
// Delete comments before final submission.
// make sure that the response fits within 80 columns
012345678901234567890123456789012345678901234567890123456789012345678901234
56789
1. Introduction
 1.1. Project/Component Working Name:

JBI Integration with appserver.
 (Belongs to umbrella arc case WSARC/2006/586)

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:

 Binod PG: binod.pg@sun.com
 Keith Babo : Keith.babo@sun.com

 1.3. Date of This Document:

 8th December 2006.

2. Project Summary
 2.1. Project Description:

 For growing the community around jbi component developers and for
 providing better integrated middle offering to the customers,
 JBI will be integrated with appserver by default.

 Administration integration, Runtime Integration and EE
(clustering)
 integration of the JBI runtime and the components are the main
 areas targetted for this release of appserver.

 2.2. Risks and Assumptions:

 The project depends on JBI team meeting the appserver
 schedule and integration requirements.

3. Problem Summary
 3.1. Problem Area:

 o JBI runtime is well integrated only to Java EE SDK.

 3.2. Justification:

 o It is important to make sure that Sun's middleware software
 products are well integrated together.

4. Technical Description:
 4.1. Details:

 Basic JBI runtime, SOAP binding component and WSDL shared library

 wil be integrated to appserver by default.

 4.1.1. Installation and Packaging.

 The JBI will be installed directly by the appserver installer.
 Most of the JBI files will be installed in AS_HOME/jbi
 directory. This directory will contain all common jar files and
system
 components of the JBI. This will also include the lifecycle
 module that start the JBI framework in the appserver JVM.

 In Java EE 5 SDK, when JBI gets installed on top of appserver as
 an addon, it uses DOMAIN_ROOT/jbi as the location to save all the
 jbi application bits (engines, bindings, shared libraries etc).

 As part of the tighter integration in Appserver 9.1, all the
default
 components like SOAP BC, WSDL shared library, Java EE service
engine
 etc will be considered as system components and will be installed
 within AS_HOME/jbi itself. Thus DOMAIN_ROOT/jbi will be almost
empty
 on a fresh installation of appserver except the directories and
 the JBI registry.

 Any user application (service assembly, service engine etc) will
be
 created in the DOMAIN_ROOT/applications/composite-applications
 directory. In case of standalone instances or cluster instances,
 INSTANCE_ROOT/applications/composite-applications will be used as
 the application directory.

 4.1.2. Startup.

 JBI runtime will be integrated to appserver runtime as a
 lifecycle module. This will be a user defined lifecycle module so
that
 it can be turned on/off by user. By default it will be switched
on.
 The actual lifecycle module implementation will reside in a jar
file
 in the AS_HOME/jbi directory.

 When lifecycle module starts during appserver startup, the JBI
 framework will inspect the contents of JBI registry in
 INSTANCE_ROOT/jbi and check for any installed user components or
 service assemblies. If there is none, only a minimal JBI core
service
 will be started to listen for user events.

 On the first user-action on the JBI framework (eg. deployment of
 service assembly) , the rest of JBI framework and system
components
 will be initialized.

 4.1.3. Administration integration.

 JBI administration GUI will be a node in the default appserver
 admin GUI. The basic GUI code will be checked in to appserver
 cvs repository itself. The jbi admin GUI code will interact with
the
 jbi common client library. The jbi common client library is the
basic
 interface used by all jbi tools to contact with the jbi
administration
 runtime.

 jbi admin cli commands will be developed based on the CLI
framework
 cookbook document. The CLI descriptor xml file will be modified to
 include the jbi admin cli commands. The asadmin scripts will be
 modified to include the jbi commands archive. See interfaces and
 reference documents section for more details.

 Administration operations in the GUI and CLI will support all
 appserver targets (server, domain and cluster).

 4.1.4 Transactions.

 JBI components like BPEL engine will be capable of handling
 transactions. JSR 208 allows JTA transaction usage in the
components.
 It also allows to pass the transaction object between components.
 JBI components will use javax.transaction.Transaction and
 javax.transaction.TransactionManager interfaces for transaction
 operations like enlistment, delistment, suspend, resume, commit,
 rollback etc.

 Java EE Service Engine (JSE) will be enhanced to handle
transactions.
 In case of inbound communication, JSE will execute the EJBs and
 servlets under the same transaction passed by JBI.

 In case of outbound communication from a Java EE application,
 the current transaction of the Java EE application will be passed
to
 JBI. Both these will enable stronger integration of Java EE with
JBI.

