
Dynamic Runtime Clustering in Glassfish v3.1 using Shoal Group Management
Service

One pager template version: 1.9

1. Introduction
 1.1. Project/Component Working Name:
 Dynamic Runtime Clustering Support via Shoal Group Management
Service

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
 Name: joe.fialli@oracle.com

 Name: bobby.bissett@oracle.com

 1.3. Date of This Document:
 07/13/2010 incorporate changes to 4.5 interfaces for
AliveAndReadyCoreView management.
 06/30/2010 incorporate changes 4.5 Interfaces changes to
complete implementing split of shoal-gms into shoal-gms-api and shoal-gms-
impl jars.
 Updated
GroupManagementServer.getPreviousAliveAndReady() based on design discussion
with Mahesh.
 06/11/2010 updated access to GMS within GF v3.1 after design
session with Jerome
 06/02/2010 updated based on Mahesh's feedback

 05/24/2010

2. Project Summary
 2.1. Project Description:

 Integrating Shoal Group Management Service into a Glassfish
cluster allows

 * other Glassfish application services to register for
notification of other clustered instances joining and leaving
 (normal and abnormal termination) the glassfish cluster
 * get the current member status of any member in the cluster.
 * sending a message to one, some or all clustered instances in the
cluster
 * get a list of Core or All clustered instances in the glassfish
cluster.

 2.2. Risks and Assumptions:
 Miss reporting GMS FAILURE notification on fast restart(instance
restarted faster than GMS default heartbeat failure detection
configuration)
 due to no NodeAgent in GF v3.1. See details in section 4.12

discussion on how application is notified of missed GMS
 notification of FAILURE due to fast restart. If GF v3.1, a
clustered instance could be restarted faster than
 GMS heartbeat failure detection time due to clustered instance
being a registered native OS service that is automatically
 restarted when the native OS detects that the service has failed.

 Metro Reliable Messaging(RM) HA requires larger payloads than GMS
messaging supported in past releases.
 For session data, payloads were only in the range of 2k to 10k.
For Metro Reliable Messaging RM,
 the message payload size is application dependent and can range
significantly in value.
 We are evaluating larger message payloads for GMS sendMessage in
Shoal GMS distributed unit level
 testing now to limit future risk. We are working with Metro RM
team to identify a ballpark range of size and msg
 throughput.

3. Problem Summary
 3.1. Problem Area:

 GMS provides infrastructure to build fault tolerance, reliability
and availability within a glassfish cluster.

 3.2. Justification:
 High availability of session data in a glassfish cluster is a
release driver for v3.1 and the
 High availability of session data(i.e., http sessions, stateful
ejb) is built on top of GMS subsystem.

 The GMS subsystem provides high availability module with the
ability to send messages within the cluster and
 the ability to compute a consistent hash based on the clustered
CORE instances that are currently running.

 Other cluster services using GMS include IIOP, IIOP load balancer,
EJB timer migration, delegated transaction recovery, Metro RM.

4. Technical Description:
 4.1. Details:

 Shoal GMS over JXTA transport was used by high availability in
Glassfish v2.x.
 For Glassfish v3.1, Shoal GMS over Grizzly transport is going to
be used.
 The motivation for changing from jxta transport to grizzly
transport were numerous.
 Grizzly is already part of the Glassfish v3. Grizzly is actively
being optimized and
 further developed. The Grizzly developers are part of Glassfish

development and
 are able to provide support for the transport.

 We have done Shoal GMS unit testing to verify that Shoal GMS over
Grizzly is as predictable and
 performant or higher performing than Shoal GMS over JXTA. These
Shoal GMS unit test include
 message sending throughput and validating GMS notifications are
working as well with
 Shoal over Grizzly as it does with Shoal over Jxta in past.

 We have written distributed Shoal GMS unit test to simulate HA
messaging patterns and throughput.

 This allowed us to validate that Shoal GMS messaging is
sufficient for HA needs.

