
Open Message Queue 4.5
Administration Guide

Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

Part No: 821–2478
February 2011

For Review Purposes Only

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group in the United States and other countries.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110223@25097

Contents

Preface ...23

Part I Introduction to Message Queue Administration ... 33

1 Administrative Tasks and Tools ...35
Administrative Tasks .. 35

Administration in a Development Environment ... 35
Administration in a Production Environment ... 36

Administration Tools .. 38
Built-in Administration Tools .. 38
JMX-Based Administration .. 40

2 Quick-Start Tutorial ...41
Starting the Administration Console .. 42
Administration Console Online Help ... 44
Working With Brokers ... 45

Starting a Broker .. 45
Adding a Broker to the Administration Console ... 45
Connecting to a Broker ... 47
Viewing Connection Services ... 48

Working With Physical Destinations ... 50
Creating a Physical Destination ... 50
Viewing Physical Destination Properties .. 51
Purging Messages From a Physical Destination ... 54
Deleting a Physical Destination ... 54

Working With Object Stores .. 55
Adding an Object Store ... 55

3

Connecting to an Object Store ... 58
Working With Administered Objects ... 58

Adding a Connection Factory .. 58
Adding a Destination ... 60
Viewing Administered Object Properties ... 62
Deleting an Administered Object .. 63

Running the Sample Application .. 63
▼ To Run the Sample Application ... 64

Part II Administrative Tasks ...67

3 Starting Brokers and Clients ..69
Preparing System Resources .. 69

Synchronizing System Clocks .. 69
Setting the File Descriptor Limit .. 70

Starting Brokers ... 70
Starting Brokers Interactively ... 70
Starting Brokers Automatically .. 71

Deleting a Broker Instance ... 76
Starting Clients .. 76

4 Configuring a Broker ...79
Broker Services .. 79
Setting Broker Configuration Properties .. 80

Modifying Configuration Files ... 80
Setting Configuration Properties from the Command Line ... 82

5 Managing a Broker ..85
Command Utility Preliminaries .. 86
Using the Command Utility ... 86

Specifying the User Name and Password .. 86
Specifying the Broker Name and Port ... 87
Displaying the Product Version ... 87
Displaying Help .. 88

Contents

Open Message Queue 4.5 Administration Guide • February 20114

Examples ... 88
Managing Brokers ... 89

Shutting Down and Restarting a Broker ... 89
Quiescing a Broker ... 90
Pausing and Resuming a Broker ... 91
Updating Broker Properties .. 91
Viewing Broker Information .. 92

6 Configuring and Managing Connection Services .. 95
Configuring Connection Services ... 95

Port Mapper .. 97
Thread Pool Management ... 98

Managing Connection Services ... 99
Pausing and Resuming a Connection Service .. 99
Updating Connection Service Properties ... 100
Viewing Connection Service Information .. 101

Managing Connections .. 103

7 Managing Message Delivery ...107
Configuring and Managing Physical Destinations ... 107

Command Utility Subcommands for Physical Destination Management 108
Creating and Destroying Physical Destinations .. 109
Pausing and Resuming a Physical Destination ... 112
Purging a Physical Destination .. 113
Updating Physical Destination Properties .. 114
Viewing Physical Destination Information .. 114
Managing Physical Destination Disk Utilization ... 118
Using the Dead Message Queue ... 120

Managing Broker System-Wide Memory .. 121
Managing Durable Subscriptions .. 123
Managing Transactions .. 124

8 Configuring Persistence Services ...127
Introduction to Persistence Services ... 127

Contents

5

File-Based Persistence ... 128
File-Based Persistence Properties .. 128
Configuring a File-Based Data Store ... 129
Securing a File-Based Data Store .. 130
Optimizing File-Based Transaction Persistence .. 130

JDBC-Based Persistence ... 131
JDBC-Based Persistence Properties ... 131
Configuring a JDBC-Based Data Store .. 133
Securing a JDBC-Based Data Store .. 134

Data Store Formats .. 135

9 Configuring and Managing Security Services .. 137
Introduction to Security Services .. 137

Authentication ... 139
Authorization ... 140
Encryption .. 140

User Authentication .. 141
Using a Flat-File User Repository .. 141
Using an LDAP User Repository .. 147
Using JAAS-Based Authentication .. 150

User Authorization .. 155
Access Control File Syntax .. 156
Application of Authorization Rules ... 158
Authorization Rules for Connection Services .. 159
Authorization Rules for Physical Destinations .. 160

Message Encryption .. 161
Using Self-Signed Certificates .. 161
Using Signed Certificates .. 167

Password Files .. 170
Security Concerns .. 170
Password File Contents ... 171

Connecting Through a Firewall ... 171
▼ To Enable Broker Connections Through a Firewall .. 172

Audit Logging with the Solaris BSM Audit Log ... 172

Contents

Open Message Queue 4.5 Administration Guide • February 20116

10 Configuring and Managing Broker Clusters ... 175
Configuring Broker Clusters .. 175

The Cluster Configuration File .. 176
Cluster Configuration Properties .. 176
Displaying a Cluster Configuration ... 180

Managing Broker Clusters .. 182
Managing Conventional Clusters .. 182
Managing Enhanced Clusters ... 191
Converting a Conventional Cluster to an Enhanced Cluster ... 195

11 Managing Administered Objects ..199
Object Stores .. 199

LDAP Server Object Stores ... 199
File-System Object Stores ... 201

Administered Object Attributes .. 202
Connection Factory Attributes ... 202
Destination Attributes ... 209

Using the Object Manager Utility .. 209
Adding Administered Objects .. 210
Deleting Administered Objects .. 212
Listing Administered Objects ... 213
Viewing Administered Object Information ... 214
Modifying Administered Object Attributes .. 214
Using Command Files ... 215

12 Configuring and Managing Bridge Services ... 219
The Bridge Service Manager .. 219

Bridge-Related Broker Properties .. 220
Bridge Manager Utility .. 220
Logging of Bridge Services .. 221

Configuring and Managing JMS Bridge Services .. 221
JMS Bridge Components .. 222
JMS Bridge Features ... 223
Message Processing Sequence Across a Link in a JMS Bridge .. 228
Configuring a JMS Bridge ... 229

Contents

7

Starting and Stopping JMS Bridges .. 237
Starting and Stopping Links in a JMS Bridge .. 238

Configuring and Managing STOMP Bridge Services ... 239
Configuring the STOMP Bridge .. 240
Starting and Stopping the STOMP Bridge .. 241
Message Processing Sequence Across the STOMP Bridge .. 242
STOMP Protocol Features and the STOMP Bridge ... 243

13 Monitoring Broker Operations ..249
Monitoring Services .. 249
Introduction to Monitoring Tools .. 250
Configuring and Using Broker Logging ... 252

Logger Properties ... 253
Log Message Format .. 253
Default Logging Configuration .. 254
Changing the Logging Configuration ... 255

Using the Command Utility to Display Metrics Interactively ... 258
imqcmd metrics ... 259
Metrics Outputs: imqcmd metrics ... 260
imqcmd query .. 262

Using the JMX Administration API .. 262
Using the Java ES Monitoring Console ... 263
Using the Message-Based Monitoring API .. 264

Setting Up Message-Based Monitoring ... 265
Security and Access Considerations .. 266
Metrics Outputs: Metrics Messages ... 267

14 Analyzing and Tuning a Message Service ... 269
About Performance ... 269

The Performance Tuning Process .. 269
Aspects of Performance ... 270
Benchmarks .. 270
Baseline Use Patterns ... 271

Factors Affecting Performance .. 272
Message Delivery Steps .. 273

Contents

Open Message Queue 4.5 Administration Guide • February 20118

Application Design Factors Affecting Performance .. 274
Message Service Factors Affecting Performance .. 278

Adjusting Configuration To Improve Performance ... 282
System Adjustments .. 282
Broker Memory Management Adjustments ... 285
Client Runtime Message Flow Adjustments ... 286
Adjusting Multiple-Consumer Queue Delivery ... 288

15 Troubleshooting ... 291
A Client Cannot Establish a Connection .. 291
Connection Throughput Is Too Slow ... 296
A Client Cannot Create a Message Producer ... 297
Message Production Is Delayed or Slowed ... 298
Messages Are Backlogged ... 301
Broker Throughput Is Sporadic ... 305
Messages Are Not Reaching Consumers .. 306
Dead Message Queue Contains Messages .. 307

▼ To Inspect the Dead Message Queue ... 312

Part III Reference ..315

16 Command Line Reference ..317
Command Line Syntax ... 317
Broker Utility ... 318
Command Utility .. 322

General Command Utility Options ... 324
Broker Management .. 326
Connection Service Management .. 328
Connection Management ... 329
Physical Destination Management .. 329
Durable Subscription Management ... 331
Transaction Management ... 332
JMX Management .. 332

Object Manager Utility ... 332

Contents

9

Database Manager Utility ... 334
User Manager Utility ... 336
Bridge Manager Utility ... 337
Service Administrator Utility ... 340
Key Tool Utility ... 341

17 Broker Properties Reference ...343
Connection Properties .. 343
Routing and Delivery Properties ... 346
Persistence Properties ... 352

File-Based Persistence Properties .. 352
File-Based Persistence Properties for Transaction Logging ... 354
JDBC-Based Persistence Properties ... 356

Security Properties .. 359
Monitoring Properties .. 365
Cluster Configuration Properties .. 370
Bridge Properties ... 375
JMX Properties .. 377
Alphabetical List of Broker Properties .. 379

18 Physical Destination Property Reference ..387
Physical Destination Properties ... 387

19 Administered Object Attribute Reference ..393
Connection Factory Attributes .. 393

Connection Handling .. 393
Client Identification ... 397
Reliability and Flow Control ... 398
Queue Browser and Server Sessions .. 399
Standard Message Properties .. 400
Message Header Overrides ... 401

Destination Attributes .. 401

Contents

Open Message Queue 4.5 Administration Guide • February 201110

20 JMS Resource Adapter Property Reference .. 403
About Shared Topic Subscriptions for Clustered Containers .. 404

Disabling Shared Subscriptions ... 404
Consumer Flow Control When Shared Subscriptions Are Used ... 405

ResourceAdapter JavaBean .. 405
ManagedConnectionFactory JavaBean .. 408
ActivationSpec JavaBean .. 410

21 Metrics Information Reference ...417
JVM Metrics ... 418
Brokerwide Metrics ... 418
Connection Service Metrics ... 420
Physical Destination Metrics ... 421

22 JES Monitoring Framework Reference ...427
Common Attributes .. 427
Message Queue Product Information ... 428
Broker Information ... 428
Port Mapper Information ... 429
Connection Service Information ... 429
Destination Information .. 430
Persistent Store Information .. 431
User Repository Information ... 432

Part IV Appendixes ...433

A Distribution-Specific Locations of Message Queue Data ... 435
Installations from an IPS image ... 435
Installations from Solaris SVR4 Packages .. 437
Installations from Linux RPMs .. 438

B Stability of Message Queue Interfaces .. 441
Classification Scheme ... 441
Interface Stability ... 442

Contents

11

C HTTP/HTTPS Support ..445
HTTP/HTTPS Support Architecture ... 445
Enabling HTTP/HTTPS Support .. 446

Step 1 (HTTPS Only): Generating a Self-Signed Certificate for the Tunnel Servlet 447
Step 2 (HTTPS Only): Specifying the Key Store Location and Password 449
Step 3 (HTTPS Only): Validating and Installing the Server’s Self-Signed Certificate 450
Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet .. 454
Step 5 (HTTP and HTTPS): Configuring the Connection Service 456
Step 6 (HTTP and HTTPS): Configuring a Connection ... 457

Troubleshooting .. 460
Server or Broker Failure .. 460
Client Failure to Connect Through the Tunnel Servlet ... 460

D JMX Support ...461
JMX Connection Infrastructure .. 461

MBean Access Mechanism ... 461
The JMX Service URL .. 462
The Admin Connection Factory .. 463

JMX Configuration ... 464
RMI Registry Configuration ... 464
SSL-Based JMX Connections ... 467
JMX Connections Through a Firewall .. 469

E Frequently Used Command Utility Commands .. 471
Syntax .. 471
Broker and Cluster Management .. 471

Broker Configuration Properties (-o option) ... 472
Service and Connection Management .. 472
Durable Subscriber Management .. 473
Transaction Management .. 473
Destination Management ... 473

Destination Configuration Properties (-o option) .. 473
Metrics .. 474

Contents

Open Message Queue 4.5 Administration Guide • February 201112

Index ... 475

Contents

13

14

Figures

FIGURE 1–1 Local and Remote Administration Utilities ... 39
FIGURE 2–1 Administration Console Window ... 43
FIGURE 2–2 Administration Console Help Window ... 44
FIGURE 2–3 Add Broker Dialog Box ... 46
FIGURE 2–4 Broker Displayed in Administration Console Window 47
FIGURE 2–5 Connect to Broker Dialog Box ... 48
FIGURE 2–6 Viewing Connection Services .. 49
FIGURE 2–7 Service Properties Dialog Box .. 49
FIGURE 2–8 Add Broker Destination Dialog Box ... 51
FIGURE 2–9 Broker Destination Properties Dialog Box ... 53
FIGURE 2–10 Durable Subscriptions Panel .. 54
FIGURE 2–11 Add Object Store Dialog Box ... 56
FIGURE 2–12 Object Store Displayed in Administration Console Window 57
FIGURE 2–13 Add Connection Factory Object Dialog Box ... 59
FIGURE 2–14 Add Destination Object Dialog Box .. 61
FIGURE 2–15 Destination Object Displayed in Administration Console Window 62
FIGURE 4–1 Broker Configuration Files ... 81
FIGURE 6–1 Message Queue Connection Services .. 96
FIGURE 8–1 Persistent Data Stores .. 128
FIGURE 9–1 Security Support .. 138
FIGURE 9–2 JAAS Elements ... 151
FIGURE 9–3 How Message Queue Uses JAAS .. 152
FIGURE 9–4 Setting Up JAAS Support .. 153
FIGURE 13–1 Monitoring Services Support ... 250
FIGURE 14–1 Message Delivery Through a Message Queue Service ... 273
FIGURE 14–2 Transport Protocol Speeds ... 280
FIGURE C–1 HTTP/HTTPS Support Architecture ... 446
FIGURE D–1 Basic JMX Infrastructure .. 462

15

FIGURE D–2 Obtaining a Connector Stub from an RMI Registry ... 463
FIGURE D–3 Obtaining a Connector Stub from an Admin Connection Factory 464

Figures

Open Message Queue 4.5 Administration Guide • February 201116

Tables

TABLE 6–1 Message Queue Connection Service Characteristics .. 96
TABLE 6–2 Connection Service Properties Updated by Command Utility 100
TABLE 7–1 Physical Destination Subcommands for the Command Utility 108
TABLE 7–2 Dead Message Queue Treatment of Physical Destination Properties 120
TABLE 9–1 Initial Entries in Flat-File User Repository ... 143
TABLE 9–2 User Manager Subcommands .. 143
TABLE 9–3 General User Manager Options ... 144
TABLE 9–4 Broker Properties for JAAS Support ... 155
TABLE 9–5 Authorization Rule Elements ... 156
TABLE 9–6 Commands That Use Passwords ... 170
TABLE 9–7 Passwords in a Password File ... 171
TABLE 9–8 Broker Configuration Properties for Static Port Addresses 171
TABLE 10–1 Broker States .. 180
TABLE 11–1 LDAP Object Store Attributes .. 200
TABLE 11–2 File-system Object Store Attributes ... 201
TABLE 12–1 DMQ Message Propeties .. 227
TABLE 12–2 Broker Properties for a JMS Bridge ... 229
TABLE 12–3 jmsbridge Attributes ... 231
TABLE 12–4 link Attributes .. 232
TABLE 12–5 source Attributes ... 232
TABLE 12–6 target Attributes ... 233
TABLE 12–7 dmq Attributes ... 234
TABLE 12–8 connection-factory Attributes ... 235
TABLE 12–9 destination Attributes ... 237
TABLE 12–10 Broker Properties for the STOMP Bridge Service ... 240
TABLE 12–11 STOMP Bridge Handling of Selected Command/Header Combinations 243
TABLE 13–1 Benefits and Limitations of Metrics Monitoring Tools 251
TABLE 13–2 Logging Levels ... 254

17

TABLE 13–3 imqcmd metrics Subcommand Syntax .. 259
TABLE 13–4 imqcmd metrics Subcommand Options .. 259
TABLE 13–5 imqcmd query Subcommand Syntax .. 262
TABLE 13–6 Metrics Topic Destinations .. 264
TABLE 14–1 Comparison of High-Reliability and High-Performance Scenarios 274
TABLE 16–1 Broker Utility Options .. 318
TABLE 16–2 Command Utility Subcommands ... 323
TABLE 16–3 General Command Utility Options .. 325
TABLE 16–4 Command Utility Subcommands for Broker Management 326
TABLE 16–5 Command Utility Subcommands for Connection Service Management 328
TABLE 16–6 Command Utility Subcommands for Connection Service Management 329
TABLE 16–7 Command Utility Subcommands for Physical Destination Management 330
TABLE 16–8 Command Utility Subcommands for Durable Subscription Management 331
TABLE 16–9 Command Utility Subcommands for Transaction Management 332
TABLE 16–10 Command Utility Subcommand for JMX Management 332
TABLE 16–11 Object Manager Subcommands .. 332
TABLE 16–12 Object Manager Options .. 333
TABLE 16–13 Database Manager Subcommands .. 334
TABLE 16–14 Database Manager Options .. 335
TABLE 16–15 User Manager Subcommands .. 336
TABLE 16–16 General User Manager Options ... 337
TABLE 16–17 Bridge Manager Subcommands for Bridge Management 338
TABLE 16–18 Bridge Manager Subcommands for Link Management 338
TABLE 16–19 Bridge Manager Options .. 339
TABLE 16–20 Service Administrator Subcommands .. 340
TABLE 16–21 Service Administrator Options .. 340
TABLE 17–1 Broker Connection Properties ... 344
TABLE 17–2 Broker Routing and Delivery Properties .. 346
TABLE 17–3 Broker Properties for Auto-Created Destinations .. 348
TABLE 17–4 Broker Properties for Admin-Created Destinations ... 352
TABLE 17–5 Global Broker Persistence Property .. 352
TABLE 17–6 Broker Properties for File-Based Persistence ... 353
TABLE 17–7 Broker Properties for File-Based Persistence Using the Transaction Logging

Mechanism ... 354
TABLE 17–8 Broker Properties for JDBC-Based Persistence ... 356
TABLE 17–9 Broker Security Properties ... 359

Tables

Open Message Queue 4.5 Administration Guide • February 201118

TABLE 17–10 Broker Security Properties for LDAP Authentication .. 362
TABLE 17–11 Broker Security Properties for JAAS Authentication .. 364
TABLE 17–12 Broker Monitoring Properties ... 366
TABLE 17–13 Broker Properties for Cluster Configuration ... 370
TABLE 17–14 Broker Properties for the Bridge Service Manager .. 375
TABLE 17–15 Broker Properties for a JMS Bridge Service .. 375
TABLE 17–16 Broker Properties for the STOMP Bridge Service ... 376
TABLE 17–17 Broker Properties for JMX Support ... 377
TABLE 17–18 Alphabetical List of Broker Properties .. 379
TABLE 18–1 Physical Destination Properties ... 387
TABLE 19–1 Connection Factory Attributes for Connection Handling 394
TABLE 19–2 Message Broker Addressing Schemes ... 396
TABLE 19–3 Message Broker Address Examples ... 397
TABLE 19–4 Connection Factory Attributes for Client Identification 397
TABLE 19–5 Connection Factory Attributes for Reliability and Flow Control 398
TABLE 19–6 Connection Factory Attributes for Queue Browser and Server Sessions 400
TABLE 19–7 Connection Factory Attributes for Standard Message Properties 400
TABLE 19–8 Connection Factory Attributes for Message Header Overrides 401
TABLE 19–9 Destination Attributes .. 402
TABLE 20–1 Resource Adapter Properties ... 406
TABLE 20–2 Managed Connection Factory Properties ... 408
TABLE 20–3 ActivationSpec Properties .. 410
TABLE 21–1 JVM Metrics ... 418
TABLE 21–2 Brokerwide Metrics ... 418
TABLE 21–3 Connection Service Metrics ... 420
TABLE 21–4 Physical Destination Metrics ... 421
TABLE 22–1 JESMF Common Object Attributes .. 427
TABLE 22–2 JESMF-Accessible Message Queue Product Attributes 428
TABLE 22–3 JESMF-Accessible Message Queue Broker Attributes .. 428
TABLE 22–4 JESMF-Accessible Message Queue Port Mapper Attributes 429
TABLE 22–5 JESMF-Accessible Message Queue Connection Service Attributes 429
TABLE 22–6 JESMF-Accessible Message Queue Destination Attributes 430
TABLE 22–7 JESMF-Accessible Message Queue Persistent Store Attributes 431
TABLE 22–8 JESMF-Accessible Message Queue User Repository Attributes 432
TABLE A–1 Message Queue Data Locations for Installations from an IPS Image 435
TABLE A–2 Message Queue Data Locations for Installations from Solaris SVR4 Packages

Tables

19

.. 437
TABLE A–3 Message Queue Data Locations for Installations from Linux RPMs 438
TABLE B–1 Interface Stability Classification Scheme .. 441
TABLE B–2 Stability of Message Queue Interfaces ... 442
TABLE C–1 Distinguished Name Information Required for a Self-Signed Certificate 447
TABLE C–2 Broker Configuration Properties for the httpjms and httpsjmsConnection

Services ... 456
TABLE D–1 Advantages and Disadvantages of Using an RMI Registry 465
TABLE E–1 Broker Configuration Properties (-o option) ... 472
TABLE E–2 Destination Configuration Properties (-o option) ... 473

Tables

Open Message Queue 4.5 Administration Guide • February 201120

Examples

EXAMPLE 2–1 Output from Sample Application .. 65
EXAMPLE 3–1 Displaying Broker Service Startup Options ... 75
EXAMPLE 5–1 Broker Information Listing .. 93
EXAMPLE 5–2 Broker Metrics Listing .. 94
EXAMPLE 6–1 Connection Services Listing ... 101
EXAMPLE 6–2 Connection Service Information Listing .. 102
EXAMPLE 6–3 Connection Service Metrics Listing .. 103
EXAMPLE 6–4 Broker Connections Listing ... 104
EXAMPLE 6–5 Connection Information Listing ... 104
EXAMPLE 7–1 Wildcard Publisher ... 110
EXAMPLE 7–2 Wildcard Subscriber ... 111
EXAMPLE 7–3 Physical Destination Information Listing .. 116
EXAMPLE 7–4 Physical Destination Metrics Listing .. 118
EXAMPLE 7–5 Destination Disk Utilization Listing ... 119
EXAMPLE 7–6 Durable Subscription Information Listing ... 124
EXAMPLE 7–7 Broker Transactions Listing ... 125
EXAMPLE 7–8 Transaction Information Listing ... 125
EXAMPLE 8–1 Broker Properties for MySQL Database ... 132
EXAMPLE 8–2 Broker Properties for HADB Database ... 132
EXAMPLE 9–1 Viewing Information for a Single User ... 147
EXAMPLE 9–2 Viewing Information for All Users ... 147
EXAMPLE 9–3 Example 1 ... 157
EXAMPLE 9–4 Example 2 ... 157
EXAMPLE 9–5 Example 3 ... 157
EXAMPLE 9–6 Connection Services Listing ... 167
EXAMPLE 10–1 Configuration Listing for a Conventional Cluster .. 181
EXAMPLE 10–2 Configuration Listing for an Enhanced Cluster .. 182
EXAMPLE 11–1 Adding a Connection Factory .. 211

21

EXAMPLE 11–2 Adding a Destination to an LDAP Object Store .. 212
EXAMPLE 11–3 Adding a Destination to a File-System Object Store ... 212
EXAMPLE 11–4 Deleting an Administered Object .. 212
EXAMPLE 11–5 Listing All Administered Objects .. 213
EXAMPLE 11–6 Listing Administered Objects of a Specific Type ... 214
EXAMPLE 11–7 Viewing Administered Object Information ... 214
EXAMPLE 11–8 Modifying an Administered Object’s Attributes .. 215
EXAMPLE 11–9 Object Manager Command File Syntax .. 216
EXAMPLE 11–10 Example Command File ... 217
EXAMPLE 11–11 Partial Command File ... 217
EXAMPLE 11–12 Using a Partial Command File ... 217
EXAMPLE C–1 Tunnel Servlet Status Report .. 459
EXAMPLE D–1 JMX Service URL When Using an RMI Registry ... 466
EXAMPLE D–2 JMX Service URL When Not Using an RMI Registry ... 467
EXAMPLE D–3 JMX Configuration for Firewall When Not Using a RMI Registry 469
EXAMPLE D–4 JMX Configuration for Firewall When Using an RMI Registry 469

Examples

Open Message Queue 4.5 Administration Guide • February 201122

Preface

This Open Message Queue 4.5 Administration Guide provides background and information
needed by system administrators to set up and manage an Open Message Queue messaging
system.

This preface consists of the following sections:

■ “Who Should Use This Book” on page 23
■ “Before You Read This Book” on page 23
■ “How This Book Is Organized” on page 24
■ “Documentation Conventions” on page 26
■ “Related Documentation” on page 28
■ “Documentation, Support, and Training” on page 31
■ “Searching Oracle Product Documentation” on page 32
■ “Third-Party Web Site References” on page 32

Who Should Use This Book
This guide is intended for administrators and application developers who need to perform
Message Queue administrative tasks. A Message Queue administrator is responsible for setting
up and managing a Message Queue messaging system, especially the message broker at the
heart of the system.

Before You Read This Book
Before reading this guide, you should read the Open Message Queue 4.5 Technical Overview to
become familiar with the Message Queue implementation of the Java Message Service
specification, with the components of the Message Queue service, and with the basic process of
developing, deploying, and administering a Message Queue application.

23

How This Book Is Organized
Table P–1 describes the contents of this manual.

TABLE P–1 Book Contents

Chapter/Appendix Description

Part I, “Introduction to Message Queue Administration”

Chapter 1, “Administrative
Tasks and Tools”

Introduces Message Queue administrative tasks and tools.

Chapter 2, “Quick-Start
Tutorial”

Provides a hands-on tutorial to acquaint you with the Message Queue
Administration Console.

Part II, “Administrative Tasks”

Chapter 3, “Starting Brokers and
Clients”

Describes how to start the Message Queue broker and clients.

Chapter 4, “Configuring a
Broker”

Describes how configuration properties are set and read, and gives an
introduction to the configurable aspects of the broker.

Chapter 5, “Managing a Broker
”

Describes broker management tasks.

Chapter 6, “Configuring and
Managing Connection Services”

Describes configuration and management tasks relating to the broker's
connection services.

Chapter 7, “Managing Message
Delivery”

Describes how to create and manage physical destinations and manage
other aspects of message delivery.

Chapter 8, “Configuring
Persistence Services”

Describes how to set up a file-based or JDBC-based data store to perform
persistence services.

Chapter 9, “Configuring and
Managing Security Services”

Describes security-related tasks, such as managing password files,
authentication, authorization, and encryption.

Chapter 10, “Configuring and
Managing Broker Clusters”

Describes how to set up and manage a cluster of Message Queue brokers.

Chapter 11, “Managing
Administered Objects”

Describes the object store and shows how to perform tasks related to
administered objects (connection factories and destinations).

Chapter 12, “Configuring and
Managing Bridge Services”

Describes how to set up and manage The JMS and STOMP bridge services.

Chapter 13, “Monitoring Broker
Operations”

Describes how to set up and use Message Queue monitoring facilities.

Chapter 14, “Analyzing and
Tuning a Message Service”

Describes techniques for analyzing and optimizing message service
performance.

Preface

Open Message Queue 4.5 Administration Guide • February 201124

TABLE P–1 Book Contents (Continued)
Chapter/Appendix Description

Chapter 15, “Troubleshooting” Provides suggestions for determining the cause of common Message Queue
problems and the actions you can take to resolve them.

Part III, “Reference”

Chapter 16, “Command Line
Reference”

Provides syntax and descriptions for Message Queue command line utilities.

Chapter 17, “Broker Properties
Reference”

Describes the configuration properties of Message Queue message brokers.

Chapter 18, “Physical
Destination Property
Reference”

Describes the configuration properties of physical destinations.

Chapter 19, “Administered
Object Attribute Reference”

Describes the configuration properties of administered objects (connection
factories and destinations).

Chapter 20, “JMS Resource
Adapter Property Reference”

Describes the configuration properties of the Message Queue Resource
Adapter for use with an application server.

Chapter 21, “Metrics
Information Reference”

Describes the metric information that a Message Queue message broker can
provide for monitoring, turning, and diagnostic purposes. .

Chapter 22, “JES Monitoring
Framework Reference”

Lists Message Queue attributes that are accessible by means of the Java
Enterprise System Monitoring Framework (JESMF).

Part IV, “Appendixes”

Appendix A,
“Distribution-Specific Locations
of Message Queue Data”

Lists the locations of Message Queue files on each supported platform.

Appendix B, “Stability of
Message Queue Interfaces”

Describes the stability of various Message Queue interfaces.

Appendix C, “HTTP/HTTPS
Support”

Describes how to set up and use the Hypertext Transfer Protocol (HTTP)
for Message Queue communication.

Appendix D, “JMX Support” Describes Message Queue’s administrative support for client programs
using the Java Management Extensions (JMX) application programming
interface

Appendix E, “Frequently Used
Command Utility Commands”

Lists some frequently used Message Queue Command utility (imqcmd)
commands.

Preface

25

Documentation Conventions
This section describes the following conventions used in Message Queue documentation:

■ “Typographic Conventions” on page 26
■ “Symbol Conventions” on page 26
■ “Shell Prompt Conventions” on page 27
■ “Directory Variable Conventions” on page 27

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear bold
online.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

Preface

Open Message Queue 4.5 Administration Guide • February 201126

TABLE P–3 Symbol Conventions (Continued)
Symbol Description Example Meaning

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for the
default UNIX system prompt and superuser prompt for the C shell, Bourne shell, Korn shell,
and for the Windows operating system.

TABLE P–4 Shell Prompt Conventions

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which represent
environment variables needed by Message Queue. (How you set the environment variables
varies from platform to platform.)

The following table describes the directory variables that might be found in this book and how
they are used. When installed from the IPS (pkg(5)) image distribution, Message Queue is

Preface

27

installed in a directory referred to as mqInstallHome, and some of the directory variables in
Table P–5 reference this mqInstallHome directory.

Note – In this book, directory variables are shown without platform-specific environment
variable notation or syntax (such as $IMQ_HOME on UNIX). Non-platform-specific path names
use UNIX directory separator (/) notation.

TABLE P–5 Directory Variable Conventions

Variable Description

IMQ_HOME Message Queue home directory, if any:
■ For installations from the IPS image distribution on any platform, IMQ_HOME denotes the

directory mqInstallHome/mq, where mqInstallHome is specified when you install
Message Queue.

■ For installations from Solaris SVR4 packages, IMQ_HOME is unused.

■ For installations from Linux RPM packages, IMQ_HOME is unused.

IMQ_VARHOME Directory in which Message Queue temporary or dynamically created configuration and
data files are stored; IMQ_VARHOME can be explicitly set as an environment variable to point to
any directory or will default as described below:
■ For installations from the IPS image distribution on any platform, IMQ_VARHOME defaults

to mqInstallHome/var/mq.

■ For installations from Solaris SVR4 packages, IMQ_VARHOME defaults to /var/imq.

■ For installations from Linux RPM packages, IMQ_VARHOME defaults to /var/opt/sun/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime environment (JRE)
required by Message Queue executable files:
■ On Solaris, Linux and Windows, Message Queue looks for the latest JDK, but you can

optionally set the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

■ On AIX, IMQ_JAVAHOME is set to point to an existing Java runtime when you perform
Message Queue installation.

Related Documentation
The information resources listed in this section provide further information about Message
Queue in addition to that contained in this manual. The section covers the following resources:

■ “Message Queue Documentation Set” on page 29
■ “Java Message Service (JMS) Specification” on page 29
■ “JavaDoc” on page 30
■ “Example Client Applications” on page 30
■ “Online Help” on page 31

Preface

Open Message Queue 4.5 Administration Guide • February 201128

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the following
table in the order in which you might normally use them. These documents are available
through the Open Server documentation web site at

http://docs.sun.com/coll/1343.13

TABLE P–6 Message Queue Documentation Set

Document Audience Description

Open Message Queue 4.5 Technical
Overview

Developers and
administrators

Describes Message Queue concepts, features,
and components.

Open Message Queue 4.5 Release
Notes

Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes.

Open Message Queue 4.5
Administration Guide

Administrators, also
recommended for
developers

Provides background and information needed
to perform administration tasks using Message
Queue administration tools.

Open Message Queue 4.5
Developer’s Guide for Java Clients

Developers Provides a quick-start tutorial and
programming information for developers of
Java client programs using the Message Queue
implementation of the JMS or SOAP/JAXM
APIs.

Open Message Queue 4.5
Developer’s Guide for C Clients

Developers Provides programming and reference
documentation for developers of C client
programs using the Message Queue C
implementation of the JMS API (C-API).

Open Message Queue 4.5
Developer’s Guide for JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS) application
programming interface, described in the Java Message Service Specification. This document can
be found at the URL

http://java.sun.com/products/jms/docs.html

Preface

29

http://docs.sun.com/coll/1343.13
http://java.sun.com/products/jms/docs.html

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in your Message
Queue installation at the locations shown in Table P–7, depending on your installation method.
This documentation can be viewed in any HTML browser. It includes standard JMS API
documentation as well as Message Queue–specific APIs.

TABLE P–7 JavaDoc Locations

Installation Method Location

IPS image IMQ_HOME/javadoc/index.html
1

Solaris SVR4 packages /usr/share/javadoc/imq/index.html

Linux RPM packages /opt/sun/mq/javadoc/index.html

1
IMQ_HOME is the Message Queue home directory.

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are located in the following directories, depending on
installation method. See the README files located in these directories and their subdirectories for
descriptive information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples
1

Solaris SVR4 packages /usr/demo/imq

Linux RPM packages /opt/sun/mq/examples

1
IMQ_HOME is the Message Queue home directory.

Example C Client Programs
Example C client applications are located in the following directories, depending on installation
method. See the README files located in these directories and their subdirectories for descriptive
information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples/C
1

1
IMQ_HOME is the Message Queue home directory.

Preface

Open Message Queue 4.5 Administration Guide • February 201130

Installation Method Location

Solaris SVR4 packages /opt/SUNWimq/demo/C

Linux RPM packages /opt/sun/mq/examples/C

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are located in the following
directories, depending on installation method. See the README files located in these directories
and their subdirectories for descriptive information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples/jmx
1

Solaris SVR4 packages /opt/SUNWimq/demo/imq/jmx

Linux RPM packages /opt/sun/mq/examples/jmx

1
IMQ_HOME is the Message Queue home directory.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
Chapter 16, “Command Line Reference” for details. The Message Queue graphical user
interface (GUI) administration tool, the Administration Console, also includes a
context-sensitive help facility; see the section “Administration Console Online Help” in
Chapter 2, “Quick-Start Tutorial”.

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.sun.com/)
■ Support (http://www.sun.com/support/)
■ Training (http://education.oracle.com/pls/web_prod-plq-dad/

db_pages.getpage?page_id=315)

Preface

31

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the docs.sun.com web site, you can use
a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Oracle web sites in your search (for example, java.sun.com and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Third-Party Web Site References
Where relevant, this manual refers to third-party URLs that provide additional, related
information.

Note – Oracle is not responsible for the availability of third-party Web sites mentioned in this
manual. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials available on or through such sites or resources. Oracle will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with the use of or reliance on any such content, goods, or services available on or
through such sites or resources.

Preface

Open Message Queue 4.5 Administration Guide • February 201132

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/index.html

Introduction to Message Queue
Administration
■ Chapter 1, “Administrative Tasks and Tools”
■ Chapter 2, “Quick-Start Tutorial”

P A R T I

33

34

Administrative Tasks and Tools

This chapter provides an overview of Open Message Queue administrative tasks and the tools
for performing them, focusing on common features of the command line administration
utilities. It consists of the following sections:

■ “Administrative Tasks” on page 35
■ “Administration Tools” on page 38

Administrative Tasks
The typical administrative tasks to be performed depend on the nature of the environment in
which you are running Message Queue. The demands of a software development environment
in which Message Queue applications are being developed and tested are different from those of
a production environment in which such applications are deployed to accomplish useful work.
The following sections summarize the typical administrative requirements of these two
different types of environment.

Administration in a Development Environment
In a development environment, the emphasis is on flexibility. The Message Queue message
service is needed principally for testing applications under development. Administration is
generally minimal, with programmers often administering their own systems. Such
environments are typically distinguished by the following characteristics:

■ Simple startup of brokers for use in testing
■ Administered objects instantiated in client code rather than created administratively
■ Auto-created destinations
■ File-system object store
■ File-based persistence

1C H A P T E R 1

35

■ File-based user repository
■ No master broker in multiple-broker clusters

Administration in a Production Environment
In a production environment in which applications must be reliably deployed and run,
administration is more important. Administrative tasks to be performed depend on the
complexity of the messaging system and of the applications it must support. Such tasks can be
classified into two general categories: setup operations and maintenance operations.

Setup Operations
Administrative setup operations in a production environment typically include some or all of
the following:

Administrator security

■ Setting the password for the default administrative user (admin) (“Changing a User’s
Password” on page 145)

■ Controlling individual or group access to the administrative connection service
(“Authorization Rules for Connection Services” on page 159) and the dead message queue
(“Authorization Rules for Physical Destinations” on page 160)

■ Regulating administrative group access to a file-based or Lightweight Directory Access
Protocol (LDAP) user repository (“User Groups and Status” on page 141, “Using an LDAP
User Repository” on page 147)

General security

■ Managing the contents of a file-based user repository (“Using the User Manager Utility” on
page 143) or configuring the broker to use an existing LDAP user repository (“Using an
LDAP User Repository” on page 147)

■ Controlling the operations that individual users or groups are authorized to perform (“User
Authorization” on page 155)

■ Setting up encryption services using the Secure Socket Layer (SSL) (“Message Encryption”
on page 161)

Administered objects

■ Setting up and configuring an LDAP object store (“LDAP Server Object Stores” on
page 199)

■ Creating connection factories and destinations (“Adding Administered Objects” on
page 210)

Broker clusters

Administrative Tasks

Open Message Queue 4.5 Administration Guide • February 201136

■ Creating a cluster configuration file (“The Cluster Configuration File” on page 176)
■ Designating a master broker (“Managing a Conventional Cluster's Configuration Change

Record” on page 188)

Persistence

■ Configuring a broker to use a persistent store (Chapter 8, “Configuring Persistence
Services”).

Memory management

■ Setting a destination’s configuration properties to optimize its memory usage (“Updating
Physical Destination Properties” on page 114, Chapter 18, “Physical Destination Property
Reference”)

Maintenance Operations
Because application performance, reliability, and security are at a premium in production
environments, message service resources must be tightly monitored and controlled through
ongoing administrative maintenance operations, including the following:

Broker administration and tuning

■ Using broker metrics to tune and reconfigure a broker (Chapter 14, “Analyzing and Tuning
a Message Service”)

■ Managing broker memory resources (“Managing Broker System-Wide Memory” on
page 121)

■ Creating and managing broker clusters to balance message load (Chapter 10, “Configuring
and Managing Broker Clusters”)

■ Recovering failed brokers (“Starting Brokers” on page 70).

Administered objects

■ Adjusting connection factory attributes to ensure the correct behavior of client applications
(“Connection Factory Attributes” on page 202)

■ Monitoring and managing physical destinations (“Configuring and Managing Physical
Destinations” on page 107)

■ Controlling user access to destinations (“Authorization Rules for Physical Destinations” on
page 160)

Client management

■ Monitoring and managing durable subscriptions (see “Managing Durable Subscriptions”
on page 123).

■ Monitoring and managing transactions (see “Managing Transactions” on page 124).

Administrative Tasks

Chapter 1 • Administrative Tasks and Tools 37

Administration Tools
This section describes the tools you use to configure and manageMessage Queue broker
services. The tools fall into two categories:
■ “Built-in Administration Tools” on page 38
■ “JMX-Based Administration” on page 40

Built-in Administration Tools
Message Queue's built-in administration tools include both command line and GUI tools:
■ “Command Line Utilities” on page 38
■ “Administration Console” on page 39

Command Line Utilities
All Message Queue utilities are accessible via a command line interface. Utility commands share
common formats, syntax conventions, and options. These utilities allow you to perform various
administrative tasks, as noted below, and therefore can require different administrative
permissions:
■ The Broker utility (imqbrokerd) starts up brokers and specifies their configuration

properties, including connecting them together into a cluster. Permissions: User account
that initially started the broker.

■ The Command utility (imqcmd) controls brokers and their resources and manages physical
destinations. Permissions: Message Queue admin user account.

■ The Object Manager utility (imqobjmgr) manages provider-independent administered
objects in an object store accessible via the Java Naming and Directory Interface (JNDI).
Permissions: Object store (flat-file or LDAP server) access account.

■ The Database Manager utility (imqdbmgr) creates and manages databases for persistent
storage that conform to the Java Database Connectivity (JDBC) standard. Permissions:
JDBC database manager account.

■ The User Manager utility (imqusermgr) populates a file-based user repository for user
authentication and authorization. Permissions: user account that initially started the broker.

■ The Service Administrator utility (imqsvcadmin) installs and manages a broker as a
Windows service. Permissions: Administrator.

■ The Key Tool utility (imqkeytool) generates self-signed certificates for Secure Socket Layer
(SSL) authentication. Permissions: root user (Solaris and Linux platforms) or Administrator
(Windows platform).

The executable files for the above command line utilities are in the /bin directory shown in
Appendix A, “Distribution-Specific Locations of Message Queue Data.”

Administration Tools

Open Message Queue 4.5 Administration Guide • February 201138

See Chapter 16, “Command Line Reference,” for detailed information on the use of these
utilities.

Administration Console
The Message Queue Administration Console combines some of the capabilities of the
Command and Object Manager utilities. You can use it to perform the following tasks:

■ Connect to and control a broker remotely
■ Create and manage physical destinations
■ Create and manage administered objects in a JNDI object store

However, you cannot use the Administration Console to perform such tasks as starting up a
broker, creating broker clusters, managing a JDBC database or a user repository, installing a
broker as a Windows service, or generating SSL certificates. For these, you need the other
command line utilities (Broker, Database Manager, User Manager, Service Administrator, and
Key Tool), which cannot operate remotely and must be run on the same host as the broker they
manage (see Figure 1–1).

See Chapter 2, “Quick-Start Tutorial,” for a brief, hands-on introduction to the Administration
Console. More detailed information on its use is available through its own help facility.

FIGURE 1–1 Local and Remote Administration Utilities

Broker Host

Remote
Admin Host

Administration
Console

imqcmd

Broker

(Windows only)

imqobjmgr
imqbrokerd

imqusermgr

imqsvcadmin

imqkeytool

imqdbmgr

Administration Tools

Chapter 1 • Administrative Tasks and Tools 39

JMX-Based Administration
To serve customers who need a standard programmatic means to monitor and access the
broker, Message Queue also supports the Java Management Extensions (JMX) architecture,
which allows a Java application to manage broker resources programmatically.

■ Resources include everything that you can manipulate using the Command utility (imqcmd)
and the Message Queue Admin Console: the broker, connection services, connections,
destinations, durable subscribers, transactions, and so on.

■ Management includes the ability to dynamically configure and monitor resources, and the
ability to obtain notifications about state changes and error conditions.

JMX is the Java standard for building management applications. Message Queue is based on the
JMX 1.2 specification, which is part of JDK 1.5.

For information on the broker's JMX infrastructure and how to configure the broker to support
JMX client applications,, see Appendix D, “JMX Support.”

To manage a Message Queue broker using the JMX architecture, see Open Message Queue 4.5
Developer’s Guide for JMX Clients.

Administration Tools

Open Message Queue 4.5 Administration Guide • February 201140

Quick-Start Tutorial

This quick-start tutorial provides a brief introduction to Message Queue administration by
guiding you through some basic administrative tasks using the Message Queue Administration
Console, a graphical interface for administering a message broker and object store. The chapter
consists of the following sections:

■ “Starting the Administration Console” on page 42
■ “Administration Console Online Help” on page 44
■ “Working With Brokers” on page 45
■ “Working With Physical Destinations” on page 50
■ “Working With Object Stores” on page 55
■ “Working With Administered Objects” on page 58
■ “Running the Sample Application” on page 63

The tutorial sets up the physical destinations and administered objects needed to run a simple
JMS-compliant application, HelloWorldMessageJNDI. The application is available in the
helloworld subdirectory of the example applications directory (demo on the Solaris and
Windows platforms or examples on Linux; see Appendix A, “Distribution-Specific Locations of
Message Queue Data”). In the last part of the tutorial, you will run this application.

Note – You must have the Message Queue product installed in order to follow the tutorial.

The tutorial is only a basic introduction; it is not a substitute for reading the documentation. By
following the steps described in the tutorial, you will learn how to

■ Start a Message Queue broker
■ Connect to a broker and use the Administration Console to manage it
■ Create physical destinations on the broker
■ Create an object store and use the Administration Console to connect to it
■ Add administered objects to the object store and view their properties

2C H A P T E R 2

41

Note – The instructions given in this tutorial are specific to the Windows platform. Where
necessary, supplemental notes are added for users of other platforms.

Some administrative tasks cannot be accomplished using the Administration Console. You
must use command line utilities to perform such tasks as the following:

■ Start up a broker
■ Create a broker cluster
■ Configure certain physical destination properties
■ Manage a JDBC database for persistent storage
■ Manage a user repository
■ Install a broker as a Windows service
■ Generate SSL certificates

All of these tasks are covered in later chapters of this manual.

Starting the Administration Console
To start the Administration Console, use one of the following methods, depending on how
Message Queue was installed:

■ On IPS package-based installations, enter the command

IMQ_HOME/bin/imqadmin

■ On Solaris SVR4 package-based installations, enter the command

/usr/bin/imqadmin

■ On Linux RPM package-based installations, enter the command

/opt/sun/mq/bin/imqadmin

You may need to wait a few seconds before the Administration Console window is displayed
(see Figure 2–1).

Starting the Administration Console

Open Message Queue 4.5 Administration Guide • February 201142

Take a few seconds to examine the Administration Console window. It has a menu bar at the
top, a tool bar just below it, a navigation pane to the left, a result pane to the right (now
displaying graphics identifying the Open Message Queue product), and a status pane at the
bottom.

Note – As you work with the Administration Console, you can use the Refresh command on the
View menu to update the visual display of any element or group of elements, such as a list of
brokers or object stores.

FIGURE 2–1 Administration Console Window

Starting the Administration Console

Chapter 2 • Quick-Start Tutorial 43

Administration Console Online Help
The Administration Console provides a help facility containing complete information about
how to use the Console to perform administrative tasks. To use the help facility, pull down the
Help menu at the right end of the menu bar and choose Overview. The Administration
Console’s Help window (Figure 2–2) will be displayed.

The Help window’s navigation pane, on the left, organizes topics into three areas: Message
Queue Administration Console, Message Queue Object Store Management, and Message
Queue Broker Management. Within each area are files and folders. The folders provide help for
dialog boxes containing multiple tabs, the files for simple dialog boxes or individual tabs. When
you select an item in the navigation pane, the result pane to the right shows the contents of that
item. With the Overview item chosen, the result pane displays a skeletal view of the
Administration Console window identifying each of the window’s panes, as shown in the figure.

Your first task with the Administration Console will be to create a reference to a broker. Before
you start, however, check the Help window for information. Click the Add Broker item in the
Help window’s navigation pane; the contents of the result pane will change to show text
explaining what it means to add a broker and describing the use of each field in the Add Broker
dialog box. Read through the help text, then close the Help window.

FIGURE 2–2 Administration Console Help Window

Administration Console Online Help

Open Message Queue 4.5 Administration Guide • February 201144

Working With Brokers
This section describes how to use the Administration Console to connect to and manage
message brokers.

Starting a Broker
You cannot start a broker using the Administration Console. Instead, use one of the following
methods, depending on how Message Queue was installed:

■ On IPS package-based installations, enter the command

IMQ_HOME/bin/imqbrokerd

■ On Solaris SVR4 package-based installations, enter the command

/usr/bin/imqbrokerd

■ On Linux RPM package-based installations, enter the command

/opt/sun/mq/bin/imqbrokerd

If you used the Windows Start menu, the command window will appear, indicating that the
broker is ready by displaying lines like the following:

Loading persistent data...

Broker “imqbroker@stan:7676 ready.

Reactivate the Administration Console window. You are now ready to add the broker to the
Console and connect to it. You do not have to start the broker before adding a reference to it in
the Administration Console, but you must start it before you can connect to it.

Adding a Broker to the Administration Console
Adding a broker creates a reference to that broker in the Administration Console. After adding
the broker, you can connect to it.

▼ To Add a Broker to the Administration Console

Click on the Brokers item in the Administration Console window’s navigation pane and choose
Add Broker from the Actions menu.
Alternatively, you can right-click on Brokers and choose Add Broker from the pop-up context
menu. In either case, the Add Broker dialog box (Figure 2–3) will appear.

1

Working With Brokers

Chapter 2 • Quick-Start Tutorial 45

Enter a name for the broker in the Broker Label field.

This provides a label that identifies the broker in the Administration Console.

Note the default host name (localhost) and primary port (7676) specified in the dialog box.
These are the values you must specify later, when you configure the connection factory that the
client will use to create connections to this broker.

For this exercise, type the name MyBroker into the Broker Label field. Leave the Password field
blank; your password will be more secure if you specify it at connection time.

Click OK to add the broker and dismiss the dialog box.

The new broker will appear under Brokers in the navigation pane, as shown in Figure 2–4. The
red X over the broker’s icon indicates that it is not currently connected to the Administration
Console.

FIGURE 2–3 Add Broker Dialog Box

2

3

Working With Brokers

Open Message Queue 4.5 Administration Guide • February 201146

Once you have added a broker, you can use the Properties command on the Actions menu (or
the pop-up context menu) to display a Broker Properties dialog box, similar to the Add Broker
dialog shown in “Adding a Broker to the Administration Console” on page 45, to view or
modify any of its properties.

Connecting to a Broker
Now that you have added a broker to the Administration Console, you can proceed to connect
to it.

▼ To Connect to a Broker

Click on the broker’s name in the Administration Console window’s navigation pane and choose
Connect to Broker from the Actions menu.

Alternatively, you can right-click on the broker’s name and choose Connect to Broker from the
pop-up context menu. In either case, the Connect to Broker dialog box (Figure 2–5) will
appear.

FIGURE 2–4 Broker Displayed in Administration Console Window

1

Working With Brokers

Chapter 2 • Quick-Start Tutorial 47

Enter the user name and password with which to connect to the broker.
The dialog box initially displays the default user name, admin . In a real-world environment, you
should establish secure user names and passwords as soon as possible (see “User
Authentication” on page 141); for this exercise, simply use the default value.

The password associated with the default user name is also admin; type it into the Password field
in the dialog box. This will connect you to the broker with administrative privileges.

Click OK to connect to the broker and dismiss the dialog box.
Once you have connected to the broker, you can use the commands on the Actions menu (or
the context menu) to perform the following operations on a selected broker:

■ Pause Broker temporarily suspends the operation of a running broker.
■ Resume Broker resumes the operation of a paused broker.
■ Restart Broker reinitializes and restarts a broker.
■ Shut Down Broker terminates the operation of a broker.
■ Query/Update Broker displays or modifies a broker’s configuration properties.
■ Disconnect from Broker terminates the connection between a broker and the

Administration Console.

Viewing Connection Services
A broker is distinguished by the connection services it provides and the physical destinations it
supports.

▼ To View Available Connection Services

Select Services under the broker’s name in the Administration Console window’s navigation
pane.
A list of the available services will appear in the result pane (see Figure 2–6), showing the name,
port number, and current state of each service.

FIGURE 2–5 Connect to Broker Dialog Box

2

3

1

Working With Brokers

Open Message Queue 4.5 Administration Guide • February 201148

Select a service by clicking on its name in the result pane.

For this exercise, select the name jms.

Choose Properties from the Actions menu.

The Service Properties dialog box (Figure 2–7) will appear. You can use this dialog box to assign
the service a static port number and to change the minimum and maximum number of threads
allocated for it.

For this exercise, do not change any of the connection service’s properties.

Click OK to accept the new property values and dismiss the dialog box.

The Actions menu also contains commands for pausing and resuming a service. If you select the
admin service and pull down the Actions menu, however, you will see that the Pause Service
command is disabled. This is because the admin service is the Administration Console’s link to
the broker: if you paused it, you would no longer be able to access the broker.

FIGURE 2–6 Viewing Connection Services

FIGURE 2–7 Service Properties Dialog Box

2

3

4

Working With Brokers

Chapter 2 • Quick-Start Tutorial 49

Working With Physical Destinations
A physical destination is a location on a message broker where messages received from a
message producer are held for later delivery to one or more message consumers. Destinations
are of two kinds, depending on the messaging domain in use: queues (point-to-point domain)
and topics (publish/subscribe domain). See the Message Queue Technical Overview for further
discussion of messaging domains and the destinations associated with them.

Creating a Physical Destination
By default, message brokers are configured to create new physical destinations automatically
whenever a message producer or consumer attempts to access a nonexistent destination. Such
auto-created destinations are convenient to use while testing client code in a software
development environment. In a production setting, however, it is advisable to disable the
automatic creation of destinations and instead require all destinations to be created explicitly by
an administrator. The following procedure shows how to add such an admin-created
destination to a broker.

▼ To Add a Physical Destination to a Broker

Click on the Destinations item under the broker’s name in the Administration Console window’s
navigation pane and choose Add Broker Destination from the Actions menu.

Alternatively, you can right-click on Destinations and choose Add Broker Destination from the
pop-up context menu. In either case, the Add Broker Destination dialog box (Figure 2–8) will
appear.

1

Working With Physical Destinations

Open Message Queue 4.5 Administration Guide • February 201150

Enter a name for the physical destination in the Destination Name field.

Note the name that you assign to the destination; you will need it later when you create an
administered object corresponding to this physical destination.

For this exercise, type in the name MyQueueDest.

Select the Queue or Topic radio button to specify the type of destination to create.

For this exercise, select Queue if it is not already selected.

Click OK to add the physical destination and dismiss the dialog box.

The new destination will appear in the result pane.

Viewing Physical Destination Properties
You can use the Properties command on the Administration Console’s Actions menu to view or
modify the properties of a physical destination.

FIGURE 2–8 Add Broker Destination Dialog Box

2

3

4

Working With Physical Destinations

Chapter 2 • Quick-Start Tutorial 51

▼ To View or Modify the Properties of a Physical Destination

Select Destinations under the broker’s name in the Administration Console window’s
navigation pane.

A list of the available physical destinations will appear in the result pane, showing the name,
type, and current state of each destination.

Select a physical destination by clicking on its name in the result pane.

Choose Properties from the Actions menu.

The Broker Destination Properties dialog box (Figure 2–9) will appear, showing current status
and configuration information about the selected physical destination. You can use this dialog
box to change various configuration properties, such as the maximum number of messages,
producers, and consumers that the destination can accommodate.

1

2

3

Working With Physical Destinations

Open Message Queue 4.5 Administration Guide • February 201152

For this exercise, do not change any of the destination’s properties.

For topic destinations, the Broker Destination Properties dialog box contains an additional tab,
Durable Subscriptions. Clicking on this tab displays the Durable Subscriptions panel
(Figure 2–10), listing information about all durable subscriptions currently associated with the
given topic.

FIGURE 2–9 Broker Destination Properties Dialog Box

Working With Physical Destinations

Chapter 2 • Quick-Start Tutorial 53

You can use the Durable Subscriptions panel’s Purge and Delete buttons to
■ Purge all pending messages associated with a durable subscription
■ Remove a durable subscription from the topic

The Durable Subscriptions tab is disabled for queue destinations.

Click OK to accept the new property values and dismiss the dialog box.

Purging Messages From a Physical Destination
Purging messages from a physical destination removes all pending messages associated with the
destination, leaving the destination empty.

▼ To Purge Messages From a Physical Destination

Select Destinations under the broker’s name in the Administration Console window’s
navigation pane.
A list of the available physical destinations will appear in the result pane, showing the name,
type, and current state of each destination.

Select a destination by clicking on its name in the result pane.

Choose Purge Messages from the Actions menu.
A confirmation dialog box will appear, asking you to confirm that you wish to proceed with the
operation.

Click Yes to confirm the operation and dismiss the confirmation dialog.

Deleting a Physical Destination
Deleting a destination purges all of its messages and then destroys the destination itself,
removing it permanently from the broker to which it belongs.

FIGURE 2–10 Durable Subscriptions Panel

4

1

2

3

4

Working With Physical Destinations

Open Message Queue 4.5 Administration Guide • February 201154

▼ To Delete a Physical Destination

Select Destinations under the broker’s name in the Administration Console window’s
navigation pane.

A list of the available destinations will appear in the result pane, showing the name, type, and
current state of each destination.

Select a destination by clicking on its name in the result pane.

Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to proceed with the
operation.

Click Yes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the destination MyQueueDest that you created earlier; instead,
click No to dismiss the confirmation dialog without performing the delete operation.

Working With Object Stores
An object store is used to store Message Queue administered objects, which encapsulate
implementation and configuration information specific to a particular Message Queue
provider. An object store can be either a Lightweight Directory Access Protocol (LDAP)
directory server or a directory in the local file system.

Although it is possible to instantiate and configure administered objects directly from within a
client application’s code, it is generally preferable to have an administrator create and configure
these objects and store them in an object store, where client applications can access them using
the Java Naming and Directory Interface (JNDI). This allows the client code itself to remain
provider-independent.

Adding an Object Store
Although the Administration Console allows you to manage an object store, you cannot use it
to create one; the LDAP server or file-system directory that will serve as the object store must
already exist ahead of time. You can then add this existing object store to the Administration
Console, creating a reference to it that you can use to operate on it from within the Console.

1

2

3

4

Working With Object Stores

Chapter 2 • Quick-Start Tutorial 55

Note – The sample application used in this chapter assumes that the object store is held in a
directory named Temp on the C drive. If you do not already have a folder named Temp on your C
drive, create one before proceeding with the following exercise. (On non-Windows platforms,
you can use the /tmp directory, which should already exist.)

▼ To Add an Object Store to the Administration Console

Click on the Object Stores item in the Administration Console window’s navigation pane and
choose Add Object Store from the Actions menu.

Alternatively, you can right-click on Object Stores and choose Add Object Store from the
pop-up context menu. In either case, the Add Object Store dialog box (Figure 2–11) will appear.

Enter a name for the object store in the Object Store Label field.

This provides a label that identifies the object store in the Administration Console.

For this exercise, type in the name MyObjectStore.

Enter the JNDI attribute values to be used for looking up administered objects:

a. Select the name of the attribute you wish to specify from the Name pull-down menu.

b. Type the value of the attribute into the Value field.

FIGURE 2–11 Add Object Store Dialog Box

1

2

3

Working With Object Stores

Open Message Queue 4.5 Administration Guide • February 201156

c. Click the Add button to add the specified attribute value.

The property and its value will appear in the property summary pane.

Repeat steps “Adding an Object Store” on page 55 to “Adding an Object Store” on page 55
for as many attributes as you need to set.

For this exercise, set the java.naming.factory.initial attribute to

com.sun.jndi.fscontext.RefFSContextFactory

and the java.naming.provider.url attribute to

file:///C:/Temp

(or file:///tmp on the Solaris or Linux platforms). These are the only attributes you need
to set for a file-system object store; see “LDAP Server Object Stores” on page 199 for
information on the attribute values needed for an LDAP store.

Click OK to add the object store and dismiss the dialog box.

The new object store will appear under Object Stores in the navigation pane, as shown in
Figure 2–12. The red X over the object store’s icon indicates that it is not currently connected to
the Administration Console.

When you click on the object store in the navigation pane, its contents are listed in the result
pane. Since you have not yet added any administered objects to the object store, the Count
column shows 0 for both destinations and connection factories.

Once you have added an object store, you can use the Properties command on the Actions
menu (or the pop-up context menu) to display an Object Store Properties dialog box, similar to
the Add Object Store dialog shown in Figure 2–11, to view or modify any of its properties.

FIGURE 2–12 Object Store Displayed in Administration Console Window

4

Working With Object Stores

Chapter 2 • Quick-Start Tutorial 57

Connecting to an Object Store
Now that you have added an object store to the Administration Console, you must connect to it
in order to add administered objects to it.

▼ To Connect to an Object Store

Click on the object store’s name in the Administration Console window’s navigation pane and
choose Connect to Object Store from the Actions menu.
Alternatively, you can right-click on the object store’s name and choose Connect to Object Store
from the pop-up context menu. In either case, the red X will disappear from the object store’s
icon, indicating that it is now connected to the Administration Console.

Working With Administered Objects
Once you have connected an object store to the Administration Console, you can proceed to
add administered objects (connection factories and destinations) to it. This section describes
how.

Note – The Administration Console displays only Message Queue administered objects. If an
object store contains a non–Message Queue object with the same lookup name as an
administered object that you want to add, you will receive an error when you attempt the add
operation.

Adding a Connection Factory
Connection factories are used by client applications to create connections to a broker. By
configuring a connection factory, you can control the properties of the connections it creates.

▼ To Add a Connection Factory to an Object Store

Make sure the object store is connected to the Administration Console (see “Connecting to an
Object Store”on page 58).

Click on the Connection Factories item under the object store’s name in the Administration
Console window’s navigation pane and choose Add Connection Factory Object from the Actions
menu.
Alternatively, you can right-click on Connection Factories and choose Add Connection Factory
Object from the pop-up context menu. In either case, the Add Connection Factory Object
dialog box (Figure 2–13) will appear.

●

1

2

Working With Administered Objects

Open Message Queue 4.5 Administration Guide • February 201158

Enter a name for the connection factory in the Lookup Name field.
This is the name that client applications will use when looking up the connection factory with
JNDI.

For this exercise, type in the name MyQueueConnectionFactory .

Choose the type of connection factory you wish to create from the Factory Type pull-down
menu.
For this exercise, choose QueueConnectionFactory.

Click the Connection Handling tab.
The Connection Handling panel will appear, as shown in Figure 2–13.

Fill in the Message Server Address List field with the address(es) of the broker(s) to which this
connection factory will create connections.
The address list may consist of a single broker or (in the case of a broker cluster) multiple
brokers. For each broker, it specifies information such as the broker’s connection service, host
name, and port number. The exact nature and syntax of the information to be specified varies,
depending on the connection service to be used; see “Connection Handling” on page 393 for
specifics.

For this exercise, there is no need to type anything into the Message Server Address List field,
since the sample application HelloWorldMessageJNDI expects the connection factory to use the

FIGURE 2–13 Add Connection Factory Object Dialog Box

3

4

5

6

Working With Administered Objects

Chapter 2 • Quick-Start Tutorial 59

standard address list attributes to which it is automatically configured by default (connection
service jms , host name localhost, and port number 7676).

Configure any other attributes of the connection factory as needed.

The Add Connection Factory Object dialog box contains a number of other panels besides
Connection Handling, which can be used to configure various attributes for a connection
factory.

For this exercise, do not change any of the other attribute settings. You may find it instructive,
however, to click through the other tabs to get an idea of the kinds of configuration information
that can be specified. Use the Help button to learn more about the contents of these other
configuration panels.

If appropriate, click the Read-Only checkbox.

This locks the connection factory object’s configuration attributes to the values they were given
at creation time. A read-only administered object’s attributes cannot be overridden, whether
programmatically from client code or administratively from the command line.

For this exercise, do not check Read-Only.

Click OK to create the connection factory, add it to the object store, and dismiss the dialog box.

The new connection factory will appear in the result pane.

Adding a Destination
A destination administered object represents a physical destination on a broker, enabling clients
to send messages to that physical destination independently of provider-specific configurations
and naming syntax. When a client sends a message addressed via the administered object, the
broker will deliver the message to the corresponding physical destination, if it exists. If no such
physical destination exists, the broker will create one automatically if auto-creation is enabled,
as described under “Creating a Physical Destination” on page 50, and deliver the message to it;
otherwise, it will generate an error signaling that the message cannot be delivered.

The following procedure describes how to add a destination administered object to the object
store corresponding to an existing physical destination.

▼ To Add a Destination to an Object Store

Make sure the object store is connected to the Administration Console (see “Connecting to an
Object Store”on page 58).

7

8

9

1

Working With Administered Objects

Open Message Queue 4.5 Administration Guide • February 201160

Click on the Destinations item under the object store’s name in the Administration Console
window’s navigation pane and choose Add Destination Object from the Actions menu.

Alternatively, you can right-click on Destinations and choose Add Destination Object from the
pop-up context menu. In either case, the Add Destination Object dialog box (Figure 2–14) will
appear.

Enter a name for the destination administered object in the Lookup Name field.

This is the name that client applications will use when looking up the destination with JNDI.

For this exercise, type in the name MyQueue.

Select the Queue or Topic radio button to specify the type of destination object to create.

For this exercise, select Queue if it is not already selected.

Enter the name of the corresponding physical destination in the Destination Name field.

This is the name you specified when you added the physical destination to the broker (see
“Working With Physical Destinations” on page 50).

For this exercise, type in the name MyQueueDest.

Optionally, enter a brief description of the destination in the Destination Description field.

The contents of this field are intended strictly for human consumption and have no effect on
client operations.

For this exercise, you can either delete the contents of the Destination Description field or type
in some descriptive text such as

Example destination for MQ Admin Guide tutorial

FIGURE 2–14 Add Destination Object Dialog Box

2

3

4

5

6

Working With Administered Objects

Chapter 2 • Quick-Start Tutorial 61

If appropriate, click the Read-Only checkbox.
This locks the destination object’s configuration attributes to the values they were given at
creation time. A read-only administered object’s attributes cannot be overridden, whether
programmatically from client code or administratively from the command line.

For this exercise, do not check Read-Only.

Click OK to create the destination object, add it to the object store, and dismiss the dialog box.
The new destination object will appear in the result pane, as shown in Figure 2–15.

Viewing Administered Object Properties
You can use the Properties command on the Administration Console’s Actions menu to view or
modify the properties of an administered object.

▼ To View or Modify the Properties of an Administered Object

Select Connection Factories or Destinations under the object store’s name in the Administration
Console window’s navigation pane.
A list of the available connection factory or destination administered objects will appear in the
result pane, showing the lookup name and type of each (as well as the destination name in the
case of destination administered objects).

Select an administered object by clicking on its name in the result pane.

Choose Properties from the Actions menu.
The Connection Factory Object Properties or Destination Object Properties dialog box will
appear, similar to the Add Connection Factory Object (Figure 2–13) or Add Destination Object

FIGURE 2–15 Destination Object Displayed in Administration Console Window

7

8

1

2

3

Working With Administered Objects

Open Message Queue 4.5 Administration Guide • February 201162

(Figure 2–14) dialog. You can use this dialog box to change the selected object’s configuration
attributes. Note, however, that you cannot change the object’s lookup name; the only way to do
this is the delete the object and then add a new administered object with the desired lookup
name.

