
IIOP Failover in Dynamic Clusters
Harold Carr and Ken Cavanaugh, Sun Microsystems

Abstract—
Requirement: Clients should experience high-availability

when accessing network services. Availability should be
transparent and not require altering programs.

Problem: Availability needs to work on multiple platforms
and must not require additional hardware/software, other
than the remoting system.

Solution: Replicate the service in a cluster. Advertise all
replica addresses. On client invocation, if a replica address
fails, have the remoting infrastructure try another address.

Requirement: The number of replicas in the cluster can
change dynamically (e.g., more/less instances to handle
heavier/lighter loads, instances failing, online upgrades).

Problem: Clients need to know the current cluster mem-
bership but are not able to participate in group membership
communication.

Solution: Give the initial cluster membership a label.
Whenever membership changes generate a new label. Ad-
vertise the label. When a client invokes a service, send
the label (as “out-of-band” data) along with the request.
When servicing a request and the label is out-of-date, have
the server return the new membership label and addresses
as out-of-band data in the reply.

IIOP: Add label/addresses to IORs. When invoking an
IOR try another address if one fails. Cache successful ad-
dresses to avoid fallback (important for stateful-sessions).
Send the label with requests as a ServiceContext. If out-
of-date return an up-to-date reference with the reply in a
ServiceContext.

Experience: In an application server, this failover mecha-
nism did not degrade system performance.

Contribution: This failover mechanism provides high-
availability IIOP communication in dynamic clusters.

Index Terms—high-availability, fault-tolerance, failover,
middleware, IIOP.

I. Introduction

HIGH-AVAILABILITY (HA) of Enterprise Java Beans
(EJB) [1] motivated this work. The main ideas are:

• Provide a service by replicating it in a cluster of ma-
chines.

• (re)label the current cluster membership.
• Advertise all replica addresses and the membership

label.
• Have the client-side remoting system transparently try

another address if one fails (and cache and use the last
successful address).

• When the number of replicas change update the mem-
bership label in each replica.

• Have the client-side remoting system send its last seen
membership label along with requests.

• When servicing requests, have the server-side remoting
system compare the client’s membership label with
the server’s label. If the client’s is out-of-date then
return current addresses and the current label along
with the reply.

We apply those main ideas to IIOP ([2] 15.7) communi-
cations by:

• using an OMG IORInterceptor ([2] 21) to add al-
ternate cluster addressing and label information as

TaggedComponents to IORs (i.e., object references [2]
13.6.2) created by servers;

• using PEPT [3], [4], [5], [6] ContactInfo to choose
and failover to usable addresses transparently to client
programs;

• providing a plug-in client-side cache to control how
usable addresses are remembered;

• using an OMG ClientRequestInterceptor ([2]
21.3.5) to add membership labels as ServiceContexts
([2] 13.7) to requests;

• and by using an OMG ServerRequestInterceptor
([2] 21.3.8) to compare the client’s membership la-
bel with the current label. If out-of-date the inter-
ceptor creates an up-to-date IOR and returns it as a
ServiceContext in the response.

• The server-side ORB registers with a Group Mem-
bership Service to be notified of cluster membership
changes.

• Server-side POAs ([2] 11), used to create object refer-
ences containing the membership label and cluster ad-
dresses, are updated safely (with new labels/addresses
when the cluster membership changes) while the sys-
tem is handling requests by using the POAManager
flow control mechanisms and POA adapter activators
in a module known as the Reference Factory Manager
(RFM).

This paper discusses how HA is accomplished in the
RMI-IIOP [7] and CORBA IDL [8] programming models.
These models are provided by systems available from a
number of vendors. In particular, they are available as part
of Sun’s JDK since Java 1.2. The RMI-IIOP programming
model is also used as a communication mechanism for EJBs
in Java EE-compliant [9] application servers, the use-case
for this work.

II. Server configuration

Each instance (i.e., service replica) in a cluster is config-
ured such that object references created on that instance,
besides containing the address of the instance, also con-
tain the addresses of the other instances in the cluster and
a membership label. This is accomplished by arranging
to have the Object Reference Template (ORT [2] 21.5.2)
associated with each Portable Object Adapter (POA [2]
11) contain the instance’s address in the IIOPProfile pri-
mary address portion of the ORT, the addresses of the
other instances as TAG ALTERNATE IIOP ADDRESS compo-
nents ([2] 13.6.6.2), and the membership label as a custom
TaggedComponent as shown in Figure 1.

