java EE APIs.
A point worth noting is that GlassFish Server 3.1 is a Java EE 6 compliant server, so users
have access to the latest and greatest versions of these aforementioned APIs. Not all Java EE
APIs are accessible to all kinds of OSGi bundles. For the purpose of this discussion, we can
classify the APIs provided by a Java EE runtime into following three categories:

• Class A: Components managed by the Java EE container, such as EJB, CDI,
Servlet, JSF, JAX-RS, etc. These are used to define components which are managed
by the Java EE container. Since a vanilla OSGi bundle is not managed by the Java
EE runtime, it can't leverage these APIs. An OSGi bundle has to become a hybrid
application bundle to make use of these APIs. See “Hybrid Application Bundles.”

• Class B: APIs to access underlying platform services, such as JNDI, JTA, JDBC,
JMS, etc. OSGi bundle developers can use these APIs as well. Typically one has to
use JNDI to get access to the underlying service, but GlassFish actually makes the
platform services available as OSGi services, so OSGi application developers can
use OSGi Service APIs to access the services. Please refer to “Java EE OSGi
Services” for more details.

• Class C: Utilities like JAXB, JAXP, JPA, etc.
Most of these APIs have a pluggability layer which allows an application to plug in a
different implementation of the API. Typically the pluggability is achieved using the
Java SE Service Provider mechanism. Typical implementations of these APIs rely on
a Thread's context class loader to function correctly. However, the implementations
of these APIs in GlassFish Server do not have such limitation – they are known to
work when used from an OSGi bundle. So, an OSGi bundle deployed in GlassFish
Server can safely use these APIs.

3 Hybrid Application Bundle
As defined earlier, a hybrid application bundle is an OSGi bundle as well as a Java EE module. At
runtime, it has both an OSGi bundle context and a Java EE context. With hybrid applications,
developers can continue to build standard and familiar enterprise application components, such as
Java Servlets and EJBs, and take full advantage of:

• Features such as modularity/dependency management, service dynamism, and more
provided by OSGi

• Infrastructure services such as transaction management, security, persistence, EIS access,
bean validation, dependency injection, and more offered by Java EE.

3.1 Types of Hybrid Application Bundles

Currently, GlassFish Server supports web applications and EJB applications to be deployed as
hybrid application bundles. Accordingly, we have two types of hybrid application bundles, viz:

• Web Application Bundle,

• EJB Application Bundle.

With the enhancements in Java EE 6, one can actually use a subset of EJB technology called EJB-
lite in a web application itself. It won't be grossly incorrect to imagine a WAB's functionalities to
be a superset of those provided by an EJB Application Bundle. We will talk more about these two

types in following sections. Web Application Bundle is governed by a standard from OSGi Alliance.

3.2 Hybrid Application Bundle Packaging and Deployment

A hybrid application bundle is packaged as an OSGi bundle. Existing Java EE archive formats like
the Web Archive (WAR) and EJB archive that are used for packaging standalone Java EE modules
fit nicely with the OSGi bundle format. So, the application developer has to only add OSGi
metadata in their Java EE archive to convert it into an OSGi bundle. When a hybrid application
bundle is deployed in the OSGi runtime, GlassFish Server observes its life cycle and does necessary
deployment/undeployment in/from Java EE container using the well known “extender pattern [11].”
The life cycle of a hybrid application bundle is shown below:

(Diagram 3: Hybrid Application Bundle Life Cycle)

3.3 Benefits of Hybrid Application Bundles

Enterprise applications typically need transactional, secured access to data stores, messaging
systems and other such enterprise information systems, have to cater to a wide variety of clients like
web browsers and desktop applications, etc. Java EE makes development of such applications easier
with a rich set of APIs and frameworks. It also provides a scalable, reliable and easy to administer
runtime to host such applications.

OSGi platform complements these features with modularity. It enables applications to be separated
into smaller, reusable modules with a well defined and robust dependency specification. A module
explicitly specifies its capabilities and requirements. This explicit dependency specification

encourages developers to visualize dependencies among their modules and help them make their
modules highly cohesive and less coupled. OSGi module system is dynamic – it allows modules to
be added and removed at runtime. OSGi has very good support for versioning – it supports package
versioning as well module versioning. In fact, it allows multiple versions of the same package to co-
exitst in the same runtime thus allowing greater flexibility to deployer. The service layer of OSGi
platform encourages a more service oriented approach to build a system. The service oriented
approach and dynamic module system used together allow a system to be more agile during
development as well as runtime. It makes them better suited to run in an Platform-as-a-Service
(PaaS) environment.

You no longer have to chose one of the two platforms. A hybrid approach like OSGi enabling your
Java EE applications allows new capabilities to applications hitherto unavailable to applications
built using just one of the two platforms.

4 Web Application Bundle (WAB)
When a web application is packaged and deployed as an OSGi bundle, it is called a Web
Application Bundle (WAB). WAB support in GlassFish is based on “Web Applications
Specification,” that's part of “Enterprise OSGi Service Platform Enterprise Specification,
Release 4, Version 4.2 [3].”

4.1 Structure of a WAB

The Java Servlet Specification defines the structure of a web application [12]. It also defines a jar
file-based archive file format called Web Archive (WAR) which is a portable way to package a web
application. WAR is an exact replica of the hierarchical structure of web applications as defined in
the Java Servlet Specification. On the other hand, a WAB is packaged as an OSGi bundle, so there
is a possibility that WAB is not packaged like a WAR. When there is a mismatch in the structure,
the OSGi Web Container of GlassFish Server will map the WAB to the hierarchical structure of
Web Application using the following rules:

• the root of the WAB corresponds to docroot of the Web Application.

• every jar in Bundle-ClassPath of the WAB is treated like a jar in WEB-INF/lib/.

• every directory except “.” in Bundle-ClassPath of the WAB is treated like WEB-
INF/classes/.

• Bundle-ClassPath entry of type “.” is treated as if the entire WAB is a jar in WEB-INF/lib/.

• Bundle-ClassPath automatically includes the Bundle-ClassPath entries of any attached
fragment bundles.

The simplest way to avoid knowing these mapping rules is to avoid the problem in the first place.
More over, there are many packaging tools and development time tools that understand WAR
structure. So, it is strongly recommended that you package the WAB exactly like a WAR with
additional OSGi metadata only.

4.2 WAB Metadata

In addition to the standard OSGi metadata, the main attributes of META-INF/MANIFEST.MF of
the WAB must have an additional attribute called Web-ContextPath. The Web-ContextPath
attribute specifies the value of the Context Path of the Web Application.

Since the root of a WAB is mapped to the docroot of the web application, it should not be used in

the Bundle-ClassPath. More over, WEB-INF/classes/ should be specified ahead of WEB-INF/lib/
in the Bundle-ClassPath in order to be compliant with search order used for traditional WAR files.