Click OK to accept the new attribute values and dismiss the dialog box.

Deleting an Administered Object
Deleting an administered object removes it permanently from the object store to which it
belongs.

▼ To Delete an Administered Object

Select Connection Factories or Destinations under the object store’s name in the Administration
Console window’s navigation pane.
A list of the available connection factory or destination administered objects will appear in the
result pane, showing the lookup name and type of each (as well as the destination name in the
case of destination administered objects).

Select an administered object by clicking on its name in the result pane.

Choose Delete from the Edit menu.
A confirmation dialog box will appear, asking you to confirm that you wish to proceed with the
operation.

Click Yes to confirm the operation and dismiss the confirmation dialog.
For this exercise, do not delete the administered objects MyQueue or
MyQueueConnectionFactory that you created earlier; instead, click No to dismiss the
confirmation dialog without performing the delete operation.

Running the Sample Application
The sample application HelloWorldMessageJNDI is provided for use with this tutorial. It uses
the physical destination and administered objects that you created:

■ A queue physical destination named MyQueueDest

■ A queue connection factory administered object with JNDI lookup name
MyQueueConnectionFactory

■ A queue administered object with JNDI lookup name MyQueue

4

1

2

3

4

Running the Sample Application

Chapter 2 • Quick-Start Tutorial 63

The code creates a simple queue sender and receiver, and sends and receives a Hello World
message.

Before running the application, open the source file HelloWorldMessageJNDI.java and read
through the code. The program is short and amply documented; you should have little trouble
understanding how it works.

▼ To Run the Sample Application
Make the directory containing the HelloWorldmessageJNDI application your current directory,
using one of the following commands, depending on how Message Queue was installed:

■ On IPS package-based installations:

cd IMQ_HOME/examples/helloworld/helloworldmessagejndi

■ On Solaris SVR4 package-based installations:

cd /usr/demo/imq/helloworld/helloworldmessagejndi

■ On Linux RPM package-based installations:

cd /opt/sun/mq/examples/helloworld/helloworldmessagejndi

You should find the file HelloWorldMessageJNDI.class present. (If you make changes to the
application, you must recompile it using the procedure for compiling a client application given
in the Message Queue Developer’s Guide for Java Clients.)

Set the CLASSPATH variable to include the current directory containing the file
HelloWorldMessageJNDI.class, as well as the following .jarfiles that are included in the
Message Queue product:

jms.jar

imq.jar

jndi.jar

fscontext.jar

See the Message Queue Developer’s Guide for Java Clients for information on setting the
CLASSPATH variable.

Note – The file jndi.jar is bundled with JDK 1.4. You need not add this file to your CLASSPATH
unless you are using an earlier version of the JDK.

Run the HelloWorldMessageJNDI application by executing one of the following commands
(depending on the platform you’re using):

■ On Solaris or Linux:

1

2

3

Running the Sample Application

Open Message Queue 4.5 Administration Guide • February 201164

% java HelloWorldMessageJNDI file:///tmp

■ On Windows:

java HelloWorldMessageJNDI

If the application runs successfully, you should see the output shown in Example 2–1.

Output from Sample Application

java HelloWorldMessageJNDI

Using file:///C:/Temp for Context.PROVIDER_URL

Looking up Queue Connection Factory object with lookup name:

MyQueueConnectionFactory

Queue Connection Factory object found.

Looking up Queue object with lookup name: MyQueue

Queue object found.

Creating connection to broker.

Connection to broker created.

Publishing a message to Queue: MyQueueDest

Received the following message: Hello World

Example 2–1

Running the Sample Application

Chapter 2 • Quick-Start Tutorial 65

66

Administrative Tasks
■ Chapter 3, “Starting Brokers and Clients”
■ Chapter 4, “Configuring a Broker”
■ Chapter 5, “Managing a Broker ”
■ Chapter 6, “Configuring and Managing Connection Services”
■ Chapter 7, “Managing Message Delivery”
■ Chapter 8, “Configuring Persistence Services”
■ Chapter 9, “Configuring and Managing Security Services”
■ Chapter 10, “Configuring and Managing Broker Clusters”
■ Chapter 11, “Managing Administered Objects”
■ Chapter 12, “Configuring and Managing Bridge Services”
■ Chapter 13, “Monitoring Broker Operations”
■ Chapter 14, “Analyzing and Tuning a Message Service”
■ Chapter 15, “Troubleshooting”

P A R T I I

67

68

Starting Brokers and Clients

After installing Open Message Queue and performing some preparatory steps, you can begin
starting brokers and clients. A broker’s configuration is governed by a set of configuration files,
which can be overridden by command line options passed to the Broker utility (imqbrokerd);
see Chapter 4, “Configuring a Broker,” for more information.

This chapter contains the following sections:

■ “Preparing System Resources” on page 69
■ “Starting Brokers” on page 70
■ “Deleting a Broker Instance” on page 76
■ “Starting Clients” on page 76

Preparing System Resources
Before starting a broker, there are two preliminary system-level tasks to perform: synchronizing
system clocks and (on the Solaris or Linux platform) setting the file descriptor limit. The
following sections describe these tasks.

Synchronizing System Clocks
Before starting any brokers or clients, it is important to synchronize the clocks on all hosts that
will interact with the Message Queue system. Synchronization is particularly crucial if you are
using message expiration (time-to-live). Time stamps from clocks that are not synchronized
could prevent message expiration from working as expected and prevent the delivery of
messages. Synchronization is also crucial for broker clusters.

Configure your systems to run a time synchronization protocol, such as Simple Network Time
Protocol (SNTP). Time synchronization is generally supported by the xntpd daemon on Solaris

3C H A P T E R 3

69

and Linux, and by the W32Time service on Windows. (See your operating system documentation
for information about configuring this service.) After the broker is running, avoid setting the
system clock backward.

Setting the File Descriptor Limit
On the Solaris and Linux platforms, the shell in which a client or broker is running places a soft
limit on the number of file descriptors that a process can use. In Message Queue, each
connection a client makes, or a broker accepts, uses one of these file descriptors. Each physical
destination that has persistent messages also uses a file descriptor.

As a result, the file descriptor limit constrains the number of connections a broker or client can
have. By default, the maximum is 256 connections on Solaris or 1024 on Linux. (In practice, the
connection limit is actually lower than this because of the use of file descriptors for persistent
data storage.) If you need more connections than this, you must raise the file descriptor limit in
each shell in which a client or broker will be executing. For information on how to do this, see
the man page for the ulimit command.

Starting Brokers
You can start a broker either interactively, using the Message Queue command line utilities or
the Windows Start menu, or by arranging for it to start automatically at system startup. The
following sections describe how.

Starting Brokers Interactively
You can start a broker interactively from the command line, using the Broker utility
(imqbrokerd). (Alternatively, on Windows, you can start a broker from the Start menu.) You
cannot use the Administration Console (imqadmin) or the Command utility (imqcmd) to start a
broker; the broker must already be running before you can use these tools.

On the Solaris and Linux platforms, a broker instance must always be started by the same user
who initially started it. Each broker instance has its own set of configuration properties and
file-based persistent data store. When the broker instance first starts, Message Queue uses the
user’s file creation mode mask (umask) to set permissions on directories containing the
configuration information and persistent data for that broker instance.

A broker instance has the instance name imqbroker by default. To start a broker from the
command line with this name and the default configuration, simply use the command

imqbrokerd

This starts a broker instance named imqbroker on the local machine, with the Port Mapper at
the default port of 7676 (see “Port Mapper” on page 97).

Starting Brokers

Open Message Queue 4.5 Administration Guide • February 201170

To specify an instance name other than the default, use the-name option to the imqbrokerd
command. The following command starts a broker with the instance name myBroker:

imqbrokerd -name myBroker

Other options are available on the imqbrokerd command line to control various aspects of the
broker’s operation. See “Broker Utility” on page 318 for complete information on the syntax,
subcommands, and options of the imqbrokerd command. For a quick summary of this
information, enter the following command:

imqbrokerd -help

For example, the following command uses the-tty option to send errors and warnings to the
command window (standard output):

imqbrokerd -name myBroker -tty

You can also use the -D option on the command line to override the values of properties
specified in the broker’s instance configuration file (config.properties). The instance
configuration file is described under “Modifying Configuration Files” on page 80. The
following example sets a broker’s imq.jms.max_threads property, raising the maximum
number of threads available to the jms connection service to 2000:

imqbrokerd -name myBroker -Dimq.jms.max_threads=2000

Starting Brokers Automatically
Instead of starting a broker explicitly from the command line, you can set it up to start
automatically at system startup. How you do this depends on the platform (Solaris, Linux, or
Windows) on which you are running the broker:

■ “Automatic Broker Startup on the Solaris Platforms” on page 71
■ “Automatic Broker Startup on the Linux Platform” on page 73
■ “Automatic Broker Startup on Windows” on page 73

Automatic Broker Startup on the Solaris Platforms
The method for enabling automatic startup on the Solaris 10 platforms is different from that for
Solaris 9. Both are described below.

Automatic Broker Startup on the Solaris 9 Platform

On Solaris 9 operating system, scripts that enable automatic startup are placed in the /etc/rc*
directory tree during Message Queue installation. To enable the use of these scripts, you must
edit the configuration file imqbrokerd.conf (located in IMQ_HOME/etc/ for installations from
IPS packages and in /etc/imq/ for installations from SVR4 packages) as follows:

Starting Brokers

Chapter 3 • Starting Brokers and Clients 71

■ To start the broker automatically at system startup, set the AUTOSTART property to YES.
■ To have the broker restart automatically after an abnormal exit, set the RESTART property to

YES.
■ To set startup command line arguments for the broker, specify one or more values for the

ARGS property.

To disable automatic broker startup at system startup, edit the configuration file
/etc/imq/imqbrokerd.conf and set the AUTOSTART property to NO.

Automatic Broker Startup on the Solaris 10 Platform

Rather than using an rc file to implement automatic broker startup when a computer reboots,
the following procedure makes use of the Solaris 10 Service Management Facility (SMF).

For more information on using the Service Management Facility, please refer to Solaris 10
documentation.

▼ To Implement Automatic Broker Startup on Solaris 10 OS

Copy and change permissions on the mqbroker startup script.

cp /var/svc/manifest/application/sun/mq/mqbroker /lib/svc/method

chmod 555 /lib/svc/method/mqbroker

Import the mqbroker service into the SMF repository.

svccfg import /var/svc/manifest/application/sun/mq/mqbroker.xml

Verify that the import was successful by checking the state of the mqbroker service.

svcs mqbroker

Output resembles the following:
STATE STIME FMRI

disabled 16:22:50 svc:/application/sun/mq/mqbroker:default

The service is initially shown as disabled.

Eanable the mqbroker service.

svcadm enable svc:/application/sun/mq/mqbroker:default

Enabling the mqbroker service will start the imqbrokerd process. A reboot will subsequently
restart the broker.

1

2

3

4

Starting Brokers

Open Message Queue 4.5 Administration Guide • February 201172

Configure the mqbroker service to pass any desired arguments to the imqbrokerd command.
The options/broker_args property is used to pass arguments toimqbrokerd. For example to
add -loglevel DEBUGHIGH, do the following:
svccfg

svc:> select svc:/application/sun/mq/mqbroker

svc:/application/sun/mq/mqbroker> setprop options/broker_args="-loglevel DEBUGHIGH"
svc:/application/sun/mq/mqbroker> exit

▼ To Disable Automatic Broker Startup on Solaris 10 OS

Disable the mqbroker service.
svcadm disable svc:/application/sun/mq/mqbroker:default

A subsequent reboot will not restart the broker.

Automatic Broker Startup on the Linux Platform
On Linux systems, scripts that enable automatic startup are placed in the /etc/rc* directory
tree during Message Queue installation. To enable the use of these scripts, you must edit the
configuration file imqbrokerd.conf (located in IMQ_HOME/etc/ for installations from IPS
packages and in /etc/opt/sun/mq/ for installations from RPM packages) as follows:
■ To start the broker automatically at system startup, set the AUTOSTART property to YES.
■ To have the broker restart automatically after an abnormal exit, set the RESTART property to

YES.
■ To set startup command line arguments for the broker, specify one or more values for the

ARGS property.

To disable automatic broker startup at system startup, edit the configuration file
/etc/opt/sun/mq/imqbrokerd.conf and set the AUTOSTART property to NO.

Automatic Broker Startup on Windows
To start a broker automatically at Windows system startup, you must define the broker as a
Windows service. The broker will then start at system startup time and run in the background
until system shutdown. Consequently, you will not need to use the Message Queue Broker
utility (imqbrokerd) unless you want to start an additional broker.

A system can have no more than one broker running as a Windows service. The Windows Task
Manager lists such a broker as two executable processes:
■ The native Windows service wrapper, imqbrokersvc.exe
■ The Java runtime that is running the broker

You can install a broker as a service when you install Message Queue on a Windows system.
After installation, you can use the Service Administrator utility (imqsvcadmin) to perform the
following operations:

5

●

Starting Brokers

Chapter 3 • Starting Brokers and Clients 73

■ Add a broker as a Windows service
■ Determine the startup options for the broker service
■ Disable a broker from running as a Windows service

To pass startup options to the broker, use the -args option to the imqsvcadmin command. This
works the same way as the imqbrokerd command’s -D option, as described under “Starting
Brokers” on page 70. Use the Command utility (imqcmd) to control broker operations as usual.

See “Service Administrator Utility” on page 340 for complete information on the syntax,
subcommands, and options of the imqsvcadmin command.

Reconfiguring the Broker Service

The procedure for reconfiguring a broker installed as a Windows service is as follows:

▼ To Reconfigure a Broker Running as a Windows Service

Stop the service:

a. From the Settings submenu of the Windows Start menu, choose Control Panel.

b. Open the Administrative Tools control panel.

c. Run the Services tool by selecting its icon and choosing Open from the File menu or the
pop-up context menu, or simply by double-clicking the icon.

d. Under Services (Local), select the Message Queue Broker service and choose Properties from
the Action menu.
Alternatively, you can right-click on Message Queue Broker and choose Properties from the
pop-up context menu, or simply double-click on Message Queue Broker. In either case, the
Message Queue Broker Properties dialog box will appear.

e. Under the General tab in the Properties dialog, click Stop to stop the broker service.

Remove the service.
On the command line, enter the command

imqsvcadmin remove

Reinstall the service, specifying different broker startup options with the -args option or
different Java version arguments with the -vmargs option.
For example, to change the service’s host name and port number to broker1 and 7878, you
could use the command

imqsvcadmin install -args "-name broker1 -port 7878"

1

2

3

Starting Brokers

Open Message Queue 4.5 Administration Guide • February 201174

Using an Alternative Java Runtime

You can use either the imqsvcadmin command’s -javahome or -jrehome option to specify the
location of an alternative Java runtime. (You can also specify these options in the Start
Parameters field under the General tab in the service’s Properties dialog window.)

Note – The Start Parameters field treats the backslash character (\) as an escape character, so you
must type it twice when using it as a path delimiter: for example,

-javahome c:\\j2sdk1.4.0

Displaying Broker Service Startup Options

To determine the startup options for the broker service, use the imqsvcadmin query command,
as shown in Example 3–1.

EXAMPLE 3–1 Displaying Broker Service Startup Options

imqsvcadmin query

Service Message Queue Broker is installed.

Display Name: Message Queue Broker

Start Type: Automatic

Binary location: C:\Sun\MessageQueue\bin\imqbrokersvc.exe

JavaHome: c:\j2sdk1.4.0

Broker Args: -name broker1 -port 7878

Disabling a Broker From Running as a Windows Service

To disable a broker from running as a Windows service, use the command

imqcmd shutdown bkr

to shut down the broker, followed by

imqsvcadmin remove

to remove the service.

Alternatively, you can use the Windows Services tool, reached via the Administrative Tools
control panel, to stop and remove the broker service.

Restart your computer after disabling the broker service.

Starting Brokers

Chapter 3 • Starting Brokers and Clients 75

Troubleshooting Service Startup Problems

If you get an error when you try to start a broker as a Windows service, you can view error
events that were logged:

▼ To See Logged Service Error Events

Open the Windows Administrative Tools control panel.

Start the Event Viewer tool.

Select the Application event log.

Choose Refresh from the Action menu to display any error events.

Deleting a Broker Instance
To delete a broker instance, use the imqbrokerd command with the -remove option:

imqbrokerd [options...] -remove instance

For example, if the name of the broker is myBroker, the command would be

imqbrokerd -name myBroker -remove instance

The command deletes the entire instance directory for the specified broker.

See “Broker Utility” on page 318 for complete information on the syntax, subcommands, and
options of the imqbrokerd command. For a quick summary of this information, enter the
command

imqbrokerd -help

Starting Clients
Before starting a client application, obtain information from the application developer about
how to set up the system. If you are starting Java client applications, you must set the CLASSPATH
variable appropriately and make sure you have the correct .jar files installed. The Message
Queue Developer’s Guide for Java Clients contains information about generic steps for setting up
the system, but your developer may have additional information to provide.

To start a Java client application, use the following command line format:

java clientAppName

1

2

3

4

Deleting a Broker Instance

Open Message Queue 4.5 Administration Guide • February 201176

To start a C client application, use the format supplied by the application developer (see
“Building and Running C Clients” in Open Message Queue 4.5 Developer’s Guide for C Clients).

The application’s documentation should provide information on attribute values that the
application sets; you may want to override some of these from the command line. You may also
want to specify attributes on the command line for any Java client that uses a Java Naming and
Directory Interface (JNDI) lookup to find its connection factory. If the lookup returns a
connection factory that is older than the application, the connection factory may lack support
for more recent attributes. In such cases, Message Queue sets those attributes to default values;
if necessary, you can use the command line to override these default values.

To specify attribute values from the command line for a Java application, use the following
syntax:

java [[-Dattribute=value] ...] clientAppName

The value for attribute must be a connection factory administered object attribute, as described
in Chapter 19, “Administered Object Attribute Reference.” If there is a space in the value, put
quotation marks around the

attribute=value

part of the command line.

The following example starts a client application named MyMQClient, connecting to a broker
on the host OtherHost at port 7677:

java -DimqAddressList=mq://OtherHost:7677/jms MyMQClient

The host name and port specified on the command line override any others set by the
application itself.

In some cases, you cannot use the command line to specify attribute values. An administrator
can set an administered object to allow read access only, or an application developer can code
the client application to do so. Communication with the application developer is necessary to
understand the best way to start the client program.

Starting Clients

Chapter 3 • Starting Brokers and Clients 77

78

Configuring a Broker

A broker’s configuration is governed by a set of configuration files and by the options passed to
the imqbrokerd command at startup. This chapter describes the available configuration
properties and how to use them to configure a broker.

The chapter contains the following sections:

■ “Broker Services” on page 79
■ “Setting Broker Configuration Properties” on page 80

For full reference information about broker configuration properties, see Chapter 17, “Broker
Properties Reference”

Broker Services
Broker configuration properties are logically divided into categories that depend on the services
or broker components they affect:

■ Connection services manage the physical connections between a broker and its clients that
provide transport for incoming and outgoing messages. For a discussion of properties
associated with connection services, see “Configuring Connection Services” on page 95

■ Message delivery services route and deliver JMS payload messages, as well as control
messages used by the message service to support reliable delivery. For a discussion of
properties associated with message delivery services, including physical destinations, see
Chapter 7, “Managing Message Delivery”

■ Persistence services manage the writing and retrieval of data, such as messages and state
information, to and from persistent storage. For a discussion of properties associated with
persistence services, see Chapter 8, “Configuring Persistence Services”

■ Security services authenticate users connecting to the broker and authorize their actions. For
a discussion of properties associated with authentication and authorization services, as well
as encryption configuration, see Chapter 9, “Configuring and Managing Security Services”

4C H A P T E R 4

79

■ Clustering services support the grouping of brokers into a cluster to achieve scalability and
availability. For a discussion of properties associated with broker clusters, see Chapter 10,
“Configuring and Managing Broker Clusters”

■ Monitoring services generate metric and diagnostic information about the broker’s
performance. For a discussion of properties associated with monitoring and managing a
broker, see Chapter 13, “Monitoring Broker Operations”

Setting Broker Configuration Properties
You can specify a broker’s configuration properties in either of two ways:

■ Edit the broker’s configuration file.
■ Supply the property values directly from the command line.

The following sections describe these two methods of configuring a broker.

Modifying Configuration Files
Broker configuration files contain property settings for configuring a broker. They are kept in a
directory whose location depends on the operating system platform you are using; see
Appendix A, “Distribution-Specific Locations of Message Queue Data,” for details. Message
Queue maintains the following broker configuration files:

■ A default configuration file (default.properties) that is loaded on startup. This file is not
editable, but you can read it to determine default settings and find the exact names of
properties you want to change.

■ An installation configuration file (install.properties) containing any properties specified
when Message Queue was installed. This file cannot be edited after installation.

■ A separate instance configuration file (config.properties) for each individual broker
instance.

In addition, if you connect broker instances in a cluster, you may need to use a cluster
configuration file (cluster.properties) to specify configuration information for the cluster;
see “Cluster Configuration Properties” on page 370 for more information.

Also, Message Queue makes use of en environment configuration file, imqenv.conf, which is
used to provide the locations of external files needed by Message Queue, such as the default Java
SE location and the locations of database drivers, JAAS login modules, and so forth.

At startup, the broker merges property values from the various configuration files. As shown in
Figure 4–1, the files form a hierarchy in which values specified in the instance configuration file
override those in the installation configuration file, which in turn override those in the default

Setting Broker Configuration Properties

Open Message Queue 4.5 Administration Guide • February 201180

configuration file. At the top of the hierarchy, you can manually override any property values
specified in the configuration files by using command line options to the imqbrokerd
command.

The first time you run a broker, an instance configuration file is created containing
configuration properties for that particular broker instance. The instance configuration file is
named config.properties and is located in a directory identified by the name of the broker
instance to which it belongs:

.../instances/instanceName/props/config.properties

(See Appendix A, “Distribution-Specific Locations of Message Queue Data,” for the location of
the instances directory.) If the file does not yet exist, you must use the -name option when
starting the broker (see “Broker Utility” on page 318) to specify an instance name that Message
Queue can use to create the file.

FIGURE 4–1 Broker Configuration Files

Startup
Command

Overrides

Overrides

Overrides

imqbrokerd

-name MyBroker

-metrics 5

Instance
Configuration File

config.properties

Install
Configuration File

install.properties

Default
Configuration File

default.properties

Setting Broker Configuration Properties

Chapter 4 • Configuring a Broker 81

Note – The instances/instanceName directory and the instance configuration file are owned by
the user who initially started the corresponding broker instance by using the imqbrokerd —name
brokerName option. The broker instance must always be restarted by that same user.

The instance configuration file is maintained by the broker instance and is modified when you
make configuration changes using Message Queue administration utilities. You can also edit an
instance configuration file by hand. To do so, you must be the owner of the
instances/instanceName directory or log in as the root user to change the directory’s access
privileges.

The broker reads its instance configuration file only at startup. To effect any changes to the
broker’s configuration, you must shut down the broker and then restart it. Property definitions
in the config.properties file (or any configuration file) use the following syntax:

propertyName=value [[,value1] ...]

For example, the following entry specifies that the broker will hold up to 50,000 messages in
memory and persistent storage before rejecting additional messages:

imq.system.max_count=50000

The following entry specifies that a new log file will be created once a day (every 86,400
seconds):

imq.log.file.rolloversecs=86400

See “Broker Services” on page 79 and Chapter 17, “Broker Properties Reference,” for
information on the available broker configuration properties and their default values.

Setting Configuration Properties from the Command
Line
You can enter broker configuration properties from the command line when you start a broker,
or afterward.

At startup time, you use the Broker utility (imqbrokerd) to start a broker instance. Using the
command’s -D option, you can specify any broker configuration property and its value; see
“Starting Brokers” on page 70 and “Broker Utility” on page 318 for more information. If you
start the broker as a Windows service, using the Service Administrator utility (imqsvcadmin),
you use the -args option to specify startup configuration properties; see “Service Administrator
Utility” on page 340.

Setting Broker Configuration Properties

Open Message Queue 4.5 Administration Guide • February 201182

You can also change certain broker configuration properties while a broker is running. To
modify the configuration of a running broker, you use the Command utility’s imqcmd update
bkr command; see “Updating Broker Properties” on page 91 and “Broker Management” on
page 326.

Setting Broker Configuration Properties

Chapter 4 • Configuring a Broker 83

84

Managing a Broker

This chapter explains how to use the Message Queue Command utility (imqcmd) to manage a
broker. The chapter has the following sections:

■ “Command Utility Preliminaries” on page 86
■ “Using the Command Utility” on page 86
■ “Managing Brokers” on page 89

This chapter does not cover all topics related to managing a broker. Additional topics are
covered in the following separate chapters:

■ For information on configuring and managing connection services, see Chapter 6,
“Configuring and Managing Connection Services.”

■ For information on managing message delivery services, including how to create, display,
update, and destroy physical destinations, see Chapter 7, “Managing Message Delivery.”

■ For information on configuring and managing persistence services, for both flat-file and
JDBC-based data stores, see Chapter 8, “Configuring Persistence Services.”

■ For information about setting up security for the broker, such as user authentication, access
control, encryption, and password files, see Chapter 9, “Configuring and Managing Security
Services.”

■ For information on configuring and managing clustering services, for both conventional
and enhanced broker clusters, see Chapter 10, “Configuring and Managing Broker
Clusters.”

■ For information about monitoring a broker, see Chapter 13, “Monitoring Broker
Operations.”

5C H A P T E R 5

85

Command Utility Preliminaries
Before using the Command utility to manage a broker, you must do the following:

■ Start the broker using the imqbrokerd command. You cannot use the Command utility
subcommands l until a broker is running.

■ Determine whether you want to set up a Message Queue administrative user or use the
default account. You must specify a user name and password to use all Command utility
subcommands (except to display command help and version information).
When you install Message Queue, a default flat-file user repository is installed. The
repository is shipped with two default entries: an administrative user and a guest user. If you
are testing Message Queue, you can use the default user name and password (admin/admin)
to run the Command utility.
If you are setting up a production system, you must set up authentication and authorization
for administrative users. See Chapter 9, “Configuring and Managing Security Services,” for
information on setting up a file-based user repository or configuring the use of an LDAP
directory server. In a production environment, it is a good security practice to use a
nondefault user name and password.

■ If you want to use a secure connection to the broker, set up and enable the ssladmin service
on the target broker instance, For more information, see “Message Encryption” on page 161.

Using the Command Utility
The Message Queue Command utility (imqcmd) enables you to manage the broker and its
services interactively from the command line. See “Command Utility” on page 322 for general
reference information about the syntax, subcommands, and options of the imqcmd command,
and Chapter 17, “Broker Properties Reference,” for specific information on the configuration
properties used to specify broker behavior.

Specifying the User Name and Password
Because each imqcmd subcommand is authenticated against the user repository, it requires a
user name and password. The only exceptions are commands that use the -h or -H option to
display help, and those that use the -v option to display the product version.

Use the -u option to specify an administrative user name. For example, the following command
displays information about the default broker:

imqcmd query bkr -u admin

If you omit the user name, the command will prompt you for it.

Command Utility Preliminaries

Open Message Queue 4.5 Administration Guide • February 201186

Note – For simplicity, the examples in this chapter use the default user name admin as the
argument to the -u option. In a real-life production environment, you would use a custom user
name.

Specify the password using one of the following methods:

■ Create a password file and enter the password into that file as the value of the
imq.imqcmd.password property. On the command line, use the -passfile option to
provide the name of the password file.

■ Let the imqcmd command prompt you for the password.

Note – In previous versions of Message Queue, you could use the -p option to specify a password
on the imqcmd command line. As of Message Queue 4.0, this option is deprecated and is no
longer supported; you must instead use one of the methods listed above.

Specifying the Broker Name and Port
Most imqcmd subcommands use the -b option to specify the host name and port number of the
broker to which the command applies:

-b hostName:portNumber

If no broker is specified, the command applies by default to a broker running on the local host
(localhost) at port number 7676. To issue a command to a broker that is running on a remote
host, listening on a non-default port, or both, you must use the -b option to specify the host and
port explicitly.

Literal IP addresses as host names: You can use a literal IPv4 or IPv6 address as a host name. If
you use a literal IPv6 address, its format must conform to RFC2732, Format for Literal IPv6
Addresses in URL's.

Displaying the Product Version
To display the Message Queue product version, use the -v option. For example:

imqcmd -v

If you enter an imqcmd command line containing the -v option in addition to a subcommand or
other options, the Command utility processes only the -v option. All other items on the
command line are ignored.

Using the Command Utility

Chapter 5 • Managing a Broker 87

http://www.ietf.org/rfc/rfc2732.txt

Displaying Help
To display help on the imqcmd command, use the -h or -H option, and do not use a
subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imqcmd:

imqcmd -H

If you enter an imqcmd command line containing the -h or -H option in addition to a
subcommand or other options, the Command utility processes only the -h or -H option. All
other items on the command line are ignored.

Examples
The examples in this section illustrate how to use the imqcmd command.

The following example lists the properties of the broker running on host localhost at port
7676, so the -b option is unnecessary:

imqcmd query bkr -u admin

The command uses the default administrative user name (admin) and omits the password, so
that the command will prompt for it.

The following example lists the properties of the broker running on the host myserver at port
1564. The user name is aladdin:

imqcmd query bkr -b myserver:1564 -u aladdin

(For this command to work, the user repository would need to be updated to add the user name
aladdin to the admin group.)

The following example lists the properties of the broker running on localhost at port 7676.
The initial timeout for the command is set to 20 seconds and the number of retries after timeout
is set to 7. The user’s password is in a password file called myPassfile, located in the current
directory at the time the command is invoked.

imqcmd query bkr -u admin -passfile myPassfile -rtm 20 -rtr 7

For a secure connection to the broker, these examples could include the -secure option. This
option causes the Command utility to use the ssladmin service if that service has been
configured and started.

Using the Command Utility

Open Message Queue 4.5 Administration Guide • February 201188

Managing Brokers
This section describes how to use Command utility subcommands to perform the following
broker management tasks:
■ “Shutting Down and Restarting a Broker” on page 89
■ “Quiescing a Broker” on page 90
■ “Pausing and Resuming a Broker” on page 91
■ “Updating Broker Properties” on page 91
■ “Viewing Broker Information” on page 92

In addition to using the subcommands described in the following sections, imqcmd allows you to
set system properties using the –D option. This is useful for setting or overriding connection
factory properties or connection-related Java system properties.

For example, the following command changes the default value of imqSSLIsHostTrusted:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

The following command specifies the password file and the password used for the SSL trust
store that is used by the imqcmd command:

imqcmd list svc -secure -DJavax.net.ssl.trustStore=/tmp/MyTruststore

-Djavax.net.ssl.trustStorePassword=MyTrustword

Shutting Down and Restarting a Broker
The subcommand imqcmd shutdown bkr shuts down a broker:

imqcmd shutdown bkr [-b hostName:portNumber]
[-time nSeconds]
[-nofailover]

The broker stops accepting new connections and messages, completes delivery of existing
messages, and terminates the broker process.

The -time option, if present, specifies the interval, in seconds, to wait before shutting down the
broker. For example, the following command delays 90 seconds and then shuts down the
broker running on host wolfgang at port 1756:

imqcmd shutdown bkr -b wolfgang:1756 -time 90 -u admin

The broker will not block, but will return immediately from the delayed shutdown request.
During the shutdown interval, the broker will not accept any new jms connections; admin
connections will be accepted, and existing jms connections will continue to operate. If the
broker belongs to an enhanced broker cluster, it will not attempt to take over for any other
broker during the shutdown interval.

Managing Brokers

Chapter 5 • Managing a Broker 89

If the broker is part of an enhanced broker cluster (see “Enhanced Clusters” in Open Message
Queue 4.5 Technical Overview), another broker in the cluster will ordinarily attempt to take
over its persistent data on shutdown; the -nofailover option to the imqcmd shutdown bkr
subcommand suppresses this behavior. Conversely, you can use the imqcmd takeover bkr
subcommand to force such a takeover manually (for instance, if the takeover broker were to fail
before completing the takeover process); see “Preventing or Forcing Broker Failover” on
page 194 for more information.

Note – The imqcmd takeover bkr subcommand is intended only for use in failed-takeover
situations. You should use it only as a last resort, and not as a general way of forcibly taking over
a running broker.

To shut down and restart a broker, use the subcommand imqcmd restart bkr:

imqcmd restart bkr [-b hostName:portNumber]

This shuts down the broker and then restarts it using the same options that were specified when
it was first started. To choose different options, shut down the broker with imqcmd shutdown

bkr and then start it again with the Broker utility (imqbrokerd), specifying the options you
want.

Quiescing a Broker
The subcommand imqcmd quiesce bkr quiesces a broker, causing it to refuse any new client
connections while continuing to service old ones:

imqcmd quiesce bkr [-b hostName:portNumber]

If the broker is part of an enhanced broker cluster, this allows its operations to wind down
normally without triggering a takeover by another broker, for instance in preparation for
shutting it down administratively for upgrade or similar purposes. For example, the following
command quiesces the broker running on host hastings at port 1066:

imqcmd quiesce bkr -b hastings:1066 -u admin

To reverse the process and return the broker to normal operation, use the imqcmd unquiesce
bkr subcommand:

imqcmd unquiesce bkr [-b hostName:portNumber]

For example, the following command unquiesces the broker that was quiesced in the preceding
example:

imqcmd unquiesce bkr -b hastings:1066 -u admin

Managing Brokers

Open Message Queue 4.5 Administration Guide • February 201190

Pausing and Resuming a Broker
The subcommand imqcmd pause bkr pauses a broker, suspending its connection service threads
and causing it to stop listening on the connection ports:

imqcmd pause bkr [-b hostName:portNumber]

For example, the following command pauses the broker running on host myhost at port 1588:

imqcmd pause bkr -b myhost:1588 -u admin

Because its connection service threads are suspended, a paused broker is unable to accept new
connections, receive messages, or dispatch messages. The admin connection service is not
suspended, allowing you to continue performing administrative tasks needed to regulate the
flow of messages to the broker. Pausing a broker also does not suspend the cluster connection
service; however, since message delivery within a cluster depends on the delivery functions
performed by the different brokers in the cluster, pausing a broker in a cluster may result in a
slowing of some message traffic.

You can also pause individual connection services and physical destinations. For more
information, see “Pausing and Resuming a Connection Service” on page 99 and “Pausing and
Resuming a Physical Destination” on page 112.

The subcommand imqcmd resume bkr reactivates a broker’s service threads, causing it to resume
listening on the ports:

imqcmd resume bkr [-b hostName:portNumber]

For example, the following command resumes the default broker (host localhost at port
7676):

imqcmd resume bkr -u admin

Updating Broker Properties
The subcommand imqcmd update bkr can be used to change the values of a subset of broker
properties for the default broker (or for the broker at a specified host and port):

imqcmd update bkr [-b hostName:portNumber]
-o property1=value1 [[-o property2=value2] ...]

For example, the following command turns off the auto-creation of queue destinations for the
default broker:

imqcmd update bkr -o imq.autocreate.queue=false -u admin

You can use imqcmd update bkr to update any of the following broker properties:

Managing Brokers

Chapter 5 • Managing a Broker 91

imq.autocreate.queue

imq.autocreate.topic

imq.autocreate.queue.maxNumActiveConsumers

imq.autocreate.queue.maxNumBackupConsumers

imq.cluster.url

imq.destination.DMQ.truncateBody

imq.destination.logDeadMsgs

imq.log.level

imq.log.file.rolloversecs

imq.log.file.rolloverbytes

imq.system.max_count

imq.system.max_size

imq.message.max_size

imq.portmapper.port

See Chapter 17, “Broker Properties Reference,” for detailed information about these properties.

Viewing Broker Information
To display information about a single broker, use the imqcmd query bkr subcommand:

imqcmd query bkr -b hostName:portNumber

Managing Brokers

Open Message Queue 4.5 Administration Guide • February 201192

This lists the current settings of the broker’s properties, as shown in Example 5–1.

EXAMPLE 5–1 Broker Information Listing

Querying the broker specified by:

Host Primary Port

localHost 7676

Version 4.5

Instance Name imqbroker

Broker ID mybroker

Primary Port 7676

Broker is Embedded false

Instance Configuration/Data Root Directory /var/imq

Current Number of Messages in System 0

Current Total Message Bytes in System 0

Current Number of Messages in Dead Message Queue 0

Current Total Message Bytes in Dead Message Queue 0

Log Dead Messages true

Truncate Message Body in Dead Message Queue false

Max Number of Messages in System unlimited (-1)

Max Total Message Bytes in System unlimited (-1)

Max Message Size 70m

Auto Create Queues true

Auto Create Topics true

Auto Created Queue Max Number of Active Consumers 1

Auto Created Queue Max Number of Backup Consumers 0

Cluster ID myClusterID

Cluster Is Highly Available true

Cluster Broker List (active)

Cluster Broker List (configured)

Cluster Master Broker

Cluster URL

Log Level INFO

Log Rollover Interval (seconds) 604800

Log Rollover Size (bytes) unlimited (-1)

The imqcmd metrics bkr subcommand displays detailed metric information about a broker’s
operation:

Managing Brokers

Chapter 5 • Managing a Broker 93

imqcmd metrics bkr [-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

The -m option specifies the type of metric information to display:

■ ttl (default): Messages and packets flowing into and out of the broker
■ rts: Rate of flow of messages and packets into and out of the broker per second
■ cxn: Connections, virtual memory heap, and threads

The -int and -msp options specify, respectively, the interval (in seconds) at which to display the
metrics and the number of samples to display in the output. The default values are 5 seconds
and an unlimited number of samples.

For example, the following command displays the rate of message flow into and out of the
default broker (host localhost at port 7676) at 10-second intervals:

imqcmd metrics bkr -m rts -int 10 -u admin

Example 5–2 shows an example of the resulting output.

EXAMPLE 5–2 Broker Metrics Listing

--

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec

In Out In Out In Out In Out

--

0 0 27 56 0 0 38 66

10 0 7365 56 10 10 7457 1132

0 0 27 56 0 0 38 73

0 10 27 7402 10 20 1400 8459

0 0 27 56 0 0 38 73

For a more detailed description of the data gathered and reported by the broker, see
“Brokerwide Metrics” on page 418.

For brokers belonging to a broker cluster, the imqcmd list bkr subcommand displays
information about the configuration of the cluster; see “Displaying a Cluster Configuration” on
page 180 for more information.

Managing Brokers

Open Message Queue 4.5 Administration Guide • February 201194

Configuring and Managing Connection
Services

Message Queue offers various connection services using a variety of transport protocols for
connecting both application and administrative clients to a broker. This chapter describes how
to configure and manage these services and the connections they support:

■ “Configuring Connection Services” on page 95
■ “Managing Connection Services” on page 99
■ “Managing Connections” on page 103

Configuring Connection Services
Broker configuration properties related to connection services are listed under “Connection
Properties” on page 343.

Figure 6–1 shows the connection services provided by the Message Queue broker.

6C H A P T E R 6

95

These connection services are distinguished by two characteristics, as shown in Table 6–1:

■ The service type specifies whether the service provides JMS message delivery (NORMAL) or
Message Queue administration services (ADMIN).

■ The protocol type specifies the underlying transport protocol.

TABLE 6–1 Message Queue Connection Service Characteristics

Service Name Service Type Protocol Type

jms NORMAL TCP

ssljms NORMAL TLS (SSL-based security)

FIGURE 6–1 Message Queue Connection Services

Broker

Legend

Java
Client

Java
Client

Runtime

JNDI

Configuration
Files and

Logs

Persisted
Messages and
Broker State

User
Repository

Administered
Objects

ssljms
(TLS)

ssljms
(TLS)jms

(TCP)

httpjms
(HTTP)

httpsjms
(HTTPS)

admin
(TCP)

 ssladmin
(TLS)

(RMI)

(TCP)

jms
(TCP)

Web
Server

HTTP/
HTTPS
Tunnel
Servlet

Message Queue
Message Service

MQ/JMX
Runtime

JMX
Client

F
ire

w
al

l

Physical
Destinations

Admin

C
Client

C Client
Runtime

Configuring Connection Services

Open Message Queue 4.5 Administration Guide • February 201196

TABLE 6–1 Message Queue Connection Service Characteristics (Continued)
Service Name Service Type Protocol Type

httpjms NORMAL HTTP

httpsjms NORMAL HTTPS (SSL-based security)

admin ADMIN TCP

ssladmin ADMIN TLS (SSL-based security)

By setting a broker’s imq.service.activelist property, you can configure it to run any or all
of these connection services. The value of this property is a list of connection services to be
activated when the broker is started up; if the property is not specified explicitly, the jms and
admin services will be activated by default.

Each connection service also supports specific authentication and authorization features; see
“Introduction to Security Services” on page 137 for more information.

Note – There is also a special cluster connection service, used internally by the brokers within a
broker cluster to exchange information about the cluster’s configuration and state. This service
is not intended for use by clients communicating with a broker. See Chapter 10, “Configuring
and Managing Broker Clusters,” for more information about broker clusters.

Also there are two JMX connectors, jmxrmi and ssljmxrmi, that support JMX-based
administration. These JMX connectors are very similar to the connection services in Table 6–1,
above, and are used by JMX clients to establish a connection to the broker's MBean server. For
more information, see “JMX Connection Infrastructure” on page 461.

Port Mapper
Each connection service is available at a particular port, specified by host name (or IP address)
and port number. You can explicitly specify a static port number for a service or have the
broker’s Port Mapper assign one dynamically. The Port Mapper itself resides at the broker’s
primary port, which is normally located at the standard port number 7676. (If necessary, you
can use the broker configuration property imq.portmapper.port to override this with a
different port number.) By default, each connection service registers itself with the Port Mapper
when it starts up. When a client creates a connection to the broker, the Message Queue client
runtime first contacts the Port Mapper, requesting a port number for the desired connection
service.

Alternatively, you can override the Port Mapper and explicitly assign a static port number to a
connection service, using the imq.serviceName.protocolType. port configuration property
(where serviceName and protocolType identify the specific connection service, as shown in
Table 6–1). (Only the jms, ssljms, admin, and ssladmin connection services can be configured

Configuring Connection Services

Chapter 6 • Configuring and Managing Connection Services 97

this way; the httpjms and httpsjms services use different configuration properties, described in
Appendix C, “HTTP/HTTPS Support”). Static ports are generally used only in special
situations, however, such as in making connections through a firewall (see “Connecting
Through a Firewall” on page 171), and are not recommended for general use.

Note – In cases where two or more hosts are available (such as when more than one network
interface card is installed in a computer), you can use broker properties to specify which host
the connection services should bind to. The imq.hostname property designates a single default
host for all connection services; this can then be overridden, if necessary, with imq.serviceName.
protocolType.hostname (for the jms, ssljms, admin, or ssladmin service) or
imq.portmapper.hostname (for the Port Mapper itself).

When multiple Port Mapper requests are received concurrently, they are stored in an operating
system backlog while awaiting action. The imq.portmapper.backlog property specifies the
maximum number of such backlogged requests. When this limit is exceeded, any further
requests will be rejected until the backlog is reduced.

Thread Pool Management
Each connection service is multithreaded, supporting multiple connections. The threads
needed for these connections are maintained by the broker in a separate thread pool for each
service. As threads are needed by a connection, they are added to the thread pool for the service
supporting that connection.

The threading model you choose specifies whether threads are dedicated to a single connection
or shared by multiple connections:
■ In the dedicated model, each connection to the broker requires two threads: one for

incoming and one for outgoing messages. This limits the number of connections that can be
supported, but provides higher performance.

■ In the shared model, connections are processed by a shared thread when sending or
receiving messages. Because each connection does not require dedicated threads, this model
increases the number of possible connections, but at the cost of lower performance because
of the additional overhead needed for thread management.

The broker’s imq.serviceName. threadpool_model property specifies which of the two models
to use for a given connection service. This property takes either of two string values: dedicated
or shared. If you don’t set the property explicitly, dedicated is assumed by default.

You can also set the broker properties imq.serviceName. min_threads and imq.serviceName.
max_threads to specify a minimum and maximum number of threads in a service’s thread pool.
When the number of available threads exceeds the specified minimum threshold, Message
Queue will shut down threads as they become free until the minimum is reached again, thereby

Configuring Connection Services

Open Message Queue 4.5 Administration Guide • February 201198

saving on memory resources. Under heavy loads, the number of threads might increase until
the pool’s maximum number is reached; at this point, new connections are rejected until a
thread becomes available.

The shared threading model uses distributor threads to assign threads to active connections.
The broker property imq.shared.connectionMonitor_limit specifies the maximum number
of connections that can be monitored by a single distributor thread. The smaller the value of
this property, the faster threads can be assigned to connections. The imq.ping.interval
property specifies the time interval, in seconds, at which the broker will periodically test
(“ping”) a connection to verify that it is still active, allowing connection failures to be detected
preemptively before an attempted message transmission fails.

Managing Connection Services
Message Queue brokers support connections from both application clients and administrative
clients. See “Configuring Connection Services” on page 95 for a description of the available
connection services. The Command utility provides subcommands that you can use for
managing both connection services as a whole and individual services; to apply a subcommand
to a particular service, use the -n option to specify one of the names listed in the “Service Name”
column of Table 6–1. Subcommands are available for the following connection service
management tasks:

■ “Pausing and Resuming a Connection Service” on page 99
■ “Updating Connection Service Properties” on page 100
■ “Viewing Connection Service Information” on page 101

Pausing and Resuming a Connection Service
Pausing a connection service has the following effects:

■ The broker stops accepting new client connections on the paused service. If a Message
Queue client attempts to open a new connection, it will get an exception.

■ All existing connections on the paused service are kept alive, but the broker suspends all
message processing on such connections until the service is resumed. (For example, if a
client attempts to send a message, the send method will block until the service is resumed.)

■ The message delivery state of any messages already received by the broker is maintained.
(For example, transactions are not disrupted and message delivery will resume when the
service is resumed.)

The admin connection service can never be paused; to pause and resume any other service, use
the subcommands imqcmd pause svc and imqcmd resume svc. The syntax of the imqcmd pause
svc subcommand is as follows:

Managing Connection Services

Chapter 6 • Configuring and Managing Connection Services 99

imqcmd pause svc -n serviceName
[-b hostName:portNumber]

For example, the following command pauses the httpjms service running on the default broker
(host localhost at port 7676):

imqcmd pause svc -n httpjms -u admin

The imqcmd resume svc subcommand resumes operation of a connection service following a
pause:

imqcmd resume svc -n serviceName
[-b hostName:portNumber]

Updating Connection Service Properties
You can use the imqcmd update svc subcommand to change the value of one or more of the
service properties listed in Table 6–2. See “Connection Properties” on page 343 for a description
of these properties.

TABLE 6–2 Connection Service Properties Updated by Command Utility

Property Description

port Port assigned to the service to be updated (does not apply to httpjms or
httpsjms)

A value of 0 means the port is dynamically allocated by the Port Mapper.

minThreads Minimum number of threads assigned to the service

maxThreads Maximum number of threads assigned to the service

The imqcmd update svc subcommand has the following syntax:

imqcmd update svc -n serviceName
[-b hostName:portNumber]

-o property1=value1 [[-o property2=value2]...]

For example, the following command changes the minimum number of threads assigned to the
jms connection service on the default broker (host localhost at port 7676) to 20:

imqcmd update svc -o minThreads=20 -u admin

Managing Connection Services

Open Message Queue 4.5 Administration Guide • February 2011100

Viewing Connection Service Information
To list the connection services available on a broker, use the imqcmd list svc subcommand:

imqcmd list svc [-b hostName:portNumber]

For example, the following command lists all services on the default broker (host localhost at
port 7676):

imqcmd list svc -u admin

Example 6–1 shows an example of the resulting output.

EXAMPLE 6–1 Connection Services Listing

--

Service Name Port Number Service State

--

admin 41844 (dynamic) RUNNING

httpjms - UNKNOWN

httpsjms - UNKNOWN

jms 41843 (dynamic) RUNNING

ssladmin dynamic UNKNOWN

ssljms dynamic UNKNOWN

The imqcmd query svc subcommand displays information about a single connection service:

imqcmd query svc -n serviceName
[-b hostName:portNumber]

For example, the following command displays information about the jms connection service on
the default broker (host localhost at port 7676):

imqcmd query svc -n jms -u admin

Managing Connection Services

Chapter 6 • Configuring and Managing Connection Services 101

Example 6–2 shows an example of the resulting output.

EXAMPLE 6–2 Connection Service Information Listing

Service Name jms

Service State RUNNING

Port Number 60920 (dynamic)

Current Number of Allocated Threads 0

Current Number of Connections 0

Min Number of Threads 10

Max Number of Threads 1000

To display metrics information about a connection service, use the imqcmd metrics svc
subcommand:

imqcmd metrics svc -n serviceName
[-b hostName:portNumber]

[-m metricType]
[-int interval]
[-msp numSamples]

The -m option specifies the type of metric information to display:

■ ttl (default): Messages and packets flowing into and out of the broker by way of the
specified connection service

■ rts: Rate of flow of messages and packets into and out of the broker per second by way of the
specified connection service

■ cxn: Connections, virtual memory heap, and threads

The -int and -msp options specify, respectively, the interval (in seconds) at which to display the
metrics and the number of samples to display in the output. The default values are 5 seconds
and an unlimited number of samples.

For example, the following command displays cumulative totals for messages and packets
handled by the default broker (host localhost at port 7676) by way of the jms connection
service:

imqcmd metrics svc -n jms -m ttl -u admin

Managing Connection Services

Open Message Queue 4.5 Administration Guide • February 2011102

Example 6–3 shows an example of the resulting output.

EXAMPLE 6–3 Connection Service Metrics Listing

Msgs Msg Bytes Pkts Pkt Bytes

In Out In Out In Out In Out

164 100 120704 73600 282 383 135967 102127

657 100 483552 73600 775 876 498815 149948

For a more detailed description of the use of the Command utility to report connection service
metrics, see “Connection Service Metrics” on page 420.

Managing Connections
The Command utility’s list cxn and query cxn subcommands display information about
individual connections. The subcommand imqcmd list cxn lists all connections for a specified
connection service:

imqcmd list cxn [-svn serviceName]
[-b hostName:portNumber]

If no service name is specified, all connections are listed. For example, the following command
lists all connections on the default broker (host localhost at port 7676):

imqcmd list cxn -u admin

Managing Connections

Chapter 6 • Configuring and Managing Connection Services 103

Example 6–4 shows an example of the resulting output.

EXAMPLE 6–4 Broker Connections Listing

Listing all the connections on the broker specified by:

Host Primary Port

localhost 7676

Connection ID User Service Producers Consumers Host

1964412264455443200 guest jms 0 1 127.0.0.1

1964412264493829311 admin admin 1 1 127.0.0.1

Successfully listed connections.

To display detailed information about a single connection, obtain the connection identifier
from imqcmd list cxn and pass it to the imqcmd query cxn subcommand:

imqcmd query cxn -n connectionID
[-b hostName:portNumber]

For example, the command

imqcmd query cxn -n 421085509902214374 -u admin

produces output like that shown in Example 6–5.

EXAMPLE 6–5 Connection Information Listing

Connection ID 421085509902214374

User guest

Service jms

Producers 0

Consumers 1

Host 111.22.333.444

Port 60953

Client ID

Client Platform

The imqcmd destroy cxn subcommand destroys a connection:

Managing Connections

Open Message Queue 4.5 Administration Guide • February 2011104

imqcmd destroy cxn -n connectionID
[-b hostName:portNumber]

For example, the command

imqcmd destroy cxn -n 421085509902214374 -u admin

destroys the connection shown in Example 6–5.

Managing Connections

Chapter 6 • Configuring and Managing Connection Services 105

106

Managing Message Delivery

A Message Queue message is routed to its consumer clients by way of a physical destination on a
message broker. The broker manages the memory and persistent storage associated with the
physical destination and configures its behavior. The broker also manages memory at a
system-wide level, to assure that sufficient resources are available to support all destinations.

Message delivery also involves the maintenance of state information needed by the broker to
route messages to consumers and to track acknowledgements and transactions.

This chapter provides information needed to manage message delivery, and includes the
following topics:

■ “Configuring and Managing Physical Destinations” on page 107
■ “Managing Broker System-Wide Memory” on page 121
■ “Managing Durable Subscriptions” on page 123
■ “Managing Transactions” on page 124

Configuring and Managing Physical Destinations
This section describes how to use the Message Queue Command utility (imqcmd) to manage
physical destinations. It includes discussion of a specialized physical destination managed by
the broker, the dead message queue, whose properties differ somewhat from those of other
destinations.

Note – In a broker cluster, you create a physical destination on one broker and the cluster
propagates it to all the others. Because the brokers cooperate to route messages across the
cluster, client applications can consume messages from destinations on any broker in the
cluster. However the persistence and acknowledgment of a message is managed only by the
broker to which a message was originally produced.

This section covers the following topics regarding the management of physical destinations:

7C H A P T E R 7

107

■ “Command Utility Subcommands for Physical Destination Management” on page 108
■ “Creating and Destroying Physical Destinations” on page 109
■ “Pausing and Resuming a Physical Destination” on page 112
■ “Purging a Physical Destination” on page 113
■ “Updating Physical Destination Properties” on page 114
■ “Viewing Physical Destination Information” on page 114
■ “Managing Physical Destination Disk Utilization” on page 118
■ “Using the Dead Message Queue” on page 120

Note – For provider independence and portability, client applications typically use destination
administered objects to interact with physical destinations. Chapter 11, “Managing
Administered Objects,” describes how to configure such administered objects for use by client
applications. For a general conceptual introduction to physical destinations, see the Message
Queue Technical Overview.

Command Utility Subcommands for Physical
Destination Management
The Message Queue Command utility (imqcmd) enables you to manage physical destinations
interactively from the command line. See Chapter 16, “Command Line Reference,” for general
reference information about the syntax, subcommands, and options of the imqcmd command,
and Chapter 18, “Physical Destination Property Reference,” for specific information on the
configuration properties used to specify physical destination behavior.

Table 7–1 lists the imqcmd subcommands for physical destination management. For full
reference information about these subcommands, see Table 16–7.

TABLE 7–1 Physical Destination Subcommands for the Command Utility

Subcommand Description

create dst Create physical destination

destroy dst Destroy physical destination

pause dst Pause message delivery for physical destination

resume dst Resume message delivery for physical destination

purge dst Purge all messages from physical destination

compact dst Compact physical destination

update dst Set physical destination properties

list dst List physical destinations

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011108

TABLE 7–1 Physical Destination Subcommands for the Command Utility (Continued)
Subcommand Description

query dst List physical destination property values

metrics dst Display physical destination metrics

Creating and Destroying Physical Destinations
The subcommand imqcmd create dst creates a new physical destination:

imqcmd create dst -t destType -n destName
[[-o property=value] ...]

You supply the destination type (q for a queue or t for a topic) and the name of the destination.

Naming Destinations
Destination names must conform to the rules described below for queue and topic destinations.

Supported Queue Destination Names

Queue destination names must conform to the following rules:

■ It must contain only alphabetic characters (A–Z, a–z), digit characters (0—9), underscores
(_), and dollar signs ($).

■ It must not contain spaces.
■ It must begin with an alphabetic character (A–Z, a–z), an underscore (_), or a dollar sign ($).
■ It must not begin with the characters mq.

For example, the following command creates a queue destination named XQueue:

imqcmd create dst -t q -n XQueue

Supported Topic Destination Names

Topic destination names must conform to the same rules as queue destinations, as specified in
“Supported Queue Destination Names” on page 109, except that Message Queue also supports,
in addition, topic destination names that include wildcard characters, representing multiple
destinations. These symbolic names allow publishers to publish messages to multiple topics and
subscribers to consume messages from multiple topics. Using symbolic names, you can create
destinations, as needed, consistent with the wildcard naming scheme. Publishers and
subscribers automatically publish to and consume from any added destinations that match the
symbolic names. (Wildcard topic subscribers are more common than publishers.)

Configuring and Managing Physical Destinations

Chapter 7 • Managing Message Delivery 109

The format of a symbolic topic destination name consists of multiple segments, in which
wildcard characters (*, **, >) can represent one or more segments of the name. For example,
suppose you have a topic destination naming scheme as follows:

size.color.shape

where the topic name segments can have the following values:
■ size: large, medium, small, ...
■ color: red, green, blue, ...
■ shape: circle, triangle, square, ...

Message Queue supports the following wildcard characters:
■ * matches a single segment
■ ** matches one or more segments
■ > matches any number of successive segments

You can therefore indicate multiple topic destinations as follows:

large.*.circle would represent:

large.red.circle

large.green.circle

...

**.square would represent all names ending in .square, for example:

small.green.square

medium.blue.square

...

small.> would represent all destination names starting with small., for example:

small.blue.circle

small.red.square

...

To use this multiple destination feature, you create topic destinations using a naming scheme
similar to that described above. For example, the following command creates a topic destination
named large.green.circle:

imqcmd create dst -t t -n large.green.circle

Client applications can then create wildcard publishers or wildcard consumers using symbolic
destination names, as shown in the following examples:

EXAMPLE 7–1 Wildcard Publisher

...

String DEST_LOOKUP_NAME = "large.*.circle";

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011110

EXAMPLE 7–1 Wildcard Publisher (Continued)

Topic t = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

TopicPublisher myPublisher = mySession.createPublisher(t)

myPublisher.send(myMessage);

In this example, the broker will place a copy of the message in any destination that matches the
symbolic name large.*.circle

EXAMPLE 7–2 Wildcard Subscriber

...

String DEST_LOOKUP_NAME = "**.square";
Topic t = (Destination) ctx.lookup(DEST_LOOKUP_NAME);

TopicSubscriber mySubscriber = mySession.createSubscriber(t);

Message m = mySubscriber.receive();

In this example, a subscriber will be created if there is at least one destination that matches the
symbolic name **.square and will receive messages from all destinations that match that
symbolic name. If there are no destinations matching the symbolic name, the subscriber will
not be registered with the broker until such a destination exists.

If you create additional destinations that match a symbolic name, then wildcard publishers
created using that symbolic name will subsequently publish to that destination and wildcard
subscribers created using that symbolic name will subsequently receive messages from that
destination.

In addition, Message Queue administration tools, in addition to reporting the total number of
publishers (producers) and subscribers (consumers) for a topic destination, will also report the
number of publishers that are wildcard publishers (including their corresponding symbolic
destination names) and the number of subscribers that are wildcard subscribers (including
their symbolic destination names), if any. See “Viewing Physical Destination Information” on
page 114.

Setting Property Values
The imqcmd create dst command may also optionally include any property values you wish to
set for the destination, specified with the -o option. For example, the following command
creates a topic destination named hotTopic with a maximum message length of 5000 bytes:

imqcmd create dst -t t -n hotTopic -o maxBytesPerMsg=5000

See Chapter 18, “Physical Destination Property Reference,” for reference information about the
physical destination properties that can be set with this option. (For auto-created destinations,
you set default property values in the broker’s instance configuration file; see Table 17–3 for
information on these properties.)

Configuring and Managing Physical Destinations

Chapter 7 • Managing Message Delivery 111

Destroying Destinations
To destroy a physical destination, use the imqcmd destroy dst subcommand:

imqcmd destroy dest -t destType -n destName

This purges all messages at the specified destination and removes it from the broker; the
operation is not reversible.

For example, the following command destroys the queue destination named curlyQueue:

imqcmd destroy dest -t q -n curlyQueue -u admin

Note – You cannot destroy the dead message queue.

Pausing and Resuming a Physical Destination
Pausing a physical destination temporarily suspends the delivery of messages from producers to
the destination, from the destination to consumers, or both. This can be useful, for instance, to
prevent destinations from being overwhelmed when messages are being produced much faster
than they are consumed. You must also pause a physical destination before compacting it (see
“Managing Physical Destination Disk Utilization” on page 118).

To pause the delivery of messages to or from a physical destination, use the imqcmd pause dst
subcommand:

imqcmd pause dest [-t destType -n destName]
[-pst pauseType]

If you omit the destination type and name (-t and -n options), all physical destinations will be
paused. The pause type (-pst) specifies what type of message delivery to pause:

PRODUCERS Pause delivery from message producers to the destination

CONSUMERS Pause delivery from the destination to message consumers

ALL Pause all message delivery (both producers and consumers)

If no pause type is specified, all message delivery will be paused.

For example, the following command pauses delivery from message producers to the queue
destination curlyQueue:

imqcmd pause dst -t q -n curlyQueue -pst PRODUCERS -u admin

The following command pauses delivery to message consumers from the topic destination
hotTopic:

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011112

imqcmd pause dst -t t -n hotTopic -pst CONSUMERS -u admin

This command pauses all message delivery to and from all physical destinations:

imqcmd pause dst -u admin

Note – In a broker cluster, since each broker in the cluster has its own instance of each physical
destination, you must pause each such instance individually.

The imqcmd resume dst subcommand resumes delivery to a paused destination:

imqcmd resume dest [-t destType -n destName]

For example, the following command resumes message delivery to the queue destination
curlyQueue:

imqcmd resume dst -t q -n curlyQueue -u admin

If no destination type and name are specified, all destinations are resumed. This command
resumes delivery to all physical destinations:

imqcmd resume dst -u admin

Purging a Physical Destination
Purging a physical destination deletes all messages it is currently holding. You might want to do
this when a destination’s accumulated messages are taking up too much of the system’s
resources, such as when a queue is receiving messages but has no registered consumers to which
to deliver them, or when a topic’s durable subscribers remain inactive for long periods of time.

To purge a physical destination, use the imqcmd purge dst subcommand:

imqcmd purge dst -t destType -n destName

For example, the following command purges all accumulated messages from the topic
destination hotTopic:

imqcmd purge dst -t t -n hotTopic -u admin

Note – In a broker cluster, since each broker in the cluster has its own instance of each physical
destination, you must purge each such instance individually.

Configuring and Managing Physical Destinations

Chapter 7 • Managing Message Delivery 113

Tip – When restarting a broker that has been shut down, you can use the Broker utility’s
-reset messages option to clear out its stale messages: for example,

imqbrokerd -reset messages -u admin

This saves you the trouble of purging physical destinations after restarting the broker.

Updating Physical Destination Properties
The subcommand imqcmd update dst changes the values of specified properties of a physical
destination:

imqcmd update dst -t destType -n destName
-o property1=value1 [[-o property2=value2] ...]

The properties to be updated can include any of those listed in Table 18–1 (with the exception
of the isLocalOnly property, which cannot be changed once the destination has been created).
For example, the following command changes the maxBytesPerMsg property of the queue
destination curlyQueue to 1000 and the maxNumMsgs property to 2000:

imqcmd update dst -t q -n curlyQueue -u admin

-o maxBytesPerMsg=1000

-o maxNumMsgs=2000

Note – The type of a physical destination is not an updatable property; you cannot use the
imqcmd update dst subcommand to change a queue to a topic or a topic to a queue.

Viewing Physical Destination Information
To list the physical destinations on a broker, use the imqcmd list dst subcommand:

imqcmd list dst -b hostName:portNumber [-t destType] [-tmp]

This lists all physical destinations on the broker identified by hostName and portNumber of the
type (queue or topic) specified by destType. If the -t option is omitted, both queues and topics
are listed. For example, the following command lists all physical destinations on the broker
running on host myHost at port number 4545:

imqcmd list dst -b myHost:4545

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011114

Note – The list of queue destinations always includes the dead message queue (mq.sys.dmq) in
addition to any other queue destinations currently existing on the broker.

If you specify the -tmp option, temporary destinations are listed as well. These are destinations
created by clients, normally for the purpose of receiving replies to messages sent to other clients.

The imqcmd query dst subcommand displays information about a single physical destination:

imq query dst -t destType -n destName

For example, the following command displays information about the queue destination
curlyQueue:

imqcmd query dst -t q -n curlyQueue -u admin

Configuring and Managing Physical Destinations

Chapter 7 • Managing Message Delivery 115

Example 7–3 shows an example of the resulting output. You can use the imqcmd update dst
subcommand (see “Updating Physical Destination Properties” on page 114) to change the value
of any of the properties listed.

EXAMPLE 7–3 Physical Destination Information Listing

Destination Name Destination Type

large.green.circle Topic

On the broker specified by:

Host Primary Port

localhost 7676

Destination Name large.green.circle

Destination Type Topic

Destination State RUNNING

Created Administratively true

Current Number of Messages

Actual 0

Remote 0

Held in Transaction 0

Current Message Bytes

Actual 0

Remote 0

Held in Transaction 0

Current Number of Producers 0

Current Number of Producer Wildcards 0

Current Number of Consumers 1

Current Number of Consumer Wildcards 1

large.*.circle (1)

Max Number of Messages unlimited (-1)

Max Total Message Bytes unlimited (-1)

Max Bytes per Message unlimited (-1)

Max Number of Producers 100

Limit Behavior REJECT_NEWEST

Consumer Flow Limit 1000

Is Local Destination false

Use Dead Message Queue true

XML schema validation enabled false

XML schema URI List -

Reload XML schema on failure false

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011116

For destinations in a broker cluster, it is often helpful to know how many messages in a
destination are local (produced to the local broker) and how many are remote (produced to a
remote broker). Hence, imqcmd query dst reports, in addition to the number and total message
bytes of messages in the destination, the number and total bytes of messages that are sent to the
destination from remote brokers in the cluster.

For topic destinations, imqcmd query dst reports the number of publishers that are wildcard
publishers (including their corresponding symbolic destination names) and the number of
subscribers that are wildcard subscribers (including their symbolic destination names), if any.

To display metrics information about a physical destination, use the imqcmd metrics dst
subcommand:

imqcmd metrics dst -t destType -n destName
[-m metricType]
[-int interval]
[-msp numSamples]

The -m option specifies the type of metric information to display:

■ ttl (default): Messages and packets flowing into and out of the destination and residing in
memory

■ rts: Rate of flow of messages and packets into and out of the destination per second, along
with other rate information

■ con: Metrics related to message consumers
■ dsk: Disk usage

The -int and -msp options specify, respectively, the interval (in seconds) at which to display the
metrics and the number of samples to display in the output. The default values are 5 seconds
and an unlimited number of samples.

For example, the following command displays cumulative totals for messages and packets
handled by the queue destination curlyQueue:

imqcmd metrics dst -t q -n curlyQueue -m ttl -u admin

Configuring and Managing Physical Destinations

Chapter 7 • Managing Message Delivery 117

Example 7–4 shows an example of the resulting output.

EXAMPLE 7–4 Physical Destination Metrics Listing

Msgs Msg Bytes Msg Count Total Msg Bytes (k) Largest

In Out In Out Current Peak Avg Current Peak Avg Msg (k)

3128 3066 1170102 1122340 128 409 29 46 145 10 < 1

4858 4225 1863159 1635458 144 201 33 53 181 42 < 1

2057 1763 820804 747200 84 377 16 71 122 79 < 1

For a more detailed description of the use of the Command utility to report physical destination
metrics, see “Physical Destination Metrics” on page 421.

