
1. Introduction
 1.1. Project/Component Working Name: Sun Java System Application Server

 Loadbalancer enhancements for GlassFish v2 (SJSAS 9.1)

 1.2. Name of Document Author/Supplier:
 Pankaj Jairath : pankaj.jairath@sun.com (Earlier inputs from

 Harsha R A, Nazrul Islam, Satish Viswanatham, Sanjeev Krishnan
 and Sreeram Duvur)

 1.3. Date of This Document:
 08/09/2006

2. Project Summary
 2.1. Project Description:

 Loadbalancer component of the application server is a webserver
plugin
 which distributes the http requests to the application server
 instances. Currently it only supports simple round robin load
balancing
 policy.
 This one pager describes the enhancements that are proposed to
this
 component that include rule based load balancing such as weighted
round
 robin and user defined decision. It also describes ease of
 administration features.

 2.2. Risks and Assumptions:

 Increases the complexity of the component.

3. Problem Summary
 3.1. Problem Area:

This could solve many of the customers problems related to load
distribution and administration such as

1. Customer having hardware of differing capacities would like to
distribute more load to the more powerful hardware's application

server
instance.

2. If one particular appserver instance is overloaded, customer
would

like to distribute less load to that instance and use the other
less

occupied instances instead.

3. Each time a new application is deployed, the administrator has
to

manually generate the loadbalancer.xml file and copy it to the web
tier.

Automatic update of the configuration from DAS to loadbalancer
would

would ease this task.

4. Customer would like to implement a custom routing logic like
identity

based routing or geographical location based routing.

 3.2. Justification:

 This would enhance customer satisfaction and make it more
competitive.

4. Technical Description:

 4.1. Details:

4.1.1. Load balancing enhancements

This section describes the enhancements that are proposed to the
 component that include weighted round robin, user defined decision
and
 the ease of administration.

4.1.1.1. Weighted Round Robin

 We introduce an optional attribute called weight for the instance
 element of Loadbalancer.xml as given below. In addition, a new
optional
 attribute called policy for the cluster element would specify the
 policy that would be applicable.

<loadbalancer name="loadbalancer1" >
 <cluster name="cluster1" policy="weighted-round-robin">
 <instance name="instance1" enabled="true" listeners="http://abc.com:80"
 weight="100" />
 <instance name="instance2" enabled="true"
 listeners="https://abc2.com:80" weight="400"/>
 <web-module
 context-root="fortune" enabled="true" error-url="error1.html"/>
 <health-checker url="/" interval-in-seconds="10" />
 </cluster>
</loadbalancer>

When this is specified, the loadbalancer would route the requests
 according to the weight. For every 500 requests, 100 will go to
 instance1 and 400 would go to instance2. The default weight will be
100.
 The weight would be assigned to each instance from the admin gui/
cli.

domain.xml will have an attribute for every instance indicating the
weight. The weight has to be integer.

The disadvantage to this method is that the weights are static and
the administrator has to calculate the instance weights

appropriately.
Using the self management framework, user could write rules to

alter
the weights dynamically. The changes would be pushed to the

loadbalancer
using the automatic push feature.

4.1.1.2. User Defined LB Decision

This allows customers to have a custom logic for load balancing.
 Examples would be user identity based redirect, mime based load
 balancing etc. The user of this feature would have to develop a
shared
 library which would be loaded by load balancer. The loaded custom
 shared library would implement the interface as defined in
 loadbalancer.h which will be placed in <appserver install dir>/lib/
 install/templates/.

The method lb_policy_init would be called by the load balancer
whenever

it starts up and has a list of active instances and also whenever
this list changes either with a healthy instance becoming unhealthy

or
 vice versa.

When a request arrives at loadbalancer, it first matches the
request

with the configured context roots. If there is no match, control is
returned to the webserver as done at present.

The lb_decision would be called for every request which requires a
selection of an instance. The lb_decision is not called for stuck
requests.The method returns the name of the selected listener.

The loadbalancer configuration for this policy would look like

<loadbalancer name="loadbalancer1">
 <cluster name="cluster1" policy="user-defined"

policy-module="/path/lbmodule.so" >
 </cluster>
</loadbalancer>

A sample implementation will be shipped which will implement simple
round robin policy.

4.1.2. Administration ease of use:
Currently the loadbalancer.xml has to be manually copied to the
webserver's config directory. Enhancements to make it automatic

between
 the appserver and the webserver can be done using the push
approach.
 (Advantages are marked with + and disadvantages with -)

DAS pushes the xml to load balancer
---> Can use SSL mutual authentication if SSL is configured on the
webserver
--->(-) Need special virtual server/listener/NSAPI entry/admin port

on
the webserver side to accept the connection
--->(-) Needs a hole in the firewall for every LB instance for

outgoing
connection from DAS to LB. This can be prevented by configuring a

proxy.
--->(+) There is no need of polling, can be event

based(deploy,undeploy)

In the initial phase of the implementation, an asadmin command
would

push the configuration to the loadbalancer. Later, an integration
with

the loadbalancer SPI would allow automatic pushes based on the lb
config

change.