Example: Assuming the WAB is structured as shown below:

foo.war/

 index.html

 foo.jsp

 WEB-INF/classes/

 foo/BarServlet.class

 WEB-INF/lib/lib1.jar

 WEB-INF/lib/lib2.jar

the OSGi metadata for the WAB as specified in META-INF/MANIFEST.MF of the WAB is shown
below:

MANIFEST.MF:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.acme.foo

Bundle-Version: 1.0

Bundle-Name: Foo Web Application Bundle Version 1.0

Import-Package: javax.servlet; javax.servlet.http

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/lib1.jar, WEB-INF/lib/lib2.jar

Web-ContextPath: /foo

4.3 WAB Life Cycle

Refer to the life cycle as depicted in diagram #1. When the WAB is active, it gets deployed in the
web container. When the WAB is stopped, it gets undeployed from web container. While
deployment takes place asynchronously, undeployment happens synchronously. When a WAB is
deployed in the web container, the associated ServletContext is registered in the OSGi service
registry with following service property:

objectClass = javax.servlet.ServletContext

osgi.web.contextpath = <Context Path of the web application>

osgi.web.symbolicname = Bundle-SymbolicName of the WAB

osgi.web.version = Bundle-Version of the WAB

Similarly, the BundleContext of the WAB is stored in an attribute called “osgi-bundlecontext” in
the ServletContext, so any code that has access to ServletContext can access the BundleContext like
this:

 BundleContext.class.cast(

 servletContext.getAttribute(“osgi-bundlecontext”));

The OSGi Web Container publishes events asynchronously using OSGi Event Admin service during
deployment and undeployment of the WAB in the web runtime. For more details like event topics
and event metadata, please refer to the OSGi Web Container specification.

4.4 Using OSGi Service

Since WAB has a valid Bundle-Context, it can consume OSGi services. Although developers are
free to use any OSGi API to locate OSGi services, GlassFish Server makes it very easy for WAB
users to use OSGi services by virtue of extending Context and Dependency Injection (CDI)
framework. Given below is an example of injection of an OSGi Service into a Servlet:

@WebServlet

public class MyServlet extends HttpServlet {

 @Inject @OSGiService(dynamic=true)

 FooService fooService;

}

To learn more about this feature, please refer to the section “Type-safe Injection of OSGi Services
into Java EE Components.”

4.5 Fragment Bundle and WAB

A WAB can't be a fragment bundle, but it can act as a host for other fragment bundles. A fragment
bundle does not have its own class loader. All the fragments attached to a host share the class
loader of the host bundle. The OSGi specification has well-defined rules that govern how a
fragment bundle's Bundle-ClassPath is merged with host bundle's Bundle-ClassPath to come up
with the effective Bundle-ClassPath. While mapping the content of a WAB to Web Application,
effective Bundle-ClassPath is used, which means Bundle-ClassPath of all the attached fragments
are automatically considered. Although fragments are not a great example of modularity, they can
be used to provide additional content as discussed below.

4.6 Static Resources and WAB

Prior to Servlet 3.0 specification, the WEB-INF/ directory was only used to contain dynamic
content like servlets, filters, utility classes, JSP tag libraries, configuration files, etc. That has
changed in Servlet 3.0. One of the new features of Servlet 3.0 specification is that jar files from
WEB-INF/lib/ directory are now allowed to contain static resources and JSPs. A jar file in WEB-
INF/lib/ can package some static resources (say html files) and JSPs in META-INF/resources/
directory and they will become part of the Web Application's document root.

Jar file entries from the Bundle-ClassPath of a WAB are treated as if they are present in WEB-
INF/lib/. It means this new feature of Servlet 3.0 specification is applicable to any jar file in
Bundle-ClassPath as well. As a result, a jar from Bundle-ClassPath can now host static content and
JSPs as long as the static content is packaged under META-INF/resources/ directory of the jar.

This new feature can further be extended to fragment bundles. As stated earlier, a fragment
bundle's Bundle-ClassPath is merged with host WAB's Bundle-ClassPath to come up with the
effective Bundle-ClassPath. So, any fragment bundle can also contain static resources and JSPs as
long as they are packaged correctly. This simple yet powerful technique actually allows us to break
our WAB into multiple bundles and develop/deploy them independently.

Example:

host.war/

 one.html

 two.jsp

 WEB-INF/classes/

 META-INF/

 MANIFEST.MF

MANIFEST.MF contains:

Bundle-SymbolicName: host

Web-ContextPath: /webapp

Bundle-ClassPath: WEB-INF/classes

fragment.jar/

 META-INF/

 resources/

 bar/

 three.html

 four.jsp

 MANIFEST.MF

MANIFEST.MF contains:

Bundle-SymbolicName: fragment

Fragment-Host: host

When the host.war WAB is only deployed, /webapp/one.html and /webapp/two.jsp are only
accessible. But, if fragment.jar is also deployed, not only /webapp/foo.html and /webapp/one.jsp
but also /webapp/bar/three.html and /webapp/bar/four.jsp are accessible.

4.7 Web Fragment and WAB

With introduction of component defining annotations in Servlet 3.0 specification, the need for the
web.xml has been reduced dramatically, yet sometimes it is necessary. Earlier, web.xml used to be
a monolithic file packaged in WEB-INF/ directory of the Web Application. Servlet 3.0 introduces
something called web-fragment.xml. It can be thought as a logical partitioning of the web.xml. As
the name suggests, it is a fragment of web.xml. Each such fragment can be packaged inside a jar
file in WEB-INF/lib. There can be many such web fragments in a Web Application and there even
exists a mechanism to order them when conflicting instructions are present. So far, we have not
discussed anything which makes it any more interesting than for the vanilla WAR file.

In case of a WAB, web fragments need not be packaged inside the WAB itself. Web fragments can
be part of fragment bundles which can then attach to the WAB using the Fragment-Host attribute.
As you can see, this allows a much greater degree of modularity than what is offered in the case of a
traditional WAR.

4.8 Supported technologies

All Java EE technologies that can be used from regular a WAR can also be used from a WAB. This
includes but not limited to Servlet 3.0, JSP 2.1, JSF 2.0, JPA 2.0, CDI 1.0, EJB 3.1, JAX-RS,
resource injection, etc.

4.9 WAR to WAB Conversion

Web applications can also be installed as traditional WARs through a manifest rewriting process.
OSGi Web Applications specification defines a protocol scheme called webbundle which can be
used to install plain vanilla WAR files into the OSGi runtime. The corresponding URL handler
transforms the input WAR to a WAB by adding necessary manifest entries. After the transformation,

the WAR behaves like a WAB. The transformation process can be customized by use of various
query parameters in the URL. For a detailed discussion on this, please refer to the OSGi Enterprise
Specification. Here is an example of how one can use this in GlassFish:

install webbundle:http://acme.com:80/repo?webapp=foo.war?Web-ContextPath=/foo

5 EJB Application Bundle
The second kind of hybrid application bundle that is currently supported is the EJB Application
Bundle. When an EJB Jar is packaged with additional OSGi metadata and deployed as an OSGi
bundle it is called an EJB Application Bundle.