Managing Physical Destination Disk Utilization
Because of the way message storage is structured in a file-based persistent data store (see
“File-Based Persistence Properties” on page 128), disk space can become fragmented over time,
resulting in inefficient utilization of the available resources. Message Queue’s Command utility
(imqcmd) provides subcommands for monitoring disk utilization by physical destinations and
for reclaiming unused disk space when utilization drops.

To monitor a physical destination’s disk utilization, use the imqcmd metrics dst subcommand:

imqcmd metrics dst -m dsk -t destType -n destMame

This displays the total number of bytes of disk space reserved for the destination’s use, the
number of bytes currently in use to hold active messages, and the percentage of available space
in use (the disk utilization ratio). For example, the following command displays disk utilization
information for the queue destination curlyQueue:

imqcmd metrics dst -m dsk -t q -n curlyQueue -u admin

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011118

Example 7–5 shows an example of the resulting output.

EXAMPLE 7–5 Destination Disk Utilization Listing

Reserved Used Utilization Ratio

804096 675533 84

1793024 1636222 91

2544640 2243808 88

The disk utilization pattern depends on the characteristics of the messaging application using a
particular physical destination. Depending on the flow of messages into and out of the
destination and their relative size, the amount of disk space reserved might grow over time. If
messages are produced at a higher rate than they are consumed, free records should generally be
reused and the utilization ratio should be on the high side. By contrast, if the rate of message
production is comparable to or lower than the consumption rate, the utilization ratio will likely
be low.

As a rule, you want the reserved disk space to stabilize and the utilization ratio to remain high. If
the system reaches a steady state in which the amount of reserved disk space remains more or
less constant with utilization above 75%, there is generally no need to reclaim unused disk
space. If the reserved space stabilizes at a utilization rate below 50%, you can use the imqcmd
compact dst subcommand to reclaim the disk space occupied by free records:

compact dst [-t destType -n destName]

This compacts the file-based data store for the designated physical destination. If no destination
type and name are specified, all physical destinations are compacted.

You must pause a destination (with the imqcmd pause subcommand) before compacting it, and
resume it (with imqcmd resume) afterward (see “Pausing and Resuming a Physical Destination”
on page 112):

imqcmd pause dst -t q -n curlyQueue -u admin

imqcmd compact dst -t q -n curlyQueue -u admin

imqcmd resume dst -t q -n curlyQueue -u admin

Tip – If a destination’s reserved disk space continues to increase over time, try reconfiguring its
maxNumMsgs, maxBytesPerMsg, maxTotalMsgBytes, and limitBehavior properties (see
“Physical Destination Properties” on page 387).

Configuring and Managing Physical Destinations

Chapter 7 • Managing Message Delivery 119

Using the Dead Message Queue
The dead message queue, mq.sys.dmq, is a system-created physical destination that holds the
dead messages of a broker's physical destinations. The dead message queue is a tool for
monitoring, tuning system efficiency, and troubleshooting. For a definition of the term dead
message and a more detailed introduction to the dead message queue, see the Message Queue
Technical Overview.

The broker automatically creates a dead message queue when it starts. The broker places
messages on the queue if it cannot process them or if their time-to-live has expired. In addition,
other physical destinations can use the dead message queue to hold discarded messages. This
can provide information that is useful for troubleshooting the system.

Managing the Dead Message Queue
The physical destination configuration property useDMQ controls a destination’s use of the dead
message queue. Physical destinations are configured to use the dead message queue by default;
to disable a destination from using it, set the destination’s useDMQ property to false:

imqcmd update dst -t q -n curlyQueue -o useDMQ=false

You can enable or disable the use of the dead message queue for all auto-created physical
destinations on a broker by setting the broker’s imq.autocreate.destination.useDMQ broker
property:

imqcmd update bkr -o imq.autocreate.destination.useDMQ=false

You can manage the dead message queue with the Message Queue Command utility (imqcmd)
just as you manage other queues, but with some differences. For example, because the dead
message queue is system-created, you cannot create, pause, or destroy it. Also, as shown in
Table 7–2, default values for the dead message queue’s configuration properties sometimes
differ from those of ordinary queues.

TABLE 7–2 Dead Message Queue Treatment of Physical Destination Properties

Property Variant Treatment by Dead Message Queue

maxNumMsgs Default value is 1000, rather than −1 (unlimited) as for ordinary
queues.

maxTotalMsgBytes Default value is 10m (10 megabytes), rather than −1 (unlimited) as for
ordinary queues.

limitBehavior Default value is REMOVE_OLDEST, rather than REJECT_NEWEST as for
ordinary queues.

FLOW_CONTROL is not supported for the dead message queue.

maxNumProducers Does not apply to the dead message queue.

Configuring and Managing Physical Destinations

Open Message Queue 4.5 Administration Guide • February 2011120

TABLE 7–2 Dead Message Queue Treatment of Physical Destination Properties (Continued)
Property Variant Treatment by Dead Message Queue

isLocalOnly Permanently set to false in broker clusters; the dead message queue
in a cluster is always a global physical destination.

localDeliveryPreferred Does not apply to the dead message queue.

Tip – By default, the dead message queue stores entire messages. If you do not plan to restore
dead messages, you can reduce the size of the dead message queue by setting the broker’s
imq.destination.DMQ.truncateBody property to true:

imqcmd update bkr -o imq.destination.DMQ.truncateBody=true

This will discard the body of all messages and retain only the headers and property data.

Enabling Dead Message Logging
The broker configuration property logDeadMsgs controls the logging of events related to the
dead message queue. When dead message logging is enabled, the broker will log the following
events:
■ A message is moved to the dead message queue.
■ A message is discarded from the dead message queue (or from any physical destination that

does not use the dead message queue).
■ A physical destination reaches its limits.

Dead message logging is disabled by default. The following command enables it:

imqcmd update bkr -o imq.destination.logDeadMsgs=true

Note – Dead message logging applies to all physical destinations that use the dead message
queue. You cannot enable or disable logging for an individual physical destination.

Managing Broker System-Wide Memory
Once clients are connected to the broker, the routing and delivery of messages can proceed. In
this phase, the broker is responsible for creating and managing different types of physical
destinations, ensuring a smooth flow of messages, and using resources efficiently. You can use
the broker configuration properties described under “Routing and Delivery Properties” on
page 346 to manage these tasks in a way that suits your application’s needs.

The performance and stability of a broker depend on the system resources (such as memory)
available and how efficiently they are utilized. You can set configuration properties to prevent

Managing Broker System-Wide Memory

Chapter 7 • Managing Message Delivery 121

the broker from becoming overwhelmed by incoming messages or running out of memory.
These properties function at three different levels to keep the message service operating as
resources become scarce:
■ Systemwide message limits apply collectively to all physical destinations on the system.

These include the maximum number of messages held by a broker
(imq.system.max_count) and the maximum total number of bytes occupied by such
messages (imq.system.max_size). If either of these limits is reached, the broker will reject
any new messages until the pending messages fall below the limit. There is also a limit on the
maximum size of an individual message (imq.message.max_size) and a time interval at
which expired messages are reclaimed (imq.message.expiration.interval).

■ Individual destination limits regulate the flow of messages to a specific physical
destination. The configuration properties controlling these limits are described in
Chapter 18, “Physical Destination Property Reference.” They include limits on the number
and size of messages the destination will hold, the number of message producers and
consumers that can be created for it, and the number of messages that can be batched
together for delivery to the destination.
The destination can be configured to respond to memory limits by slowing down the
delivery of message by message producers, by rejecting new incoming messages, or by
throwing out the oldest or lowest-priority existing messages. Messages deleted from the
destination in this way may optionally be moved to the dead message queue rather than
discarded outright; the broker property imq.destination.DMQ.truncateBody controls
whether the entire message body is saved in the dead message queue, or only the header and
property data.
As a convenience during application development and testing, you can configure a message
broker to create new physical destinations automatically whenever a message producer or
consumer attempts to access a nonexistent destination. The broker properties summarized
in Table 17–3 parallel the ones just described, but apply to such auto-created destinations
instead of administratively created ones.

■ System memory thresholds define levels of memory usage at which the broker takes
increasingly serious action to prevent memory overload. Four such usage levels are defined:
■ Green: Plenty of memory is available.
■ Yellow: Broker memory is beginning to run low.
■ Orange: The broker is low on memory.
■ Red: The broker is out of memory.

The memory utilization percentages defining these levels are specified by the broker
properties imq.green.threshold, imq.yellow.threshold , imq.orange.threshold,
and imq.red.threshold , respectively; the default values are 0% for green, 80% for
yellow, 90% for orange, and 98% for red.
As memory usage advances from one level to the next, the broker responds
progressively, first by swapping messages out of active memory into persistent storage
and then by throttling back producers of nonpersistent messages, eventually stopping

Managing Broker System-Wide Memory

Open Message Queue 4.5 Administration Guide • February 2011122

the flow of messages into the broker. (Both of these measures degrade broker
performance.) The throttling back of message production is done by limiting the size of
each batch delivered to the number of messages specified by the properties
imq.resourceState .count, where resourceState is green , yellow, orange, or red ,
respectively.

The triggering of these system memory thresholds is a sign that systemwide and destination
message limits are set too high. Because the memory thresholds cannot always catch potential
memory overloads in time, you should not rely on them to control memory usage, but rather
reconfigure the system-wide and destination limits to optimize memory resources.

Managing Durable Subscriptions
Message Queue clients subscribing to a topic destination can register as durable subscribers. The
corresponding durable subscription has a unique, persistent identity and requires the broker to
retain messages addressed to it even when its message consumer (the durable subscriber)
becomes inactive. Ordinarily, the broker may delete a message held for a durable subscriber
only when the message expires.

The Message Queue Command utility provides subcommands for managing a broker’s durable
subscriptions in the following ways:

■ Listing durable subscriptions
■ Purging all messages for a durable subscription
■ Destroying a durable subscription

To list durable subscriptions for a specified physical destination, use the imqcmd list dur
subcommand:

imqcmd list dur -d topicName

For example, the following command lists all durable subscriptions to the topic SPQuotes on
the default broker (host localhost at port 7676):

imqcmd list dur -d SPQuotes

Managing Durable Subscriptions

Chapter 7 • Managing Message Delivery 123

The resulting output lists the name of each durable subscription to the topic, the client identifier
to which it belongs, its current state (active or inactive), and the number of messages currently
queued to it. Example 7–6 shows an example.

EXAMPLE 7–6 Durable Subscription Information Listing

Name Client ID Number of Durable Sub

Messages State

--

myDurable myClientID 1 INACTIVE

The imqcmd purge dur subcommand purges all messages for a specified durable subscriber and
client identifier:

imqcmd purge dur -n subscriberName
-c clientID

For example, the following command purges all messages for the durable subscription listed in
Example 7–6:

imqcmd purge dur -n myCurable -c myClientID

The imqcmd destroy dur subcommand destroys a durable subscription, specified by its
subscriber name and client identifier:

imqcmd destroy dur -n subscriberName
-c clientID

For example, the following command destroys the durable subscription listed in Example 7–6:

imqcmd destroy dur -n myCurable -c myClientID

Managing Transactions
All transactions initiated by client applications are tracked by the broker. These can be local
Message Queue transactions or distributed transactions managed by a distributed transaction
manager.

Each transaction is identified by a unique 64-bit Message Queue transaction identifier.
Distributed transactions also have a distributed transaction identifier (XID), up to 128 bytes
long, assigned by the distributed transaction manager. Message Queue maintains the
association between its own transaction identifiers and the corresponding XIDs.

The imqcmd list txn subcommand lists the transactions being tracked by a broker:

Managing Transactions

Open Message Queue 4.5 Administration Guide • February 2011124

imqcmd list txn

This lists all transactions on the broker, both local and distributed. For each transaction, it
shows the transaction ID, state, user name, number of messages and acknowledgments, and
creation time. Example 7–7 shows an example of the resulting output.

EXAMPLE 7–7 Broker Transactions Listing

Transaction ID State User name # Msgs/ Creation time

Acks

64248349708800 PREPARED guest 4/0 1/30/02 10:08:31 AM

64248371287808 PREPARED guest 0/4 1/30/02 10:09:55 AM

To display detailed information about a single transaction, obtain the transaction identifier
from imqcmd list txn and pass it to the imqcmd query txn subcommand:

imqcmd query txn -n transactionID

This displays the same information as imqcmd list txn, along with the client identifier,
connection identification, and distributed transaction identifier (XID). For example, the
command

imqcmd query txn -n 64248349708800

produces output like that shown in Example 7–8.

EXAMPLE 7–8 Transaction Information Listing

Client ID

Connection guest@192.18.116.219:62209->jms:62195

Creation time 1/30/02 10:08:31 AM

Number of acknowledgments 0

Number of messages 4

State PREPARED

Transaction ID 64248349708800

User name guest

XID 6469706F6C7369646577696E6465723130313234313431313030373230

If a broker fails, it is possible that a distributed transaction could be left in the PREPARED state
without ever having been committed. Until such a transaction is committed, its messages will
not be delivered and its acknowledgments will not be processed. Hence, as an administrator,

Managing Transactions

Chapter 7 • Managing Message Delivery 125

you might need to monitor such transactions and commit them or roll them back manually. For
example, if the broker’s imq.transaction.autorollback property (see Table 17–2) is set to
false, you must manually commit or roll back non-distributed transactions and unrecoverable
distributed transactions found in the PREPARED state at broker startup, using the Command
utility’s commit txn or rollback txn subcommand:

imqcmd commit txn -n transactionID

imqcmd rollback txn -n transactionID

For example, the following command commits the transaction listed in Example 7–8:

imqcmd commit txn -n64248349708800

Note – Only transactions in the PREPARED state can be committed . However, transaction in
the STARTED, FAILED, INCOMPLETE, COMPLETE, and PREPARED states can be rolled back. You
should do so only if you know that the transaction has been left in this state by a failure and is
not in the process of being committed by the distributed transaction manager.

Managing Transactions

Open Message Queue 4.5 Administration Guide • February 2011126

Configuring Persistence Services

For a broker to recover in case of failure, it needs to re-create the state of its message delivery
operations. To do this, the broker must save state information to a persistent data store. When
the broker restarts, it uses the saved data to re-create destinations and durable subscriptions,
recover persistent messages, roll back open transactions, and rebuild its routing table for
undelivered messages. It can then resume message delivery.

A persistent data store is thus a key aspect of providing for reliable message delivery. This
chapter describes the two different persistence implementations supported by the Message
Queue broker and how to set each of them up:

■ “Introduction to Persistence Services” on page 127
■ “File-Based Persistence” on page 128
■ “JDBC-Based Persistence” on page 131
■ “Data Store Formats” on page 135

Introduction to Persistence Services
A broker’s persistent data store holds information about physical destinations, durable
subscriptions, messages, transactions, and acknowledgments.

Message Queue supports both file-based and JDBC-based persistence modules, as shown in the
following figure. File-based persistence uses individual files to store persistent data;
JDBC-based persistence uses the Java Database Connectivity (JDBC) interface to connect the
broker to a JDBC-based data store. While file-based persistence is generally faster than
JDBC-based persistence, some users prefer the redundancy and administrative control
provided by a JDBC database. The broker configuration property imq.persist.store (see
Table 17–5) specifies which of the two persistence modules (file or jdbc) to use.

8C H A P T E R 8

127

Message Queue brokers are configured by default to use a file-based persistent store, but you
can reconfigure them to plug in any data store accessible through a JDBC-compliant driver. The
broker configuration property imq.persist.store (see Table 17–5) specifies which of the two
forms of persistence to use.

File-Based Persistence
By default, Message Queue uses a file-based data store, in which individual files store persistent
data (such as messages, destinations, durable subscriptions, transactions, and routing
information).

The file-based data store is located in a directory identified by the name of the broker instance
(instanceName) to which the data store belongs:

.../instances/instanceName/fs370

(See Appendix A, “Distribution-Specific Locations of Message Queue Data,” for the location of
the instances directory.) Each destination on the broker has its own subdirectory holding
messages delivered to that destination.

Note – Because the data store can contain messages of a sensitive or proprietary nature, you
should secure the …/instances/instanceName/fs370 directory against unauthorized access;
see “Securing a File-Based Data Store” on page 130.

File-Based Persistence Properties
Broker configuration properties related to file-based persistence are listed under “File-Based
Persistence Properties” on page 352. These properties let you configure various aspects of how
the file-based data store behaves.

FIGURE 8–1 Persistent Data Stores

Broker

File-based
Data Store

Physical
Destinations

JDBC-based
Data Store

File-Based Persistence

Open Message Queue 4.5 Administration Guide • February 2011128

All persistent data other than messages is stored in separate files: one file each for destinations,
durable subscriptions, and transaction state information. Most messages are stored in a single
file consisting of variable-size records. You can compact this file to alleviate fragmentation as
messages are added and removed (see “Managing Physical Destination Disk Utilization” on
page 118). In addition, messages above a certain threshold size are stored in their own
individual files rather than in the variable-sized record file. You can configure this threshold
size with the broker property imq.persist.file.message.max_record_size.

The broker maintains a file pool for these individual message files: instead of being deleted
when it is no longer needed, a file is returned to the pool of free files in its destination directory
so that it can later be reused for another message. The broker property
imq.persist.file.destination.message.filepool.limit specifies the maximum number
of files in the pool. When the number of individual message files for a destination exceeds this
limit, files will be deleted when no longer needed instead of being returned to the pool.

When returning a file to the file pool, the broker can save time at the expense of storage space by
simply tagging the file as available for reuse without deleting its previous contents. You can use
the imq.persist.file.message.filepool.cleanratio broker property to specify the
percentage of files in each destination’s file pool that should be maintained in a “clean” (empty)
state rather than simply marked for reuse. The higher you set this value, the less space will be
required for the file pool, but the more overhead will be needed to empty the contents of files
when they are returned to the pool. If the broker’s imq.persist.file.message.cleanup
property is true, all files in the pool will be emptied at broker shutdown, leaving them in a clean
state; this conserves storage space but slows down the shutdown process.

In writing data to the data store, the operating system has some leeway in whether to write the
data synchronously or “lazily” (asynchronously). Lazy storage can lead to data loss in the event
of a system crash, if the broker believes the data to have been written to the data store when it
has not. To ensure absolute reliability (at the expense of performance), you can require that all
data be written synchronously by setting the broker property
imq.persist.file.sync.enabled to true. In this case, the data is guaranteed to be available
when the system comes back up after a crash, and the broker can reliably resume operation.

Configuring a File-Based Data Store
A file-based data store is automatically created when you create a broker instance. However,
you can configure the data store using the properties described in “File-Based Persistence
Properties” on page 128.

For example, by default, Message Queue performs asynchronous write operations to disk.
However, to attain the highest reliability, you can set the broker property
imq.persist.file.sync to write data synchronously instead. See Table 17–6.

When you start a broker instance, you can use the imqbrokerd command’s -- reset option to
clear the file-based data store. For more information about this option and its suboptions, see
“Broker Utility” on page 318.

File-Based Persistence

Chapter 8 • Configuring Persistence Services 129

Securing a File-Based Data Store
The persistent data store can contain, among other information, message files that are being
temporarily stored. Since these messages may contain proprietary information, it is important
to secure the data store against unauthorized access. This section describes how to secure data
in a file-based data store.

A broker using file-based persistence writes persistent data to a flat-file data store whose
location is platform-dependent (see Appendix A, “Distribution-Specific Locations of Message
Queue Data”):

.../instances/instanceName/fs370

where instanceName is a name identifying the broker instance. This directory is created when
the broker instance is started for the first time. The procedure for securing this directory
depends on the operating system platform on which the broker is running:
■ On Solaris and Linux, the directory’s permissions are determined by the file mode creation

mask (umask) of the user who started the broker instance. Hence, permission to start a
broker instance and to read its persistent files can be restricted by setting the mask
appropriately. Alternatively, an administrator (superuser) can secure persistent data by
setting the permissions on the instances directory to 700.

■ On Windows, the directory’s permissions can be set using the mechanisms provided by the
Windows operating system. This generally involves opening a Properties dialog for the
directory.

Optimizing File-Based Transaction Persistence
Because many activities can occur during a transaction, persisting a transaction's state over the
complete life cycle of the transaction can adversely affect overall performance, especially when
the imq.persist.file.sync.enabled property is set to true to avoid data loss in case of a
system crash.

Message Queue provides a transaction logging mechanism that can improve performance of
transaction persistence. This transaction log offers tuning parameters that can improve
performance of file-based persistence for other objects, such as message payloads.

To enable this transaction logging mechanism, set the imq.persist.file.newTxnLogenabled
broker property to true.

After enabling the transaction log, essential changes to the state of a JMS transaction are written
to the transaction log. When the transaction is committed, all details regarding it are gathered
and written to the persistent store. Additionally, the logging mechanism periodically performs a
“checkpoint” operation to ensure that the persistent store and the transaction log are
synchronized and that the log size remains manageable.

File-Based Persistence

Open Message Queue 4.5 Administration Guide • February 2011130

As a further refinement, the operation of the logging mechanism is subject to the value of the
imq.persist.file.sync.enabled broker property:

■ When imq.persist.file.sync.enabled is true, write operations to the transaction log are
written synchronously to disk. Non-transacted message and non-transacted message
acknowledgements are also written synchronously to the transaction log before being
written asynchronously to the persistent store.

■ When imq.persist.file.sync.enabled is false, write operations to the transaction log
are written asynchronously to disk. Non-transacted message and non-transacted message
acknowledgements are not written to the transaction log.

The tuning parameters supported by the transaction logging mechanism are:

■ imq.persist.file.txnLog.groupCommit

■ imq.persist.file.txnLog.logNonTransactedMsgSend

■ imq.persist.file.txnLog.logNonTransactedMsgAck

Information about these parameters can be found in Table 17–7.

JDBC-Based Persistence
Instead of using a file-based data store, you can set up a broker to access any data store
accessible through a JDBC-compliant driver. This involves setting the appropriate
JDBC-related broker configuration properties and using the Database Manager utility
(imqdbmgr) to create the proper database schema. See “Configuring a JDBC-Based Data Store”
on page 133 for specifics.

JDBC-Based Persistence Properties
The full set of properties for configuring a broker to use a JDBC database are listed in
Table 17–8. You can specify these properties either in the instance configuration file
(config.properties) of each broker instance or by using the -D command line option to the
Broker utility (imqbrokerd) or the Database Manager utility (imqdbmgr).

In practice, however, JDBC properties are preconfigured by default, depending on the database
vendor being used for the data store. The property values are set in the default.properties
file, and only need to be explicitly set if you are overriding the default values. In general, you
only need to set the following properties:

■ imq.persist.store

This property specifies that a JDBC-based data store (as opposed to the default file-based
data store) is used to store persistent data.

■ imq.persist.jdbc.dbVendor

JDBC-Based Persistence

Chapter 8 • Configuring Persistence Services 131

This property identifies the database vendor being used for the data store; all of the
remaining properties are qualified by this vendor name.

■ imq.persist.jdbcvendorName.user
This property specifies the user name to be used by the broker in accessing the database.

■ imq.persist.jdbcvendorName.password
This property specifies the password for accessing the database, if required;
imq.persist.jdbc.vendorName.needpassword is a boolean flag specifying whether a
password is needed. For security reasons, the database access password should be specified
only in a password file referenced with the -passfile command line option; if no such
password file is specified, the imqbrokerd and imqdbmgr commands will prompt for the
password interactively.

■ imq.persist.jdbc.vendorName.property.propName
This set of properties represents any additional, vendor-specific properties that are required.

■ imq.persist.jdbc.vendorName.tableoption
Specifies the vendor-specific options passed to the database when creating the table schema.

EXAMPLE 8–1 Broker Properties for MySQL Database

imq.persist.store=jdbc

imq.persist.jdbc.dbVendor=mysql

imq.persist.jdbc.mysql.user=userName
imq.persist.jdbc.mysql.password=password
imq.persist.jdbc.mysql.property.url=jdbc:mysql://hostName:port/dataBase

If you expect to have messages that are larger than 1 MB, configure MySQL's
max_allowed_packet variable accordingly when starting the database. For more information
see Appendix B of the MySQL 5.0 Reference Manual.

EXAMPLE 8–2 Broker Properties for HADB Database

imq.persist.store=jdbc

imq.persist.jdbc.dbVendor=hadb

imq.persist.jdbc.hadb.user=userName
imq.persist.jdbc.hadb.password=password
imq.persist.jdbc.hadb.property.serverlist=hostName:port,hostName:port,...

You can obtain the server list using the hadbm get jdbcURL command.

In addition, in an enhanced broker cluster, in which a JDBC database is shared by multiple
broker instances, each broker must be uniquely identified in the database (unnecessary for an
embedded database, which stores data for only one broker instance). The configuration
property imq.brokerid specifies a unique instance identifier to be appended to the names of
database tables for each broker. See “Enhanced Broker Cluster Properties” on page 179.

After setting all of the broker’s needed JDBC configuration properties, you must also install
your JDBC driver’s .jar file in the appropriate directory location, depending on your

JDBC-Based Persistence

Open Message Queue 4.5 Administration Guide • February 2011132

operating-system platform (as listed in Appendix A, “Distribution-Specific Locations of
Message Queue Data”) and then create the database schema for the JDBC-based data store (see
“To Set Up a JDBC-Based Data Store” on page 133).

Configuring a JDBC-Based Data Store
To configure a broker to use a JDBC database, you set JDBC-related properties in the broker’s
instance configuration file and create the appropriate database schema. The Message Queue
Database Manager utility (imqdbmgr) uses your JDBC driver and the broker configuration
properties to create the schema and manage the database. You can also use the Database
Manager to delete corrupted tables from the database or if you want to use a different database
as a data store. See “Database Manager Utility” on page 334 for more information.

Note – If you use an embedded database, it is best to create it under the following directory:

.../instances/instanceName/dbstore/databaseName

If an embedded database is not protected by a user name and password, it is probably protected
by file system permissions. To ensure that the database is readable and writable by the broker,
the user who runs the broker should be the same user who created the embedded database using
the imqdbmgr command.

▼ To Set Up a JDBC-Based Data Store

Set JDBC-related properties in the broker’s instance configuration file.
The relevant properties are discussed, with examples, in “JDBC-Based Persistence Properties”
on page 131 and listed in full in Table 17–8. In particular, you must specify a JDBC-based data
store by setting the broker’s imq.persist.store property to jdbc.

Place a copy of, or a symbolic link to, your JDBC driver’s .jarfile in the Message Queue external
resource files directory, depending on how Message Queue was installed (see Appendix A,
“Distribution-Specific Locations of Message Queue Data”):

IPS packages: IMQ_HOME/lib/ext
Solaris SVR4 packages: /usr/share/lib/imq/ext
Linux RPM packages: /opt/sun/mq/share/lib/ext

For example, if you are using HADB on an IPS package-based installation, the following
command copies the driver’s .jar file to the appropriate location:

cp /opt/SUNWhadb/4/lib/hadbjdbc4.jar IMQ_HOME/lib/ext

The following command creates a symbolic link instead:

ln -s /opt/SUNWhadb/4/lib/hadbjdbc4.jar IMQ_HOME/lib/ext

1

2

JDBC-Based Persistence

Chapter 8 • Configuring Persistence Services 133

Create the database schema needed for Message Queue persistence.
Use the imqdbmgr create all command (for an embedded database) or the imqdbmgr create
tbl command (for an external database); see “Database Manager Utility” on page 334.

a. Change to the directory where the Database Manager utility resides, depending on how
Message Queue was installed:

IPS packages: cd IMQ_HOME/bin

Solaris SVR4 packages: cd /usr/bin
Linux RPM packages: cd /opt/sun/mq/bin

b. Enter the imqdbmgr command:
imqdbmgr create all

▼ To Display Information About a JDBC-Based Data Store
You can display information about a JDBC-based data store using the Database Manager utility
(imqdbmgr) as follows:

Change to the directory where the Database Manager utility resides, depending on how
Message Queue was installed:

IPS packages: cd IMQ_HOME/bin

Solaris SVR4 packages: cd /usr/bin
Linux RPM packages: cd /opt/sun/mq/bin

Enter the imqdbmgr command:
imqdbmgr query

The output should resemble the following

dbmgr query

[04/Oct/2005:15:30:20 PDT] Using plugged-in persistent store:

version=400

brokerid=Mozart1756

database connection url=jdbc:oracle:thin:@Xhome:1521:mqdb

database user=scott

Running in standalone mode.

Database tables have already been created.

Securing a JDBC-Based Data Store
The persistent data store can contain, among other information, message files that are being
temporarily stored. Since these messages may contain proprietary information, it is important
to secure the data store against unauthorized access. This section describes how to secure data
in a JDBC-based data store.

3

1

2

JDBC-Based Persistence

Open Message Queue 4.5 Administration Guide • February 2011134

A broker using JDBC-based persistence writes persistent data to a JDBC-compliant database.
For a database managed by a database server (such as Oracle), it is recommended that you
create a user name and password to access the Message Queue database tables (tables whose
names start with MQ). If the database does not allow individual tables to be protected, create a
dedicated database to be used only by Message Queue brokers. See the documentation provided
by your database vendor for information on how to create user name/password access.

The user name and password required to open a database connection by a broker can be
provided as broker configuration properties. However it is more secure to provide them as
command line options when starting up the broker, using the imqbrokerd command’s
-dbuserand -dbpassword options (see “Broker Utility” on page 318).

For an embedded database that is accessed directly by the broker by means of the database’s
JDBC driver, security is usually provided by setting file permissions on the directory where the
persistent data will be stored, as described above under “Securing a File-Based Data Store” on
page 130 To ensure that the database is readable and writable by both the broker and the
Database Manager utility, however, both should be run by the same user.

Data Store Formats
Changes in the file formats for both file-based and JDBC-based persistent data stores were
introduced in Message Queue 3.7, with further JDBC changes in version 4.0 and 4.1. As a result
of these changes, the persistent data store version numbers have been updated to 370 for
file-based data stores and 410 for JDBC-based stores. You can use the imqdbmgr query
command to determine the version number of your existing data store.

On first startup, the Message Queue Broker utility (imqbrokerd) will check for the presence of
an older persistent data store and automatically migrate it to the latest format:

■ File-based data store versions 200 and 350 are migrated to the version 370 format.
■ JDBC-based data store versions 350, 370, and 400 are migrated to the version 410 format. (If

you need to upgrade a version 200 data store, you will need to step through an intermediate
Message Queue 3.5 or 3.6 release.)

The upgrade leaves the older copy of the persistent data store intact, allowing you to roll back
the upgrade if necessary. To do so, you can uninstall the current version of Message Queue and
reinstall the earlier version you were previously running. The older version’s message brokers
will locate and use the older copy of the data store.

Beginning in Message Queue 4.5, the imq.persist.file.newTxnLog property is true by
default. This setting can generate an error when starting a broker that is using an older
persistent data store. To resolve the error, set the property value to false and start the broker,
thus migrating the data store to the latest format. Then, you can stop the broker, set the
property value back to true, and start the broker without encountering an error.

Data Store Formats

Chapter 8 • Configuring Persistence Services 135

136

Configuring and Managing Security Services

This chapter describes Message Queue’s facilities for security-related administration tasks, such
as configuring user authentication, defining access control, configuring a Secure Socket Layer
(SSL) connection service to encrypt client-broker communication, and setting up a password
file for administrator account passwords. In addition to Message Queue’s own built-in
authentication mechanisms, you can also plug in a preferred external service based on the Java
Authentication and Authorization Service (JAAS) API.

This chapter includes the following sections:

■ “Introduction to Security Services” on page 137
■ “User Authentication” on page 141
■ “User Authorization” on page 155
■ “Message Encryption” on page 161
■ “Password Files” on page 170
■ “Connecting Through a Firewall” on page 171
■ “Audit Logging with the Solaris BSM Audit Log” on page 172

Introduction to Security Services
Message Queue provides security services for user access control (authentication and
authorization) and for encryption:

■ Authentication ensures that only verified users can establish a connection to a broker.
■ Authorization specifies which users or groups have the right to access resources and to

perform specific operations.
■ Encryption protects messages from being tampered with during delivery over a connection.

As a Message Queue administrator, you are responsible for setting up the information the
broker needs to authenticate users and authorize their actions. The broker properties pertaining
to security services are listed under “Security Properties” on page 359. The boolean property

9C H A P T E R 9

137

imq.accesscontrol.enabled acts as a master switch that controls whether access control is
applied on a brokerwide basis; for finer control, you can override this setting for a particular
connection service by setting the imq.serviceName .accesscontrol.enabled property, where
serviceName is the name of the connection service, as shown in Table 6–1: for example,
imq.httpjms.accesscontrol.enabled.

The following figure shows the components used by the broker to provide authentication and
authorization services. These services depend on a user repository containing information about
the users of the messaging system: their names, passwords, and group memberships. In
addition, to authorize specific operations for a user or group, the broker consults an access
control file that specifies which operations a user or group can perform. You can designate a
single access control file for the broker as a whole, using the configuration property
imq.accesscontrol.file.filename, or for a single connection service with imq.serviceName.
accesscontrol.file.filename.

As Figure 9–1 shows, you can store user data in a flat file user repository that is provided with
the Message Queue service, you can access an existing LDAP repository, or you can plug in a
Java Authentication and Authorization Service (JAAS) module.
■ If you choose a flat-file repository, you must use the imqusermgr utility to manage the

repository. This option is easy to use and built-in.

FIGURE 9–1 Security Support

Broker

Access Control
Properties File

Physical
Destinations

accesscontrol.properties

Flat File User
Repository

Authorization

Authentication
JAAS

Authentication
Service

LDAP
Server User
Repository

Introduction to Security Services

Open Message Queue 4.5 Administration Guide • February 2011138

■ If you want to use an existing LDAP server, you use the tools provided by the LDAP vendor
to populate and manage the user repository. You must also set properties in the broker
instance configuration file to enable the broker to query the LDAP server for information
about users and groups.
The LDAP option is better if scalability is important or if you need the repository to be
shared by different brokers. This might be the case if you are using broker clusters.

■ If you want to plug-in an existing JAAS authentication service, you need to set the
corresponding properties in the broker instance configuration file.

The broker’s imq.authentication.basic.user_repository property specifies which type of
repository to use. In general, an LDAP repository or JAAS authentication service is preferable if
scalability is important or if you need the repository to be shared by different brokers (if you are
using broker clusters, for instance). See “User Authentication” on page 141 for more
information on setting up a flat-file user repository, LDAP access, or JAAS authentication
service.

Authentication
A client requesting a connection to a broker must supply a user name and password, which the
broker compares with those stored in the user repository. Passwords transmitted from client to
broker are encoded using either base-64 encoding (for flat-file repositories) or message digest
(MD5) hashing (for LDAP repositories). The choice is controlled by the
imq.authentication.type property for the broker as a whole, or by imq.serviceName.
authentication.type for a specific connection service. The
imq.authentication.client.response.timeout property sets a timeout interval for
authentication requests.

As described under “Password Files” on page 170, you can choose to put your passwords in a
password file instead of being prompted for them interactively. The boolean broker property
imq.passfile.enabled controls this option. If this property is true, the imq.passfile.dirpath
and imq.passfile.name properties give the directory path and file name for the password file.
The imq.imqcmd.password property (which can be embedded in the password file) specifies the
password for authenticating an administrative user to use the Command utility (imqcmd) for
managing brokers, connection services, connections, physical destinations, durable
subscriptions, and transactions.

If you are using an LDAP-based user repository, there are a whole range of broker properties
available for configuring various aspects of the LDAP lookup. The address (host name and port
number) of the LDAP server itself is specified by imq.user_repository.ldap.server. The
imq.user_repository.ldap.principal property gives the distinguished name for binding to
the LDAP repository, while imq.user_repository.ldap.password supplies the associated
password. Other properties specify the directory bases and optional JNDI filters for individual
user and group searches, the provider-specific attribute identifiers for user and group names,
and so forth; see “Security Properties” on page 359 for details.

Introduction to Security Services

Chapter 9 • Configuring and Managing Security Services 139

Authorization
Once authenticated, a user can be authorized to perform various Message Queue-related
activities. As a Message Queue administrator, you can define user groups and assign individual
users membership in them. The default access control file explicitly refers to only one group,
admin (see “User Groups and Status” on page 141). A user in this group has connection
permission for the admin connection service, which allows the user to perform administrative
functions such as creating destinations and monitoring and controlling a broker. A user in any
other group that you define cannot, by default, get an admin service connection.

When a user attempts to perform an operation, the broker checks the user’s name and group
membership (from the user repository) against those specified for access to that operation (in
the access control file). The access control file specifies permissions to users or groups for the
following operations:

■ Connecting to a broker
■ Accessing destinations: creating a consumer, a producer, or a queue browser for any given

destination or for all destinations
■ Auto-creating destinations

For information on configuring authorization, see “User Authorization” on page 155

Encryption
To encrypt messages sent between clients and broker, you need to use a connection service
based on the Secure Socket Layer (SSL) standard. SSL provides security at the connection level
by establishing an encrypted connection between an SSL-enabled broker and client.

To use an SSL-based Message Queue connection service, you generate a public/private key pair
using the Message Queue Key Tool utility (imqkeytool). This utility embeds the public key in a
self-signed certificate and places it in a Message Queue key store. The key store is itself
password-protected; to unlock it, you must provide a key store password at startup time,
specified by the imq.keystore.password property. Once the key store is unlocked, a broker can
pass the certificate to any client requesting a connection. The client then uses the certificate to
set up an encrypted connection to the broker.

For information on configuring encryption, see “Message Encryption” on page 161

Introduction to Security Services

Open Message Queue 4.5 Administration Guide • February 2011140

User Authentication
Users attempting to connect to a Message Queue message broker must provide a user name and
password for authentication. The broker will grant the connection only if the name and
password match those in a broker-specific user repository listing the authorized users and their
passwords. Each broker instance can have its own user repository, which you as an
administrator are responsible for maintaining. This section tells how to create, populate, and
manage the user repository.

Message Queue can support any of three types of authentication mechanism:
■ A flat-file repository that is shipped with Message Queue. This type of repository is very

easy to populate and manage, using the Message Queue User Manager utility (imqusermgr).
See “Using a Flat-File User Repository” on page 141.

■ A Lightweight Directory Access Protocol (LDAP) server. This could be a new or existing
LDAP directory server using the LDAP v2 or v3 protocol. You use the tools provided by the
LDAP vendor to populate and manage the user repository. This type of repository is not as
easy to use as the flat-file repository, but it is more scalable and therefore better for
production environments. See “Using an LDAP User Repository” on page 147.

■ An external authentication mechanism plugged into Message Queue by means of the Java
Authentication and Authorization Service (JAAS) API. See “Using JAAS-Based
Authentication” on page 150.

Using a Flat-File User Repository
Message Queue provides a built-in flat-file user repository and a command line tool, the User
Manager utility (imqusermgr), for populating and managing it. Each broker has its own flat-file
user repository, created automatically when you start the broker. The user repository resides in
a file named passwd, in a directory identified by the name of the broker instance with which the
repository is associated:

.../instances/instanceName/etc/passwd

(See Appendix A, “Distribution-Specific Locations of Message Queue Data,” for the exact
location of the instances directory, depending on your operating system platform.)

User Groups and Status
Each user in the repository can be assigned to a user group, which defines the default access
privileges granted to all of its members. You can then specify authorization rules to further
restrict these access privileges for specific users, as described in “User Authorization” on
page 155. A user’s group is assigned when the user entry is first created, and cannot be changed
thereafter. The only way to reassign a user to a different group is to delete the original user entry
and add another entry specifying the new group.

User Authentication

Chapter 9 • Configuring and Managing Security Services 141

The flat-file user repository provides three predefined groups:

admin For broker administrators. By default, users in this group are granted the access
privileges needed to configure, administer, and manage message brokers.

user For normal (non-administrative) client users. Newly created user entries are
assigned to this group unless otherwise specified. By default, users in this group
can connect to all Message Queue connection services of type NORMAL, produce
messages to or consume messages from all physical destinations, and browse
messages in any queue.

anonymous For Message Queue clients that do not wish to use a user name known to the
broker (for instance, because they do not know of a real user name to use). This
group is analogous to the anonymous account provided by most FTPservers. No
more than one user at a time can be assigned to this group. You should restrict
the access privileges of this group in comparison to the user group, or remove
users from the group at deployment time.

You cannot rename or delete these predefined groups or create new ones.

In addition to its group, each user entry in the repository has a user status: either active or
inactive. New user entries added to the repository are marked active by default. Changing a
user’s status to inactive rescinds all of that user’s access privileges, making the user unable to
open new broker connections. Such inactive entries are retained in the user repository,
however, and can be reactivated at a later time. If you attempt to add a new user with the same
name as an inactive user already in the repository, the operation will fail; you must either delete
the inactive user entry or give the new user a different name.

To allow the broker to be used immediately after installation without further intervention by
the administrator, the flat-file user repository is created with two initial entries, summarized in
Table 9–1:

■ The admin entry (user name and password admin/admin) enables you to administer the
broker with Command utility (imqcmd) commands. Immediately on installation, you should
update this initial entry to change its password (see “Changing a User’s Password” on
page 145).

■ The guest entry allows clients to connect to the broker using a default user name and
password (guest/guest).

You can then proceed to add any additional user entries you need for individual users of your
message service.

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011142

TABLE 9–1 Initial Entries in Flat-File User Repository

User Name Password Group Status

admin admin admin Active

guest guest anonymous Active

Using the User Manager Utility
The Message Queue User Manager utility (imqusermgr) enables you to populate or edit a
flat-file user repository. See“User Manager Utility” on page 336 for general reference
information about the syntax, subcommands, and options of the imqusermgr command.

User Manager Preliminaries

Before using the User Manager, keep the following things in mind:

■ The imqusermgr command must be run on the host where the broker is installed.
■ If a broker-specific user repository does not yet exist, you must start up the corresponding

broker instance to create it.
■ You must have appropriate permissions to write to the repository; in particular, on Solaris

and Linux platforms, you must be logged in as the root user or the user who first created the
broker instance.

Subcommands and General Options

Table 9–2 lists the subcommands of the imqusermgr command. For full reference information
about these subcommands, see Table 16–15.

TABLE 9–2 User Manager Subcommands

Subcommand Description

add Add user and password to repository

delete Delete user from repository

update Set user’s password or active status (or both)

list Display user information

The general options listed in Table 9–3 apply to all subcommands of the imqusermgr command.

User Authentication

Chapter 9 • Configuring and Managing Security Services 143

TABLE 9–3 General User Manager Options

Option Description

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1

-h Display usage help1

1 Any other options specified on the command line are ignored.

Displaying the Product Version
To display the Message Queue product version, use the -v option. For example:

imqusermgr -v

If you enter an imqusermgr command line containing the -v option in addition to a
subcommand or other options, the User Manager utility processes only the -v option. All other
items on the command line are ignored.

Displaying Help
To display help on the imqusermgr command, use the -h option, and do not use a
subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imqusermgr:

imqusermgr -h

If you enter an imqusermgr command line containing the -h option in addition to a
subcommand or other options, the Command utility processes only the -h option. All other
items on the command line are ignored.

Adding a User to the Repository
The subcommand imqusermgr add adds an entry to the user repository, consisting of a user
name and password:

imqusermgr add [-i brokerName]
-u userName -p password

[-g group]

The -u and -p options specify the user name and password, respectively, for the new entry.
These must conform to the following conventions:

■ All user names and passwords must be at least one character long. Their maximum length is
limited only by command shell restrictions on the maximum number of characters that can
be entered on a command line.

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011144

■ A user name cannot contain an asterisk (*), a comma (,), a colon (:), or a new-line or
carriage-return character.

■ If a user name or password contains a space, the entire name or password must be enclosed
in quotation marks (" ").

The optional -g option specifies the group (admin, user, or anonymous) to which the new user
belongs; if no group is specified, the user is assigned to the user group by default. If the broker
name (-i option) is omitted, the default broker imqbroker is assumed.

For example, the following command creates a user entry on broker imqbroker for a user
named AliBaba, with password Sesame, in the admin group:

imqusermgr add -u AliBaba -p Sesame -g admin

Deleting a User From the Repository

The subcommand imqusermgr delete deletes a user entry from the repository:

imqusermgr delete [-i brokerName]
-u userName

The -u option specifies the user name of the entry to be deleted. If the broker name (-i option)
is omitted, the default broker imqbroker is assumed.

For example, the following command deletes the user named AliBaba from the user repository
on broker imqbroker:

imqusermgr delete -u AliBaba

Changing a User’s Password

You can use the subcommand imqusermgr update to change a user’s password:

imqusermgr update [-i brokerName]
-u userName -p password

The -u identifies the user; -p specifies the new password. If the broker name (-i option) is
omitted, the default broker imqbroker is assumed.

For example, the following command changes the password for user AliBaba to Shazam on
broker imqbroker:

imqusermgr update -u AliBaba -p Shazam

User Authentication

Chapter 9 • Configuring and Managing Security Services 145

Note – For the sake of security, you should change the password of the admin user from its initial
default value (admin) to one that is known only to you. The following command changes the
default administrator password for broker mybroker to veeblefetzer:

imqusermgr update -i mybroker -u admin -p veeblefetzer

You can quickly confirm that this change is in effect by running any of the command line tools
when the broker is running. For example, the following command will prompt you for a
password:

imqcmd list svc mybroker -u admin

Entering the new password (veeblefetzer) should work; the old password should fail.

After changing the password, you should supply the new password whenever you use any of the
Message Queue administration tools, including the Administration Console.

Activating or Deactivating a User
The imqusermgr update subcommand can also be used to change a user’s active status:

imqusermgr update [-i brokerName]
-u userName -a activeStatus

The -u identifies the user; -a is a boolean value specifying the user’s new status as active (true)
or inactive (false). If the broker name (-i option) is omitted, the default broker imqbroker is
assumed.

For example, the following command sets user AliBaba’s status to inactive on broker
imqbroker:

imqusermgr update -u AliBaba -a false

This renders AliBabe unable to open new broker connections.

You can combine the -p (password) and -a (active status) options in the same imqusermgr
update command. The options may appear in either order: for example, both of the following
commands activate the user entry for AliBaba and set the password to plugh:

imqusermgr update -u AliBaba -p plugh -a true

imqusermgr update -u AliBaba -a true -p plugh

Viewing User Information
The imqusermgr list command displays information about a user in the user repository:

imqusermgr list [-i brokerName]
[-u userName]

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011146

The command

imqusermgr list -u AliBaba

displays information about user AliBabe, as shown in Example 9–1.

EXAMPLE 9–1 Viewing Information for a Single User

User repository for broker instance: imqbroker

User Name Group Active State

AliBaba admin true

If you omit the -u option

imqusermgr list

the command lists information about all users in the repository, as in Example 9–2.

EXAMPLE 9–2 Viewing Information for All Users

User repository for broker instance: imqbroker

User Name Group Active State

admin admin true

guest anonymous true

AliBaba admin true

testuser1 user true

testuser2 user true

testuser3 user true

testuser4 user false

testuser5 user false

Using an LDAP User Repository
You configure a broker to use an LDAP directory server by setting the values for certain
configuration properties in the broker’s instance configuration file (config.properties).
These properties enable the broker instance to query the LDAP server for information about
users and groups when a user attempts to connect to the broker or perform messaging
operations.

User Authentication

Chapter 9 • Configuring and Managing Security Services 147

■ The imq.authentication.basic.user_repository property specifies the kind of user
authentication the broker is to use. By default, this property is set to file, for a flat-file user
repository. For LDAP authentication, set it to ldap instead:

imq.authentication.basic.user_repository=ldap

■ The imq.authentication.type property controls the type of encoding used when passing a
password between client and broker. By default, this property is set to digest, denoting
MD5 encoding, the form used by flat-file user repositories. For LDAP authentication, set it
to basic instead:

imq.authentication.type=basic

This denotes base-64 encoding, the form used by LDAP user repositories.
■ The following properties control various aspects of LDAP access. See Table 17–10 for more

detailed information:

imq.user_repository.ldap.server

imq.user_repository.ldap.principal

imq.user_repository.ldap.password

imq.user_repository.ldap.propertyName
imq.user_repository.ldap.base

imq.user_repository.ldap.uidattr

imq.user_repository.ldap.usrfilter

imq.user_repository.ldap.grpsearch

imq.user_repository.ldap.grpbase

imq.user_repository.ldap.gidattr

imq.user_repository.ldap.memattr

imq.user_repository.ldap.grpfilter

imq.user_repository.ldap.timeout

imq.user_repository.ldap.ssl.enabled

■ The imq.user_repository.ldap.userformat property, if set to a value of dn, specifies that
the login username for authentication be in DN username format (for example:
uid=mquser,ou=People,dc=red,dc=sun,dc=com). In this case, the broker extracts the value
of the imq.user.repository.lpdap.uidatr attribute from the DN username, and uses this
value as the user name in access control operations (see “User Authorization” on page 155).

■ If you want the broker to use a secure, encrypted SSL (Secure Socket Layer) connection for
communicating with the LDAP server, set the broker’s
imq.user_repository.ldap.ssl.enabled property to true

imq.user_repository.ldap.ssl.enabled=true

and the imq.user_repository.ldap.server property to the port used by the LDAP server
for SSL communication: for example,

imq.user_repository.ldap.server=myhost:7878

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011148

You will also need to activate SSL communication in the LDAP server.

In addition, you may need to edit the user and group names in the broker’s access control file to
match those defined in the LDAP user repository; see “User Authorization” on page 155 for
more information.

For example, to create administrative users, you use the access control file to specify those users
and groups in the LDAP directory that can create ADMIN connections.

Any user or group that can create an ADMIN connection can issue administrative commands.

▼ To Set Up an Administrative User
The following procedure makes use of a broker's access control file, which is described in “User
Authorization” on page 155.

Enable the use of the access control file by setting the broker property
imq.accesscontrol.enabled to true, which is the default value.

The imq.accesscontrol.enabled property enables use of the access control file.

Open the access control file, accesscontrol.properties. The location for the file is listed in
Appendix A,“Distribution-Specific Locations of Message Queue Data”

The file contains an entry such as the following:

service connection access control

##################################

connection.NORMAL.allow.user=*

connection.ADMIN.allow.group=admin

The entries listed are examples. Note that the admin group exists by default in the file-based user
repository but does not exist by default in the LDAP directory.

To grant Message Queue administrator privileges to users, enter the user names as follows:

connection.ADMIN.allow.user= userName[[,userName2] …]

The users must be defined in the LDAP directory.

To grant Message Queue administrator privileges to groups, enter the group names as follows:

connection.ADMIN.allow.group= groupName[[,groupName2] …]

The groups must be defined in the LDAP directory.

1

2

3

4

User Authentication

Chapter 9 • Configuring and Managing Security Services 149

Using JAAS-Based Authentication
The Java Authentication and Authorization Service (JAAS) API allows you to plug an external
authentication mechanism into Message Queue. This section describes the information that the
Message Queue message broker makes available to a JAAS-compliant authentication service
and explains how to configure the broker to use such a service. The following sources provide
further information on JAAS:

■ For complete information about the JAAS API, see the JavaTM Authentication and
Authorization Service (JAAS) Reference Guide at the URL

http://download.oracle.com/

javase/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

■ For information about writing a JAAS login module, see the JavaTM Authentication and
Authorization Service (JAAS) LoginModule Developer’s Guide at

http://download.oracle.com/

javase/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

JAAS is a core API in Java 2 Standard Edition (J2SE), and is therefore an integral part of
Message Queue’s runtime environment. It defines an abstraction layer between an application
and an authentication mechanism, allowing the desired mechanism to be plugged in with no
change to application code. In the case of the Message Queue service, the abstraction layer lies
between the broker (application) and an authentication provider. By setting a few broker
properties, it is possible to plug in any JAAS-compliant authentication service and to upgrade
this service with no disruption or change to broker code.

Note – You cannot use the Java Management Extensions (JMX) API to change JAAS-related
broker properties. However, once JAAS-based authentication is configured, JMX client
applications (like other clients) can be authenticated using this mechanism.

Elements of JAAS
Figure 9–2 shows the basic elements of JAAS: a JAAS client, a JAAS-compliant authentication
service, and a JAAS configuration file.

■ The JAAS client is an application wishing to perform authentication using a
JAAS-compliant authentication service. The JAAS client communicates with the
authentication service using one or more login modules and is responsible for providing a
callback handler that the login module can call to obtain the user name, password, and other
information needed for authentication.

■ The JAAS-compliant authentication service consists of one or more login modules along
with logic to perform the needed authentication. The login module (LoginModule) may
include the authentication logic itself, or it may use a private protocol or API to
communicate with an external security service that provides the logic.

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011150

http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

■ The JAAS configuration file is a text file that the JAAS client uses to locate the login
module(s) to be used.

JAAS and Message Queue
Figure 9–3 shows how JAAS is used by the Message Queue broker. It shows a more complex
implementation of the JAAS model shown in Figure 9–2.

FIGURE 9–2 JAAS Elements

JAAS Client

LoginContext
CallbackHandler

JAAS
Configuration
File

External Security
Infrastructure

LoginModule

Authentication
Logic

Authentication
Service

User Authentication

Chapter 9 • Configuring and Managing Security Services 151

The authentication service layer, consisting of one or more login modules (if needed) and
corresponding authentication logic, is separate from the broker. The login modules run in the
same Java virtual machine as the broker. The broker is represented to the login module as a
login context, and communicates with the login module by means of a callback handler that is
part of the broker runtime code.

The authentication service also supplies a JAAS configuration file containing entries that
reference the login modules. The configuration file specifies the order in which the login
modules (if more than one) are to be used and any conditions for their use. When the broker
starts up, it locates the configuration file by consulting either the Java system property
java.security.auth.login.config or the Java security properties file. The broker then
selects an entry in the JAAS configuration file according to the value of the broker property
imq.user_repository.jaas.name. That entry specifies which login module(s) will be used for
authentication. The classes for the login modules are found in the Message Queue external
resource files directory, whose location depends on the operating system platform you are
using; see Appendix A, “Distribution-Specific Locations of Message Queue Data,” for details.

The relation between the configuration file, the login module, and the broker is shown in the
following figure. Figure 9–4.

FIGURE 9–3 How Message Queue Uses JAAS

LDAP
Server RDBMS Local

File System

Message Queue
Broker

LoginContext
CallbackHandler

(JAAS Client)

LoginModule1
LoginModule2

Authentication
Logic

(Authentication
Logic)

LoginModule3
(Authentication

Logic)

Message
Queue
Client

VM

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011152

The fact that the broker uses a JAAS plug-in authentication service remains completely
transparent to the Message Queue client. The client continues to connect to the broker as it did
before, passing a user name and password. In turn, the broker uses a callback handler to pass
login information to the authentication service, and the service uses the information to
authenticate the user and return the results. If authentication succeeds, the broker grants the
connection; if it fails, the client runtime returns a JMS security exception that the client must
handle.

After the Message Queue client is authenticated, if there is further authorization to be done, the
broker proceeds as it normally would, consulting the access control file to determine whether
the authenticated client is authorized to perform the actions it undertakes: accessing a
destination, consuming a message, browsing a queue, and so on.

Setting up JAAS-Compliant Authentication
Setting up JAAS-compliant authentication involves setting broker and system properties to
select this type of authentication, to specify the location of the configuration file, and to specify
the entries to the login modules that are going to be used.

To set up JAAS support for Message Queue, you perform the following general steps. (These
steps assume you are creating your own authentication service.)

1. Create one or more login module classes that implement the authentication service. The
JAAS callback types that the broker supports are listed below.

FIGURE 9–4 Setting Up JAAS Support

Broker

LoginModule1.java

MyEntry1{
com.some.module.LoginModule1 required
debug=true
com.some.module.LoginModule2 optional
debug=true }

MyJAASCFile.config

Entry point into the configuration file is
specified with the broker property
imq.user_repository.jaas.name=MyEntry1

LoginModule location is in Message
Queue external resource files directory.
LoginModule classes are dynamically
loaded by the broker.

Configuration file location
is specified with the Java
system property
java.security.auth.login.config
or in the Java security
properties file.

LoginModule communicates with the
broker using CallbackHandler.

CallbackHandler

User Authentication

Chapter 9 • Configuring and Managing Security Services 153

javax.security.auth.callback.LanguageCallback

The broker uses this callback to pass the authentication service the locale in which the
broker is running. This value can be used for localization.

javax.security.auth.callback.NameCallback

The broker uses this callback to pass to the authentication service the user name specified
by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextInputCallback

The broker uses this callback to pass the value of the following information to the login
module (authentication service) when requested through the
TextInputCallback.getPrompt() with the following strings:
■ imq.authentication.type: The broker authentication type in effect at runtime
■ imq.accesscontrol.type: The broker access control type in effect at runtime
■ imq.authentication.clientip: The client IP address (null if unavailable)
■ imq.servicename: The name of the connection service (jms, ssljms, admin, or

ssladmin) being used by the client
■ imq.servicetype: The type of the connection service (NORMAL or ADMIN) being used

by the client

javax.security.auth.callback.PasswordCallback

The broker uses this callback to pass to the authentication service the password specified
by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextOutputCallback

The broker handles this callback to provide logging service to the authentication service
by logging the text output to the broker's log file. The callback's MessageType ERROR,
INFORMATION, WARNING are mapped to the broker logging levels ERROR, INFO, WARNING
respectively.

2. Create a JAAS configuration file with entries that reference the login module classes created
in Step 1 and specify the location of this file.

3. Note the name of the entry in the JAAS configuration file (that references the login module
implementation classes).

4. Archive the classes that implement the login modules to a jar file, and place the jar file in the
Message Queue lib/ext directory.

5. Set the broker configuration properties that relate to JAAS support. These are described in
Table 9–4.

6. Set the following system property (to specify the location of the JAAS configuration file).
java.security.auth.login.config=JAAS_Config_File_Location
For example, you can specify the location when you start the broker.
imqbrokerd -Djava.security.auth.login.config=JAAS_Config_File_Location

User Authentication

Open Message Queue 4.5 Administration Guide • February 2011154

There are other ways to specify the location of the JAAS configuration file. For additional
information, please see
http://download.oracle.com/

javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html

The following table lists the broker properties that need to be set to set up JAAS support.

TABLE 9–4 Broker Properties for JAAS Support

Property Description

imq.authentication.type Set to basic to indicate Base-64 password encoding.
This is the only permissible value for JAAS
authentication.

imq.authentication.basic.user_repository Set to jaas to specify JAAS authentication.

imq.user_repository.jaas.name Set to the name of the desired entry (in the JAAS
configuration file) that references the login modules
you want to use as the authentication mechanism.
This is the name you noted in Step 3.

imq.user_repository.jaas.userPrincipalClass This property, used by Message Queue access control,
specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to represent
the user entity in the Message Queue access control
file. If, it is not specified, the user name passed from
the Message Queue client when a connection was
requested is used instead.

imq.user_repository.jaas.groupPrincipalClass This property, used by Message Queue access control,
specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to represent
the group entity in the Message Queue access control
file. If, it is not specified, the group rules, if any, in the
Message Queue access control file are ignored.

User Authorization
An access control file contains rules that specify which users (or groups of users) are authorized
to perform certain operations on a message broker. These operations include the following:
■ Creating a connection
■ Creating a message producer for a physical destination
■ Creating a message consumer for a physical destination
■ Browsing a queue destination
■ Auto-creating a physical destination

User Authorization

Chapter 9 • Configuring and Managing Security Services 155

http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html

If access control is enabled (that is, if the broker’s imq.accesscontrol.enabled configuration
property is set to true, the broker will consult its access control file whenever a client attempts
one of these operations, to verify whether the user generating the request (or a group to which
the user belongs) is authorized to perform the operation. By editing this file, you can restrict
access to these operations to particular users and groups. Changes take effect immediately; there
is no need to restart the broker after editing the file.

Access Control File Syntax
Each broker has it own access control file, created automatically when the broker is started. The
file is named accesscontrol.properties and is located at a path of the form

.../instances/brokerInstanceName/etc/accesscontrol.properties

(See Appendix A, “Distribution-Specific Locations of Message Queue Data,” for the exact
location, depending on your platform.)

The file is formatted as a Java properties file. It starts with a version property defining the
version of the file:

version=JMQFileAccessControlModel/100

This is followed by three sections specifying the access control for three categories of
operations:

■ Creating connections
■ Creating message producers or consumers, or browsing a queue destination
■ Auto-creating physical destinations

Each of these sections consists of a sequence of authorization rules specifying which users or
groups are authorized to perform which specific operations. These rules have the following
syntax:

resourceType.resourceVariant.operation.access.principalType=principals

Table 9–5 describes the various elements.

TABLE 9–5 Authorization Rule Elements

Element Description

resourceType Type of resource to which the rule applies:
connection: Connections
queue: Queue destinations
topic: Topic destinations

User Authorization

Open Message Queue 4.5 Administration Guide • February 2011156

TABLE 9–5 Authorization Rule Elements (Continued)
Element Description

resourceVariant Specific resource (connection service type or destination) to which the rule
applies

An asterisk (*) may be used as a wild-card character to denote all resources of a
given type: for example, a rule beginning with queue.* applies to all queue
destinations.

operation Operation to which the rule applies

This syntax element is not used for resourceType=connection.

access Level of access authorized:
allow: Authorize user to perform operation
deny: Prohibit user from performing operation

principalType Type of principal (user or group) to which the rule applies:
user: Individual user
group: User group

principals List of principals (users or groups) to whom the rule applies, separated by
commas

An asterisk (*) may be used as a wild-card character to denote all users or all
groups: for example, a rule ending with user=* applies to all users.

EXAMPLE 9–3 Example 1

Rule: queue.q1.consume.allow.user=*

Description: allows all users to consume messages from the queue destination q1.

EXAMPLE 9–4 Example 2

Rule: queue.*.consume.allow.user=Snoopy

Description: allows user Snoopy to consume messages from all queue destinations.

EXAMPLE 9–5 Example 3

Rule: topic.t1.produce.deny.user=Snoopy

Description: prevents Snoopy from producing messages to the topic destination t1

User Authorization

Chapter 9 • Configuring and Managing Security Services 157

Note – You can use Unicode escape (\\uXXXX) notation to specify non-ASCII user, group, or
destination names. If you have edited and saved the access control file with these names in a
non-ASCII encoding, you can use the Java native2ascii tool to convert the file to ASCII. See
the Java Internationalization FAQ at

http://java.sun.com/j2se/1.4/docs/guide/intl/faq.html

for more information.

Application of Authorization Rules
Authorization rules in the access control file are applied according to the following principles:
■ Any operation not explicitly authorized through an authorization rule is implicitly

prohibited. For example, if the access control file contains no authorization rules, all users
are denied access to all operations.

■ Authorization rules for specific users override those applying generically to all users. For
example, the rules

queue.q1.produce.allow.user=*

queue.q1.produce.deny.user=Snoopy

authorize all users except Snoopy to send messages to queue destination q1.
■ Authorization rules for a specific user override those for any group to which the user

belongs. For example, if user Snoopy is a member of group user, the rules

queue.q1.consume.allow.group=user

queue.q1.consume.deny.user=Snoopy

authorize all members of user except Snoopy to receive messages from queue destination
q1.

■ Authorization rules applying generically to all users override those applying to all groups.
For example, the rules

topic.t1.produce.deny.group=*

topic.t1.produce.allow.user=*

authorize all users to publish messages to topic destination t1, overriding the rule denying
such access to all groups.

■ Authorization rules for specific resources override those applying generically to all resources
of a given type. For example, the rules

topic.*.consume.allow.user=Snoopy

topic.t1.consume.deny.user=Snoopy

User Authorization

Open Message Queue 4.5 Administration Guide • February 2011158

authorize Snoopy to subscribe to all topic destinations except t1.
■ Authorization rules authorizing and denying access to the same resource and operation for

the same user or group cancel each other out, resulting in authorization being denied. For
example, the rules

queue.q1.browse.deny.user=Snoopy

queue.q1.browse.allow.user=Snoopy

prevent Snoopy from browsing queue q1. The rules

topic.t1.consume.deny.group=user

topic.t1.consume.allow.group=user

prevent all members of group user from subscribing to topic t1.
■ When multiple authorization rules are specified for the same resource, operation, and

principal type, only the last rule applies. The rules

queue.q1.browse.allow.user=Snoopy,Linus

queue.q1.browse.allow.user=Snoopy

authorize user Snoopy, but not Linus, to browse queue destination q1.

Authorization Rules for Connection Services
Authorization rules with the resource type connection control access to the broker’s
connection services. The rule’s resourceVariant element specifies the service type of the
connection services to which the rule applies, as shown in Table 6–1; the only possible values
are NORMAL or ADMIN. There is no operation element.

The default access control file contains the rules

connection.NORMAL.allow.user=*

connection.ADMIN.allow.group=admin

giving all users access to NORMAL connection services (jms, ssljms, httpjms, and httpsjms) and
those in the admin group access to ADMIN connection services (admin and ssladmin). You can
then add additional authorization rules to restrict the connection access privileges of specific
users: for example, the rule

connection.NORMAL.deny.user=Snoopy

denies user Snoopy access privileges for connection services of type NORMAL.

If you are using a file-based user repository, the admin user group is created by the User
Manager utility. If access control is disabled (imq.accesscontrol.enabled = false), all users
in the admin group automatically have connection privileges for ADMIN connection services. If
access control is enabled, access to these services is controlled by the authorization rules in the
access control file.

User Authorization

Chapter 9 • Configuring and Managing Security Services 159

If you are using an LDAP user repository, you must define your own user groups in the LDAP
directory, using the tools provided by your LDAP vendor. You can either define a group named
admin, which will then be governed by the default authorization rule shown above, or edit the
access control file to refer to one or more other groups that you have defined in the LDAP
directory. You must also explicitly enable access control by setting the broker’s
imq.accesscontrol.enabled property to true.

Authorization Rules for Physical Destinations
Access to specific physical destinations on the broker is controlled by authorization rules with a
resource type of queue or topic, as the case may be. These rules regulate access to the following
operations:

■ Sending messages to a queue: produce operation
■ Receiving messages from a queue: consume operation
■ Publishing messages to a topic: produce operation
■ Subscribing to and consuming messages from a topic: consume operation
■ Browsing a queue: browse operation

By default, all users and groups are authorized to perform all of these operations on any physical
destination. You can change this by editing the default authorization rules in the access control
properties file or overriding them with more specific rules of your own. For example, the rule

topic.Admissions.consume.deny.group=user

denies all members of the user group the ability to subscribe to the topic Admissions.

Authorization Rules for Auto—Created Physical Destinations
When a client creates a message producer or consumer for a physical destination that does not
already exist, the broker will auto-create the destination (provided that the broker’s
imq.autocreate.queue or imq.autocreate.topic property is set to true).

The final section of the access control file controls the ability of users and groups to auto-create
destinations, and to access any auto-created destinations. This is governed by authorization
rules with a resourceType of queue or topic and an operation element of create. the
resourceVariant element is omitted, since these rules apply to all auto-created queues or all
auto-created topics, rather than any specific destination.

The default access control file contains the rules

queue.create.allow.user=*

topic.create.allow.user=*

authorizing all users to have physical destinations auto-created for them by the broker, and to
have access to any auto-created destinations. You can edit the file to restrict such authorization
for specific users. For example, the rule

User Authorization

Open Message Queue 4.5 Administration Guide • February 2011160

topic.create.deny.user=Snoopy

denies user Snoopy the ability to auto-create topic destinations or to access any auto-created
topic destinations.

