
1. Introduction
 1.1. Project/Component Working Name:
 Self managemenet Rules

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
 Sankara Rao Bhogi sankara@dev.java.net

 1.3. Date of This Document:
 08/09/06
 Updated on 10/11/06

2. Project Summary
 2.1. Project Description:
 To provide out of the box Self Management features, set of builtin
 management rules will be provided to alert critical conditions and
 in some cases to take actions when those events happen.

 2.2. Risks and Assumptions:
 Self Configuration/Self Healing rules requires some
experimentation,
 thus they might go through some iterations before they stabilize.

3. Problem Summary
 3.1. Problem Area:

// What problem or need does this project solve?
 Application servers expose wealth of monitoring information. As of
now,
 this information has to be processed by users or other external
tools
 to make some meaningful representation of this collected data.
Based on
 the data, user needs to take an appropriate action. Unfortunately
in
 varying load conditions, by the time data is processed and an
action is
 taken manually by the user, that action may not be ideal at that
point
 of time. Indeed, if we could embed the intelligence to process the
 monitoring information with in the server and take an appropriate
action
 based on that data with in the appserver will be an ideal thing to
do
 and makes appserver management simpler.

 3.2. Justification:
// Why is it important to do this project?

 Simplified/auotomated management/administration.

4. Technical Description:
 4.1. Details:

 Introduction to self management framework in glassfish can be found
at:
 - GlassFish Project : Self Management home
 https://glassfish.dev.java.net/javaee5/selfmanagement/
selfmanagementhome.html
 - Blog: "Self Management Framework in GlassFish"
 http://weblogs.java.net/blog/sankara/archive/2006/02/
self_management.html
 - Blog: "GlassFish : Self Management Rules"

 http://blogs.sun.com/roller/page/technical?
entry=self_management_rules

 Proposed Management Rules:
 - Self Configuring/Self tuning of JDBC Connection pools

- Self Healing/Diagnosing
 - Out of memory detection, cleanup and alert
 notification
 - Hang detection and recovery: Instance and thread
hangs
 - Dead queue Message Alert
 - Disk full detection and server logs cleanup

 Dead Queue Message Alert:
 Dead Message may be defined as a message that is removed from the
system
 for a reason other than normal processing or explicit administrator
 action. A message might be considered dead because it has expired,
 because it has been removed from a destination due to memory limit
 overruns, or because of failed delivery attempts.
 When a message is dead, typically it would be kept in a specialized
 destination called "Dead Queue Message" and this would be an event
of
 interest to the administrator.
 This management rule, identifies such an event and sends a mail
alert
 to the configured reciepient.

 Connection Pool Management:
 Primary objective of a Connction Pool is to reduce the high cost of
 acquiring new connections and at the same time, not to hold
resources
 unnecessarily. While manual staic configuration, satisfies the need
of
 reducing the number of new connections acquired, there may not be a
 signle suitable configuration which caters to dynamic load.
 This management rule, attempts to dynamically tune the connection
pool.
 At present maximum connection pool is specified at the connection
pool

 defintion and would apply to each instance in the cluster.
 As instances added/deleted to the cluster, this value may probably
 needs to be changed, so that the resource usage is optimum. This
 mangement rule decides the max pool size for a given maximum number
 of connections possible to a given data source. Typically steady
pool
 size is used so that for an average load, new connections don't
have to
 be made. This rule, tunes stead pool size according to the load.

 Out of Memory Management:
 Low Memory is an important system event and administrator would like
to
 know, when such an event happens. Further, if internal pools and
caches
 can be pruned and cleaned it might help to an extent. Some times,
 it might occur because of a continuous high load, in such a case,
 quiescing the instance for a short time might help.

 Thread Hang Detection and Instance hang Detection:
 For various reasons (bug in logic, resource contention, dead locks
etc),
 a request thread might not finish its execution in a reasonable time
and
 if most of threads goes into such state, server may not be in a
usable
 state. Such a state might be of interest and some times restarting
the
 instance may be an approriate action.

 Log Cleanup Rule:

 As old logs get accumulated, available disk space to write new logs
 might be running out. This is a mechanical task and can be taken
care
 by a management Rule.

 4.2. Bug/RFE Number(s):

 4.3. In Scope:

 4.4. Out of Scope:

 4.5. Interfaces:
 4.5.1 Exported Interfaces
 Interface: Management Rules and their parameters will be

 pre populated into domain.xml in the cluster and enterprise
 profiles.
 1) Management Rule: DeadQueueMessageAlert

 Threshold: 1
 Interval: 180 secs
 OffSet: 0
 MailRecepients : No Default
 MailResource : No Default

 2) Management Rule: ConnectionPoolManagement

 DefaultMaxConnections : 30
 PoolNames : No Default . Possible values * and
comma
 separated name value pairs of PoolName and Max
Conns
 Sample Size : 5
 Sample Interval : 30 secs

 3) Management Rule: OutOfMemoryManagement

 MemoryPoolnames : "Perm Gen, Tenured Gen"
 Threshold : 80 (percent)
 OffSet : 5 (Percent)
 MailRecipients: No Default
 MailResource: No Default
 ListenerClasses: No Default, Comma separated fully
 qualified class names.

 4) Management Rule: ThreadHangDetection
 ThresholdWait: 80 secs
 StopThread : false (true | false)
 MailAlertAppRef : MailAlert

 5) Management Rule: InstanceHang

 RequestTimeoutInSeconds : 10
 Restart : true

 6) Management Rule: LogCleanupRule

 PartitionSpace : ${com.sun.aas.instanceRoot}/logs
 serverLogFilter : true
 AsadminAccessLogFilter : true

 ServerAccessLogFilter: true

 Stability: Evolving

 Comments: All the in built management rules are visible

 Interface : com.sun.appserv.management.event.TraceEventHelper
class
 Stability: Evolving
 Comments: Helper to class to get the trace event details.
Would be
 part of appserv-ext.jar.

 Interface :
com.sun.appserv.management.event.StatisticMonitorNotification class
 Stability: Unstable
 Comments: Notification type for complex attribute monitoring.
Would
 be part of appserv-ext.jar.

 4.5.2 Imported interfaces

 Interface: JMX 1.2
 Stability: Standards
 Exporting Project: JSR 3

 Interface: AMX API
 Stability: Evolving
 Exporting Project: Application Server

 4.5.3 Other interfaces (Optional)

 4.6. Doc Impact:
 Management rules along with the configurable parameters have to
be
 documented.

 4.7. Admin/Config Impact:

 4.8. HA Impact:

 4.9. I18N/L10N Impact:

 4.10. Packaging & Delivery:

 4.11. Security Impact:

 4.12. Compatibility Impact

 4.13. Dependencies:

5. Reference Documents:

6. Schedule:

 6.1. Projected Availability:
 Aligns with glassfish V2 schedule.

