
One Pager: New Connection Pool Features and Attributes

Table of Contents
1. Introduction

1.1 Project/Component Working Name
1.2 Name(s) and e-mail address of Document Author(s)/Supplier
1.3. Date of This Document

2. Project Summary

2.1 Project Description
2.2 Risks and Assumptions

3. Problem Summary

3.1 Problem Area
3.2 Justification

4. Technical Description

4.1 Details
4.2 Bugs/RFE's
4.3 Scope
4.4 Out-of-scope
4.5 Interfaces
4.6 Documentation Impact
4.7 Configuration/administration Impact
4.8 High Availability Impact
4.9 Internationalization
4.10 Packaging
4.11 Security Impact
4.12 Compatibility
4.12 Dependencies

5. References
6. Schedule

1. Introduction

1.1. Project/Component Working Name

Sun Java System Application Server 9.1, New connection pool features

1.2. Name(s) and e-mail address of Document Author(s)/Supplier

Name Email

Kshitiz Saxena kshitiz.saxena@sun.com

Jagadish Ramu jagadish.ramu@sun.com

1.3. Date of This Document

Date Version Author Remarks

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

1 of 10 11/08/2011 10:16 AM

Aug 7,
2006

1.0 Jagadish
Ramu,
Kshitiz
Saxena

Initial Draft

Aug 9,
2006

1.1 Jagadish
Ramu,
Kshitiz
Saxena

Incorporated Binod's suggestions

Aug 14,
2006

1.2 Jagadish
Ramu
Kshitiz
Saxena

Incorporated Siva's suggestions

Oct 3,
2006

1.3 Jagadish
Ramu
Kshitiz
Saxena

Features Dropped for 9.1 :
Clustered Pool
Merging Connection Pool and Resource as a single command

New properties :
ConnectionLeakReclaim
MaxConnectionUsageCount

Oct 27,
2006

1.4 Kshitiz
Saxena

Changed properties to attributes
Added attribute wrap-jdbc-objects
Added section containing old properties now changed to attributes
Removed section JDBC connection pool additional properties
Removed old dtd under external interface section. Provided link to DTD
changes for connection pool
Updated CLI/GUI support for

Nov 17,
2006

1.5 Jagadish
Ramu

Incorporated suggested clarifications from Chris Casso
Clarified statement-timeout behavior, order of precedence
Corrected match-connections default value for connector-connection-pool &
jdbc-connection-pool
Corrected older property to new attribute order of precedence

Dec 10,
2006

1.6 Jagadish
Ramu

Corrected default value of "statement-timeout-in-seconds" of
jdbc-connection-pool.

2. Project Summary

2.1. Project Description

Addition of connection pool features to provide

Load-balancing and fail-over capabilities for connections
Ease of use
Diagnosability of connection leaks

2.2. Risks and Assumptions

The clustered-pool feature will be implemented and tested to work only with Oracle RAC. It can be extended later to
work with other systems.

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

2 of 10 11/08/2011 10:16 AM

3. Problem Summary

3.1. Problem Area

Absence of load-balancing and fail-over capabilities for connections to clustered enterprise systems.
Inability to trace connection leaks
No connection retrial at the time of connection creation in case of failure
No efficient mechanism to validate connection to enhance performance
Ease of connection pool creation and configuration
No mechanism to switch off connection pooling in ACC
To provide feature parity with other Application Servers

3.2. Justification

The introduction of proposed features will highly enhance the user experience. The impact of these changes will be
at many places. The support of clustered-pool which will provide enterprise features like load-balancing and failover
feature for connection to the user. The clustered-pool feature would lead to enhanced scalability and availability of
connections to clustered external system. From the ease of creation of connection pool, to ability of connection leak
tracing, the user will have better user experience.

4. Technical Description

4.1. Details

ClusteredPools

ClusteredPools is a set of connection pools, each pool is configured against a node of a cluster in an external
system. For example, Oracle Real Application Cluster [RAC] - ClusteredPools can be used with Oracle RAC. In a
typical setup, each pool in the clustered-pool will be configured to talk to one particular node of the cluster in an
external system. To enable pool clustering, user should provide a list of connection pools, instead of selecting single
connection pool, at the time of resource creation. The following features are provided by clustered-pool :

Load-Balancing : Connection requests from the application can be routed to different nodes of the cluster.
This sub-feature helps to share the load across different nodes in the external system. The load-balancing
policy chosen for this release is round-robin. New policies will be introduced in future releases.
Fail-Over : When a connection request to one of the node fails, ClusteredPool will stop using the pool
associated with that node, and switch to other pools. This sub-feature enables application server to aid in
using the high availability features provided by external system.