In Figure 1 we show only the ORT fields of interest to
our design. The ORT is used to create IORs. The ORT
has an empty ObjectKey field that will be filled in when
POA.create reference is called to create an IOR. Ad-
dresses are the hostname and port number on which the

Fig. 1. ORT with multiple addresses

service is available. The details of how this is accomplished
are as follows.

III. The Reference Factory Manager

Dynamic IIOP failover must be able to reconfigure the
ORT to contain a different membership label and list of
addresses whenever the cluster membership changes. The
ORT is created when a POA is created, so changing the
ORT is most easily accomplished by (re-)creating a POA.

In our application server, each deployed EJB type cor-
responds to two POAs, one for the EJB home interface,
and one for the EJB itself. When the cluster membership
changes, reconfiguration must be done for all POAs created
for EJBs in the application server.

A. Non-interference between EJB POAs and user POAs

However, the ORB is itself a shared resource, and may be
used by user code in the application server for any purpose,
including creating POAs. We only provide failover capa-
bilities for EJB, since the general failover problem cannot
be solved transparently to the POA user.

Our failover solution requires POAs that participate in
failover to be persistent (since transient POAs do not sur-
vive a server instance restart) and to only use POA object
activation models that are stateless (which means that the
POA’s Active Object Map cannot be used). (Note, the
EJB layer is responsible for managing the EJB instance
state, so the EJB layer uses the ServantLocator model in
its POAs.)

To manage EJB POAs without interfering with or being
interfered by user POAs, we created a Reference Factory
Manager (RFM) abstraction.

The RFM creates a parent POA that is a child of the
root POA with an internal name that is unlikely to be used
by another user of the shared ORB instance. All POAs in
the RFM share a single RFM POA manager, which is not
used by any non-RFM POAs.

The RFM also has a private POA policy that is
used to indicate that a particular POA is being cre-
ated in the RFM. This policy is checked by an
IORInterceptor that is part of the RFM implementation.
The components established method throws an excep-
tion if the parent POA of the POA being created is the
RFM parent POA, and if the POA being created does not
have the RFM policy. This prevents user code from creat-
ing children of the RFM parent POA.

The components established method also checks that
the POA manager of the POA being created is the RFM
POA Manager if and only if the POA has the internal
policy.

B. RFM implementation

The RFM acts as a factory for ReferenceFactory in-
stances. A ReferenceFactory is simply a thin wrapper for
the state needed to create a POA: the ServantLocator,
appropriate policies and a repository ID. The repository
ID is needed (although not needed to create a POA) to
create updated IORs when stale membership labels arrive
on requests. There are two Reference Factories (and hence
POAs) per EJB instance, the home and object interfaces—
each with a different repository ID.

Creating a reference factory does not create a POA. The
POA is created on demand using an AdapterActivator.
The AdapterActivator is triggered either by creating a
new reference in a call to the reference factory, or by a re-
quest to the application server that references the required
POA.

The use of an AdapterActivator is required to prevent
spurious non-recoverable errors that could be observed by
a client. This could happen between the time a POA is de-
stroyed and re-created, even if the POAManager is holding
requests, because an attempt to dispatch an incoming re-
quest to a momentarily non-existent POA will fail unless
an AdapterActivator is used. The AdapterActivator
mechanism is integrated with the POA destroy and request
dispatch code to prevent such an occurrence.

C. RFM operation

The RFM is responsible for managing the ORT update
during cluster membership change. This works as follows:

• The Server Group Manager (SGM) is notified of a
cluster membership change by the Group Membership
Service (GMS).

• SGM invokes the RFM suspend method. This ac-
quires a lock on the RFM state, and also invokes the
hold requests(true) method on the RFM’s POA
manager. After this call to hold requests(true)
returns, there are no requests actively executing in the
RFM POA Manager, and all new requests are held.
Requests not using the RFM continue normally.

• The SGM updates the membership label, so that
newly created POAs will have both the new mem-
bership label and the updated set of addresses of the
cluster members.

• The SGM calls the RFM restartFactories method.
This method simply destroys all of the RFM POAs
(this is why the RFM POAs need to be stateless).

• The SGM calls the RFM restart method. This method
calls the RFM POA manager activate method, and
normal request processing resumes. The RFM lock is
dropped after this point.

