
;;;;
;;;; Created : 2006 Aug 09 (Wed) 11:13:54 by Harold Carr.
;;;; Last Modified : 2006 Oct 18 (Wed) 14:37:42 by Harold Carr.
;;;;

1. Introduction

 1.1. Project/Component Working Name:

 Web Services Interoperability Technology (WSIT).
 Also known as "Project Tango."

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:

 Harold Carr

 harold.carr@sun.com

 1.3. Date of This Document:

 08/09/06

2. Project Summary

 2.1. Project Description:

 JWS interoperability with WCF.

 (JWS = Java Web Services)
 (WCF = Windows Communication Foundation)

 2.2. Risks and Assumptions:

 WSIT cannot ship until after WCF ships.
 (For WSIT to officially interop with a Microsoft product
 we need to document explicit products and settings with
 which we have tested interoperability.)

3. Problem Summary

 3.1. Problem Area:

 On-the-wire interoperability with Windows Communication
 Foundation, Microsoft's consolidated communication platform.

 3.2. Justification:

 Our customers have heterogeneous data centers and partners.
 They need to be able to interoperate between Java and the
 Windows Environment.

 Project Tango is building on the previous generation of WS-I
 (I = Interoperability) technology. The point here is that
 the Java platform is already in the business of WS interop

 and WSIT is a continuation of that work with a WCF focus.

4. Technical Description:

 4.1. Details:

 From a developer point-of-view the main features enabled
 WSIT are:

 * bootstrapping communication
 * securing communication
 * optimizing communication
 * enabling reliability
 * enabling atomic transactions

 The WSIT implementation is composed of the following subsystems:

 * Metadata

 o WS-Policy: Policies express and handle requirements and
 capabilities of web service consumers and providers.
 Think of it as an XML-based configuration language.

 o WS-MetadataExchange/WS-Transfer: WS-Transfer is a protocol
 to enable a consumer to request a service's metadata
 (i.e., its WSDL and policies). The reply is formatted
according
 to WS-MetadataExchange ("MEX"). Think of Transfer/MEX as a
 bootstrap mechanism for communication.

 * Security

 o WS-SecurityPolicy: Defines specific policies
 that describe how messages are secured.

 o WS-Security: Provides message content integrity and
 confidentiality (even in the presence of intermediaries).

 o WS-Trust: Provides methods for issuing, renewing, and

 validating security tokens used by WS-Security. It also
 provides ways to establish and broker trust relationships

 o WS-SecureConversation: Can be viewed as a security
 optimization (i.e., better message level security and
 efficiency in multiple-message exchanges).

 * QoS

 o WS-ReliableMessaging: Enables a messaging system to
 recover from failures caused by messages that are lost or
 misordered in transit.

 o WS-Coord: A framework for providing protocols that
 coordinate the actions of distributed applications. Used by
 WS-AtomicTransactions.

 o WS-AtomicTransactions: Supports two phase commit semantics
 such that either all operations invoked within an atomic
 transaction succeed or are all rolled back.

 NOTE: the above WS-* are specifications in various stages
 of standardization at Oasis and the W3C.

 * Transport

 o SOAP/TCP: A Sun-proprietary transport to increase the
efficiency
 of communication. This is *NOT* a WSIT release driver
(whereas
 all of the above are release drivers).

 4.2. Bug/RFE Number(s):

 NONE.

 4.3. In Scope:

 Shown above.

 4.4. Out of Scope:

 Other vendor's are implementing the WS-* specifications.
 Although we hope to interoperate with other vendor's, our
 resources are focues on WCF as the primary target of
 interoperability for WSIT.

 4.5. Interfaces:

WSIT (in general)

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
<server>.xml committed Server configuration file when
 starting from Java.

 For a class annotated as
 a web service:

 package com.foo;
 @WebService()
 public class Bar { ... }

 the file will be named:

 wsit-com.foo.Bar.xml

 and will live in WEB-INF/ for
web
 container deployments or META-
INF/
 for ejb (i.e, JSR 109)
deployments

 For inner classes annotated
with
 @WebService the name will be:

 wsit-com.foo.Bar$Inner.xml

 This file/format is the only
 way a user of WSIT feature
 configures those features.