The connections are load-balanced and failed-over to healthy nodes only during connection request from the
application. There is no fail-over support for connections of in-flight transactions. ClusteredPool uses the connection-
validation feature of the connection pool. When a connection is requested by the application, clustered-pool will
choose a pool from its list and validates the connection. If the validation is successful, connection is returned to the
user. If the connection is invalid, clustered-pool will fail-over to other available pools. All connections in the
failed-pool will be dropped. Depending on the configuration, clustered-pool will keep polling the failed-node at regular
intervals. This interval can be specified using property PollInterval. The default value will be 60 seconds. The
appserver will keep polling the failed node, till it comes up. Then pool will be re-created and new connection
requests will be routed to this pool as well. There is no timeout associated with node polling. Hence it may happen
that appserver may keep polling a failed node throughout its lifetime, if that node never comes up.

The clustered-pool feature will be available for JDBC and connector resources. Refer to Admin/Config Impact section
for CLI/GUI changes

New Connection Pool Config Attributes

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

3 of 10 11/08/2011 10:16 AM

The proposal is to introduce several attributes to configure connection pool at the time of creation. The list of the
attributes being proposed and their detailed description are as follows :

Connection Leak Tracing - As the name suggests this attribute will be used to switch on or off the leaking
tracing for a connection pool. By default, there will be no leak tracing. However if enabled, the connection pool
will provide data to the user wrt application leaking the connections. An application is said to be leaking
connection if it acquires a connection, and does not close it within the specified time period.

All leak tracing logs will be dumped to server logs. The user can search through the logs via GUI and find out
connection leak traces for a pool. The utility to search through logs already exists in GUI.

A new monitoring statistics to reflect number of connection leaks corresponding to a pool is being added. The
user can find this new statistics along with other monitoring statistics, once monitoring is switched on for
Connector/JMS or JDBC.

The connection leak tracing will be enabled using attribute connection-leak-timeout-in-seconds. By default
this attribute is set to zero, i.e., connection leak tracing is switched off by default. When this attribute is set
to positive non-zero value, connection leak tracing is enabled.

Another attribute connection-leak-reclaim is being introduced to reclaim leaking connection. By default it is
set to false, which implies no connection reclaim. If enabled, connection will be re-usable (put back to pool)
after connection-leak-timeout-in-seconds occurs.

Connection Creation Retry - As of now, when application requests for connection
Either a connection provided from pool if one free connection exists
Or one free connection is created, if pool size is less that max pool size, and returned to application

In second case, if connection creation fails in first attempt, due to any reason, an exception is thrown to
application and application should handle connection creation failure and should re-request for connection.

With the introduction of attribute connection-creation-retry-attempts, the connection retry can be enabled at
the connection pool level. By default, this attribute is set to zero and connection retry is turned off. When set
to positive non-zero value, the connection creation will not fail after first attempt. The connection creation will
be retried for finite number of times, as provided via this attribute, before application if notified via exception
about connection creation failure. Also user can specify the interval of connection creation retrial using
attribute connection-creation-retry-interval-in-seconds. By default, this attribute is set to 10 seconds.

Validate Atmost Once Period - Lets refer to first case mentioned in previous attribute, i.e., a free connection
being returned from pool to application. There is a attribute isconnectvalidatereq, to enforce connection
validation, before connection is returned to the application. The validation is a costly operation to perform for
each and every connection requested by applications from pool. However, switching off connection validation
completely is also not preferable as application may get stale, invalid connections. So, the solution is to find
a midway, i.e., to reduce the frequency of connection validation. A recently validated connection may be safely
given to requesting application without validation. Though a limit needs to be defined on what will be
considered as acceptable time period in which connection validation is not required. This limit can be defined
using attribute validate-atmost-once-period-in-seconds. A connection will be validated only if it has not been
validated before in the last specified validate-atmost-once-period-in-seconds seconds. Otherwise it is returned
without validation to requesting application. By default, this attribute will be set to 0, so that connection
validation works as it works now.

Statement Timeout - A long running jdbc query executed by an application may leave it in hanging state,
unless a timeout is explicitly set on the statement. As of now, there is no generic way in which statement
timeout can be set on all statements created using a connection. After introduction of the attribute
statement-timeout-in-seconds, all statements created using the pool, with this attribute set, will share the
specified statement timeout. During statements creation, query timeout will be set according to the value

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

4 of 10 11/08/2011 10:16 AM

specified in this property. If user explicitly sets a value for the statement, it will take precedence. All queries
will automatically timeout if not completed within specified period. This will also bring feature parity with
competitive product. By default, this value will be -1, disabled.