IV. Server initialization and reference creation

Server-side initialization uses both standard OMG
CORBA interfaces and non-standard PEPT interfaces.
Figure 2 shows the steps taken during initialization. We
see that each application server instance has containers for
EJBs. A container calls (0) RFM.create to obtain a Refer-
enceFactory with which to create object references. This

call takes place whenever an EJB is deployed. There are
two ReferenceFactories per EJB: one for the EJB home,
and one for the EJB remote interface (only one is shown
in the diagram). RFM.create records the information that
will be used later when a reference is created (notably, the
repository ID). The RFM does not create a POA internally
at this time.

Fig. 2. Server initialization

The rest of the Server-side initialization takes place lazily
when either the first EJB instance is created for a partic-
ular EJB type, or when the first request arrives for that
EJB type (after a server restart). Here we will only look
at the first creation case; the first request case is similar,
but starts at the point in the request dispatch cycle where
the appropriate POA is located.

Continuing in Figure 2, the EJB container calls (1)
RF.createReference in order to create an instance of
an EJB home or remote interface. The ReferenceFac-
tory then calls create POA (not shown), which calls (2)
establish components on the IORInterceptor that is
part of the instance’s Server Group Manager (SGM).
The IORInterceptor calls (3) getMemberAddresses on
an administration agent that contains cluster configura-
tion information. The SGM associates a membership la-
bel with the list of addresses. It adds the (4) addresses
and the (5) membership label to the ORT by respond-
ing to establish components. This causes the ORT
to contain the addresses of the other cluster instances
as TAG ALTERNATE IIOP ADDRESS tagged components and
the membership label as a custom TaggedComponent in
the IIOPProfile. The POA puts the address of the in-
stance executing this code in the IIOPProfile primary.
Finally, (6) the Server Group Manager registers with
the Group Membership Service to receive cluster mem-
bership change notices. (The SGM also contains a
ServerRequestInterceptor that will be discussed later.)

Figure 3 shows that after the RFM has created the POA,

RF.createReference (1) creates the specific EJB by call-
ing POA.create reference(objectid) (not shown) with
an Object ID identifying the EJB. After EJB references
(to EJB “home” interfaces) with specific Object IDs have
been created the resulting references are generally placed
in a NameService (2).

Fig. 3. Create and bind reference

The references (i.e., IORs) contain the contents of the
ORT plus an ObjectKey. The ObjectKey contains infor-
mation used by the ORB to dispatch requests. It also con-
tains the Object ID specified by the EJB layer to map the
request to a specific EJB. Creating EJB instances via the
home interface goes through a similar process except the
resulting reference is returned directly to the client rather
than bound in naming.

V. Client configuration

The client-side ORB is configured by plugging in an
Client Group Manager (CGM) into the ORB. The CGM
has a subsystem to convert IORs into an internal repre-
sentation of a list of addresses; a cache to remember the
last successful address for an IOR; and a subsystem to
add membership labels to requests and to receive updated
IORs (discussed below and shown in Figure 5).

VI. Client send request

Sending a request consists of looking up an IOR, invok-
ing a method on the resulting stub, choosing an address,
failing over to an alternate address if necessary, and send-
ing the membership label along with the request.

A. Lookup an IOR

An HA IOR is an IOR containing multiple instance ad-
dresses and a membership label. Each instance is capable
of handling requests for that service. To obtain an IOR the
client program generally does a (1) lookup on a NameSer-
vice as shown in Figure 4. That lookup call is (2) mediated

by the ORB. When the client-side ORB data serializer (3)
reads the IOR returned from the NameService it (4) cre-
ates a stub for the service. When the ORB creates the
stub it arranges to have the stub contain a reference to a
ContactInfoList representing the HA service addresses
contained in the IOR. The stub is returned to the client
code. The stub acts as a proxy for the remote service.

Fig. 4. Client lookup / read Object

B. Invoke an IOR

When the client program (1) invokes a method on
the stub (shown in Figure 5) the ORB (2) mediates
the call. The ORB obtains an iterator (3) for the
HA addresses contained in the IOR, now represented
by ContactInfoList. The list of ContactInfos over
which to iterate is created lazily on the first invoke
on a stub by having the ContactInfoList call (4)
getInfo on IORToContactInfo contained in the Client
Group Manager (CGM). Each ContactInfo in the stub’s
ContactInfoList represents a hostname/port of a in-
stance in the cluster, with the IIOPProfile hostname/port
at the head of the list.