5.1 Structure of EJB Application Bundle

At this point, we only support packaging the OSGi bundle as a simple jar file with required OSGi
metadata as you would have done for an ejb-jar.

5.2 Required Metadata

An EJB Application Bundle must have a manifest metadata called Export-EJB in order to be
considered as an EJB Bundle. For syntax of Export-EJB header, please refer to the section
“Publishing EJB as OSGi Service.”

Example of an EJB Application Bundle with metadata is given below:

myEjb.jar/

 com/acme/Foo

 com/acme/impl/FooEJB

 META-INF/MANIFEST.MF

MANIFEST.MF:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.acme.foo EJB bundle

Bundle-Version: 1.0.0.BETA

Bundle-Name: com.acme.foo EJB bundle version 1.0.0.BETA

Export-EJB: ALL

Export-Package: com.acme; version=1.0

Import-Package: javax.ejb, com.acme; version=[1.0, 1.1)

5.3 EJB Bundle Life Cycle

The EJB Bundle life cycle is same as that of the WAB.

5.4 Consuming OSGi Service

Since an EJB Bundle has a valid Bundle-Context, it can consume OSGi services. Although
developers are free to use any API to locate OSGi services, GlassFish Server makes it very easy for
users to use OSGi services by virtue of it extending Context and Dependency Injection (CDI)
framework. Below is an example of the injection of OSGi Service into an EJB:

Example:

@Stateless

public class MyEJB {

 @Inject @OSGiService(dynamic=true)

 Foo foo;

 ...

}

To learn more about this feature, please refer to the section “Type-safe Injection of OSGi Services
into Java EE Components.”

6 Publishing an EJB as an OSGi Service
Enterprise business services typically require transactional access to EIS systems such as database,
message oriented middleware, etc. which are integrated with the security policies of the underlying
system. Unfortunately there is no easy way to build services with such characteristics in the OSGi
world, whereas there exist well-established APIs to do these in the Java EE plaform. GlassFish
Server provides a mechanism for a hybrid component model wherein an OSGi service is
implemented as an EJB component and therefore able to use the aforementioned APIs. Once the
EJB component manifests itself as an OSGi service, OSGi clients are agnostic to the
implementation details of the service. This mechanism not only allows the use of Java EE
infrastructure services and APIs in OSGi service implementations, but it also broadens the scope of
usage of an EJB. In the future, this functionality could theoretically be extended to other
component models like Managed Beans, CDI beans, etc.

OSGi Services are of two types: Singleton and Singleton-per-Bundle. In the former case, there is
one service implementation instance shared between all the clients, and in the latter case there is
one service implementation instance shared between all service consumers belonging to a bundle.
On the other hand, the EJB specification defines a richer scoping model for EJB components such
as Singleton, Stateless, and Stateful. As there is no natural support for defining the scope of an
OSGi service, Stateful beans are not currently mapped as OSGi services. Using manifest metadata,
an application developer can declaratively specify the list of EJBs that need to be exported as OSGi
services. For all selected stateless and Singleton EJBs, the EJB extender bundle registers a proxy
object in the service registry with additional service metadata as specified in the "Export-EJB"
manifest header entry.

Each OSGi service can be associated with one or more service interfaces during service registration.
When the EJB Extender bundle registers the proxy, it registers all the component interfaces of the
EJB as the OSGi service interfaces. OSGi service lookup methods allow additional selection
criteria which are used by the OSGi runtime during the service selection process. Once a suitable
proxy is selected, it locates the delegate (underlying EJB instance) by performing a JNDI lookup
using the portable JNDI name of the EJB to forward the method invocations. If an OSGi client
begins a transaction using OSGi/JTA API, then the underlying EJB method invocation happens in
the context of the same transaction. The EJB component developer can control the transactional
behavior of their component through the transactional attribute as specified in the EJB specification.

6.1 Export-EJB Manifest

"Export-EJB" header has the following syntax

Export­EJB ::= ALL | NONE | (EJB­List)

EJB­List ::= (EJB­Desc (',' EJB­Desc)*)

EJB­Desc ::= (EJB Name)

Examples:

1. Following header will cause all applicable EJBs in the bundle to be exported as OSGi services

Export-EJB: ALL

2. The following header will cause none of the EJBs to be exported:

Export-EJB: NONE

3. The following header will cause EJBs with names com.acme.FooEJB and com.acme.BarEJB to
be registered in OSGi Service Registry :

Export-EJB: com.acme.FooEJB, com.acme.BarEJB

6.2 Benefits of EJB based OSGi Service

As previously stated, EJB technologies make it a lot easier to build OSGi services which meet the
needs of enterprise applications. An EJB which is exposed an OSGi service is no longer restricted to
be accessed from EJB clients only – it is accessible from OSGi applications as well.

7 Type-safe Injection of OSGi Services into Java EE
Component

7.1 CDI

The Contexts and Dependency Injection (CDI) specification (JSR-299) defines a set of
complementary services that help improve the structure of application code. CDI provides an
enhanced lifecycle and interaction model over existing Java component types, including managed
beans and Enterprise Java Beans. The CDI services provide:

• an improved lifecycle for stateful objects, bound to well-defined contexts

• a type-safe approach to dependency injection

• an SPI for developing portable extensions to the container.

The CDI framework can be extended in a portable manner through extensions. A CDI portable
extension integrates with the container and:

 * can provide its own beans, interceptors and decorators to the container

 * can inject dependencies into its own objects using the dependency injection service

The Java EE Platform allows Java EE components to be injected with their dependencies through
standard dependency injection (@Resource etc) and CDI-style injection (@Inject) APIs. There is
no easy way for a Java EE component to

• Easily express dependencies to OSGi Service

• A type-safe mechanism to state such dependencies

• Discover and bind to OSGi Services which takes advantage of OSGi Service Dynamism.

7.2 GlassFish Server OSGi/CDI Extension

GlassFish Server comes with a CDI extension that enables Java EE components (such as Servlets,
EJBs, etc) that are part of hybrid application bundles to express a type-safe dependency on an OSGi

Service using CDI APIs. Note that an OSGi Service can be provided by any OSGi Bundle without
any knowledge of Java EE/CDI and they are allowed to be injected transparently in a type-safe
manner into a Java EE component.