Max Connection Usage Count - The attribute max-connection-usage-count can be specified, so that
connections will be re-used by the pool for the specified number of times after which it will be closed. This will
be useful to avoid statement-leaks. Default value is 0, which implies the feature is not enabled.

Wrap JDBC Objects - The attribute wrap-jdbc-objects can be set to true, so that application will get wrapped
jdbc objects for Statement, PreparedStatment, CallableStatement, ResultSet and DatabaseMetaData.
Default value is false, which implies application will not get wrapped objects. This is done so, as wrapped
objects has performance impact.

Properties changed to attributes

The following set of properties are changed to attributes in this release.

LazyConnectionEnlistment property changed to lazy-connection-enlistment attribute. Default value is
false.
LazyConectionAssociation property changed to lazy-connection-association attribute. Default value is
false.
AssociateWithThread property changed to associate-with-thread attribute. Default value is false.
MatchConnections property changed to match-connection attribute. Default value is true. Default
value is true for connector-connection-pool, false for jdbc-connection-pool.

For backward compatibility both properties and attributes will be supported. The value set via attribute will
take precedence over value set via property. The value set via property will take precedence over value set via
attribute, which will ensure that existing customers using "property" will not be affected. This support for
properties will be removed in future releases.

Switching off connection pooling in ACC

The ACC share the same flow as appserver, for a connection creation. Thus connection pooling starts working in
ACC, when a connection is created, even though it is not desired. So an option need to be provided in ACC to switch
off connection pooling if desired. A system property, namely
com.sun.enterprise.Connectors.SwitchoffACCConnectionPooling, to that effect will be introduced. If set to true, the
connection pooling will be turned off in ACC. By default the value of the property will be false.

JDBC Connection Pool Additional Properties

The connection pool configuration requires the user to define several properties when creating a connection pool.
The list of properties is derived from a set of mandatory properties, sun-specific properties and then driver specific
properties. This list becomes huge as many jdbc driver have long list of configurable properties. A user new to jdbc
will find it difficult to configure jdbc connection pool with huge list of properties. There is a need to differentiate
between a new user and an experienced user. The experienced users can use available properties to their
advantage while a new user can work with minimal set of mandatory properties.

As per JDBC specifications, there are nine mandatory properties needed to connect to any database. Those are as
follows:

user
password
port

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

5 of 10 11/08/2011 10:16 AM

serverName
databaseName
datasourceName
networkProtocol
roleName
url

To ease the creation of connection pool, user can be provided with only above mentioned list of properties to
connect to database. The other set to properties, i.e., sun-specific properties and driver specific properties list can
be provided on demand. The different set of properties can be provided either by traversing through multiple
wizard-style pages or via collapsible table in GUI. Breaking the complete set of properties into three different sets
makes is more understandable to user, as well as provides a better user experience.

A similar user experience must be provided to user creating connection pool using CLI. For example, sun-specific
properties can be specified at command line using sun-specific-property attribute instead of property attribute. The
changes to GUI/CLI are specified in Admin/Config Impact section.

There are three properties namely, LazyConnectionEnlistment, LazyConnectionAssociation and AssociateWithThread
which are being taken as value for attribute property from 9.0/9.0UR1. To be backward compatible, there will be
support to specify these properties as value for attribute property as well as sun-specific-property in 9.1. In future
releases, this support will be removed.

Merging Connection Pool and Resource

A user writes a simple application to access database, to perform some basic operation on database. The
application is deployed and as a setup step, user has to create jdbc resource as defined in the application. The user
need to create a connection pool and then create required resource using the connection pool. Even after the user is
done with application execution, the pool will exist and maintain itself to steady pool size, eating up the system
resources. If user is provided with an option to create jdbc resource, without creation of connection pool, this
overhead of connection pool creation and maintenance can be reduced. However, this is not the solitary case where
connection pooling is not needed. There are some resource adapters, for example JAXR resource adapter, which
implement their own pooling and caching mechanism, for better performance. In such cases, it will be beneficial to
use resource adapter's connection pooling, as it may perform better than appserver's connection pooling. However
being hidden behind appserver connection pooling, user may never be able to gain any performance benefit out of it.

