
SELENIUM TOOLS

Introduction to selenium tools(Selenium IDE, Core, RC)

Selenium is an open source tool for web application testing. Selenium
tests run directly in a browser, just like real users do. It runs in Internet Explorer,
Mozilla Firefox on Windows, Linux, and Macintosh, Safari on the Mac.

There are three variants of Selenium, which can be used in isolation or in
combination to create complete automation suite for your web applications.

• Selenium IDE :

Selenium IDE is an integrated development environment for Selenium
tests. It is implemented as a Firefox extension, and allows you to record, edit,
debug and execute tests. It can also record user actions in most of the
popular languages like Java, C#, Perl, Ruby etc. This eliminates the need of
learning new vendor scripting language. For executing scripts created in
these languages, you will need to use Selenium Remote Control. If you do not
want to use Remote Control than you will need to create your test script in
HTML format.

Biggest drawback of Selenium IDE is its limitation in terms of browser
support. Though Selenium scripts can be used for most of the browser and
operating system, Scripts written using Selenium IDE can be used for only
Firefox browser if it is not used with Selenium RC or Selenium Core.

• Selenium Core :

Selenium Core is a test tool for web applications. Selenium Core tests run
directly in a browser. And they run in Internet Explorer, Mozilla Firefox on
Windows, Linux, and Macintosh. But to use Selenium Core we need to make
it available from the same web server as the application you want to
test(AUT).

• Selenium Remote Control :

Selenium Remote Control (RC) is a test tool that allows you to write
automated web application UI tests in any programming language against any
HTTP website using any mainstream JavaScript-enabled browser.

Selenium RC comes in two parts.

1. A server which can automatically launch and kill supported browsers,
and acts as a HTTP proxy for web requests from those browsers.

2. Client libraries for your favorite computer language.

Selenium IDE:

Installation process for Selenium IDE

Open the download link using Mozilla(version: 1.5 or higher) and choose
any version of Selenium IDE and select INSTALL NOW. It will get installed
automatically. The download link is given below.

Download Link: http://selenium-ide.openqa.org/download.jsp

Working :

http://selenium-ide.openqa.org/download.jsp

Once the installation is successfully completed, go to ‘Tools’ in the firefox
window. You can find Selenium IDE. Click on Selenium IDE. The small red
button on the right hand side gives you an indication on whether Selenium is
in recording mode or not. Click the red button to start recording and click the
red button again to stop the recording.

Run will execute the tests with the maximum possible speed. Walk will
execute them with relatively slow speed. In Step mode you will need to tell
Selenium to take small steps. Green tilted triangular button is to execute the
test. Yellow button to pause while executing the test. Blue button helps to
place checkpoints and the final green button is the Selenium Test Runner.

Test Runner gives you nice browser interface to execute your tests and
also gives summary of how many tests were executed, how many passed
and failed. It also gives similar information on commands which were passed
or failed. Test Runner is available to tests developed in HTML only.

In selenium, there is option to start a new test, save test and open the
saved test. It is also possible to export scripts. We have other self explanatory
options like encoding of test files, timeout under the Options tab. When we
access the Format tab under Options tab, we have an option as to specify
what kind of formatting we would like in the generated code as Selenium IDE
can generate code in variety of languages.

Recording and Executing a Test:

• Make sure you have installed Selenium IDE in Firefox.
• Open Firefox and application you want to test
• Launch Selenium IDE using tools-Selenium IDE
• By default, you should be in the recording mode, but confirm it by

observing the Red button.
• By default it will be in the HTML format. Otherwise, go to Options-

Format-Select HTML Format.
• Record some actions and make sure that these are coming on

Selenium IDE.
• During recording if you right click on any element it will show all the

selenium commands available.
• You can also edit existing command, by selecting it and editing on the

boxes available.
• You can also insert/delete commands by choosing appropriate option

after right clicking.
• Choose appropriate run option - i.e walk, run or test runner and review

your results.

Video presentation to record and execute a test :

http://wiki.openqa.org/download/attachments/400/Selenium+IDE.swf?