 A new interface will be exposed by appserver to obtain XAResource

 objects from JBI components for recovery. During recovery,
application
 server will use this interface to retrieve the XAResource objects
 from JBI components.

 public class RecoveryResourceRegistry {
 public static RecoveryResourceRegistry getInstance();
 public void
addRecoveryResourceListener(com.sun.enterprise.resource.
 RecoveryResourceListener);
 public java.util.Set getListeners();
 }

 This is a singleton registry class, that will be used by jbi
lifecycle
 to register a listener (RecoveryResourceListener) class.

 public interface RecoveryResourceListener{
 javax.transaction.xa.XAResource[] getXAResources();
 void recoveryStarted();
 void recoveryCompleted();
 }

 Appserver will use the RecoveryResourceListener instance from the
jbi
 to obtain the XAResource objects for recovery. It also gives two
 recovery lifecycle operations that can potentially be used for
 some house keeping operations.

 4.1.4 EE and Clustering.

 Each server instance, whether it is standalone, DAS (Domain
 Adminisistration Server) or clustered will contain a JBI runtime.
 DAS will contain Facade mbeans that will be communicating to the
 cluster instances or standalone instances based on the target
 information.

 Basic JBI runtime will not have any special capability to handle
 clustering. The components on top of it will be aware of EE
clustering.
 So, it will be the component's responsibility to work in a
clustered
 manner. For example, a BPEL process doing a correlation will need
the
 messages to routed to the same instance. However this will be done
 in a way specific to the component. For example, BPEL engine
 deployment to a cluster will use a group ID to identify the
cluster.
 This can be the cluster name.

 Load balancing to the EE cluster will be handled in a component
 specific way. For example, the SOAP BC, will use HTTP load
balancer.
 and the JMS BC will use inbound JMS load balancing.

 4.1.5 Java EE Service Units.

 At present when a user compose a composite application, he
includes
 all other service units (BPEL app, SOAP BC deployment, XSLT
engine)
 in the service assembly. However service units developed as Java
EE
 applications will not be included and instead they are deployed
 separately from the service assembly and they work with the NMR
 (Normalized Message Router of JBI) transparently.

 By allowing the Java EE applications to be included in the service
 assembly, it is possible for packaging composite application as
one
 archive, including the Java EE application. This will provide a
better
 experience while using netbeans.

 Also, when Java EE applications are part of service assembly, the
Java
 EE service engine receives the lifecycle events (deploy/undeploy/
start
 /stop etc) from the NMR. This will enable the service engine to do
 necessary house keeping (eg. removing the WSDL object cache, while
 undeploying the service assembly)

 This would also enable better management/monitoring capabilities
for
 the Java EE service units by the JBI tools.

 Description of the packaging

 The contents of the service assembly(StockPlanCompositeApp.zip)
would
 look like the following. StockWSApplication.jar is a Java EE app.
 .
 ./META-INF
 ./META-INF/MANIFEST.MF
 ./META-INF/jbi.xml
 ./StockPlanner@BPELSEDeployment.jar
 ./com.sun.httpsoapbc-1.0-2@BCDeployment.jar
 ./StockWSApplication.jar

 The content of ./META-INF/jbi.xml of the service assembly would

 contain the follwing information service unit information for
 Java EE application as follows.

 <service-unit>
 <identification>
 <name>StockWSJavaEEUnit</name>
 <description>Represents this Service Unit</description>
 </identification>
 <target>
 <artifacts-zip>StockWSApplication.jar</artifacts-zip>
 <component-name>JavaEEServiceEngine</component-name>
 </target>
 </service-unit>

 The StockWSApplication.jar is the Java EE application. Note that,
it
 would also be possible to bundle a ear or war as service unit as
well.

 The Java EE application, in it's META-INF directory will contain
 another jbi.xml as per JSR 208 spec. Java EE Service Engine will
not
 use any information from this jbi.xml

 Deployment

 The name of the Java EE archive will be prepended with the name of
 the service assembly. A Java EE archive that is deployed as part
 of service assembly cannot be managed from appserver's admin GUI
 or CLI. The property element in the j2ee-application (and other
 modules) will be leveraged for this purpose. The Java EE Service
 engine will set a property name/value pair
 "externally-managed"/true to indicate that it is an externally
 managed application.

 4.2. Bug/RFE Number(s):

 4.3. In Scope:

 1) Installation.
 2) Administration Integration.
 3) Runtime Integration.
 4) Transaction Support.
 5) Package Java EE applications in Service Assembly.
 6) Clustering support in JCAPS components.

