
// Delete comments before final submission.
// make sure that the response fits within 80 columns
012345678901234567890123456789012345678901234567890123456789012345678901234
56789
1. Introduction
 1.1. Project/Component Working Name:

Supporting Addons in Appserver EE.

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
Binod. P.G : binod.pg@sun.com

 1.3. Date of This Document:
16/10/06

2. Project Summary
 2.1. Project Description:

 The current addon infrastructure provided by appserver is only
sufficient
 to install and configure an addon on top of appserver PE. This
project
 aims at extending that capability to appserver EE also.

 2.2. Risks and Assumptions:

 Adoption of this functionality by other products is not controlled
by this
 project. That introduces a risk of finding a bug very late in the
release
 cycle.

3. Problem Summary
 3.1. Problem Area:

Addon functionality is limited to appserver PE.

 3.2. Justification:

 EE version of appserver is open sourced and is likely to be the
base for
 Java EE SDK. It is important to have infrastructure capabilities in
appserver
 to support Addon products that get installed on top of appserver in
Java EE
 SDK.

4. Technical Description:
 4.1. Details:

 1.0 Current Design

 An addon is expected to follow the packaging guidelines as explained
 in the document below.
 [http://wikihome.sfbay.sun.com/blueprints/Wiki.jsp?
page=PackagingAndIntegration].
 An addon is expected implement an installer plugin and a configurator
 plugin. Installer plugin will get invoked during the SDK installation.
 Location of Appserver installation will be provided to inatller
plugin.
 Installer Plugin is expected to install the common bits for the addon
 as well as copy the configurator plugin to the lib/addons directory.

 Configurator plugin is invoked prior to starting of the appserver
 so that it can modify the domain.xml to include the required
 entries and modify the server.policy. Addon configurator plugin
 directly modifies the domain.xml today. Offline AMX, when it is
 ready, can be used for this purpose.

 2.0 Cluster / Remote Instance Support for Addons
 --

 2.1 Installation

 Installer plugin will be invoked during installation in DAS
 machine. The Installed addon will be synchronized to different
 instances when node agents starts up.

 [Open question: If the nodeagent process is used to do the
 synchronization, then, it might be running with a different
 user-id. It might not have permission to access the required
 directories. If we cant assume that the same user is running
 the nodeagent, it would be required for the user to explicitley
 install the addon in the remote machines]

 Some addons deploy system applications (war, ear etc.) to the
appserver
 by copying the application to the autodeploy directory. However these
 applications will just behave as the user applications. Instead of
copying
 to autodeploy directory, they should be copied to lib/install/
applications
 directory. Currently all the appserver system applications reside in
 this directory. By default, the applications in this directory will
 be considered of type "system-all" and will be deployed in all
 instances (cluster/standalone/das) of the appserver.

 2.2 Configuration

 Configurator Plugin will be invoked at three places in the server
 startup.

 2.2.1 Domain Startup

 The plugin can modify the domain.xml and insert common entries
 for lifecycle module. Currently lifecycle-module does not support
 object-type. So, it cannot be flagged as "system-all" "system-admin"
 etc. We will add this support. If addon want one particular
 system application to have a prticular type, it should modify the
 domain.xml during domain startup.

 2.2.2 Prio to Start Instance In DAS

 When start-instance command is executed in DAS, the configurator
 plugin will be executed. At this time, domain.xml can be modified to
 add any system-property element. Typically this may be used to
configure
 ports opened by the instances.

 2.2.3 Prior to Actual Start Instance in the Remote Instance

 The configurator plugin can create any instance specific directory
 (eg INSTANCE_ROOT/jbi) at this time.

 2.3 Enhancement to the interfaces

 An explicit interface for Installer and Configurator will be provided
 to addon implementations that use this feature. Javadoc for theese
 interfaces are available at

 http://www.glassfishwiki.org/gfwiki/attach/OnePagersOrFunctionalSpecs/
addons.zip

 jbi-bpel_installer.jar
 |- META-INF/services/com.sun.appserv.addons.Installer
 |- JBIInstallerImpl.class (implements Installer)
 |- InstallerUtil.class
 |- InstallerMore.class
 |- jbi-bpel.jar
 |- META-INF/services/com.sun.appserv.addons.Configurator
 |- JBIBPELConfiguratorImpl.class (implements Configurator)
 |- Another.class
 |- More.class
 |- Util.class

 3.0 Uninstallation Support

 3.1 Unconfiguring the domain and instances.
 --
 Currently the registry(DOMAIN_DIR/config/addon.properties) supports
only
 enable/disable. This will be enhanced to add configure/unconfigure
support.

 eg: opensso.jar.configured=false

 During the restart of DAS or instance, if the above entry is found in
the
 registry, configurator plugin will be invoked to unconfigure the
addon.
 Registry file will be synchronized to INSTANCE_ROOT/config during the
 instance startup.

 The configurator plugin of the addon is expected to rollback the
changes
 it made during the configuration.

 3.2 Uninstalling the addon.

 During SDK uninstallation, the installer plugin will be executed to
uninstall
 the addon. This step will remove all the installation time activities
like
 removing the addon's installation directory and system applications
copied
 to the $INSTALL_ROOT/lib/install/applications directory.

 4.2. Bug/RFE Number(s):
// List any Bug(s)/RFE(s) which will be addressed by this proposed

change.
// Provide links to the Issue tracker Bug(s)/RFE(s)where possible

 4.3. In Scope:
// Aspects that are in scope of this proposal if not obvious from

above.

 4.4. Out of Scope:
 CLI and GUI support for the project is not in scope.

 4.5. Interfaces:

 4.5.1 Exported Interfaces

 Interface: Addon Installer Plugin
 Stability: Unstable.

 Former Stability (if changing):
 Comments:

 Interface: Addon Configurator Plugin
 Stability: Unstable.
 Former Stability (if changing):
 Comments:

 4.5.2 Imported interfaces
 NA

 4.5.3 Other interfaces (Optional)
 NA

 4.6. Doc Impact:
 The new feature need to be docuemented in the developer's guide.

 4.7. Admin/Config Impact:
 No impact on CLI and GUI.

 4.8. HA Impact:
 No specific impact.

 4.9. I18N/L10N Impact:
 No impact.

 4.10. Packaging & Delivery:
 No impact.

 4.11. Security Impact:
 No impact.

 4.12. Compatibility Impact

 Currently, it is possible to execute the main class of the addon
 installer using "java -jar <xxx.jar". Since the current approach
 remove the need for the main class, addon installer is expected
 to provide a main method, where it accepts the required
 configuration. This is the only way to keep the backward
 compatibility for someone to add a new addon after installing
 appserver.

 4.13. Dependencies:

5. Reference Documents:

6. Schedule:
 6.1. Projected Availability:

// Dates in appropriate precision (quarters, years)