Converting the recorded script into different Languages :

• Open Firefox and application you want to test.
• Record operations on the web application which you want to test
• Insert check points
• Go to Options menu – Format – Select any language

http://wiki.openqa.org/download/attachments/400/Selenium+IDE.swf

Advantages:

• It is a Freeware
• Simple, Easy to install, Easy to work
• Selenium IDE is the only flavor of Selenium which allows you to record

user action on browser window
• Can also record user actions in most of the popular languages like

Java, C#, Perl, Ruby
• It will not record any operation that you do on your computer apart from

the events on Firefox browser window
• During recording if you right click on any element it will show all the

selenium commands available
• You can also edit existing command, by selecting it and editing on the

boxes available

• You can also insert/delete commands by choosing appropriate option
after right clicking

• Choose appropriate run option - i.e walk, run or test runner and review
your results

Disadvantages:

• Limitation in terms of browser support (It runs only in Mozilla)
• We can’t run recorded script if it is converted to Java, C#, Ruby etc.
• Not allowed to write manual scripts like conditions and Loops for Data

Driven Testing
• There is no option to verify images.

Selenium RC:

Installing process for Selenium RC :

The Selenium Server is written in Java, and requires the Java Runtime
Environment (JRE) version 1.5.0 or higher in order to start. You may already
have it installed. Try running this from the command line:

java -version

You should see a brief message telling you what version of Java is
installed, like this:

 java version "1.5.0_07"
 Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_07-
b03)
 Java HotSpot(TM) Client VM (build 1.5.0_07-b03, mixed mode)

If you see an error message instead, you may need to install the JRE, or
you may need to add it to your PATH environment variable if it is already
installed.

Open the link mentioned below and download Selenium RC. Extract it,
you will get Selenium Server folder and Java, Ruby, Perl, Dot Net, PHP, Python
Client folders also. Make sure that whether ‘selenium-server.jar’ file exist in the
server folder or not. Open Command window and type the command to start the
server.

Java -jar selenium-server.jar (non-interactive mode)

Java -jar selenium-server.jar -interactive (interactive mode)

Interactive mode: In this mode user ca execute commands individually.
For example, to open google.com in the firefox, the command to be typed is

cmd=getNewBrowserSession&1=*firefox&2=http://www.google.com

Non-Interactive mode: In this mode server will be ready to take and
process HTTP web requests when user running the selenium scripts.

Download ink : http://selenium-rc.openqa.org/download.html

Starting Java Client :

• Download Junit software
• Add the path of junit-4.0.jar file to CLASSPATH
• Add path of selenium-java-client-driver.jar to CALSSPATH
• Write the Selenium Script in Java using any java editor
• Compile and execute it

Note: Start the Selenium Server before executing the script.

Example Selenium Script using Java:

import com.thoughtworks.selenium.*;
import junit.framework.*;
import java.util.regex.Pattern;

public class PBNLoginTest extends SeleneseTestCase
{

private Selenium selenium;

public void setUp()
{

String BaseURL = "http://192.168.1.132/pbn/";
selenium = new DefaultSelenium("SELENIUM_SERVER_IP", 4444,

"*iexplore", BaseURL);
selenium.start();

}
public void tearDown()
{

selenium.stop();
}

http://selenium-rc.openqa.org/download.html

public static void main(String[] args)
{

PBNLoginTest e = new PBNLoginTest();
e.setUp();
e.PBNLogin();
e.tearDown();

}

public void PBNLogin()
{

int Total_Check_Points = 1;
int Passed = 0, Failed = 0;

selenium.open("/pbn/Default.aspx");
//Checking Login using valid LoginID and valid password
selenium.type("txtLogin", "Rajasekhar.Chintha");
String Login = selenium.getValue("txtLogin");
selenium.type("txtPassword", "abcd1234");
selenium.click("link=GO");
selenium.waitForPageToLoad("30000");
selenium.selectFrame("link");

boolean Login_Name = selenium.isTextPresent("User*"+Login+"*");

if (!Login_Name)
{

System.out.println("Failed : Text 'User : " + Login + "(Test
Analyst)' is not found");