Note – The effect of such auto-creation rules must be congruent with that of other physical
destination access rules. For example, if you change the destination authorization rule to
prohibit any user from sending a message to a queue, but enable the auto-creation of queue
destinations, the broker will create the physical destination if it does not exist, but will not
deliver a message to it.

Message Encryption
This section explains how to set up a connection service based on the Secure Socket Layer (SSL)
standard, which enables delivery of encrypted messages over the connection. Message Queue
supports the following SSL-based connection services:

■ The ssljms service delivers secure, encrypted messages between a client and a broker, using
the TCP/IP transport protocol.

■ The httpsjms service delivers secure, encrypted messages between a client and a broker,
using an HTTPS tunnel servlet with the HTTP transport protocol.

■ The ssladmin service creates a secure, encrypted connection between the Message Queue
Command utility (imqcmd) and a broker, using the TCP/IP transport protocol. Encrypted
connections are not supported for the Administration Console (imqadmin).

■ The cluster connection service is used internally to provide secure, encrypted
communication between brokers in a cluster, using the TCP/IP transport protocol.

■ A JMX connector that supports secure, encrypted communication between a JMX client
and a broker's MBean server using the RMI transport protocol over TCP.

The remainder of this section describes how to set up secure connections over TCP/IP, using the
ssljms, ssladmin, and cluster connection services. For information on setting up secure
connections over HTTP with the httpsjms service, see Appendix C, “HTTP/HTTPS Support.”

Using Self-Signed Certificates
To use an SSL-based connection service over TCP/IP, you generate a public/private key pair
using the Key Tool utility (imqkeytool). This utility embeds the public key in a self-signed
certificate that is passed to any client requesting a connection to the broker, and the client uses
the certificate to set up an encrypted connection. This section describes how to set up an
SSL-based service using such self-signed certificates.

Message Encryption

Chapter 9 • Configuring and Managing Security Services 161

For a stronger level of authentication, you can use signed certificates verified by a certification
authority. The use of signed certificates involves some additional steps beyond those needed for
self-signed certificates: you must first perform the procedures described in this section and then
perform the additional steps in “Using Signed Certificates” on page 167.

Message Queue's support for SSL with self-signed certificates is oriented toward securing
on-the-wire data, on the assumption that the client is communicating with a known and trusted
server. Configuring SSL with self-signed certificates requires configuration on both the broker
and client:

■ “Setting Up an SSL-Based Connection Service Using Self-Signed Certificates” on page 162
■ “Configuring and Running an SSL-Based Client Using Self-Signed Certificates” on page 166

Setting Up an SSL-Based Connection Service Using Self-Signed
Certificates
The following sequence of procedures are needed to set up an SSL-based connection service for
using self-signed certificates:

Note – Starting with release 4.0, the default value for the client connection factory property
imqSSLIsHostTrusted is false. If your application depends on the prior default value of true,
you need to reconfigure and to set the property explicitly to true. In particular, old or new
clients using self-signed certificates should set this property to true; for example:

java -DimqConnectionType=TLS -DimqSSLIsHostTrusted=true MyApp

The administration tool imqcmd is also affected by this change. In addition to using the –secure
option to specify that it uses a SSL-based admin connection service, the imqSSLIsHostTrusted
should be set to true when connecting to a broker configured with a self-signed certificate. You
can do this as follows:

imqcmd list svc -secure -DimqSSLIsHostTrusted=true

Alternatively, you can import the broker's self-signed certificate into the client runtime trust
store. Use the procedure in “To Install a Signed Certificate” on page 168.

1. Generate a self-signed certificate.
2. Enable the desired SSL-based connection services in the broker. These can include the

ssljms, ssladmin, or cluster connection services.
3. Start the broker.

▼ To Generate a Self-Signed Certificate
Run the Key Tool utility (imqkeytool) to generate a self-signed certificate for the broker. (On
Solaris and Linux operating systems, you may need to run the utility as the root user in order to

Message Encryption

Open Message Queue 4.5 Administration Guide • February 2011162

have permission to create the keystore file.) The same certificate can be used for all SSL-based
connection services (ssljms, ssladmin, cluster connection services, and the ssljmxrmi
connector).

Enter the following at the command prompt:
imqkeytool -broker

The Key Tool utility prompts you for a key store password:

At the prompt type a keystore password.
The Keystore utility prompts you for identifying information from which to construct an X.500
distinguished name. The following table shows the prompts and the values to be provided for
each. Values are case-insensitive and can include spaces.

Prompt X.500 Attribute Description Example

What is your first and

last name?

commonName (CN) Fully qualified name of
server running the broker

mqserver.sun.com

What is the name of

your organizational

unit?

organizationalUnit

(OU)
Name of department or
division

purchasing

What is the name of

your organization?

organizationName (ON) Name of larger
organization, such as a
company or government
entity

Acme Widgets, Inc.

What is the name of

your city or locality?

localityName (L) Name of city or locality San Francisco

What is the name of

your state or

province?

stateName (ST) Full (unabbreviated)
name of state or province

California

What is the two-letter

country code for this

unit?

country (C) Standard two-letter
country code

US

The Key Tool utility displays the information you entered for confirmation. For example,

Is CN=mqserver.sun.com, OU=purchasing, ON=Acme Widgets, Inc.,

L=San Francisco, ST=California, C=US correct?

Accept the current values and proceed by typing yes.
To reenter values, accept the default or enter no. After you confirm, the utility pauses while it
generates a key pair.

The utility asks for a password to lock the key pair (key password).

1

2

3

Message Encryption

Chapter 9 • Configuring and Managing Security Services 163

Press return.
This will set the same password for both the key password and the keystore password.

Caution – Be sure to remember the password you specify. You must provide this password when
you start the broker, to allow the broker to open the keystore file. You can store the keystore
password in a password file (see “Password Files” on page 170).

The Key Tool utility generates a self-signed certificate and places it in Message Queue’s keystore
file. The keystore file is located in a directory whose location depends upon the operating
system platform, as shown in Appendix A, “Distribution-Specific Locations of Message Queue
Data.”

The following are the configurable properties for the Message Queue keystore for SSL-based
connection services:

imq.keystore.file.dirpath Path to directory containing keystore file (see Appendix A,
“Distribution-Specific Locations of Message Queue Data,”
for default value)

imq.keystore.file.name Name of key store file

imq.keystore.password Ke store password (to be used only in a password file)

In some circumstances, you may need to regenerate a key pair in order to solve certain
problems: for example, if you forget the key store password or if the SSL-based service fails to
initialize when you start a broker and you get the exception:

java.security.UnrecoverableKeyException: Cannot recover key

(This exception may result if you provided a key password different from the keystore password
when you generated the self-signed certificate.)

▼ To Regenerate a Key Pair

Remove the broker’s keystore file.
The file is located as shown in Appendix A, “Distribution-Specific Locations of Message Queue
Data.”

Run imqkeytool again.
The command will generate a new key pair, as described above.

▼ To Enable an SSL-Based Connection Service in the Broker
To enable an SSL-based connection service in the broker, you need to add the corresponding
service or services to the imq.service.activelist property.

4

1

2

Message Encryption

Open Message Queue 4.5 Administration Guide • February 2011164

Open the broker’s instance configuration file.
The instance configuration file is located in a directory identified by the name of the broker
instance (instanceName) with which the configuration file is associated (see Appendix A,
“Distribution-Specific Locations of Message Queue Data”):

.../instances/instanceName/props/config.properties

Add an entry (if one does not already exist) for the imq.service.activelist property and
include the desired SSL-based service(s) in the list.
By default, the property includes the jms and admin connection services. Add the SSL-based
service or services you wish to activate (ssljms, ssladmin, or both):

imq.service.activelist=jms,admin,ssljms,ssladmin

Note – The SSL-based cluster connection service is enabled using the imq.cluster.transport
property rather than the imq.service.activelist property (see “Cluster Connection Service
Properties” on page 176). To enable SSL for RMI-based JMX connectors, see “SSL-Based JMX
Connections” on page 467.

Save and close the instance configuration file.

▼ To Start the Broker
Start the broker, providing the key store password.

Note – When you start a broker or client with SSL, you may notice a sharp increase in CPU usage
for a few seconds. This is because the JSSE (Java Secure Socket Extension) method
java.security.SecureRandom, which Message Queue uses to generate random numbers, takes
a significant amount of time to create the initial random number seed. Once the seed is created,
the CPU usage level will drop to normal.

Start the broker, providing the keystore password.
Put the keystore password in a password file, as described in “Password Files” on page 170 and
set the imq.passfile.enabled property to true. You can now do one of the following:

■ Pass the location of the password file to the imqbrokerd command:
imqbrokerd -passfile /passfileDirectory/passfileName

■ Start the broker without the -passfile option, but specify the location of the password file
using the following two broker configuration properties:
imq.passfile.dirpath=/passfileDirectory

imq.passfile.name=/passfileName

1

2

3

1

Message Encryption

Chapter 9 • Configuring and Managing Security Services 165

If you are not using a password file, enter the keystore password at the prompt.
imqbrokerd

You are prompted for the keystore passwrd.

Configuring and Running an SSL-Based Client Using Self-Signed
Certificates
The procedure for configuring a client to use an SSL-based connection service differs depending
on whether it is an application client (using the ssljms connection service) or a Message Queue
administrative client such as imqcmd (using the ssladmin connection service.)

Application Clients

For application clients, you must make sure the client has the following .jar files specified in its
CLASSPATH variable:

imq.jar

jms.jar

Once the CLASSPATH files are properly specified, one way to start the client and connect to the
broker’s ssljms connection service is by entering a command like the following:

java -DimqConnectionType=TLS clientAppName

This tells the connection to use an SSL-based connection service.

Administrative Clients

For administrative clients, you can establish a secure connection by including the -secure
option when you invoke the imqcmd command: for example,

imqcmd list svc -b hostName:portNumber -u userName -secure

where userName is a valid ADMIN entry in the Message Queue user repository. The command
will prompt you for the password.

2

Message Encryption

Open Message Queue 4.5 Administration Guide • February 2011166

Listing the connection services is a way to verify that the ssladmin service is running and that
you can successfully make a secure administrative connection, as shown in Example 9–6.

EXAMPLE 9–6 Connection Services Listing

Listing all the services on the broker specified by:

Host Primary Port

localhost 7676

Service Name Port Number Service State

admin 33984 (dynamic) RUNNING

httpjms - UNKNOWN

httpsjms - UNKNOWN

jms 33983 (dynamic) RUNNING

ssladmin 35988 (dynamic) RUNNING

ssljms dynamic UNKNOWN

Successfully listed services.

Using Signed Certificates
Signed certificates provide a stronger level of server authentication than self-signed certificates.
You can implement signed certificates only between a client and broker, and currently not
between multiple brokers in a cluster. This requires the following extra procedures in addition
to the ones described in “Using Self-Signed Certificates” on page 161. Using signed certificates
requires configuration on both the broker and client:
■ “Obtaining and Installing a Signed Certificate” on page 167
■ “Configuring the Client to Require Signed Certificates” on page 169

Obtaining and Installing a Signed Certificate
The following procedures explain how to obtain and install a signed certificate.

▼ To Obtain a Signed Certificate

Use the J2SE keytool command to generate a certificate signing request (CSR) for the
self-signed certificate you generated in the preceding section.
Information about the keytool command can be found at

http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

Here is an example:

1

Message Encryption

Chapter 9 • Configuring and Managing Security Services 167

http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

keytool -certreq -keyalg RSA -alias imq -file certreq.csr

-keystore /etc/imq/keystore -storepass myStorePassword

This generates a CSR encapsulating the certificate in the specified file (certreq.csr in the
example).

Use the CSR to generate or request a signed certificate.
You can do this by either of the following methods:
■ Have the certificate signed by a well known certification authority (CA), such as Thawte or

Verisign. See your CA’s documentation for more information on how to do this.
■ Sign the certificate yourself, using an SSL signing software package.

The resulting signed certificate is a sequence of ASCII characters. If you receive the signed
certificate from a CA, it may arrive as an e-mail attachment or in the text of a message.

Save the signed certificate in a file.
The instructions below use the example name broker.cer to represent the broker certificate.

▼ To Install a Signed Certificate

Check whether J2SE supports your certification authority by default.
The following command lists the root CAs in the system key store:

keytool -v -list -keystore $JAVA_HOME/lib/security/cacerts

If your CA is listed, skip the next step.

If your certification authority is not supported in J2SE, import the CA’s root certificate into the
Message Queue key store.
Here is an example:

keytool -import -alias ca -file ca.cer -noprompt -trustcacerts

-keystore /etc/imq/keystore -storepass myStorePassword

where ca.cer is the file containing the root certificate obtained from the CA.

If you are using a CA test certificate, you probably need to import the test CA root certificate.
Your CA should have instructions on how to obtain a copy.

Import the signed certificate into the key store to replace the original self-signed certificate.
Here is an example:

keytool -import -alias imq -file broker.cer -noprompt -trustcacerts

-keystore /etc/imq/keystore -storepass myStorePassword

where broker.cer is the file containing the signed certificate that you received from the CA.

The Message Queue key store now contains a signed certificate to use for SSL connections.

2

3

1

2

3

Message Encryption

Open Message Queue 4.5 Administration Guide • February 2011168

Configuring the Client to Require Signed Certificates
You must now configure the Message Queue client runtime to require signed certificates, and
ensure that it trusts the certification authority that signed the certificate.

Note – By default, starting with release 4.0, the connection factory object that the client will be
using to establish broker connections has its imqSSLIsHostTrusted attribute set to false,
meaning that the client runtime will attempt to validate all certificates. Validation will fail if the
signer of the certificate is not in the client's trust store.

▼ To Configure the Client Runtime to Require Signed Certificates

Verify whether the signing authority is registered in the client's trust store.
To test whether the client will accept certificates signed by your certification authority, try to
establish an SSL connection, as described above under “Configuring and Running an SSL-Based
Client Using Self-Signed Certificates” on page 166. If the CA is in the client's trust store, the
connection will succeed and you can skip the next step. If the connection fails with a certificate
validation error, go on to the next step.

Install the signing CA’s root certificate in the client’s trust store.
The client searches the key store files cacerts and jssecacerts by default, so no further
configuration is necessary if you install the certificate in either of those files. The following
example installs a test root certificate from the Verisign certification authority from a file named
testrootca.cer into the default system certificate file, cacerts. The example assumes that
J2SE is installed in the directory $JAVA_HOME/usr/j2se:

keytool -import -keystore /usr/j2se/jre/lib/security/cacerts

-alias VerisignTestCA -file testrootca.cer -noprompt

-trustcacerts -storepass myStorePassword

An alternative (and recommended) option is to install the root certificate into the alternative
system certificate file, jssecacerts:

keytool -import -keystore /usr/j2se/jre/lib/security/jssecacerts

-alias VerisignTestCA -file testrootca.cer -noprompt

-trustcacerts -storepass myStorePassword

A third possibility is to install the root certificate into some other key store file and configure the
client to use that as its trust store. The following example installs into the file
/home/smith/.keystore:

keytool -import -keystore /home/smith/.keystore

-alias VerisignTestCA -file testrootca.cer -noprompt

-trustcacerts -storepass myStorePassword

1

2

Message Encryption

Chapter 9 • Configuring and Managing Security Services 169

Since the client does not search this key store by default, you must explicitly provide its location
to the client to use as a trust store. You do this by setting the Java system property
javax.net.ssl.trustStore once the client is running:

javax.net.ssl.trustStore=/home/smith/.keystore

Password Files
Several types of command require passwords. In Table 9–6, the first column lists the commands
that require passwords and the second column lists the reason that passwords are needed.

TABLE 9–6 Commands That Use Passwords

Command Description Purpose of Password

imqbrokerd Start broker Access a JDBC-based persistent data store, an
SSL certificate key store, or an LDAP user
repository

imqcmd Manage broker Authenticate an administrative user who is
authorized to use the command

imqdbmgr Manage JDBC-based data store Access the data store

You can specify these passwords in a password file and use the -passfile option to specify the
name of the file. This is the format for the -passfile option:

imqbrokerd -passfile filePath

Note – In previous versions of Message Queue, you could use the -p, -password, -dbpassword,
and -ldappassword options to specify passwords on the command line. As of Message Queue
4.0, these options are deprecated and are no longer supported; you must use a password file
instead.

Security Concerns
Typing a password interactively, in response to a prompt, is the most secure method of
specifying a password (provided that your monitor is not visible to other people). You can also
specify a password file on the command line. For non-interactive use of commands, however,
you must use a password file.

A password file is unencrypted, so you must set its permissions to protect it from unauthorized
access. Set the permissions so that they limit the users who can view the file, but provide read
access to the user who starts the broker.

Password Files

Open Message Queue 4.5 Administration Guide • February 2011170

Password File Contents
A password file is a simple text file containing a set of properties and values. Each value is a
password used by a command. Table 9–7 shows the types of passwords that a password file can
contain.

TABLE 9–7 Passwords in a Password File

Password Affected Commands Description

imq.imqcmd.password imqcmd Administrator password for Message Queue
Command utility (authenticated for each
command)

imq.keystore.password imqbrokerd Key store password for SSL-based services

imq.persist.jdbc.password imqbrokerd

imqdbmgr

Password for opening a database connection, if
required

imq.user_repository.ldap.password imqbrokerd Password associated with the distinguished
name assigned to a broker for binding to a
configured LDAP user repository

A sample password file is provided as part of your Message Queue installation; see Appendix A,
“Distribution-Specific Locations of Message Queue Data,” for the location of this file,
depending on your platform.

Connecting Through a Firewall
When a client application is separated from the broker by a firewall, special measures are
needed in order to establish a connection. One approach is to use the httpjms or httpsjms
connection service, which can “tunnel” through the firewall; see Appendix C, “HTTP/HTTPS
Support,” for details. HTTP connections are slower than other connection services, however; a
faster alternative is to bypass the Message Queue Port Mapper and explicitly assign a static port
address to the desired connection service, and then open that specific port in the firewall. This
approach can be used to connect through a firewall using the jms or ssljms connection service
(or, in unusual cases, admin or ssladmin).

TABLE 9–8 Broker Configuration Properties for Static Port Addresses

Connection Service Configuration Property

jms imq.jms.tcp.port

ssljms imq.ssljms.tls.port

admin imq.admin.tcp.port

Connecting Through a Firewall

Chapter 9 • Configuring and Managing Security Services 171

TABLE 9–8 Broker Configuration Properties for Static Port Addresses (Continued)
Connection Service Configuration Property

ssladmin imq.ssladmin.tls.port

▼ To Enable Broker Connections Through a Firewall
Assign a static port address to the connection service you wish to use.
To bypass the Port Mapper and assign a static port number directly to a connection service, set
the broker configuration property imq.serviceName.protocolType.port, where serviceName is
the name of the connection service and protocolType is its protocol type (see Table 9–8). As with
all broker configuration properties, you can specify this property either in the broker's instance
configuration file or from the command line when starting the broker. For example, to assign
port number 10234 to the jms connection service, either include the line

imq.jms.tcp.port=10234

in the configuration file or start the broker with the command

imqbrokerd -name brokerName -Dimq.jms.tcp.port=10234

where brokerName is the name of the broker to be started.

Configure the firewall to allow connections to the port number you assigned to the connection
service.
You must also allow connections through the firewall to Message Queue's Port Mapper port
(normally 7676, unless you have reassigned it to some other port). In the example above, for
instance, you would need to open the firewall for ports 10234 and 7676.

Audit Logging with the Solaris BSM Audit Log
Message Queue supports audit logging. When audit logging is enabled, Message Queue
generates a record for the following types of events:

■ Startup, shutdown, restart, and removal of a broker instance
■ User authentication and authorization
■ Reset of a persistent store
■ Creation, purge, and destruction of a physical destination
■ Administrative destruction of a durable subscriber

Message Queue supports logging audit records to the Message Queuebroker log file and to the
Solaris BSM audit log:

■ To log audit records to the Message Queue broker log file, set the imq.audit.enabled
broker property to true . All audit records in the broker log contain the keyword AUDIT.

1

2

Audit Logging with the Solaris BSM Audit Log

Open Message Queue 4.5 Administration Guide • February 2011172

■ To log audit records to the Solaris BSM audit log, set the imq.audit.bsm.disabled broker
property to false .

Note – To log audit records to the Solaris BSM audit log, you must run the broker as root,
and /usr/lib/audit/Audit.jar must be in the broker classpath.

Audit Logging with the Solaris BSM Audit Log

Chapter 9 • Configuring and Managing Security Services 173

174

Configuring and Managing Broker Clusters

Message Queue supports the use of broker clusters: groups of brokers working together to
provide message delivery services to clients. Clusters enable a message service to scale its
operations to meet an increasing volume of message traffic by distributing client connections
among multiple brokers.

In addition, clusters provide for message service availability. In the case of a conventional
cluster, if a broker fails, clients connected to that broker can reconnect to another broker in the
cluster and continue producing and consuming messages. In the case of an enhanced cluster, if a
broker fails, clients connected to that broker reconnect to a failover broker that takes over the
pending work of the failed broker, delivering messages without interruption of service.

See the Chapter 4, “Broker Clusters,” in Open Message Queue 4.5 Technical Overview for a
description of conventional and enhanced broker clusters and how they operate.

This chapter describes how to configure and manage both conventional and enhanced broker
clusters:

■ “Configuring Broker Clusters” on page 175
■ “Managing Broker Clusters” on page 182

Configuring Broker Clusters
You create a broker cluster by specifying cluster configuration properties for each of its member
brokers. Except where noted in this chapter, cluster configuration properties must be set to the
same value for each broker in a cluster. This section introduces these properties and the use of a
cluster configuration file to specify them:

■ “The Cluster Configuration File” on page 176
■ “Cluster Configuration Properties” on page 176
■ “Displaying a Cluster Configuration” on page 180

10C H A P T E R 1 0

175

The Cluster Configuration File
Like all broker properties, cluster configuration properties can be set individually for each
broker in a cluster, either in its instance configuration file (config.properties) or by using the
-D option on the command line when you start the broker. However, except where noted in this
chapter, each cluster configuration property must be set to the same value for each broker in a
cluster.

For example, to specify the transport protocol for the cluster connection service, you can
include the following property in the instance configuration file for each broker in the cluster:
imq.cluster.transport=ssl. If you need to change the value of this property, you must
change its value in the instance configuration file for every broker in the cluster.

For consistency and ease of maintenance, it is generally more convenient to collect all of the
common cluster configuration properties into a central cluster configuration file that all of the
individual brokers in a cluster reference. Using a cluster configuration file prevents the settings
from getting out of synch and ensures that all brokers in a cluster use the same, consistent
cluster configuration information.

When using a cluster configuration file, each broker’s instance configuration file must point to
the location of the cluster configuration file by setting the imq.cluster.url property. For
example,

imq.cluster.url=file:/home/cluster.properties

Note – A cluster configuration file can also include broker properties that are not used
specifically for cluster configuration. For example, you can place any broker property in the
cluster configuration file that has the same value for all brokers in a cluster. For more
information, see “Connecting Brokers into a Conventional Cluster” on page 183

Cluster Configuration Properties
This section reviews the most important cluster configuration properties, grouped into the
following categories:
■ “Cluster Connection Service Properties” on page 176
■ “Conventional Broker Cluster Properties” on page 177
■ “Enhanced Broker Cluster Properties” on page 179

A complete list of cluster configuration properties can be found in Table 17–13

Cluster Connection Service Properties
The following properties are used to configure the cluster connection service used for internal
communication between brokers in the cluster. These properties are used by both conventional
and enhanced clusters.

Configuring Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011176

■ imq.cluster.transport specifies the transport protocol used by the cluster connection
service, such as tcp or ssl.

■ imq.cluster.port specifies the port number for the cluster connection service. You might
need to set this property, for instance, to specify a static port number for connecting to the
broker through a firewall.

■ imq.cluster.hostname specifies the host name or IP address for the cluster connection
service, used for internal communication between brokers in the cluster. The default setting
works fine, however, explicitly setting the property can be useful if there is more than one
network interface card installed in a computer. If you set the value of this property to
localhost, the value will be ignored and the default will be used.

Conventional Broker Cluster Properties
In addition to the properties listed in “Cluster Connection Service Properties” on page 176, all
conventional clusters use the following properties:
■ imq.cluster.brokerlist specifies a list of broker addresses defining the membership of the

cluster; all brokers in the cluster must have the same value for this property.
For example, to create a conventional cluster consisting of brokers at port 9876 on host1,
port 5000 on host2, and the default port (7676) on ctrlhost, use the following value:
imq.cluster.brokerlist=host1:9876,host2:5000,ctrlhost

■ imq.cluster.nomasterbroker specifies whether the cluster is a conventional cluster of peer
brokers, which uses a shared JDBC data store for the cluster's configuration change record.
When true, the cluster is a conventional cluster of peer brokers. When false (or omitted, as
false is the default), the cluster is considered to be a conventional cluster with master
broker, even if no master broker is actually specified. All brokers in a given cluster must have
the same value for this property.

Each type of conventional cluster has additional properties to support its configuration, as
described in the following two sections.

Additional Properties for Conventional Clusters with Master Broker

The following additional properties are used to configure a conventional cluster with a master
broker:
■ imq.cluster.masterbroker specifies which broker in a conventional cluster is the master

broker that maintains the configuration change record that tracks the addition and deletion
of destinations and durable subscribers. For example:
imq.cluster.masterbroker=host2:5000

While specifying a master broker using the imq.cluster.masterbroker is not mandatory
for a conventional cluster with master broker to function, it guarantees that persistent
information propagated across brokers (destinations and durable subscriptions) is always
synchronized. See “Conventional Clusters” in Open Message Queue 4.5 Technical Overview.

Configuring Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 177

■ imq.cluster.dynamicChangeMasterBrokerEnabled specifies whether the master broker
can be changed to another broker in the cluster without stopping all the broker in the
cluster. All brokers in a given cluster must have the same value for this property.

Additional Properties for Conventional Clusters of Peer Brokers

The following additional properties are used to configure a conventional cluster of peer brokers.
All brokers in a given cluster must have the same values for these properties.

■ imq.cluster.clusterid specifies the cluster identifier, which will be appended to the name of
the configuration change record's database table in the JDBC data store. The value of this
property must be the same for all brokers in a given cluster, but must be unique for each
cluster: no two clusters may have the same cluster identifier.

■ imq.cluster.sharecc.persist.jdbc.dbVendor specifies the name of the database vendor of
the JDBC data store housing the configuration change record's table.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.user specifies the user name, if required,
for connecting to the database from vendor <vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.needpassword specifies whether a
password is needed for connecting to the database from vendor <vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.password specifies the password, if
required, for connecting to the database from vendor <vendorName>. This value should be
set only in password files, as described in “Password Files” on page 170.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.driver specifies the Java class name of the
JDBC driver, if required, for connecting to the database from vendor <vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.opendburl specifies the URL for
connecting to an existing database from vendor <vendorName>.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.createdburl optionally specifies the URL
for creating a new database from vendor <vendorName>. This applies only to embedded
databases, such as Java DB.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.closedburl optionally specifies the URL
for closing a connection to the database from vendor <vendorName>. This applies only to
some embedded databases, such as Java DB.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.tableoption optionally specifies
vendor-specific options to be passed to the database from vendor <vendorName> when
creating the table schema.

■ imq.cluster.sharecc.persist.jdbc.<vendorName>.property.<propName> specifies a
vendor-specific property <propName> for the database from vendor <vendorName>.

Configuring Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011178

Enhanced Broker Cluster Properties
Enhanced broker clusters, which share a JDBC-based data store, require more configuration
than do conventional broker clusters. In addition to the properties listed in “Cluster
Connection Service Properties” on page 176, the following categories of properties are used to
configure an enhanced cluster:
■ “Enhanced Clusters: General Configuration Properties” on page 179
■ “Enhanced Clusters: JDBC Configuration Properties ” on page 179
■ “Enhanced Clusters: Failure Detection Properties” on page 180

Enhanced Clusters: General Configuration Properties
■ imq.cluster.ha is a boolean value that specifies if the cluster is an enhanced cluster (true) or

a conventional broker (false). The default value is false.
If set to true, mechanisms for failure detection and takeover of a failed broker are enabled.
Enhanced clusters are self-configuring: any broker configured to use the cluster’s shared
data store is automatically registered as part of the cluster, without further action on your
part. If the conventional cluster property, imq.cluster.brokerlist, is specified for a
high–availability broker, the property is ignored and a warning message is logged at broker
startup.

■ imq.persist.store specifies the model for a broker's persistent data store. This property must
be set to the value jdbc for every broker in an enhanced cluster.

■ imq.cluster.clusterid specifies the cluster identifier, which will be appended to the names of
all database tables in the cluster’s shared persistent store. The value of this property must be
the same for all brokers in a given cluster, but must be unique for each cluster: no two
running clusters may have the same cluster identifier.

■ imq.brokerid is a broker identifier that must be unique for each broker in the cluster. Hence,
this property must be set in each broker's instance configuration file rather than in a cluster
configuration file.

Enhanced Clusters: JDBC Configuration Properties

The persistent data store for an enhanced cluster is maintained on a highly-available JDBC
database.

The highly-availabile database may be MySQL Cluster Edition or Oracle Real Application
Clusters (RAC), or it may be an open-source or third-party product. As described in
“JDBC-Based Persistence Properties” on page 131, the imq.persist.jdbc.dbVendor broker
property specifies the name of the database vendor, and all of the remaining JDBC-related
properties are qualified with this vendor name.

The JDBC-related properties are discussed under “JDBC-Based Persistence Properties” on
page 131 and summarized in Table 17–8. See the example configuration for MySQL in
Example 8–1.

Configuring Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 179

Note – In setting JDBC-related properties for an enhanced cluster when using MySQL Cluster
Edition as a highly-available database, you must specify the NDB Storage Engine rather than the
InnoDB Storage Engine set by Message Queue by default. To specify the NDB Storage Engine,
set the following broker property for all brokers in the cluster:

imq.persist.jdbc.mysql.tableoption=ENGINE=NDBCLUSTER

Enhanced Clusters: Failure Detection Properties

The following configuration properties (listed in Table 17–13) specify the parameters for the
exchange of heartbeat and status information within an enhanced cluster:
■ imq.cluster.heartbeat.hostname specifies the host name (or IP address) for the heartbeat

connection service.
■ imq.cluster.heartbeat.port specifies the port number for the heartbeat connection service.
■ imq.cluster.heartbeat.interval specifies the interval, in seconds, at which heartbeat packets

are transmitted.
■ imq.cluster.heartbeat.threshold specifies the number of missed heartbeat intervals after

which a broker is considered suspect of failure.
■ imq.cluster.monitor.interval specifies the interval, in seconds, at which to monitor a

suspect broker’s state information to determine whether it has failed.
■ imq.cluster.monitor.threshold specifies the number of elapsed monitor intervals after

which a suspect broker is considered to have failed.

Smaller values for these heartbeat and monitoring intervals will result in quicker reaction to
broker failure, but at the cost of reduced performance and increased likelihood of false
suspicions and erroneous failure detection.

Displaying a Cluster Configuration
To display information about a cluster’s configuration, use the Command utility’s list bkr
subcommand:

imqcmd list bkr

This lists the current state of all brokers included in the cluster to which a given broker belongs.
The broker states are described in the following table:

TABLE 10–1 Broker States

Broker State Meaning

OPERATING Broker is operating

Configuring Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011180

TABLE 10–1 Broker States (Continued)
Broker State Meaning

TAKEOVER_STARTED For enhanced clusters, broker has begun taking over persistent data store from
another broker

TAKEOVER_COMPLETE For enhanced clusters, broker has finished taking over persistent data store from
another broker

TAKEOVER_FAILED For enhanced clusters, attempted takeover has failed

QUIESCE_STARTED Broker has begun quiescing

QUIESCE_COMPLETE Broker has finished quiescing

SHUTDOWN_STARTED Broker has begun shutting down

BROKER_DOWN Broker is down

UNKNOWN Broker state unknown

The results of the imqcmd list bkr command are shown in Example 10–1 (for a conventional
cluster) and Example 10–2 (for an enhanced cluster).

EXAMPLE 10–1 Configuration Listing for a Conventional Cluster

Listing all the brokers in the cluster that the following broker is a member of:

Host Primary Port

localHost 7676

Cluster Is Highly Available False

Address State

whippet:7676 OPERATING

greyhound:7676 OPERATING

Configuring Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 181

EXAMPLE 10–2 Configuration Listing for an Enhanced Cluster

Listing all the brokers in the cluster that the following broker is a member of:

--

Host Primary Port Cluster Broker ID

--

localHost 7676 brokerA

Cluster ID myClusterID

Cluster Is Highly Available True

--

ID of broker Time since last

Broker ID Address State Msgs in store performing takeover status timestamp

--

brokerA localhost:7676 OPERATING 121 30 sec

brokerB greyhound:7676 TAKEOVER_STARTED 52 brokerA 3 hrs

brokerC jpgserv:7676 SHUTDOWN_STARTED 12346 10 sec

brokerD icdev:7676 TAKEOVER_COMPLETE 0 brokerA 2 min

brokerE mrperf:7676 *unknown 12 0 sec

brokerG iclab1:7676 QUIESCING 4 2 sec

brokerH iclab2:7676 QUIESCE_COMPLETE 8 5 sec

Managing Broker Clusters
The following sections describe how to perform various administrative management tasks for
conventional and enhanced clusters, respectively.

■ “Managing Conventional Clusters” on page 182
■ “Managing Enhanced Clusters” on page 191
■ “Converting a Conventional Cluster to an Enhanced Cluster” on page 195

Managing Conventional Clusters
The procedures in this section show how to perform the following tasks for a conventional
cluster:

■ “Connecting Brokers into a Conventional Cluster” on page 183
■ “Adding Brokers to a Conventional Cluster” on page 185
■ “Removing Brokers From a Conventional Cluster” on page 187
■ “Changing the Master Broker in a Conventional Cluster with Master Broker” on page 188
■ “Managing a Conventional Cluster's Configuration Change Record” on page 188
■ “Converting Between Types of Conventional Clusters” on page 189

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011182

Connecting Brokers into a Conventional Cluster
There are two general methods of connecting brokers into a conventional cluster: from the
command line (using the -cluster option) or by setting the imq.cluster.brokerlist
property in the cluster configuration file.

Whichever method you use, each broker that you start attempts to connect to the other brokers
in the cluster every five seconds until the connection succeeds.

For a cluster configured with master broker, the connection will succeed once the master broker
is started up (if one is configured). If a broker in the cluster starts before the master broker, it
will remain in a suspended state, rejecting client connections, until the master broker starts; the
suspended broker then will automatically become fully functional. It is therefore a good idea to
start the master broker first and then the others, after the master broker has completed its
startup.

When connecting brokers into a conventional cluster, you should be aware of the following
issues:
■ Mixed broker versions. A conventional cluster can contain brokers of different versions if

all brokers have a version at least as great as that of the master broker. If the cluster is not
configured to use a master broker, then all brokers must be of the same version.

■ Matching broker property values. In addition to cluster configuration properties, the
following broker properties also must have the same value for all brokers in a cluster:
■ imq.service.activelist
■ imq.autocreate.queue
■ imq.autocreate.topic
■ imq.autocreate.queue.maxNumActiveConsumers
■ imq.autocreate.queue.maxNumBackupConsumers

This restriction is particularly important when a cluster contains mixed broker versions that
might contain properties with different default values. For example, If you are clustering a
Message Queue version 4.1 or later broker together with those from earlier versions than
Message Queue 4.1, you must set the value of the
imq.autocreate.queue.maxNumActiveConsumers property, which has different default
values before and after version 4.1 (1 and -1, respectively), to be the same. Otherwise the
brokers will not be able to establish a cluster connection.

■ Multiple interface cards. On a multi-homed computer, in which there is more than one
network interface card, be sure to explicitly set the network interface to be used by the
broker for client connection services (imq.hostname) and for the cluster connection service
(imq.cluster.hostname). If imq.cluster.hostname is not set, then connections between
brokers might not succeed and as a result, the cluster will not be established.

■ Network loopback IP address. You must make sure that no broker in the cluster is given an
address that resolves to the network loopback IP address (127.0.0.1). Any broker
configured with this address will be unable to connect to other brokers in the cluster.

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 183

In particular, some Linux installers automatically set the localhost entry to the network
loopback address. On such systems, you must do the following: For each Linux system
participating in the cluster, check the /etc/hosts file as part of cluster setup. If the system
uses a static IP address, edit the /etc/hosts file to specify the correct address for localhost.
If the address is registered with Domain Name Service (DNS), edit the file
/etc/nsswitch.conf so that DNS lookup is performed before consulting the local hosts
file. The line in /etc/nsswitch.conf should read as follows: hosts: dns
files/etc/nsswitch.conf to change the order of the entries so that

▼ To Connect Brokers Using a Cluster Configuration File
The method best suited for production systems is to use a cluster configuration file to specify
the configuration of the cluster:

If using a conventional cluster of peer brokers, configure the use of the shared JDBC data store
for the configuration change record:

■ Use the imqdbmgr create sharecc_tbl command to create the database table for the
configuration change record.

■ Place a copy of, or a symbolic link to, your JDBC driver’s .jar file in the Message Queue
external resource files directory, IMQ_HOME/lib/ext, on each host where a broker will run.

Create a cluster configuration file that uses the imq.cluster.brokerlist property to specify
the list of brokers to be connected.
If you are using a master broker, identify it with the imq.cluster.masterbroker property in
the configuration file.

If you are using a cluster of peer brokers, set the imq.cluster.nomasterbroker property to
true, and set imq.cluster.sharecc.persist.jdbc.* properties as appropriate in the
configuration file.

For each broker in the cluster, set the imq.cluster.urlproperty in the broker’s instance
configuration file to point to the cluster configuration file.

Use the imqbrokerd command to start each broker.
If there is a master broker, start it first, then the others after it has completed its startup.

▼ To Connect Brokers from the Command Line
Connecting brokers to a cluster from the command line involves starting each broker with the
imqbrokerd command using the -cluster option to specify the complete list of brokers to be
included in the cluster.

For example, the following command starts a broker as part of a cluster consisting of the
brokers running at the default port (7676) on host1, at port 5000 on host2, and at port 9876 on
the default host (localhost):

1

2

3

4

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011184

imqbrokerd -cluster host1,host2:5000,:9876

The value specified for the -cluster option must be the same for all brokers in the cluster.

Set any necessary broker properties, except imq.cluster.brokerlist, in each broker's
configuration file before performing the following procedure.

If using a conventional cluster of peer brokers:

a. Configure the use of the shared JDBC data store for the configuration change record:

■ Use the imqdbmgr create sharecc_tbl command to create the database table for the
configuration change record.

■ Place a copy of, or a symbolic link to, your JDBC driver’s .jar file in the Message Queue
external resource files directory, IMQ_HOME/lib/ext, on each host where a broker will
run.

b. Start each broker in the cluster with the imqbrokerd command, specifying in the -cluster
option the same complete list of brokers.

If using a conventional cluster with master broker:

a. Start the master broker with the imqbrokerd command, specifying in the -cluster option
the complete list of brokers.

b. Once the master broker is running, start each of the other brokers in the cluster with the
imqbrokerd command, specifying in the -cluster option the same complete list of brokers
as you used to start the master broker.

▼ To Establish Secure Connections Between Brokers
If you want secure, encrypted message delivery between brokers in a cluster, configure the
cluster connection service to use an SSL-based transport protocol:

For each broker in the cluster, set up SSL-based connection services, as described in “Message
Encryption”on page 161.

Set each broker’s imq.cluster.transport property to ssl, either in the cluster configuration
file or individually for each broker.

Adding Brokers to a Conventional Cluster
The procedure for adding a new broker to a conventional cluster depends on whether the
cluster uses a cluster configuration file.

Before You Begin

1

2

1

2

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 185

▼ To Add a New Broker to a Conventional Cluster Using a Cluster
Configuration File

Add the new broker to the imq.cluster.brokerlist property in the cluster configuration file.

Issue the following command to any broker in the cluster:

imqcmd reload cls

This forces each broker to reload the imq.cluster.brokerlist property. It is not necessary to
issue this command to every broker in the cluster; executing it for any one broker will cause all
of them to reload the cluster configuration.

(Optional) Set the value of the imq.cluster.urlproperty in the new broker’s instance
configuration file (config.properties) to point to the cluster configuration file.

Start the new broker.

If you did not perform step 3, use the -D option on the imqbrokerd command line to set the
value of imq.cluster.url to the location of the cluster configuration file.

▼ To Add a New Broker to a Conventional Cluster Without a Cluster
Configuration File

(Optional) Set the values of the following properties in the new broker’s instance configuration
file (config.properties) :

imq.cluster.brokerlist

imq.cluster.masterbroker (if necessary)
imq.cluster.transport (if you are using a secure cluster connection service)

When the newly added broker starts, it connects and exchanges data with all the other brokers
in the imq.cluster.brokerlist value.

Modify the imq.cluster.brokerlist property of other brokers in the cluster to include the
new broker.

This step is not strictly necessary to add a broker to a functioning cluster. However, should any
broker need to be restarted, its imq.cluster.brokerlist value must include all other brokers
in the cluster, including the newly added broker.

Start the new broker.

If you did not perform step 1, use the -D option on the imqbrokerd command line to set the
property values listed there.

1

2

3

4

1

2

3

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011186

Removing Brokers From a Conventional Cluster
The method you use to remove a broker from a conventional cluster depends on whether you
originally created the cluster using a cluster configuration file or by means of command line
options.

Note – Before you remove from a conventional cluster the broker instance serving as the cluster's
master broker, first change the master broker to another broker instance in the cluster, as
described in “Changing the Master Broker in a Conventional Cluster with Master Broker” on
page 188

▼ To Remove a Broker From a Conventional Cluster Using a Cluster
Configuration File
If you originally created a cluster by specifying its member brokers with the
imq.cluster.brokerlist property in a central cluster configuration file, it isn’t necessary to
stop the brokers in order to remove one of them. Instead, you can simply edit the configuration
file to exclude the broker you want to remove, force the remaining cluster members to reload
the cluster configuration, and reconfigure the excluded broker so that it no longer points to the
same cluster configuration file:

Edit the cluster configuration file to remove the excluded broker from the list specified for the
imq.cluster.brokerlist property.

Issue the following command to each broker remaining in the cluster:

imqcmd reload cls

This forces the brokers to reload the cluster configuration.

Stop the broker you’re removing from the cluster.

Edit that broker’s instance configuration file (config.properties), removing or specifying a
different value for its imq.cluster.urlproperty.

▼ To Remove a Broker From a Conventional Cluster Using the Command
Line
If you used the imqbrokerd command from the command line to connect the brokers into a
cluster, you must stop each of the brokers and then restart them, specifying the new set of
cluster members on the command line:

Stop each broker in the cluster, using the imqcmd command.

1

2

3

4

1

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 187

Restart the brokers that will remain in the cluster, using the imqbrokerd command’s -cluster
option to specify only those remaining brokers.
For example, suppose you originally created a cluster consisting of brokers A, B, and C by
starting each of the three with the command

imqbrokerd -cluster A,B,C

To remove broker A from the cluster, restart brokers B and C with the command

imqbrokerd -cluster B,C

▼ Changing the Master Broker in a Conventional Cluster with Master
Broker
To change the broker instance serving as the master broker to a different broker instance in the
cluster, use the imqcmd changemaster cls command.

Follow this procedure, for example, before you remove from a cluster the broker instance
serving as the master broker.

On the current master broker, run the imqcmd changemaster cls command, using the -o to
specify the new master broker:
imqcmd changemaster cls -o imq.cluster.masterbroker=newMaster

The value newMaster has the form hostName:portNumber, where hostName and portNumber
are the Port Mapper host name and port number, respectively, of the new master broker's host.

Managing a Conventional Cluster's Configuration Change Record
As noted earlier, a conventional cluster maintains a configuration change record to keep track
of any changes in the cluster’s persistent state. This configuration change record is maintained
either by the master broker or in a shared JDBC data store, depending on the type of the
conventional cluster.

Because of the important information that the configuration change record contains, it is
important to back it up regularly so that it can be restored in case of failure. Although restoring
from a backup will lose any changes in the cluster’s persistent state that have occurred since the
backup was made, frequent backups can minimize this potential loss of information. The
backup and restore operations also have the positive effect of compressing and optimizing the
change history contained in the configuration change record, which can grow significantly over
time.

▼ To Back Up the Configuration Change Record in a Master Broker

Use the -backup option of the imqbrokerd command, specifying the name of the backup file.
For example:

imqbrokerd -backup mybackuplog

2

●

●

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011188

▼ To Back Up the Configuration Change Record in a Shared JDBC Data
Store

Use the imqdbmgr backup sharecc_tbl command to back up the configuration change record:
imqdbmgr backup sharecc_tbl -file fileName -Dimq.cluster.url=clusterConfigUrl

▼ To Restore the Configuration Change Record to a Master Broker

Shut down all brokers in the cluster.

Restore the master broker’s configuration change record from the backup file.
The command is

imqbrokerd -restore mybackuplog

If you assign a new name or port number to the master broker, update the
imq.cluster.brokerlist and imq.cluster.masterbroker properties accordingly in the
cluster configuration file.

Restart all brokers in the cluster.

▼ To Restore the Configuration Change Record to a Shared JDBC Data
Store

Shut down all brokers in the cluster.

Use the imqdbmgr recreate sharecc_tbl command to delete the existing configuration
change record and then re-create the table:
imqdbmgr recreate sharecc_tbl -Dimq.cluster.url=clusterConfigUrl

Use the imqdbmgr restore sharecc_tbl command to restore the configuration change record:
imqdbmgr restore sharecc_tbl -file fileName -Dimq.cluster.url=clusterConfigUrl

Start all the brokers in the cluster.

Converting Between Types of Conventional Clusters
To convert between types of conventional clusters, you change where the configuration change
record is maintained: in a master broker or in a shared JDBC data store. The following topics
provide instructions to convert between types:

■ “To Convert from Using a Master Broker to Using a Shared JDBC Data Store” on page 190
■ “To Convert from Using a Shared JDBC Data Store to Using a Master Broker” on page 190

●

1

2

3

4

1

2

3

4

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 189

▼ To Convert from Using a Master Broker to Using a Shared JDBC Data
Store

Shut down all brokers in the cluster.

Back up the configuration change record in the master broker as described in “To Back Up the
Configuration Change Record in a Master Broker”on page 188.

Shut down the master broker.

Edit the cluster configuration file, configuring the cluster as a conventional cluster of peer
brokers:

■ Set the imq.cluster.nomasterbroker property to true.
■ Set additional properties as described in “Additional Properties for Conventional Clusters

of Peer Brokers” on page 178.

Using the backup file saved in Step 2, restore the configuration change record to the shared
JDBC data store as described in “To Restore the Configuration Change Record to a Shared JDBC
Data Store”on page 189.

Start all the brokers in the cluster.

▼ To Convert from Using a Shared JDBC Data Store to Using a Master
Broker

Shut down all brokers in the cluster.

Back up the configuration change record in the shared JDBC data store as described in “To Back
Up the Configuration Change Record in a Shared JDBC Data Store”on page 189.

Edit the cluster configuration file, configuring the cluster as a conventional cluster with master
broker:

■ Set the imq.cluster.nomasterbroker property to false.
■ Set additional properties as described in “Additional Properties for Conventional Clusters

with Master Broker” on page 177.

Using the backup file saved in Step 2, restore the configuration change record to the master
broker as described in “To Restore the Configuration Change Record to a Master Broker”on
page 189.

Start all the brokers in the cluster.

1

2

3

4

5

6

1

2

3

4

5

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011190

Managing Enhanced Clusters
This section presents step-by-step procedures for performing a variety of administrative tasks
for an enhanced cluster:

■ “Connecting Brokers into an Enhanced Cluster” on page 191
■ “Adding and Removing Brokers in an Enhanced Cluster” on page 193
■ “Restarting a Failed Broker” on page 194
■ “Preventing or Forcing Broker Failover” on page 194
■ “Backing up a Shared Data Store” on page 195

Connecting Brokers into an Enhanced Cluster
Because enhanced clusters are self-configuring, there is no need to explicitly specify the list of
brokers to be included in the cluster. Instead, all that is needed is to set each broker’s
configuration properties appropriately and then start the broker; as long as its properties are set
properly, it will automatically be incorporated into the cluster. “Enhanced Broker Cluster
Properties” on page 179 describes the required properties, which include vendor-specific JDBC
database properties.

Note – In addition to creating an enhanced cluster as described in this section, you must also
configure clients to successfully reconnect to a failover broker in the event of broker or
connection failure. You do this by setting the imqReconnectAttempts connection factory
attribute to a value of -1.

The property values needed for brokers in an enhanced cluster can be set separately in each
broker’s instance configuration file, or they can be specified in a cluster configuration file that all
the brokers reference. The procedures are as follows:

▼ To Connect Brokers Using a Cluster Configuration File
The method best suited for production systems is to use a cluster configuration file to specify
the configuration of the cluster.

Create a cluster configuration file specifying the cluster’s high-availability-related configuration
properties.
“Enhanced Broker Cluster Properties” on page 179 shows the required property values.
However, do not include the imq.brokerid property in the cluster configuration file; this must
be specified separately for each individual broker in the cluster.

Specify any additional, vendor-specific JDBC configuration properties that might be needed.
The vendor-specific properties required for MySQL are shown in Example 8–1.

1

2

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 191

For each broker in the cluster:

a. Start the broker at least once, using the imqbrokerd command.
The first time a broker instance is run, an instance configuration file (config.properties)
is automatically created.

b. Shut down the broker.
Use the imqcmd shutdown bkr command.

c. Edit the instance configuration file to specify the location of the cluster configuration file.
In the broker’s instance configuration file, set the imq.cluster.url property to point to the
location of the cluster configuration file you created in step 1.

d. Specify the broker identifier.
Set the imq.brokerid property in the instance configuration file to the broker’s unique
broker identifier. This value must be different for each broker.

Place a copy of, or a symbolic link to, your JDBC driver’s .jarfile in the Message Queue external
resource files directory , depending on how Message Queue was installed (see Appendix A,
“Distribution-Specific Locations of Message Queue Data”):

IPS packages: IMQ_HOME/lib/ext
Solaris SVR4 packages: /usr/share/lib/imq/ext
Linux RPM packages: /opt/sun/mq/share/lib/ext

Create the database tables needed for Message Queue persistence.
Use the imqdbmgr create tbl command; see “Database Manager Utility” on page 334.

Restart each broker with the imqbrokerd command.
The brokers will automatically register themselves into the cluster on startup.

▼ To Connect Brokers Using Instance Configuration Files

For each broker in the cluster:

a. Start the broker at least once, using the imqbrokerd command.
The first time a broker instance is run, an instance configuration file (config.properties)
is automatically created.

b. Shut down the broker.
Use the imqcmd shutdown bkr command.

3

4

5

6

1

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011192

c. Edit the instance configuration file to specify the broker’s high-availability-related
configuration properties.
“Enhanced Broker Cluster Properties” on page 179 shows the required property values. Be
sure to set the brokerid property uniquely for each broker.

d. Specify any additional, vendor-specific JDBC configuration properties that might be needed.
The vendor-specific properties required for MySQL are shown in Example 8–1.

Place a copy of, or a symbolic link to, your JDBC driver’s .jarfile in the Message Queue external
resource files directory, depending on how Message Queue was installed (see Appendix A,
“Distribution-Specific Locations of Message Queue Data”):

IPS packages: IMQ_HOME/lib/ext
Solaris SVR4 packages: /usr/share/lib/imq/ext
Linux RPM packages: /opt/sun/mq/share/lib/ext

Create the database tables needed for Message Queue persistence.
Use the imqdbmgr create tbl command; see “Database Manager Utility” on page 334.

Restart each broker with the imqbrokerd command.
The brokers will automatically register themselves into the cluster on startup.

Adding and Removing Brokers in an Enhanced Cluster
Because enhanced clusters are self-configuring, the procedures for adding and removing
brokers are simpler than for a conventional cluster.

▼ To Add a New Broker to an Enhanced Cluster

Set the new broker’s high-availability-related properties, as described in the preceding section.
You can do this either by specifying the individual properties in the broker’s instance
configuration file (config.properties) or, if there is a cluster configuration file, by setting the
broker’s imq.cluster.url property to point to it.

Start the new broker with the imqbrokerd command.
The broker will automatically register itself into the cluster on startup.

▼ To Remove a Broker from an Enhanced Cluster

Make sure the broker is not running.
If necessary, use the command

imqcmd shutdown bkr

2

3

4

1

2

1

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 193

to shut down the broker.

Remove the broker from the cluster with the command
imqdbmgr remove bkr

This command deletes all database tables for the corresponding broker.

Restarting a Failed Broker
After a broker has failed, you can restart it using the imqbrokerd command. Normally, the
broker will automatically be re-registered into the cluster on startup.

However, if the broker slated to take over the failed broker's persistent data failed as it was
taking over the persistent data, the running brokers in the cluster will not permit the failed
broker to rejoin the cluster for 60 seconds or twice the value of
imq.cluster.monitor.interval in seconds, whichever is greater.

Preventing or Forcing Broker Failover
Although the takeover of a failed broker’s persistent data by a failover broker in an enhanced
cluster is normally automatic, there may be times when you want to prevent such failover from
occurring. To suppress automatic failover when shutting down a broker, use the -nofailover
option to the imqcmd shutdown bkr subcommand:

imqcmd shutdown bkr -nofailover -b hostName:portNumber

where hostName and portNumber are the host name and port number of the broker to be shut
down.

Conversely, you may sometimes need to force a broker failover to occur manually. (This might
be necessary, for instance, if a failover broker were to itself fail before completing the takeover
process.) In such cases, you can initiate a failover manually from the command line: first shut
down the broker to be taken over with the -nofailover option, as shown above, then issue the
command

imqcmd takeover bkr -n brokerID

where brokerID is the broker identifier of the broker to be taken over. If the specified broker
appears to be running, the Command utility will display a confirmation message:

The broker associated with brokerID last accessed the database # seconds ago.

Do you want to take over for this broker?

You can suppress this message, and force the takeover to occur unconditionally, by using the -f
option to the imqcmd takeover bkr command:

imqcmd takeover bkr -f -n brokerID

2

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011194

Note – The imqcmd takeover bkr subcommand is intended only for use in failed-takeover
situations. You should use it only as a last resort, and not as a general way of forcibly taking over
a running broker.

Backing up a Shared Data Store
For durability and reliability, it is a good idea to back up an enhanced cluster’s shared data store
periodically to backup files. This creates a snapshot of the data store that you can then use to
restore the data in case of catastrophic failure. The command for backing up the data store is

imqdbmgr backup -dir backupDir

where backupDir is the path to the directory in which to place the backup files. To restore the
data store from these files, use the command

imqdbmgr restore -restore backupDir

Converting a Conventional Cluster to an Enhanced
Cluster
The best approach to converting a conventional broker cluster to an enhanced broker cluster is
to drain your messaging system of all persistent data before attempting the conversion. This lets
you create a new shared data store without worrying about loss of data. However, if you are
using individual JDBC-based data stores for your brokers, a utility is available for converting a
standalone datastore to a shared data store.

▼ Cluster Conversion : File-Based Data Store
If the brokers in your conventional cluster are using file-based data stores, use the following
procedure to convert to an enhanced cluster.

Drain down your messaging system of all persistent data.

Stop all producer clients from producing messages, and wait for all messages in the system to be
consumed.

Shut down all client applications.

Shut down all brokers in the conventional cluster.

1

2

3

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 195

Reconfigure all brokers for an enhanced cluster.

See “Enhanced Broker Cluster Properties” on page 179. It is recommended that you use a
cluster configuration file to specify cluster configuration property values, such as the
imq.cluster.clusterid, imq.persist.store, and additional shared JDBC database
properties.

Start all brokers in the enhanced cluster.

See “Connecting Brokers into an Enhanced Cluster” on page 191.

Configure client applications to re-connect to failover brokers.

Client re-connection behavior is specified by connection handling attributes of the connection
factory administered objects (see the “Connection Handling” on page 393). In the case of
enhanced broker clusters, the imqAddressList, imqAddressListBehavior, and
imqAddressListIterations attributes are ignored, however the imqReconnectAttempts
attribute should be set to a value of -1 (unlimited).

Start all client applications.

Resume messaging operations

▼ Cluster Conversion: JDBC-Based Data Store
If the brokers in your conventional cluster are using JDBC-based data stores, use the following
procedure to convert to an enhanced cluster. The procedure assumes that individual standalone
broker data stores reside on the same JDBC database server.

Back up all persistent data in the standalone JDBC-based data store of each broker.

Use proprietary JDBC database tools.

Shut down all client applications.

Shut down all brokers in the conventional cluster.

Convert each standalone data store to a shared data store.

Use the Message Queue Database Manager utility (imqdbmgr) subcommand

imqdbmgr upgrade hastore

to convert an existing standalone JDBC database to a shared JDBC database.

4

5

6

7

8

1

2

3

4

Managing Broker Clusters

Open Message Queue 4.5 Administration Guide • February 2011196

Reconfigure all brokers for an enhanced cluster.
See “Enhanced Broker Cluster Properties” on page 179. It is recommended that you use a
cluster configuration file to specify cluster configuration property values, such as the
imq.cluster.clusterid, imq.persist.store, and additional shared JDBC database
properties.

Start all brokers in the enhanced cluster.
See “Connecting Brokers into an Enhanced Cluster” on page 191.

Configure client applications to re-connect to failover brokers.
Client re-connection behavior is specified by connection handling attributes of the connection
factory administered objects (see the “Connection Handling” on page 393). In the case of
enhanced broker clusters, the imqAddressList, imqAddressListBehavior, and
imqAddressListIterations attributes are ignored, however the imqReconnectAttempts
attribute should be set to a value of -1 (unlimited).

Start all client applications.

Resume messaging operations.

5

6

7

8

9

Managing Broker Clusters

Chapter 10 • Configuring and Managing Broker Clusters 197

198

Managing Administered Objects

Administered objects encapsulate provider-specific configuration and naming information,
enabling the development of client applications that are portable from one JMS provider to
another. A Message Queue administrator typically creates administered objects for client
applications to use in obtaining broker connections for sending and receiving messages.

This chapter tells how to use the Object Manager utility (imqobjmgr) to create and manage
administered objects. It contains the following sections:

■ “Object Stores” on page 199
■ “Administered Object Attributes” on page 202
■ “Using the Object Manager Utility” on page 209

Object Stores
Administered objects are placed in a readily available object store where they can be accessed by
client applications by means of the Java Naming and Directory Interface (JNDI). There are two
types of object store you can use: a standard Lightweight Directory Access Protocol (LDAP)
directory server or a directory in the local file system.

LDAP Server Object Stores
An LDAP server is the recommended object store for production messaging systems. LDAP
servers are designed for use in distributed systems and provide security features that are useful
in production environments.

LDAP implementations are available from a number of vendors. To manage an object store on
an LDAP server with Message Queue administration tools, you may first need to configure the
server to store Java objects and perform JNDI lookups; see the documentation provided with
your LDAP implementation for details.

11C H A P T E R 1 1

199

To use an LDAP server as your object store, you must specify the attributes shown in
Table 11–1. These attributes fall into the following categories:

■ Initial context. The java.naming.factory.initial attribute specifies the initial context
for JNDI lookups on the server. The value of this attribute is fixed for a given LDAP object
store.

■ Location. The java.naming.provider.url attribute specifies the URL and directory path
for the LDAP server. You must verify that the specified directory path exists.

■ Security. The java.naming.security.principal, java.naming.security.credentials,
and java.naming.security.authentication attributes govern the authentication of
callers attempting to access the object store. The exact format and values of these attributes
depend on the LDAP service provider; see the documentation provided with your LDAP
implementation for details and to determine whether security information is required on all
operations or only on those that change the stored data.

TABLE 11–1 LDAP Object Store Attributes

Attribute Description

java.naming.factory.initial Initial context for JNDI lookup

Example:
com.sun.jndi.ldap.LdapCtxFactory

java.naming.provider.url Server URL and directory path

Example:
ldap://myD.com:389/ou=mq1,o=App

where administered objects are stored in the directory /App/mq1.

java.naming.security.principal Identity of the principal for authenticating callers

The format of this attribute depends on the authentication scheme: for
example,

uid=homerSimpson,ou=People,o=mq

If this attribute is unspecified, the behavior is determined by the LDAP service
provider.

java.naming.security.credentials Credentials of the authentication principal

The value of this attribute depends on the authentication scheme: for example,
it might be a hashed password, a clear-text password, a key, or a certificate.

If this property is unspecified, the behavior is determined by the LDAP service
provider.

Object Stores

Open Message Queue 4.5 Administration Guide • February 2011200

TABLE 11–1 LDAP Object Store Attributes (Continued)
Attribute Description

java.naming.security.authentication Security level for authentication:
none: No security
simple: Simple security
strong: Strong security

For example, if you specify simple, you will be prompted for any missing
principal or credential values. This will allow you a more secure way of
providing identifying information.

If this property is unspecified, the behavior is determined by the LDAP service
provider.

File-System Object Stores
Message Queue also supports the use of a directory in the local file system as an object store for
administered objects. While this approach is not recommended for production systems, it has
the advantage of being very easy to use in development environments. Note, however, that for a
directory to be used as a centralized object store for clients deployed across multiple computer
nodes, all of those clients must have access to the directory. In addition, any user with access to
the directory can use Message Queue administration tools to create and manage administered
objects.

To use a file-system directory as your object store, you must specify the attributes shown in
Table 11–2. These attributes have the same general meanings described above for LDAP object
stores; in particular, the java.naming.provider.url attribute specifies the directory path of
the directory holding the object store. This directory must exist and have the proper access
permissions for the user of Message Queue administration tools as well as the users of the client
applications that will access the store.

TABLE 11–2 File-system Object Store Attributes

Attribute Description

java.naming.factory.initial Initial context for JNDI lookup

Example:
com.sun.jndi.fscontext.RefFSContextFactory

java.naming.provider.url Directory path

Example:
file:///C:/myapp/mqobjs

Object Stores

Chapter 11 • Managing Administered Objects 201

Administered Object Attributes
Message Queue administered objects are of two basic kinds:

■ Connection factories are used by client applications to create connections to brokers.
■ Destinations represent locations on a broker with which client applications can exchange

(send and retrieve) messages.

Each type of administered object has certain attributes that determine the object’s properties
and behavior. This section describes how to use the Object Manager command line utility
(imqobjmgr) to set these attributes; you can also set them with the GUI Administration
Console, as described in “Working With Administered Objects” on page 58.

Connection Factory Attributes
Client applications use connection factory administered objects to create connections with
which to exchange messages with a broker. A connection factory’s attributes define the
properties of all connections it creates. Once a connection has been created, its properties
cannot be changed; thus the only way to configure a connection’s properties is by setting the
attributes of the connection factory used to create it.

Message Queue defines two classes of connection factory objects:

■ ConnectionFactory objects support normal messaging and nondistributed transactions.
■ XAConnectionFactory objects support distributed transactions.

Both classes share the same configuration attributes, which you can use to optimize resources,
performance, and message throughput. These attributes are listed and described in detail in
Chapter 19, “Administered Object Attribute Reference,” and are discussed in the following
sections below:

■ “Connection Handling” on page 202
■ “Client Identification” on page 205
■ “Reliability And Flow Control” on page 207
■ “Queue Browser and Server Sessions” on page 208
■ “Standard Message Properties” on page 208
■ “Message Header Overrides” on page 208

Connection Handling
Connection handling attributes specify the broker address to which to connect and, if required,
how to detect connection failure and attempt reconnection. They are summarized in
Table 19–1.

Administered Object Attributes

Open Message Queue 4.5 Administration Guide • February 2011202

Broker Address List
The most important connection handling attribute is imqAddressList, which specifies the
broker or brokers to which to establish a connection. The value of this attribute is a string
containing a broker address or (in the case of a broker cluster) multiple addresses separated by
commas. Broker addresses can use a variety of addressing schemes, depending on the
connection service to be used (see “Configuring Connection Services” on page 95) and the
method of establishing a connection:

■ mq uses the broker’s Port Mapper to assign a port dynamically for either the jms or ssljms
connection service.

■ mqtcp bypasses the Port Mapper and connects directly to a specified port, using the jms
connection service.

■ mqssl makes a Secure Socket Layer (SSL) connection to a specified port, using the ssljms
connection service.

■ http makes a Hypertext Transport Protocol (HTTP) connection to a Message Queue tunnel
servlet at a specified URL, using the httpjms connection service.

■ https makes a Secure Hypertext Transport Protocol (HTTPS) connection to a Message
Queue tunnel servlet at a specified URL, using the httpsjms connection service.

These addressing schemes are summarized in Table 19–2.

The general format for each broker address is

scheme://address

where scheme is one of the addressing schemes listed above and address denotes the broker
address itself. The exact syntax for specifying the address varies depending on the addressing
scheme, as shown in the “Description” column of Table 19–2. Table 19–3 shows examples of the
various address formats.

In a multiple-broker cluster environment, the address list can contain more than one broker
address. If the first connection attempt fails, the Message Queue client runtime will attempt to
connect to another address in the list, and so on until the list is exhausted. Two additional
connection factory attributes control the way this is done:

■ imqAddressListBehavior specifies the order in which to try the specified addresses. If this
attribute is set to the string PRIORITY, addresses will be tried in the order in which they
appear in the address list. If the attribute value is RANDOM, the addresses will instead be tried
in random order; this is useful, for instance, when many Message Queue clients are sharing
the same connection factory object, to prevent them from all attempting to connect to the
same broker address.

■ imqAddressListIterations specifies how many times to cycle through the list before
giving up and reporting failure. A value of −1 denotes an unlimited number of iterations: the
client runtime will keep trying until it succeeds in establishing a connection or until the end
of time, whichever occurs first.

Administered Object Attributes

Chapter 11 • Managing Administered Objects 203

Note – Because enhanced clusters are self-configuring (see “Cluster Configuration
Properties” on page 176 and “Connecting Brokers into an Enhanced Cluster” on page 191),
their membership can change over time as brokers enter and leave the cluster. In this type of
cluster, the value of each member broker’s imqAddressList attribute is updated
dynamically so that it always reflects the cluster’s current membership.

Automatic Reconnection

By setting certain connection factory attributes, you can configure a client to reconnect
automatically to a broker in the event of a failed connection. For standalone brokers or those
belonging to a conventional broker cluster (see “Conventional Clusters” in Open Message
Queue 4.5 Technical Overview), you enable this behavior by setting the connection factory’s
imqReconnectEnabled attribute to true. The imqReconnectAttempts attribute controls the
number of reconnection attempts to a given broker address; imqReconnectInterval specifies
the interval, in milliseconds, to wait between attempts.

If the broker is part of a conventional cluster, the failed connection can be restored not only on
the original broker, but also on a different one in the cluster. If reconnection to the original
broker fails, the client runtime will try the other addresses in the connection factory’s broker
address list (imqAddressList). The imqAddressListBehavior and
imqAddressListIterations attributes control the order in which addresses are tried and the
number of iterations through the list, as described in the preceding section. Each address is tried
repeatedly at intervals of imqReconnectInterval milliseconds, up to the maximum number of
attempts specified by imqReconnectAttempts.