A custom CDI Qualifier[1], @org.glassfish.osgicdi.OSGiService, is used by the component to
represent dependency on an OSGi Service. The Qualifier has additional metadata to customize the
service discovery and injection behavior. The following @OsgiService attributes are currently
available:

• dynamic: Dynamically obtain a service reference (true/false)

• waitTimeout: Waits for specified duration for a service to appear in the OSGi service
registry

• serviceCriteria: An LDAP filter query used for service selection

7.3 Example

Bundle B0 defines a Service contract called com.acme.Foo and exports com.acme package for use
by other bundles. Bundle B1 in turn provides a Service Implementation, FooImpl, of that interface
com.acme.Foo. It then registers this Service FooImpl with the OSGi service registry with
com.acme.Foo as the Service interface.

Bundle B2 is a hybrid application bundle that imports com.acme package. It has a component
called BarServlet that expresses a dependency to com.acme.Foo by adding a field/setter method and
qualifies that Injection point with @OSGiService. So for instance, BarServlet could look like:

@Servlet
public void BarServlet extends HttpServlet{

@Inject @OSGiService(dynamic=true)

private com.acme.Foo f;

}

8 JPA in OSGi Application
It is a very common requirement for business applications to deal with data stores and Java
Persistence API is the standard API in this problem domain. This API can be used by managed as
well as non-managed code. An OSGi bundle's activator is non-managed code, where as a Java EE
component that's part of a hybrid application bundle is managed code. Except for the bootstrapping
part, the rest of the API remains same in either case.

The primary interface for the application developer is EntityManager which can be produced
by an EntityManagerFactory. EntityManagerFactory is a runtime representation of
the Persistence Unit which is defined in an XML file called META-INF/persistence.xml. An
application can define more than one persistence units in an application using persistence.xml.

In a managed environment, either both an EntityManagerFactory or an EntityManager
can be obtained from JNDI or be injected into Java EE components. These are commonly referred
to as “Java EE” bootstrapping APIs. In a non-managed environment, the user has to call
Persistence.createEntityManagerFactory() method to get a handle to
EntityManagerFactory. This is commonly referred to as “Java SE” bootstrapping API. Although
the Java SE bootstrapping API can be called by a managed component, it is not recommended
because of better alternatives available to such code.

The Java SE bootstrapping API relies on Thread's context class loader to be set properly for two

reasons:

• to discover persistence units and JPA domain classes,

• to discover Persistence Provider.

While it is easy to work around the first one by just setting the context class loader to the bundle
class loader before making the call to the Persistence.createEntityManagerFactory,
the latter is hard to fix, as the bundle does not typically have a direct dependency on Persistence
Provider. Fortunately, GlassFish Server can influence the resolution of persistence providers using
a custom implementation of JPA SPI called
javax.persistence.spi.PersistenceProviderResolver. This custom resolver can be enabled
by setting the following property to true in
$GLASSFISH_HOME/glassfish/osgi/felix/conf/config.properties:

org.glassfish.osgijpa.extension.useHybridPersistenceProviderResolver=true

It is by default set to false in that file.

8.1 Standalone Persistence Unit

In a standard Java EE application, the scope of a persistence unit is limited to the deployment unit,
i.e., the ear/jar/war. If there are multiple applications that share the same domain model stored in the
same datastore, then there is a separate copy of the domain classes and persistence.xml packaged
into each of those applications. This affects the size and performance of the runtime, because the
“second level cache,” which is more-or-less the norm in every persistence provider is scoped to a
persistence unit.

In GlassFish, one can package JPA domain classes in a separate OSGi bundle, deploy that bundle
alone, export an EntityManagerFactory as an OSGi service from such a bundle such that other
OSGi bundles can reference the EntityManagerFactory. This leads to improved modularity/reuse,
better performance because of shared 2nd level cache. Refer to the examples to see it being used.

8.2 Enhancement of JPA Entities

Certain persistence provider like EclipseLink rely on byte code enhancement (or weaving) to
provide lazy loading support for one-to-one and many-to-one type relationships. There is no
standard way to enhance classes loaded from bundle space in an OSGi environment. The solution
GlassFish Server implements is to statically enhance JPA domain classes using PersistenceProvider
library when the corresponding JPA bundle is installed or updated in the system. This functionality
is currently only provided with EclipseLink. For this functionality to work, user must either specify
the following element in their persistence-unit:

<exclude­unlisted­class>false</exclude­unlisted­classes>

or

enumerate all the JPA domain classes in their persistence-unit using

<class>entity class name</class>

9 Java EE OSGi Services
Java EE components (like an EJB or Servlet) can lookup Java EE platform services using JNDI
names in the Java EE naming context associated. Such code can rely on Java EE container to inject
the required services as well. Unfortunately, neither of them works when the code runs outside a
Java EE context. Examples of such code is BundleActivator of an OSGi bundle. For such code to
access Java EE platform services, GlassFish makes available key services and resources of

underlying Java EE platform as OSGi services. Thus, an OSGi bundle deployed in GlassFish can
access these services using OSGi Service look up APIs or using white board pattern. Given below
are the list of services of underlying Java EE platform that are available as OSGi services:

• HTTP Service

• Transction Service

• JDBC Data Source Service

• JMS Resource Service

The table below describes the services, their interfaces and associated service properties that can be
used during service selection.

Table #1: Java EE Service to OSGi Service Mapping

Underlying Service Service Interface Service Properties Comments

HTTP Service org.osgi.service.http.Ht
tpService [10]

VirtualServer=<Virtual
Server Name>

Each HTTP Service
corresponds to one
virtual server in
GlassFish.

Transaction Service javax.transaction.UserT
ransaction,
javax.transaction.Trans
actionManager,
javax.transaction.Trans
actionSynchronization
Registry

None Use UserTransaction
interface for transaction
demarcation.

JDBC Data Source javax.sql.DataSource jndi-name = <JNDI
name of the data
source>
osgi.jdbc.driver.class =
<Fully Qualified Class
Name of the Driver
class>

User can create/delete
JDBC datasources
using GlassFish
Administartion API and
they are synchronously
registered/unregistered
from OSGi service
registry.

JMS Queue javax.jms.Queue jndi-name = <JNDI
name of the Queue>

JMS Topic javax.jms.Topic jndi-name = <JNDI
name of the Queue>

JMS Connection
Factory

javax.jms.QueueConne
ctionFactory or
javax.jms.TopicConnec
tionFactory or
javax.jms.ConnectionF
actory

Jndi-name = <JNDI
name of the connection
factory>

Actual service interface
depends on what is
selected by user while
creating the connection
factory.

9.1 HTTP Service

The GlassFish Server web container is made available as a service for OSGi users who do not use a

WAB to develop web applications. This service is made available using the standard OSGi/HTTP
service specification [10], whichis a very light API that predates the concept of a Web Application
as we know today. This simple API allows users to register servlets and static resources dynamically
and draw a boundary around them in the form of a HttpContext. This simple API can be used to
build very feature rich web application. The Felix Web Console [13] is a good example of this.