Failed++;
}
else
{

System.out.println("Passed : Text 'User : " + Login + "(Test
Analyst)' is found");

Passed++;
}

selenium.click("link=Logout");

System.out.println("Total Check Points : " + Total_Check_Points + "
Passed : " + Passed + " Failed : " + Failed);

}

}

Note: To compile and execute the script, use the following commands

Javac scriptname.java (To compile the script)

Java scriptname (To execute the script)

Features :

• We can use Java syntax to write test script
• Easy to conduct Data Driven Testing
• We can read files to get test data
• We can store Test Results into files

Disadvantages :

• There are no Results File generated by Selenium RC. We have to
store results in files or etc using Java.

Launching Browsers:

To launch browsers, use *firefox, *chrome, *iexplore, *iehta in the
DefaultSelenium command.

• *firefox and *iexplore are used to launch FireFox and Internet
Explorer for HTTP web pages respectively.

• *chrome and *iehta are used to launch FireFox and Internet Explorer
for HTTPS web pages respectively.

Some Important Server Commands:

Usage: java -jar selenium-server.jar [-interactive] [options]

• -port <nnnn>: The port number the selenium server should use
(default 4444)

• -timeout <nnnn>: An integer number of seconds before we should
give up

• -interactive: Puts you into interactive mode.
• -multiWindow: Puts you into a mode where the test web site executes

in a separate window, and selenium supports frames
• -forcedBrowserMode <browser>: Sets the browser mode (e.g.

"*iexplore" for all sessions, no matter what is passed to
getNewBrowserSession)

• -htmlSuite <browser> <startURL> <suiteFile> <resultFile>: Run a
single HTML Selenese (Selenium Core) suite and then exit
immediately, using the specified browser on the specified URL. You
need to specify the absolute path to the HTML test suite as well as the
path to the HTML results file we'll generate

Element Locators:

Element Locators tell Selenium which HTML element a command refers to. The
format of a locator is:

locatorType=argument

A locator type can be an element id, an element name, an xpath expression,
link text, and more.

Examples:-

selenium.click(“id=idOfThing”); (an id locator)
selenium.click(“name=nameOfThing”); (a name locator)
selenium.click(“xpath=//img[@alt='The image alt text']”); (an xpath

locator)
selenium.click(“dom=document.images[56]”); (DOM locator)
selenium.click(“link=Test Page For Selenium”); (a link locator)
selenium.click(“css=span#firstChild”); (a css locator)

Frequently used Selenium Commands:

 S.No Command Description
1 assignId("Locator","String") Temporarily sets the "id" attribute

of the specified element

2 captureScreenshot("File name")
Captures a PNG screenshot to the
specified file.

3 Check("Locator")
Check a toggle-button
(checkbox/radio)

4 click("Locator")
Clicks on a link, button, checkbox
or radio button.

5 clickAt("Locator","Coordinate String")
Clicks on a link, button, checkbox
or radio button.

6 close()

Simulates the user clicking the
"close" button in the title bar of a
popup window or tab.

7 doubleClick("Locator")
Double clicks on a link, button,
checkbox or radio button.

8
doubleClickAt("Locator","Coordinate
String")

Double clicks on a link, button,
checkbox or radio button.

9 getAlert()

Retrieves the message of a
JavaScript alert generated during
the previous action, or fail if there
were no alerts.

10 getAllButtons()
Returns the IDs of all buttons on
the page.

11 getAllFields()
Returns the IDs of all input fields
on the page.

12 getAllLinks()
Returns the IDs of all links on the
page.

13 getAllWindowIds()
Returns the IDs of all windows
that the browser knows about.

14 getAllWindowNames()
Returns the names of all windows
that the browser knows about.

15 getAllWindowTitles()
Returns the titles of all windows
that the browser knows about.

16 getAttribute("Attribute Locator")
Gets the value of an element
attribute.

17 getBodyText() Gets the entire text of the page.

18 getConfirmation()

Retrieves the message of a
JavaScript confirmation dialog
generated during the previous
action.

19 getCookie()
 Return all cookies of the current
page under test.