 When does an application server instance joins a GMS group.
 1. When a clustered instance belongs to a cluster with gms-

enabled with a value of true, the clustered instance
 joins the cluster when cluster instance is started.
 (see http://wiki.glassfish.java.net/attach/V3FunctionalSpecs/
gmsconfig_gfv3_1.rtf for more on
 specification of domain.xml element cluster attribute gms-
enabled).

 2. When a DAS is started, it joins each of its cluster that has
gms-enabled with a value of true.

 4.2. Bug/RFE Number(s):
// List any Bug(s)/RFE(s) which will be addressed by this proposed

change.
// Provide links to the Bug(s)/RFE(s)where possible.

 // RFE's must be trackable via an issue in Issue Tracker for
 // features in the open source distro and in Bugster for value-add
 // features to be released in the commercial distro.

TBD: Will enter Milestone Features listed in http://
wiki.glassfish.java.net/Wiki.jsp?page=GlassFishv3GMS into issue tracker and
reference them.

 4.3. In Scope:
// Aspects that are in scope of this proposal if not obvious from

above.
Support for clustered instances of a glassfish cluster are required

to be on same subnet and multicast needs
 to be enabled for the subnet on each machine and router connecting
the machines. This requirement was required
 in glassfish v2.1.1.

 4.4. Out of Scope:
// Aspects that are out of scope if not obvious from above.
Virtual Multicast Support (substitute UDP broadcast with a static

list of IP Addresses and ports).

Missed FAILURE notifications due to quick restart of a failed
clustered instance.
 In gf v2.1.1 the Nodeagent notified GMS (via GMS watchdog failure
notification) when it was
 going to restart an instance. Since there is no NodeAgent in GF
v3.1, this is no longer possible.
 See details of how this worked in GF v2.1 in following document:
http://wiki.glassfish.java.net/attach/SFv2FunctionalSpecs/gmsWatchdog.doc
 The REJOIN subevent described in section 4.5.1 addresses how a
GMS client will be notified
 of missed GMS notifications of FAILURE when a clustered instance
is restarted very quickly.
 GMS client is responsible for checking for REJOIN subevent on
JOIN and JOINED_AND_READY events
 as a means to detect fast restart of clustered instance.

 4.5. Interfaces:
// Interfaces may be commands, files, directory structure, ports,
// DTD/Schema, tools, APIs, CLIs, etc.
// Note: In lieu of listing the interfaces in the one pager,

providing
// a link to another specification which defines the interfaces
// is acceptable.

 4.5.1. Public Interfaces

 An EJB or web tier application attains access to GMS via
GMSFactory.getModule().

 GF v3.1 modules access GMS via following api,

 // List new, public interfaces this project exports.
 Module glassfish/v3/cluster/gms-bootstrap depends on shoal-
gms-api.jar only.

 @Service
 class GMSAdapterService // loads gms-adapter module only if
gms-enabled.

 /**

 * Return the GMSAdapter for a clustered instance in a
cluster with gms-enabled is true.
 * Works in DAS with one cluster.
 * Throws IllegalStateException if called when DAS has
multiple clusters. Use getGMSAdapterByName(String) when in DAS specific
code.

 */
 GMSAdapter getGMSAdapter();

 /**

 * Return the GMSAdapter for a cluster named "clusterName"
with gms-enabled is true.
 * Strongly recommend using this method in DAS specific
code since DAS can have more than one cluster.
 * A clustered instance can belong to one and only one
glassfish cluster.

 */
 GMSAdapter getGMSAdapterByName(String clusterName); //
must be used in DAS when it has multiple clusters.

 boolean isGmsEnabled();

 Module glassfish/v3/gms-adapter

 import com.sun.enterprise.ee.cms.core.CallBack;

 @Contract
 interface GMSAdapter {

 /** Get implementation of GroupManagementServicefrom
Shoal GMS API module needs to add dependency on shoal-gms-api-1.5.3(or
higher).jar

 * @returns GroupManagementService.
 */
 GroupManagementService getModule();
 String getClusterName();

 // use the following methods in GF v3.1 rather than
GroupManagementService.addActionFactory(...)