 The format of this file is
 WSDL 1.1. It uses standard
 WSDL element extensibility
 to embed policy assertions
 that control the
configuration.

<server>.wsdl committed Server configuration file when
 starting from WSDL.

 This file is named ,located
and
 formatted (WSDL 1.1) exactly
as
 specified in the JAX-WS 2.0
 specification.

 The only difference is that it
 will contain embedded policy
 assertions in WSDL element
 extensions as specified in
[??]

wsit-client.xml committed Client configuration file.

 This file is named wsit-
client.xml
 and is located on classpath.

 Not always needed.

 Necessary to supply the
 location of client security
 keystores.

 Optionally can control
 Reliable Messaging parameters.

 The format of this file is
 WSDL 1.1 with embedded policy
 assertions.

??POLICY ASSERTIONS?? committed The set of legal assertions
 that may be contained in the
 configuration files.

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
com.sun.xml.ws.api.* uncommitted WSIT is completely dependent
 on the internal APIs provided
 by the JAX-WS 2.1 Reference

 Implementation to enable
 pluggable subsystems.

 WSIT and JAX-WS are
essentially
 the same development
engineering,
 management, etc., teams.
 Therefore there is close
 day-to-day cooperation and
 coordination.

Bootstrapping (MEX/Transfer)

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
From JAX-WS 2.1:
wsimport committed JAX-WS wsimport is extended
such
 that, besides trying the JAX-
WS
 standard http://...?wsdl
approach
 to retrieving WSDL, it also
 uses the WS-Transfer protocol
 to retrieve WSDL which are
 returned in a format specified
 in WS-MetadataExchange [??].

 The WSIT NetBeans module
relies
 on this extension to retrieve
 WSDLs from WSIT and WCF
service
 providers.

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
From JAX-WS 2.1: uncommitted Extended in WSIT code so JAX-
WS
com.sun.xml.ws.api.wsdl.parser. runtime can find and execute
 MetadataResolverFactory MEX to retrieve WSDL.
 MetaDataResolver

 ServiceDescriptor.

Secure Conversation

*** Interfaces Exported ***

NONE.

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
From JAX-WS 2.1: (SC/API)
com.sun.xml.ws.Closeable uncommitted Available to server
application
 developers.

 In JAX-WS, this interface is
 implemented by a client port
proxy
 or client Dispatch.

 SC extends the
 behavior of Closeable.close()
 to terminate the SC session
 with the service.

 This is done by having the
 middleware send a request
 to cancel the security context
 to the service being used.

Reliable Messaging:

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
Session Key volatile (RM/API)
 Available to server
application
 developers.

 A String uniquely identifying

the
 client making the request
exposed

 as a named property of

javax.xml.ws.handler.MessageContext
 exposed in injected
 javax.xml.ws.WebServiceContext
 resources.

 The name of the property is
 "com.sun.xml.ws.sessionid"

Session User Data volatile (RM/API)
 Available to server
application
 developers.

 A Hashtable<String, Object>
 exposed as a named property of

javax.xml.ws.handler.MessageContext

 exposed in injected
 javax.xml.ws.WebServiceContext
 resources.

 The same Hashtable is exposed
in
 every request from the same
client
 instance.

 The name of the property is
 "com.sun.xml.ws.session"

com.sun.xml.ws.rm.jaxws.runtime.client. Only used by SeeBeyond.
AcknowledgementListener
 volatile notify(String id, int number)
 called when a message
belonging
 to the given id is acked.

 (SeeBeyond usage: can discard
the
 message from its persistent
store
 when the notification is
received.)

com.sun.xml.ws.rm.jaxws.runtime.client. Only used by SeeBeyond.
RMSource volatile
 createSequence methods to
enable
 to use RM SequenceIDs rather
 than create an unnecessary
 parallel set.