Note: ContactInfo allows new encoding, protocol and
transport (EPT) combinations to be plugged into the ORB
[3], [4], [5], [6]. For the purpose of this paper we are re-
stricting the discussion to TCP/IP transport addressed by
host/port and we are not discussing alternate EPTs. How-
ever, this failover technique works with alternate EPTs.

B.1 Choosing an address and the failover cache

After the ContactInfoList has been initialized (as
shown in Figure 6) the ORB calls (1) hasNext and next
on the iterator. The implementation of those methods
can be a simple linear traversal of the list (the default).
However, when the Client Group Manager is plugged into
the ORB those methods are (2) handled by the Failover
Cache. The cache remembers the last successful address

Fig. 5. Client invoke / iterator

(i.e., ContactInfo) and returns that in response to next.
The ORB initializes the cache (keyed by host/port of the
instance that created the IOR) with the ContactInfo at
the head of the list - the address of the instance that cre-
ated the IOR.

Fig. 6. Client hasNext/Next

If communication to an ContactInfo address fails, the
failure information is feed back to the iterator, then the
ORB transparently tries an alternate address by obtaining
a different ContactInfo by calling next again. Regardless,
the last successful ContactInfo is cached.

At the start of an invocation, next (2) always returns the
cached ContactInfo. If that fails then next returns the
ContactInfo in the next position with respect to where
the cached ContactInfo is located in the list. next re-
gards the list as circular, so if ContactInfos in the list fail

for a particular invocation, then it will cycle back to the
beginning of the list and keep trying all ContactInfos in
the list until one succeeds or a timeout is reached. In case
of timeout, a COMM FAILURE ([2] 4.12.3.5) is thrown to the
client application.

The main purpose of the cache (besides avoiding the
cost of retrying failed addresses) is to prevent invocations
to stateful-session beans from falling back, mid-session, to
previously failed instances that have come back up. That
would result in the session being incorrectly spread on two
instances, thus potentially corrupting the session data.

B.2 Membership label

After the ORB obtains a ContactInfo, Figure 6, it (3)
transfers control of the invocation to the ContactInfo (de-
tails of the transfer can be seen it [4]). The ContactInfo
encodes and sends the request. Sending the request causes
the ClientRequestInterceptor to (4) add the member-
ship label from the IOR to the request as out-of-band data
in a ServiceContext. Figure 7 shows the relevant parts
of the message sent from the client to the server.

Fig. 7. Client request message

VII. Cluster membership change

Independent of the server processing requests, the SGM
responds to cluster membership change notifications sig-
naled by the Group Membership Service (GMS) as shown
in Figure 8. When the SGM (1) receives a notification from
GMS it (2) suspends the RFM then (3) updates the mem-
bership label and (4) restarts the factories in the RFM, and
finally (5) resumes the RFM. This results in the destruction
of all RFM-managed POAs, which are lazily re-created by
the adapter activator, typically on the first request that is
handled by each RFM POA. Re-creating a POA causes the
SGM IORInterceptor to execute establish components
(6), updating the POA’s ORT with the (7) current list of
valid address and the (8) membership label for that list.
(Note: the technique of recreating POAs when responding
to configuration changes relates the micro-reboot recovery
strategy [10].)

A. Membership label scope

Membership labels are scoped to each server instance
(i.e., labels are not synchronized across all instances) so
that out-of-date membership labels do not get recognized
as valid on other instances.

Membership labels are UUIDs prepended with the in-
stance’s IP address. Updating a membership label means
generating a new IP/UUID.

It is possible that a client could failover to an instance
that has not yet received a notification of the failed in-

Fig. 8. Cluster membership change

stance. Since the membership label held by the client is
scoped to the failed instance that membership label will be
“out-of-date” compared to the failed-to instance. So the
failed-to instance will return a new IOR containing out-of-
date information. At some point the failed-to instance will
be notified of the cluster membership change. The next
invocation by the client after the change notification will
then cause an up-to-date IOR to be returned to the client.