This particular functionality is provided by a separate GlassFish Server OSGi bundle which is not
by default available in a GlassFish installation. One has to download the bundle from GlassFish
Server update center or from maven.

The GlassFish Server web container has a notion of a virtual server. The hierarchy in GlassFish
Server is:

GlassFish Web Container has one or more virtual server(s).
A virtual server has one or more web application deployed in it. Each web application has a distinct
context path. Each virtual server has a set of HTTP listeners. Each HTTP listener listens on a
particular port. When multiple virtual servers are present, one of them is treated as the “default
virtual server.” Every virtual server comes configured with a default web application. The default
web application is used to serve static content from docroot of GlassFish Server. This default web
application uses “/” as the context path.

A web application contains one or more wrappers (Servlets).
Each virtual server is mapped to an org.osgi.services.http.HttpService instance. When there are
multiple virtual servers present, obviously there will be multiple HttpServices registered in the
service registry as well. In order to distinguish one service from another, each service is registered
with a service property called “VirtualServer” whose value is the name of the virtual server. More
over, the service corresponding to “default virtual server” has the highest ranking, so when someone
just does a service lookup of HttpService without any additional criteria, they get the service
corresponding to the default virtual server – which is the desired behavior. In a typical GlassFish
Server installation, the default virtual server is configured to listen on port 8080 and 8181 for http
and https protocol respectively.

Since the default web application uses the context path “/,” every resource and servlet registered
using registerResource() and registerServlet() methods of HttpService is made available under a
context path /osgi in the virtual server. The context path /osgi can be changed to some other value
by setting an appropriate value in OSGi configuration property or system property called
org.glassfish.osgihttp.ContextPath.

For example, HelloWorldServlet will be available at

http://localhost:8080/osgi/helloworld

when the following code is executed:

HttpService httpService = getHttpService(); // Obtain HttpService

httpService.registerServlet(httpService.registerServlet("/helloworld", new HelloWorldServlet(),
null, ctx);

9.2 Transaction Service

Java Transaction API (JTA) defines three interfaces to interact with transaction management system,
viz: UserTransaction, TransactionManager and
TransactionSynchronizationRegistry. They all belong to package javax.transaction.
But for the first one, the rest two are intended for system level code, e.g., a persistence provider. As
the name suggests, UserTransaction is the entity that application programmers should use to control
transactions. All these objects of the underlying JTA layer is made available in OSGi service

registry with following service interfaces respectively:

• javax.transaction.UserTransaction

• javax.transaction.TransactionManager

• javax.transaction.TransactionSynchronisationRegistry

There is no additional service property associated with them. Although UserTransaction appears to
be a singleton, in reality any call to it gets rerouted to the the actual transaction associated with the
calling thread.

As you know, code which runs in the context of Java EE component gets hold of UserTransaction
typically by doing a JNDI lookup in the component naming context or using injection as shown
below:

(UserTransaction)(new InitialContext().lookup(“java:comp/UserTransaction”));

or

@Resource UserTransaction utx;

When some code (let's consider an OSGi Bundle Activator) which does not have Java EE
component context wants to get hold of UserTransaction or any of the other JTA artifacts, then they
can lookup service registry. Given below is an example of such code:

BundleContext context;
ServiceReference txRef =

context.getServiceReference(UserTransaction.class.getName());
UserTransaction utx = (UserTransaction);
context.getService(txRef);

Refer to OSGi/JTA sample for further details.

9.3 JDBC Service

Any JDBC DataSource created in GlassFish is automatically made available as an OSGi Service, so
OSGi bundles can track availability of JDBC data source using ServiceTracking facility of OSGi
platform. Please consult GlassFish administration guide to learn how to administer JDBC resources
in GlassFish. The life of the OSGi service matches that of the underlying data source created in
GlassFish. As specified in table #1, the OSGi service is registered with objectClass =
“javax.sql.DataSource” and service property called jndi-name which contains the JNDI name of the
datasource. Sample code that looks up a Data Source service is shown below:

@Inject
@OSGiService(true, "(jndi-name=jdbc/MyDS)")
private DataSource ds;

9.4 JMS Resource Service

Like JDBC data sources, JMS administered objects like topics, queues and connection factories are
also automatically made available as OSGi services. Table #1 details the service details. With this,
any OSGi bundle can use the underlying JMS system as well.

10 Tools

10.1 Build Tools

bnd [19] is the de-facto tool used by OSGi users. It can just be used to generate the manifest or it

can be used to package an OSGi bundle as well. It can be used in Ant and maven environment as
well. The maven plugin of bnd, known as “maven-bundle-plugin [20],” is developed in Felix
project and is very flexible. In our samples, we use maven-bundle-plugin and we recommend
certain configurations of the plugin to make your life easier.

10.2 Development Tools

Hybrid Applications are a new kind of applications. Even though it may appear that many IDEs
don't support development of such applications, it's actually a myth. Most IDEs are well designed
and the functions they provide are additive in nature. Our recommendation is to use maven based
Java EE project in those IDEs so that you can use maven-bundle-plugin to generate the necessary
OSGi metadata and use the rest of the IDE wizards to do the Java EE tasks. We have tutorials
available at [17] showing how to do this in NetBeans and Eclipse.

10.3 Deployment Tools

These are the various ways one can deploy OSGi bundles in GlassFish. A brief overview of various
OSGi bundle deployment options is given below. Please refer to GlassFish Administration Guide
[6] for more details.

• Autodeploy directory:

GlassFish Server monitors the ${domain_dir}/autodeploy/bundles/ directory for OSGi
bundles, so you can actually use File operations like cp, rm to install/update, uninstall OSGi
bundles. You can actually install, update, uninstall multiple bundles at a time using
autodeploy directory. Moreover, one can configure GlassFish to watch as many directories
as they like. This functionality in GlassFish is provided by Apache Felix FileInstall [5]
module, so you can find much more detailed documentation there.

• CLI:

asadmin deploy –type osgi <path to bundle jar>

• Admin Console:

While deploying OSGi bundles, select type as “other” and then select “osgi” in the available
options.

• Felix Remote Shell:

GlassFish Server includes Felix remote shell which can be used to administer OSGi runtime.

• OSGi Web Console:

The GlassFish Server Administration Console has an additional plugin that enables user to
administer the OSGi runtime as well.

• OBR:

It is possible to configure GlassFish Server to use an OBR repository.

Since GlassFish is extensible, application developers can actually deploy their own or third-party
OSGi management bundle in the system if they wish to do so.