 (SeeBeyond usage: With this
 version, SeeBeyond creates the
 sequence and keeps the state
 necessary to reinitialize

 after a system crash.
 In a future version, SeeBeyond

 uses persisted data to
 reinitialize the sequence
after
 a system crash.)

com.sun.xml.ws.rm.jaxws.runtime.server. Only used by SeeBeyond.
RMDestination volatile
 createSequence message only
used
 to reinitialize server side of
 RM after server failure.

 (SeeBeyond usage: reinitialize
 sequence with persisted data
 after a system crash.)

RM Server RM Sequence ID volatile Only used by SeeBeyond.

 Server-side MessageContext
Property

 A String uniquely identifying
the
 RM Sequence to which the
request
 belongs.

 Exposed as a named property of
the

javax.xml.ws.handler.MessageContext
 exposed in injected
 javax.xml.ws.WebServiceContext
 resources.

 The name of the property is
 "com.sun.xml.ws.rm.sequenceid"

 (SeeBeyond usage: checks the
 incoming sequence id on each
 request, using it to access
the

 inbound sequence and store
enough
 data in persistent state to be
 able to reinitialize the
sequence
 after a system crash.)

Message Number volatile Only used by SeeBeyond.

 Client-side BindingProvider
 RequestContxt Property
 An Integer specifying the RM
 MessageNumber to be used on
 request messages from the

 BindingProvider.

 The name of the property is

"com.sun.xml.ws.rm.messagenumber"

 (SeeBeyond usage: passes the
 message number to be used on
each
 request message and stores the
 number in persistent state

 along with the message.
 After a restart it uses the
same
 message number on every resend
of
 the message.)

RM Client Sequence ID volatile Only used by SeeBeyond.

 Client-side BindingProvider
 RequestContxt Property
 An String specifying the RM
 SequenceID to be used on
 request messages from the

 BindingProvider.

 The name of the property is
 "com.sun.xml.ws.rm.sequenceid"

 (SeeBeyond usage: passes the
 sequence id to be used on each
 request message and stores the
 number in persistent state

 along with the message.
 After a restart it uses the
same
 sequence id on every

 resend of the message.)

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
From JAX-WS 2.1: (RM/API)
com.sun.xml.ws.Closeable uncommitted Available to server
application
 developers.

 In JAX-WS, this interface is
 implemented by a port proxy
 or Dispatch. RM extends the
 behavior of Closeable.close()
 to terminate the RM session.

Atomic Transactions:

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
com.sun.ws.xml.api.tx.Participant
 uncommitted For use by a system level
 developer to create a

 Volatile AT Participant.
 Used to implement the

 Java side of WCF WS-AT
 interop. We do not expect
 typical Java application
 developers to need to
 create Volatile
 Participants. (Just as we
 don't expect application

 developer to use

javax.transaction.TransactionSynchronizationRegistry.
 Both concepts are used to

 flush in memory cache to
 persistent storage

 before 2 pc of durable data.)

 This API accomplishes the
 equivalent functionality as

TransactionSynchronizationRegistry
 (see http://jcp.org/aboutJava/communityprocess/maintenance/
jsr907/907ChangeLog.html#interface_top)

 Both JTA 1.1 functionality and
 Volation AT-Participants are
used
 to flush in-memory cache to
 persistent store before 2
phase
 commit is performed on
durable,
 persistent resources.
 (see http://jcp.org/aboutJava/communityprocess/maintenance/
jsr907/907ChangeLog.html)

>

 Used by the WSIT
implementation
 of the WS-AT Coordinator and
 WS-AT Interop Service.

 Equivalent to

javax.transaction.xa.XAResource
 for WS-Atomic Transaction.

 The only usage for the
participant
 is with
 ATTransaction.enlistParticipant(Participant
p)
 (above).

 Used to perform auto-
enlistment of
 WS-AT participants (i.e.,
 DataSources with XAResources

are
 auto-enlisted as part of a
 transaction by app server)

 Java developers will *not*use
this
 API.