It is also possible that after the client has failed over and
received a new but out-of-date IOR and that client does
not invoke on the IOR until after all cluster instance ad-
dresses contained in the out-of-date IOR are unreachable,
then communication would fail. This is true in general,
not just after failover. We do not support this use-case.
We assume that a subset of instance addresses will remain
available. In other words, we do not expect the addresses of
cluster instances to become disjoint with initial or updated
references over time. We expect instances to be added or
go down and come back up, but we do not expect all in-
stances to replaced by new instances with new addresses.

VIII. Server request processing

When the server ORB receives a request (as shown
in Figure 9 step 1) it handles that request as usual,
dispatching it to the EJB layer, that dispatches to the
EJB. When the response is being sent the ORB calls (2)
send reply on the SGM’s ServerRequestInterceptor.
The ServerRequestInterceptor compares the member-
ship label sent by the client with the current membership
label contained in the SGM. If they are identical then noth-
ing further happens and the reply is sent.

If the client’s membership label is out-of-date then
the ServerRequestInterceptor uses the POA Name
contained in the ObjectKey to (3) get the Reference-
Factory that initially created the reference. It then
calls (4) createReference on that RF with the ob-

Fig. 9. Server message handling

ject ID from the ObjectKey. This results in a new
IOR, identical to the one used by the client to make
the invocation, except that it has an up-to-date list
of instance addresses and an up-to-date membership la-
bel. The SGM’s ServerRequestInterceptor calls (5)
add reply service context to add the updated IOR to
the reply resulting in a response message as shown in Fig-
ure 10.

Fig. 10. Server response message

IX. Client receive response

When the client ORB receives a reply it executes the
Client Group Manager’s ClientRequestInterceptor
as shown in Figure 11 step 1. If the
ClientRequestInterceptor does not find an up-
dated IOR ServiceContext then nothing further happens
at this level and the response is routed to the client.

If the ServiceContext is present then the original
IOR is (2) replaced with the up-to-date IOR and the
ContactInfoList is reset to its uninitialized state. This
will eventually cause the list of ContactInfos to be recre-
ated with up-to-date information on the next invocation.

Note: the failover cache is not reset since we are receiving
a response from a live instance. This means that when the
next invocation occurs on the associated stub that it will
use the cached address. If that address fails it will use the
“next” one in the list with respect to the cached address
as discussed in Section B.1.

Fig. 11. Client receive reply

X. Limitations

Currently the EJB level has knowledge of sessions. We
would like to use session information at the failover level
to better manage the client-side failover cache. The client-
side load-balancer causes client programs to be associated
with particular server instances. However, this association
is lost on failover. Since the CGM does not know about
sessions it “sticks” to the failover instance to avoid fall-
back. We would rather have the client fall-back to the
original association after the session is over and when the
original instance is available again.

Our failover mechanism is not portable. This means the
Sun ORB must be used on both the server and client side
since it contains the non-standard APIs that enable the
failover system to be plugged in. One may argue that im-
plementing the CORBA Fault Tolerance (FT) specification
would provide more portability. This is true in theory but,
in practice, very few ORBs provide CORBA FT. Providing
CORBA FT requires changing the core ORB (or intercept-
ing at a lower level [14]) whereas we want to provide FT
as a plug-in to the core ORB.

Since our technique relies on adding up-to-date IORs to
replies it does not work with oneway calls ([2] 3.13.1) unless
using SYNC WITH TARGET ([2] 21.3.12.9). However, since
our use-case is EJBs that use the RMI-IIOP programming
model where all calls are synchronous, this is not an issue.

As we previously noted, if all cluster instance addresses
change between the time a client obtains a reference and
when a client invokes on that reference then communica-
tion will fail. Since this is not an expected use-case we
have not attempted a solution to this limitation. A possi-
ble solution, should the need arise, would probably require
multicast to a group address, but multicast cannot be de-
ployed in many cases.

XI. Performance

The primary performance measurement answers the
question: what happens with “typical” applications? For
example, does our failover technique have any measur-
able impact on a SPECjAppServer2002 [11] benchmark
run? We have found that the performance impact of our
failover mechanism is negligible. We have measured an
IIOP system: 1. without the failover mechanism; 2. with
the failover mechanism but without a cache; 3. with the
failover mechanism and cache. In all cases the additional
mechanisms are in the noise - invocation times are domi-
nated by (un)marshaling followed by transport. Refer to
[20] for detailed measurements.

Measurements of the performance impact of recreating
POAs are still being done. We particularly want to know
the impact of putting POAManagers into the holding state.
For example: does waiting for a long running request to
drain cause undo delay to new requests?