 // The default client implementations of
ActionFactoryImpl are not in shoal-gms-api*.jar.
 void registerJoinNotificationListener(CallBack
callback);

 void registerJoinedAndReadyNotificationListener(CallBack
callback);

 void registerMemberLeavingListener(CallBack callback);
 void registerPlannedShutdownListener(CallBack callback);

 void registerFailureSuspectedListener(CallBack
callback);

 void registerFailureNotificationListener(CallBack
callback);

 void registerFailureRecoveryListener(String
componentName, CallBack callback);

 void registerMessageListener(String componentName,
CallBack messageListener);

 void
registerGroupLeadershipNotificationListener(CallBack callback);

 // use the following methods rather than
GroupManagmentServer.removeActionFactory(...)

 void removeFailureRecoveryListener(String
componentName);

 void removeMessageListener(String componentName);
 void removeFailureNotificationListener(CallBack

callback);
 void removeFailureSuspectedListener(CallBack callback);
 void removeJoinNotificationListener(CallBack callback);
 void removeJoinedAndReadyNotificationListener(CallBack

callback);
 void removePlannedShutdownListener(CallBack callback);
 void removeGroupLeadershipLNotificationistener(CallBack

callback);
 void removeMemberLeavingListener(CallBack callback);

 }

 Other modules in Glassfish V3.1 that require access to GMS can

access it in following way:

 GMS Client access to GMSService in clustered instance and in DAS
with only one cluster.
 import org.glassfish.gms.GMSAdapter;
 import org.glassfish.gms.bootstrap.GMSAdapterService;

 @Inject
 GMSAdapterService gmsAdapterService;
 GroupMangementService gms;

 postConstruct() {
 if (gmsAdapterService.isGmsEnabled()) {
 gms =
gmsAdapterService.getGmsAdapter().getModule();
 }
 }

 Add methods to existing Shoal GMS class
com.sun.enterprise.ee.cms.core.GroupHandle

 /**
 * This snapshot was terminated by AliveAndReadyView.getSignal(), a GMS
notification of
 * either JoinedAndReadyNotificationSignal, FailureNotificationSignal
or PlannedShutdownSignal.
 *
 * <p>
 * Behavior is not well defined at during GROUP_STARTUP or
GROUP_SHUTDOWN.
 *
 * <p>
 * If the last GMS notification was a JOIN with a REJOIN subevent, the
list previous CORE members will be same as list of current CORE members.
 * (this scenario reflects a fast restart of an instance in less than
GMS heartbeat failure detection can detect failure, this is called a REJOIN
 * when an instance fails and restarts so quickly that
FAILURE_NOTIFICATION is never sent. THe REJOIN subevent represents the
unreported FAILURE
 * detected at the time that the instance is restarting.)
 *
 *
 * @return the previous AliveAndReady Core member snapshot
 */
 AliveAndReadyView getPreviousAliveAndReadyCoreView(); // to be used
by HA module

 /**
 * Get a current snapshot of the AliveAndReady Core members.
 * AliveAndReadyView.getSignal() returns null to signify that
 * the view is still the current view and no GMS notification signal
 * has terminated this current view yet.
 *
 * @return current view of AliveAndReady Core members
 */
 AliveAndReadyView getCurrentAliveAndReadyCoreView();

 new Interface AliveAndReadyView for package
com.sun.enterprise.ee.cms.core;

 /**
 * A read-only view consisting of all the AliveAndReady CORE members of
a GMS group.
 *
 * The GMS notification signals of JoinedAndReadyNotificationSignal,
FailureNotificationSignal and PlannedShutdownSignal
 * transition from one of these views to the next view. When one of

these signal occurs, the current view is terminated
 * by setting its signal. While the view's signal is null, it is
considered the current view. Once a terminating signal
 * occurs, than this view is considered the previous view and
getSignal() returns the GMS notification that caused this
 * view to conclude.
 */
 public interface AliveAndReadyView {

 /**
 * These are members of this view BEFORE the GMS notification signal
that terminated
 * this view as being the current view.
 *
 * @return an unmodifiable list of sorted CORE members who are alive
and ready.
 *
 */
 SortedSet<String> getMembers();