20 getElementHeight("Locator") Retrieves the height of an element

21 getElementPositionLeft("Locator")
Retrieves the horizontal position of
an element

22 getElementPositionTop("Locator")
Retrieves the vertical position of
an element

23 getElementWidth("Locator") Retrieves the width of an element

24 getEval("JS Expression")
 Gets the result of evaluating the
specified JavaScript snippet.

25 getLocation()
Gets the absolute URL of the
current page.

26 getMouseSpeed()

Returns the number of pixels
between "mousemove" events
during dragAndDrop commands
(default=10).

27 getPrompt()

Retrieves the message of a
JavaScript question prompt dialog
generated during the previous
action.

28 getSelectedId("Select Locator")

Gets option element ID for
selected option in the specified
select element.

29 getSelectedIds("Select Locator")

Gets all option element IDs for
selected options in the specified
select or multi-select element.

30 getSelectedIndex("Select Locator")

Gets option index (option number,
starting at 0) for selected option in
the specified select element.

31 getSelectedIndexes("Select Locator")

Gets all option indexes (option
number, starting at 0) for selected
options in the specified select or
multi-select element.

32 getSelectedLable("Select Locator")

Gets option label (visible text) for
selected option in the specified
select element.

33 getSelectedLables("Select Locator")

Gets all option labels (visible text)
for selected options in the
specified select or multi-select
element.

34 getSelectedValue("Select Locator")

Gets option value (value attribute)
for selected option in the specified
select element.

35 getSelectedValues("Select Locator")

Gets all option values (value
attributes) for selected options in
the specified select or multi-select
element.

36 getSelectOptions("Select Locator")
Gets all option labels in the
specified select drop-down.

37 getSpeed()

Get execution speed (i.e., get the
millisecond length of the delay
following each selenium
operation).

38 getTable("Table Cell Address”) Gets the text from a cell of a table.
39 getText("Locator") Gets the text of an element.
40 getTitle() Gets the title of the current page.

41 getValue("Locator")

Gets the (whitespace-trimmed)
value of an input field (or anything
else with a value parameter).

42
getWhetherThisFrameMatchFrameEx
pression("Current Frame","Target")

Determine whether current/locator
identify the frame containing this
running code

43

getWhetherThisWindowMatchWindow
Expression("Current
Window","Target")

 Determine whether
currentWindow String plus target
identify the window containing
this running code.

44 goBack()
Simulates the user clicking the
"back" button on their browser.

45 highlight("Locator")

Briefly changes the
backgroundColor of the specified
element yellow.

46 isAlertPresent() Has an alert occurred?

47 isChecked("Locator")
 Gets whether a toggle-button
(checkbox/radio) is checked.

48 isConfirmationPresent() Has confirm() been called?

49 isEditable("Locator")

Determines whether the specified
input element is editable, ie hasn't
been disabled.

50 isElementPresent("Locator")
Verifies that the specified element
is somewhere on the page.

51 isPromptPresent() Has a prompt occurred?

52 isSomethingSelected("Locator")
Determines whether some option
in a drop-down menu is selected.

53 isTextPresent("Pattern")

Verifies that the specified text
pattern appears somewhere on the
rendered page shown to the user.

54 isVisible("Locator")
Determines if the specified
element is visible.

55 open("URL") Opens an URL in the test frame.

56 openWindow("URL","WindowID")

Opens a popup window (if a
window with that ID isn't already
open).

57 refresh()
 Simulates the user clicking the
"Refresh" button on their browser.

58 removeAllSelections("Locator")
Unselects all of the selected
options in a multi-select element.

59
removeSelection("Locator","Option
Locator")

Remove a selection from the set of
selected options in a multi-select
element using an option locator.

60
select("Select Locator","Option
Locator")

Select an option from a drop-down
using an option locator.

61 selectFrame("Locator")
Selects a frame within the current
window.

62 selectWindow("WindowID")

Selects a popup window; once a
popup window has been selected,
all commands go to that window.

63 setSpeed("Value")

Set execution speed (i.e., set the
millisecond length of a delay
which will follow each selenium
operation).

64 setTimeout("Time")

Specifies the amount of time that
Selenium will wait for actions to
complete.