There will be an element for configuring the actual loadbalancers
in

domain.xml . The administrator has to configure the loadbalancer's
 endpoint details like host, port, ssl certificates, proxy host,
 proxy port.

The loadbalancer will trap the special context root configured for
configuration update. For eg, it could be /lbconfigupdate . It will
accept the contents of the loadbalancer.xml in the post body. It

will
verify the credentials of DAS before accepting the contents. Then

it
will parse the incoming xml file, and if found to be valid, it will

take

a backup of existing xml file and replace it with the updated file.

 Configuration Steps:

 Documentation would be provided to enlist the steps required to manually
 install and configure the loadbalancer plugin. For GlassFish v2,
 Sun's Web Server would be the supported platform.

 The Web Server could be configured to enforce client authentication only
 for the path "/lbconfigupdate" which is what DAS uses to post config
updates
 and which is the only path from which LB accepts the push.

4.1.3 Monitoring

 The following diagram shows the hierarchical tree structure of the Load
Balancer Statistical information.

 load-balancer
 |
 +---Cluster 1
 | +--Instance 1
 | | +----health
 | | +----num-active-requests
 | | +----num-total-requests
 | | +---Application 1
 | +-- ContextRoot 1
 | +------------average-response-time
 | +------------max-response-time
 | +------------min-response-time
 | +------------num-failover-requests
 | +------------num-error-requests
 | +------------num-idempotent-url-requests
 | +------------num-active-requests
 | +------------num-total-requests
 ...
 | +--Instance 2
 | | +----health
 | | +----num-active-requests
 | | +----num-total-requests
 | | +---Application 2
 | +-- ContextRoot 2
 | +------------average-response-time
 | +------------max-response-time
 | +------------min-response-time
 | +------------num-failover-requests
 | +------------num-error-requests
 | +------------num-idempotent-url-requests
 | +------------num-active-requests

 | +------------num-total-requests

 Monitoring is enabled per Load Balancer configuration. It is turned on
by
 setting required-monitoring-data to true. However setting Log verbose
option
 is not required.
 Monitoring data can be obtained from DAS using GUI. These monitoring
 information can also be obtained programmatically using AMX
 Monitoring APIs.

 PE/EE Impact

 Impacts EE.

 4.2. Bug/RFE Number(s):

 4.3. In Scope:

 4.4. Out of Scope:

4.4.1 64 bit support
 32 bit version is provided with GlassFish v2. As part of

 Sun Java System Application Server 9.1 EE, 64-bit support
would be
 considered.

4.4.2 Response time based round robin

 This is based on the response time of just the URL that
 established the session, so it is not quite powerful.

4.4.3 Load metric based load balancing

 This will not be done in this release.

4.4.4 Prevention of Stale Session modification

 The session persistence layer will initiate a takeover of the
 session by updating the owner column of the HADB table for
the
 sessions that have failed over. The details of this is out of
 scope of this one pager.

 The loadbalancer will not initiate any action to alter the
state
 of the session or the instance.

 4.5. Interfaces:

 The interfaces for SJSAS 7.0EE and 7.1EE LB are applicable for
 GlassFish v2 as well.

 Hence in this section we document the interfaces that have
changed

 and the new interfaces that have been added.

4.5.1 Exported Interfaces

 Interface: sun-loadbalancer_1_2.dtd
 Stability: Evolving

 A new optional attribute called policy and policy-module is
 introduced for the cluster element. A new attribute called

 weights is added to instance element. As these are an
optional
 attribute, there will be no backward compatibility issues.
The
 other differences are listed below.

+<!ENTITY % policy "(round-robin | weighted-round-robin | user-defined)">

-<!ATTLIST cluster name CDATA #REQUIRED>
+<!ATTLIST cluster name CDATA #REQUIRED
+ loadbalancer policy %policy; "round-robin"
+ policy-module CDATA "">

 <!ATTLIST instance name CDATA #REQUIRED
 enabled %boolean; "true"
 disable-timeout-in-minutes CDATA "31"
- listeners CDATA #REQUIRED>
+ listeners CDATA #REQUIRED
+ weight CDATA "100">

 Interface: User Defined LB Policy Interface (loadbalancer.h)
 Stability: Unstable

The C interface implemented by the user's shared library
will

be documented and supported, but the interface is not stable and
could

undergo changes.