We do one optimization compared to Fault Tolerant
CORBA ([2] 23). When a client’s IOR is out-of-date an FT
CORBA server returns a new IOR in a LOCATION FORWARD
to a request, causing the request to be remarshaled and re-
sent. We return the new IOR in a custom ServiceContext
in the reply, thus avoiding the remarshal and resend. How-
ever, given that server failures are not high-frequency
events the different between LOCATION FORWARD and a
ServiceContext should be negligible.

XII. Avoiding conflicts with general ORB usage

Since the ORB used by the application server is available
via a JNDI call it is important to ensure that other usages
of that ORB do not conflict with the SGM plug-in. For
example, once a program obtains the ORB it could then
obtain the RootPOA and find an arbitrary child POA and
then create a child of that POA. One of the roles of the
ReferenceFactoryManager is to use the ORB’s POA in such
a way as to make conflicts unlikely.

The RFM tags POAs used by EJB containers with an
EJB Version policy. The EJB Version states that the
POA may be recreated, that it must have the PERSISTENT
LifespanPolicy, that no child POAs are allowed and that
the POAManager of EJB Version POAs may not manage
non EJB POAs.

To ensure this, the RFM plugs in another
IORInterceptor that is called on POA creation. The
interceptor checks that the parent of the POA being
created is not an RFM POA. If the parent is an RFM
POA the interceptor throws an exception since no children
are allowed.

Further, the interceptor checks that the POAManager of
the POA being created is only managing either non RFM
POAs or RFM POAs - intermixing is not allowed. This im-
plies that RFM POAs cannot use the same POAManager
as the RootPOA.

XIII. Future work

We have not shown how EJB home reference are bound
in replicated colocated NameServers. We have also not
shown how clients are load-balanced across instances nor
how the client-side load-balancer is updated with current
cluster membership information. Future work will show
how we have the client-side load-balancer register with the
client-side Client Group Manager so that it receives up-
dates on membership changes.

As noted in Section X, we want to make session infor-
mation from the EJB level available to the Server Group
Manager and Client Group Manager to better maintain
load-balancing associations.

We are considering changing the RFM suspend mech-
anism from the POAManager hold requests call to dis-
card requests. This would cause request to be rejected
with a TRANSIENT CORBA system exception, and the
clients could then retry the request. This may scale better
under load, but further testing is required.

XIV. Related Work

A. Fault Tolerant CORBA

The Fault Tolerant (FT) CORBA (CFT) specification
([2] 23) covers much of the same ground as our IIOP
failover mechanism (IFO). The primary differences are:

• CFT does replication on a per-object basis whereas we
do replication on a per-IP-address basis;

• CFT enables multiple FT groups where as we only
need a single group so we have simpler infrastructure;

• much of what is done in CFT is handled by other parts
of our application server rather than at the IIOP/ORB
level;

• CFT does not show how to plug-in or change existing
ORBs to support FT whereas our work shows explic-
itly how to build IIOP failover in dynamic clusters us-
ing standard OMG ORB APIs extended with PEPT
client-side ContactInfo APIs

• CFT is a broad specification whereas our work is fo-
cused on IIOP communications failover for a Java EE-
compliant application server.

CFT defines an IOGR (Interoperable Object Group Ref-
erence) that uses the two-level multiple-profile structure of
an IOR. Our use of IORs specifically avoids the two-level
structure. We assume a single IIOP profile with alternate
addresses in tagged components (where the IIOP profile
host/port is the preferred address instead of IOGRs with
multiple profiles and one tagged as preferred).

IFO uses a component similar to CFT’s TAG FT GROUP
component. However IFO has only one fault tolerance
domain and a single object group so does not define
data in this component corresponding to ft domain id
and object group id. IFO’s single field is similar to
CFT’s object group ref version used to detect stale
IORs. Both IFO and CFT send the information from
the TAG FT GROUP component in a FT GROUP VERSION
ServiceContext (or custom ServiceContext in IFO)
on requests so the server can determine if the client’s

reference is stale and return a new IOR. CFT uses
LOCATION FORWARD to update out-of-date IORs. IFO
avoids the overhead introduced by LOCATION FORWARD (i.e.,
resending the request) by placing the updated IOR in a
custom ServiceContext in the reply.