 /**
 *
 * @return signal that caused transition from this view. returns null
when this is the current view
 * and no signal has occurred to cause a transition to the
next view.
 */
 Signal getSignal();

 /**
 *
 * @return time this view ceased being the current view when its
signal was set.
 */
 long getSignalTime();

 /**
 * Monotonically increasing id. Each GMS notification signal for a
core member that causes a new view to be created
 * results in this value being increased.
 * @return a generated id
 */
 long getViewId();

 /**
 * @return duration in milliseconds that this view is/was the current
view.
 * If <code>getSignal</code> is null, this value is still
growing each time this method is called.

 */
 long getViewDuration();

 /*
 * @return time that this view got created.
 */
 long getViewCreationTime();
 }

 The following functionality is only necessary when gms group

members are restarted immediately after a software failure.
 This functionality is needed in Glassfish v3.1 since there will

be a local machine mechanism where a failed
 clustered instance will be automatically restarted (registered
as a native OS service).

 Add interface for Rejoin subevent to GMS Join and
JoinedAndReady Notificiation signal.

 Add interface com.sun.enterprise.ee.cms.core.RejoinSubevent.

 /**
 * Representation of a missed FAILURE notification when
restarting an instance.

 */
 interface RejoinSubevent {

 // time that the failed instance instantiation joined the
group.

 long getGroupJoinTime();
 }

 interface RejoinableEvent {
 // Returns RejoinSubevent if this Join or JoinedAndReady

notification is for an instance that restarted quicker
 // than GMS heartbeat failure detection was able to report
the GMS notification FAILURE.

// Returns NULL if this instance is not restarting without
gms group being notified that it had left group in past.

 RejoinSubevent getRejoinSubevent();
 }

 Existing com.sun.enterprise.ee.cms.core JoinNotificationSignal
and JoinedAndReadyNotificationSignal will implement RejoinableEvent.

 We were able to avoid adding this functionality in Glassfish
v2.1.1 due to technique described in this

 document: http://wiki.glassfish.java.net/attach/
SFv2FunctionalSpecs/gmsWatchdog.doc.

 Rationale on why GMS did not just issue a FAILURE notification
followed by a Join notification when an instance restarted faster than
 GMS heartbeat failure detection could detect the instance
failed. This rationale justifies why REJOIN is being introduced.

 - When a fast restart occurs, GMS notices that a new
instantiation of a member has started and GMS still had a reference to the
 previously failed instance. At this point in time, if one
calls GroupHandle.getMemberStatus() on the restarted instance, one would
 get the response that it was alive. So it was considered too
late to send a FAILURE notification for a member when it already had
 restarted. The REJOIN subevent on JOIN and JOINED_AND_READY
GMS notifications was the chosen way to indicate to the application
 that a previous instantiation of member had FAILED while a
new instantiation of the member is JOIN'ing the cluster.

 Detail description of the fast restart is described in
Section 3.1 of http://wiki.glassfish.java.net/attach/SFv2FunctionalSpecs/
gmsWatchdog.pdf.
 The REJOIN subevent indicates that an instantiation of the
instance that joined the cluster at a certain time in the past has failed.
 The REJOIN subevent has the time the previous instantiation
of member had joined the cluster. The Shoal GMS log events also report
 that no FAILURE event was sent for the FAST RESTART of the
member. The actual log events are in gmsWatchdog.pdf referenced above.
 |

 Mahesh's review requested this functionality. Below are my
initial thoughts. Need assistance on next steps.

 TBD: Add a capability for GMS notification callback handlers to
be found by hk2 and automatically registered.
 Require assistance of someone who understands hk2 on what
impact this has on gms-adapter implementation

 We will either need to add an annotation to the callbacks
or potentially introduce marker Callback interfaces for each
 GMS notification in GMS. (i.e. a JoinCallback that extends
com.sun.enterprise.ee.cms.core.Callback, one for JoinedAndReady, and so
on.)
 Currently, there is only one generic Callback for all GMS
notifications, com.sun.enterprise.ee.cms.core.Callback.
 The developer implements an implementation of this
callback which contains a processNotification(Signal).