Not just with performance perspective, the user will have better user experience, if there is a provision to create a
jdbc resource without a need to create a connection pool. This can be achieved by linking resource creation with
pool creation. Since user does not need a connection pool, only required properties are entered by user to connect
to the external system. Also at the time of resource creation, the user may provide required connection pool
parameters, and both resource and connection pool can be created using single command. The samples of CLI
commands are provided in Admin/Config Impact section.

4.2. Bug/RFE Number(s)

CR 6436557 - Change request for Sun AppServer to provide load
balancing for jdbc connections

1.

CR 6436556 -Change request for Sun AppServer to support Oracle 10g
Rac using Oracle 10g Type 4 jdbc thin driver

2.

CR 6472065 - JDBC ReclaimTimeout - Enhancement Request for JDBC Connection Pool management3.
CR 6473760 - RFE: Provide an option to physically close a connection after it has been acquired X times.4.

4.3. In Scope

A set of connection pools can be used transparently for single jdbc, connector-resource.1.

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

6 of 10 11/08/2011 10:16 AM

The connection leak tracing will be based on mechanism listed in document. This setting will be dynamically
configurable. The appserver will pick the value on the fly and provide data to the user.

2.

The earlier model of connection pool creation and resource creation will co-exist. This will ensure backward
compatibility.

3.

4.4. Out of Scope

Ongoing transactions will not have transparent failover.1.
The connection leak tracing will not be exhaustive. It will be based on mechanism defined in the documents. It can
be incrementally enhanced in next releases.

2.

The concept of connection pool is not being removed completely. It may be deprecated in future releases.3.

4.5. Interfaces

4.5.1 Exported Interfaces

DTD changes associated with clustered-pool

554a555,560
> attributes :
> pool-name
> the pool-id associated with the resource.
> In case of clustered-pool, it can be a comma separated
> list of available connection pools.
>
643a650,656
> attributes
>
> pool-name
> the pool-id associated with the resource.
> In case of clustered-pool, it can be a comma separated
> list of available connection pools.
>

Comments : This is only a description change. Now pool-name can take comma-separated connection-pool ids. The
DTD has no impact as such.

DTD changes associated with introduction of new attributes and properties changed to attributes are available at
http://www.glassfishwiki.org/gfwiki/attach/OnePagersOrFunctionalSpecs/DTD-Changes-Connection-Pool.html

Comments : The new attributes for connection pool configuration. Also the properties which are changed to
attributes now.

 Interfaces from AS 9.0 [Evolving-Uncommitted] that will be deprecated

 domain.resources.jdbc-connection-pools.test-pool.property.LazyConnectionAssociation=true
 domain.resources.jdbc-connection-pools.test-pool.property.LazyConnectionEnlistment=true
 domain.resources.jdbc-connection-pools.test-pool.property.AssociateWithThread=true
 domain.resources.jdbc-connection-pools.test-pool.property.MatchConnections=true

 AS 9.0 One Pager: http://appserver.sfbay.sun.com/as9ee/eng/connectors/connectionpool.txt

 Introduction of attributes in AS 9.1 corresponding to the above properties :

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

7 of 10 11/08/2011 10:16 AM

 domain.resources.jdbc-connection-pools.test-pool.lazy-connection-association=true
 domain.resources.jdbc-connection-pools.test-pool.lazy-connection-enlistment=true
 domain.resources.jdbc-connection-pools.test-pool.associate-with-thread=true
 domain.resources.jdbc-connection-pools.test-pool.match-connections=true

System property : com.sun.enterprise.Connectors.SwitchoffACCConnectionPooling = true/false

4.5.2 Imported interfaces

4.5.3 Other interfaces (Optional)

4.6. Doc Impact

Administration Guide1.
Developer Guide2.
Reference3.
Admin GUI/CLI help4.

4.7. Admin/Config Impact

CLI commands for resource creation will accommodate connection-pool attributes and properties

asadmin> create-jdbc-resource --user admin --passwordfile passwords.txt --connectionpool=false
--datasourceclassname datasource-classname --restype xa-datasource --property url=jdbc-url jdbc/Resource

Comments : A jdbc resource is created without any connection pool. This is indicated by connectionpool being
set to false. The required attributes/properties to connect to external database are provided at the jdbc
resource creation itself. These attributes/properties are same as attributes/properties associated with
create-connection-pool command. However connection-pool attributes like steadypoolsize, maxpoolsize should
not be provided as connection pooling is switched off. In case those attributes are provided, an error must be
thrown.
 Internally a connection pool can be created and linked to jdbc resource to have no impact on
DTD. The connection pool can have same name as resource-id, which in this case is jdbc/Resource. The
attributes of connection pool can be set such that, it is evident that connection pooling is switched off. For
example, in this case steadypoolsize, maxpoolsize, poolresize attributes of connection pool can be set to -1.