 Used to test interop of WS-AT
 (i.e, we need a capability to
 create a volatile WS-AT
 participant. No equivalent
 in Java transcations).

 Since WSIT itself is the only
 client of the interface we
will
 probably remove this interface
 from the expor list.

com.sun.ws.xml.api.tx.ATTransaction
(implements javax.transaction.Transaction)
 uncommitted Method called
enlistParticipant(
 com.sun.ws.xml.tx.Participant)

 that is equivalent to

javax.transaction.Transaction.enlistResource(XAResource).
 Used to register a Volatile
 Participant.
ManagedConnections
 use this in the AS
environment.

com.sun.xml.ws.api.tx.Protocol
 uncommitted Enum that defines WS-Atomic
 Transaction protocols. Used
 by Participant.

com.sun.xml.ws.api.tx.TXException
 uncommitted Thrown by Participant.prepare

wscoor.wsdl & wsat.wsdl uncommitted Two JSR-109 hosted web
services:
 Coordinator and
WSATCoordinator.

Files *generated* by above *.wsdl (all uncommitted):

package com.sun.org.xmlsoap.ws.coord:

RegistrationCoordinatorPortType.java External participant registers
 for a coordinated activity,
 includes Participant's
 EndpointReference.

RegistrationRequesterPortType.java Receive a register reply from
an
 external Coordinator, includes
 external Coordinator's
 EndpointReference.

ActivationCoordinatorPortType.java External client request for
 creation of a coordinated
activity
 (optional).

ActivationRequesterPortType.java Receive external coordinator's
 response for the creation of a
 coordinated activity.
(optional)

package com.sun.org.xmlsoap.ws.at:

CoordinatorPortType.java WS-Atomic Transaction 2 phase
 commit coordinator (represents
all
 coordinated activities for
this
 AS).

ParticipantPortType.java WS-Atomic Transaction 2 phase
 commit participant (represents
all
 participants for this AS).

CompletionCoordinatorPortType.java Handle external client's
direction
 to attempt to commit or
rollback
 transaction scope owned by
this
 root coordinator (optional).

CompletionInitiatorPortType.java Receive result of two phase
 commit, committed or rolled
back
 (optional).

The optional endpoints are to support a transactional client that is
remote from its root WS-AT coordination service. This is not the
default usage model. Typically, the root coordinator and transaction
scope creator are on same platform and use local, non-web service
methods to establish transactional scope and for the client to denote
the transaction should commit or rollback. (Equivalent to
UserTransaction.commit()/rollback() and the result returned from this
call.)

MS has following transport requirements to communicate with their
WS-AT Coordinator web service. SOAP 1.1, 2004 WS-Addressing, X.509
certificates (used to establish Transaction Manager Identity),
client/server authentication is required. Additionally: X.509
certificates presented over the wire must have a subject name that
matches the fully qualified domain name (FQDN) of the originating
machine. Therefore, DNS must be functional between each
sender-receiver pair in the system for X.509 subject name checks to
succeed.

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
javax.transaction. committed Provides the API that defines
the
Synchronization, Status, contract between the
transaction
Transaction, TransactionManager, manager and the various
parties
TransactionSynchronizationRegistry, involved in a distributed
UserTransaction, *Exception transaction namely:
 resource manager, application,
 and application server.

javax.transaction.xa. committed Provides the API that defines
the
XAResource, XID, XAException contract between the
transaction
 manager and the resource
manager,
 which allows the transaction
 manager to enlist and delist
 resource objects (supplied by
the
 resource manager driver) in
JTA
 transactions.

javax.resource.spi. committed Contains APIs for the system

XATerminator contracts defined in the J2EE
 Connector Architecture
 specification.

javax.naming.* committed For JNDI lookup of Java EE
 transaction manager and user
 transaction.