Note, however, that in a conventional cluster, such automatic reconnection only provides
connection failover and not data failover: persistent messages and other state information held
by a failed or disconnected broker can be lost when the client is reconnected to a different
broker instance. While attempting to reestablish a connection, Message Queue does maintain
objects (such as sessions, message consumers, and message producers) provided by the client
runtime. Temporary destinations are also maintained for a time when a connection fails,
because clients might reconnect and access them again; after giving clients time to reconnect
and use these destinations, the broker will delete them. In circumstances where the client-side
state cannot be fully restored on the broker on reconnection (for instance, when using
transacted sessions, which exist only for the duration of a connection), automatic reconnection
will not take place and the connection’s exception handler will be called instead. It is then up to
the client application to catch the exception, reconnect, and restore state.

By contrast, in an enhanced cluster (see “Enhanced Clusters” in Open Message Queue 4.5
Technical Overview), another broker can take over a failed broker’s persistent state and proceed
to deliver its pending messages without interruption of service. In this type of cluster, automatic
reconnection is always enabled. The connection factory’s imqReconnectEnabled,
imqAddressList, and imqAddressListIterations attributes are ignored. The client runtime is
automatically redirected to the failover broker. Because there might be a short time lag during

Administered Object Attributes

Open Message Queue 4.5 Administration Guide • February 2011204

which the failover broker takes over from the failed broker, the imqReconnectAttempts
connection factory attribute should be set to a value of -1 (client runtime continues connect
attempts until successful).

Automatic reconnection supports all client acknowledgment modes for message consumption.
Once a connection has been reestablished, the broker will redeliver all unacknowledged
messages it had previously delivered, marking them with a Redeliver flag. Client applications
can use this flag to determine whether a message has already been consumed but not yet
acknowledged. (In the case of nondurable subscribers, however, the broker does not hold
messages once their connections have been closed. Thus any messages produced for such
subscribers while the connection is down cannot be delivered after reconnection and will be
lost.) Message production is blocked while automatic reconnection is in progress; message
producers cannot send messages to the broker until after the connection has been reestablished.

Periodic Testing (Pinging) of Connections

The Message Queue client runtime can be configured to periodically test, or “ping,” a
connection, allowing connection failures to be detected preemptively before an attempted
message transmission fails. Such testing is particularly important for client applications that
only consume messages and do not produce them, since such applications cannot otherwise
detect when a connection has failed. Clients that produce messages only infrequently can also
benefit from this feature.

The connection factory attribute imqPingInterval specifies the frequency, in seconds, with
which to ping a connection. By default, this interval is set to 30 seconds; a value of −1 disables
the ping operation.

The response to an unsuccessful ping varies from one operating-system platform to another.
On some platforms, an exception is immediately thrown to the client application’s exception
listener. (If the client does not have an exception listener, its next attempt to use the connection
will fail.) Other platforms may continue trying to establish a connection to the broker, buffering
successive pings until one succeeds or the buffer overflows.

Client Identification
The connection factory attributes listed in Table 19–4 support client authentication and the
setting of client identifiers for durable subscribers.

Client Authentication

All attempts to connect to a broker must be authenticated by user name and password against a
user repository maintained by the message service. The connection factory attributes
imqDefaultUsername and imqDefaultPassword specify a default user name and password to be
used if the client does not supply them explicitly when creating a connection.

Administered Object Attributes

Chapter 11 • Managing Administered Objects 205

As a convenience for developers who do not wish to bother populating a user repository during
application development and testing, Message Queue provides a guest user account with user
name and password both equal to guest. This is also the default value for the
imqDefaultUsername and imqDefaultPassword attributes, so that if they are not specified
explicitly, clients can always obtain a connection under the guest account. In a production
environment, access to broker connections should be restricted to users who are explicitly
registered in the user repository.

Client Identifier

The Java Message Service Specification requires that a connection provide a unique client
identifier whenever the broker must maintain a persistent state on behalf of a client. Message
Queue uses such client identifiers to keep track of durable subscribers to a topic destination.
When a durable subscriber becomes inactive, the broker retains all incoming messages for the
topic and delivers them when the subscriber becomes active again. The broker identifies the
subscriber by means of its client identifier.

While it is possible for a client application to set its own client identifier programmatically using
the connection object’s setClientID method, this makes it difficult to coordinate client
identifiers to ensure that each is unique. It is generally better to have Message Queue
automatically assign a unique identifier when creating a connection on behalf of a client. This
can be done by setting the connection factory’s imqConfiguredClientID attribute to a value of
the form

${u}factoryID

The characters ${u} must be the first four characters of the attribute value. (Any character other
than u between the braces will cause an exception to be thrown on connection creation; in any
other position, these characters have no special meaning and will be treated as plain text.) The
value for factoryID is a character string uniquely associated with this connection factory object.

When creating a connection for a particular client, Message Queue will construct a client
identifier by replacing the characters ${u} with ${u:userName}, where userName is the user
name authenticated for the connection. This ensures that connections created by a given
connection factory, although identical in all other respects, will each have their own unique
client identifier. For example, if the user name is Calvin and the string specified for the
connection factory’s imqConfiguredClientID attribute is ${u}Hobbes, the client identifier
assigned will be ${u:Calvin}Hobbes.

Administered Object Attributes

Open Message Queue 4.5 Administration Guide • February 2011206

Note – This scheme will not work if two clients both attempt to obtain connections using the
default user name guest, since each would have a client identifier with the same ${u}
component. In this case, only the first client to request a connection will get one; the second
client’s connection attempt will fail, because Message Queue cannot create two connections
with the same client identifier.

Even if you specify a client identifier with imqConfiguredClientID, client applications can
override this setting with the connection method setClientID. You can prevent this by setting
the connection factory’s imqDisableSetClientID attribute to true. Note that for an application
that uses durable subscribers, the client identifier must be set one way or the other: either
administratively with imqConfiguredClientID or programmatically with setClientID.

Reliability And Flow Control
Because “payload” messages sent and received by clients and control messages (such as broker
acknowledgments) used by Message Queue itself pass over the same client-broker connection,
excessive levels of payload traffic can interfere with the delivery of control messages. To help
alleviate this problem, the connection factory attributes listed in Table 19–5 allow you to
manage the relative flow of the two types of message. These attributes fall into four categories:

■ Acknowledgment timeout specifies the maximum time (imqAckTimeout) to wait for a
broker acknowledgment before throwing an exception.

■ Connection flow metering limits the transmission of payload messages to batches of a
specified size (imqConnectionFlowCount), ensuring periodic opportunities to deliver any
accumulated control messages.

■ Connection flow control limits the number of payload messages
(imqConnectionFlowLimit) that can be held pending on a connection, waiting to be
consumed. When the limit is reached, delivery of payload messages to the connection is
suspended until the number of messages awaiting consumption falls below the limit. Use of
this feature is controlled by a boolean flag (imqConnectionFlowLimitEnabled).

■ Consumer flow control limits the number of payload messages (imqConsumerFlowLimit)
that can be held pending for any single consumer, waiting to be consumed. (This limit can
also be specified as a property of a specific queue destination, consumerFlowLimit.) When
the limit is reached, delivery of payload messages to the consumer is suspended until the
number of messages awaiting consumption, as a percentage of imqConsumerFlowLimit, falls
below the limit specified by the imqConsumerFlowThreshold attribute. This helps improve
load balancing among multiple consumers by preventing any one consumer from starving
others on the same connection.
When the JMS resource adapter, jmsra, is used to consume messages in a GlassFish Server
cluster, this behavior is defined using different properties, as described in “About Shared
Topic Subscriptions for Clustered Containers” on page 404.

Administered Object Attributes

Chapter 11 • Managing Administered Objects 207

The use of any of these flow control techniques entails a trade-off between reliability and
throughput; see “Client Runtime Message Flow Adjustments” on page 286 for further
discussion.

Queue Browser and Server Sessions
Table 19–6 lists connection factory attributes affecting client queue browsing and server
sessions. The imqQueueBrowserMaxMessagesPerRetrieve attribute specifies the maximum
number of messages to retrieve at one time when browsing the contents of a queue destination;
imqQueueBrowserRetrieveTimeout gives the maximum waiting time for retrieving them.
(Note that imqQueueBrowserMaxMessagesPerRetrieve does not affect the total number of
messages browsed, only the way they are batched for delivery to the client runtime: fewer but
larger batches or more but smaller ones. Changing the attribute's value may affect performance,
but will not affect the total amount of data retrieved; the client application will always receive all
messages in the queue.) The boolean attribute imqLoadMaxToServerSession governs the
behavior of connection consumers in an application server session: if the value of this attribute
is true, the client will load up to the maximum number of messages into a server session; if
false, it will load only a single message at a time.

Standard Message Properties
The Java Message Service Specification defines certain standard message properties, which JMS
providers (such as Message Queue) may optionally choose to support. By convention, the
names of all such standard properties begin with the letters JMSX. The connection factory
attributes listed in Table 19–7 control whether the Message Queue client runtime sets certain of
these standard properties. For produced messages, these include the following:

JMSXUserID Identity of the user sending the message

JMSXAppID Identity of the application sending the message

JMSXProducerTXID Transaction identifier of the transaction within which the message was
produced

For consumed messages, they include

JMSXConsumerTXID Transaction identifier of the transaction within which the message was
consumed

JMSXRcvTimestamp Time the message was delivered to the consumer

Message Header Overrides
You can use the connection factory attributes listed in Table 19–8 to override the values set by a
client for certain JMS message header fields. The settings you specify will be used for all
messages produced by connections obtained from that connection factory. Header fields that
you can override in this way are

Administered Object Attributes

Open Message Queue 4.5 Administration Guide • February 2011208

JMSDeliveryMode Delivery mode (persistent or nonpersistent)

JMSExpiration Expiration time

JMSPriority Priority level

There are two attributes for each of these fields: one boolean, to control whether the field can be
overridden, and another to specify its value. For instance, the attributes for setting the priority
level are imqOverrideJMSPriority and imqJMSPriority. There is also an additional attribute,
imqOverrideJMSHeadersToTemporaryDestinations, that controls whether override values
apply to temporary destinations.

Note – Because overriding message headers may interfere with the needs of specific applications,
these attributes should only be used in consultation with an application’s designers or users.

Destination Attributes
The destination administered object that identifies a physical queue or topic destination has
only two attributes, listed in Table 19–9. The important one is imqDestinationName, which
gives the name of the physical destination that this administered object represents; this is the
name that was specified with the -n option to the imqcmd create dst command that created the
physical destination. (Note that there is not necessarily a one-to-one relationship between
destination administered objects and the physical destinations they represent: a single physical
destination can be referenced by more than one administered object, or by none at all.) There is
also an optional descriptive string, imqDestinationDescription, which you can use to help
identify the destination object and distinguish it from others you may have created.

Using the Object Manager Utility
The Message Queue Object Manager utility (imqobjmgr) allows you to create and manage
administered objects. The imqobjmgr command provides the following subcommands for
performing various operations on administered objects:

add Add an administered object to an object store

delete Delete an administered object from an object store

list List existing administered objects in an object store

query Display information about an administered object

update Modify the attributes of an administered object

Using the Object Manager Utility

Chapter 11 • Managing Administered Objects 209

See “Object Manager Utility” on page 332 for reference information about the syntax,
subcommands, and options of the imqobjmgr command.

Most Object Manager operations require you to specify the following information as options to
the imqobjmgr command:

■ The JNDI lookup name (-l) of the administered object
This is the logical name by which client applications can look up the administered object in
the object store, using the Java Naming and Directory Interface.

■ The attributes of the JNDI object store (-j)
See “Object Stores” on page 199 for information on the possible attributes and their values.

■ The type (-t) of the administered object
Possible types include the following:

q Queue destination

t Topic destination

cf Connection factory

qf Queue connection factory

tf Topic connection factory

xcf Connection factory for distributed transactions

xqf Queue connection factory for distributed transactions

xtf Topic connection factory for distributed transactions
■ The attributes (-o) of the administered object

See “Administered Object Attributes” on page 202 for information on the possible attributes
and their values.

Adding Administered Objects
The imqobjmgr command’s add subcommand adds administered objects for connection
factories and topic or queue destinations to the object store. Administered objects stored in an
LDAP object store must have lookup names beginning with the prefix cn=; lookup names in a
file-system object store need not begin with any particular prefix, but must not include the slash
character (/).

Using the Object Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011210

Note – The Object Manager lists and displays only Message Queue administered objects. If an
object store contains a non–Message Queue object with the same lookup name as an
administered object that you wish to add, you will receive an error when you attempt the add
operation.

Adding a Connection Factory
To enable client applications to create broker connections, add a connection factory
administered object for the type of connection to be created: a queue connection factory or a
topic connection factory, as the case may be. Example 11–1 shows a command to add a queue
connection factory (administered object type qf) to an LDAP object store. The object has
lookup name cn=myQCF and connects to a broker running on host myHost at port number 7272,
using the jms connection service.

EXAMPLE 11–1 Adding a Connection Factory

imqobjmgr add

-l "cn=myQCF"
-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"
-t qf

-o "imqAddressList=mq://myHost:7272/jms"

Adding a Destination
When creating an administered object representing a destination, it is good practice to create
the physical destination first, before adding the administered object to the object store. Use the
Command utility (imqcmd) to create the physical destination, as described in “Creating and
Destroying Physical Destinations” on page 109.

The command shown in Example 11–2 adds an administered object to an LDAP object store
representing a topic destination with lookup name myTopic and physical destination name

Using the Object Manager Utility

Chapter 11 • Managing Administered Objects 211

physTopic. The command for adding a queue destination would be similar, except that the
administered object type (-t option) would be q (for “queue destination”) instead of t (for
“topic destination”).

EXAMPLE 11–2 Adding a Destination to an LDAP Object Store

imqobjmgr add

-l "cn=myTopic"
-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"
-t t

-o "imqDestinationName=physTopic"

Example 11–3 shows the same command, but with the administered object stored in a Solaris
file system instead of an LDAP server.

EXAMPLE 11–3 Adding a Destination to a File-System Object Store

imqobjmgr add

-l "cn=myTopic"
-j "java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory"
-j "java.naming.provider.url=file:///home/foo/imq_admin_objects"
-t t

-o "imqDestinationName=physTopic"

Deleting Administered Objects
To delete an administered object from the object store, use the imqobjmgr delete
subcommand, specifying the lookup name, type, and location of the object to be deleted. The
command shown in Example 11–4 deletes the object that was added in “Adding a Destination”
on page 211 above.

EXAMPLE 11–4 Deleting an Administered Object

imqobjmgr delete

-l "cn=myTopic"
-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"
-t t

Using the Object Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011212

Listing Administered Objects
You can use the imqobjmgr list subcommand to get a list of all administered objects in an
object store or those of a specific type. Example 11–5 shows how to list all administered objects
on an LDAP server.

EXAMPLE 11–5 Listing All Administered Objects

imqobjmgr list

-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"

Using the Object Manager Utility

Chapter 11 • Managing Administered Objects 213

Example 11–6 lists all queue destinations (type q).

EXAMPLE 11–6 Listing Administered Objects of a Specific Type

imqobjmgr list

-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"
-t q

Viewing Administered Object Information
The imqobjmgr query subcommand displays information about a specified administered
object, identified by its lookup name and the attributes of the object store containing it.
Example 11–7 displays information about an object whose lookup name is cn=myTopic.

EXAMPLE 11–7 Viewing Administered Object Information

imqobjmgr query

-l "cn=myTopic"
-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"

Modifying Administered Object Attributes
To modify the attributes of an administered object, use the imqobjmgr update subcommand.
You supply the object’s lookup name and location, and use the -o option to specify the new
attribute values.

Using the Object Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011214

Example 11–8 changes the value of the imqReconnectAttempts attribute for the queue
connection factory that was added to the object store in Example 11–1.

EXAMPLE 11–8 Modifying an Administered Object’s Attributes

imqobjmgr update

-l "cn=myQCF"
-j "java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=uid=homerSimpson,ou=People,o=imq"
-j "java.naming.security.credentials=doh"
-j "java.naming.security.authentication=simple"
-t qf

-o "imqReconnectAttempts=3"

Using Command Files
The -i option to the imqobjmgr command allows you to specify the name of a command file
that uses Java property file syntax to represent all or part of the subcommand clause. This
feature is especially useful for specifying object store attributes, which typically require a lot of
typing and are likely to be the same across multiple invocations of imqobjmgr. Using a
command file can also allow you to avoid exceeding the maximum number of characters
allowed for the command line.

Using the Object Manager Utility

Chapter 11 • Managing Administered Objects 215

Example 11–9 shows the general syntax for an Object Manager command file. Note that the
version property is not a command line option: it refers to the version of the command file
itself (not that of the Message Queue product) and must be set to the value 2.0.

EXAMPLE 11–9 Object Manager Command File Syntax

version=2.0

cmdtype=[add | delete | list | query | update]

obj.lookupName=lookup name

objstore.attrs.objStoreAttrName1=value1

objstore.attrs.objStoreAttrName2=value2

. . .

objstore.attrs.objStoreAttrNameN=valueN

obj.type=[q | t | cf | qf | tf | xcf | xqf | xtf | e]

obj.attrs.objAttrName1=value1

obj.attrs.objAttrName2=value2

. . .

obj.attrs.objAttrNameN=valueN

As an example, consider the Object Manager command shown earlier in Example 11–1, which
adds a queue connection factory to an LDAP object store. This command can be encapsulated
in a command file as shown in Example 11–10. If the command file is named MyCmdFile, you
can then execute the command with the command line

Using the Object Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011216

imqobjmgr -i MyCmdFile

EXAMPLE 11–10 Example Command File

version=2.0

cmdtype=add

obj.lookupName=cn=myQCF

objstore.attrs.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

objstore.attrs.java.naming.provider.url=ldap://mydomain.com:389/o=imq

objstore.attrs.java.naming.security.principal=uid=homerSimpson,ou=People,o=imq

objstore.attrs.java.naming.security.credentials=doh

objstore.attrs.java.naming.security.authentication=simple

obj.type=qf

obj.attrs.imqAddressList=mq://myHost:7272/jms

A command file can also be used to specify only part of the imqobjmgr subcommand clause,
with the remainder supplied directly on the command line. For example, the command file
shown in Example 11–11 specifies only the attribute values for an LDAP object store.

EXAMPLE 11–11 Partial Command File

version=2.0

objstore.attrs.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

objstore.attrs.java.naming.provider.url=ldap://mydomain.com:389/o=imq

objstore.attrs.java.naming.security.principal=uid=homerSimpson,ou=People,o=imq

objstore.attrs.java.naming.security.credentials=doh

objstore.attrs.java.naming.security.authentication=simple

You could then use this command file to specify the object store in an imqobjmgr command
while supplying the remaining options explicitly, as shown in Example 11–12.

EXAMPLE 11–12 Using a Partial Command File

imqobjmgr add

-l "cn=myQCF"
-i MyCmdFile

-t qf

-o "imqAddressList=mq://myHost:7272/jms"

Additional examples of command files can be found at the following locations, depending on
how Message Queue was installed:

Using the Object Manager Utility

Chapter 11 • Managing Administered Objects 217

IPS packages IMQ_HOME/examples/imqobjmgr

Solaris SVR4 packages /usr/demo/imq/imqobjmgr

Linux RPM packages /opt/sun/mq/examples/imqobjmgr

Using the Object Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011218

Configuring and Managing Bridge Services

Message-Oriented Middleware (MOM) systems use a broad spectrum of technologies and
standards to provide messaging services. Often, these technologies and standards are
incompatible, leading to MOM systems that cannot communicate with each other in a larger
enterprise application context.

To alleviate this inability to communicate, Message Queue incorporates the Bridge Service
Manager, which supports individual bridge services of various types. Each type of bridge service
provides connectivity at the broker level to a MOM technology or standard that would
otherwise be unavailable in Message Queue.

This chapter provides information about the administrative components of the Bridge Service
Manager, and shows how to configure and manage the two types of bridge services currently
available:

■ “The Bridge Service Manager” on page 219
■ “Configuring and Managing JMS Bridge Services” on page 221
■ “Configuring and Managing STOMP Bridge Services” on page 239

The Bridge Service Manager
The Message Queue Bridge Service Manager is an application that runs in same JVM as a broker
to manage the bridges configured for the broker. Two administrative components control
operation of the Bridge Service Manager:

■ Bridge-related broker properties
■ The Bridge Manager utility (imqbridgermgr)

The following sections introduce these two components.

12C H A P T E R 1 2

219

Bridge-Related Broker Properties
The operation of the Bridge Service Manager is in part controlled by several broker properties.
These broker properties, all of which begin with imq.bridge, are listed in tables under “Bridge
Properties” on page 375. Some of the properties apply to all bridges configured for the broker,
while others apply only to a specific bridge. The properties that apply to a specific bridge all
begin with imq.bridge.bridgeName, where bridgeName is:

■ The same as the type of the bridge for bridge services that support only one bridge instance
per broker, such as the STOMP bridge service

■ A name you specify for a bridge instance for bridge services that support multiple bridge
instances per broker, such as the JMS bridge service

Of all the bridge-related broker properties, the two most important are imq.bridge.enabled
and imq.bridge.activelist:

■ The imq.bridge.enabled property controls whether the Bridge Service Manager is enabled
on the broker.

■ The imq.bridge.activelist property contains a comma-separated list bridges (by name)
to be loaded when the broker starts.

▼ To Enable the Bridge Service Manager

Set the imq.bridge.enabled broker property to true.

Set the imq.bridge.admin.user broker property to the user name of the admin user.

Set the imq.bridge.admin.password broker property to the password of the admin user.
Alternatively, you can specify the password using the -passfile option when you use the
imqbrokerd command to start the broker hosting the bridge service manager.

Set the imq.bridge.activelist broker property to a comma-separated list of bridges to
instantiate at broker startup.

Bridge Manager Utility
The Bridge Manager utility (imqbridgemgr) is the interface to the bridge management
functions of the Bridge Service Manager. It provides commands to:

■ Stop and start bridges
■ Pause and resume bridges
■ List configured bridges

1

2

3

4

The Bridge Service Manager

Open Message Queue 4.5 Administration Guide • February 2011220

■ Manage type-dependent subcomponents of bridges, such as the links within a JMS bridge
service

The imqbridgemgr utility uses the same command line syntax as the other Message Queue
utilities:

imqbridgemgr subcommand commandArgument [options]

For example, the following command lists all bridges of type JMS on the broker localhost:7373:

imqbridgemgr list bridge -t jms -b localhost:7373

For the complete set of subcommands, command arguments, and options supported by the
imqbridgemgr utility, see “Bridge Manager Utility” on page 337.

Logging of Bridge Services
Each bridge managed by the Bridge Service Manager for a broker has its own log file. Where
these log files are stored depends on how Message Queue was installed:

From IPS packages: IMQ_VARHOME/instances/broker-name/bridges/bridge-name/
From Solaris SVR4 packages: /var/imq/instances/broker-name/bridges/bridge-name/
From Linux RPM packages:
/var/opt/sun/mq/instances/broker-name/bridges/bridge-name/

The JMS and STOMP bridge services use the Java logging facility, which can be configured by
the Java logging configuration file. The logging level for a bridge can be controlled by setting the
imq.bridge.bridge-name.level property in the Java logging configuration file. Then, the Java
system property java.util.logging.config.file can be set to the Java logging configuration
file when the broker is started; as in:

imqbrokerd -Djava.util.logging.config.file=config-file

Configuring and Managing JMS Bridge Services
Because the JMS specification does not dictate the communication protocol between brokers
and clients, each JMS provider (including Message Queue) has defined and uses its own
propriety protocol. This situation has led to non-interoperability across JMS providers.

The JMS bridge service in Message Queue 4.5 closes this gap by enabling a Message Queue
broker to map its destinations to destinations in external JMS providers. This mapping
effectively allows the Message Queue broker to communicate with clients of the external JMS
provider.

The JMS bridge service supports mapping destinations to external JMS providers that:

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 221

■ Are JMS 1.1 compliant
■ Support JNDI administrative objects
■ Use connection factories of type javax.jms.ConnectionFactory or

javax.jms.XAConnectionFactory

■ Support the XA interfaces as a resource manager for transacted mapping

As an administrative and management convenience, the JMS bridge service supports the
creation of any number of JMS bridges in a broker. Each JMS bridge in the broker is identified
by a unique name, has its own configuration, and is managed separately from other JMS bridges
in the broker.

The following subsections provide information about JMS bridges and how to configure and
manage them:

■ “JMS Bridge Components” on page 222
■ “JMS Bridge Features” on page 223
■ “Message Processing Sequence Across a Link in a JMS Bridge” on page 228
■ “Configuring a JMS Bridge” on page 229
■ “Starting and Stopping JMS Bridges” on page 237
■ “Starting and Stopping Links in a JMS Bridge” on page 238

JMS Bridge Components
A JMS bridge consists of two primary components:

■ One or more links, each of which maps between a destination in the Message Queue broker
and a destination in an external JMS provider or in another Message Queue broker

■ A default Dead Message Queue (DMQ) where undeliverable messages are sent. Additional,
special-purpose DMQs can also be specified.

To provide destination mapping, each link consists of:

■ A source: the destination from which the JMS bridge receives messages. The source consists
of a connection factory for creating connections to a JMS provider and a destination in that
provider.

■ A target: the destination to which the JMS bridge forwards messages received from the
source. The target consists of a connection factory for creating connections to a JMS
provider and a destination in that provider. Additionally, a target can optionally specify a
message transformer that alters messages from the source before forwarding them to the
target destination.

Links are unidirectional. Links that have an external JMS provider or another Message Queue
broker as their source are called inbound links, and links that have the Message Queue broker as
their source are called outbound links.

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011222

To configure these components, you specify several imq.bridge.bridgeName broker
properties, and you create an XML configuration file that specifies the links, sources, targets,
connection factories, destinations, and DMQs in the bridge. This XML configuration file must
conform to the JMS bridge DTD.

JMS Bridge Features
To provide flexible, high-performing message transfer between mapped destinations, a JMS
bridge offers these features:
■ “Pooled, Shared, and Dedicated Connections” on page 223
■ “Transactional Message Transfer” on page 223
■ “JMS Bridges in High Availability (HA) Broker Clusters” on page 224
■ “Message Transformation During Message Delivery” on page 225
■ “JMSReplyTo Header Processing” on page 225
■ “Dead Message Queue (DMQ) Processing” on page 225

Pooled, Shared, and Dedicated Connections
A JMS bridge uses the connection factories configured for link sources, link targets, and DMQs
to create connections to the Message Queue broker and the external JMS provider. When
making connections, the JMS bridge follows these rules to determine whether to use a pooled
connection, a shared connection, or a dedicated connection:
■ For link source connections, the JMS bridge always uses a dedicated connection.
■ For link target and DMQ connections, the JMS bridge uses:

■ A pooled connection if the link target's or DMQ's stay-connected attribute is false
and the connection factory has no JMS client identifier configured.

■ A dedicated connection if the link target's or DMQ's stay-connected attribute is true
or if the link target's or DMQ's clientid attribute is set

■ A shared connection in all other cases

Transactional Message Transfer
Each JMS bridge includes a built-in XA transaction coordinator that enables its links to be
configured as "transacted" such that message transfer from the source to the target is done in a
XA distributed transaction.

For a link to be configured as transacted, both the link source and link target must specify
connection factories of type javax.jms.XAConnectionFactory.

The built-in XA transaction coordinator logs transaction records using the same type of store as
the Message Queue broker in which the JMS bridge resides. For file-based transaction logging,
the transaction log for a JMS bridge is located at:

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 223

IMQ_VARHOME/instances/brokerInstance/bridges/bridgeName/txlog.bridgeNane

For JDBC-based transaction logging, the built-in XA transaction coordinator uses the same
JDBC store as the Message Queue broker in which the JMS bridge resides.

Resource Manager Registration and The Built-In XA Transaction Coordinator

When a JMS bridge is started, it registers all its Resource Managers (RMs) with the built-in XA
transaction coordinator so that the coordinator can identify specific RMs during recovery.

For connection factories, the JMS bridge only registers the factory as an RM if the factory's
multi-rm attribute value is false. A connection factory with a multi-rm attribute value of true
should have each of its RMs identified by a connection factory whose multi-rmattribute value
of false in order to participate in transactional message transfer. Additionally, the JMS bridge
uses a connection factory's ref-name attribute value as part of its RM name when registering
RMs with the built-in XA transaction coordinator, so this attribute should not be changed
between restarts of the bridge if transaction recovery is desired between restarts.

JMS Bridges in High Availability (HA) Broker Clusters
Message Queue supports JMS bridges in HA broker clusters, but some special constraints apply
due to the inherent nature of HA broker clusters:
■ Each JMS bridge must have a name that is unique across all the JMS bridges in all the

brokers in the cluster.
■ Each JMS bridge must have the same bridge configuration across all the brokers in the

cluster.
■ The imq.bridge.enabled broker property must have the same value across all brokers in

the cluster.
■ Before broker startup, the imq.bridge.activelist broker property for each broker lists

only those JMS bridges that are to be owned by that broker.

To ensure that bridges in the cluster have the same configuration across all brokers in the
cluster, all bridge-related broker properties except for imq.bridge.activelist should be
specified in the centralized cluster properties file defined by the imq.cluster.url broker
property.

A table in the cluster's HA store is used to maintain a consistent record of JMS bridge ownership
by the brokers in the cluster.

During broker startup, the JMS bridge service compares the broker's imq.bridge.activelist
property value to this table's entries before starting any JMS bridges, with the following
consequences:

■ If a JMS bridge named in imq.bridge.activelist does not appear in the table, it is added
to the table and associated with the broker.

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011224

■ If a JMS bridge name in imq.bridge.activelist does appear in the table, and the table
entry already associates the bridge with a different broker, the bridge name is removed from
imq.bridge.activelist.

■ If an entry in the table associates a JMS bridge with the broker, and that bridge's name is not
in imq.bridge.activelist, the bridge name is added to imq.bridge.activelist.

Message Transformation During Message Delivery
A link target or a DMQ can specify a message transformer to process the message before it is
delivered to the target destination or DMQ destination. This message transformer must be a
Java class that extends the Message Queue bridge
com.sun.messaging.bridge.service.MessageTransformer abstract class and has
javax.jms.Message as its formal type parameters. To specify a message transformer, set the
message-transformer-class attribute of a link target or a DMQ to the fully qualified class
name of the Java class.

During message transfer processing, the JMS message to be transferred to a target, plus any
property subelements of the link's target element or the dmq element, are passed to the
message transformer's MessageTransformer.transform() method, and the returned JMS
message is sent to the target destination.

JMSReplyTo Header Processing
In a JMS message, the JMSReplyTo header value is provider dependent. Therefore, unless both
the source provider and target provider are Message Queue, the JMS bridge sets an existing
JMSReplyTo header to a null value before passing the message to a link target or, if specified, the
message transformer for the link target.

This default behavior can be overridden by setting the retain-replyto attribute of the link's
target element to true. Overriding the default behavior is useful when:
■ The message transformer for a link target handles processing of the JMSReplyTo header.
■ Both the link source and link target have the same JMS provider, and clients of the target

provider instance need to send reply messages back across the JMS bridge to the JMSReplyTo
destination in the source provider instance. To successfully implement this case:
■ The JMSReplyTo destination must exist (or be able to be auto-created) in the target

provider instance.
■ A JMS bridge link must be defined with its source set to the JMSReplyTo destination in

the target provider instance and its target set to the JMSReplyTo destination in the source
provider instance.

Dead Message Queue (DMQ) Processing
Each JMS bridge includes a built-in Dead Message Queue (DMQ) named built-in-dmq. This
DMQ is a designated Queue destination named imq.bridge.jms.dmq in the broker hosting the

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 225

JMS bridge. You can also configure additional DMQs for the JMS bridge, in which case the
DMQ can use any JMS destination in any configured JMS provider.

Note – In a production environment, the built-in DMQ, imq.bridge.jms.dmq, should be
administratively created and have its access controls set appropriately before starting a broker
that uses JMS bridge services.

When a DMQ uses Message Queue as the JMS provider, it can be configured such that messages
sent to it will automatically be transferred to the Message Queue broker's DMQ. To do so, set
physical destination properties of the JMS bridge's DMQ as follows:

useDMQ=true

limitBehavior=REMOVE_OLDEST

maxNumMsgs=0

When a message is sent to the DMQ, the JMS bridge follows this sequence with the built-in
DMQ first:

1. The bridge creates a new DMQ javax.jms.ObjectMessage object and sets the properties
listed in Table 12–1 to the ObjectMessage.

2. If the DMQ has defined a message transformer, the original message is passed to the
transformer's MessageTransformer.transform() method.

3. The body of the javax.jms.ObjectMessage is set to the transformed message (or original
message if no message transformer is defined). If this action fails (usually because the
message is not serializable), the body of the ObjectMessage is instead set to the toString()
value of the original message.

4. The javax.jms.ObjectMessage is sent (up to send-attempts times) to the DMQ's
destination with a timeToLive value based on the DMQ's time-to-live-in-millis
attribute and with the same JMSDeliveryMode and JMSPriority as the original message.

5. If sending the message fails, the bridge repeats Steps 2 through 4 for each DMQ defined in
the bridge's XML configuration file in the order they appear in the file, stopping when a send
attempt succeeds, unless it is the built-in DMQ.

6. If the message can't be sent to any DMQ, a log message is generated, containing the
properties and headers of the original message and the properties set in Step 1.

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011226

TABLE 12–1 DMQ Message Propeties

Property Type Description

JMS_SUN_JMSBRIDGE_DMQ_BODY_TRUNCATED String If unable to set the original message or the
transformed message (if the DMQ has a
message transformer) to the body of the DMQ
ObjectMessage. In that case the message's
toString() is set to the body of the DMQ
ObjectMessage.

JMS_SUN_JMSBRIDGE_DMQ_EXCEPTION String The Exception.getMessage() if exception
occurred or detailed comments on the failure;
null if none.

JMS_SUN_JMSBRIDGE_DMQ_REASON String One of: MESSAGE_EXPIRED, SEND_FAILURE,
ACK_FAILURE, TRANSFORM_FAILURE,
COMMIT_FAILURE.

JMS_SUN_JMSBRIDGE_DMQ_TIMESTAMP String The timestamp when the JMS bridge sends the
message to the DMQ.

JMS_SUN_JMSBRIDGE_SOURCE_CORRELATIONID String The original message's
getJMSCorrelationID().

JMS_SUN_JMSBRIDGE_SOURCE_DESTINATION String The original message's source destination
name.

JMS_SUN_JMSBRIDGE_SOURCE_JMSTYPE String The original message's getJMSType().

JMS_SUN_JMSBRIDGE_SOURCE_MESSAGEID String The orginal message's getJMSMessageID(), or
null if not available.

JMS_SUN_JMSBRIDGE_SOURCE_PROVIDER String The
ConnectionMetaData.getJMSProviderName

of the connection the original message was
received on; if not available, the source
connection factory's getClass().getName().

JMS_SUN_JMSBRIDGE_SOURCE_TIMESTAMP Long The original message's getJMSTimestamp().

JMS_SUN_JMSBRIDGE_TARGET_DESTINATION String The name of the target destination where the
original message was intended to send to.

JMS_SUN_JMSBRIDGE_TARGET_PROVIDER String The
ConnectionMetaData.getJMSProviderName

of the connection the original message was
intended to send on; if not available, the target
connection factory's getClass().getName().

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 227

Message Processing Sequence Across a Link in a JMS
Bridge
A JMS bridge link receives messages in the order sent by the link's source JMS provider and
transfer them in the same order to the link's target JMS provider. A link follows this sequence to
transfer each message:

1. The link receives a JMS message from its source.
2. The link checks the JMSExpiration header to determine whether the message has expired. If

it has, a log message is generated, the JMS message is sent to the DMQ, and no further action
is taken.

3. If the message has a JMSReplyTo header and the link target's retain-replyto attribute is
false, the JMSReplyTo header value is set to null.

4. If the link target has defined a message transformer, the transformer's
MessageTransformer.transform() method is called. If the call fails or if the message
transformer returns a null value, a log message is generated and then processing continues
as follows:
■ If the target's consume-no-transfer-on-transform-error XML attribute is true, the

untransformed message is sent to the DMQ, consumed from the source, but not sent to
the target.

■ If the target's consume-no-transfer-on-transform-error XML attribute is false, the
link is stopped and the message is neither consumed from the source nor sent to the
target.

5. If the message-transfer-tag-bridge-name attribute of the jmsbridge element is true, the
JMS_SUN_JMSBRIDGE_NAME property is added to the message and set to the name of the
bridge.

6. The message is sent to the link target's destination with a timeToLive value based on the
JMSExpiration header and current GMT time and with the same JMSDeliveryMode and
JMSPriority values as the original message. If sending to the link target's destination fails
and the link is not transacted, a log message is generated, the JMS message is sent to the
DMQ, and processing continues.

7. The source message is acknowledged using JMS CLIENT_ACKNOWLEDGE if the link is not
transacted. If the acknowledgement fails, a log message is generated and the JMS message is
sent to the DMQ.

8. If the message processing was successful, an INFO log message is generated. This log
message can be suppressed by setting to false the log-message-transfer attribute of the
jmsbridge element in the bridge's XML configuration file.

Message processing for messages across transacted links follows the same processing sequence,
except JTA interfaces are used to coordinate the source and target resource managers to transfer
the message in an XA distributed transaction. For transacted links, failure to send the message
to the link target's destination does not cause the JMS message to be sent to the DMQ; instead,

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011228

the transaction is rolled back. However, if the attempt to commit the transaction fails, a log
message is generated and the JMS message is sent to the DMQ.

The quality of message transfer under failures depends on whether the link transferring the
message is transacted:

■ Transacted links: once-only-once
■ Non-transacted links: at-least-once

Configuring a JMS Bridge
To configure a JMS bridge, you specify several imq.bridge.bridgeName broker properties,
where bridgeName is a name you choose for the JMS bridge. Additionally, you create an XML
configuration file that specifies the links, sources, targets, connection factories, destinations,
and DMQs in the bridge. The url of this configuration file is provided as the value of the
imq.bridge.bridgeName.xml property

Specifying the Broker Properties for a JMS Bridge
Table 12–2 lists the broker properties you can specify for a JMS bridge. In this table, name is the
name of the JMS bridge, which must be unique across all bridges in the broker.

TABLE 12–2 Broker Properties for a JMS Bridge

Property Type
Default
Value Description

imq.bridge.name.type String None The bridge type of the bridge named name. For JMS bridges,
specify a value of JMS or jms.

imq.bridge.name.xmlurl String None The URL where the XML configuration file for the JMS bridge
name is stored.

Examples:
http://webserver/imq/jmsbridge1.config.xml

(for a file on a Web server)
file:/net/fileserver/imq/jmsbridge1.config.xml

(for a file on a shared drive)

imq.bridge.name.autostart Boolean true Should the JMS bridge name be automatically started when the
broker is started?

imq.bridge.name.logfile.limit Integer 0 The approximate maximum number of bytes the JMS bridge
name writes to any one log file.

A value of 0 (zero) indicates that there is no maximum limit.

imq.bridge.name.logfile.count Integer 1 The number of log files the JMS bridge name cycles through.

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 229

TABLE 12–2 Broker Properties for a JMS Bridge (Continued)

Property Type
Default
Value Description

imq.bridge.tm.props

imq.bridge.name.tm.props

String None Each of these properties specifies a list of key-value pairs for the
built-in transaction coordinator for the JMS bridge name.

The list consists of one or more key=value pairs separated by
commas.

When the imq.persist.store is file, the built-in transaction
coordinator supports these keys: txlogSize, txlogSync, and
txlogMmap.

If the same key appears in both properties, the value specified in
imq.bridge.name.tm.props takes precedence.

Creating the XML Configuration File for a JMS Bridge
As mentioned earlier, the XML configuration file for a JMS bridge specifies the following
components of the bridge:
■ Links
■ Sources
■ Targets
■ Connection factories
■ Destinations
■ DMQs

The configuration file must conform to the JMS bridge DTD, which is stored at:

IMQ_HOME/lib/dtd/sun_jmsbridge_Version.dtd

The basic structure of configuration file is:

<jmsbridge name=bridgeName otherAttributes>
<link name=linkName otherAttributes>

[<description>linkDescription</description>]

<source connection-factory-ref=connFactoryRef destination-ref=destRef otherAttributes>
[<description>sourceDescription</description>

</source>

<target connection-factory-ref=connFactoryRef destination-ref=destRef otherAttributes>
[<description>targetDescription</description>]

[<property name=propName value=propValue />] ...

</target>

</link>

<dmq name=dmqName otherAttributes> /* use name="built-in-dmq" for the built-in DMQ */

[<description>dmqDescription</description>]

[<property name=propName value=propValue />] ...

</dmq>

<connection-factory ref-name=connFactoryRef otherAttributes>
[<description>connFactoryDescription</description>]

[<property name=propName value=propValue />] ...

</connection-factory>

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011230

<destination ref-name=destRef otherAttributes>
[<description>destDescription</description>]

[<property name=propName value=propValue />] ...

</destination> ...

</jmsbridge>

From this abbreviated structure for the bridge XML configuration file, note that source and
target are subelements of link, while connection-factory and destination are peer
elements to link, not subelements of source and target. Connection factories and
destinations are associated with sources and targets by matching connection-factory
ref-name and destination ref-name attributes values to source and target

connection-factory-ref and destination-ref attribute values, respectively.

As a result of this association by name-matching instead of by subelement inclusion, you can
use the same connection factories and destinations across sources and targets in multiple links,
thus streamlining the configuration file and making it more manageable.

The following subsections describe the attributes you can specify for the elements in the JMS
bridge XML configuration file.

jmsbridge Attributes

Table 12–3 lists the attributes for the jmsbridge element in the JMS Bridge XML configuration
file.

TABLE 12–3 jmsbridge Attributes

Attribute Type Description

name String Unique name for this JMS bridge.

Default value: no default

log-message-transfer
1 Boolean Should each successful message transfer generate an INFO level

log message?

Default value: true

message-transfer-tag-bridge-name Boolean Should the JMS_SUN_JMSBRIDGE_NAME property be defined and
set to the name of the bridge for each message before transferring
to the link target?

Default value: false
1 First available in Message Queue 4.4.2

link Attributes

Table 12–4 lists the attributes for the link element in the JMS Bridge XML configuration file.

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 231

TABLE 12–4 link Attributes

Attribute Type Description

enabled Boolean If false, the link will not be started

Default value: true

name String Unique identifier for this link

Default value: no default

transacted Boolean If true, each message transfer from source to target will be done
in a XA distributed transaction. The connection factories
specified by the source and target must be
javax.jms.XAConnectionFactory objects.

If false, CLIENT_ACKNOWLEDGE mode will be used on the source
The connection factories specified by the source and target must
be javax.jms.ConnectionFactory objects.

Default value: true

source Attributes

Table 12–5 lists the attributes for the source element in the JMS Bridge XML configuration file.

TABLE 12–5 source Attributes

Attribute Type Description

clientid String A JMS client identifier for the message consumer connection

Default value: not set

connection-factory-ref String The ref-name attribute value of the connection-factory
element to associate with this source.

Default value: no default

destination-ref String The ref-name attribute value of the destination element to
associate with this source.

Default value: no default

durable-sub String A JMS durable subscription name.

This attribute is ignored if the source's destination is not a
javax.jms.Topic object.

Default value: not set

selector String A JMS selector for the message consumer

Default value: not set

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011232

target Attributes

Table 12–6 lists the attributes for the target element in the JMS Bridge XML configuration file.

TABLE 12–6 target Attributes

Attribute Type Description

clientid String A JMS client identifier for the message producer connection; if
set, use a dedicated connection.

Default value: not set

connection-factory-ref String The ref-name attribute value of the connection-factory
element to associate with this target.

Default value: no default

consume-no-transfer-on-transform-error Boolean Controls processing when the message transformer's
MessageTransformer.transform() method returns a null value
or throws java.lang.Throwable:
■ If true, the message is sent to the DMQ and consumed from

the source but not sent to the target.

■ If false, the link is stopped, and the message is neither
consumed from the source nor transferred to the target.

Default value: false

destination-ref String The ref-name attribute value of the destination element to
associate with this target.

The value AS_SOURCE is also supported. This value causes the
target destination name and type to be set to the source message's
javax.jms.Message.getJMSDestination(), unless overridden
by the message transformer's
MessageTransformer.branchTo().

Default value: no default

message-transformer-class String A fully qualified class name that extends the Message Queue
bridge MessageTransformer class. For more information, see
“Message Transformation During Message Delivery” on
page 225. Place this class under the IMQ_HOME/lib/ext directory.

Default value: not set

retain-replyto Boolean Should the value of the source message's JMSReplyTo header (if
specified) be retained? For more information, see “JMSReplyTo
Header Processing” on page 225.

Default value: false

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 233

TABLE 12–6 target Attributes (Continued)
Attribute Type Description

stay-connected Boolean If true, the message producer connection will stay connected,
and be dedicated.

Default value: true

dmq Attributes

Table 12–7 lists the attributes for the dmq element in the JMS Bridge XML configuration file.

TABLE 12–7 dmq Attributes

Attribute Type Description

client-id String JMS client identifier for the DMQ producer connection. If set,
the connection will be dedicated.

Default value: not set

connection-factory-ref
1 String The ref-name attribute value of the connection-factory

element to associate with this DMQ. This connection factory
must be a javax.jms.ConnectionFactory object.

Default value: no default

destination-ref
1 String The ref-name attribute value of the destination element to

associate with this DMQ.

Default value: no default

enabled
1 Boolean Is this DMQ is enabled?

Default value: true

message-transformer-class String A fully qualified class name that extends the Message Queue
bridge MessageTransformer class. For more information, see
“Message Transformation During Message Delivery” on
page 225.

Default value: not set

name String The unique identifier of this DMQ.

Default value: no default

send-attempt-interval-in-seconds Integer How long to wait before attempting to resend an undeliverable
message to this DMQ.

Default value: 5
1 This attribute is ignored for the built-in DMQ, built-in-dmq

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011234

TABLE 12–7 dmq Attributes (Continued)
Attribute Type Description

send-attempts Integer The number of attempts to send (or resend) an undeliverable
message to this DMQ.

Default value: 3

stay-connected
1 Boolean If true, the DMQ producer connection will stay connected and be

dedicated.

Default value: true

time-to-live-in-millis Integer Time-to-live in milliseconds for messages going to this DMQ.
The value 0 means forever.

Default value: 0
1 This attribute is ignored for the built-in DMQ, built-in-dmq

connection-factory Attributes

Table 12–8 lists the attributes for the connection-factory element in the JMS Bridge XML
configuration file.

TABLE 12–8 connection-factory Attributes

Attribute Type Description

connect-attempt-interval-in-seconds Integer How long to wait before each connect attempt.

Default value: 5

connect-attempts Integer The number of attempts for connecting. The value -1 means
retry forever

Default value: -1

idle-timeout-in-seconds Integer Close a connection if it is idle for more than this long. The value 0
indicates no idle timeout. This attribute is ignored for sources
and for targets and DMQs that have their stay-connected
attribute set to true.

Default value: 1800

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 235

TABLE 12–8 connection-factory Attributes (Continued)
Attribute Type Description

lookup-name String JNDI lookup name. If specified, the JNDI environment
properties must specified as property subelements of this
connection-factory element. The object returned by the
lookup must be either javax.jms.ConnectionFactory or
javax.jms.XAConnectionFactory type

If not specified, a default connection factory to the Message
Queue broker hosting the bridge is created with the properties in
the property subelements.

Default value: not set

multi-rm Boolean Set to true if this connection factory will potentially create XA
connections to more than one XA resource manager (that is,
XAResource.isSame() is false among them). Also, add separate
connection-factory for each such resource manager so that
they will be registered separately to the built-in XA transaction
coordinator.

Default value: false

password String The password for the user specified in username.

Default value: not set

ref-name String Unique name for this connection factory.

Default value: no default

username String The user name to be used to create connections from this
connection factory. If this attribute is set, the password attribute
must also be set.

If not set, connections are created using the no-argument
createConnection() method of the connection factory.

Default value: not set

destination Attributes

Table 12–9 lists the attributes for the destination element in the JMS Bridge XML
configuration file.

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011236

TABLE 12–9 destination Attributes

Attribute Type Description

lookup-name String JNDI lookup name for the destination. If specified, the JNDI
environment properties must specified as property subelements
of this destination element.

Default value: not set

name String The JMS destination name of this destination. This attribute is
ignored if lookup-name is specified.

Default value: not set

ref-name String Unique name for this destination.

Default value: no default

type queue or
topic

The JMS destination type of this destination. This attribute is
ignored if lookup-name is specified

Default value: queue

Starting and Stopping JMS Bridges
JMS bridges can be started automatically when the broker hosting the bridge starts, or manually
using the imqbridgemgr utility. Similarly, JMS bridges are stopped automatically when the
broker hosting the bridge is shut down, or manually using the imqbridgemgr utility.

When a JMS bridge is started, the JMS bridge manager performs these tasks:

1. Parse and validate the bridge's XML configuration file.
2. Initialize all links and DMQs that have their enabled attribute set to true.
3. If any enabled links have their transacted attribute set to true:

a. Initialize the built-in XA transaction coordinator.
b. Register resource managers (RMs) for all potential XA connection factories.
c. Perform XA recovery for available RMs.

4. Create connection pools and shared connections as needed.
5. Ensure that all DMQs are ready.
6. Start all enabled links.

When a JMS bridge is stopped, the JMS bridge manager performs these tasks:

1. Stop all started and paused links.
2. Wait until all pooled connections are returned to their respective pools and until all

references to shared connections are returned.

Configuring and Managing JMS Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 237

3. Close all connection pools and shared connections. This effectively causes all physical
connections to JMS providers to close.

▼ To Configure a JMS Bridge to Start at Broker Startup
Follow these steps to configure a JMS bridge so that it starts automatically when the broker
hosting it is started.

Confirm that the bridge service manager is enabled.

See “To Enable the Bridge Service Manager” on page 220 for instructions.

Add the name of the bridge to the imq.bridge.activelist broker property.

Confirm that the imq.bridge.bridgeName.autostartbroker property is set to true.

▼ To Start a JMS Bridge Manually

Enter the imqbridgemgr start bridge command, specifying the bridge name and the broker.

For example, to start the bridge mq2external hosted by the broker running on myhost:8886,
enter this command:
imqbridgemgr start bridge -bn mq2external -b myhost:8886

▼ To Stop a JMS Bridge Manually

Enter the imqbridgemgr stop bridge command, specifying the bridge name and the broker.

For example, to stop the bridge mq2external hosted by the broker running on myhost:8886,
enter this command:
imqbridgemgr stop bridge -bn mq2external -b myhost:8886

Starting and Stopping Links in a JMS Bridge
Links in a JMS bridge are started automatically when the bridge starts. Similarly, links are
stopped automatically when the bridge is stopped. Additionally, once a JMS bridge is started,
any of its links can be paused, resumed, stopped or restarted manually using the imqbridgemgr
utility.

1

2

3

●

●

Configuring and Managing JMS Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011238

▼ To Stop a Link Manually

Enter the imqbridgemgr stop link command, specifying the link name, the bridge name, and
the broker.
For example, to stop the link link1 in the bridge mq2external hosted by the broker running on
myhost:8886, enter this command:
imqbridgemgr stop link -ln link1 -bn mq2external -b myhost:8886

▼ To Start a Link Manually
A link cannot be started manually unless it is enabled; that is, the enabled attribute of its link
element in the bridge's XML configuration file is set to true.

Enter the imqbridgemgr start link command, specifying the link name, the bridge name, and
the broker.
For example, to start the link link1 in the bridge mq2external hosted by the broker running on
myhost:8886, enter this command:
imqbridgemgr start link -ln link1 -bn mq2external -b myhost:8886

Configuring and Managing STOMP Bridge Services
The STOMP (Streaming Text Oriented Messaging Protocol) open source project at
http://stomp.codehaus.org defines a simple wire protocol that clients written in any
language can use to communicate with any messaging provider that supports the STOMP
protocol.

Message Queue 4.5 provides support for the STOMP protocol through the STOMP bridge
service. This service enables a Message Queue broker to communicate with STOMP clients.

The STOMP bridge service provides the features needed to fully integrate STOMP messaging
into the JMS messaging environment of Message Queue:

■ Registration with the Message Queue Port Mapper service so that STOMP clients can
discover the service dynamically

■ Support for TCP and SSL/TLS connections, including SSL/TLS connections requiring client
authentication

■ Automatic conversion of STOMP frame messages to and from JMS BytesMessage and
TextMessage types

■ Extensible message handling and transformation (by defining a custom message
transformer)

■ Support for the full STOMP protocol, including the STOMP JMS bindings

●

●

Configuring and Managing STOMP Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 239

http://stomp.codehaus.org

The following subsections provide information about the STOMP bridge and how to configure
and manage it:

■ “Configuring the STOMP Bridge” on page 240
■ “Starting and Stopping the STOMP Bridge” on page 241
■ “Message Processing Sequence Across the STOMP Bridge” on page 242
■ “STOMP Protocol Features and the STOMP Bridge” on page 243

Configuring the STOMP Bridge
To configure the STOMP bridge, you specify several imq.bridge.stomp broker properties in
the broker hosting the bridge. These properties, which control the various features of the
STOMP bridge, are listed in Table 12–10.

TABLE 12–10 Broker Properties for the STOMP Bridge Service

Property Type
Default
Value Description

imq.bridge.stomp.hostname String None Host name or IP address for the STOMP bridge service

If specified, overrides imq.hostname (see Table 17–1) for the
STOMP bridge service.

imq.bridge.stomp.tcp.enabled Boolean true Does the STOMP bridge accept TCP connections?

imq.bridge.stomp.tcp.port Integer 7672 The port on which the STOMP bridge listens for TCP
connections, provided that imq.bridge.stomp.tcp.enabled is
true.

imq.bridge.stomp.tls.enabled Boolean false Does the STOMP bridge accept SSL/TLS connections?

If true, a keystore must be created using the imqkeytool utility
before starting the broker.

imq.bridge.stomp.tls.port Integer 7673 The port on which the STOMP bridge listens for SSL/TLS
connections, provided that imq.bridge.stomp.tls.enabled is
true.

imq.bridge.stomp.tls.requireClientAuth Boolean false Do SSL/TLS connections require client authentication?

imq.bridge.stomp.consumerFlowLimit Integer 1000 The maximum number of unacknowledged messages that the
STOMP bridge will deliver on a transacted STOMP subscription.
The STOMP client must then acknowledge the messages and
commit the transaction.

imq.bridge.stomp.messageTransformer String None The fully qualified class name of a class that extends the Message
Queue bridge MessageTransformer abstract class (with formal
type parameters as javax.jms.Message). Place this class under
the IMQ_HOME/lib/ext directory.

Configuring and Managing STOMP Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011240

TABLE 12–10 Broker Properties for the STOMP Bridge Service (Continued)

Property Type
Default
Value Description

imq.bridge.stomp.logfile.limit Integer 0 The approximate maximum number of bytes the STOMP bridge
writes to any one log file.

A value of 0 (zero) indicates that there is no maximum limit.

imq.bridge.stomp.logfile.count Integer 1 The number of log files the STOMP bridge cycles through.

Starting and Stopping the STOMP Bridge
The STOMP bridge is started automatically when the broker hosting the bridge starts. Similarly,
the STOMP bridge is stopped automatically when the broker hosting it is stopped. The STOMP
bridge can be stopped and restarted manually using the imqbridgemgr utility.

▼ To Activate the STOMP Bridge

Confirm that the bridge service manager is enabled.

See “To Enable the Bridge Service Manager” on page 220 for instructions.

Add the name stomp to the list of bridge names in the imq.bridge.activelist broker
property.

▼ To Stop the STOMP Bridge Manually

Enter the imqbridgemgr stop bridge command, specifying the bridge type and the broker.

For example, to stop the STOMP bridge hosted by the broker running on myhost:8886, enter
this command:
imqbridgemgr stop bridge -t STOMP -b myhost:8886

▼ To Start the STOMP Bridge Manually

Enter the imqbridgemgr start bridge command, specifying the bridge type and the broker.

For example, to start the STOMP bridge hosted by the broker running on myhost:8886, enter
this command:
imqbridgemgr start bridge -t STOMP -b myhost:8886

1

2

●

●

Configuring and Managing STOMP Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 241

Message Processing Sequence Across the STOMP
Bridge
The STOMP bridge processes messages differently depending on whether the message is a
STOMP frame message being received from a STOMP client or a JMS message being sent to a
STOMP client.

For STOMP frame messages received from a STOMP client, the STOMP bridge performs these
tasks:

1. Convert the STOMP frame message to a JMS BytesMessage if the content-length header
is present; otherwise, convert it to a JMS TextMessage using UTF-8 as the message
encoding.

2. If a custom message transformer is defined for the bridge, pass the JMS message to the
transformer's MessageTransformer.transform() method.

3. Send the message to its destination.

For JMS messages sent to a STOMP client, the STOMP bridge performs these tasks:

1. If a custom message transformer is defined for the bridge, pass the JMS message to the
transformer's MessageTransformer.transform() method.

2. If the transformed message (or original message when no custom transformer is defined) is
not a JMS TextMessage or JMS BytesMessage message, close the STOMP connection and
stop processing the message.

3. Convert the JMS message to a STOMP frame message, using UTF-8 encoding for all headers
and for the message body of a JMS TextMessage message.

4. Send the message to the STOMP client.

Message Transformation During Message Processing
The message transformation between STOMP frame messages and JMS messages that the
STOMP bridge automatically provides is sufficient in most applications. However, if you need
to perform special processing or to send JMS message types other than BytesMessage or
TextMessage to STOMP clients, you can define a custom message transformer for the STOMP
bridge.

This custom message transformer is a Java class that extends the Message Queue Bridge
MessageTransformer abstract class by implementing the class's transform() method. Then,
place the class file in the IMQ_HOME/lib/ext directory and set the
imq.bridge.stomp.messageTransformer broker property of the broker hosting the STOMP
bridge to the fully qualified class name of the class.

When implementing the transform() method, keep these points in mind:
■ The formal parameters T and S must be of type javax.jms.Message.

Configuring and Managing STOMP Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011242

■ " The source and target arguments will be either "STOMP" and "SUN_MQ" or "SUN_MQ" and
"STOMP", respectively.

■ A source argument value of "STOMP" indicates that the message argument is from a STOMP
client SEND frame received by the STOMP bridge.

■ A source argument value of "SUN_MQ" indicates that the message argument is from a Message
Queue destination.

■ The readOnly argument will be false if the source argument is "STOMP" and true if the
source argument is "SUN_MQ".

■ If the source argument is "STOMP", the properties argument contains, as key/value pairs, any
arbitrary user headers that the STOMP bridge was unable to convert to JMS message
properties in the message argument. Otherwise, the properties argument is null.

■ The charsetName argument should be ignored unless the source argument is "STOMP" and
the message argument is a JMS BytesMessage message. This combination of argument
values indicates that the message is from a STOMP client and has already been converted to
a BytesMessage message.

■ The returned message must be in write-only mode if the source argument is "STOMP" and in
read-only mode if the source argument is "SUN_MQ".

STOMP Protocol Features and the STOMP Bridge
The STOMP bridge supports the full STOMP protocol, including all additional STOMP
headers for the STOMP JMS bindings, as listed at http://stomp.codehaus.org/Stomp+JMS.

The following table clarifies how the STOMP bridge handles certain command and header
combinations that might be otherwise be subject to multiple interpretations.

TABLE 12–11 STOMP Bridge Handling of Selected Command/Header Combinations

STOMP Frame
Command STOMP Frame Header Handling by the STOMP Bridge

CONNECT login

passcode

The STOMP bridge requires these headers to be
specified; otherwise, it returns an ERROR frame.

Configuring and Managing STOMP Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 243

http://stomp.codehaus.org/Stomp+JMS

TABLE 12–11 STOMP Bridge Handling of Selected Command/Header Combinations (Continued)
STOMP Frame
Command STOMP Frame Header Handling by the STOMP Bridge

SEND

SUBSCRIBE

UNSUBSCRIBE

MESSAGE

destination MQ STOMP bridge interprets prefixes in
destination header values as follows:
■ /queue/: the prefix is followed by the name of a

Queue
■ /topic/: the prefix is followed by the name of a

Topic
■ /temp-queue/: the prefix is followed by the name

of a TemporaryQueue
■ /temp-topic/: the prefix is followed by the name

of a TemporaryTopic

Note that the following two prefixes are reserved to
be used only for send reply messages to a MESSAGE
frame's replyto destination, and should only be used
in the same CONNECT session in which the MESSAGE is
received.
■ /temp-queue/temporary_destination://queue/

■ /temp-topic/temporary_destination://topic/

SEND expires

priority

persistent

When these headers are not specified for SEND, the
message will be sent with the same default values as
for a Message Queue Java client.

SEND user specific headers On SEND, a user can specify additional headers
beyond the ones specified in the STOMP protocol
and STOMP JMS Bindings. These headers are
transformed to String properties of the converted
JMS message. Therefore, the keys for these headers
must be valid JMS property names. If any are not, and
a custom message transformer is specified for
STOMP bridge, the invalid ones are passed in the
properties argument to the transformer's
transform() method.

SUBSCRIBE selector Supported as described in the STOMP JMS Bindings
on SUBSCRIBE.

Configuring and Managing STOMP Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011244

TABLE 12–11 STOMP Bridge Handling of Selected Command/Header Combinations (Continued)
STOMP Frame
Command STOMP Frame Header Handling by the STOMP Bridge

SUBSCRIBE id A STOMP client should always specify an id header
for SUBSCRIBE. If no "id" header is specified, the
STOMP bridge assigns it a default value of
/subscription-to/STOMP-destination-name.

All SUBSCRIBE id values must be unique in the scope
of the STOMP client connection to the STOMP
bridge; otherwise, an ERROR frame will be returned.

SUBSCRIBE transaction For a STOMP subscription to receive messages in a
transaction, the SUBSCRIBE frame must specify a
transaction header with a transaction identifier
whose transaction state is started. If the transaction
does not exist, an ERROR frame is returned. After the
transaction completes (using either COMMIT or
ABORT), message delivery to the transacted
subscription is paused until the next transaction
BEGIN.

ABORT transaction For transacted subscriptions, aborting a transaction
will cause the STOMP bridge to stop message
delivery to all transacted subscriptions in the CONNECT
session. Then, upon the next BEGIN, the STOMP
bridge restarts the message delivery sequence to all
the transacted subscriptions in the CONNECT session,
including all unconsumed messages that had been
previously delivered.

SUBSCRIBE ack For STOMP ack:auto (the default), a subscribed
message is considered acknowledged as soon as it is
sent to the STOMP client.

UNSUBSCRIBE durable-subscriber-name Unsubscribes a durable subscription, with these
provisions:
■ destination and id headers, if specfied, are

ignored.
■ An ERROR frame is returned if the connection

(CONNECT) has no client-id.

If an active subscriber with the durable name exists
on the connection, it is first closed, and then the
durable subscriber is unsubscribed.

Configuring and Managing STOMP Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 245

TABLE 12–11 STOMP Bridge Handling of Selected Command/Header Combinations (Continued)
STOMP Frame
Command STOMP Frame Header Handling by the STOMP Bridge

BEGIN transaction Transactions are at STOMP CONNECT session level.
Nested transactions are not supported. On attempts
to start a nested transaction, an ERROR frame is
returned.

The transaction identifier will also be used for
SUBSCRIBE frame to create a transacted subscription.

ACK subscription ACK should always specify a subscription header
specifying the subscription id that the message to be
acked was delivered to.

If a subcriber id is not specified, the STOMP bridge
default subscription id prefix is used to find the first
matching subscription id with the prefix to ack the
message.

If the subscription for the specified subscription id
was not created as transacted, and a transaction
header is specified for the ACK, an ERROR frame is
returned;

ACK on a message ID, if found, will ACK all earlier
messages delivered to the subscription in addition to
the message with the given message ID.

ACK transaction For transacted subscription, an ACK for a message ID
automatically ACKs all ealier messages sent to the
transacted subscription in addition to the message
with the given message ID. For transacted
subscription, a message is considered consumed only
when it is explicitly or implicitly ACKed in a
transaction and there is a subsequent successful
COMMIT on that transaction. If the transaction
header is not specified but the subscription header
is specified and the subscription is a transacted
subscription, the message is ACKed in the current
transaction if there is a current transaction. If there is
no current transaction, an ERROR frame is returned.

MESSAGE

ERROR

content-length The STOMP bridge always sets the content-length
header for MESSAGE and ERROR frames sent to STOMP
clients.

Configuring and Managing STOMP Bridge Services

Open Message Queue 4.5 Administration Guide • February 2011246

TABLE 12–11 STOMP Bridge Handling of Selected Command/Header Combinations (Continued)
STOMP Frame
Command STOMP Frame Header Handling by the STOMP Bridge

SEND

MESSAGE

reply-to The STOMP bridge permits SEND from different
STOMP CONNECT sessions as well as from the same
CONNECT session to send reply messages to a STOMP
reply-to header of temporary destination:
■ In the same CONNECT session, when SUBSCRIBE

and SEND reply, use the same temporary
destination string that is used in the SEND's
reply-to header.

■ In a different CONNECT session, upon receiving a
MESSAGE with a reply-to header of a temporary
destination, use the same temporary destination
string in the MESSAGE's reply-to header to SEND a
reply to the reply-to temporary destination.
This technique can also be used for sending the
reply message when in the same CONNECT session.

Configuring and Managing STOMP Bridge Services

Chapter 12 • Configuring and Managing Bridge Services 247

248

Monitoring Broker Operations

This chapter describes the tools you can use to monitor a broker and how you can get metrics
data. The chapter has the following sections:
■ “Monitoring Services” on page 249
■ “Introduction to Monitoring Tools” on page 250
■ “Configuring and Using Broker Logging” on page 252
■ “Using the Command Utility to Display Metrics Interactively” on page 258
■ “Using the JMX Administration API” on page 262
■ “Using the Java ES Monitoring Console” on page 263
■ “Using the Message-Based Monitoring API ” on page 264

Reference information on specific metrics is available in Chapter 21, “Metrics Information
Reference”

Monitoring Services
The broker includes components for monitoring and diagnosing application and broker
performance. These include the components and services shown in the following figure:
■ Broker code that logs broker events.
■ A metrics generator that provides.

The metrics generator provides information about broker activity, such as message flow in
and out of the broker, the number of messages in broker memory and the memory they
consume, the number of open connections, and the number of threads being used. The
boolean broker property imq.metrics.enabled controls whether such information is
logged and the imq.metrics.interval property specifies how often metrics information is
generated.

■ A logger component that writes out information to a number of output channels.
■ A comprehensive set of Java Management Extensions (JMX) MBeans that expose broker

resources using the JMX API

13C H A P T E R 1 3

249

■ Support for the Java ES Monitoring Framework
■ A metrics message producer that sends JMS messages containing metrics information to

topic destinations for consumption by JMS monitoring clients.

Broker properties for configuring the monitoring services are listed under “Monitoring
Properties” on page 365.