 The current API allows a Callback to be registered for one

or more GMS notifications.

 The following lines are used to specify which GMS
notifications callbacks should be called for.

 Notice that there are two distinctly different coding
patterns that a Shoal GMS developer may use
 when writing Shoal GMS callbacks.

 In Shoal GMS test HAMessageReplicationSimulator.java,
there is one callback per notification type.

 gms.addActionFactory(new
JoinNotificationActionFactoryImpl(new JoinNotificationCallBack()));
 gms.addActionFactory(new
JoinedAndReadyNotificationActionFactoryImpl(new
JoinAndReadyNotificationCallBack(memberID)));
 gms.addActionFactory(new MessageActionFactoryImpl(new
MessageCallBack(memberID)), "TestComponent");

 While in Shoal GMS test ApplicationServer and
GMSClientService "simulation", there is only one callback implementation
registered
 with many different GMS notification callbacks.

 class GMSClientService implements
com.sun.enterprise.ee.cms.core.Callback {

 public GMSClientService(final String serviceName, final
String memberToken){
 gms = GMSFactory.getGMSModule();
 gms.addActionFactory(new
PlannedShutdownActionFactoryImpl(this));
 gms.addActionFactory(new
JoinNotificationActionFactoryImpl(this));
 gms.addActionFactory(new
FailureNotificationActionFactoryImpl(this));
 if (memberToken != null &&
memberToken.compareTo("server") != 0) {
 gms.addActionFactory(serviceName, new
FailureRecoveryActionFactoryImpl(this));
 gms.addActionFactory(new
MessageActionFactoryImpl(this), serviceName);
 }
 gms.addActionFactory(new
JoinedAndReadyNotificationActionFactoryImpl(this));
 }

 public void processNotification(Signal signal) { /*
process GMS signal notifications */ }

Do we select one style or do we have to accomodate both

styles in Glassfish v3.1 hk2?

When a callback is registered, application dependent data
is sometimes associated with the callback.
 Would an GMS spefic annotation be needed to accomplish this
in hk2, or is that functionality not available?

Possible parameters for an annotation on a class found by

hk2 that implements com.sun.enterprise.ee.cms.core.Callback.

1. What GMS notifications should the callback be registered
with?

 Current GMS notifications include:

 GMS Membership Notifications: Join,
JoinedAndreadReady, PlannedShutdown, FailureSuspected, Failure
 GMS Cluster Event Notification: MessageActionFactory,
GroupLeadership, FailureRecovery

 (Implementation detail: append
"NotificationActionFactoryImpl" to all of the above when implementing in
gms-adapter/GMSService)

 2. Which gms-group should the callback be registered with?
 (a) ALL groups
 (b) a specific gms-group

3. Both FailureRecovery and Message notifications are
registered by a componentName that is application specific.
 This info would need to be communicated via an
annotation or a new method added to interfaces for Message and
RecoveryFailure Callbacks.

 See componentName javadoc for
GroupManagementService.addActionFactory(String componentName,
FailureRecoveryActionFactory)

 and
GroupManagementService.addActionFactory(MessageActionFactory, String
componentName).

 4. Possible application data to be passed to the
constructor of the class that implements
com.sun.enterprise.ee.cms.core.Callback.
 Minimally, it has been useful to have the memberToken
name and gms-group name within Shoal GMS callback handlers.

 Add diagnostic utility to confirm that multicast is enabled
between
 a set of machines. This tool diagnoses one issue on why cluster
members
 may not be seeing each other. The tool only uses java
MulticastSocket
 and does not use GMS nor its transport. Name for tool and where
it will live
 are to be determined. Documentation is needed on when and how
to use it.

 For GMS over Grizzly, this utility probably should be based on
a generalized version of

com.sun.enterprise.mgmt.transport.BlockingIOMulticastSender.java.

 4.5.2. Private Interfaces:

 // List private interfaces which are externally observable.
 Configuration within Glasfish v3.1 domain.xml element cluster
and group-management-service elements.