10.4 Runtime Tools

GlassFish Server provides a couple of tools to user to help them manage and debug the OSGi
runtime. They are explained below. OSGi being an extensible platform, you can install your own
favorite tool to do the needful as well. Currently, these tools are only supposed to be used in
development environment, as they lack are not integrated with GlassFish's Server authentication
and authorization policy.

10.4.1 Felix Remote Shell

GlassFish Server comes preconfigured with Apache Felix Gogo, which is an implementation of
OSGi RFC 147, and is a proposed standard shell for OSGi environments. The shell is more
advanced and supports expected shell features (e.g., scripting, piping, variables) as well as more
advanced features (e.g., closures, dynamic method invocation). This shell is accessible via telnet
protocol and the default port is 6666. This shell is turned off by default in production builds. To
enable it, please append “org.apache.felix.shell.remote” to the property
org.glassfish.additionalOSGiBundlesToStart in domain.xml. There are various ways such as
asadmin command, admin console to set system property. After this change, the property should
look like this:

<jvm-options>
-Dorg.glassfish.additionalOSGiBundlesToStart=org.apache.felix.shell,org.ap
ache.felix.gogo.runtime,org.apache.felix.gogo.shell,org.apache.felix.gogo.
command,org.apache.felix.shell.remote,org.apache.felix.fileinstall

</jvm-options>

The shell is only available on loopback interface (i.e., 127.0.0.1). So, one can connect to it by
running:

telnet localhost 6666

->

Some of the typical commands and their usage is given below:

Command
Name

Description Examples

help Show help messages
for a command

help ­> Show available commands
help inspect­> Shows description of
inspect command

lb List Bundles lb
lb ­l | grep foo.jar
lb foo

bundle Show details about
a bundle

bundle 0 ­> Shows details about
(bundle 1) location ­>

inspect Inspect
capabilities and
requirements of a
bundle

inspect p c 1 ­> Show packages
exported by bundle 1
inspect p r 1 ­> Show packages
imported by bundle 1
inspect s c 1 ­> Show services
registered by bundle 1
inspect s r 1 ­> Show services
referenced by bundle 1

which determines from
where a bundle

which 1 com.acme.Foo ­> Shows from
where bundle 1 loads com.acme.Foo

loads a class class

install Install a bundle
from a URL

install file:/tmp/a.jar
install http://acme.com/bar.jar

start Start a bundle start 7
start file:/tmp/a.jar ­> Install
from the URL and start it
start ­t 7 ­> Start bundle 7
transiently

stop Stop a bundle stop 7

uninstall Uninstall a bundle uninstall 7

update Update a bundle update 7

This is a very very powerful shell. To explore its functionalities, please refer to [15] and [16].

10.4.2 GlassFish Server OSGi Web Console

GlassFish Server OSGi Web Console is a customized version of the Apache Felix Web Console.
This is by default not configured in the runtime. There are two ways one can install the console and
its dependencies as shown below:

1. Install the update center package called “Glassfish OSGi Admin Console” using GlassFish
Server Admin Console or the pkg command line utility.

2. Download the following packages from maven and unzip them on top of your GlassFish
Server installation:

http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-
http/3.1/glassfish-osgi-http-3.1.zip

http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-
gui/3.1/glassfish-osgi-gui-3.1.zip

While unzipping, make sure the jars are unzipped to autostart/ directory. There is no need to restart
GlassFish Server, the changes will take effect automatically. You can now access the web console
either directly going to http://localhost:8080/osgi/system/console/ or via by visting OSGi Console
link in GlassFish Admin Console, which is available at http://localhost:4848/. GlassFish OSGi Web
Console uses its own security domain, so upon promoted for user name and password, use
admin/admin.

You may find further information at [13].

11 Advanced Features

11.1 Setting Up an OBR

To be documented

http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-gui/3.1/glassfish-osgi-gui-3.1.zip
http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-gui/3.1/glassfish-osgi-gui-3.1.zip
http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-http/3.1/glassfish-osgi-http-3.1.zip
http://maven.glassfish.org/content/groups/glassfish/org/glassfish/packager/glassfish-osgi-http/3.1/glassfish-osgi-http-3.1.zip

11.2 Using Alternative OSGi Runtime

11.2.1 Equinox

Although GlassFish Server comes with Felix pre-installed, it's pretty easy to make it run on
Equinox and other platforms. Given below are the simple steps...

1. Download Equinox or if you have it, use that.

2. cp org.eclipse.osgi_3.3.2.R33x_v20080105.jar $GLASSFISH_HOME/osgi/equinox/
(replace 3.3.2.R33x_v20080105 by the actual version found in jar name in your equinox
installation. It changes from version to version.)

3. Start GlassFish Server, but while starting let it know that you want to run on Equinox,
else by default it uses Felix. To do this, you have couple of choices:

• You can set an environment variable called GlassFish_Platform as Equinox.

• You can set a system property called GlassFish_Platform as Equinox.

Why do we have these two options? The system property is handy when you are starting using "java
-jar" command. The environment variable is useful when you are starting using the classic way, i.e.,
"asadmin start-domain." Putting them in practice: (I am using Bash shell in the following example)

1. In the following example, we set the option once in the environment and every subsequent use of
"asadmin start-domain" starts GlassFish Server on Equinox.

 export GlassFish_Platform=Equinox

 asadmin start­domain

2. In the example below, asadmin start-domain is used to start GlassFish, but you are able to specify
the enviornment variable on the same command.

GlassFish_Platform=Equinox asadmin start­domain

3. If you are used to "java -jar" style of starting GlassFish (a new thing in GlassFish v3), then do
this:

java ­DGlassFish_Platform=Equinox $GlassFish_HOME/modules/glassfish.jar

The Equinox config file is located in
$GLASSFISH_HOME/osgi/equinox/configuration/config.ini

11.3 Embedded GlassFish

It is quite easy to embed GlassFish Server in an OSGi environment. One has to download either the
web profile or full profile distribution of GlassFish Server and install it. Assuming you have
downloaded and installed either of the aforementioned glassfish distributions in /tmp, then there are
two ways to embed GlassFish in your OSGi environment:

Option #1: Use GlassFish bundle to control life cycle of GlassFish.

Your code can look like this:

BundleContex bundleContext;

Bundle gfBundle =
bundleContext.install(“file:///tmp/glassfish3/glassfish/modules/glassfish.jar”);

gfBundle.start(); // Starts GlassFish

gfBundle.stop(); // Stops GlassFish

When you install glassfish.jar with a location string as shown above, the activator in GlassFish can
deduce the GlassFish installation location as well as GlassFish domain directory location. If you
chose to use a different location string while installing GlassFish bundle, then you can specify the
installation location and domain directory using following OSGi configuration properties:

com.sun.aas.installRoot -> where is glassfish installed? e.g., /tmp/glassfish3/glassfish/

com.sun.aas.instanceRoot -> where glassfish domain directory is located? e.g.,
/tmp/glassfish3/glassfish/domains/domain1

12 Future Direction
We will explore managed bean and CDI bean as basis for OSGi services. We welcome your
suggestions and feedbacks. You can file bugs, RFEs in our bug tracking system. We will also allow
EAR files to be deployed as a set of OSGi bundles to provide a more isolated runtime.