Introduction to Monitoring Tools
There are five tools (or interfaces) for monitoring Message Queue information, as described
briefly below:

■ Log files provide a long-term record of metrics data, but cannot easily be parsed.
■ The Command Utility (imqcmd metrics) lets you interactively sample information tailored

to your needs, but does not provide historical information or allow you to manipulate the
data programmatically.

FIGURE 13–1 Monitoring Services Support

Broker
Code

Metrics
Generator

Logger

ERROR
WARNING

INFO

Output Channels

Broker
Resources

Log File

Console

syslog (Solaris)

Metrics
Message
Producer

JMX
MBeans JMX Client Application

Java ES
Monitoring
Framework

Java ES Monitoring Console

Topic Destinations

Command Utility
(imqcmd metrics)

Introduction to Monitoring Tools

Open Message Queue 4.5 Administration Guide • February 2011250

■ The Java Management Extensions (JMX) Administration API lets you perform broker
resource configuration and monitoring operations programmatically from within a Java
application. You can write your own JMX administration application or use the standard
Java Monitoring and Management Console (jconsole).

■ The Sun Java Enterprise System Monitoring Framework (JESMF) and Monitoring
Console offers a common, Web-based graphical interface shared with other Java ES
components, but can monitor only a subset of all Message Queue entities and operations.

■ The Message-based Monitoring API lets you extract metrics information from messages
produced by the broker to metrics topic destinations. However, to use it, you must write a
Message Queue client application to capture, analyze, and display the metrics data.

The following tabel compares the different tools.

TABLE 13–1 Benefits and Limitations of Metrics Monitoring Tools

Metrics Monitoring Tool Benefits Limitations

Log files ■ Regular sampling
■ Creates a historical record

■ Local monitoring only

■ Data format difficult to read; no parsing
tools

■ Need to configure broker properties;
must shut down and restart broker to
take effect

■ Broker metrics only; no destination or
connection service metrics

■ No flexibility in selection of data

■ Same reporting interval for all metrics
data; cannot be changed on the fly

■ Possible performance penalty if interval
set too short

Command Utility
(imqcmd metrics)

■ Remote monitoring
■ Convenient for spot-checking
■ Data presented in easy-to-read

tabular format
■ Easy to select specific data of

interest
■ Reporting interval set in

command option; can be
changed on the fly

■ Difficult to analyze data
programmatically

■ No single command gets all data
■ No historical record; difficult to see

historical trends

Introduction to Monitoring Tools

Chapter 13 • Monitoring Broker Operations 251

TABLE 13–1 Benefits and Limitations of Metrics Monitoring Tools (Continued)
Metrics Monitoring Tool Benefits Limitations

JMX Administration
API

■ Remote monitoring
■ Data can be analyzed

programmatically and
presented in any format

■ Easy to select specific data of
interest

■ Can use standard Java
Monitoring and Management
Console (jconsole)

■ Might need to configure broker's JMX
support

Java ES Monitoring
Console

■ Web-based graphical interface

■ Data presented in easy-to-read
format

■ Common interface shared with
other JES components

■ No performance penalty; pulls
data from broker’s existing data
monitoring infrastructure

■ Limited subset of data available
■ Data cannot be analyzed

programmatically
■ No historical record; difficult to see

historical trends

Message-based
Monitoring API

■ Remote monitoring
■ Data can be analyzed

programmatically and
presented in any format

■ Easy to select specific data of
interest

■ Need to configure broker properties;
must shut down and restart broker to
take effect

■ Same reporting interval for all metrics
data; cannot be changed on the fly

In addition to the differences shown in the table, each tool gathers a somewhat different subset
of the metrics information generated by the broker. For information on which metrics data is
gathered by each monitoring tool, see Chapter 21, “Metrics Information Reference.”

Configuring and Using Broker Logging
The Message Queue Logger takes information generated by broker code, a debugger, and a
metrics generator and writes that information to a number of output channels: to standard
output (the console), to a log file, and, on Solaris platforms, to the syslog daemon process. You
can specify the type of information gathered by the Logger as well as the type of information the
Logger writes to each of the output channels. For example, you can specify that you want
metrics information written out to a log file.

Configuring and Using Broker Logging

Open Message Queue 4.5 Administration Guide • February 2011252

This section describes the configuration and use of the Logger for monitoring broker activity. It
includes the following topics:

■ “Logger Properties” on page 253
■ “Log Message Format” on page 253
■ “Default Logging Configuration” on page 254
■ “Changing the Logging Configuration” on page 255

Logger Properties
The imq.log.file.dirpath and imq.log.file.filename broker properties identify the log
file to use and the imq.log.console.stream property specifies whether console output is
directed to stdout or stderr.

The imq.log.level property controls the categories of metric information that the Logger
gathers: ERROR, WARNING, or INFO. Each level includes those above it, so if you specify, for
example, WARNING as the logging level, error messages will be logged as well.

There is also an imq.destination.logDeadMsgs property that specifies whether to log entries
when dead messages are discarded or moved to the dead message queue.

The imq.log.console.output and imq.log.file.output properties control which of the
specified categories the Logger writes to the console and the log file, respectively. In this case,
however, the categories do not include those above them; so if you want, for instance, both
errors and warnings written to the log file and informational messages to the console, you must
explicitly set imq.log.file.output to ERROR|WARNING and imq.log.console.output to INFO.

On Solaris platforms another property, imq.log.syslog.output, specifies the categories of
metric information to be written to the syslog daemon.

In the case of a log file, you can specify the point at which the file is closed and output is rolled
over to a new file. Once the log file reaches a specified size (imq.log.file.rolloverbytes) or
age (imq.log.file.rolloversecs), it is saved and a new log file created.

See “Monitoring Properties” on page 365 for additional broker properties related to logging and
subsequent sections for details about how to configure the Logger and how to use it to obtain
performance information.

Log Message Format
A logged message consists of a time stamp, a message code, and the message itself. The volume
of information included varies with the logging level you have set. The broker supports three
logging levels: ERROR, WARNING , and INFO (see Table 13–2). Each level includes those above it
(for example, WARNING includes ERROR).

Configuring and Using Broker Logging

Chapter 13 • Monitoring Broker Operations 253

TABLE 13–2 Logging Levels

Logging Level Description

ERROR Serious problems that could cause system failure

WARNING Conditions that should be heeded but will not cause system failure

INFO Metrics and other informational messages

The default logging level is INFO, so messages at all three levels are logged by default. The
following is an example of an INFO message:

[13/Sep/2000:16:13:36 PDT] [B1004]: Starting the broker service

using tcp [25374,100] with min threads 50 and max threads of 500

You can change the time zone used in the time stamp by setting the broker configuration
property imq.log.timezone (see Table 17–12).

Default Logging Configuration
A broker is automatically configured to save log output to a set of rolling log files. The log files
are located in a directory identified by the instance name of the associated broker (see
Appendix A, “Distribution-Specific Locations of Message Queue Data”):

.../instances/instanceName/log

Note – For a broker whose life cycle is controlled by the application server, the log files are
located in a subdirectory of the domain directory for the domain for which the broker was
started:

.../appServerDomainDir/imq/instances/imqbroker/log

The log files are simple text files. The system maintains nine backup files named as follows, from
earliest to latest:

log.txt

log_1.txt

log_2.txt

...
log_9.txt

By default, the log files are rolled over once a week. You can change this rollover interval, or the
location or names of the log files, by setting appropriate configuration properties:

■ To change the directory in which the log files are kept, set the property
imq.log.file.dirpath to the desired path.

Configuring and Using Broker Logging

Open Message Queue 4.5 Administration Guide • February 2011254

■ To change the root name of the log files from log to something else, set the
imq.log.file.filename property.

■ To change the frequency with which the log files are rolled over, set the property
imq.log.file.rolloversecs.

See Table 17–12 for further information on these properties.

Changing the Logging Configuration
Log-related properties are described in Table 17–12.

▼ To Change the Logger Configuration for a Broker

Set the logging level.

Set the output channel (file, console, or both) for one or more logging categories.

If you log output to a file, configure the rollover criteria for the file.
You complete these steps by setting Logger properties. You can do this in one of two ways:
■ Change or add Logger properties in the config.properties file for a broker before you

start the broker.
■ Specify Logger command line options in the imqbrokerd command that starts the broker.

You can also use the broker option -D to change Logger properties (or any broker property).

Options passed on the command line override properties specified in the broker instance
configuration files. The following imqbrokerd options affect logging:

-metrics interval Logging interval for broker metrics, in seconds

-loglevel level Logging level (ERROR, WARNING, INFO, or NONE)

-silent Silent mode (no logging to console)

-tty Log all messages to console

The following sections describe how you can change the default configuration in order to do the
following:

■ Change the output channel (the destination of log messages)
■ Change rollover criteria

Changing the Output Channel
By default, error and warning messages are displayed on the terminal as well as being logged to
a log file. (On Solaris, error messages are also written to the system’s syslog daemon.)

1

2

3

Configuring and Using Broker Logging

Chapter 13 • Monitoring Broker Operations 255

You can change the output channel for log messages in the following ways:

■ To have all log categories (for a given level) output displayed on the screen, use the -tty
option to the imqbrokerd command.

■ To prevent log output from being displayed on the screen, use the -silent option to the
imqbrokerd command.

■ Use the imq.log.file.output property to specify which categories of logging information
should be written to the log file. For example,

imq.log.file.output=ERROR

■ Use the imq.log.console.output property to specify which categories of logging
information should be written to the console. For example,

imq.log.console.output=INFO

■ On Solaris, use the imq.log.syslog.output property to specify which categories of logging
information should be written to Solaris syslog. For example,

imq.log.syslog.output=NONE

Note – Before changing Logger output channels, you must make sure that logging is set at a level
that supports the information you are mapping to the output channel. For example, if you set
the logging level to ERROR and then set the imq.log.console.output property to WARNING, no
messages will be logged because you have not enabled the logging of WARNING messages.

Changing Log File Rollover Criteria
There are two criteria for rolling over log files: time and size. The default is to use a time criteria
and roll over files every seven days.

■ To change the time interval, you need to change the property
imq.log.file.rolloversecs. For example, the following property definition changes the
time interval to ten days:

imq.log.file.rolloversecs=864000

■ To change the rollover criteria to depend on file size, you need to set the
imq.log.file.rolloverbytes property. For example, the following definition directs the
broker to rollover files after they reach a limit of 500,000 bytes

imq.log.file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first limit reached
will trigger the rollover. As noted before, the broker maintains up to nine rollover files.

You can set or change the log file rollover properties when a broker is running. To set these
properties, use the imqcmd update bkr command.

Configuring and Using Broker Logging

Open Message Queue 4.5 Administration Guide • February 2011256

Sending Metrics Data to Log Files
This section describes the procedure for using broker log files to report metrics information.
For general information on configuring the Logger, see “Configuring and Using Broker
Logging” on page 252.

▼ To Use Log Files to Report Metrics Information

Configure the broker’s metrics generation capability:

a. Confirm imq.metrics.enabled=true

Generation of metrics for logging is turned on by default.

b. Set the metrics generation interval to a convenient number of seconds.
imq.metrics.interval=interval

This value can be set in the config.properties file or using the -metrics interval
command line option when starting up the broker.

Confirm that the Logger gathers metrics information:
imq.log.level=INFO

This is the default value. This value can be set in the config.properties file or using the
-loglevel level command line option when starting up the broker.

Confirm that the Logger is set to write metrics information to the log file:
imq.log.file.output=INFO

This is the default value. It can be set in the config.properties file.

Start up the broker.
The following shows sample broker metrics output to the log file:
[21/Jul/2004:11:21:18 PDT]

Connections: 0 JVM Heap: 8323072 bytes (7226576 free) Threads: 0 (14-1010)

In: 0 msgs (0bytes) 0 pkts (0 bytes)

Out: 0 msgs (0bytes) 0 pkts (0 bytes)

Rate In: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

Rate Out: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

For reference information about metrics data, see Chapter 21, “Metrics Information Reference”

Logging Dead Messages
You can monitor physical destinations by enabling dead message logging for a broker. You can
log dead messages whether or not you are using a dead message queue.

1

2

3

4

Configuring and Using Broker Logging

Chapter 13 • Monitoring Broker Operations 257

If you enable dead message logging, the broker logs the following types of events:

■ A physical destination exceeded its maximum size.
■ The broker removed a message from a physical destination, for a reason such as the

following:
■ The destination size limit has been reached.
■ The message time to live expired.
■ The message is too large.
■ An error occurred when the broker attempted to process the message.

If a dead message queue is in use, logging also includes the following types of events:

■ The broker moved a message to the dead message queue.
■ The broker removed a message from the dead message queue and discarded it.

The following is an example of the log format for dead messages:

[29/Mar/2006:15:35:39 PST] [B1147]: Message 8-129.145.180.87(e7:6b:dd:5d:98:aa)-

35251-1143675279400 from destination Q:q0 has been placed on the DMQ because

[B0053]: Message on destination Q:q0 Expired: expiration time 1143675279402,

arrival time 1143675279401, JMSTimestamp 1143675279400

Dead message logging is disabled by default. To enable it, set the broker attribute
imq.destination.logDeadMsgs.

Using the Command Utility to Display Metrics Interactively
A Message Queue broker can report metrics of the following types:

■ Java Virtual Machine (JVM) metrics. Information about the JVM heap size.
■ Brokerwide metrics. Information about messages stored in a broker, message flows into

and out of a broker, and memory use. Messages are tracked in terms of numbers of messages
and numbers of bytes.

■ Connection Service metrics. Information about connections and connection thread
resources, and information about message flows for a particular connection service.

■ Destination metrics. Information about message flows into and out of a particular physical
destination, information about a physical destination’s consumers, and information about
memory and disk space usage.

The imqcmd command can obtain metrics information for the broker as a whole, for individual
connection services, and for individual physical destinations. To obtain metrics data, you
generally use the metrics subcommand of imqcmd. Metrics data is written at an interval you
specify, or the number of times you specify, to the console screen.

Using the Command Utility to Display Metrics Interactively

Open Message Queue 4.5 Administration Guide • February 2011258

You can also use the query subcommand to view similar data that also includes configuration
information. See “imqcmd query” on page 262 for more information.

imqcmd metrics
The syntax and options of imqcmd metrics are shown in Table 13–3 and Table 13–4,
respectively.

TABLE 13–3 imqcmd metrics Subcommand Syntax

Subcommand Syntax Metrics Data Provided

metrics bkr

[-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

Displays broker metrics for the default broker or a broker at
the specified host and port.

metrics svc -n serviceName
[-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

Displays metrics for the specified service on the default broker
or on a broker at the specified host and port.

metrics dst -t destType
-n destName
[-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

Displays metrics information for the physical destination of
the specified type and name.

TABLE 13–4 imqcmd metrics Subcommand Options

Subcommand Options Description

-b hostName: portNumber Specifies the hostname and port of the broker for which
metrics data is reported. The default is localhost:7676.

Literal IP addresses as host names: You can use a literal IPv4
or IPv6 address as a host name. If you use a literal IPv6
address, its format must conform to RFC2732, Format for
Literal IPv6 Addresses in URL's.

-int interval Specifies the interval (in seconds) at which to display the
metrics. The default is 5 seconds.

Using the Command Utility to Display Metrics Interactively

Chapter 13 • Monitoring Broker Operations 259

http://www.ietf.org/rfc/rfc2732.txt

TABLE 13–4 imqcmd metrics Subcommand Options (Continued)
Subcommand Options Description

-m metricType Specifies the type of metric to display:

ttl Displays metrics on messages and packets flowing into
and out of the broker, service, or destination (default metric
type).

rts Displays metrics on rate of flow of messages and packets
into and out of the broker, connection service, or destination
(per second).

cxn Displays connections, virtual memory heap, and threads
(brokers and connection services only).

con Displays consumer-related metrics (destinations only).

dsk Displays disk usage metrics (destinations only).

-msp numSamples Specifies the number of samples displayed in the output. The
default is an unlimited number (infinite).

-n destName Specifies the name of the physical destination (if any) for
which metrics data is reported. There is no default.

-n serviceName Specifies the connection service (if any) for which metrics data
is reported. There is no default.

-t destType Specifies the type (queue or topic) of the physical destination
(if any) for which metrics data is reported. There is no default.

▼ To Use the metrics Subcommand

Start the broker for which metrics information is desired.
See “Starting Brokers” on page 70.

Issue the appropriate imqcmd metrics subcommand and options as shown in Table 13–3 and
Table 13–4.

Metrics Outputs: imqcmd metrics
This section contains examples of output for the imqcmd metrics subcommand. The examples
show brokerwide, connection service, and physical destination metrics.

Brokerwide Metrics
To get the rate of message and packet flow into and out of the broker at 10 second intervals, use
the metrics bkr subcommand:

1

2

Using the Command Utility to Display Metrics Interactively

Open Message Queue 4.5 Administration Guide • February 2011260

imqcmd metrics bkr -m rts -int 10 -u admin

This command produces output similar to the following (see data descriptions in Table 21–2):

--

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec

In Out In Out In Out In Out

--

0 0 27 56 0 0 38 66

10 0 7365 56 10 10 7457 1132

0 0 27 56 0 0 38 73

0 10 27 7402 10 20 1400 8459

0 0 27 56 0 0 38 73

Connection Service Metrics
To get cumulative totals for messages and packets handled by the jms connection service, use
the metrics svc subcommand:

imqcmd metrics svc -n jms -m ttl -u admin

This command produces output similar to the following (see data descriptions in Table 21–3):

Msgs Msg Bytes Pkts Pkt Bytes

In Out In Out In Out In Out

164 100 120704 73600 282 383 135967 102127

657 100 483552 73600 775 876 498815 149948

Physical Destination Metrics
To get metrics information about a physical destination, use the metrics dst subcommand:

imqcmd metrics dst -t q -n XQueue -m ttl -u admin

This command produces output similar to the following (see data descriptions in Table 21–4):

Msgs Msg Bytes Msg Count Total Msg Bytes (k) Largest

In Out In Out Current Peak Avg Current Peak Avg Msg (k)

200 200 147200 147200 0 200 0 0 143 71 0

300 200 220800 147200 100 200 10 71 143 64 0

300 300 220800 220800 0 200 0 0 143 59 0

To get information about a physical destination’s consumers, use the following metrics dst

subcommand:

imqcmd metrics dst -t q -n SimpleQueue -m con -u admin

This command produces output similar to the following (see data descriptions in Table 21–4):

Using the Command Utility to Display Metrics Interactively

Chapter 13 • Monitoring Broker Operations 261

--

Active Consumers Backup Consumers Msg Count

Current Peak Avg Current Peak Avg Current Peak Avg

--

1 1 0 0 0 0 944 1000 525

imqcmd query
The syntax and options of imqcmd query are shown in Table 13–5 along with a description of
the metrics data provided by the command.

TABLE 13–5 imqcmd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided

query bkr

[-b hostName: portNumber]
Information on the current number of messages and message
bytes stored in broker memory and persistent store (see
“Viewing Broker Information” on page 92).

or

query svc -n serviceName
[-b hostName:portNumber]

Information on the current number of allocated threads and
number of connections for a specified connection service (see
“Viewing Connection Service Information” on page 101).

or

query dst -t destType
-n destName
[-b hostName:portNumber]

Information on the current number of producers, active and
backup consumers, and messages and message bytes stored in
memory and persistent store for a specified destination (see
“Viewing Physical Destination Information” on page 114).

Note – Because of the limited metrics data provided by imqcmd query , this tool is not
represented in the tables presented in Chapter 21, “Metrics Information Reference.”

Using the JMX Administration API
The broker implements a comprehensive set of Java Management Extensions (JMX) MBeans
that represent the broker's manageable resources. Using the JMX API, you can access these
MBeans to perform broker configuration and monitoring operations programmatically from
within a Java application.

In this way, the MBeans provide a Java application access to data values representing static or
dynamic properties of a broker, connection, destination, or other resource. The application can
also receive notifications of state changes or other significant events affecting the resource.

Using the JMX Administration API

Open Message Queue 4.5 Administration Guide • February 2011262

JMX-based administration provides dynamic, fine grained, programmatic access to the broker.
You can use this kind of administration in a number of ways.

■ You can include JMX code in your JMS client application to monitor application
performance and, based on the results, to reconfigure the Message Queue resources you use
to improve performance.

■ You can write JMX client applications that monitor the broker to identify use patterns and
performance problems, and you can use the JMX API to reconfigure the broker to optimize
performance.

■ You can write a JMX client application to automate regular maintenance tasks.
■ You can write a JMX client application that constitutes your own version of the Command

utility (imqcmd), and you can use it instead of imqcmd.
■ You can use the standard Java Monitoring and Management Console (jconsole) that can

provide access to the broker's MBeans.

For information on JMX infrastructure and configuring the broker's JMX support, see
Appendix D, “JMX Support.” To manage a Message Queue broker using the JMX architecture,
see Open Message Queue 4.5 Developer’s Guide for JMX Clients.

Using the Java ES Monitoring Console
Message Queue supports the Sun Java System Monitoring Framework (JESMF), which allows
Java Enterprise System (Java ES) components to be monitored using a common graphical
interface, the Sun Java System Monitoring Console. Administrators can use the Monitoring
Console to view performance statistics, create rules for automatic monitoring, and
acknowledge alarms. If you are running Message Queue along with other Java ES components,
you may find it more convenient to use a single interface to manage all of them.

The Java ES Monitoring Framework defines a common data model, the Common Monitoring
Model (CMM), to be used by all Java ES component products. This model enables a centralized
and uniform view of all Java ES components. Message Queue exposes the following objects
through the Common Monitoring Model:

■ The installed product
■ The broker instance name
■ The broker Port Mapper
■ Each connection service
■ Each physical destination
■ The persistent data store
■ The user repository

Each of these objects is mapped to a CMM object whose attributes can be monitored using the
Java ES Monitoring Console. The reference tables in Chapter 22, “JES Monitoring Framework

Using the Java ES Monitoring Console

Chapter 13 • Monitoring Broker Operations 263

Reference,” identify those attributes that are available for JESMF monitoring. For detailed
information about the mapping of Message Queue objects to CMM objects, see the Sun Java
Enterprise System Monitoring Guide.

To enable JESMF monitoring, you must do the following:

1. Enable and configure the Monitoring Framework for all of your monitored components, as
described in the Sun Java Enterprise System Monitoring Guide.

2. Install the Monitoring Console on a separate host, start the master agent, and then start the
Web server, as described in the Sun Java Enterprise System Monitoring Guide.

Using the Java ES Monitoring Framework will not affect broker performance, because all the
work of gathering metrics is done by the Monitoring Framework, which pulls data from the
broker’s existing data monitoring infrastructure.

For information on metric information provided by the Java ES Monitoring Framework, see
Chapter 22, “JES Monitoring Framework Reference.”

Using the Message-Based Monitoring API
Message Queue provides a Metrics Message Producer, which receives information from the
Metrics Generator at regular intervals and writes the information into metrics messages,. The
Metrics Message Producer then sends these messages to one of a number of metric topic
destinations, depending on the type of metric information contained in the messages.

You can access this metrics information by writing a client application that subscribes to the
metrics topic destinations, consumes the messages in these destinations, and processes the
metrics information contained in the messages. This allows you to create custom monitoring
tools to support messaging applications. For details of the metric quantities reported in each
type of metrics message, see Chapter 4, “Using the Metrics Monitoring API,” in Open Message
Queue 4.5 Developer’s Guide for Java Clients

There are five metrics topic destinations, whose names are shown in Table 13–6, along with the
type of metrics messages delivered to each destination.

TABLE 13–6 Metrics Topic Destinations

Topic Name Description

mq.metrics.broker Broker metrics

mq.metrics.jvm Java Virtual Machine metrics

mq.metrics.destination_list List of destinations and their types

mq.metrics.destination.queue.queueName Destination metrics for queue queueName

Using the Message-Based Monitoring API

Open Message Queue 4.5 Administration Guide • February 2011264

TABLE 13–6 Metrics Topic Destinations (Continued)
Topic Name Description

mq.metrics.destination.topic.topicName Destination metrics for topic topicName

The broker properties imq.metrics.topic.enabled and imq.metrics.topic.interval

control, respectively, whether messages are sent to metric topic destinations and how often. The
imq.metrics.topic.timetolive and imq.metrics.topic.persist properties specify the
lifetime of such messages and whether they are persistent.

Besides the information contained in the body of a metrics message, the header of each message
includes properties that provide the following additional information:

■ The message type
■ The address (host name and port number) of the broker that sent the message
■ The time the metric sample was taken

These properties are useful to client applications that process metrics messages of different
types or from different brokers.

Setting Up Message-Based Monitoring
This section describes the procedure for using the message-based monitoring capability to
gather metrics information. The procedure includes both client development and
administration tasks.

▼ To Set Up Message-based Monitoring

Write a metrics monitoring client.
See the Message Queue Developer’s Guide for Java Clients for instructions on programming
clients that subscribe to metrics topic destinations, consume metrics messages, and extract the
metrics data from these messages.

Configure the broker’s Metrics Message Producer by setting broker property values in the
config.properties file:

a. Enable metrics message production.
Set imq.metrics.topic.enabled=true

The default value is true.

b. Set the interval (in seconds) at which metrics messages are generated.
Set imq.metrics.topic.interval=interval .

The default is 60 seconds.

1

2

Using the Message-Based Monitoring API

Chapter 13 • Monitoring Broker Operations 265

c. Specify whether you want metrics messages to be persistent (that is, whether they will
survive a broker failure).
Set imq.metrics.topic.persist .

The default is false.

d. Specify how long you want metrics messages to remain in their respective destinations
before being deleted.
Set imq.metrics.topic.timetolive .

The default value is 300 seconds.

Set any access control you desire on metrics topic destinations.
See the discussion in “Security and Access Considerations” on page 266 below.

Start up your metrics monitoring client.
When consumers subscribe to a metrics topic, the metrics topic destination will automatically
be created. Once a metrics topic has been created, the broker’s metrics message producer will
begin sending metrics messages to the metrics topic.

Security and Access Considerations
There are two reasons to restrict access to metrics topic destinations:

■ Metrics data might include sensitive information about a broker and its resources.
■ Excessive numbers of subscriptions to metrics topic destinations might increase broker

overhead and negatively affect performance.

Because of these considerations, it is advisable to restrict access to metrics topic destinations.

Monitoring clients are subject to the same authentication and authorization control as any
other client. Only users maintained in the Message Queue user repository are allowed to
connect to the broker.

You can provide additional protections by restricting access to specific metrics topic
destinations through an access control file, as described in “User Authorization” on page 155.

For example, the following entries in an accesscontrol.properties file will deny access to the
mq.metrics.broker metrics topic to everyone except user1 and user 2.

topic.mq.metrics.broker.consume.deny.user=*

topic.mq.metrics.broker.consume.allow.user=user1,user2

The following entries will only allow users user3 to monitor topic t1.

3

4

Using the Message-Based Monitoring API

Open Message Queue 4.5 Administration Guide • February 2011266

topic.mq.metrics.destination.topic.t1.consume.deny.user=*

topic.mq.metrics.destination.topic.t1.consume.allow.user=user3

Depending on the sensitivity of metrics data, you can also connect your metrics monitoring
client to a broker using an encrypted connection. For information on using encrypted
connections, see “Message Encryption” on page 161.

Metrics Outputs: Metrics Messages
The metrics data outputs you get using the message-based monitoring API is a function of the
metrics monitoring client you write. You are limited only by the data provided by the metrics
generator in the broker. For a complete list of this data, see Chapter 21, “Metrics Information
Reference.”

Using the Message-Based Monitoring API

Chapter 13 • Monitoring Broker Operations 267

268

Analyzing and Tuning a Message Service

This chapter covers a number of topics about how to analyze and tune a Message Queue service
to optimize the performance of your messaging applications. It includes the following topics:

■ “About Performance” on page 269
■ “Factors Affecting Performance” on page 272
■ “Adjusting Configuration To Improve Performance” on page 282

About Performance
This section provides some background information on performance tuning.

The Performance Tuning Process
The performance you get out of a messaging application depends on the interaction between
the application and the Message Queue service. Hence, maximizing performance requires the
combined efforts of both the application developer and the administrator.

The process of optimizing performance begins with application design and continues on
through tuning the message service after the application has been deployed. The performance
tuning process includes the following stages:

■ Defining performance requirements for the application
■ Designing the application taking into account factors that affect performance (especially

tradeoffs between reliability and performance)
■ Establishing baseline performance measures
■ Tuning or reconfiguring the message service to optimize performance

The process outlined above is often iterative. During deployment of the application, a Message
Queue administrator evaluates the suitability of the message service for the application’s general
performance requirements. If the benchmark testing meets these requirements, the

14C H A P T E R 1 4

269

administrator can tune the system as described in this chapter. However, if benchmark testing
does not meet performance requirements, a redesign of the application might be necessary or
the deployment architecture might need to be modified.

Aspects of Performance
In general, performance is a measure of the speed and efficiency with which a message service
delivers messages from producer to consumer. However, there are several different aspects of
performance that might be important to you, depending on your needs.

Connection Load The number of message producers, or message consumers, or the
number of concurrent connections a system can support.

Message throughput The number of messages or message bytes that can be pumped
through a messaging system per second.

Latency The time it takes a particular message to be delivered from message
producer to message consumer.

Stability The overall availability of the message service or how gracefully it
degrades in cases of heavy load or failure.

Efficiency The efficiency of message delivery; a measure of message throughput
in relation to the computing resources employed.

These different aspects of performance are generally interrelated. If message throughput is high,
that means messages are less likely to be backlogged in the broker, and as a result, latency
should be low (a single message can be delivered very quickly). However, latency can depend on
many factors: the speed of communication links, broker processing speed, and client processing
speed, to name a few.

In any case, the aspects of performance that are most important to you generally depends on the
requirements of a particular application.

Benchmarks
Benchmarking is the process of creating a test suite for your messaging application and of
measuring message throughput or other aspects of performance for this test suite.

For example, you could create a test suite by which some number of producing clients, using
some number of connections, sessions, and message producers, send persistent or
nonpersistent messages of a standard size to some number of queues or topics (all depending on
your messaging application design) at some specified rate. Similarly, the test suite includes
some number of consuming clients, using some number of connections, sessions, and message

About Performance

Open Message Queue 4.5 Administration Guide • February 2011270

consumers (of a particular type) that consume the messages in the test suite’s physical
destinations using a particular acknowledgment mode.

Using your standard test suite you can measure the time it takes between production and
consumption of messages or the average message throughput rate, and you can monitor the
system to observe connection thread usage, message storage data, message flow data, and other
relevant metrics. You can then ramp up the rate of message production, or the number of
message producers, or other variables, until performance is negatively affected. The maximum
throughput you can achieve is a benchmark for your message service configuration.

Using this benchmark, you can modify some of the characteristics of your test suite. By carefully
controlling all the factors that might have an effect on performance (see “Application Design
Factors Affecting Performance” on page 274), you can note how changing some of these factors
affects the benchmark. For example, you can increase the number of connections or the size of
messages five-fold or ten-fold, and note the effect on performance.

Conversely, you can keep application-based factors constant and change your broker
configuration in some controlled way (for example, change connection properties, thread pool
properties, JVM memory limits, limit behaviors, file-based versus JDBC-based persistence, and
so forth) and note how these changes affect performance.

This benchmarking of your application provides information that can be valuable when you
want to increase the performance of a deployed application by tuning your message service. A
benchmark allows the effect of a change or a set of changes to be more accurately predicted.

As a general rule, benchmarks should be run in a controlled test environment and for a long
enough period of time for your message service to stabilize. (Performance is negatively affected
at startup by the just-in-time compilation that turns Java code into machine code.)

Baseline Use Patterns
Once a messaging application is deployed and running, it is important to establish baseline use
patterns. You want to know when peak demand occurs and you want to be able to quantify that
demand. For example, demand normally fluctuates by number of end users, activity levels, time
of day, or all of these.

To establish baseline use patterns you need to monitor your message service over an extended
period of time, looking at data such as the following:

■ Number of connections
■ Number of messages stored in the broker (or in particular physical destinations)
■ Message flows into and out of a broker (or particular physical destinations)
■ Numbers of active consumers

About Performance

Chapter 14 • Analyzing and Tuning a Message Service 271

You can also use average and peak values provided in metrics data.

It is important to check these baseline metrics against design expectations. By doing so, you are
checking that client code is behaving properly: for example, that connections are not being left
open or that consumed messages are not being left unacknowledged. These coding errors
consume broker resources and could significantly affect performance.

The base-line use patterns help you determine how to tune your system for optimal
performance. For example:

■ If one physical destination is used significantly more than others, you might want to set
higher message memory limits on that physical destination than on others, or to adjust limit
behaviors accordingly.

■ If the number of connections needed is significantly greater than allowed by the maximum
thread pool size, you might want to increase the thread pool size or adopt a shared thread
model.

■ If peak message flows are substantially greater than average flows, that might influence the
limit behaviors you employ when memory runs low.

In general, the more you know about use patterns, the better you are able to tune your system to
those patterns and to plan for future needs.

Factors Affecting Performance
Message latency and message throughput, two of the main performance indicators, generally
depend on the time it takes a typical message to complete various steps in the message delivery
process. These steps are shown below for the case of a persistent, reliably delivered message. The
steps are described following the illustration.

Factors Affecting Performance

Open Message Queue 4.5 Administration Guide • February 2011272

Message Delivery Steps
1. The message is delivered from producing client to broker.
2. The broker reads in the message.
3. The message is placed in persistent storage (for reliability).
4. The broker confirms receipt of the message (for reliability).
5. The broker determines the routing for the message.
6. The broker writes out the message.
7. The message is delivered from broker to consuming client.
8. The consuming client acknowledges receipt of the message (for reliability).
9. The broker processes client acknowledgment (for reliability).
10. The broker confirms that client acknowledgment has been processed.

Since these steps are sequential, any one of them can be a potential bottleneck in the delivery of
messages from producing clients to consuming clients. Most of the steps depend on physical

FIGURE 14–1 Message Delivery Through a Message Queue Service

Consuming
Client

Client
Runtime

Producing
Client

Client
Runtime

Broker

MyQDest

1

10

2

3

4

5

79

Data
Store

8

Payload messages

Control messages

6

Factors Affecting Performance

Chapter 14 • Analyzing and Tuning a Message Service 273

characteristics of the messaging system: network bandwidth, computer processing speeds,
message service architecture, and so forth. Some, however, also depend on characteristics of the
messaging application and the level of reliability it requires.

The following subsections discuss the effect of both application design factors and messaging
system factors on performance. While application design and messaging system factors closely
interact in the delivery of messages, each category is considered separately.

Application Design Factors Affecting Performance
Application design decisions can have a significant effect on overall messaging performance.

The most important factors affecting performance are those that affect the reliability of message
delivery. Among these are the following:

■ “Delivery Mode (Persistent/Nonpersistent Messages)” on page 275
■ “Use of Transactions” on page 275
■ “Acknowledgment Mode” on page 276
■ “Durable and Nondurable Subscriptions” on page 277

Other application design factors affecting performance are the following:

■ “Use of Selectors (Message Filtering)” on page 277
■ “Message Size” on page 277
■ “Message Body Type” on page 278

The sections that follow describe the effect of each of these factors on messaging performance.
As a general rule, there is a tradeoff between performance and reliability: factors that increase
reliability tend to decrease performance.

Table 14–1 shows how the various application design factors generally affect messaging
performance. The table shows two scenarios—one high-reliability, low-performance, and one
high-performance, low-reliability—and the choices of application design factors that
characterize each. Between these extremes, there are many choices and tradeoffs that affect both
reliability and performance.

TABLE 14–1 Comparison of High-Reliability and High-Performance Scenarios

Application
Design Factor

High-Reliability,
Low-Performance Scenario

High-Performance,
Low-Reliability Scenario

Delivery mode Persistent messages Nonpersistent messages

Use of transactions Transacted sessions No transactions

Acknowledgment mode AUTO_ACKNOWLEDGE or
CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

Factors Affecting Performance

Open Message Queue 4.5 Administration Guide • February 2011274

TABLE 14–1 Comparison of High-Reliability and High-Performance Scenarios (Continued)
Application
Design Factor

High-Reliability,
Low-Performance Scenario

High-Performance,
Low-Reliability Scenario

Durable/nondurable subscriptions Durable subscriptions Nondurable subscriptions

Use of selectors Message filtering No message filtering

Message size Large number of small messages Small number of large messages

Message body type Complex body types Simple body types

Delivery Mode (Persistent/Nonpersistent Messages)
Persistent messages guarantee message delivery in case of broker failure. The broker stores the
message in a persistent store until all intended consumers acknowledge they have consumed the
message.

Broker processing of persistent messages is slower than for nonpersistent messages for the
following reasons:

■ A broker must reliably store a persistent message so that it will not be lost should the broker
fail.

■ The broker must confirm receipt of each persistent message it receives. Delivery to the
broker is guaranteed once the method producing the message returns without an exception.

■ Depending on the client acknowledgment mode, the broker might need to confirm a
consuming client’s acknowledgment of a persistent message.

For both queues and topics with durable subscribers, performance was approximately 40%
faster for nonpersistent messages. We obtained these results using 10k-sized messages and
AUTO_ACKNOWLEDGE mode.

Use of Transactions
A transaction is a guarantee that all messages produced in a transacted session and all messages
consumed in a transacted session will be either processed or not processed (rolled back) as a
unit.

Message Queue supports both local and distributed transactions.

A message produced or acknowledged in a transacted session is slower than in a nontransacted
session for the following reasons:

■ Additional information must be stored with each produced message.
■ In some situations, messages in a transaction are stored when normally they would not be

(for example, a persistent message delivered to a topic destination with no subscriptions
would normally be deleted, however, at the time the transaction is begun, information about
subscriptions is not available).

Factors Affecting Performance

Chapter 14 • Analyzing and Tuning a Message Service 275

■ Information on the consumption and acknowledgment of messages within a transaction
must be stored and processed when the transaction is committed.

Note – To improve performance, Message Queue message brokers are configured by default to
use a memory-mapped file to store transaction data. On file systems that do not support
memory-mapped files, you can disable this behavior by setting the broker property
imq.persist.file.transaction.memorymappedfile.enabled to false.

Acknowledgment Mode
One mechanism for ensuring the reliability of JMS message delivery is for a client to
acknowledge consumption of messages delivered to it by the Message Queue broker.

If a session is closed without the client acknowledging the message or if the broker fails before
the acknowledgment is processed, the broker redelivers that message, setting a JMSRedelivered
flag.

For a nontransacted session, the client can choose one of three acknowledgment modes, each of
which has its own performance characteristics:
■ AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once the consumer

has processed it. This mode guarantees at most one redelivered message after a provider
failure.

■ CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous acknowledgment
are acknowledged. If the broker fails while processing a set of acknowledgments, one or
more messages in that group might be redelivered.

■ DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge messages in a lazy
manner. Multiple messages can be redelivered after a provider failure.

(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is no guarantee
that all acknowledgments will be processed together if a provider fails during processing.)

Acknowledgment mode affects performance for the following reasons:
■ Extra control messages between broker and client are required in AUTO_ACKNOWLEDGE and

CLIENT_ACKNOWLEDGE modes. The additional control messages add additional processing
overhead and can interfere with JMS payload messages, causing processing delays.

■ In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait until the
broker confirms that it has processed the client’s acknowledgment before the client can
consume additional messages. (This broker confirmation guarantees that the broker will not
inadvertently redeliver these messages.)

■ The Message Queue persistent store must be updated with the acknowledgment
information for all persistent messages received by consumers, thereby decreasing
performance.

Factors Affecting Performance

Open Message Queue 4.5 Administration Guide • February 2011276

Durable and Nondurable Subscriptions
Subscribers to a topic destination fall into two categories, those with durable and nondurable
subscriptions.

Durable subscriptions provide increased reliability but slower throughput, for the following
reasons:

■ The Message Queue message service must persistently store the list of messages assigned to
each durable subscription so that should a broker fail, the list is available after recovery.

■ Persistent messages for durable subscriptions are stored persistently, so that should a broker
fail, the messages can still be delivered after recovery, when the corresponding consumer
becomes active. By contrast, persistent messages for nondurable subscriptions are not
stored persistently (should a broker fail, the corresponding consumer connection is lost and
the message would never be delivered).

We compared performance for durable and nondurable subscribers in two cases: persistent and
nonpersistent 10k-sized messages. Both cases use AUTO_ACKNOWLEDGE acknowledgment mode.
We found an effect on performance only in the case of persistent messages which slowed
durables by about 30%

Use of Selectors (Message Filtering)
Application developers often want to target sets of messages to particular consumers. They can
do so either by targeting each set of messages to a unique physical destination or by using a
single physical destination and registering one or more selectors for each consumer.

A selector is a string requesting that only messages with property values that match the string
are delivered to a particular consumer. For example, the selector NumberOfOrders >1 delivers
only the messages with a NumberOfOrders property value of 2 or more.

Creating consumers with selectors lowers performance (as compared to using multiple physical
destinations) because additional processing is required to handle each message. When a
selector is used, it must be parsed so that it can be matched against future messages.
Additionally, the message properties of each message must be retrieved and compared against
the selector as each message is routed. However, using selectors provides more flexibility in a
messaging application.

Message Size
Message size affects performance because more data must be passed from producing client to
broker and from broker to consuming client, and because for persistent messages a larger
message must be stored.

However, by batching smaller messages into a single message, the routing and processing of
individual messages can be minimized, providing an overall performance gain. In this case,
information about the state of individual messages is lost.

Factors Affecting Performance

Chapter 14 • Analyzing and Tuning a Message Service 277

In our tests, which compared throughput in kilobytes per second for 1k, 10k, and 100k-sized
messages to a queue destination and AUTO_ACKNOWLEDGE acknowledgment mode, we found that
nonpersistent messaging was about 50% faster for 1k messages, about 20% faster for 10k
messages, and about 5% faster for 100k messages. The size of the message affected performance
significantly for both persistent and nonpersistent messages. 100k messages are about 10 times
faster than 10k, and 10k are about 5 times faster than 1k.

Message Body Type
JMS supports five message body types, shown below roughly in the order of complexity:

■ BytesMessage contains a set of bytes in a format determined by the application.
■ TextMessage is a simple Java string.
■ StreamMessage contains a stream of Java primitive values.
■ MapMessage contains a set of name-value pairs.
■ ObjectMessage contains a Java serialized object.

While, in general, the message type is dictated by the needs of an application, the more
complicated types (MapMessage and ObjectMessage) carry a performance cost: the expense of
serializing and deserializing the data. The performance cost depends on how simple or how
complicated the data is.

Message Service Factors Affecting Performance
The performance of a messaging application is affected not only by application design, but also
by the message service performing the routing and delivery of messages.

The following sections discuss various message service factors that can affect performance.
Understanding the effect of these factors is key to sizing a message service and diagnosing and
resolving performance bottlenecks that might arise in a deployed application.

The most important factors affecting performance in a Message Queue service are the
following:

■ “Hardware” on page 279
■ “Operating System” on page 279
■ “Java Virtual Machine (JVM)” on page 279
■ “Connections” on page 279
■ “Broker Limits and Behaviors” on page 281
■ “Message Service Architecture” on page 281
■ “Data Store Performance” on page 281
■ “Client Runtime Configuration” on page 282

The sections below describe the effect of each of these factors on messaging performance.

Factors Affecting Performance

Open Message Queue 4.5 Administration Guide • February 2011278

Hardware
For both the Message Queue broker and client applications, CPU processing speed and
available memory are primary determinants of message service performance. Many software
limitations can be eliminated by increasing processing power, while adding memory can
increase both processing speed and capacity. However, it is generally expensive to overcome
bottlenecks simply by upgrading your hardware.

Operating System
Because of the efficiencies of different operating systems, performance can vary, even assuming
the same hardware platform. For example, the thread model employed by the operating system
can have an important effect on the number of concurrent connections a broker can support. In
general, all hardware being equal, Solaris is generally faster than Linux, which is generally faster
than Windows.

Java Virtual Machine (JVM)
The broker is a Java process that runs in and is supported by the host JVM. As a result, JVM
processing is an important determinant of how fast and efficiently a broker can route and
deliver messages.

In particular, the JVM’s management of memory resources can be critical. Sufficient memory
has to be allocated to the JVM to accommodate increasing memory loads. In addition, the JVM
periodically reclaims unused memory, and this memory reclamation can delay message
processing. The larger the JVM memory heap, the longer the potential delay that might be
experienced during memory reclamation.

Connections
The number and speed of connections between client and broker can affect the number of
messages that a message service can handle as well as the speed of message delivery.

Broker Connection Limits
All access to the broker is by way of connections. Any limit on the number of concurrent
connections can affect the number of producing or consuming clients that can concurrently use
the broker.

The number of connections to a broker is generally limited by the number of threads available.
Message Queue can be configured to support either a dedicated thread model or a shared thread
model (see “Thread Pool Management” on page 98).

The dedicated thread model is very fast because each connection has dedicated threads,
however the number of connections is limited by the number of threads available (one input
thread and one output thread for each connection). The shared thread model places no limit on
the number of connections, however there is significant overhead and throughput delays in
sharing threads among a number of connections, especially when those connections are busy.

Factors Affecting Performance

Chapter 14 • Analyzing and Tuning a Message Service 279

Transport Protocols

Message Queue software allows clients to communicate with the broker using various low-level
transport protocols. Message Queue supports the connection services (and corresponding
protocols) described in “Configuring Connection Services” on page 95.

The choice of protocols is based on application requirements (encrypted, accessible through a
firewall), but the choice affects overall performance.

Our tests compared throughput for TCP and SSL for two cases: a high-reliability scenario (1k
persistent messages sent to topic destinations with durable subscriptions and using
AUTO_ACKNOWLEDGE acknowledgment mode) and a high-performance scenario (1k
nonpersistent messages sent to topic destinations without durable subscriptions and using
DUPS_OK_ACKNOWLEDGE acknowledgment mode).

In general we found that protocol has less effect in the high-reliability case. This is probably
because the persistence overhead required in the high-reliability case is a more important factor
in limiting throughput than the protocol speed. Additionally:

■ TCP provides the fastest method to communicate with the broker.
■ SSL is 50 to 70 percent slower than TCP when it comes to sending and receiving messages

(50 percent for persistent messages, closer to 70 percent for nonpersistent messages).
Additionally, establishing the initial connection is slower with SSL (it might take several
seconds) because the client and broker (or Web Server in the case of HTTPS) need to
establish a private key to be used when encrypting the data for transmission. The
performance drop is caused by the additional processing required to encrypt and decrypt
each low-level TCP packet.

■ HTTP is slower than either the TCP or SSL. It uses a servlet that runs on a Web server as a
proxy between the client and the broker. Performance overhead is involved in encapsulating
packets in HTTP requests and in the requirement that messages go through two
hops--client to servlet, servlet to broker--to reach the broker.

■ HTTPS is slower than HTTP because of the additional overhead required to encrypt the
packet between client and servlet and between servlet and broker.

FIGURE 14–2 Transport Protocol Speeds

HTTPS

SLOW

HTTP SSL TCP

FAST

Factors Affecting Performance

Open Message Queue 4.5 Administration Guide • February 2011280

Message Service Architecture
A Message Queue message service can be implemented as a single broker or as a cluster
consisting of multiple interconnected broker instances.

As the number of clients connected to a broker increases, and as the number of messages being
delivered increases, a broker will eventually exceed resource limitations such as file descriptor,
thread, and memory limits. One way to accommodate increasing loads is to add more broker
instances to a Message Queue message service, distributing client connections and message
routing and delivery across multiple brokers.

In general, this scaling works best if clients are evenly distributed across the cluster, especially
message producing clients. Because of the overhead involved in delivering messages between
the brokers in a cluster, clusters with limited numbers of connections or limited message
delivery rates, might exhibit lower performance than a single broker.

You might also use a broker cluster to optimize network bandwidth. For example, you might
want to use slower, long distance network links between a set of remote brokers within a cluster,
while using higher speed links for connecting clients to their respective broker instances.

For more information on clusters, see Chapter 10, “Configuring and Managing Broker
Clusters”

Broker Limits and Behaviors
The message throughput that a broker might be required to handle is a function of the use
patterns of the messaging applications the broker supports. However, the broker is limited in
resources: memory, CPU cycles, and so forth. As a result, it would be possible for a broker to
become overwhelmed to the point where it becomes unresponsive or unstable.

The Message Queue message broker has mechanisms built in for managing memory resources
and preventing the broker from running out of memory. These mechanisms include
configurable limits on the number of messages or message bytes that can be held by a broker or
its individual physical destinations, and a set of behaviors that can be instituted when physical
destination limits are reached.

With careful monitoring and tuning, these configurable mechanisms can be used to balance the
inflow and outflow of messages so that system overload cannot occur. While these mechanisms
consume overhead and can limit message throughput, they nevertheless maintain operational
integrity.

Data Store Performance
Message Queue supports both file-based and JDBC-based persistence modules. File-based
persistence uses individual files to store persistent data. JDBC-based persistence uses a Java
Database Connectivity (JDBC) interface and requires a JDBC-compliant data store. File-based
persistence is generally faster than JDBC-based; however, some users prefer the redundancy
and administrative control provided by a JDBC-compliant store.

Factors Affecting Performance

Chapter 14 • Analyzing and Tuning a Message Service 281

In the case of file-based persistence, you can maximize reliability by specifying that persistence
operations synchronize the in-memory state with the data store. This helps eliminate data loss
due to system crashes, but at the expense of performance.

Client Runtime Configuration
The Message Queue client runtime provides client applications with an interface to the Message
Queue message service. It supports all the operations needed for clients to send messages to
physical destinations and to receive messages from such destinations. The client runtime is
configurable (by setting connection factory attribute values), allowing you to control aspects of
its behavior, such as connection flow metering, consumer flow limits, and connection flow
limits, that can improve performance and message throughput. See “Client Runtime Message
Flow Adjustments” on page 286 for more information on these features and the attributes used
to configure them.

Adjusting Configuration To Improve Performance
The following sections explain how configuration adjustments can affect performance.

System Adjustments
The following sections describe adjustments you can make to the operating system, JVM,
communication protocols, and persistent data store.

Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
See your system documentation for tuning your operating system.

Java Virtual Machine Adjustments
By default, the broker uses a JVM heap size of 192MB. This is often too small for significant
message loads and should be increased.

When the broker gets close to exhausting the JVM heap space used by Java objects, it uses
various techniques such as flow control and message swapping to free memory. Under extreme
circumstances it even closes client connections in order to free the memory and reduce the
message inflow. Hence it is desirable to set the maximum JVM heap space high enough to avoid
such circumstances.

However, if the maximum Java heap space is set too high, in relation to system physical
memory, the broker can continue to grow the Java heap space until the entire system runs out of
memory. This can result in diminished performance, unpredictable broker crashes, and/or
affect the behavior of other applications and services running on the system. In general, you
need to allow enough physical memory for the operating system and other applications to run
on the machine.

Adjusting Configuration To Improve Performance

Open Message Queue 4.5 Administration Guide • February 2011282

In general it is a good idea to evaluate the normal and peak system memory footprints, and
configure the Java heap size so that it is large enough to provide good performance, but not so
large as to risk system memory problems.

To change the minimum and maximum heap size for the broker, use the -vmargs command
line option when starting the broker. For example:

/usr/bin/imqbrokerd -vmargs "-Xms256m -Xmx1024m"

This command will set the starting Java heap size to 256MB and the maximum Java heap size to
1GB.
■ On Solaris or Linux, if starting the broker via /etc/rc* (that is, /etc/init.d/imq), specify

broker command line arguments in the file /etc/imq/imqbrokerd.conf (Solaris) or
/etc/opt/sun/mq/imqbrokerd.conf (Linux). See the comments in that file for more
information.

■ On Windows, if starting the broker as a Window’s service, specify JVM arguments using the
-vmargs option to the imqsvcadmin install command. See “Service Administrator Utility”
on page 340 in Chapter 16, “Command Line Reference”

In any case, verify settings by checking the broker’s log file or using the imqcmd metrics bkr -m
cxn command.

Tuning Transport Protocols
Once a protocol that meets application needs has been chosen, additional tuning (based on the
selected protocol) might improve performance.

A protocol’s performance can be modified using the following three broker properties:
■ imq.protocol.protocolType.nodelay
■ imq.protocol.protocolType.inbufsz
■ imq.protocol.protocolType.outbufsz

For TCP and SSL protocols, these properties affect the speed of message delivery between client
and broker. For HTTP and HTTPS protocols, these properties affect the speed of message
delivery between the Message Queue tunnel servlet (running on a Web server) and the broker.
For HTTP/HTTPS protocols there are additional properties that can affect performance (see
“HTTP/HTTPS Tuning” on page 284).

The protocol tuning properties are described in the following sections.

nodelay

The nodelay property affects Nagle’s algorithm (the value of the TCP_NODELAY socket-level
option on TCP/IP) for the given protocol. Nagle’s algorithm is used to improve TCP
performance on systems using slow connections such as wide-area networks (WANs).

Adjusting Configuration To Improve Performance

Chapter 14 • Analyzing and Tuning a Message Service 283

When the algorithm is used, TCP tries to prevent several small chunks of data from being sent
to the remote system (by bundling the data in larger packets). If the data written to the socket
does not fill the required buffer size, the protocol delays sending the packet until either the
buffer is filled or a specific delay time has elapsed. Once the buffer is full or the timeout has
occurred, the packet is sent.

For most messaging applications, performance is best if there is no delay in the sending of
packets (Nagle’s algorithm is not enabled). This is because most interactions between client and
broker are request/response interactions: the client sends a packet of data to the broker and
waits for a response. For example, typical interactions include:
■ Creating a connection
■ Creating a producer or consumer
■ Sending a persistent message (the broker confirms receipt of the message)
■ Sending a client acknowledgment in an AUTO_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE session

(the broker confirms processing of the acknowledgment)

For these interactions, most packets are smaller than the buffer size. This means that if Nagle’s
algorithm is used, the broker delays several milliseconds before sending a response to the
consumer.

However, Nagle’s algorithm may improve performance in situations where connections are
slow and broker responses are not required. This would be the case where a client sends a
nonpersistent message or where a client acknowledgment is not confirmed by the broker
(DUPS_OK_ACKNOWLEDGE session).

inbufsz/outbufsz

The inbufsz property sets the size of the buffer on the input stream reading data coming in
from a socket. Similarly, outbufsz sets the buffer size of the output stream used by the broker to
write data to the socket.

In general, both parameters should be set to values that are slightly larger than the average
packet being received or sent. A good rule of thumb is to set these property values to the size of
the average packet plus 1 kilobyte (rounded to the nearest kilobyte). For example, if the broker
is receiving packets with a body size of 1 kilobyte, the overall size of the packet (message body
plus header plus properties) is about 1200 bytes; an inbufsz of 2 kilobytes (2048 bytes) gives
reasonable performance. Increasing inbufsz or outbufsz greater than that size may improve
performance slightly, but increases the memory needed for each connection.

HTTP/HTTPS Tuning

In addition to the general properties discussed in the previous two sections, HTTP/HTTPS
performance is limited by how fast a client can make HTTP requests to the Web server hosting
the Message Queue tunnel servlet.

Adjusting Configuration To Improve Performance

Open Message Queue 4.5 Administration Guide • February 2011284

A Web server might need to be optimized to handle multiple requests on a single socket. With
JDK version 1.4 and later, HTTP connections to a Web server are kept alive (the socket to the
Web server remains open) to minimize resources used by the Web server when it processes
multiple HTTP requests. If the performance of a client application using JDK version 1.4 is
slower than the same application running with an earlier JDK release, you might need to tune
the Web server keep-alive configuration parameters to improve performance.

In addition to such Web server tuning, you can also adjust how often a client polls the Web
server. HTTP is a request-based protocol. This means that clients using an HTTP-based
protocol periodically need to check the Web server to see if messages are waiting. The
imq.httpjms.http.pullPeriod broker property (and the corresponding
imq.httpsjms.https.pullPeriod property) specifies how often the Message Queue client
runtime polls the Web server.

If the pullPeriod value is −1 (the default value), the client runtime polls the server as soon as
the previous request returns, maximizing the performance of the individual client. As a result,
each client connection monopolizes a request thread in the Web server, possibly straining Web
server resources.

If the pullPeriod value is a positive number, the client runtime periodically sends requests to
the Web server to see if there is pending data. In this case, the client does not monopolize a
request thread in the Web server. Hence, if large numbers of clients are using the Web server,
you might conserve Web server resources by setting the pullPeriod to a positive value.

Tuning the File-based Persistent Store
For information on tuning the file-based persistent store, see “Configuring a File-Based Data
Store” on page 129.

Broker Memory Management Adjustments
You can improve performance and increase broker stability under load by properly managing
broker memory. Memory management can be configured on a destination-by-destination basis
or on a system-wide level (for all destinations, collectively).

Using Physical Destination Limits
To configure physical destination limits, see the properties described in “Physical Destination
Properties” on page 387.

Using System-Wide Limits
If message producers tend to overrun message consumers, messages can accumulate in the
broker. The broker contains a mechanism for throttling back producers and swapping messages
out of active memory under low memory conditions, but it is wise to set a hard limit on the total
number of messages (and message bytes) that the broker can hold.

Adjusting Configuration To Improve Performance

Chapter 14 • Analyzing and Tuning a Message Service 285

Control these limits by setting the imq.system.max_count and the imq.system.max_size
broker properties.

For example:

imq.system.max_count=5000

The defined value above means that the broker will only hold up to 5000 undelivered and/or
unacknowledged messages. If additional messages are sent, they are rejected by the broker. If a
message is persistent then the clinet runtime will throw an exception when the producer tries to
send the message. If the message is non-persistent, the broker silently drops the message.

When an exception is thrown in sending a message, the client should process the exception by
pausing for a moment and retrying the send again. (Note that the exception will never be due to
the broker’s failure to receive a message; the exception is thrown by the client runtime before the
message is sent to the broker.)

Client Runtime Message Flow Adjustments
This section discusses client runtimeflow control behaviors that affect performance. These
behaviors are configured as attributes of connection factory administered objects. For
information on setting connection factory attributes, see Chapter 11, “Managing Administered
Objects”

Message Flow Metering
Messages sent and received by clients (payload messages), as well as Message Queue control
messages, pass over the same client-broker connection. Delays in the delivery of control
messages, such as broker acknowledgments, can result if control messages are held up by the
delivery of payload messages. To prevent this type of congestion, Message Queue meters the
flow of payload messages across a connection.

Payload messages are batched (as specified with the connection factory attribute
imqConnectionFlowCount) so that only a set number are delivered. After the batch has been
delivered, delivery of payload messages is suspended and only pending control messages are
delivered. This cycle repeats, as additional batches of payload messages are delivered followed
by pending control messages.

The value of imqConnectionFlowCount should be kept low if the client is doing operations that
require many responses from the broker: for example, if the client is using
CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE mode, persistent messages, transactions, or queue
browsers, or is adding or removing consumers. If, on the other hand, the client has only simple
consumers on a connection using DUPS_OK_ACKNOWLEDGE mode, you can increase
imqConnectionFlowCount without compromising performance.

Adjusting Configuration To Improve Performance

Open Message Queue 4.5 Administration Guide • February 2011286

Message Flow Limits
There is a limit to the number of payload messages that the Message Queue client runtime can
handle before encountering local resource limitations, such as memory. When this limit is
approached, performance suffers. Hence, Message Queue lets you limit the number of messages
per consumer (or messages per connection) that can be delivered over a connection and
buffered in the client runtime, waiting to be consumed.

Consumer Flow Limits
When the number of payload messages delivered to the client runtime exceeds the value of
imqConsumerFlowLimit for any consumer, message delivery for that consumer stops. It is
resumed only when the number of unconsumed messages for that consumer drops below the
value set with imqConsumerFlowThreshold.

The following example illustrates the use of these limits: consider the default settings for topic
consumers:

imqConsumerFlowLimit=1000

imqConsumerFlowThreshold=50

When the consumer is created, the broker delivers an initial batch of 1000 messages (providing
they exist) to this consumer without pausing. After sending 1000 messages, the broker stops
delivery until the client runtime asks for more messages. The client runtime holds these
messages until the application processes them. The client runtime then allows the application to
consume at least 50% (imqConsumerFlowThreshold) of the message buffer capacity (i.e. 500
messages) before asking the broker to send the next batch.

In the same situation, if the threshold were 10%, the client runtime would wait for the
application to consume at least 900 messages before asking for the next batch.

The next batch size is calculated as follows:

imqConsumerFlowLimit - (current number of pending msgs in buffer)

So if imqConsumerFlowThreshold is 50%, the next batch size can fluctuate between 500 and
1000, depending on how fast the application can process the messages.

If the imqConsumerFlowThreshold is set too high (close to 100%), the broker will tend to send
smaller batches, which can lower message throughput. If the value is set too low (close to 0%),
the client may be able to finish processing the remaining buffered messages before the broker
delivers the next set, again degrading message throughput. Generally speaking, unless you have
specific performance or reliability concerns, you will not need to change the default value of
imqConsumerFlowThreshold attribute.

The consumer-based flow controls (in particular, imqConsumerFlowLimit) are the best way to
manage memory in the client runtime. Generally, depending on the client application, you
know the number of consumers you need to support on any connection, the size of the
messages, and the total amount of memory that is available to the client runtime.

Adjusting Configuration To Improve Performance

Chapter 14 • Analyzing and Tuning a Message Service 287

Note – Setting the imqConsumerFlowLimitPrefetch property to false disables the prefetching
and buffering specified by imqConsumerFlowLimit and imqConsumerFlowThreshold, in which
case messages are delivered to consumers one at a time and a new message is not sent to a
consumer until it consumes the message it has. This delivery constraint, which can degrade
message throughput, is for use when business logic demands that each consumer have only one
message at a time.

When the JMS resource adapter, jmsra, is used to consume messages in a GlassFish Server
cluster, this behavior is defined using different properties, as described in “About Shared Topic
Subscriptions for Clustered Containers” on page 404.

Connection Flow Limits

In the case of some client applications, however, the number of consumers may be
indeterminate, depending on choices made by end users. In those cases, you can still manage
memory using connection-level flow limits.

Connection-level flow controls limit the total number of messages buffered for all consumers
on a connection. If this number exceeds the value of imqConnectionFlowLimit, delivery of
messages through the connection stops until that total drops below the connection limit. (The
imqConnectionFlowLimit attribute is enabled only if you set
imqConnectionFlowLimitEnabled to true.)

The number of messages queued up in a session is a function of the number of message
consumers using the session and the message load for each consumer. If a client is exhibiting
delays in producing or consuming messages, you can normally improve performance by
redesigning the application to distribute message producers and consumers among a larger
number of sessions or to distribute sessions among a larger number of connections.

Adjusting Multiple-Consumer Queue Delivery
The efficiency with which multiple queue consumers process messages in a queue destination
depends on a number of factors. To achieve optimal message throughput there must be a
sufficient number of consumers to keep up with the rate of message production for the queue,
and the messages in the queue must be routed and then delivered to the active consumers in
such a way as to maximize their rate of consumption.

The message delivery mechanism for multiple-consumer queues is that messages are delivered
to consumers in batches as each consumer is ready to receive a new batch. The readiness of a
consumer to receive a batch of messages depends upon configurable client runtime properties,
such as imqConsumerFlowLimit and imqConsumerFlowThreshold, as described in “Message
Flow Limits” on page 287. As new consumers are added to a queue, they are sent a batch of
messages to consume, and receive subsequent batches as they become ready.

Adjusting Configuration To Improve Performance

Open Message Queue 4.5 Administration Guide • February 2011288

Note – The message delivery mechanism for multiple-consumer queues described above can
result in messages being consumed in an order different from the order in which they are
produced.

If messages are accumulating in the queue, it is possible that there is an insufficient number of
consumers to handle the message load. It is also possible that messages are being delivered to
consumers in batch sizes that cause messages to be backing up on the consumers. For example,
if the batch size (consumerFlowLimit) is too large, one consumer might receive all the messages
in a queue while other consumers receive none. If consumers are very fast, this might not be a
problem. However, if consumers are relatively slow, you want messages to be distributed to
them evenly, and therefore you want the batch size to be small. Although smaller batch sizes
require more overhead to deliver messages to consumers, for slow consumers there is generally
a net performance gain in using small batch sizes. The value of consumerFlowLimit can be set
on a destination as well as on the client runtime: the smaller value overrides the larger one.

Adjusting Configuration To Improve Performance

Chapter 14 • Analyzing and Tuning a Message Service 289

290

Troubleshooting

This chapter explains how to understand and resolve the following problems:

■ “A Client Cannot Establish a Connection” on page 291
■ “Connection Throughput Is Too Slow” on page 296
■ “A Client Cannot Create a Message Producer” on page 297
■ “Message Production Is Delayed or Slowed” on page 298
■ “Messages Are Backlogged” on page 301
■ “Broker Throughput Is Sporadic” on page 305
■ “Messages Are Not Reaching Consumers” on page 306
■ “Dead Message Queue Contains Messages” on page 307

When problems occur, it is useful to check the version number of the installed Message Queue
software. Use the version number to ensure that you are using documentation whose version
matches the software version. You also need the version number to report a problem to Oracle.
To check the version number, issue the following command:

imqcmd -v

A Client Cannot Establish a Connection
Symptoms:

■ Client cannot make a new connection.
■ Client cannot auto-reconnect on failed connection.

Possible causes:

■ Client applications are not closing connections, causing the number of connections to
exceed resource limitations.

■ Broker is not running or there is a network connectivity problem.
■ Connection service is inactive or paused.

15C H A P T E R 1 5

291

■ Too few threads available for the number of connections required.
■ Too few file descriptors for the number of connections required on the Solaris or Linux

operating system.
■ TCP backlog limits the number of simultaneous new connection requests that can be

established.
■ Operating system limits the number of concurrent connections.
■ Authentication or authorization of the user is failing.

Possible cause: Client applications are not closing connections, causing the number of connections to
exceed resource limitations.

To confirm this cause of the problem: List all connections to a broker:
imqcmd list cxn

The output will list all connections and the host from which each connection has been made,
revealing an unusual number of open connections for specific clients.
To resolve the problem: Rewrite the offending clients to close unused connections.

Possible cause: Broker is not running or there is a network connectivity problem.

To confirm this cause of the problem:

■ Telnet to the broker’s primary port (for example, the default of 7676) and verify that the
broker responds with Port Mapper output.

■ Verify that the broker process is running on the host.
To resolve the problem:

■ Start up the broker.
■ Fix the network connectivity problem.

Possible cause: Connection service is inactive or paused.

To confirm this cause of the problem: Check the status of all connection services:
imqcmd list svc

If the status of a connection service is shown as unknown or paused, clients will not be able to
establish a connection using that service.
To resolve the problem:
■ If the status of a connection service is shown as unknown , it is missing from the active service

list (imq.service.active). In the case of SSL-based services, the service might also be
improperly configured, causing the broker to make the following entry in the broker log:
ERROR [B3009]: Unable to start service ssljms:

[B4001]: Unable to open protocol tls for ssljms service...

followed by an explanation of the underlying cause of the exception.

A Client Cannot Establish a Connection

Open Message Queue 4.5 Administration Guide • February 2011292

To properly configure SSL services, see “Message Encryption” on page 161.
■ If the status of a connection service is shown as paused, resume the service (see “Pausing and

Resuming a Connection Service” on page 99).