com.sun.enterprise.transaction.TransactionImport
 uncommitted JCA 1.5 implemented a
 Transaction Inflow contract to
 enable external transactions
to be
 injected into AS.
 To use this capability, one
needs
 to write a resource adapter.
 Since there is no way that we
 could inject a resource
adapter
 in the Tango WS-TX pipes, we
have
 exported the transaction
methods
 used to implement the
Transaction
 Inflow contract for JCA 1.5.
 Binod and Sankar have reviewed
 and approved this change and
the
 motivation behind it.
 (An introductory description
of
 JCA 1.5 Transaction Inflow
 Contract can ve found at
 http://www.phptr.com/articles/article.asp?
p=383047&seqNum=2&rl=1)

Security Policy:

*** Interfaces Exported ***

NONE

*** Interfaces Imported ***

NONE

Security:

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
XWSS 2.0 Exported Interfaces XWSS 3.0 will be backward
 committed compatible with XWSS 2.0,
 ARC CASE: 2005/245:
 http://sac.eng/arc/WSARC/
2005/245/commitment.materials/xws-security/XWS_2_0.sxw

com.sun.xml.wss.impl.callback.SAMLCallback, Handle SAMLPolicy Assertion
SAMLAssertionValidator committed scenarios.

Proprietary policy assertions Used in WSIT config files
 uncommitted to specify KeyStores and
 CallbackHandlers.
 (http://
wsinterop.sfbay.sun.com/wssecurity/Keystore_Configuration.html)

Security profiles uncommitted Simplifies security config.
Profiles defined for evolving Used by WSIT NetBeans module.
 (http://
wsinterop.sfbay.sun.com/wssecurity/Profiles_For_WSSecurity.html)

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
XWSS 2.0 Imported Interfaces XWSS 3.0 will be backward
 uncommitted compatible with XWSS 2.0,
 ARC CASE: 2005/245:
 http://sac.eng/arc/WSARC/
2005/245/commitment.materials/xws-security/XWS_2_0.sxw

 Part of these interfaces are
 controlled by Apache Software.

javax.security.auth.callback.CallbackHandler Used to access AS 9.1
keystores
 committed and trustmanager.

SJSXP (https://sjsxp.dev.java.net/) ??
 ??

From StreamBuffer (https://xmlstreambuffer.dev.java.net/):
com.sun.xml.stream.buffer.MutableXMLStreamBuffer
com.sun.xml.stream.buffer.XMLStreamBuffer
com.sun.xml.stream.buffer.XMLStreamBufferException
com.sun.xml.stream.buffer.XMLStreamBufferMark
com.sun.xml.stream.buffer.stax.StreamReaderBufferCreator
 ?? Used to cache incoming message
 headers and replay them for
 security processing.

From StAX-Ex (https://stax-ex.dev.java.net/):
org.jvnet.staxex.Base64Data
org.jvnet.staxex.XMLStreamReaderEx
org.jvnet.staxex.NamespaceContextEx
 ?? Used to (efficiently) read
binary
 data when MTOM is enabled.

From JAXWS 2.1:
com.sun.xml.ws.api.SOAPVersion
com.sun.xml.ws.api.message.HeaderList
com.sun.xml.ws.api.message.Header
com.sun.xml.ws.api.message.Message
com.sun.xml.ws.encoding.TagInfoset
com.sun.xml.ws.message.AttachmentSetImpl
com.sun.xml.ws.message.stream.StreamMessage
com.sun.xml.ws.protocol.soap.VersionMismatchException
com.sun.xml.ws.streaming.XMLStreamReaderUtil
com.sun.istack.NotNull
com.sun.istack.Nullable
 ?? Used to wrap secured message
and
 headers into JAXWS Message
format.
 Also used to create an
incoming
 message after security
processing.

Trust:

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
com.sun.xml.ws.security.trust.WSTrustContract Only used by AccessManager.
 uncommitted
 Used to issue, validate,
cancel,
 renew customer tokens.

?? Needs to move up one level (not in impl).
?? Needs to be an interface for AccessManager.
com.sun.xml.ws.security.trust.impl.IssuedSAMLTokenContract
 uncommitted Only used by AccessManager.