65 start()
 Launches the browser with a new
Selenium session

66 stop()
Ends the test session, killing the
browser

67 submit("Form Locator") Submit the specified form.

68 type("Locator","Value")
 Sets the value of an input field, as
though you typed it in.

69 unCheck("Locator")
 Uncheck a toggle-button
(checkbox/radio)

70
waitForCondition("JavaScript","Timeo
ut")

Runs the specified JavaScript
snippet repeatedly until it
evaluates to "true".

71
waitForFrameToLoad("Frame
Address","Timeout")

Waits for a new frame to load.

72 waitForPageToLoad("Timeout") Waits for a new page to load.

73 waitForPopUp("WindowID","Timeout")
Waits for a popup window to
appear and load up.

74 windowFocus()
 Gives focus to the currently
selected window

75 windowMaximize()
Resize currently selected window
to take up the entire screen

Handling Keyboard and Mouse:

 S.No Command Description

1 altKeyDown()

 Press the Alt key and hold it down
until AltUp() is called or a new
page is loaded.

2 altKeyUp() Release the Alt key.
3 controlKeyDown() Press the Control key and hold it

down until ControlUp() is called or
a new page is loaded.

4 controlKeyUp() Release the Control key.

5 keyDown("Locator","Key Sequence")
 Simulates a user pressing a key
(without releasing it yet).

6 keyUp("Locator","Key Sequence") Simulates a user releasing a key.

7 KeyPress("Locator","Key Sequence")
 Simulates a user pressing and
releasing a key.

8 metaKeyDown()

 Press the meta key and hold it
down until MetaUp() is called or a
new page is loaded.

9 metaKeyUp() Release the meta key.

10 mouseDown("Locator")

 Simulates a user pressing the
mouse button (without releasing it
yet) on the specified element.

11
mouseDownAt("Locator","Coordinate
String")

 Simulates a user pressing the
mouse button (without releasing it
yet) at the specified location.

12 mouseMove("Locator")

 Simulates a user pressing the
mouse button (without releasing it
yet) on the specified element.

13
mouseMoveAt("Locator","Coordinate
String")

 Simulates a user pressing the
mouse button (without releasing it
yet) on the specified element.

14 mouseOut("Locator")

 Simulates a user moving the
mouse pointer away from the
specified element.

15 mouseOver("Locator")
 Simulates a user hovering a
mouse over the specified element.

16 mouseUp("Locator")

 Simulates the event that occurs
when the user releases the mouse
button (i.e., stops holding the
button down) on the specified
element.

17
mouseUpAt("Locator","Coordinate
String")

 Simulates the event that occurs
when the user releases the mouse
button (i.e., stops holding the
button down) at the specified
location.

18 shiftKeyDown()

 Press the shift key and hold it
down until doShiftUp() is called or
a new page is loaded.

19 shiftKeyUp() Release the shift key.

S.No Object/Property Command
1 Text Box getValue(), getText(), isEditable(), isVisible(), type()
2 List Box getSelectedId(),getSelectedIndex(), ,

getSelectedLabel(),getSelectedValue(),
getSelectOptions(), select()

3 Multi Select
Element

getSelectedIds(),getSelectedIndexes(),
getSelectedLabels(),getSelectedValues(),isSomethin
gSelected()

4 Radio Button check(), click(), isChecked()
5 Check Box Check(), click(),isChecked(), uncheck()
6 Button click()
7 Link click(), getAllLinks()
8 Text getText(),getBodyText()
9 Tables and Cells getTable()

Consider this feature matrix :

Selenium
IDE

Selenium
RC

Selenium
Core

Selenium
Core HTA

Browser Support Firefox Only Many All IE Only

Requires Remote
Installation

No No Yes No

Supports
HTTPS/SSL

Yes Yes* Yes Yes

Supports Multiple
Domains

Yes Yes* No Yes

Requires Java No Yes No No

Saves Test
Results to Disk

No** Yes No Yes

Language
Support

Selenese
Only

Many Selenese
Only

Selenese
Only

• *= experimental support is available in Selenium RC

• ** = theoretically possible, but not currently implemented