Possible cause: Too few threads available for the number of connections required.

To confirm this cause of the problem: Check for the following entry in the broker log:
WARNING [B3004]: No threads are available to process a new connection on service

...

Closing the new connection.

Also check the number of connections on the connection service and the number of threads
currently in use, using one of the following formats:
imqcmd query svc -n serviceName
imqcmd metrics svc -n serviceName -m cxn

Each connection requires two threads: one for incoming messages and one for outgoing
messages (see “Thread Pool Management” on page 98).
To resolve the problem:

■ If you are using a dedicated thread pool model (imq.serviceName.threadpool_model=
dedicated), the maximum number of connections is half the maximum number of threads
in the thread pool. Therefore, to increase the number of connections, increase the size of the
thread pool (imq.serviceName.max_threads) or switch to the shared thread pool model.

■ If you are using a shared thread pool model
(imq.serviceName.threadpool_model=shared), the maximum number of connections is
half the product of the connection monitor limit
(imq.serviceName.connectionMonitor_limit) and the maximum number of threads
(imq.serviceName.max_threads). Therefore, to increase the number of connections,
increase the size of the thread pool or increase the connection monitor limit.

■ Ultimately, the number of supportable connections (or the throughput on connections) will
reach input/output limits. In such cases, use a multiple-broker cluster to distribute
connections among the broker instances within the cluster.

Possible cause: Too few file descriptors for the number of connections required on the Solaris or Linux
platform.

For more information about this issue, see “Setting the File Descriptor Limit” on page 70.
To confirm this cause of the problem: Check for an entry in the broker log similar to the
following:
Too many open files

To resolve the problem: Increase the file descriptor limit, as described in the man page for the
ulimit command.

A Client Cannot Establish a Connection

Chapter 15 • Troubleshooting 293

Possible cause: TCP backlog limits the number of simultaneous new connection requests that can be
established.

The TCP backlog places a limit on the number of simultaneous connection requests that can be
stored in the system backlog (imq.portmapper.backlog) before the Port Mapper rejects
additional requests. (On the Windows platform there is a hard-coded backlog limit of 5 for
Windows desktops and 200 for Windows servers.)
The rejection of requests because of backlog limits is usually a transient phenomenon, due to an
unusually high number of simultaneous connection requests.
To confirm this cause of the problem: Examine the broker log. First, check to see whether the
broker is accepting some connections during the same time period that it is rejecting others.
Next, check for messages that explain rejected connections. If you find such messages, the TCP
backlog is probably not the problem, because the broker does not log connection rejections due
to the TCP backlog. If some successful connections are logged, and no connection rejections are
logged, the TCP backlog is probably the problem.
To resolve the problem:
■ Program the client to retry the attempted connection after a short interval of time (this

normally works because of the transient nature of this problem).
■ Increase the value of imq.portmapper.backlog.
■ Check that clients are not closing and then opening connections too often.

Possible cause: Operating system limits the number of concurrent connections.

The Windows operating system license places limits on the number of concurrent remote
connections that are supported.
To confirm this cause of the problem: Check that there are plenty of threads available for
connections (using imqcmd query svc) and check the terms of your Windows license
agreement. If you can make connections from a local client, but not from a remote client,
operating system limitations might be the cause of the problem.
To resolve the problem:
■ Upgrade the Windows license to allow more connections.
■ Distribute connections among a number of broker instances by setting up a multiple-broker

cluster.

Possible cause: Authentication or authorization of the user is failing.

The authentication may be failing for any of the following reasons:
■ Incorrect password
■ No entry for user in user repository
■ User does not have access permission for connection service
To confirm this cause of the problem: Check entries in the broker log for the Forbidden error
message. This will indicate an authentication error, but will not indicate the reason for it.

A Client Cannot Establish a Connection

Open Message Queue 4.5 Administration Guide • February 2011294

■ If you are using a file-based user repository, enter the following command:
imqusermgr list -i instanceName -u userName
If the output shows a user, the wrong password was probably submitted. If the output shows
the following error, there is no entry for the user in the user repository:
Error [B3048]: User does not exist in the password file

■ If you are using an LDAP server user repository, use the appropriate tools to check whether
there is an entry for the user.

■ Check the access control file to see whether there are restrictions on access to the connection
service.

To resolve the problem:
■ If the wrong password was used, provide the correct password.
■ If there is no entry for the user in the user repository, add one (see “Adding a User to the

Repository” on page 144).
■ If the user does not have access permission for the connection service, edit the access control

file to grant such permission (see “Authorization Rules for Connection Services” on
page 159).

Possible cause: Authentication or authorization of the user is failing.

Authentication may be failing for any of the following reasons:
■ No entry for user in user repository
■ Incorrect password
■ User does not have access permission for connection service
To confirm this cause of the problem

1. Check entries in the broker log for the error message Forbidden. This will indicate an
authentication error, but will not indicate the reason for it.

2. Check the user repository for an entry for this user:
■ If you are using a flat-file user repository, enter the command

imqusermgr list -i instanceName -u userName

If the output shows the error

Error [B3048]: User does not exist in the password file

then there is no entry for the user in the user repository:
■ If you are using an LDAP user repository, use the appropriate tools to check whether

there is an entry for the user.
3. If the output from step 2 does show a user entry, the wrong password was probably

provided.

A Client Cannot Establish a Connection

Chapter 15 • Troubleshooting 295

4. Check the access control file to see whether there are restrictions on access to the connection
service.

To resolve the problem

■ If there is no entry for the user in the user repository, add one (see “Adding a User to the
Repository” on page 144).

■ If the wrong password was used, provide the correct password.
■ If the user does not have access permission for the connection service, edit the access control

file to grant such permission (see “Authorization Rules for Connection Services” on
page 159).

Connection Throughput Is Too Slow
Symptoms:

■ Message throughput does not meet expectations.
■ Message input/output rates are not limited by an insufficient number of supported

connections (as described in “A Client Cannot Establish a Connection” on page 291).

Possible causes:

■ Network connection or WAN is too slow.
■ Connection service protocol is inherently slow compared to TCP.
■ Connection service protocol is not optimally tuned.
■ Messages are so large that they consume too much bandwidth.
■ What appears to be slow connection throughput is actually a bottleneck in some other step

of the message delivery process.

Possible cause: Network connection or WAN is too slow.

To confirm this cause of the problem:

■ Ping the network, to see how long it takes for the ping to return, and consult a network
administrator.

■ Send and receive messages using local clients and compare the delivery time with that of
remote clients (which use a network link).

To resolve the problem: Upgrade the network link.

Possible cause: Connection service protocol is inherently slow compared to TCP.

For example, SSL-based or HTTP-based protocols are slower than TCP (see “Transport
Protocols” on page 280).

Connection Throughput Is Too Slow

Open Message Queue 4.5 Administration Guide • February 2011296

To confirm this cause of the problem: If you are using SSL-based or HTTP-based protocols, try
using TCP and compare the delivery times.
To resolve the problem: Application requirements usually dictate the protocols being used, so
there is little you can do other than attempt to tune the protocol as described in “Tuning
Transport Protocols” on page 283.

Possible cause: Connection service protocol is not optimally tuned.

To confirm this cause of the problem: Try tuning the protocol to see whether it makes a difference.
To resolve the problem: Try tuning the protocol, as described in “Tuning Transport Protocols”
on page 283.

Possible cause: Messages are so large that they consume too much bandwidth.

To confirm this cause of the problem: Try running your benchmark with smaller-sized messages.
To resolve the problem:

■ Have application developers modify the application to use the message compression feature,
which is described in the Message Queue Developer’s Guide for Java Clients.

■ Use messages as notifications of data to be sent, but move the data using another protocol.

Possible cause: What appears to be slow connection throughput is actually a bottleneck in some other step
of the message delivery process.

To confirm this cause of the problem: If what appears to be slow connection throughput cannot be
explained by any of the causes above, see “Factors Affecting Performance” on page 272 for other
possible bottlenecks and check for symptoms associated with the following problems:

■ “Message Production Is Delayed or Slowed” on page 298
■ “Messages Are Backlogged” on page 301
■ “Broker Throughput Is Sporadic” on page 305
To resolve the problem: Follow the problem resolution guidelines provided in the
troubleshooting sections listed above.

A Client Cannot Create a Message Producer
Symptom:

■ A message producer cannot be created for a physical destination; the client receives an
exception.

Possible causes:

■ A physical destination has been configured to allow only a limited number of producers.

A Client Cannot Create a Message Producer

Chapter 15 • Troubleshooting 297

■ The user is not authorized to create a message producer due to settings in the access control
file.

Possible cause: A physical destination has been configured to allow only a limited number of producers.

One of the ways of avoiding the accumulation of messages on a physical destination is to limit
the number of producers (maxNumProducers) that it supports.
To confirm this cause of the problem: Check the physical destination:
imqcmd query dst

(see “Viewing Physical Destination Information” on page 114). The output will show the
current number of producers and the value of maxNumProducers. If the two values are the same,
the number of producers has reached its configured limit. When a new producer is rejected by
the broker, the broker returns the exception
ResourceAllocationException [C4088]: A JMS destination limit was reached

and makes the following entry in the broker log:
[B4183]: Producer can not be added to destination

To resolve the problem: Increase the value of the maxNumProducers property (see “Updating
Physical Destination Properties” on page 114).

Possible cause: The user is not authorized to create a message producer due to settings in the access
control file.

To confirm this cause of the problem: When a new producer is rejected by the broker, the broker
returns the exception
JMSSecurityException [C4076]: Client does not have permission to create producer

on destination

and makes the following entries in the broker log:
[B2041]: Producer on destination denied

[B4051]: Forbidden guest.
To resolve the problem: Change the access control properties to allow the user to produce
messages (see “Authorization Rules for Physical Destinations” on page 160).

Message Production Is Delayed or Slowed
Symptoms:

■ When sending persistent messages, the send method does not return and the client blocks.
■ When sending a persistent message, the client receives an exception.
■ A producing client slows down.

Possible causes:

Message Production Is Delayed or Slowed

Open Message Queue 4.5 Administration Guide • February 2011298

■ The broker is backlogged and has responded by slowing message producers.
■ The broker cannot save a persistent message to the data store.
■ Broker acknowledgment timeout is too short.
■ A producing client is encountering JVM limitations.

Possible cause: The broker is backlogged and has responded by slowing message producers.

A backlogged broker accumulates messages in broker memory. When the number of messages
or message bytes in physical destination memory reaches configured limits, the broker attempts
to conserve memory resources in accordance with the specified limit behavior. The following
limit behaviors slow down message producers:

■ FLOW_CONTROL: The broker does not immediately acknowledge receipt of persistent
messages (thereby blocking a producing client).

■ REJECT_NEWEST: The broker rejects new persistent messages.
Similarly, when the number of messages or message bytes in brokerwide memory (for all
physical destinations) reaches configured limits, the broker will attempt to conserve memory
resources by rejecting the newest messages. Also, when system memory limits are reached
because physical destination or brokerwide limits have not been set properly, the broker takes
increasingly serious action to prevent memory overload. These actions include throttling back
message producers.
To confirm this cause of the problem: When a message is rejected by the broker because of
configured message limits, the broker returns the exception
JMSException [C4036]: A server error occurred

and makes the following entry in the broker log:
[B2011]: Storing of JMS message from IMQconn failed

This message is followed by another indicating the limit that has been reached:
[B4120]: Cannot store message on destination destName because capacity of

maxNumMsgs would be exceeded.

if the exceeded message limit is on a physical destination, or
[B4024]: The maximum number of messages currrently in the system has been

exceeded, rejecting message.

if the limit is brokerwide.
More generally, you can check for message limit conditions before the rejections occur as
follows:

■ Query physical destinations and the broker and inspect their configured message limit
settings.

■ Monitor the number of messages or message bytes currently in a physical destination or in
the broker as a whole, using the appropriate imqcmd commands. See Chapter 21, “Metrics
Information Reference,” for information about metrics you can monitor and the commands
you use to obtain them.

Message Production Is Delayed or Slowed

Chapter 15 • Troubleshooting 299

To resolve the problem:
■ Modify the message limits on a physical destination (or brokerwide), being careful not to

exceed memory resources.
In general, you should manage memory at the individual destination level, so that
brokerwide message limits are never reached. For more information, see “Broker Memory
Management Adjustments” on page 285.

■ Change the limit behaviors on a destination so as not to slow message production when
message limits are reached, but rather to discard messages in memory.
For example, you can specify the REMOVE_OLDEST and REMOVE_LOW_PRIORITY limit
behaviors, which delete messages that accumulate in memory (see Table 18–1).

Possible cause: The broker cannot save a persistent message to the data store.

If the broker cannot access a data store or write a persistent message to it, the producing client is
blocked. This condition can also occur if destination or brokerwide message limits are reached,
as described above.
To confirm this cause of the problem: If the broker is unable to write to the data store, it makes
one of the following entries in the broker log:
[B2011]: Storing of JMS message from connectionID failed

[B4004]: Failed to persist message messageID
To resolve the problem:
■ In the case of file-based persistence, try increasing the disk space of the file-based data store.
■ In the case of a JDBC-compliant data store, check that JDBC-based persistence is properly

configured (see“Configuring a JDBC-Based Data Store” on page 133). If so, consult your
database administrator to troubleshoot other database problems.

Possible cause: Broker acknowledgment timeout is too short.

Because of slow connections or a lethargic broker (caused by high CPU utilization or scarce
memory resources), a broker may require more time to acknowledge receipt of a persistent
message than allowed by the value of the connection factory’s imqAckTimeout attribute.
To confirm this cause of the problem: If the imqAckTimeout value is exceeded, the broker
returns the exception
JMSException [C4000]: Packet acknowledge failed

To resolve the problem: Change the value of the imqAckTimeout connection factory attribute
(see “Reliability And Flow Control” on page 207).

Possible cause: A producing client is encountering JVM limitations.

To confirm this cause of the problem:

■ Find out whether the client application receives an out-of-memory error.

Message Production Is Delayed or Slowed

Open Message Queue 4.5 Administration Guide • February 2011300

■ Check the free memory available in the JVM heap, using runtime methods such as
freeMemory, maxMemory, and totalMemory.

To resolve the problem: Adjust the JVM (see “Java Virtual Machine Adjustments” on page 282).

Messages Are Backlogged
Symptoms:

■ Message production is delayed or produced messages are rejected by the broker.
■ Messages take an unusually long time to reach consumers.
■ The number of messages or message bytes in the broker (or in specific destinations)

increases steadily over time.

To see whether messages are accumulating, check how the number of messages or message
bytes in the broker changes over time and compare to configured limits. First check the
configured limits:

imqcmd query bkr

Note – The imqcmd metrics bkr subcommand does not display this information.

Then check for message accumulation in each destination:

imqcmd list dst

To see whether messages have exceeded configured destination or brokerwide limits, check the
broker log for the entry

[B2011]: Storing of JMS message from … failed.

This entry will be followed by another identifying the limit that has been exceeded.

Possible causes:

■ There are inactive durable subscriptions on a topic destination.
■ Too few consumers are available to consume messages in a queue.
■ Message consumers are processing too slowly to keep up with message producers.
■ Client acknowledgment processing is slowing down message consumption.
■ The broker cannot keep up with produced messages.
■ Client code defects; consumers are not acknowledging messages.

Possible cause: There are inactive durable subscriptions on a topic destination.

If a durable subscription is inactive, messages are stored in a destination until the
corresponding consumer becomes active and can consume the messages.

Messages Are Backlogged

Chapter 15 • Troubleshooting 301

To confirm this cause of the problem: Check the state of durable subscriptions on each topic
destination:
imqcmd list dur -d destName
To resolve the problem:
■ Purge all messages for the offending durable subscriptions (see “Managing Durable

Subscriptions” on page 123).
■ Specify message limit and limit behavior attributes for the topic (see Table 18–1). For

example, you can specify the REMOVE_OLDEST and REMOVE_LOW_PRIORITY limit behaviors,
which delete messages that accumulate in memory.

■ Purge all messages from the corresponding destinations (see “Purging a Physical
Destination” on page 113).

■ Limit the time messages can remain in memory by rewriting the producing client to set a
time-to-live value on each message. You can override any such settings for all producers
sharing a connection by setting the imqOverrideJMSExpiration and imqJMSExpiration

connection factory attributes (see “Message Header Overrides” on page 401).

Possible cause: Too few consumers are available to consume messages in a multiple-consumer queue.

If there are too few active consumers to which messages can be delivered, a queue destination
can become backlogged as messages accumulate. This condition can occur for any of the
following reasons:
■ Too few active consumers exist for the destination.
■ Consuming clients have failed to establish connections.
■ No active consumers use a selector that matches messages in the queue.
To confirm this cause of the problem: To help determine the reason for unavailable
consumers, check the number of active consumers on a destination:
imqcmd metrics dst -n destName -t q -m con

To resolve the problem: Depending on the reason for unavailable consumers,
■ Create more active consumers for the queue by starting up additional consuming clients.
■ Adjust the imq.consumerFlowLimit broker property to optimize queue delivery to multiple

consumers (see “Adjusting Multiple-Consumer Queue Delivery ” on page 288).
■ Specify message limit and limit behavior attributes for the queue (see Table 18–1). For

example, you can specify the REMOVE_OLDEST and REMOVE_LOW_PRIOROTY limit behaviors,
which delete messages that accumulate in memory.

■ Purge all messages from the corresponding destinations (see “Purging a Physical
Destination” on page 113).

■ Limit the time messages can remain in memory by rewriting the producing client to set a
time-to-live value on each message. You can override any such setting for all producers
sharing a connection by setting the imqOverrideJMSExpiration and imqJMSExpiration

connection factory attributes (see “Message Header Overrides” on page 401).

Messages Are Backlogged

Open Message Queue 4.5 Administration Guide • February 2011302

Possible cause: Message consumers are processing too slowly to keep up with message producers.

In this case, topic subscribers or queue receivers are consuming messages more slowly than the
producers are sending messages. One or more destinations are getting backlogged with
messages because of this imbalance.
To confirm this cause of the problem: Check for the rate of flow of messages into and out of
the broker:
imqcmd metrics bkr -m rts

Then check flow rates for each of the individual destinations:
imqcmd metrics bkr -t destType -n destName -m rts

To resolve the problem:

■ Optimize consuming client code.
■ For queue destinations, increase the number of active consumers (see “Adjusting

Multiple-Consumer Queue Delivery ” on page 288).

Possible cause: Client acknowledgment processing is slowing down message consumption.

Two factors affect the processing of client acknowledgments:

■ Significant broker resources can be consumed in processing client acknowledgments. As a
result, message consumption may be slowed in those acknowledgment modes in which
consuming clients block until the broker confirms client acknowledgments.

■ JMS payload messages and Message Queue control messages (such as client
acknowledgments) share the same connection. As a result, control messages can be held up
by JMS payload messages, slowing message consumption.

To confirm this cause of the problem:

■ Check the flow of messages relative to the flow of packets. If the number of packets per
second is out of proportion to the number of messages, client acknowledgments may be a
problem.

■ Check to see whether the client has received the following exception:

JMSException [C4000]: Packet acknowledge failed

To resolve the problem:

■ Modify the acknowledgment mode used by clients: for example, switch to
DUPS_OK_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE.

■ If using CLIENT_ACKNOWLEDGE or transacted sessions, group a larger number of messages
into a single acknowledgment.

■ Adjust consumer and connection flow control parameters (see “Client Runtime Message
Flow Adjustments” on page 286).

Messages Are Backlogged

Chapter 15 • Troubleshooting 303

Possible cause: The broker cannot keep up with produced messages.

In this case, messages are flowing into the broker faster than the broker can route and dispatch
them to consumers. The sluggishness of the broker can be due to limitations in any or all of the
following:

■ CPU
■ Network socket read/write operations
■ Disk read/write operations
■ Memory paging
■ Persistent store
■ JVM memory limits
To confirm this cause of the problem: Check that none of the other possible causes of this
problem are responsible.
To resolve the problem:

■ Upgrade the speed of your computer or data store.
■ Use a broker cluster to distribute the load among multiple broker instances.

Possible cause: Client code defects; consumers are not acknowledging messages.

Messages are held in a destination until they have been acknowledged by all consumers to
which they have been sent. If a client is not acknowledging consumed messages, the messages
accumulate in the destination without being deleted.
For example, client code might have the following defects:

■ Consumers using the CLIENT_ACKNOWLEDGE acknowledgment mode or transacted session
may not be calling Session.acknowledge or Session.commit regularly.

■ Consumers using the AUTO_ACKNOWLEDGE acknowledgment mode may be hanging for some
reason.

To confirm this cause of the problem: First check all other possible causes listed in this section.
Next, list the destination with the following command:
imqcmd list dst

Notice whether the number of messages listed under the UnAcked header is the same as the
number of messages in the destination. Messages under this header were sent to consumers but
not acknowledged. If this number is the same as the total number of messages, then the broker
has sent all the messages and is waiting for acknowledgment.
To resolve the problem: Request the help of application developers in debugging this problem.

Messages Are Backlogged

Open Message Queue 4.5 Administration Guide • February 2011304

Broker Throughput Is Sporadic
Symptom:

■ Message throughput sporadically drops and then resumes normal performance.

Possible causes:

■ The broker is very low on memory resources.
■ JVM memory reclamation (garbage collection) is taking place.
■ The JVM is using the just-in-time compiler to speed up performance.

Possible cause: The broker is very low on memory resources.

Because destination and broker limits were not properly set, the broker takes increasingly
serious action to prevent memory overload; this can cause the broker to become sluggish until
the message backlog is cleared.
To confirm this cause of the problem: Check the broker log for a low memory condition
[B1089]: In low memory condition, broker is attempting to free up resources

followed by an entry describing the new memory state and the amount of total memory being
used. Also check the free memory available in the JVM heap:
imqcmd metrics bkr -m cxn

Free memory is low when the value of total JVM memory is close to the maximum JVM
memory value.
To resolve the problem:

■ Adjust the JVM (see “Java Virtual Machine Adjustments” on page 282).
■ Increase system swap space.

Possible cause: JVM memory reclamation (garbage collection) is taking place.

Memory reclamation periodically sweeps through the system to free up memory. When this
occurs, all threads are blocked. The larger the amount of memory to be freed up and the larger
the JVM heap size, the longer the delay due to memory reclamation.
To confirm this cause of the problem: Monitor CPU usage on your computer. CPU usage
drops when memory reclamation is taking place.
Also start your broker using the following command line options:
-vmargs -verbose:gc

Standard output indicates the time when memory reclamation takes place.
To resolve the problem: In computers with multiple CPUs, set the memory reclamation to take
place in parallel:
-XX:+UseParallelGC=true

Broker Throughput Is Sporadic

Chapter 15 • Troubleshooting 305

Possible cause: The JVM is using the just-in-time compiler to speed up performance.

To confirm this cause of the problem: Check that none of the other possible causes of this problem
are responsible.
To resolve the problem: Let the system run for awhile; performance should improve.

Messages Are Not Reaching Consumers
Symptom:
■ Messages sent by producers are not received by consumers.

Possible causes:
■ Limit behaviors are causing messages to be deleted on the broker.
■ Message timeout value is expiring.
■ Clocks are not synchronized.
■ Consuming client failed to start message delivery on a connection.

Possible cause: Limit behaviors are causing messages to be deleted on the broker.

When the number of messages or message bytes in destination memory reach configured limits,
the broker attempts to conserve memory resources. Three of the configurable behaviors
adopted by the broker when these limits are reached will cause messages to be lost:
■ REMOVE_OLDEST: Delete the oldest messages.
■ REMOVE_LOW_PRIORITY: Delete the lowest-priority messages according to age.
■ REJECT_NEWEST: Reject new persistent messages.
To confirm this cause of the problem: Use the QBrowser demo application to inspect the
contents of the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value REMOVE_OLDEST or REMOVE_LOW_PRIORITY.
To resolve the problem: Increase the destination limits. For example:
imqcmd update dst -n MyDest -o maxNumMsgs=1000

Possible cause: Message timeout value is expiring.

The broker deletes messages whose timeout value has expired. If a destination gets sufficiently
backlogged with messages, messages whose time-to-live value is too short might be deleted.
To confirm this cause of the problem: Use the QBrowser demo application to inspect the
contents of the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value EXPIRED.
To resolve the problem: Contact the application developers and have them increase the
time-to-live value.

Messages Are Not Reaching Consumers

Open Message Queue 4.5 Administration Guide • February 2011306

Possible cause: The broker clock and producer clock are not synchronized.

If clocks are not synchronized, broker calculations of message lifetimes can be wrong, causing
messages to exceed their expiration times and be deleted.
To confirm this cause of the problem: Use the QBrowser demo application to inspect the
contents of the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value EXPIRED.
In the broker log file, look for any of the following messages: B2102, B2103, B2104. These
messages all report that possible clock skew was detected.
To resolve the problem: Check that you are running a time synchronization program, as
described in “Preparing System Resources” on page 69.

Possible cause: Consuming client failed to start message delivery on a connection.

Messages cannot be delivered until client code establishes a connection and starts message
delivery on the connection.
To confirm this cause of the problem: Check that client code establishes a connection and
starts message delivery.
To resolve the problem: Rewrite the client code to establish a connection and start message
delivery.

Dead Message Queue Contains Messages
Symptom:
■ When you list destinations, you see that the dead message queue contains messages. For

example, issue a command like the following:
imqcmd list dst

After you supply a user name and password, output like the following appears:

Listing all the destinations on the broker specified by:

Host Primary Port

localhost 7676

--

Name Type State Producers Consumers Msgs

Total Count UnAck Avg Size

--- ----------------------

MyDest Queue RUNNING 0 0 5 0 1177.0

mq.sys.dmq Queue RUNNING 0 0 35 0 1422.0

Successfully listed destinations.

In this example, the dead message queue, mq.sys.dmq, contains 35 messages.

Possible causes:

Dead Message Queue Contains Messages

Chapter 15 • Troubleshooting 307

■ The number of messages, or their sizes, exceed destination limits.
■ The broker clock and producer clock are not synchronized.
■ An unexpected broker error has occurred.
■ Consumers are not receiving messages before they time out.

There are a number of possible reasons for messages to time out:
■ There are too many producers for the number of consumers.
■ Producers are faster than consumers.
■ A consumer is too slow.
■ Clients are not committing messages.
■ Consumers are failing to acknowledge messages.
■ Durable consumers are inactive.

Possible cause: The number of messages, or their sizes, exceed destination limits.

To confirm this cause of the problem: Use the QBrowser demo application to inspect the contents of
the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check the values for the following message properties:

■ JMS_SUN_DMQ_UNDELIVERED_REASON

■ JMS_SUN_DMQ_UNDELIVERED_COMMENT

■ JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP

Under JMS Headers, scroll down to the value for JMSDestination to determine the destination
whose messages are becoming dead.
To resolve the problem: Increase the destination limits. For example:
imqcmd update dst -n MyDest -o maxNumMsgs=1000

Possible cause: The broker clock and producer clock are not synchronized.

If clocks are not synchronized, broker calculations of message lifetimes can be wrong, causing
messages to exceed their expiration times and be deleted.
To confirm this cause of the problem: Use the QBrowser demo application to inspect the
contents of the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value EXPIRED.
In the broker log file, look for any of the following messages: B2102, B2103, B2104. These
messages all report that possible clock skew was detected.
To resolve the problem: Check that you are running a time synchronization program, as
described in “Preparing System Resources” on page 69.

Dead Message Queue Contains Messages

Open Message Queue 4.5 Administration Guide • February 2011308

Possible cause: An unexpected broker error has occurred.

To confirm this cause of the problem: Use the QBrowser demo application to inspect the contents of
the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value ERROR.
To resolve the problem:

■ Examine the broker log file to find the associated error.
■ Contact Oracle Technical Support to report the broker problem.

Possible cause: Consumers are not consuming messages before they time out.

To confirm this cause of the problem: Use the QBrowser demo application to inspect the contents of
the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value EXPIRED.
Check to see if there any consumers on the destination and the value for the Current Number
of Active Consumers. For example:
imqcmd query dst -t q -n MyDest

If there are active consumers, then there might be any number of possible reasons why messages
are timing out before being consumed. One is that the message timeout is too short for the
speed at which the consumer executes. In that case, request that application developers increase
message time-to-live values. Otherwise, investigate the following possible causes for messages
to time out before being consumed:

Possible cause: There are too many producers for the number of consumers.

To confirm this cause of the problem: Use the QBrowser demo application to inspect the contents of
the dead message queue (see “To Inspect the Dead Message Queue” on page 312).
Check whether the JMS_SUN_DMQ_UNDELIVERED_REASON property of messages in the queue has
the value REMOVE_OLDEST or REMOVE_LOW_PRIORITY. If so, use the imqcmd query dst command
to check the number of producers and consumers on the destination. If the number of
producers exceeds the number of consumers, the production rate might be overwhelming the
consumption rate.
To resolve the problem: Add more consumer clients or set the destination’s limit behavior to
FLOW_CONTROL (which uses consumption rate to control production rate), using a command
such as the following:
imqcmd update dst -n myDst -t q -o limitBehavior=FLOW_CONTROL

Dead Message Queue Contains Messages

Chapter 15 • Troubleshooting 309

Possible cause: Producers are faster than consumers.

To confirm this cause of the problem: To determine whether slow consumers are causing producers
to slow down, set the destination’s limit behavior to FLOW_CONTROL (which uses consumption
rate to control production rate), using a command such as the following:
imqcmd update dst -n myDst -t q -o limitBehavior=FLOW_CONTROL

Use metrics to examine the destination’s input and output, using a command such as the
following:
imqcmd metrics dst -n myDst -t q -m rts

In the metrics output, examine the following values:

■ Msgs/sec Out: Shows how many messages per second the broker is removing. The broker
removes messages when all consumers acknowledge receiving them, so the metric reflects
consumption rate.

■ Msgs/sec In: Shows how many messages per second the broker is receiving from
producers. The metric reflects production rate.

Because flow control aligns production to consumption, note whether production slows or
stops. If so, there is a discrepancy between the processing speeds of producers and consumers.
You can also check the number of unacknowledged (UnAcked) messages sent, by using the
imqcmd list dst command. If the number of unacknowledged messages is less than the size of
the destination, the destination has additional capacity and is being held back by client flow
control.
To resolve the problem: If production rate is consistently faster than consumption rate,
consider using flow control regularly, to keep the system aligned. In addition, consider and
attempt to resolve each of the following possible causes, which are subsequently described in
more detail:

■ A consumer is too slow.
■ Clients are not committing messages.
■ Consumers are failing to acknowledge messages.
■ Durable consumers are inactive.
■ An unexpected broker error has occurred.

Possible cause: A consumer is too slow.

To confirm this cause of the problem: Use imqcmd metrics to determine the rate of production and
consumption, as described above under “Producers are faster than consumers.”
To resolve the problem:

■ Set the destinations’ limit behavior to FLOW_CONTROL, using a command such as the
following:

imqcmd update dst -n myDst -t q -o limitBehaviort=FLOW_CONTROL

Dead Message Queue Contains Messages

Open Message Queue 4.5 Administration Guide • February 2011310

Use of flow control slows production to the rate of consumption and prevents the
accumulation of messages in the destination. Producer applications hold messages until the
destination can process them, with less risk of expiration.

■ Find out from application developers whether producers send messages at a steady rate or in
periodic bursts. If an application sends bursts of messages, increase destination limits as
described in the next item.

■ Increase destination limits based on number of messages or bytes, or both. To change the
number of messages on a destination, enter a command with the following format:
imqcmd update dst -n destName -t {q|t} -o maxNumMsgs=number
To change the size of a destination, enter a command with the following format:
imqcmd update dst -n destName -t {q|t} -o maxTotalMsgBytes=number
Be aware that raising limits increases the amount of memory that the broker uses. If limits
are too high, the broker could run out of memory and become unable to process messages.

■ Consider whether you can accept loss of messages during periods of high production load.

Possible cause: Clients are not committing transactions.

To confirm this cause of the problem: Check with application developers to find out whether the
application uses transactions. If so, list the active transactions as follows:
imqcmd list txn

Here is an example of the command output:

--

Transaction ID State User name # Msgs/# Acks Creation time

--

6800151593984248832 STARTED guest 3/2 7/19/04 11:03:08 AM

Note the numbers of messages and number of acknowledgments. If the number of messages is
high, producers may be sending individual messages but failing to commit transactions. Until
the broker receives a commit, it cannot route and deliver the messages for that transaction. If
the number of acknowledgments is high, consumers may be sending acknowledgments for
individual messages but failing to commit transactions. Until the broker receives a commit, it
cannot remove the acknowledgments for that transaction.
To resolve the problem: Contact application developers to fix the coding error.

Possible cause: Consumers are failing to acknowledge messages.

To confirm this cause of the problem: Contact application developers to determine whether the
application uses system-based acknowledgment (AUTO_ACKNOWLEDGE or DUPES_ONLY) or
client-based acknowledgment (CLIENT_ACKNOWLEDGE). If the application uses system-based
acknowledgment , skip this section; if it uses client-based acknowledgment), first decrease the
number of messages stored on the client, using a command like the following:
imqcmd update dst -n myDst -t q -o consumerFlowLimit=1

Dead Message Queue Contains Messages

Chapter 15 • Troubleshooting 311

Next, you will determine whether the broker is buffering messages because a consumer is slow,
or whether the consumer processes messages quickly but does not acknowledge them. List the
destination, using the following command:
imqcmd list dst

After you supply a user name and password, output like the following appears:

Listing all the destinations on the broker specified by:

Host Primary Port

localhost 7676

--

Name Type State Producers Consumers Msgs

Total Count UnAck Avg Size

-- -----------------------

MyDest Queue RUNNING 0 0 5 200 1177.0

mq.sys.dmq Queue RUNNING 0 0 35 0 1422.0

Successfully listed destinations.

The UnAck number represents messages that the broker has sent and for which it is waiting for
acknowledgment. If this number is high or increasing, you know that the broker is sending
messages, so it is not waiting for a slow consumer. You also know that the consumer is not
acknowledging the messages.
To resolve the problem: Contact application developers to fix the coding error.

Possible cause: Durable subscribers are inactive.

To confirm this cause of the problem: Look at the topic’s durable subscribers, using the following
command format:
imqcmd list dur -d topicName
To resolve the problem:

■ Purge the durable subscribers using the imqcmd purge dur command.
■ Restart the consumer applications.

▼ To Inspect the Dead Message Queue
A number of troubleshooting procedures involve an inspection of the dead message queue
(mq.sys.dmq). The following procedure explains how to carry out such an inspection by using
the QBrowser demo application.

Locate the QBrowser demo application.

See Appendix A, “Distribution-Specific Locations of Message Queue Data,” and look in the
tables for “Example Applications and Locations.”

1

Dead Message Queue Contains Messages

Open Message Queue 4.5 Administration Guide • February 2011312

Run the QBrowser application.

Here is an example invocation on the Windows platform:

cd \MessageQueue3\demo\applications\qbrowser java QBrowser

The QBrowser main window appears.

Select the queue name mq.sys.dmq and click Browse.

A list like the following appears:

2

3

Dead Message Queue Contains Messages

Chapter 15 • Troubleshooting 313

Double-click any message to display details about that message:
The display should resemble the following:

You can inspect the Message Properties pane to determine the reason why the message was
placed in the dead message queue.

4

Dead Message Queue Contains Messages

Open Message Queue 4.5 Administration Guide • February 2011314

Reference
■ Chapter 16, “Command Line Reference”
■ Chapter 17, “Broker Properties Reference”
■ Chapter 18, “Physical Destination Property Reference”
■ Chapter 19, “Administered Object Attribute Reference”
■ Chapter 20, “JMS Resource Adapter Property Reference”
■ Chapter 21, “Metrics Information Reference”
■ Chapter 22, “JES Monitoring Framework Reference”

P A R T I I I

315

316

Command Line Reference

This chapter provides reference information on the use of the Message Queue command line
administration utilities. It consists of the following sections:

■ “Command Line Syntax” on page 317
■ “Broker Utility” on page 318
■ “Command Utility” on page 322
■ “Object Manager Utility” on page 332
■ “Database Manager Utility” on page 334
■ “User Manager Utility” on page 336
■ “Bridge Manager Utility” on page 337
■ “Service Administrator Utility” on page 340
■ “Key Tool Utility” on page 341

Command Line Syntax
Message Queue command line utilities are shell commands. The name of the utility is a
command and its subcommands or options are arguments passed to that command. There is no
need for separate commands to start or quit the utility.

All the command line utilities share the following command syntax:

utilityName [subcommand] [commandArgument] [[-optionName [optionArgument]] ...]

where utilityName is one of the following:

■ imqbrokerd (Broker utility)
■ imqcmd (Command utility)
■ imqobjmgr (Object Manager utility)
■ imqdbmgr (Database Manager utility)
■ imqusermgr (User Manager utility)
■ imqbridgemgr (Bridge Manager utility)

16C H A P T E R 1 6

317

■ imqsvcadmin (Service Administrator utility)
■ imqkeytool (Key Tool utility)

Subcommands and command-level arguments, if any, must precede all options and their
arguments; the options themselves may appear in any order. All subcommands, command
arguments, options, and option arguments are separated with spaces. If the value of an option
argument contains a space, the entire value must be enclosed in quotation marks. (It is generally
safest to enclose any attribute-value pair in quotation marks.)

The following command, which starts the default broker, is an example of a command line with
no subcommand clause:

imqbrokerd

Here is a fuller example:

imqcmd destroy dst -t q -n myQueue -u admin -f -s

This command destroys a queue destination (destination type q) named myQueue.
Authentication is performed on the user name admin; the command will prompt for a
password. The command will be performed without prompting for confirmation (-f option)
and in silent mode, without displaying any output (-s option).

Broker Utility
The Broker utility (imqbrokerd) starts a broker. Command line options override values in the
broker configuration files, but only for the current broker session.

Table 16–1 shows the options to the imqbrokerd command and the configuration properties, if
any, overridden by each option.

TABLE 16–1 Broker Utility Options

Option Properties Overridden Description

-name instanceName imq.instancename Instance name of broker

Multiple broker instances running on the same
host must have different instance names.

Default value: imqbroker

-port portNumber imq.portmapper.port Port number for broker’s Port Mapper

Message Queue clients use this port number to
connect to the broker. Multiple broker instances
running on the same host must have different
Port Mapper port numbers.

Default value: 7676

Broker Utility

Open Message Queue 4.5 Administration Guide • February 2011318

TABLE 16–1 Broker Utility Options (Continued)
Option Properties Overridden Description

-cluster broker1 [[,broker2] …] imq.cluster.brokerlist Connect brokers into cluster1

The specified brokers are merged with the list in
the imq.cluster.brokerlist property. Each
broker argument has one of the forms

hostName:portNumber
hostName
:portNumber

If hostName is omitted, the default value is
localhost; if portNumber is omitted, the default
value is 7676.

Literal IP addresses as host names: You can use
a literal IPv4 or IPv6 address as a host name. If
you use a literal IPv6 address, its format must
conform to RFC2732, Format for Literal IPv6
Addresses in URL's.

-Dproperty=value Corresponding property in instance
configuration file

Set configuration property

See Chapter 17, “Broker Properties Reference,”
for information about broker configuration
properties.

Caution: Be careful to check the spelling and
formatting of properties set with this option.
Incorrect values will be ignored without
notification or warning.

-reset props None Reset configuration properties

Replaces the broker’s existing instance
configuration file config.properties with an
empty file; all properties assume their default
values.

1 Applies only to broker clusters

Broker Utility

Chapter 16 • Command Line Reference 319

http://www.ietf.org/rfc/rfc2732.txt

TABLE 16–1 Broker Utility Options (Continued)
Option Properties Overridden Description

-reset store None Reset persistent data store

Clears all persistent data from the data store
(including persistent messages, durable
subscriptions, and transaction information),
allowing you to start the broker instance with a
clean slate. To prevent the persistent store from
being reset on subsequent restarts, restart the
broker instance without the -reset option.

To clear only persistent messages or durable
subscriptions, use -reset messages or
-reset durables instead.

-reset messages None Clear persistent messages from data store

-reset durables None Clear durable subscriptions from data store

-reset takeover-then-exit None Clear any takeover locks and then exit.

If a broker fails before completing the takeover of
another broker's store, the failed broker retains a
takeover lock even though it is not running. Use
-reset takeover-then-exit to cause the failed
broker to initiate startup, release the takeover
lock, and then exit without actually starting up.

-backup fileName None Back up configuration change record to file1

See “Managing a Conventional Cluster's
Configuration Change Record” on page 188 for
more information.

-restore fileName None Restore configuration change record from
backup file1

The backup file must have been previously
created using the -backup option.

See “Managing a Conventional Cluster's
Configuration Change Record” on page 188 for
more information.

-remove instance None Remove broker instance2

Deletes the instance configuration file, log files,
persistent store, and other files and directories
associated with the instance.

-dbuser userName imq.persist.jdbc.user User name for JDBC-based persistent data store
1 Applies only to broker clusters
2 Requires user confirmation unless -force is also specified

Broker Utility

Open Message Queue 4.5 Administration Guide • February 2011320

TABLE 16–1 Broker Utility Options (Continued)
Option Properties Overridden Description

-passfile filePath imq.passfile.enabled

imq.passfile.dirpath

imq.passfile.name

Location of password file

Sets the broker’s imq.passfile.enabled
property to true, imq.passfile.dirpath to the
path containing the password file, and
imq.passfile.name to the file name itself.

See “Password Files” on page 170 for more
information.

-shared imq.jms.threadpool_model Use shared thread pool model to implement jms
connection service

Execution threads will be shared among
connections to increase the number of
connections supported.

Sets the broker’s imq.jms.threadpool_model
property to shared.

-javahome path None Location of alternative Java runtime

Default behavior: Use runtime installed on
system or bundled with Message Queue.

-vmargs arg1 [[arg2] …] None Pass arguments to Java virtual machine

Arguments are separated with spaces. To pass
more than one argument, or an argument
containing a space, enclose the argument list in
quotation marks.

VM arguments can be passed only from the
command line; there is no associated
configuration property in the instance
configuration file.

-startRmiRegistry imq.jmx.rmiregistry.start Start RMI registry at broker startup

-useRmiRegistry imq.jmx.rmiregistry.use Use external RMI registry

-rmiRegistryPort imq.jmx.rmiregistry.port Port number of RMI registry

-upgrade-store-nobackup None Automatically remove old data store on upgrade
to Message Queue 3.5 or 3.5 SPx from an
incompatible version2

2 Requires user confirmation unless -force is also specified

Broker Utility

Chapter 16 • Command Line Reference 321

TABLE 16–1 Broker Utility Options (Continued)
Option Properties Overridden Description

-force None Perform action without user confirmation

This option applies only to the
-remove instance and
-upgrade-store-nobackup options, which
normally require confirmation.

-loglevel level imq.broker.log.level Logging level:
NONE

ERROR

WARNING

INFO

Default value: INFO

-metrics interval imq.metrics.interval Logging interval for broker metrics, in seconds

-tty imq.log.console.output Log all messages to console

Sets the broker’s imq.log.console.output
property to ALL.

If not specified, only error and warning messages
will be logged.

-s | -silent imq.log.console.output Silent mode (no logging to console)

Sets the broker’s imq.log.console.output
property to NONE.

-version None Display version information3

-h | -help None Display usage help3

3 Any other options specified on the command line are ignored.

Command Utility
The Command utility (imqcmd) is used for managing brokers, connection services, connections,
physical destinations, durable subscriptions, and transactions.

All imqcmd commands must include a subcommand (except those using the -v or -h option to
display product version information or usage help, respectively). The possible subcommands
are listed in Table 16–2 and described in detail in the corresponding sections below. In addition,
each imqcmd subcommand supports the general options shown in “General Command Utility
Options” on page 324.

Command Utility

Open Message Queue 4.5 Administration Guide • February 2011322

Note – The -u userName option (and corresponding password) is required except when using
the -v or -h option. Also if a subcommand accepts a broker address (-b option) and no host
name or port number is specified, the values localhost and 7676 are assumed by default.

TABLE 16–2 Command Utility Subcommands

“Broker Management” on page 326

shutdown bkr Shut down broker

restart bkr Restart broker

pause bkr Pause broker

quiesce bkr Quiesce broker

unquiesce bkr Unquiesce broker

resume bkr Resume broker

takeover bkr Initiate broker takeover

update bkr Set broker properties

query bkr List broker property values

list bkr List brokers in cluster

metrics bkr Display broker metrics

reload cls Reload cluster configuration

changemaster cls Change the master broker in a conventional cluster with master broker

“Connection Service Management” on page 328

pause svc Pause connection service

resume svc Resume connection service

update svc Set connection service properties

list svc List connection services available on broker

query svc List connection service property values

metrics svc Display connection service metrics

“Connection Management” on page 329

list cxn List connections on broker

query cxn Display connection information

Command Utility

Chapter 16 • Command Line Reference 323

TABLE 16–2 Command Utility Subcommands (Continued)
destroy cxn Destroy connection

“Physical Destination Management” on page 329

create dst Create physical destination

destroy dst Destroy physical destination

pause dst Pause message delivery for physical destination

resume dst Resume message delivery for physical destination

purge dst Purge all messages from physical destination

compact dst Compact physical destination

update dst Set physical destination properties

list dst List physical destinations

query dst List physical destination property values

metrics dst Display physical destination metrics

“Durable Subscription Management” on page 331

destroy dur Destroy durable subscription

purge dur Purge all messages for durable subscription

list dur List durable subscriptions for topics

“Transaction Management” on page 332

commit txn Commit transaction

rollback txn Roll back transaction

list txn List transactions being tracked by broker

query txn Display transaction information

list dur List durable subscriptions for topic

“JMX Management” on page 332

list jmx List JMX service URLs of JMX connectors

General Command Utility Options
The additional options listed in Table 16–3 can be applied to any subcommand of the imqcmd
command.

Command Utility

Open Message Queue 4.5 Administration Guide • February 2011324

TABLE 16–3 General Command Utility Options

Option Description

-secure Use secure connection to broker with ssladmin connection service

-u userName User name for authentication

If this option is omitted, the Command utility will prompt for it interactively.

-passfile path Location of password file

See “Password Files” on page 170 for more information.

-D Set connection-related system property that affects how imqcomd creates a
connection to the broker. Not used to set broker configuration properties.

Usually overrides connection factory attributes for imqcmd client runtime. For
example, the option in the following command changes the default value of
imqSSLIsTrusted:

imqcmd list svc -secure -DimqSSLIsTrusted=true

-rtm timeoutInterval Initial timeout interval, in seconds

This is the initial length of time that the Command utility will wait for a reply
from the broker before retrying a request. Each subsequent retry will use a
timeout interval that is a multiple of this initial interval.

Default value: 10.

-rtr numRetries Number of retries to attempt after a broker request times out

Default value: 5.

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with Message
Queue.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1,2

-h Display usage help1,2

-H Display expanded usage help, including attribute list and examples1,2

1 Any other options specified on the command line are ignored.
2 User name and password not needed

Command Utility

Chapter 16 • Command Line Reference 325

Broker Management
The Command utility cannot be used to start a broker; use the Broker utility (imqbrokerd)
instead. Once the broker is started, you can use the imqcmd subcommands listed in Table 16–4
to manage and control it.

TABLE 16–4 Command Utility Subcommands for Broker Management

Syntax Description

shutdown bkr [-b hostName:portNumber]
[-time nSeconds]
[-nofailover]

Shut down broker

The -time option specifies the interval, in seconds, to wait
before shutting down the broker. (The broker will not block,
but will return immediately from the delayed shutdown
request.) During the shutdown interval, the broker will not
accept any new jms connections; admin connections will be
accepted, and existing jms connections will continue to
operate. A broker belonging to an enhanced cluster will not
attempt to take over for any other broker during the
shutdown interval.

The -nofailover option indicates that no other broker is to
take over the persistent data of the one being shut down. 1

restart bkr [-b hostName:portNumber] Restart broker

Shuts down the broker and then restarts it using the same
options specified when it was originally started.

pause bkr [-b hostName:portNumber] Pause broker

See “Pausing and Resuming a Broker” on page 91 for more
information.

quiesce bkr [-b hostName:portNumber] Quiesce broker

The broker will stop accepting new connections; existing
connections will continue to operate.

unquiesce bkr [-b hostName:portNumber] Unquiesce broker

The broker will resume accepting new connections,
returning to normal operation.

resume bkr [-b hostName:portNumber] Resume broker
1 Applies only to broker clusters

Command Utility

Open Message Queue 4.5 Administration Guide • February 2011326

TABLE 16–4 Command Utility Subcommands for Broker Management (Continued)
Syntax Description

takeover bkr -n brokerID
[-f]

Initiate broker takeover 1

Before taking over a broker, you should first shut it down
manually using the shutdown bkr subcommand with the
-nofailover option. If the specified broker appears to be
still running, takeover bkr will display a confirmation
message (Do you want to take over for this broker?).
The -f option suppresses this message and initiates the
takeover unconditionally.

Note – The takeover bkr subcommand is intended only for
use in failed-takeover situations. You should use it only as a
last resort, and not as a general way of forcibly taking over a
running broker.

update bkr [-b hostName:portNumber]
-o property1=value1
[[-o property2=value2] …]

Set broker properties

See Chapter 17, “Broker Properties Reference,” for
information on broker properties.

query bkr -b hostName:portNumber List broker property values

For brokers belonging to a cluster, also lists cluster
properties such as broker list, master broker (for
conventional clusters), and cluster identifier (for enhanced
clusters).

list bkr List brokers in cluster

metrics bkr [-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

Display broker metrics

The -m option specifies the type of metrics to display:
ttl: Messages and packets flowing into and out of the
broker
rts: Rate of flow of messages and packets into and out of
the broker per second
cxn: Connections, virtual memory heap, and threads

Default value: ttl.

The -int option specifies the interval, in seconds, at which
to display metrics. Default value: 5.

The -msp option specifies the number of samples to display.
Default value: Unlimited (infinite).

reload cls Reload cluster configuration1

Forces all persistent information to be brought up to date.
1 Applies only to broker clusters

Command Utility

Chapter 16 • Command Line Reference 327

TABLE 16–4 Command Utility Subcommands for Broker Management (Continued)
Syntax Description

changemaster cls

-o imq.cluster.masterbroker=newMaster
Change the master broker in a conventional cluster with
master broker.

This command must be run on the current master broker.

The value newMaster has the form hostName:portNumber,
where hostName and portNumber are is its Port Mapper host
name and port number, respectively.

Literal IP addresses as host names: You can use a literal
IPv4 or IPv6 address as a host name. If you use a literal IPv6
address, its format must conform to RFC2732, Format for
Literal IPv6 Addresses in URL's.

Connection Service Management
Table 16–5 lists the imqcmd subcommands for managing connection services.

TABLE 16–5 Command Utility Subcommands for Connection Service Management

Syntax Description

pause svc -n serviceName
[-b hostName:portNumber]

Pause connection service

The admin connection service cannot be paused.

resume svc -n serviceName
[-b hostName:portNumber]

Resume connection service

update svc -n serviceName
[-b hostName:portNumber]
-o property1=value1
[[-o property2=value2] …]

Set connection service properties

See “Connection Properties” on page 343 for information on
connection service properties.

list svc [-b hostName:portNumber] List connection services available on broker

query svc -n serviceName
[-b hostName:portNumber]

List connection service property values

Command Utility

Open Message Queue 4.5 Administration Guide • February 2011328

http://www.ietf.org/rfc/rfc2732.txt

TABLE 16–5 Command Utility Subcommands for Connection Service Management (Continued)
Syntax Description

metrics svc -n serviceName
[-b hostName:portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

Display connection service metrics

The -m option specifies the type of metrics to display:
ttl: Messages and packets flowing into and out of the
broker by way of the specified connection service

rts: Rate of flow of messages and packets into and out of
the broker per second by way of the specified
connection service

cxn: Connections, virtual memory heap, and threads

Default value: ttl.

The -int option specifies the interval, in seconds, at which
to display metrics. Default value: 5.

The -msp option specifies the number of samples to display.
Default value: Unlimited (infinite).

Connection Management
Table 16–6 lists the imqcmd subcommands for managing connections.

TABLE 16–6 Command Utility Subcommands for Connection Service Management

Syntax Description

list cxn [-svn serviceName]
[-b hostName:portNumber]

List connections on broker

Lists all connections on the broker to the specified
connection service. If no connection service is specified, all
connections are listed.

query cxn -n connectionID
[-b hostName:portNumber]

Display connection information

destroy cxn -n connectionID
[-b hostName:portNumber]

Destroy connection

Physical Destination Management
Table 16–7 lists the imqcmd subcommands for managing physical destinations. In all cases, the
-t (destination type) option can take either of two values:

q: Queue destination
t: Topic destination

Command Utility

Chapter 16 • Command Line Reference 329

TABLE 16–7 Command Utility Subcommands for Physical Destination Management

Syntax Description

create dst -t destType -n destName
[[-o property=value] …]

Create physical destination1

The destination name destName may contain only
alphanumeric characters (no spaces) and must begin with
an alphabetic character or the underscore (_) or dollar sign
($) character. It may not begin with the characters mq.

destroy dst -tdestType -n destName Destroy physical destination1

This operation cannot be applied to a system-created
destination, such as a dead message queue.

pause dst [-t destType -n destName]
[-pst pauseType]

Pause message delivery for physical destination

Pauses message delivery for the physical destination
specified by the -t and -n options. If these options are not
specified, all destinations are paused.

The -pst option specifies the type of message delivery to be
paused:

PRODUCERS: Pause delivery from message producers
CONSUMERS: Pause delivery to message consumers
ALL: Pause all message delivery

Default value: ALL

resume dst [-t destType -n destName] Resume message delivery for physical destination

Resumes message delivery for the physical destination
specified by the -t and -n options. If these options are not
specified, all destinations are resumed.

purge dst -t destType -n destName Purge all messages from physical destination

compact dst [-t destType -n destName] Compact physical destination

Compacts the file-based persistent data store for the physical
destination specified by the -t and -n options. If these
options are not specified, all destinations are compacted.

A destination must be paused before it can be compacted.

update dst -t destType -n destName
-o property1=value1
[[-o property2=value2] …]

Set physical destination properties

See Chapter 18, “Physical Destination Property Reference,”
for information on physical destination properties.

1 Cannot be performed in a broker cluster whose master broker is temporarily unavailable

Command Utility

Open Message Queue 4.5 Administration Guide • February 2011330

TABLE 16–7 Command Utility Subcommands for Physical Destination Management (Continued)
Syntax Description

list dst [-t destType]
[-tmp]

List physical destinations

Lists all physical destinations of the type specified by the -t
option. If no destination type is specified, both queue and
topic destinations are listed. If the -tmp option is specified,
temporary destinations are listed as well.

query dst -t destType -n destName List physical destination property values

metrics dst -t destType -n destName
[-m metricType]
[-int interval]
[-msp numSamples]

Display physical destination metrics

The -m option specifies the type of metrics to display:
ttl: Messages and packets flowing into and out of the
destination and residing in memory

rts: Rate of flow of messages and packets into and out of
the destination per second, along with other rate
information

con: Metrics related to message consumers

dsk: Disk usage

Default value: ttl.

The -int option specifies the interval, in seconds, at which
to display metrics. Default value: 5.

The -msp option specifies the number of samples to display.
Default value: Unlimited (infinite).

Durable Subscription Management
Table 16–8 lists the imqcmd subcommands for managing durable subscriptions.

TABLE 16–8 Command Utility Subcommands for Durable Subscription Management

Syntax Description

destroy dur -n subscriberName -c clientID Destroy durable subscription1

purge dur -n subscriberName -c clientID Purge all messages for durable subscription

list dur -[d topicName] List durable subscriptions for the specified topic. If -d
option is omitted then the command lists all durable
subscriptions for all topics.

1 Cannot be performed in a conventional broker cluster whose master broker is temporarily unavailable

Command Utility

Chapter 16 • Command Line Reference 331

Transaction Management
Table 16–9 lists the imqcmd subcommands for managing local (non-distributed) Message
Queue transactions. Distributed transactions are managed by a distributed transaction
manager rather than imqcmd.

TABLE 16–9 Command Utility Subcommands for Transaction Management

Syntax Description

commit txn -n transactionID Commit transaction

rollback txn -n transactionID Roll back transaction

list txn List transactions being tracked by broker

query txn -n transactionID Display transaction information

JMX Management
The imqcmd subcommand shown in Table 16–10 is used for administrative support of Java
applications using the Java Management Extensions (JMX) application programming interface
to configure and monitor Message Queue resources. See Appendix D, “JMX Support,” for
further information on the broker's JMX support.

TABLE 16–10 Command Utility Subcommand for JMX Management

Syntax Description

list jmx List JMX service URLs of JMX connectors

Object Manager Utility
The Object Manager utility (imqobjmgr) creates and manages Message Queue administered
objects. Table 16–11 lists the available subcommands.

TABLE 16–11 Object Manager Subcommands

Subcommand Description

add Add administered object to object store

delete Delete administered object from object store

list List administered objects in object store

query Display administered object information

Object Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011332

TABLE 16–11 Object Manager Subcommands (Continued)
Subcommand Description

update Modify administered object

Table 16–12 lists the options to the imqobjmgr command.

TABLE 16–12 Object Manager Options

Option Description

-l lookupName JNDI lookup name of administered object

-j attribute=value Attributes of JNDI object store (see “Object Stores” on page 199)

-t objectType Type of administered object:
q: Queue destination
t: Topic destination
cf: Connection factory
qf: Queue connection factory
tf: Topic connection factory
xcf: Connection factory for distributed transactions
xqf: Queue connection factory for distributed transactions
xtf: Topic connection factory for distributed transactions

-o attribute=value Attributes of administered object (see “Administered Object Attributes” on page 202
and Chapter 19, “Administered Object Attribute Reference”)

-r readOnlyState Is administered object read-only?

If true, client cannot modify object’s attributes.

Default value: false.

-i fileName Name of command file containing all or part of subcommand clause

-pre Preview results without performing command

This option is useful for checking the values of default attributes.

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with Message Queue.

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1

-h Display usage help1

1 Any other options specified on the command line are ignored.

Object Manager Utility

Chapter 16 • Command Line Reference 333

TABLE 16–12 Object Manager Options (Continued)
Option Description

-H Display expanded usage help, including attribute list and examples1

1 Any other options specified on the command line are ignored.

Database Manager Utility
The Database Manager utility (imqdbmgr) sets up the database schema for a JDBC-based data
store. You can also use it to delete Message Queue database tables that have become corrupted,
change the database, display information about the database, convert a standalone database for
use in an enhanced broker cluster, or back up and restore a highly-available database.
Table 16–13 lists the imqdbmgr subcommands.

TABLE 16–13 Database Manager Subcommands

Subcommand Description

create all Create new database and persistent data store schema

Used on embedded database systems. The broker property
imq.persist.jdbc.vendorName.createdburl must be specified.

create tbl Create persistent data store schema for existing database

Used on external database systems.

For brokers belonging to an enhanced broker cluster (imq.cluster.ha =
true), the schema created is for the cluster’s shared data store, in accordance
with the database vendor identified by the broker’s
imq.persist.jdbc.dbVendor property. If imq.cluster.ha = false, the
schema is for the individual broker’s standalone data store. Since the two
types of data store can coexist in the same database, they are distinguished by
appending a suffix to all table names:

C clusterID: Shared data store
S brokerID: Standalone data store

delete tbl Delete Message Queue database tables from current data store

delete oldtbl Delete Message Queue database tables from earlier-version data store

Used after the data store has been automatically migrated to the current
version of Message Queue.

recreate tbl Re-create persistent store schema

Deletes all existing Message Queue database tables from the current
persistent store and then re-creates the schema.

query Display information about the data store

Database Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011334

TABLE 16–13 Database Manager Subcommands (Continued)
Subcommand Description

upgrade hastore Upgrade standalone data store to shared data store

backup Back up JDBC-based data store to backup files

restore Restore JDBC-based data store from backup files

remove bkr Remove broker from shared data store

The broker must not be running.

remove jmsbridge Remove JMS bridge from the shared data store

The broker hosting the JMS bridge must not be running.

reset lck Reset data store lock

Resets the lock so that the database can be used by other processes.

Subcommands for a Cluster's Shared Configuration Change Table

create sharecc_tbl Create the database table for the shared cluster configuration change record

delete sharecc_tbl Delete the shared cluster configuration change record database table

recreate sharecc_tbl Re-create database table for the shared cluster configuration change record.

Deletes existing shared cluster configuration change database table and then
re-creates the table.

backup sharecc_tbl

-file filePath
Back up the shared cluster configuration change record database table to a
backup file

restore sharecc_tbl

-file filePath
Restore the shared cluster configuration change record database table from a
backup file. The table must already exist.

Table 16–14 lists the options to the imqdbmgr command.

TABLE 16–14 Database Manager Options

Option Description

-b instanceName Instance name of broker

-Dproperty=value Set broker configuration property

See “Persistence Properties” on page 352 for information about
persistence-related broker configuration properties.

Caution: Be careful to check the spelling and formatting of properties set
with this option. Incorrect values will be ignored without notification or
warning.

Database Manager Utility

Chapter 16 • Command Line Reference 335

TABLE 16–14 Database Manager Options (Continued)
Option Description

-u userName User name for authentication against the database

-passfile filePath Location of password file

See “Password Files” on page 170 for more information.

-n brokerID (Used with the remove bkr subcommand) Broker identifier of broker to be
removed from shared data store

-n bridgeName (Used with the remove jmsbridge subcommand) Bridge name of the JMS
bridge to be removed from shared data store

-dir dirPath Backup directory for backing up or restoring JDBC-based data store

-v Display version information1

-h Display usage help1

1 Any other options specified on the command line are ignored.

User Manager Utility
The User Manager utility (imqusermgr) is used for populating or editing a flat-file user
repository. The utility must be run on the same host where the broker is installed; if a
broker-specific user repository does not yet exist, you must first start up the corresponding
broker instance in order to create it. You will also need the appropriate permissions to write to
the repository: on the Solaris or Linux platforms, this means you must be either the root user or
the user who originally created the broker instance.

Table 16–15 lists the subcommands available with the imqusermgr command. In all cases, the
-i option specifies the instance name of the broker to whose user repository the command
applies; if not specified, the default name imqbroker is assumed.

TABLE 16–15 User Manager Subcommands

Syntax Description

add [-i instanceName]
-u userName -p password
[-g group]

Add user and password to repository

The optional -g option specifies a group to which to assign
this user:

admin

user

anonymous

delete [-i instanceName]
-u userName

Delete user from repository

User Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011336

TABLE 16–15 User Manager Subcommands (Continued)
Syntax Description

update [-i instanceName]
-u userName -p password

update [-i instanceName]
-u userName -a activeStatus

update [-i instanceName]
-u userName -p password
-a activeStatus

Set user’s password or active status (or both)

The -a option takes a boolean value specifying whether to
make the user active (true) or inactive (false). An inactive
status means that the user entry remains in the user
repository, but the user will not be authenticated, even if
using the correct password.

Default value: true.

list [-i instanceName]
[-u userName]

Display user information

If no user name is specified, all users in the repository are
listed.

In addition, the options listed in Table 16–16 can be applied to any subcommand of the
imqusermgr command.

TABLE 16–16 General User Manager Options

Option Description

-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information1

-h Display usage help1

1 Any other options specified on the command line are ignored.

Bridge Manager Utility
The Bridge Manager utility (imqbridgemgr) is used to manage the bridges configured for a
broker, including the links within bridge types that support links. The basic syntax of
imqbridgemgr is:

imqbridgemgr subcommand commandArgument [options]

imqbridgemgr -h | -help

imqbridgemgr -H | -Help

imqbridgemgr -v | -version

Table 16–17 lists the imqbridgemgr subcommands for general bridge management,
Table 16–18 lists the imqbridgemgr subcommands for link management, which are applicable
only to bridge types that support links, and Table 16–19 lists the imqbridgemgr options.

Bridge Manager Utility

Chapter 16 • Command Line Reference 337

TABLE 16–17 Bridge Manager Subcommands for Bridge Management

Subcommand Description

list bridge Lists the bridges specified by the command options provided. For each
bridge, the bridge name, type and state are displayed.

pause bridge Pauses the bridges specified by the command options provided if the bridge
type supports this subcommand.

Attempting to pause a bridge that is stopped generates an error, and
attempting to pause a bridge that is already paused has no effect.

resume bridge Resumes the bridges specified by the command options provided if the
bridge type supports this subcommand.

Attempting to resume a bridge that is stopped generates an error, and
attempting to resume a bridge that is already started has no effect.

start bridge Starts the bridges specified by the command options provided.

Attempting to start a bridge that is paused causes the bridge to resume, and
attempting to start a bridge that is already started has no effect.

stop bridge Stops the bridges specified by the command options provided.

Attempting to stop a bridge that is paused causes the bridge to stop, and
attempting to stop a bridge that is already stopped has no effect.

TABLE 16–18 Bridge Manager Subcommands for Link Management

Subcommand Description

list link Lists the links specified by the command options provided. For each link, the
link name, state, source, target, and transaction status are displayed.

pause link Pauses the link specified by the command options provided.

Attempting to pause a link that is stopped, in the process of stopping, or has
never been started generates an error. Attempting to pause a link that is
already paused or in the process of pausing has no effect.

resume link Resumes the link specified by the command options provided.

Attempting to resume a link that is stopped, in the process of stopping, or has
never been started generates an error. Attempting to resume a link that is
already started or in the process of starting has no effect.

start link Starts the link specified by the command options provided.

Attempting to start a link that is paused causes the link to resume.
Attempting to start a link that is in the process of pausing causes the link to
complete pausing and then to resume. Attempting to start a link that is
already started or in the process of starting has no effect.

Bridge Manager Utility

Open Message Queue 4.5 Administration Guide • February 2011338

TABLE 16–18 Bridge Manager Subcommands for Link Management (Continued)
Subcommand Description

stop link Stops the link specified by the command options provided.

Attempting to stop a link that has never been started generates an error.
Attempting to stop a link that is in the process of starting causes the link to
complete starting and then to stop. Attempting to stop a link that is paused
causes the link to stop. Attempting to stop a link that is in the process of
pausing causes the link to complete pausing and then to stop. Attempting to
stop a link that is already stopped or in the process of stopping has no effect.

Table 16–19 lists the options to the imqbridgemgr command.

TABLE 16–19 Bridge Manager Options

Option Description

-b hostName:portNumber The broker housing the bridge.

Literal IP addresses as host names: You can use a literal IPv4 or IPv6
address as a host name. If you use a literal IPv6 address, its format must
conform to RFC2732, Format for Literal IPv6 Addresses in URL's.

Default value: localhost:7676

-bn bridgeName The name of the bridge.

-f Perform the action without user confirmation

-javahome path Location of an alternative Java runtime.

Default behavior: Use the runtime installed with Message Queue.

-ln linkName The name of the link.

-passfile path Location of password file

-rtm timeoutInterval Initial timeout interval, in seconds

This is the initial length of time that the Command utility will wait for a reply
from the broker before retrying a request. Each subsequent retry will use a
timeout interval that is a multiple of this initial interval.