 SAML implementation of
 WSTrustContract.
 Three methods:
 abstract CreateSAMLAssertion()
 abstract isAuthorized()
 abstract
getClaimedAttributes()

?? Needs to move up one level (not in impl).
?? Needs to be an interface for AccessManager.
com.sun.xml.ws.security.trust.impl.IssuedSAMLTokenContractImpl
 uncommitted Only used by AccessManager.

 Implementation of
 IssuedSAMLTokenContract.
 Provides the
CreateSAMLAssertion()
 method and defaults for other
two.
 The AccessManager product
 (?? URL) will extend this
 implementation and override
 isAuthorized() and
 getClaimedAttributes().

 QUESTION ??: Need more detail
 on what happens in the
override.

*** Interfaces Imported ***

NONE.

Policy:

*** Interfaces Exported ***

NONE

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
JSR 109 Deployment Descriptor
 committed WSIT references the following
 elements: WS:WSDL-SERVICE
(name),
 WS:WSDL-PORT.

javax.servlet.ServletContext
 committed When deploying apps in
 web containers this is

 used to get the location
 of WEB-INF to load the
 WSIT server config file.

SOAP/TCP

Note: this is the only WSIT subsystem that does *NOT* interop with
WCF. We tried licensing their SOAP/TCP and binary encoding technology
but the terms were not acceptable. WSIT includes this feature (as
well as the FastInfoset binary encoding built into JAX-WS) to be on
par with WCF.

*** Interfaces Exported ***

Interface Classification Comments
--------- -------------- --------
com.sun.xml.ws.transport.tcp.server.glassfish.WSTCPLifeCycleModule
 committed For SOAP/TCP to receive
requests
 sent via TCP Sockets, it
needs to
 register a listener on Grizzly

 instance(s) via AS LifeCycle
 module via domain.xml (see
below).

*** Interfaces Imported ***

Interface Classification Comments
--------- -------------- --------
Grizzly V1 (in appserv-rt.jar):
com.sun.enterprise.web.connector.grizzly.ByteBufferFactory
com.sun.enterprise.web.connector.grizzly.SelectorFactory
com.sun.enterprise.web.connector.grizzly.SelectorThread
com.sun.enterprise.web.connector.grizzly.Handler
com.sun.enterprise.web.connector.grizzly.algorithms.StreamAlgorithmBase
 uncommitted Used to implement SOAP TCP
port.

Glassfish (in appserv-tr.jar):
com.sun.appserv.server.LifecycleEvent
com.sun.appserv.server.LifecycleListener
com.sun.appserv.server.ServerLifecycleException
com.sun.enterprise.deployment.WebServiceEndpoint
com.sun.enterprise.webservice.NewEjbRuntimeEndpointInfo
com.sun.enterprise.webservice.JAXWSAdapterRegistry
com.sun.enterprise.webservice.WebServiceEjbEndpointRegistry
com.sun.enterprise.webservice.monitoring.Endpoint
com.sun.enterprise.webservice.monitoring.EndpointLifecycleListener
com.sun.enterprise.webservice.monitoring.WebServiceEngineFactory
com.sun.enterprise.webservice.monitoring.WebServiceEngine
 committed Used to expose SOAP TCP port.

domain.xml committed Changes to register a listener
 on Grizzly instance(s) via
 AS LifeCycle.

<domain application-root="${com.sun.aas.instanceRoot}/applications"
 log-root="${com.sun.aas.instanceRoot}/logs">
 <applications>
 <lifecycle-module
 class-
name="com.sun.xml.ws.transport.tcp.server.glassfish.WSTCPLifeCycleModule"
 enabled="true"
 is-failure-fatal="false"
 name="WSTCPConnectorLCModule">
 </lifecycle-module>
 ...
 </applications>

 ...
 <servers>
 <server config-ref="server-config"
 lb-weight="100"
 name="server">
 <application-ref disable-timeout-in-minutes="30"
 enabled="true"
 lb-enabled="false"
 ref="WSTCPConnectorLCModule"/>
 ...
 </server>
 </servers>

 4.6. Doc Impact:

 WSIT has a tutorial on how to build JAX-WS providers and
 consumers that use WSIT features.