 See specification in http://wiki.glassfish.java.net/attach/
V3FunctionalSpecs/gmsconfig_gfv3_1.rtf

 New module: cluster/gms-adapter // depends on shoal-gms-
api.jar and shoal-gms-impl.jar
 @Service
 class GMSAdapterImpl implements GMSAdapter

 4.5.3. Deprecated/Removed Interfaces:
 // List existing public interfaces which will be deprecated or
 // removed by this project.
 NONE

 4.6. Doc Impact:
// List any Documentation (man pages, manuals, service guides...)
// that will be impacted by this proposal.

 Document new diagnosis utility to confirm that multicast is enabled
on a subnet.
 Assists in diagnosing why dynamic clustering is not working for a
set of clustered instances.

When it is obvious that the clustered instances in a glassfish
cluster are not seeing each other
 (via analysis of GMS views in server log files), this utility
should be run on each machine.
 This utility assists in diagnosing if multicast is possible among

the machines being used to
 host the clustered instances.

 4.7. Admin/Config Impact:
// How will this change impact the administration of the product?
// Identify changes to GUIs, CLI, agents, plugins...

Changes are required for Admin GUI configuration of a cluster and
group-management-service.
 See http://wiki.glassfish.java.net/attach/V3FunctionalSpecs/
gmsconfig_gfv3_1.rtf

There is a need for being able to specify generic gms properties on
both cluster and group-management-service level.
 In Glassfish v2.1, there was no way to specify generic properties
at the cluster level, only group-management-service level.
 Thus, cluster properties could only be added via asadmin CLI set
command in glassfish v2.x.

 4.8. HA Impact:
// What new requirements does this proposal place on the High
// Availability or Clustering aspects of the component?

 None

 HA has requirements that GMS must meet.
Identified requirements are in this document.
There does exist a chance that other requirements are identified

during implementation phase
 given the relationship between HA and GMS.

 4.9. I18N/L10N Impact:
 no.

 4.10. Packaging, Delivery & Upgrade:

4.10.1. Packaging
 // What packages does this proposal impact? How will the

packages
 // be impacted? Will new IPS/pkg(5) packages need to be

created?

 Not sure what a package is, but here is how Shoal GMS is
integrated into Glassfish v3.1.

 Glassfish v3.1 module cluster/gms-adapter loads GMS and joins a
glasfish clustered instance to its gms group.

 Shoal GMS is a sub project of Glassfish. The shoal gms module is

 external source code that has its jar checked into Glassfish
v3.1 via glassfish
 maven repository.

 The Shoal GMS source code exist under a glassfish subproject on
java.net.

 Sources are located here:can be retrieved here.
 svn checkout https://shoal.dev.java.net/svn/shoal/branches/

SHOAL_1_1_ABSTRACTING_TRANSPORT --username <java.net.userid>

 For the checked out source code, see pom.xml and directory gms,

for Shoal GMS module.

 Final jar name: shoal-gms-1.5.jar. The updateable jar file is
called shoal-gms-1.5-SNAPSHOT.jar.

4.10.2. Delivery
 // What impact will this proposal have on product installation?

 The module will be installed as part of Glassfish install.

 4.10.3. Upgrade and Migration:
 // What impact will this proposal have on product upgrade and/

or
 // migration from prior releases? Enumerate requirements this
 // project has on upgrade and migration.

 Since clustering was not in Glassfish v3, there is no upgrade
from v3 to v3.1.

 Upgrade from glassfish v2 clustering applications to glassfish
v3.1 is needed.
 This will consist of identifying glassfish v2 cluster and
group-management-service elements in v2 domain.xml and
 mapping to the glassfish v3.1 configuration. The gms
configuration document captures what transformations
 will need to be made.

 4.11. Security Impact:
// How does this proposal interact with security-related APIs
// or interfaces? Does it rely on any Java policy or platform
// user/permissions implication? If the feature exposes any
// new ports, Or any similar communication points which may

 // have security implications, note these here.

 GMS using Grizzly ussing SSL is not in scope.