#ifndef LOADBALANCER_H
#define LOADBALANCER_H
struct http_listener {

char * name;
char * url;

int weight;
};
struct header {

char * name;
char * value;

};

 #ifdef __cplusplus
 extern "C" {
 #endif

int lb_policy_init(struct http_listener[] listeners, int size);
char* lb_decision(int secure,char *url, struct header[] headers,int

size);

 #ifdef __cplusplus
 }
 #endif

#endif // LOADBALANCER_H

 Interface: domain.xml
 Stability: Evolving

<!ATTLIST server

+ lb-weight CDATA "100">

For load-balancing policy, we introduce policy and
policy-module attributes for cluster-ref element of lb-config.

<!ATTLIST cluster-ref
ref CDATA #REQUIRED

+ lb-policy ("round-robin" | "weighted-round-robin" | "user-
defined")

"round-robin"
+ lb-policy-module CDATA #IMPLIED>

Configuration Support for Physical Load-balancers

- <!ELEMENT domain (applications?,,..)>
+ <!ELEMENT domain (applications?,, load-balancers?...)>
+ <!ELEMENT load-balancers (load-balancer*)>
+ <!ELEMENT load-balancer (property*)>
+ <!-- load-balancer attributes
+
+ name - name of the load balancer
+ config-ref - name of the lb-config used by this load balancer
+ automatic-lb-apply-enabled - immediately push changes to lb config
to
+ the physical load balancer

+ properties:
+ device-host - Host name or IP address for the device
+ device-admin-port - Device administration port number
+ ssl-proxy-host - proxy host used for outbound HTTP
+ ssl-proxy-port - proxy port used for outbound HTTP
+
+ -->
+
+ <!ATTLIST load-balancer
+ name CDATA #REQUIRED
+ config-ref CDATA #REQUIRED
+ automatic-lb-apply-enabled %boolean; "false">

 Interface: Loadbalancer screens in Admin GUI
 Stability: Evolving

 Comments: Admin GUI would provide new screens to support the
ease of
 use enhancements.

 Interface: Loadbalancer commands in Admin CLI
 Stability: Evolving
 Comments: CLI would provide new commands to support the ease of
use
 enhancements.

New Commands:

asadmin create-http-lb
--config lb_config_name
[--autoapplyenabled=false]
--devicehost device_host_or_ip
--deviceport device_port
[--sslproxyhost proxy_host]
[--sslproxyport proxy_port]
[--property (name=value)[:name=value]*]
<load-balancer-name>

asadmin delete-http-lb <load-balancer-name>

asadmin list-http-lbs

asadmin apply-http-lb-changes <lb-name>

asadmin configure-http-lb-config
[--responsetimeout=60]
[--httpsrouting=false]
[--reloadinterval=60]
[--monitor=false]

[--routecookie=true]
[--healthcheckerurl url]
[--healthcheckerinterval=30]
[--healthcheckertimeout timeout]
[--target target]
[--config config_name]
[xml-file-name]

asadmin configure-lb-weight
--cluster cluster_name
<instance-name=weight[:instance-name=weight]>

Changes to Existing Commands:
create-http-lb-ref will have the following new options

[--lbpolicy lb_policy] [--lbpolicymodule lb_policy_module]
[--healthcheckerurl url] [--healthcheckerinterval=30]
[--healthcheckertimeout=10] [--lbEnableAllInstances] [--
lbEnableAllApplications]

create-http-lb-config will have the following new option
--property

 Interface: Loadbalancer interfaces in AMX
 Stability: Evolving
 Comments:
The following are the new classes in AMX for load balancer.

LoadBalancer
LoadBalancerConfig
LBConfig
LBConfigHelper
LoadBalancerApplicationMonitor
LoadBalancerApplicationStats
LoadBalancerClusterMonitor
LoadBalancerClusterStats
LoadBalancerConfigKeys
LoadBalancerContextRootMonitor
LoadBalancerContextRootStats
LoadBalancerMonitor
LoadBalancerServerMonitor
LoadBalancerServerStats

4.5.2 Imported interfaces

4.5.3 Other interfaces (Optional)

 4.6. Doc Impact:
 The loadbalancer admin guide, Error Reference Manual will be

impacted.

 4.7. Admin/Config Impact:
 Changes to GUI and CLI to support the administration of the

 enhancements.

 4.8. HA Impact:
 It increases the usability options available for HA.

 4.9. I18N/L10N Impact:
 None

 4.10. Packaging & Delivery:
 Loadbalancer component would be avialable as part of the build
and
 steps would be provided to manually install and configure it for
 Sun Java System Web Server.

 4.11. Security Impact:
 The authentication between the LB and the DAS/instance needs to
 be reviewed.

 4.12. Compatibility Impact

 4.13. Dependencies:
 The admin CLI/GUI need to support the new features.

5. Reference Documents:

6. Schedule:
 6.1. Projected Availability:

 With GlassFish v2 (SJSAS 9.1)