asadmin> create-jdbc-resource --user admin --passwordfile passwords.txt --connectionpool=true
--datasourceclassname datasource-classname --restype xa-datasource --steadypoolsize 20 --maxpoolsize
100 --maxwait 120000 --poolresize 5 --property url=jdbc-url jdbc/Resource

Comments : A jdbc resource is created with connection pool, as connectionpool attribute is set to true. The
required connection pool attributes and properties are specified at the jdbc resource creation itself. These
attributes/properties are same as attributes/properties associated with create-connection-pool command.
Internally a connection pool is created and linked to jdbc resource. The connection pool can have same name
as resource-id, which in this case is jdbc/Resource.

asadmin> create-jdbc-resource --user admin --passwordfile passwords.txt --connectionpool=true
--connectionpoolid jdbc/ConnectionPool --datasourceclassname datasource-classname --restype
xa-datasource --steadypoolsize 20 --maxpoolsize 100 --maxwait 120000 --poolresize 5 --property url=jdbc-url
jdbc/Resource

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

8 of 10 11/08/2011 10:16 AM

Comments : A jdbc resource is created with connection pool, as connectionpool attribute is set to true. The
required connection pool attributes and properties are specified at the jdbc resource creation itself. These
attributes/properties are same as attributes/properties associated with create-connection-pool command.
Internally a connection pool is created with id jdbc/ConnectionPool and linked to jdbc resource. If a
connection pool with same connection-pool id already exists, an error must be thrown.

Linking resource creation to connection pool creation in GUI. The resource creation page must be capable of taking
required properties, to connect to external system, in case user does not need connection pooling. Also while
creating resource, user must be able to create a new connection pool. The user experience on GUI must be same as
CLI.

Capability to select collection of connection-pools at resource creation using GUI/CLI

asadmin> create-jdbc-resource --user admin --passwordfile passwords.txt --connectionpoolid node-1-pool,
node-2-pool, node-3-pool jdbc/DerbyPool

Comments : A jdbc resource is created with list of connection pools. This will enable pool clustering.

asadmin> create-connector-resource --user admin --passwordfile passwords.txt --connectionpoolid node-1-pool,
node-2-pool, node-3-pool ConnectorPool

Comments : A connector resource is created with list of connection pools. This will enable pool clustering.

Segregation of additional connection pool properties into mandatory properties, sun-specific properties and driver-
specific properties at the time of connection pool creation using GUI/CLI

asadmin> create-jdbc-connection-pool --user admin --passwordfile passwords.txt --datasourceclassname
datasource-classname --restype xa-datasource --property url=jdbc-url --sun-specific-property
LazyConnectionAssoc=true:LeakTracing=true:ConnectionLeakInterval=300:PollInterval=300
jdbc/ConnectionPool

Comments : The sun-specific properties are defined using attribute sun-specific instead of property.

GUI/CLI support for new attributes
The new attributes will not be exposed in GUI/CLI at the time of connection pool creation. These attributes
will be set to default values when connection pool is created.
In CLI user can use asadmin set command to changes the values of these attributes.

asadmin> set domain.resources.jdbc-connection-pool.<jdbc-connection-pool-name>.connection-
leak-timeout-in-seconds=300

In GUI, the new attributes are available in a new tab named Advanced when user click on a connection pool.
The user can edit values on that tab.

4.8. HA Impact

4.9. I18N/L10N Impact

4.10. Packaging & Delivery

4.11. Security Impact

4.12. Compatibility Impact

4.13. Dependencies

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

9 of 10 11/08/2011 10:16 AM

Need Oracle RAC with 2-3 nodes for developing and testing this feature.1.

5. Reference Documents

CR 6436557 - Change request for Sun AppServer to provide load balancing for jdbc connections1.
CR 6436556 - Change request for Sun AppServer to support Oracle 10g Rac using Oracle 10g Type 4 jdbc thin driver2.
Oracle RAC documentation3.
CR 6472065 - JDBC ReclaimTimeout - Enhancement Request for JDBC Connection Pool management4.
CR 6473760 - RFE: Provide an option to physically close a connection after it has been acquired X times.5.

6. Schedule

6.1. Projected Availability

Aligned to overall Application Server 9.1 schedules

New Connection Pool Features and Properties file:///home/jagadish/Downloads/ConnectionPoolOnePager.html

10 of 10 11/08/2011 10:16 AM