 4.12. Compatibility Impact

// Incompatible changes to interfaces that others expect

// to be stable may cause other parts of application server or
// other dependent products to break.

// Discuss changes to the imported or exported interfaces.
// Describe how an older version of the interface would
// be handled.
Missed GMS Notification of FAILURE when a clustered instance is

restarted quicker than configured GMS heartbeat failure detection
parameters.
 In Glassfish v2.1.1, the Nodeagent was a GMS Watchdog that
reported to GMS that a clustered instance had
 failed.(Described in http://wiki.glassfish.java.net/attach/
SFv2FunctionalSpecs/gmsWatchdog.doc)
 This was done since the Nodeagent was restarting the instance on
some machine configurations quicker
 than GMS heartbeat failure detection could report the instance
had failed. By the time GMS was confirming a failure,
 the clustered instance had been restarted (quicker than the
default of 8 seconds it takes for GMS heartbeat failure
 detection to confirm a failed instance.) For Glassfish v3.1,
the GMS client is required to register
 a JOIN and/or JOINED_AND_READY callback that check for the
existence of the newly introduced subevent REJOIN.
 When this subevent exists on a JOIN or JOINED_AND_READY
notification, it indicates that the instance restarted
 without a GMS notification that the instance had failed. The
REJOIN subevent represents a recent FAILURE
 of the clustered instance that is (re)JOIN the glassfish cluster.
The INFO log event for GMS notification JOIN and JOINED_AND_READY
 will have REJOIN in it, if there is a REJOIN element.

 4.13. Dependencies:
// List all dependencies that this proposal has on other
// proposals, components or products.

 // LIST dependency component version requirements here.

grizzly-framework.jar version 1.19.9-beta2 or higher (GMS code
will not compile with 1.19.8 or lower)
 grizzly-utils.jar version 1.19.9-beta2 or higher

Admin GUI for ability to configure cluster and group-management-
service properties.
 asadmin CLI for setting domain.xml cluster and group-management-
service attribute and properties.

 Depend on symbolic token replacement in domain.xml to set
BIND_INTERFACE_ADDRESS different for each clustered instance.
 ${<cluster-name>-GMS_BIND_INTERFACE_ADDRESS}.

 Depend on existence of "asadmin start-cluster" to inject

supplemental GMS behavior to call
GroupManagmentService.announceGroupStartup()

 Distributed testing of GMS in GF v3.1 environment relies on remote
starting/stopping of cluster and instances.
 asadmin start-cluster, stop-cluster, start-instance, stop-instance.

 Subevent REJOIN of ADD event should be implemented by time that
automatic restart of a failed clustered instance is in GF v3.1.

 Developer level testing of a cluster on one machine requires the
ability to easily start multiple clustered instances on one machine.
 In Glassfish v2.1, creating multiple instances on one machine
resulted in each instance using different ports for HTTP, IIOP,
 CONFIG-05 feature provides this.

 4.14. Testing Impact
 // How will the new feature(s) introduced by this project be
tested?

REJOIN -
A SHOAL GMS developer unit level test is already written that will

cause a REJOIN to occur.
 The JOIN and JOIN_AND_READY ShoalLogger INFO log event should
mention REJOIN subevent when it exists.

 Existing scenarios from gf v2.1 gms with kill of a clustered
instance will need to change its log analysis to verify REJOIN.
 The REJOIN will only be testable in Glassfish v3.1 platform when
native OS restart of application server is implemented
 and appropriate instructions to activate that property are followed
(if there are any)
 (REJOIN replaces NodeAgent WATCHDOG from gf v2.1.1. Since
NodeAgent is not implemented, NodeAgent WATCHDOG no longer will work in
 GF v3.1)

New method previousAliveAndReadyMembers().
A new Shoal GMS developer unit level test will be written to verify

new method GroupHandle.previousAliveAndReadyMembers().
 The test will verify that this method is working properly by
starting up a cluster, ensuring it is at steady state

and then verify that this method returns the proper list after GMS
client has join or left the cluster.