CFT is involved with data replication, logging and re-
covery. In our system these features are handled by the
EJB layer with an highly-available database independent
of ORB communications failover. Similarly, CFT defines
fault notification and detection whereas we register with
an independent Group Membership Service (GMS) that is
not part of the ORB. Since our replication is done on a per-
server-instance basis, faults of interest to us are server host
failures caused by hardware, software and network faults.
Therefore GMS can be implemented by a simple heartbeat
mechanism or by using something like JGroups [12].

CFT provides a replication manager to control object
lifecycle, particularly, deciding which replica on which to
deploy an object. Since, as noted above, we do replication
on an IP-address basis, we assume that the EJB layer on
all replicas will do identical initializations, resulting in a
homogeneous cluster.

CFT supports client controlled replication through its
ObjectGroupManager. IFO does not expose FT to clients.
Likewise, IFO does not need CFT’s PropertyManager to
manage properties of object groups because there is a
single group with a fixed set of properties. The CFT
GenericFactory is not needed because there is no need
for the FT infrastructure to create a new object replica
due to a host failure in order to maintain the required
MinimumNumberReplicas property.

CFT permits retries on COMPLETED MAYBE ([2] 4.12.2),
IFO does not. Consequently IFO does not use a
FT REQUEST ServiceContext to maintain a message log
(potentially expensive in time and space) that can be used
to re-transmit replies to failed operations.

CFT only considers standard IIOP. IFO works with
CSIv2 ([2] 24) for replicated servers (and with other non-
standard encodings, protocols and transports).

CFT defines a client model based on IOGR for portable
FT. Unfortunately this model is not well supported by
ORBs. IFO does not attempt to be portable.

B. Other FT work

Grtner [13] provides a survey of FT issues. IFO covers its
main points by: (1) Fault tolerance requires redundancy:
redundancy is provided through administrative configura-
tion of identical replicas across all instances in the clus-
ter; (2) Safety requires detection: detection is provided by
IFO’s use of GMS; (3) Liveness requires correction: correc-
tion is provided by retrying failed requests transparently
to the clients.

Narasimhan, Moser and Milliar-Smith [14] shows how to
implement FT without modifying commercial ORBs. This
is done primarily through library interposition on syscalls
to intercept IIOP messages. IFO assumes the ORB may
be modified.

Morgan and Ezilchelvan [15] consider different patterns

of communication between a client and replicated objects,
considering features like multicast may not scale across
the internet, and the client cannot afford to contact each
replica. In terms of this paper, IFO implements the follow-
ing policies: (1) For request dissemination, a client sends
to only one server replica (D1). (2) For reply collection,
a client waits for one reply (C1). (3) IFO replica man-
agement is closest to passive replication (R1), but with
the distinction that state replication is not handled at the
CORBA layer. (4) IFO does not implement a total order
policy (O1 and O2 in this paper). Instead IFO relies on a
highly-available database implementation combined with
executing requests at only one server replica and transpar-
ently retrying communication failures from the client side
when a server replica fails.

Othman and Schmidt [16] discusses FT using CORBA
FT in the context of a load balancing (LB) system. They
make the observation that FT and LB are complemen-
tary and in fact can share a similar architecture based on
replication: LB for handling greater loads and FT for sur-
viving failure. We agree with the observation. In fact,
our client-side LB system registers with our client IIOP
Failover Manager to receive updates on the current clus-
ter membership. Our LB design and implementation is
outside of the scope of this paper.

[17] explores CORBA FT and the CORBA Component
Model (CCM) [18]. It shows a component-based system
that has a “home” interface that allows navigation to in-
dividual interfaces within the component. Consequently,
this paper discusses two different approaches to enhancing
CCM-like systems with FT: either replicate each opera-
tional interface of a component, or just replicate the home
interface. They chose the latter approach. We can contrast
this with our EJB-based replication system. EJB does not
have a concept of an interface that can be used to find
all interfaces for a single component. Instead, EJB (pre
EJB 3.0) defines home interfaces that are used to control
the lifecycle of the individual EJB objects. The EJB home
interfaces are located through a replicated name service.
To some extent this resembles the first choice discussed in
the paper: replicating every object, rather than just the
lookup service.

[19] is dedicated to composing adaptive middleware. Al-
though not directly related to FT, one can view FT as a
QoS-type property that affects the design of middleware.
Our system uses APIs from PEPT [3], [4], [5], [6]. Previous
papers on PEPT have focused on its ability to dynamically
adapt to new encodings, protocols and transports. This
paper focuses on using PEPTs client-side mechanisms to
support failover.