13 Additional Resources
We try to consolidate presentation material, blogs, etc. in a central place in our publicly accessible
Wiki page [17]. The GlassFish community has an outstanding track record of providing timley
responses to user's queries. If you need help, please use or forum available at [18]. Users who have
purchased support contract for Oracle GlassFish Server can consult their support agreement to
know whom to contact.

14 References
[1] GlassFish Server:

 http://GlassFish.org

[2] OSGi Module System:

 http://www.osgi.org

[3] OSGi Specifications:

 http://www.osgi.org/Specifications/HomePage

[4] Apache Felix OSGi implementation:

 http://felix.apache.org

[5] Apache Felix FileInstall Bundle:

 http://felix.apache.org/site/apache-felix-file-install.html

[6] GlassFish Server Open Source Edition Administration Guide:

 TBD

[7] Felix Configuration Admin Service

 http://felix.apache.org/site/apache-felix-config-admin.html

http://felix.apache.org/site/apache-felix-config-admin.html
http://felix.apache.org/site/apache-felix-file-install.html
http://felix.apache.org/
http://www.osgi.org/Specifications/HomePage
http://www.osgi.org/
http://GlassFish.org/

[8] Felix Service Component Runtime

 http://felix.apache.org/site/apache-felix-service-component-runtime.html

[9] Felix Event Admin Service:

 http://felix.apache.org/site/apache-felix-event-admin.html

[10] OSGi/HTTP Service:

 http://www.osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html

[11] Extender Pattern in OSGi:

 http://www.osgi.org/blog/2007/02/osgi-extender-model.html

[12] Web Application Deployment Hierarchy

 Section 10.4 of Java Servlet Specification version 3.0

[13] Felix Web Console:

 http://felix.apache.org/site/apache-felix-web-console.html

[14] CDI Qualifier:

 http://download.oracle.com/javaee/6/api/javax/inject/Qualifier.html

[15] Gogo Shell Language:

 http://www.packtpub.com/article/apache-felix-gogo

[16] Apache Felix Gogo Shell:

 http://felix.apache.org/site/apache-felix-gogo.html

[17] GlassFish OSGi Wiki:

 http://wikis.sun.com/display/GlassFish/Osgi

[18] GlassFish forum:

 http://www.java.net/forums/glassfish/glassfish

[19] bnd:

 http://www.aqute.biz/Code/Bnd

[20] maven-bundle-plugin:

 http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

[21] Glassfish JIRA

 http://java.net/jira/browse/GLASSFISH

15 Appendices

15.1 Appendix A – GlassFish OSGi/CDI API Javadoc

Package: org.glassfish.osgicdi

Version: 1.0

OSGiService Annotation

@Qualifier
@Target(value={TYPE,METHOD,PARAMETER,FIELD})
@Retention(value=RUNTIME)

file:///space/ss141213/docs/ http://java.net/jira/browse/GLASSFISH
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://www.java.net/forums/glassfish/glassfish
http://wikis.sun.com/display/GlassFish/Osgi
http://felix.apache.org/site/apache-felix-gogo.html
http://www.packtpub.com/article/apache-felix-gogo
http://download.oracle.com/javaee/6/api/javax/inject/Qualifier.html
http://felix.apache.org/site/apache-felix-web-console.html
http://www.osgi.org/blog/2007/02/osgi-extender-model.html
http://www.osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html
http://felix.apache.org/site/apache-felix-event-admin.html
http://felix.apache.org/site/apache-felix-service-component-runtime.html

public @interface OSGiService

A CDI (JSR-299) Qualifier that indicates a reference to a Service in the OSGi service registry that
needs to be injected into a Bean/Java EE Component. A Java EE component developer uses this
annotation to indicate that the injection point needs to be injected with an OSGi service and can also
provide additional meta-data to aid in service discovery. If this qualifier annotates an injection
point, the OSGiServiceExtension discovers and instantiates the service implementing the
service interface type of the injection point, and makes it available for injection to that injection
point.

dynamic
public abstract boolean dynamic

Determines if the OSGi service that is to be injected refers to a dynamic instance of the
service or is statically bound to the service implementation discovered at the time of injection.
If the value of this annotation element is true, a proxy to the service interface is returned to the
client. When the service is used, an active instance of the service at that point in time is used.
If a service instance that was obtained earlier has gone away (deregistered by the service
provider or stopped), then a new instance of the service is obtained from the OSGi service
registry. This is ideal for stateless and/or idempotent services or service implementations
whose lifecycle may be shorter than the client's lifecycle. If the value of this annotation
element is false, an instance of the service is obtained from the service registry at the time of
injection and provided to the client. If the service implementation provider deregisters the
obtained service or the service instance is stopped, no attempt is made to get another instance
of the service and a ServiceUnavailableException is thrown on method invocation.
This is ideal for stateful or contextual services and for references to service implementations
whose lifecycle is well-known and is known to be greater than the lifecycle of the client.

Default:
false

serviceCriteria
public abstract java.lang.String serviceCriteria

Service discovery criteria. The string provided must match the Filter syntax specified in the
OSGi Core Specification.

Default:
""

waitTimeout
public abstract int waitTimeout

Waits, for the specified milliseconds, for at least one service that matches the criteria specified
to be available in the OSGi Service registry. 0 indicates indefinite wait. -1 indicates that the
service is returned immediately if available or a null is returned if not available.

Default:
-1

ServiceUnavailableException

public class ServiceUnavailableException extends
org.osgi.framework.ServiceException

This exception is thrown to indicate that the service is unavailable. If an OSGiService service
reference is marked as dynamic, an attempt is made to get a reference to the service in the OSGi
Service Registry when the service is used, and then the method is invoked on the newly obtained
service. If the service cannot be discovered or a reference obtained, the
ServiceUnavailableException is thrown.