For Glassfish QE distributed Shoal testing, the scenario needs to
verify what this method returns when the
 in a steady state glassfish cluster after the following operations
cause a change in a running glassfish cluster that has reached steady
state.

 (1) start instance via "asadmin start-instance)
 (2) PLANNED_SHUTDOWN of single clustered instance
 (3) FAILURE detection of a failed instance. (4) restart of an
instance in glassfish v3.1 (via it being registered as a native OS service)

 Note: no testable constraints exist for this method during cluster
startup (asadmin CLI start-cluster),
 during cluster shutdown (asadmin CLI stop-cluster), when
multiple events (starts/stops) happen exactly at same time.

// Do tests exist from prior releases (e.g. v2) that can be reused?
Yes. Shoal QE Scenario test scenarios can be reused. Adjustments

may need to be made to
 accommodate differences between v2 and v3.1. (i.e. NodeAgent not
existing in v3.1, potentially
 minor changes to asadmin CLI to manage glassfish cluster starting/
stopping, ...)
 These changes will amount to fairly small changes to scripts that
run scenarios and
 changes to what log events to look for in certain situations.
However, the testing methodology
 used to test in v2 will work equally well in v3.1.

 // Will new tests need to be written? Can they be automated?
New tests to be written were listed above and initial thoughts on

testing were mentioned.
 It should be possible to automate running the tests but manual
investigation of log files of failures
 will be needed.

5. Reference Documents:
// List of related documents, if any (BugID's, RFP's, papers).
// Explain how/where to obtain the documents, and what each
// contains, not just their titles.

See GMS configuration in Glassfish v3.1: http://
wiki.glassfish.java.net/PageInfo.jsp?page=GlassFishv3.1GMS/
gmsconfig_gfv3_1.rtf

Shoal GMS over Grizzly distributed unit QE testing (by Kazem)
 http://wikihome.sfbay.sun.com/glassfish/Wiki.jsp?
page=ShoalGrizzlyTestScenarios

Following page contains Milestone functionalities.

Glassfish v3.1 GMS subproject page: http://wiki.glassfish.java.net/
Wiki.jsp?page=GlassFishv3.1GMS

Reference GMS Configuration in Glassfish v3.1 document here.
Describes GMS configuration in domain.xml.

Stop-gap clustering distributed test harness (from Steve D.)
 % export CVSROOT=:pserver:<sunLDAPID>@redcvs.red.iplanet.com:/m/jws
 % cvs co appserver-sqe/ee/gms/sm
 See appserver-sqe/ee/gms/sm/README.txt

Glassfish v2.1.1 functionality not being implemented in Glassfish
v3.1 since Nodeagent is not part of GF v3.1.
 GMS Watchdog functionality ensured that a clustered instance that
is quickly restarted (less than 8 secs) is
 still reported as a GMS FAILURE. gf v2.1.1 details described in
 See: http://wiki.glassfish.java.net/attach/SFv2FunctionalSpecs/
gmsWatchdog.doc

6. Schedule:
 6.1. Projected Availability:

 * Initially integrated (may not be feature complete) M2
 Before M2. Hopefully before end of May. Stop-gap clustering

test harness enable earlier testing.
 Being held up by task to only load shoal-1.5.jar
 if cluster gms-enabled is true.

 * Feature complete (ready for handoff to QA) M4

 * At production quality level: Final Release

M

Relationships

clustered instance belongs to one glassfish cluster.
standalone instance belongs to a gms group. *new* design on how this
appears in GMS config outstanding.
DAS belongs to 0 to many glassfish clusters.

Given above relationships, original implementation of GMSAdapterImpl
(formerly called GMSService)
was one to one relationship with GMS group. Is it possible to have more
than one

GMSAdapter, one per glassfish cluster that DAS belongs to.

GMS client lifecycle
- join called once when GF app server instance joins
GMS group

- reportJoinedAndReady - should be called when EventTypes.SERVER_READY
occurs. (if that is when server is ready
 for incoming client traffic.)

- shutdown called when receive EventTypes.SERVER_SHUTDOWN
occurs.

TBD: Access to GMS in DAS with more than one cluster.