XV. Conclusion

This work focuses on providing highly-available IIOP
communications. The Sun ORB has APIs that enable this
failover mechanism to be plugged into the ORB without
the ORB needing to be extended to support failover. By
using an adaptable middleware architecture we can deliver
our ORB into the Sun Java SE implementation without

the failover mechanism while, using the same code base,
supporting failover in the application server by plug-ins.

We implemented and shipped an IIOP failover mecha-
nism in Sun Java System Application Server 7.1 and 8.1
Enterprise Editions that worked for static clusters [20].
The current work extends failover to work in dynamic clus-
ters. Initial HA and performance testing looks promising.
The current work will be used in the Sun Java Application
Server 9.1 Enterprise Edition.

References

[1] Sun Microsystems, Inc. Enterprise JavaBeans
http://java.sun.com/products/ejb/ docs.html

[2] Object Management Group: CORBA/IIOP Specification
v3.0.3. (2004) http://www.omg.org/cgi-bin/doc?formal/04-03-
12

[3] Carr, H.: Server-side Encoding, Protocol and Transport Ex-
tensibility for Remoting Systems. Proceedings of the Second In-
ternational Conference on Service Oriented Computing. New
York (November 2004) 329–334

[4] Carr, H.: Client-side Encoding, Protocol and Transport Ex-
tensibility for Remoting Systems. Proceedings of the Interna-
tional Conference on Communications in Computing. Las Ve-
gas (June 2004) 51–57

[5] Carr, H.: PEPt - A Minimal RPC Architecture. OTM Confed-
erated International Workshops HCI-SWWA, IPW, JTRES,
WORM, WMS and WRSM 2003 Proceedings. Catania, Sicily
(November 2003) 109–122

[6] Carr, H.: One-Page PEPt. Middleware 2003 Workshop Pro-
ceedings. Rio de Janeiro, Brazil. (June 2003)

[7] Object Management Group Java Language Mapping to OMG
IDL, version 1.3 http://www.omg.org/cgi-bin/doc?formal/03-
09-04

[8] Object Management Group OMG IDL to Java Language Map-
ping, version 1.2 http://www.omg.org/cgi-bin/doc?formal/02-
08-05

[9] Sun Microsystems, Inc. Java 2 Platform Enterprise Edi-
tion Specification, v1.4 http://java.sun.com/j2ee/j2ee-1 4-fr-
spec.pdf (November 2003)

[10] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.:
Microreboot – A Technique for Cheap Recovery Proc. 6th Sym-
posium on Operating Systems Design and Implementation. San
Francisco (December 2004)

[11] Standard Performance Evaluation Corporation SPEC-
jAppServer2002 http://www.spec.org/jAppServer2002/

[12] Ban, B., et. al.: JGroups - A Toolkit for Reliable Multicasting
http://www.jgroups.org/

[13] Grtner, F.C.: Fundamentals of Fault-Tolerant Distributed
Computing in Asynchronous Environments ACM Computing
Surveys. 31:1 (March 1999)

[14] Narasimhan, P., Moser, L. E, Melliar-Smith, P. M.: Gate-
ways for Accessing Fault Tolerance Domains Middleware 2000.
LNCS 1795 88–103

[15] Morgan, G., Ezilchelvan, P. D.: Policies for using Replica
Groups and their effectiveness over the Internet Proceedings
of NGC 2000 on Networked Group communication. (2000)

[16] Othman, O, Schmidt, D.C.: Issues in the design of Adaptive
Middleware Load Balancing The First Workshop on Optimiza-
tion of Middleware and Distributed Systems. PLDI (2001)

[17] de Man, D., Millian, R., Weddam, M., Gokhale, A., Yajnik, S.:
”Transparent Fault Tolerance for CORBA based Distributed
Components” OOPSLA 2000 Companion. (2000)

[18] Object Management Group CORBA Component Model, V3.0
(2004) http://www.omg.org/cgi-bin/doc?formal/02-06-65

[19] The Association of Computing Machinery Communications of
the ACM. (June 2002)

[20] Carr, H.: IIOP and SOAP Failover in Static Clusters to ap-
pear in the International Conference on Communications in
Computing. Las Vegas (June 2005)