15.2 Appendix B – Setting up GlassFish Server to use OSGi/Java
EE features (Only applicable for GlassFish 3.1)

All the features described in this document are available in both web profile as well as full profile
distribution of GlassFish Server. The features are automatically available in 3.1.1 or trunk builds of
GlassFish, but if you are using GlassFish 3.1 FCS build, they have to be explicitly enabled by
adding org.apache.felix.shell.remote and org.apache.felix.fileinstall to the list of bundles
mentioned in system property called org.glassfish.additionalOSGiBundlesToStart in
domain.xml. There are a few ways to do this:

a) Using asadmin command:

asadmin delete-jvm-options --target server-config \

-Dorg.glassfish.additionalOSGiBundlesToStart=\

“org.apache.felix.shell,\

org.apache.felix.gogo.runtime,\

org.apache.felix.gogo.shell,\

org.apache.felix.gogo.command”

asadmin create-jvm-options --target server-config \

-Dorg.glassfish.additionalOSGiBundlesToStart=\

“org.apache.felix.shell,\

org.apache.felix.gogo.runtime,\

org.apache.felix.gogo.shell,\

org.apache.felix.shell.remote,\

org.apache.felix.fileinstall”

Repeat the above commands by replacing server-config with default-config.

b) Using Admin Console:

You can also use GlassFish Admin Console to update the JVM Properties.

c) You can also make the changes in domain.xml by directly editing it. Look for occurrences of
-Dorg.glassfish.additionalOSGiBundlesToStart.

The above steps are not required if you are using 3.1.1 or trunk build.

15.3 Appendix C - Samples

A number of sample applications are available in our workspace. You can checkout and build as
shown below:

svn co http://svn.java.net/svn/glassfish~svn/trunk/fighterfish/sample

http://svn.java.net/svn/glassfish~svn/trunk/fighterfish/sample

mvn install

Use JDK 6 and Maven 2.2.1 while running the above commands.

Now you can deploy each of the sample to GlassFish Server and explore it by yourself. You can
also browse the sample workspace by visiting
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample. The table below gives a
short summary of the available samples as of now and the key features they desmonstrate:

Sample Name Short Summary Highlight

sample.parent-pom Parent POM – Extended by all
other modules. Provides a
framework to make development as
simple as possible.

Development/Build
Framework

sample.uas.api A Simple OSGi bundle shows how
to export/import package

Getting Familiar with
OSGi Bundles

sample.uas.simpleservice A Simple OSGi Service
Implementation

Getting Familiar with
OSGi Services

sample.uas.entities An OSGi bundle containing JPA
model classes. Its activator
publishes an EMF Service.

Shared/Standalone
Persistence Unit.
EntityManagerFactory as
an OSGi Service

sample.uas.ejbservice An EJB based implementation of a
service – this bundle embeds JPA
classes

EJB as a Service
Transactional, secured,
persistence aware, multi-
threaded OSGi service

sample.uas.ejbservice2 An EJB based implementation of a
service – this bundle consumes the
EMF service – so it does not bundle
JPA model classes

Shared/Standalone
Persistence Unit
@Inject @OSGiService

sample.uas.simplewab A Simple Web Application WAB,
@Inject @OSGiService

sample.uas.simplewabfragment OSGi Fragment Bundle as Web
Fragment

Modularity of web
applications,
Web Fragments in WAB

sample.osgijdbc.helloworld A simple bundle demonstrating how
to use JDBC from OSGi

JDBC DataSource as an
OSGi Service

sample.osgijjta.helloworld A simple bundle demonstrating how
to use JTA from OSGi

UserTransaction and
TransactionSynchronisati
onRegistry as an OSGi
Service

sample.osgihttp.helloworld A simple OSGi bundle
demonstrating use of OSGi/HTTP
Service from a SCR component
(user has to deploy osgi-http.jar
available in maven or update centre
to run this sample)

OSGi/HTTP Service of
GlassFish. Also uses
Declarative Service (aka
SCR)

http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.osgihttp/sample.osgihttp.helloworld
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.osgijta/sample.osgijta.helloworld
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.osgijdbc/sample.osgijdbc.helloworld
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.simplewabfragment
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.simplewab
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.ejbservice2
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.ejbservice
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.entities
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.simpleservice
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.uas/sample.uas.api
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample/sample.parent-pom
http://java.net/projects/glassfish/sources/svn/show/trunk/fighterfish/sample

15.4 Appendix D - TODO

This is not a list of features to be implemented in the product. This is where we keep track of items
to be added in this document.

• Add detailed use case for each feature.

15.5 Appendix E - Revision History

Version Date Comment Author

0.1 3 Feb 2011 Initial Revision Sanjeeb Sahoo

0.2 11 Feb 2011 Incorporated feedback
from Siva

Sanjeeb Sahoo

0.5 Mar 2011 Incorporated feedback
from John C, Richard
Hall.

Sanjeeb Sahoo

1.0 May 2011 Fixed formatting,
added internal and
external links, added
pictures, more feedback
from Siva.

Sanjeeb Sahoo

	1 Introduction:
	1.1 New to OSGi?
	1.2 Relationship between GlassFish Server & OSGi

	2 OSGi Applications in GlassFish Server
	2.1 Application Programming Interfaces (APIs)

	3 Hybrid Application Bundle
	3.1 Types of Hybrid Application Bundles
	3.2 Hybrid Application Bundle Packaging and Deployment
	3.3 Benefits of Hybrid Application Bundles

	4 Web Application Bundle (WAB)
	4.1 Structure of a WAB
	4.2 WAB Metadata
	4.3 WAB Life Cycle
	4.4 Using OSGi Service
	4.5 Fragment Bundle and WAB
	4.6 Static Resources and WAB
	4.7 Web Fragment and WAB
	4.8 Supported technologies
	4.9 WAR to WAB Conversion

	5 EJB Application Bundle
	5.1 Structure of EJB Application Bundle
	5.2 Required Metadata
	5.3 EJB Bundle Life Cycle
	5.4 Consuming OSGi Service

	6 Publishing an EJB as an OSGi Service
	6.1 Export-EJB Manifest
	6.2 Benefits of EJB based OSGi Service

	7 Type-safe Injection of OSGi Services into Java EE Component
	7.1 CDI
	7.2 GlassFish Server OSGi/CDI Extension
	7.3 Example

	8 JPA in OSGi Application
	8.1 Standalone Persistence Unit
	8.2 Enhancement of JPA Entities

	9 Java EE OSGi Services
	9.1 HTTP Service
	9.2 Transaction Service
	9.3 JDBC Service
	9.4 JMS Resource Service

	10 Tools
	10.1 Build Tools
	10.2 Development Tools
	10.3 Deployment Tools
	10.4 Runtime Tools
	10.4.1 Felix Remote Shell
	10.4.2 GlassFish Server OSGi Web Console

	11 Advanced Features
	11.1 Setting Up an OBR
	11.2 Using Alternative OSGi Runtime
	11.2.1 Equinox

	11.3 Embedded GlassFish

	12 Future Direction
	13 Additional Resources
	14 References
	15 Appendices
	15.1 Appendix A – GlassFish OSGi/CDI API Javadoc
	15.2 Appendix B – Setting up GlassFish Server to use OSGi/Java EE features (Only applicable for GlassFish 3.1)
	15.3 Appendix C - Samples
	15.4 Appendix D - TODO
	15.5 Appendix E - Revision History