 4.7. Admin/Config Impact:

 WSIT has a NetBeans pluggin that is used to configure
 WSIT-enabled JAX-WS providers and consumers.

 4.8. HA Impact:

 NONE.

 4.9. I18N/L10N Impact:

 Error messages are localized in the same manner as WSIT's
 underlying JAX-WS platform.

 4.10. Packaging & Delivery:

 Unknown if WSIT impacts existing packages, clusters or
 metaclusters.

 No impact on install nor upgrade.

 4.11. Security Impact:

 WSIT includes the implementation of XWSS 3.0 security.

 4.12. Compatibility Impact

 WSIT is new so has no compatibility issues.

 XWSS 3.0 must be backward compatible with XWSS 2.0.

 4.13. Dependencies:

 WSIT depends on JAX-WS 2.1 (the "rearchitected"
 implementation). If JAX-WS or JAXB MRs slip WSIT will slip.

 WS-AtomicTransactions/WS-Coordination depend on public
 and private interfaces exposed by the application server's
 transaction subsystem.

5. Reference Documents:

 All WSIT related material can be found at the following web
sites:

 http://wsit.dev.java.net/ (code, how-tos,
documentation, ...)
 http://java.sun.com/webservices/interop/ (articles, ...)

For this first release of WSIT, the goal is interoperability with
Microsoft's WCF regardless of standards. The WSIT implementation uses
the following specifications as guidelines for WCF interoperability.
However, WCF does not follow these specifications completely nor
exactly. We therefore do whatever it takes, regardless of the
specification, to ensure interoperability with WCF.

The following specifications are in various stages of pre-submission,
submission and voting at different standards bodies (e.g., W3C,
Oasis). None are final. Future WSIT releases may incorporate the
resulting standards based on these specifications.

The following list is included for completeness. We are *NOT*
claiming interoperability with anyone implementing these
specifications. We *ARE* claiming interoperability with WCF's
implementation/interpretation of these specifications.

Bootstrapping:

 WS-MetadataExchange:
 http://wsinterop.sfbay/wsmex/presos/wsmex.pdf
 WS-Transfer (only the part referenced by wsmex):

 http://www.w3.org/Submission/2006/SUBM-WS-Transfer-20060315/

Security Optimization:
 WS-SecureConversation
 http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-
secureconversation.pdf

Reliable Messaging:
 WS-ReliableMessaging
 http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-
ReliableMessaging.pdf
 WS-ReliableMessaging Policy
 http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-RMPolicy.pdf

Atomic Transactions:
 WS-Coordination
 http://wsinterop.sfbay/wscoord/spec/WS-Coordination.pdf (local copy)
 ftp://www6.software.ibm.com/software/developer/library/WS-
Coordination.pdf (external location)
 WS-Atomic Transaction
 http://wsinterop.sfbay/wstx/at/spec/WS-AtomicTransaction.pdf (local
copy)
 ftp://www6.software.ibm.com/software/developer/library/WS-
AtomicTransaction.pdf (external location)

Security:
 WS-SecurityPolicy:
 http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-
securitypolicy.pdf
 WS-Trust
 http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf
 WS-Security:
 ?? ws-security spec
 http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-
os-SOAPMessageSecurity.pdf
 http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-
os-UsernameTokenProfile.pdf
 http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-
os-x509TokenProfile.pdf
 http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-
os-SAMLTokenProfile.pdf

Policy (used to configure the above):
 Web Services Policy 1.2 - Framework (WS-Policy):
 http://www.w3.org/Submission/WS-Policy/

 Web Services Policy 1.2 - Attachment (WS-PolicyAttachment):
 http://www.w3.org/Submission/WS-PolicyAttachment/

6. Schedule:
 6.1. Projected Availability:

 Milestone 2: Sept 2006
 Milestone 3: Oct 2006
 Feature Complete: Oct 2006
 Will be available from AppServer 9.1 is released

;;; End of file.