 4.4. Out of Scope:

 1) Failover of composite applications.

 4.5. Interfaces:
// http://www.opensolaris.org/os/community/arc/policies/interface-

taxonomy/
 // describes the permitted interface taxonomy.

 4.5.1 Exported Interfaces

 1. Interface:
 JBI interfaces defined by JSR 208 specification.
 Stability:
 Committed
 Comments:
 This will be exposed by JBI integrated with the appserver.
 2. Interface:
 API to obtain XAResource objects from JBI.
 Stability:
 Contracted Project Private.
 Comments:
 If a similar functionality is added to JTA specification,
then
 this interface can be removed. Also, this interface will
be
 a project-private interface used only by JBI.
 3. Interface:
 JBI Administration CLI and GUI.
 Stability:
 Uncommitted.
 Comments:
 This is explained in section 4.7 of this one pager.

 4.5.2 Imported interfaces

 1. Interface:
 JBI interfaces(JBI API, jbi.xml dtd etc) as specified by
JSR 208.
 Stability:
 Committed.
 Exporting Project:
 JSR 208 specification.
 Comments:
 This is used by Java EE Service Engine.
 2. Interface:
 JBI common client API
 (http://www.glassfishwiki.org/jbiwiki/Wiki.jsp?
page=Glassfish9.1CommonClient)
 Stability:
 Contracted Project Private.
 Exporting Project:
 JBI.
 Comments:

 This is used by Administration GUI and CLI of appserver.
 3. Interface:
 CLI framework.
 http://sac.sfbay.sun.com/WSARC/2005/166/
 Stability:
 Contracted Project Private.
 Comments:

 4.6. Doc Impact:

 Most of the parts of appserver documentation will have an
 impact. Administration Guide, Developer's Guide and CLI man pages
 will need to include the JBI specific details or pointers to JBI
 documentation.

 4.7. Admin/Config Impact:
// How will this change impact the administration of the product?
// Identify changes to GUIs, CLI, agents, plugins...

 Template will be modified to include jbi lifecycle module.
 The jbi administration will be an integral part of appserver
 administration. This is explained in the following docs.

 jbi CLI commands.
 http://www.glassfishwiki.org/jbiwiki/Wiki.jsp?
page=Glassfish9.1JBICLIProjectPlan
 http://www.glassfishwiki.org/jbiwiki/Wiki.jsp?
page=TableListingJBICommandSet

 jbi admin GUI.
 http://www.glassfishwiki.org/jbiwiki/attach/
Glassfish9.1WebConsolePEProjectPlan/projplan-jbiadmin-jsf-pe.pdf

 4.8. HA Impact:

 Explained in section 4.1.4 of the document.

 4.9. I18N/L10N Impact:

 4.10. Packaging & Delivery:
// What packages, clusters or metaclusters does this proposal
// impact? What is its impact on install/upgrade?

 Main directories of jbi within appserver file layout are
 1. AS_HOME/jbi : This directory will contain all the installation wide
 data like famework jar file, lifecycle module, system components
etc.
 2. DOMAIN_ROOT/jbi: This directory will contain all the data
 specific to a domain.

 3. INSTANCE_ROOT/jbi: This directory will contain all the data
 specific to each instance.

 More information on the file layout can be found at:
 http://www.glassfishwiki.org/jbiwiki/Wiki.jsp?page=FileSystemLayout

 Since JBI will be integrated to appserver, the JBI files
 will be added to appserver packages (SUNWasu etc).

 4.11. Security Impact:

 The server.policy will be modified to give permissions for
 all jbi libraries and composite applications.

 More about this issue is available at:
 http://www.glassfishwiki.org/jbiwiki/Wiki.jsp?page=JBISecurity

 4.12. Compatibility Impact

 Appserver will need to pass JBI (JSR 208) TCK (Technology
compatibitity kit
 from compatibility team).

 4.13. Dependencies:

 This project depends on the JBI schdule.

5. Reference Documents:

 JBI documents.
 http://www.glassfishwiki.org/jbiwiki/Wiki.jsp?
page=GlassfishJbiIntegration

 JSR 208 spec.
 http://jcp.org/en/jsr/detail?id=208

 Appserver 9.1 ARC case.
 http://sac.sfbay.sun.com/WSARC/2006/586

6. Schedule:
 6.1. Projected Availability:

 This will be available when applserver 9.1 is released.