Default value: 10

-rtr numRetries Number of retries to attempt after a broker request times out

Default value: 5

-s Silent mode (no output displayed)

-secure Use secure connection to broker with ssladmin connection service

-t bridgeType The type of the bridge: JMS or STOMP

Bridge Manager Utility

Chapter 16 • Command Line Reference 339

http://www.ietf.org/rfc/rfc2732.txt

TABLE 16–19 Bridge Manager Options (Continued)
Option Description

-u userName User name for authentication

Service Administrator Utility
The Service Administrator utility (imqsvcadmin) installs a broker as a Windows service.
Table 16–20 lists the available subcommands.

TABLE 16–20 Service Administrator Subcommands

Subcommand Description

install Install service

remove Remove service

query Display startup options

Startup options can include whether the service is started manually or automatically, its
location, the location of the Java runtime, and the values of arguments passed to the
broker on startup (see Table 16–21).

Table 16–21 lists the options to the imqsvcadmin command.

TABLE 16–21 Service Administrator Options

Option Description

-javahome path Location of alternative Java runtime

Default behavior: Use runtime installed on system or bundled with Message
Queue.

-jrehome path Location of alternative Java Runtime Environment (JRE)

-vmargs arg1 [[arg2] …] Additional arguments to pass to Java Virtual Machine (JVM) running broker
service1

Example:

imqsvcadmin install -vmargs "-Xms16m -Xmx128m"1 These arguments can also be specified in the Start Parameters field under the General tab in the service’s Properties window (reached
by way of the Services tool in the Windows Administrative Tools control panel).

Service Administrator Utility

Open Message Queue 4.5 Administration Guide • February 2011340

TABLE 16–21 Service Administrator Options (Continued)
Option Description

-args arg1 [[arg2] …] Additional command line arguments to pass to broker service1

Example:

imqsvcadmin install -args "-passfile d:\\imqpassfile"

See “Broker Utility” on page 318 for information about broker command line
arguments.

-h Display usage help2

1 These arguments can also be specified in the Start Parameters field under the General tab in the service’s Properties window (reached
by way of the Services tool in the Windows Administrative Tools control panel).

2 Any other options specified on the command line are ignored.

Any information you specify using the -javahome, -vmargs, and -args options is stored in the
Windows registry under the keys JREHome, JVMArgs, and ServiceArgs in the path

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\iMQ_Broker\Parameters

Key Tool Utility
The Key Tool utility (imqkeytool) generates a self-signed certificate for the broker, which can
be used for the ssljms, ssladmin, or cluster connection service. The syntax is

imqkeytool -broker

On UNIX systems, you might need to run the utility from the root user account.

Key Tool Utility

Chapter 16 • Command Line Reference 341

342

Broker Properties Reference

This chapter provides reference information about configuration properties for a message
broker. It consists of the following sections:

■ “Connection Properties” on page 343
■ “Routing and Delivery Properties” on page 346
■ “Persistence Properties” on page 352
■ “Security Properties” on page 359
■ “Monitoring Properties” on page 365
■ “Cluster Configuration Properties” on page 370
■ “Bridge Properties” on page 375
■ “JMX Properties” on page 377
■ “Alphabetical List of Broker Properties” on page 379

Connection Properties
Table 17–1 lists the broker properties related to connection services.

17C H A P T E R 1 7

343

TABLE 17–1 Broker Connection Properties

Property Type Default Value Description

imq.brokerid String None Broker identifier

For brokers using a shared JDBC-based data store, this
string is appended to the names of all database tables to
identify each table with a particular broker.

Must be a unique alphanumeric string of no more than n −
13 characters, where n is the maximum table name length
allowed by the database.

This property is unnecessary for an embedded database or
a standalone database which stores data for only one
broker instance.

Note – For enhanced broker clusters (imq.cluster.ha =
true), database table names also use the
imq.cluster.clusterid property (see Table 17–13).

imq.service.activelist
1 String jms,admin List of connection services to be activated at broker

startup, separated by commas

See Table 6–1 under “Configuring Connection Services”
on page 95 for the names of the available connection
services.

imq.hostname String All available IP
addresses

Default host name or IP address for all connection
services

imq.portmapper.hostname String None Host name or IP address of Port Mapper

If specified, overrides imq.hostname. This might be
necessary, for instance, if the broker’s host computer has
more than one network interface card installed.

imq.portmapper.port
2 Integer 7676 Port number of Port Mapper

Note – If multiple broker instances are running on the
same host, each must be assigned a unique Port Mapper
port.

imq.serviceName.protocolType.hostname3 String None Host name or IP address for connection service

If specified, overrides imq.hostname for the designated
connection service. This might be necessary, for instance,
if the broker’s host computer has more than one network
interface card installed.

1 Must have the same value for all brokers in an enhanced cluster.
2 Can be used with imqcmd update bkr command
3
jms, ssljms, admin, and ssladmin services only; see Appendix C, “HTTP/HTTPS Support,” for information on configuring the httpjms and httpsjms services

Connection Properties

Open Message Queue 4.5 Administration Guide • February 2011344

TABLE 17–1 Broker Connection Properties (Continued)
Property Type Default Value Description

imq.serviceName.protocolType.port3 Integer 0 Port number for connection service

A value of 0 specifies that the port number should be
allocated dynamically by the Port Mapper. You might
need to set a different value, for instance, to specify a static
port number for connecting to the broker through a
firewall.

imq.portmapper.backlog Integer 50 Maximum number of pending Port Mapper requests in
operating system backlog

imq.serviceName.threadpool_model4 String dedicated Threading model for thread pool management:
dedicated: Two dedicated threads per connection,
one for incoming and one for outgoing messages

shared: Connections processed by shared thread
when sending or receiving messages

The dedicated model limits the number of connections
that can be supported, but provides higher performance;
the shared model increases the number of possible
connections, but at the cost of lower performance because
of the additional overhead needed for thread
management.

imq.serviceName.min_threads Integer jms: 10
ssljms: 10
httpjms: 10
httpsjms: 10
admin: 4
ssladmin: 4

Minimum number of threads maintained in connection
service’s thread pool

When the number of available threads exceeds this
threshold, threads will be shut down as they become free
until the minimum is reached.

The default value varies by connection service, as shown.

imq.serviceName.max_threads Integer jms: 1000
ssljms: 500
httpjms: 500
httpsjms : 500
admin: 10
ssladmin: 10

Number of threads beyond which no new threads are
added to the thread pool for use by the named connection
service

Must be greater than 0 and greater than the value of
imq.serviceName.min_threads.

The default value varies by connection service, as shown.
3
jms, ssljms, admin, and ssladmin services only; see Appendix C, “HTTP/HTTPS Support,” for information on configuring the httpjms and httpsjms services

4
jms and admin services only

Connection Properties

Chapter 17 • Broker Properties Reference 345

TABLE 17–1 Broker Connection Properties (Continued)
Property Type Default Value Description

imq.shared.connectionMonitor_limit
5 Integer Solaris: 512

Linux: 512
Windows: 64

Maximum number of connections monitored by a
distributor thread

The system allocates enough distributor threads to
monitor all connections. The smaller the value of this
property, the faster threads can be assigned to active
connections. A value of −1 denotes an unlimited number
of connections per thread.

The default value varies by operating-system platform, as
shown.

imq.ping.interval Integer 120 Interval, in seconds, at which to test connection between
client and broker

A value of 0 or −1 disables periodic testing of the
connection.

5 Shared threading model only

Routing and Delivery Properties
Table 17–2 lists the broker properties related to routing and delivery services. Properties that
configure the automatic creation of destinations are listed in Table 17–3. Properties that
configure the administrative creation of destinations are listed in Table 17–4.

TABLE 17–2 Broker Routing and Delivery Properties

Property Type Default Value Description

imq.system.max_count
1 Integer −1 Maximum number of messages held by broker

A value of −1 denotes an unlimited message count.

imq.system.max_size
1 String −1 Maximum total size of messages held by broker

The value may be expressed in bytes, kilobytes, or megabytes,
using the following suffixes:

b: Bytes
k: Kilobytes (1024 bytes)
m: Megabytes (1024 × 1024 = 1,048,576 bytes)

An unsuffixed value is expressed in bytes; a value of −1
denotes an unlimited message capacity.1 Can be used with imqcmd update bkr command

Routing and Delivery Properties

Open Message Queue 4.5 Administration Guide • February 2011346

TABLE 17–2 Broker Routing and Delivery Properties (Continued)
Property Type Default Value Description

Examples:
1600: 1600 bytes
1600b: 1600 bytes
16k: 16 kilobytes (= 16,384 bytes)
16m: 16 megabytes (= 16,777,216 bytes)
−1: No limit

imq.message.max_size
1 String 70m Maximum size of a single message body

The syntax is the same as for imq.system.max_size (see
above).

imq.message.expiration.interval Integer 60 Interval, in seconds, at which expired messages are reclaimed

imq.resourceState.threshold Integer green: 0
yellow: 80
orange: 90
red: 98

Percent utilization at which memory resource state is
triggered (where resourceState is green, yellow, orange, or
red)

imq.resourceState.count Integer green: 5000
yellow: 500
orange: 50
red: 0

Maximum number of incoming messages allowed in a batch
before checking whether memory resource state threshold
has been reached (where resourceState is green, yellow,
orange , or red)

This limit throttles back message producers as system
memory becomes increasingly scarce.

imq.destination.DMQ.truncateBody
1 Boolean false Remove message body before storing in dead message

queue?

If true, only the message header and property data will be
saved.

imq.transaction.autorollback Boolean false Automatically roll back distributed transactions left in
prepared state at broker startup?

If false, transactions must be manually committed or rolled
back using the Command utility (imqcmd).

imq.transaction.producer.maxNumMsgs Integer 1000 The maximum number of messages that a producer can
process in a single transaction. It is recommended that the
value be less than 5000 to prevent the exhausting of
resources.

imq.transaction.consumer.maxNumMsgs Integer 100 The maximum number of messages that a consumer can
process in a single transaction. It is recommended that the
value be less than 1000 to prevent the exhausting of
resources.

1 Can be used with imqcmd update bkr command

Routing and Delivery Properties

Chapter 17 • Broker Properties Reference 347

TABLE 17–3 Broker Properties for Auto-Created Destinations

Property Type Default Value Description

imq.autocreate.queue
1,2 Boolean true Allow auto-creation of queue destinations?

imq.autocreate.topic
3 Boolean true Allow auto-creation of topic destinations?

imq.autocreate.reaptime Integer 120 seconds The delay, in seconds. before which
auto-created destinations are removed from the
system when they no longer have consumers
nor contain messages, . A smaller value means
that memory reclamation takes place more
often.

imq.autocreate.destination.maxNumMsgs Integer 100000 Maximum number of unconsumed messages

A value of −1 denotes an unlimited number of
messages.

Note – When flow control is in effect
(imq.autocreate.destination.limitBehavior
= FLOW_CONTROL), it is possible for the specified
message limit to be exceeded because the broker
cannot react quickly enough to stop the flow of
incoming messages. In such cases, the value
specified for
imq.autocreate.destination.maxNumMsgs

serves as merely a hint for the broker rather than
a strictly enforced limit. However, if the number
of unconsumed messages would exceed
imq.system.max_count, the broker generates a
ResourceAllocationException indicating that
the destination is full and rejecting new
messages.

imq.autocreate.destination.maxBytesPerMsg String 10k Maximum size, in bytes, of any single message

The value may be expressed in bytes, kilobytes,
or megabytes, using the following suffixes:

b: Bytes
k: Kilobytes (1024 bytes)
m: Megabytes (1024 × 1024 = 1,048,576
bytes)

An unsuffixed value is expressed in bytes; a value
of −1 denotes an unlimited message size.

1 Can be used with imqcmd update bkr command
2 Queue destinations only
3 Topic destinations only

Routing and Delivery Properties

Open Message Queue 4.5 Administration Guide • February 2011348

TABLE 17–3 Broker Properties for Auto-Created Destinations (Continued)
Property Type Default Value Description

Examples:
1600: 1600 bytes
1600b: 1600 bytes
16k: 16 kilobytes (= 16,384 bytes)
16m: 16 megabytes (= 16,777,216 bytes)
−1: No limit

imq.autocreate.destination.maxTotalMsgBytes String 10m Maximum total memory, in bytes, for
unconsumed messages

The syntax is the same as for
imq.autocreate.destination.maxBytesPerMsg

(see above).

imq.autocreate.destination.limitBehavior String REJECT_NEWEST Broker behavior when memory-limit threshold
reached:

FLOW_CONTROL: Slow down producers

REMOVE_OLDEST: Throw out oldest messages

REMOVE_LOW_PRIORITY: Throw out
lowest-priority messages according to age;
no notification to producing client

REJECT_NEWEST: Reject newest messages;
notify producing client with an exception
only if message is persistent

When FLOW_CONTROL is specified, it is still
possible for the number of messages to exceed
imq.system.max_count. In this situation, the
broker generates a
ResourceAllocationException indicating that
the destination is full and rejecting new
messages.

If the value is REMOVE_OLDEST or
REMOVE_LOW_PRIORITY and the
imq.autocreate.destination.useDMQ

property is true, excess messages are moved to
the dead message queue.

imq.autocreate.destination.maxNumProducers Integer 100 Maximum number of message producers for
destination

When this limit is reached, no new producers
can be created. A value of −1 denotes an
unlimited number of producers.

Routing and Delivery Properties

Chapter 17 • Broker Properties Reference 349

TABLE 17–3 Broker Properties for Auto-Created Destinations (Continued)
Property Type Default Value Description

imq.autocreate.queue.maxNumActiveConsumers
2 Integer −1 Maximum number of active message consumers

in load-balanced delivery from queue
destination

A value of −1 denotes an unlimited number of
consumers.

imq.autocreate.queue.maxNumBackupConsumers
2 Integer 0 Maximum number of backup message

consumers in load-balanced delivery from
queue destination

A value of −1 denotes an unlimited number of
consumers.

imq.autocreate.queue.consumerFlowLimit
2 Integer 1000 Maximum number of messages delivered to

queue consumer in a single batch

In load-balanced queue delivery, this is the
initial number of queued messages routed to
active consumers before load balancing begins.
A destination consumer can override this limit
by specifying a lower value on a connection.

A value of −1 denotes an unlimited number of
messages.

imq.autocreate.topic.consumerFlowLimit
3 Integer 1000 Maximum number of messages delivered to

topic consumer in a single batch

A value of −1 denotes an unlimited number of
consumers.

Not used when the JMS resource adapter, jmsra,
is used to consume messages in a GlassFish
Server cluster.

imq.autocreate.topic.sharedConsumerFlowLimit
3 Integer 5 Maximum number of messages delivered to

topic consumer in a single batch when the JMS
resource adapter, jmsra, is used to consume
messages in a GlassFish Server cluster

A value of −1 denotes an unlimited number of
consumers.

2 Queue destinations only
3 Topic destinations only

Routing and Delivery Properties

Open Message Queue 4.5 Administration Guide • February 2011350

TABLE 17–3 Broker Properties for Auto-Created Destinations (Continued)
Property Type Default Value Description

imq.autocreate.destination.isLocalOnly Boolean false Local delivery only?

This property applies only to destinations in
broker clusters, and cannot be changed once the
destination has been created. If true, the
destination is not replicated on other brokers
and is limited to delivering messages only to
local consumers (those connected to the broker
on which the destination is created).

imq.autocreate.queue.localDeliveryPreferred
2 Boolean false Local delivery preferred?

This property applies only to load-balanced
queue delivery in broker clusters. If true,
messages will be delivered to remote consumers
only if there are no consumers on the local
broker; the destination must not be restricted to
local-only delivery
(imq.autocreate.destination.isLocalOnly
must be false).

imq.autocreate.destination.useDMQ Boolean true Send dead messages to dead message queue?

If false, dead messages will simply be
discarded.

validateXMLSchemaEnabled Boolean false XML schema validation is enabled?

If set to false or not set, then XML schema
validation is not enabled for the destination.

XMLSchemaURIList String null Space separated list of XML schema document
(XSD) URI strings

The URIs point to the location of one or more
XSDs to use for XML schema validation, if
enabled.

Use double quotes around this value if multiple
URIs are specified.

Example:

“http://foo/flap.xsd
http://test.com/test.xsd”

If this property is not set or null and XML
validation is enabled, XML validation is
performed using a DTD specified in the XML
document.

2 Queue destinations only

Routing and Delivery Properties

Chapter 17 • Broker Properties Reference 351

TABLE 17–3 Broker Properties for Auto-Created Destinations (Continued)
Property Type Default Value Description

reloadXMLSchemaOnFailure Boolean false Reload XML schema on failure enabled?

If set to false or not set, then the schema is not
reloaded if validation fails.

This table lists properties that apply to all administratively created destinations. They cannot be
configured on individual administratively created destinations.

TABLE 17–4 Broker Properties for Admin-Created Destinations

Property Type Default Value Description

imq.admincreate.topic.sharedConsumerFlowLimit Integer 5 Maximum number of messages delivered to
topic consumer in a single batch when the JMS
resource adapter, jmsra, is used to consume
messages in a GlassFish Server cluster

A value of −1 denotes an unlimited number of
consumers.

Persistence Properties
Message Queue supports both file-based and JDBC-based persistence modules. The broker
property imq.persist.store (Table 17–5) specifies which module to use. The following
sections describe the broker configuration properties for the two modules.

TABLE 17–5 Global Broker Persistence Property

Property Type Default Value Description

imq.persist.store String file Module used for persistent data storage:
file: File-based persistence
jdbc: JDBC-based persistence

Must be set to jdbc for enhanced broker clusters
(imq.cluster.ha = true).

File-Based Persistence Properties
Table 17–6 lists the broker properties related to file-based persistence.

Persistence Properties

Open Message Queue 4.5 Administration Guide • February 2011352

TABLE 17–6 Broker Properties for File-Based Persistence

Property Type
Default
Value Description

imq.persist.file.message.max_record_size String 1m Maximum-size message to add to message
storage file

Any message exceeding this size will be
stored in a separate file of its own.

The value may be expressed in bytes,
kilobytes, or megabytes, using the following
suffixes:

b: Bytes
k: Kilobytes (1024 bytes)
m: Megabytes (1024 × 1024 = 1,048,576
bytes)

An unsuffixed value is expressed in bytes.

Examples:
1600: 1600 bytes
1600b: 1600 bytes
16k: 16 kilobytes (= 16,384 bytes)
16m: 16 megabytes (= 16,777,216 bytes)

imq.persist.file.destination.message.filepool.limit Integer 100 Maximum number of free files available for
reuse in destination file pool

Free files in excess of this limit will be deleted.
The broker will create and delete additional
files in excess of the limit as needed.

The higher the limit, the faster the broker can
process persistent data.

imq.persist.file.message.filepool.cleanratio Integer 0 Percentage of files in free file pools to be
maintained in a clean (empty) state

The higher this value, the less disk space is
required for the file pool, but the more
overhead is needed to clean files during
operation.

imq.persist.file.message.cleanup Boolean false Clean up files in free file pools on shutdown?

Setting this property to true saves disk space
for the file store, but slows broker shutdown.

Persistence Properties

Chapter 17 • Broker Properties Reference 353

TABLE 17–6 Broker Properties for File-Based Persistence (Continued)

Property Type
Default
Value Description

imq.persist.file.sync.enabled Boolean false Synchronize in-memory state with physical
storage device?

Setting this property to true eliminates data
loss due to system crashes, but at a cost in
performance.

Note – If running Oracle Solaris Cluster and
its Data Service for Message Queue, set this
property to true for brokers on all cluster
nodes.

imq.persist.file.transaction.memorymappedfile.enabled Boolean true Use memory-mapped file to store
transaction data?

Setting this property to true improves
performance at the cost of increased memory
usage. Set to false for file systems that do
not support memory-mapped files.

File-Based Persistence Properties for Transaction
Logging
Table 17–7 lists the file-based persistence properties for the transaction logging mechanism.

TABLE 17–7 Broker Properties for File-Based Persistence Using the Transaction Logging Mechanism

Property Type
Default
Value Description

imq.persist.file.newTxnLog.enabled Boolean false Enables the transaction logging mechanism.
For information about this mechanism, see
“Optimizing File-Based Transaction
Persistence” on page 130.

Persistence Properties

Open Message Queue 4.5 Administration Guide • February 2011354

TABLE 17–7 Broker Properties for File-Based Persistence Using the Transaction Logging Mechanism (Continued)

Property Type
Default
Value Description

imq.persist.file.txnLog.groupCommit Boolean false This property is applicable only if
imq.persist.file.newTxnLog.enabled is
true.

Can improve performance if
imq.persist.file.sync.enabled is true
and the number of concurrent transactions
being processed is high:
■ If true, write operations to the

transaction log are not handled by
individual connection threads; instead,
writes from connection threads are
added to a transaction queue. The
connection threads then wait until they
are notified that the transactions have
been logged. A separate thread
periodically drains the transaction queue
and writes it to the transaction log. When
possible, this thread groups together
multiple active transactions and writes
them to the transaction log in a single
operation. After the write completes,
waiting client threads are notified.

■ If false, write operations to the
transaction log are handled by individual
connection threads. Only one thread at a
time is able to write to the log.

imq.persist.file.txnLog.logNonTransactedMsgSend Boolean false This property is applicable only if
imq.persist.file.newTxnLog.enabled is
true.

Overrides the behavior for persisting
non-transacted messages (as defined by the
imq.persist.file.sync.enabled

property):
■ If true, non-transacted messages are

written to the transaction log before they
are written to the persistent store.

■ If false, non-transacted messages are
written directly to the persistent store.

Persistence Properties

Chapter 17 • Broker Properties Reference 355

TABLE 17–7 Broker Properties for File-Based Persistence Using the Transaction Logging Mechanism (Continued)

Property Type
Default
Value Description

imq.persist.file.txnLog.logNonTransactedMsgAck Boolean false This property is applicable only if
imq.persist.file.newTxnLog.enabled is
true.

Overrides the behavior for persisting
non-transacted message acknowledgements
(as defined by the
imq.persist.file.sync.enabled

property):
■ If true, acknowledgements of

non-transacted messages are written to
the transaction log before they are
written to the persistent store.

■ If false, acknowledgements of
non-transacted messages are written
directly to the persistent store.

JDBC-Based Persistence Properties
Table 17–8 lists the broker properties related to JDBC-based persistence. The first of these
properties, imq.persist.jdbc.dbVendor, identifies the database vendor being used for the
broker’s persistent data store; all of the remaining properties are qualified by this vendor name.

TABLE 17–8 Broker Properties for JDBC-Based Persistence

Property Type
Default
Value Description

imq.persist.jdbc.dbVendor String None Name of database vendor for persistent data store:
derby: Java DB (Oracle Corporation)
oracle: Oracle (Oracle Corporation)
mysql: MySQL (Oracle Corporation)
postgresql: postgreSQL

imq.persist.jdbc.connection.reaptime Integer 300 The interval in seconds between attempts to close
unnecessary database connections.

imq.persist.jdbc.max_connections Integer 5 The maximum number of connections that should
be opened to the database. The Message Queue
database connection pool manager uses this value
as a guide when creating new connections to the
database.

Persistence Properties

Open Message Queue 4.5 Administration Guide • February 2011356

TABLE 17–8 Broker Properties for JDBC-Based Persistence (Continued)

Property Type
Default
Value Description

imq.persist.jdbc.min_connections Integer 5 The number of connections that are opened to the
database when the Message Queue database
connection pool is initialized, and the minimum
number of connections that are to be kept open
when unnecessary connections are closed.

imq.persist.jdbc.connection.timeoutIdle Boolean true Should the Message Queue database connection
pool manager considers the age of a connection in
the pool?

When true, the pool manager operates as follows:
■ When closing unnecessary database

connections at each
imq.persist.jdbc.connection.reaptime

interval, the pool manager destroys any
connections in the pool that have been idle for a
period longer than
imq.persist.jdbc.connection.reaptime

seconds, and attempts to replace them with new
connections.

■ When getting a connection from the pool, the
pool manager destroys the connection if it has
been idle for a period longer than
imq.persist.jdbc.connection.reaptime

seconds and replaces it with a new connection.

imq.persist.jdbc.connection.validateOnGet Boolean true for
brokers
in
enhanced
clusters;
otherwise,
false

Should the Message Queue database connection
pool manager perform extra validation when it gets
a connection from the pool?

Normally, the pool manager validates a connection
it gets from the pool by checking whether the
connection is closed and, if possible, by checking
whether a connection error has occurred on the
connection.

When this property is set to true, the pool manager
performs these additional validation checks:
■ For JDBC 4 connections, check whether the

connection is valid.

■ Make the validation query specified by
imq.persist.jdbc.connection.validationQuery

on the connection.

Persistence Properties

Chapter 17 • Broker Properties Reference 357

TABLE 17–8 Broker Properties for JDBC-Based Persistence (Continued)

Property Type
Default
Value Description

imq.persist.jdbc.connection.validationQuery String per
vendor

The validation query for the Message Queue
database connection pool manager to use when
imq.persist.jdbc.connection.validateOnGet

is set to true.

imq.persist.jdbc.connection.limit Integer 5 The maximum number of connections that can be
opened to the database.

This property is deprecated and may become
unsupported in a future release of Message Queue.

imq.persist.jdbc.vendorName.driver String per
vendor

Java class name of JDBC driver, if needed, for
connecting to database from vendor vendorName

imq.persist.jdbc.vendorName.opendburl String None URL for connecting to existing database from
vendor vendorName

Applicable when driver is used to connect to
database.

imq.persist.jdbc.vendorName.createdburl1 String None URL for creating new database from vendor
vendorName

Applies for embedded database, such as Java DB.

imq.persist.jdbc.vendorName.closedburl1 String None URL for closing connection to database from
vendor vendorName

Applies for some embedded databases, such as Java
DB.

imq.persist.jdbc.vendorName.user1 String None User name, if required, for connecting to database
from vendor vendorName

For security reasons, the value can instead be
specified using command line options
imqbrokerd -dbuser and imqdbmgr -u.

imq.persist.jdbc.vendorName.needpassword1 Boolean false Does database from vendor vendorName require a
password for broker access?

If true, the imqbrokerd and imqdbmgr commands
will prompt for a password, unless you use the
-passfile option to specify a password file
containing it.

imq.persist.jdbc.vendorName.password1,2 String None Password, if required, for connecting to database
from vendor vendorName

1 Optional
2 Should be used only in password files

Persistence Properties

Open Message Queue 4.5 Administration Guide • February 2011358

TABLE 17–8 Broker Properties for JDBC-Based Persistence (Continued)

Property Type
Default
Value Description

imq.persist.jdbc.vendorName.property.propName1 String None Vendor-specific property propName for database
from vendor vendorName

imq.persist.jdbc.vendorName.tableoption1 String None Vendor-specific options passed to the database
when creating the table schema.

1 Optional

Security Properties
Table 17–9 lists broker properties related to security services: authentication, authorization,
and encryption. Table 17–10 lists broker properties related specifically to LDAP-based
authentication, and Table 17–11 lists broker properties related specifically to JAAS-based
authentication.

TABLE 17–9 Broker Security Properties

Property Type Default Value Description

imq.authentication.basic.user_repository String file Type of user authentication:
file: File-based
ldap: Lightweight Directory
Access Protocol
jaas: Java Authentication and
Authorization Service

imq.authentication.type String digest Password encoding method:
digest: MD5 (for file-based
authentication)
basic: Base-64 (for LDAP or
JAAS authentication)

imq.serviceName.authentication.type String None Password encoding method for
connection service serviceName:

digest: MD5 (for file-based
authentication)
basic: Base-64 (for LDAP or
JAAS authentication)

If specified, overrides
imq.authentication.type for the
designated connection service.

Security Properties

Chapter 17 • Broker Properties Reference 359

TABLE 17–9 Broker Security Properties (Continued)
Property Type Default Value Description

imq.authentication.client.response.timeout Integer 180 Interval, in seconds, to wait for
client response to authentication
requests

imq.accesscontrol.enabled Boolean true Use access control?

If true, the system will check the
access control file to verify that an
authenticated user is authorized to
use a connection service or to
perform specific operations with
respect to specific destinations.

imq.accesscontrol.type String file Specifies the access control type

imq.serviceName.accesscontrol.enabled Boolean None Use access control for connection
service?

If specified, overrides
imq.accesscontrol.enabled for
the designated connection service.

If true, the system will check the
access control file to verify that an
authenticated user is authorized to
use the designated connection
service or to perform specific
operations with respect to specific
destinations.

imq.accesscontrol.file.filename String accesscontrol.properties Name of access control file

The file name specifies a path
relative to the access control
directory (see Appendix A,
“Distribution-Specific Locations of
Message Queue Data”).

Security Properties

Open Message Queue 4.5 Administration Guide • February 2011360

TABLE 17–9 Broker Security Properties (Continued)
Property Type Default Value Description

imq.serviceName.accesscontrol.file.filename String None Name of access control file for
connection service

If specified, overrides
imq.accesscontrol.file.filename

for the designated connection
service.

The file name specifies a path
relative to the access control
directory (see Appendix A,
“Distribution-Specific Locations of
Message Queue Data”).

imq.accesscontrol.file.url String Not set The location, as a URL, of the
access control file.

If the URL uses LDAP protocol
(ldap://), the access control file
must be returned as a single string
that uses dollar sign ($) as the
separator between the lines of the
access control file.

imq.serviceName.accesscontrol.file.url String None The location, as a URL, of the
access control file for the
connection service.

If specified, overrides
imq.accesscontrol.file.url for
the designated connection service.

If the URL uses LDAP protocol
(ldap://), the access control file
must be returned as a single string
that uses dollar sign ($) as the
separator between the lines of the
access control file.

imq.keystore.file.dirpath String See Appendix A,
“Distribution-Specific
Locations of Message Queue
Data”

Path to directory containing key
store file

imq.keystore.file.name String keystore Name of key store file

imq.keystore.password
1 String None Password for key store file

imq.passfile.enabled Boolean false Obtain passwords from password
file?

1 To be used only in password files

Security Properties

Chapter 17 • Broker Properties Reference 361

TABLE 17–9 Broker Security Properties (Continued)
Property Type Default Value Description

imq.passfile.dirpath String See Appendix A,
“Distribution-Specific
Locations of Message Queue
Data”

Path to directory containing
password file

imq.passfile.name String passfile Name of password file

imq.imqcmd.password
1 String None Password for administrative user

The Command utility (imqcmd)
uses this password to authenticate
the user before executing a
command.

imq.audit.enabled Boolean false Is audit logging to broker log file
enabled?

imq.audit.bsm.disabled Boolean true Is audit logging to the Solaris BSM
audit log disabled?

1 To be used only in password files

Table 17–10 lists broker properties related to LDAP-based user authentication.

TABLE 17–10 Broker Security Properties for LDAP Authentication

Property Type Default Value Description

imq.user_repository.ldap.server String None Host name and port number for
LDAP server

The value is of the form
hostName:port

where hostName is the fully
qualified DNS name of the host
running the LDAP server and port
is the port number used by the
server.

To specify a list of failover servers,
use the following syntax:

host1:port1
ldap://host2: port2
ldap://host3 :port3
…

Security Properties

Open Message Queue 4.5 Administration Guide • February 2011362

TABLE 17–10 Broker Security Properties for LDAP Authentication (Continued)
Property Type Default Value Description

Entries in the list are separated by
spaces. Note that each failover
server address is prefixed with
ldap://. Use this format even if
you use SSL and have set the
property
imq.user_repository.ldap.ssl.enabled

to true. You need not specify
ldaps in the address.

imq.user_repository.ldap.principal String None Distinguished name for binding to
LDAP user repository

Not needed if the LDAP server
allows anonymous searches.

imq.user_repository.ldap.password
1 String None Password for binding to LDAP

user repository

Not needed if the LDAP server
allows anonymous searches.

imq.user_repository.ldap.propertyName

imq.user_repository.ldap.base String None Directory base for LDAP user
entries

imq.user_repository.ldap.uidattr String None Provider-specific attribute
identifier for LDAP user name

imq.user_repository.ldap.usrformat String None When set to a value of dn, specifies
that DN username format is used
for authentication (for example:
uid=mquser,ou=People,dc=red,

dc=sun,dc=com).

Also, the broker extracts the value
of the
imq.user.repository.lpdap.uidatr

attribute from the DN username,
and uses this value as the user
name in access control operations.

If not set, then normal username
format is used.

imq.user_repository.ldap.usrfilter
2 String None JNDI filter for LDAP user searches

1 Should be used only in password files
2 Optional

Security Properties

Chapter 17 • Broker Properties Reference 363

TABLE 17–10 Broker Security Properties for LDAP Authentication (Continued)
Property Type Default Value Description

imq.user_repository.ldap.grpsearch Boolean false Enable LDAP group searches?

Note – Message Queue does not
support nested groups.

imq.user_repository.ldap.grpbase String None Directory base for LDAP group
entries

imq.user_repository.ldap.gidattr String None Provider-specific attribute
identifier for LDAP group name

imq.user_repository.ldap.memattr String None Provider-specific attribute
identifier for user names in LDAP
group

imq.user_repository.ldap.grpfilter
2 String None JNDI filter for LDAP group

searches

imq.user_repository.ldap.timeout Integer 280 Time limit for LDAP searches, in
seconds

imq.user_repository.ldap.ssl.enabled Boolean false Use SSL when communicating
with LDAP server?

2 Optional

Table 17–11 lists broker properties related to JAAS-based user authentication.

TABLE 17–11 Broker Security Properties for JAAS Authentication

Property Type Default Value Description

imq.user_repository.jaas.name String None Set to the name of the desired entry
(in the JAAS configuration file)
that references the login modules
you want to use as the
authentication service. This is the
name you noted in Step 3.

Security Properties

Open Message Queue 4.5 Administration Guide • February 2011364

TABLE 17–11 Broker Security Properties for JAAS Authentication (Continued)
Property Type Default Value Description

imq.user_repository.jaas.userPrincipalClass String None This property, used by Message
Queue access control, specifies the
java.security.Principal

implementation class in the login
module(s) that the broker uses to
extract the Principal name to
represent the user entity in the
Message Queue access control file.
If, it is not specified, the user name
passed from the Message Queue
client when a connection was
requested is used instead.

imq.user_repository.jaas.groupPrincipalClass String None This property, used by Message
Queue access control, specifies the
java.security.Principal

implementation class in the login
module(s) that the broker uses to
extract the Principal name to
represent the group entity in the
Message Queue access control file.
If, it is not specified, the user name
passed from the Message Queue
client when a connection was
requested is used instead.

Monitoring Properties
Table 17–12 lists the broker properties related to monitoring services.

Monitoring Properties

Chapter 17 • Broker Properties Reference 365

TABLE 17–12 Broker Monitoring Properties

Property Type Default Value Description

imq.log.level
1 String INFO Logging level

Specifies the categories of logging
information that can be written to an
output channel. Possible values, from
high to low:

ERROR

WARNING

INFO

Each level includes those above it (for
example, WARNING includes ERROR).

imq.destination.logDeadMsgs
1 Boolean false Log information about dead

messages?

If true, the following events will be
logged:
■ A destination is full, having

reached its maximum size or
message count.

■ The broker discards a message
for a reason other than an
administrative command or
delivery acknowledgment.

■ The broker moves a message to
the dead message queue.

imq.log.console.stream String ERR Destination for console output:
OUT: stdout
ERR: stderr

1 Can be used with imqcmd update bkr command

Monitoring Properties

Open Message Queue 4.5 Administration Guide • February 2011366

TABLE 17–12 Broker Monitoring Properties (Continued)
Property Type Default Value Description

imq.log.console.output String ERROR|WARNING Categories of logging information to
write to console:

NONE

ERROR

WARNING

INFO

ALL

The ERROR, WARNING, and INFO

categories do not include those above
them, so each must be specified
explicitly if desired. Any
combination of categories can be
specified, separated by vertical bars
(|).

imq.log.file.dirpath String See Appendix A,
“Distribution-Specific Locations of
Message Queue Data”

Path to directory containing log file

imq.log.file.filename String log.txt Name of log file

imq.log.file.output String ALL Categories of logging information to
write to log file:

NONE

ERROR

WARNING

INFO

ALL

The ERROR, WARNING, and INFO

categories do not include those above
them, so each must be specified
explicitly if desired. Any
combination of categories can be
specified, separated by vertical bars
(|).

imq.log.file.rolloverbytes
1 Integer −1 File length, in bytes, at which output

rolls over to a new log file

A value of −1 denotes an unlimited
number of bytes (no rollover based
on file length).

1 Can be used with imqcmd update bkr command

Monitoring Properties

Chapter 17 • Broker Properties Reference 367

TABLE 17–12 Broker Monitoring Properties (Continued)
Property Type Default Value Description

imq.log.file.rolloversecs
1 Integer 604800 (one week) Age of file, in seconds, at which

output rolls over to a new log file

A value of −1 denotes an unlimited
number of seconds (no rollover
based on file age).

imq.log.syslog.output
2 String ERROR Categories of logging information to

write to syslogd(1M):
NONE

ERROR

WARNING

INFO

ALL

The ERROR, WARNING, and INFO

categories do not include those above
them, so each must be specified
explicitly if desired. Any
combination of categories can be
specified, separated by vertical bars
(|).

imq.log.syslog.facility
2 String LOG_DAEMON syslog facility for logging messages

Possible values mirror those listed on
the syslog(3C) man page.
Appropriate values for use with
Message Queue include:

LOG_USER

LOG_DAEMON

LOG_LOCAL0

LOG_LOCAL1

LOG_LOCAL2

LOG_LOCAL3

LOG_LOCAL4

LOG_LOCAL5

LOG_LOCAL6

LOG_LOCAL7

imq.log.syslog.identity
2 String imqbrokerd_${imq.instanceName} Identity string to be prefixed to all

messages logged to syslog

imq.log.syslog.logpid
2 Boolean true Log broker process ID with message?

1 Can be used with imqcmd update bkr command
2 Solaris platform only

Monitoring Properties

Open Message Queue 4.5 Administration Guide • February 2011368

TABLE 17–12 Broker Monitoring Properties (Continued)
Property Type Default Value Description

imq.log.syslog.logconsole
2 Boolean false Write messages to system console if

they cannot be sent to syslog?

imq.log.timezone String Local time zone Time zone for log time stamps

Possible values are the same as those
used by the method
java.util.TimeZone.getTimeZone.

Examples:
GMT

GMT−8:00
America/LosAngeles

Europe/Rome

Asia/Tokyo

imq.metrics.enabled Boolean true Enable writing of metrics
information to Logger?

Does not affect the production of
metrics messages (controlled by
imq.metrics.topic.enabled).

imq.metrics.interval Integer −1 Time interval, in seconds, at which to
write metrics information to Logger

Does not affect the time interval for
production of metrics messages
(controlled by
imq.metrics.topic.interval).

A value of −1 denotes an indefinite
interval (never write metrics
information to Logger).

imq.metrics.topic.enabled Boolean true Enable production of metrics
messages to metric topic
destinations?

If false, an attempt to subscribe to a
metric topic destination will throw a
client-side exception.

imq.metrics.topic.interval Integer 60 Time interval, in seconds, at which to
produce metrics messages to metric
topic destinations

imq.metrics.topic.persist Boolean false Are metrics messages sent to metric
topic destinations persistent?

2 Solaris platform only

Monitoring Properties

Chapter 17 • Broker Properties Reference 369

TABLE 17–12 Broker Monitoring Properties (Continued)
Property Type Default Value Description

imq.metrics.topic.timetolive Integer 300 Lifetime, in seconds, of metrics
messages sent to metric topic
destinations

imq.primaryowner.name
3 String System property user.name

(user who started the broker)
Name of primary system owner

imq.primaryowner.contact
3 String System property user.name

(user who started the broker)
Contact information for primary
system owner

imq.broker.adminDefinedRoles.count
3 Integer None Number of defined roles

imq.broker.adminDefinedRoles.nameN3 String Broker instance name Name of defined role N (where N
ranges from 0 to .count-1)

Example:

...name0=Stocks JMS Server

...name1=JMS provider for appserver

3 Used by JES Monitoring Framework

Cluster Configuration Properties
Table 17–13 lists the configuration properties related to broker clusters.

TABLE 17–13 Broker Properties for Cluster Configuration

Property Type
Default
Value Description

imq.cluster.url
1,2 String None URL of cluster configuration file, if any

Examples:
http://webserver/imq/cluster.properties

(for a file on a Web server)
file:/net/mfsserver/imq/cluster.properties

(for a file on a shared drive)

imq.cluster.hostname
3 String None Host name or IP address for cluster connection service

If specified, overrides imq.hostname (see Table 17–1) for the
cluster connection service. This might be necessary, for
instance, if the broker’s host computer has more than one
interface card installed.

1 Must have the same value for all brokers in a cluster.
2 Can be used with the imqcmd update bkr command.
3 Can be specified independently for each broker in a cluster.

Cluster Configuration Properties

Open Message Queue 4.5 Administration Guide • February 2011370

TABLE 17–13 Broker Properties for Cluster Configuration (Continued)

Property Type
Default
Value Description

imq.cluster.port
3 Integer 0 Port number for cluster connection service

A value of 0 specifies that the port number should be allocated
dynamically by the Port Mapper. You might need to set a
different value, for instance, to specify a static port number for
connecting to the broker through a firewall.

imq.cluster.transport
1 String tcp Network transport protocol for cluster connection service

For secure, encrypted message delivery between brokers, set this
property to ssl.

imq.cluster.ha Boolean false Is broker part of an enhanced (high-availability) cluster?

Additional Properties for Conventional Clusters

imq.cluster.brokerlist
1,4 String None List of broker addresses belonging to cluster

The list consists of one or more addresses, separated by commas.
Each address specifies the host name and Port Mapper port
number of a broker in the cluster, in the form
hostName:portNumber.

Example:
host1:3000,host2:8000,ctrlhost

Literal IP addresses as host names: You can use a literal IPv4 or
IPv6 address as a host name. If you use a literal IPv6 address, its
format must conform to RFC2732, Format for Literal IPv6
Addresses in URL's.

Note – If set, this property is ignored (and a warning logged) for
high-availability clusters; all brokers configured to use the
cluster’s shared persistent store are automatically recognized as
members of the cluster.

imq.cluster.nomasterbroker
1,4 Boolean false Specifies whether a conventional cluster uses a JDBC database

store for the shared cluster configuration change record instead
of using a master broker.

Set to true for a conventional cluster of peer brokers, which uses
a shared JDBC store for the cluster's configuration change
record.

When set to true, the imq.cluster.clusterid must be set, and
the imq.cluster.sharecc.persist.jdbc.* properties must be
configured for accessing the shared JDBC store.

3 Can be specified independently for each broker in a cluster.
1 Must have the same value for all brokers in a cluster.
4 Conventional clusters only

Cluster Configuration Properties

Chapter 17 • Broker Properties Reference 371

http://www.ietf.org/rfc/rfc2732.txt

TABLE 17–13 Broker Properties for Cluster Configuration (Continued)

Property Type
Default
Value Description

imq.cluster.masterbroker
1,4 String None Host name and Port Mapper port number of host on which

cluster’s master broker (if any) is running.

The value has the form hostName:portNumber, where hostName
is the host name of the master broker’s host and portNumber is its
Port Mapper port number.

Example:
ctrlhost:7676

Literal IP addresses as host names: You can use a literal IPv4 or
IPv6 address as a host name. If you use a literal IPv6 address, its
format must conform to RFC2732, Format for Literal IPv6
Addresses in URL's.

Note – enhanced clusters cannot have a master broker. If this
property is set for a broker belonging to an enhanced cluster, the
broker will log a warning message and ignore the property.

imq.cluster.

dynamicChangeMasterBrokerEnabled
1,4

Boolean false Can the master broker for the cluster be changed dynamically;
that is, without stopping all the brokers in the cluster?

If set to true, you can use the imqcmd changemaster command
to change the master broker without stopping the brokers in the
cluster.

If set to true, the imq.cluster.masterbroker property cannot
be specified on the imqbrokerd command line.

imq.cluster.sharecc.persist.jdbc.

dbVendor
1,4

String None Name of database vendor for shared JDBC data store housing the
cluster configuration change record:

db2: DB2
derby: Java DB (Oracle Corporation)
oracle: Oracle (Oracle Corporation)
mysql: MySQL (Oracle Corporation)
postgresql: postgreSQL

imq.cluster.sharecc.persist.jdbc.

vendorName.driver1,4
String per

Vendor
Java class name of the JDBC driver, if needed, for connecting to
database from vendor vendorName for shared JDBC data store
housing the cluster configuration change record

imq.cluster.sharecc.persist.jdbc.

vendorName.opendburl1,4
String None URL for connecting to existing database from vendor

vendorName for shared JDBC data store housing the cluster
configuration change record

Applicable when driver is used to connect to database.
1 Must have the same value for all brokers in a cluster.
4 Conventional clusters only

Cluster Configuration Properties

Open Message Queue 4.5 Administration Guide • February 2011372

http://www.ietf.org/rfc/rfc2732.txt

TABLE 17–13 Broker Properties for Cluster Configuration (Continued)

Property Type
Default
Value Description

imq.cluster.sharecc.persist.jdbc.

vendorName.createdburl1,4
String None URL for creating new database from vendor vendorName for

shared JDBC data store housing the cluster configuration change
record

Applicable for embedded databases, such as Java DB.

imq.cluster.sharecc.persist.jdbc.

vendorName.closedburl1,4
String None URL for closing connection to database from vendor

vendorName for shared JDBC data store housing the cluster
configuration change record

Applicable for some embedded databases, such as Java DB.

imq.cluster.sharecc.persist.jdbc.

vendorName.tableoption1,4
String None,

except
for
MySQL

Vendor-specific options passed to database from vendor
vendorName for shared JDBC data store housing the cluster
configuration change record when creating the table schema

For information about this property's use, see the default broker
properties file, default.properties.

imq.cluster.sharecc.persist.jdbc.

vendorName.user1,4
String None User name, if required, for connecting to database from vendor

vendorName for shared JDBC data store housing the cluster
configuration change record

imq.cluster.sharecc.persist.jdbc.

vendorName.needpassword1,4
Boolean false Does database from vendor vendorName for shared JDBC data

store housing the cluster configuration change record require a
password for broker access?

If true, the imqbrokerd and imqdbmgr commands will prompt
for a password unless the following property, password is set.

imq.cluster.sharecc.persist.jdbc.

vendorName.password1,4
String None Password, if required, for connecting to database from vendor

vendorName for shared JDBC data store housing the cluster
configuration change record

This property should only be specified in a password file, as
described in “Password Files” on page 170.

imq.cluster.sharecc.persist.jdbc.

vendorName.property.propName1,4
String None Optional vendor-specific property propName forthe JDBC

driver from vendor vendorName for shared JDBC data store
housing the cluster configuration change record

Additional Properties for Enhanced (High-Availability) Clusters
1 Must have the same value for all brokers in a cluster.
4 Conventional clusters only

Cluster Configuration Properties

Chapter 17 • Broker Properties Reference 373

TABLE 17–13 Broker Properties for Cluster Configuration (Continued)

Property Type
Default
Value Description

imq.cluster.clusterid
1,5 String None Cluster identifier

Must be a unique alphanumeric string of no more than n–13
characters, where n is the maximum table name length allowed
by the database. No two running clusters may have the same
cluster identifier.

This string is appended to the names of all database tables in the
cluster’s shared persistent store.

Note – For brokers belonging to a high-availability cluster, this
property is used in database table names in place of
imq.brokerid (see Table 17–1).

imq.cluster.ha.takeoverWaitTimeout
5 Integer 300 Time in seconds a failed broker attempting to restart waits for an

existing takeover activity (from the broker's initial failure) to
complete before exiting its restart attempt

imq.cluster.heartbeat.hostname
5 String None Host name for heartbeat service

If specified, overrides imq.hostname (see Table 17–1) for the
heartbeat service.

imq.cluster.heartbeat.port
5 Integer 7676 Port number for heartbeat service

A value of 0 specifies that the port number should be allocated
dynamically by the Port Mapper.

imq.cluster.heartbeat.interval
5 Integer 2 Interval between heartbeats, in seconds

imq.cluster.heartbeat.threshold
5 Integer 3 Number of missed heartbeat intervals after which to invoke

monitor service

imq.cluster.monitor.interval
5 Integer 30 Interval, in seconds, at which to update monitor time stamp

Note – Larger values for this property will reduce the frequency of
database access and thus improve overall system performance,
but at the cost of slower detection and takeover in the event of
broker failure.

imq.cluster.monitor.threshold
5 Integer 2 Number of missed monitor intervals after which to initiate

broker takeover
1 Must have the same value for all brokers in a cluster.
5 Enhanced (high-availability) clusters only

Cluster Configuration Properties

Open Message Queue 4.5 Administration Guide • February 2011374

Bridge Properties
Table 17–14 lists broker properties related to the bridge service manager. Table 17–15 lists
broker properties related specifically to the JMS bridge service, and Table 17–16 lists broker
properties related specifically to the STOMP bridge service.

TABLE 17–14 Broker Properties for the Bridge Service Manager

Property Type
Default
Value Description

imq.bridge.enabled Boolean false Is the bridge service enabled on this broker?

imq.bridge.activelist String None List of bridges that will be loaded on broker startup.

The list consists of one or more bridge names, separated by
commas. All bridge names for a broker must be unique.

imq.bridge.admin.user String None The Message Queue broker administrative user to be used by the
bridge service manager and individual bridges to create ADMIN
connections to the broker. For JMS bridges, this user is also used
to access the JMS bridge's built-in DMQ destination.

imq.bridge.admin.password String None The password for the imq.bridge.admin.user user.

TABLE 17–15 Broker Properties for a JMS Bridge Service

Property Type
Default
Value Description

imq.bridge.name.type String None The bridge type of the bridge named name. For JMS bridges,
specify a value of JMS or jms.

imq.bridge.name.xmlurl String None The URL where the XML configuration file for the JMS bridge
name is stored.

Examples:
http://webserver/imq/jmsbridge1.config.xml

(for a file on a Web server)

file:/net/fileserver/imq/jmsbridge1.config.xml

(for a file on a shared drive)

imq.bridge.name.autostart Boolean true Should the JMS bridge name be automatically started when the
broker is started?

imq.bridge.name.logfile.limit Integer 0 The approximate maximum number of bytes the JMS bridge
name writes to any one log file.

A value of 0 (zero) indicates that there is no maximum limit.

Bridge Properties

Chapter 17 • Broker Properties Reference 375

TABLE 17–15 Broker Properties for a JMS Bridge Service (Continued)

Property Type
Default
Value Description

imq.bridge.name.logfile.count Integer 1 The number of log files the JMS bridge name cycles through.

imq.bridge.tm.props

imq.bridge.name.tm.props

String None Each of these properties specifies a list of key-value pairs for the
built-in transaction coordinator for the JMS bridge name.

The list consists of one or more key=value pairs separated by
commas.

When the imq.persist.store is file, the built-in transaction
coordinator supports these keys: txlogSize, txlogSync, and
txlogMmap.

If the same key appears in both properties, the value specified in
imq.bridge.name.tm.props takes precedence.

TABLE 17–16 Broker Properties for the STOMP Bridge Service

Property Type
Default
Value Description

imq.bridge.stomp.hostname String None Host name or IP address for the STOMP bridge service

If specified, overrides imq.hostname (see Table 17–1) for the
STOMP bridge service.

imq.bridge.stomp.tcp.enabled Boolean true Does the STOMP bridge accept TCP connections?

imq.bridge.stomp.tcp.port Integer 7672 The port on which the STOMP bridge listens for TCP
connections, provided that imq.bridge.stomp.tcp.enabled is
true.

imq.bridge.stomp.tls.enabled Boolean false Does the STOMP bridge accept SSL/TLS connections?

If true, a keystore must be created using the imqkeytool utility
before starting the broker.

imq.bridge.stomp.tls.port Integer 7673 The port on which the STOMP bridge listens for SSL/TLS
connections, provided that imq.bridge.stomp.tls.enabled is
true.

imq.bridge.stomp.tls.requireClientAuth Boolean false Do SSL/TLS connections require client authentication?

imq.bridge.stomp.consumerFlowLimit Integer 1000 The maximum number of unacknowledged messages that the
STOMP bridge will deliver on a transacted STOMP subscription.
The STOMP client must then acknowledge the messages and
commit the transaction.

imq.bridge.stomp.messageTransformer String None The fully qualified class name of a class that extends the Message
Queue bridge MessageTransformer abstract class by
implementing the transform() method. Place this class under
the IMQ_HOME/lib/ext. directory

Bridge Properties

Open Message Queue 4.5 Administration Guide • February 2011376

TABLE 17–16 Broker Properties for the STOMP Bridge Service (Continued)

Property Type
Default
Value Description

imq.bridge.stomp.logfile.limit Integer 0 The approximate maximum number of bytes the STOMP bridge
writes to any one log file.

A value of 0 (zero) indicates that there is no maximum limit.

imq.bridge.stomp.logfile.count Integer 1 The number of log files the STOMP bridge cycles through.

JMX Properties
The broker properties listed in Table 17–17 support the use of the Java Management Extensions
(JMX) application programming interface by Java applications. The JMX API is used to
configure and monitor broker resources.

These JMX-related properties can be set in the broker's instance configuration file
(config.properties) or at broker startup with the -D option of the Broker utility
(imqbrokerd). None of these properties can be set dynamically with the Command utility
(imqcmd).

In addition, some of these properties (imq.jmx.rmiregistry.start,
imq.jmx.rmiregistry.use, imq.jmx.rmiregistry.port) can be set with corresponding
Broker utilityimqbrokerd options described in Table 16–1.

See Appendix D, “JMX Support,” for further information on administrative support of JMX
clients.

TABLE 17–17 Broker Properties for JMX Support

Property Type Default Value Description

imq.jmx.connector.activelist String jmxrmi Names of JMX connectors to be activated at
broker startup, separated by commas

imq.jmx.connector.RMIconnectorName.urlpath String Shown in next
column

urlpath component of JMX service URL for
connector connectorName

Useful in cases where an RMI registry is being
used and the JMX service URL path must be set
explicitly (such as when a shared external RMI
registry is used). See “The JMX Service URL” on
page 462.

Default:

/jndi/rmi://brokerHost:rmiPort
/brokerHost/brokerPort/connectorName

JMX Properties

Chapter 17 • Broker Properties Reference 377

TABLE 17–17 Broker Properties for JMX Support (Continued)
Property Type Default Value Description

imq.jmx.connector.RMIconnectorName.port Integer None: the port is
dynamically
allocated

Port number of JMX connector

Used to specify a static/known JMX connector
port, typically in cases where a JMX client is
accessing the broker's MBean server through a
firewall. See “JMX Connections Through a
Firewall” on page 469.

imq.jmx.connector.RMIconnectorName.useSSL Boolean false Use Secure Socket Layer (SSL) for connector
connectorName?

This property is set to true for the ssljmxrmi
connector.

imq.jmx.connector.RMIconnectorName.brokerHostTrustedBoolean false Trust any certificate presented by broker for
connector connectorName?

Applies only when
imq.jmx.connector.connectorName.useSSL
is true.

If false, the JMX client runtime will validate all
certificates presented to it. Validation will fail if
the signer of the certificate is not in the client's
trust store.

If true, validation of certificates is skipped. This
can be useful, for instance, during software
testing when a self-signed certificate is used.

imq.jmx.rmiregistry.start Boolean false Start RMI registry at broker startup?

If true, the broker will start an RMI registry at
the port specified by
imq.jmx.rmiregistry.port and use the
regsitry to store the JMX connector stub. (The
value of imq.jmx.rmiregistry.use is ignored
in this case.)

For convenience, this property can also be set at
broker startup with the -startRmiRegistry
option ofimqbrokerd.

JMX Properties

Open Message Queue 4.5 Administration Guide • February 2011378

TABLE 17–17 Broker Properties for JMX Support (Continued)
Property Type Default Value Description

imq.jmx.rmiregistry.use Boolean false Use an existing RMI registry?

Applies only if imq.jmx.rmiregistry.start is
false.

If true, the broker will use an existing RMI
registry on the local host at the port specified by
imq.jmx.rmiregistry.port to store the JMX
connector stub. The existing RMI registry must
already be running at broker startup.

For convenience, this property can also be set at
broker startup with the -useRmiRegistry
option ofimqbrokerd.

imq.jmx.rmiregistry.port Integer 1099 Port number of RMI registry

Applies only if imq.jmx.rmiregistry.start is
true or imq.jmx.rmiregistry.use is true.

This port number will be included in the URL
path of the JMX service URL.

For convenience, this property can also be set at
broker startup with the -rmiRegistryPort
option of imqbrokerd.

Alphabetical List of Broker Properties
“Alphabetical List of Broker Properties” on page 379 is an alphabetical list of broker
configuration properties, with cross-references to the relevant tables in this chapter.

TABLE 17–18 Alphabetical List of Broker Properties

Property Table

imq.accesscontrol.enabled Table 17–9

imq.accesscontrol.type Table 17–9

imq.accesscontrol.file.filename Table 17–9

imq.admincreate.topic.sharedConsumerFlowLimit Table 17–4

imq.audit.bsm.disabled Table 17–9

imq.audit.enabled Table 17–9

imq.authentication.basic.user_repository Table 17–9

Alphabetical List of Broker Properties

Chapter 17 • Broker Properties Reference 379

TABLE 17–18 Alphabetical List of Broker Properties (Continued)
Property Table

imq.authentication.client.response.timeout Table 17–9

imq.authentication.type Table 17–9

imq.autocreate.destination.isLocalOnly Table 17–3

imq.autocreate.destination.limitBehavior Table 17–3

imq.autocreate.destination.maxBytesPerMsg Table 17–3

imq.autocreate.destination.maxNumMsgs Table 17–3

imq.autocreate.destination.maxNumProducers Table 17–3

imq.autocreate.destination.maxTotalMsgBytes Table 17–3

imq.autocreate.destination.useDMQ Table 17–3

imq.autocreate.queue Table 17–3

imq.autocreate.queue.consumerFlowLimit Table 17–3

imq.autocreate.queue.localDeliveryPreferred Table 17–3

imq.autocreate.queue.maxNumActiveConsumers Table 17–3

imq.autocreate.queue.maxNumBackupConsumers Table 17–3

imq.autocreate.reaptime Table 17–3

imq.autocreate.topic Table 17–3

imq.autocreate.topic.consumerFlowLimit Table 17–3

imq.autocreate.topic.sharedConsumerFlowLimit Table 17–3

imq.broker.adminDefinedRoles.count Table 17–12

imq.broker.adminDefinedRoles.namen Table 17–12

imq.brokerid Table 17–1

imq.bridge.activelist Table 17–14

imq.bridge.admin.password Table 17–14

imq.bridge.admin.user Table 17–14

imq.bridge.enabled Table 17–14

imq.bridge.name.autostart Table 17–15

imq.bridge.name.logfile.count Table 17–15

imq.bridge.name.logfile.limit Table 17–15

Alphabetical List of Broker Properties

Open Message Queue 4.5 Administration Guide • February 2011380

TABLE 17–18 Alphabetical List of Broker Properties (Continued)
Property Table

imq.bridge.name.tm.props Table 17–15

imq.bridge.name.type Table 17–15

imq.bridge.name.xmlurl Table 17–15

imq.bridge.stomp.consumerFlowLimit Table 17–16

imq.bridge.stomp.logfile.count Table 17–16

imq.bridge.stomp.logfile.limit Table 17–16

imq.bridge.stomp.messageTransformer Table 17–16

imq.bridge.stomp.tcp.enabled Table 17–16

imq.bridge.stomp.tcp.port Table 17–16

imq.bridge.stomp.tls.enabled Table 17–16

imq.bridge.stomp.tls.port Table 17–16

imq.bridge.stomp.tls.requireClientAuth Table 17–16

imq.bridge.tm.props Table 17–15

imq.cluster.brokerlist Table 17–13

imq.cluster.clusterid Table 17–13

imq.cluster.ha Table 17–13

imq.cluster.heartbeat.hostname Table 17–13

imq.cluster.heartbeat.interval Table 17–13

imq.cluster.heartbeat.port Table 17–13

imq.cluster.heartbeat.threshold Table 17–13

imq.cluster.hostname Table 17–13

imq.cluster.masterbroker Table 17–13

imq.cluster.monitor.interval Table 17–13

imq.cluster.monitor.threshold Table 17–13

imq.cluster.port Table 17–13

imq.cluster.transport Table 17–13

imq.cluster.url Table 17–13

imq.destination.DMQ.truncateBody Table 17–2

Alphabetical List of Broker Properties

Chapter 17 • Broker Properties Reference 381

TABLE 17–18 Alphabetical List of Broker Properties (Continued)
Property Table

imq.destination.logDeadMsgs Table 17–12

imq.hostname Table 17–1

imq.imqcmd.password Table 17–9

imq.jmx.connector.activelist Table 17–17

imq.jmx.connector.RMIconnectorName.brokerHostTrusted Table 17–17

imq.jmx.connector.RMIconnectorName.port Table 17–17

imq.jmx.connector.RMIconnectorName.urlpath Table 17–17

imq.jmx.connector.RMIconnectorName.useSSL Table 17–17

imq.jmx.rmiregistry.port Table 17–17

imq.jmx.rmiregistry.start Table 17–17

imq.jmx.rmiregistry.use Table 17–17

imq.keystore.file.dirpath Table 17–9

imq.keystore.file.name Table 17–9

imq.keystore.password Table 17–9

imq.keystore.propertyName Table 17–9

imq.log.console.output Table 17–12

imq.log.console.stream Table 17–12

imq.log.file.dirpath Table 17–12

imq.log.file.filename Table 17–12

imq.log.file.output Table 17–12

imq.log.file.rolloverbytes Table 17–12

imq.log.file.rolloversecs Table 17–12

imq.log.level Table 17–12

imq.log.syslog.facility Table 17–12

imq.log.syslog.identity Table 17–12

imq.log.syslog.logconsole Table 17–12

imq.log.syslog.logpid Table 17–12

imq.log.syslog.output Table 17–12

Alphabetical List of Broker Properties

Open Message Queue 4.5 Administration Guide • February 2011382

TABLE 17–18 Alphabetical List of Broker Properties (Continued)
Property Table

imq.log.timezone Table 17–12

imq.message.expiration.interval Table 17–2

imq.message.max_size Table 17–2

imq.metrics.enabled Table 17–12

imq.metrics.interval Table 17–12

imq.metrics.topic.enabled Table 17–12

imq.metrics.topic.interval Table 17–12

imq.metrics.topic.persist Table 17–12

imq.metrics.topic.timetolive Table 17–12

imq.passfile.dirpath Table 17–9

imq.passfile.enabled Table 17–9

imq.passfile.name Table 17–9

imq.persist.file.destination.message.filepool.limit Table 17–6

imq.persist.file.message.cleanup Table 17–6

imq.persist.file.message.filepool.cleanratio Table 17–6

imq.persist.file.message.max_record_size Table 17–6

imq.persist.file.sync.enabled Table 17–6

imq.persist.file.transaction.memorymappedfile.enabled Table 17–6

imq.persist.jdbc.dbVendor Table 17–8

imq.persist.jdbc.vendorName.closedburl Table 17–8

imq.persist.jdbc.vendorName.createdburl Table 17–8

imq.persist.jdbc.vendorName.driver Table 17–8

imq.persist.jdbc.vendorName.needpassword Table 17–8

imq.persist.jdbc.vendorName.opendburl Table 17–8

imq.persist.jdbc.vendorName.password Table 17–8

imq.persist.jdbc.vendorName.property.propName Table 17–8

imq.persist.jdbc.vendorName.user Table 17–8

imq.persist.store Table 17–5

Alphabetical List of Broker Properties

Chapter 17 • Broker Properties Reference 383

TABLE 17–18 Alphabetical List of Broker Properties (Continued)
Property Table

imq.ping.interval Table 17–1

imq.portmapper.backlog Table 17–1

imq.portmapper.hostname Table 17–1

imq.portmapper.port Table 17–1

imq.primaryowner.contact Table 17–12

imq.primaryowner.name Table 17–12

imq.resourceState.count Table 17–2

imq.resourceState.threshold Table 17–2

imq.service.activelist Table 17–1

imq.serviceName.accesscontrol.enabled Table 17–9

imq.serviceName.accesscontrol.file.filename Table 17–9

imq.serviceName.authentication.type Table 17–9

imq.serviceName.max_threads Table 17–1

imq.serviceName.min_threads Table 17–1

imq.serviceName.protocolType.hostname Table 17–1

imq.serviceName.protocolType.port Table 17–1

imq.serviceName.threadpool_model Table 17–1

imq.shared.connectionMonitor_limit Table 17–1

imq.system.max_count Table 17–2

imq.system.max_size Table 17–2

imq.transaction.autorollback Table 17–2

imq.user_repository.ldap.base Table 17–10

imq.user_repository.ldap.gidattr Table 17–10

imq.user_repository.ldap.grpbase Table 17–10

imq.user_repository.ldap.grpfilter Table 17–10

imq.user_repository.ldap.grpsearch Table 17–10

imq.user_repository.ldap.memattr Table 17–10

imq.user_repository.ldap.password Table 17–10

Alphabetical List of Broker Properties

Open Message Queue 4.5 Administration Guide • February 2011384

TABLE 17–18 Alphabetical List of Broker Properties (Continued)
Property Table

imq.user_repository.ldap.principal Table 17–10

imq.user_repository.ldap.propertyName Table 17–10

imq.user_repository.ldap.server Table 17–10

imq.user_repository.ldap.ssl.enabled Table 17–10

imq.user_repository.ldap.timeout Table 17–10

imq.user_repository.ldap.uidattr Table 17–10

imq.user_repository.ldap.usrfilter Table 17–10

imq.user_repository.jaas.name Table 17–11

imq.user_repository.jaas.userPrincipalClass Table 17–11

imq.user_repository.jaas.groupPrincipalClass Table 17–11

Alphabetical List of Broker Properties

Chapter 17 • Broker Properties Reference 385

386

Physical Destination Property Reference

This chapter provides reference information about configuration properties for physical
destinations.

Physical Destination Properties
Table 18–1 lists the configuration properties for physical destinations. These properties can be
set when creating or updating a physical destination. For auto-created destinations, you set
default values in the broker’s instance configuration file (see Table 17–3).

TABLE 18–1 Physical Destination Properties

Property Type Default Value Description

maxNumMsgs
1 Integer −1 Maximum number of unconsumed messages

A value of −1 denotes an unlimited number of messages.

For the dead message queue, the default value is 1000.

Note – When flow control is in effect (limitBehavior =
FLOW_CONTROL), it is possible for the specified message limit to
be exceeded because the broker cannot react quickly enough to
stop the flow of incoming messages. In such cases, the value
specified for maxNumMsgs serves as merely a hint for the broker
rather than a strictly enforced limit. However, if the number of
unconsumed messages would exceed imq.system.max_count,
the broker generates a ResourceAllocationException
indicating that the destination is full and rejecting new
messages.1 In a cluster environment, applies to each individual instance of a destination rather than collectively to all instances in the cluster

18C H A P T E R 1 8

387

TABLE 18–1 Physical Destination Properties (Continued)
Property Type Default Value Description

maxBytesPerMsg String −1 Maximum size, in bytes, of any single message

Rejection of a persistent message is reported to the producing
client with an exception; no notification is sent for
nonpersistent messages.

The value may be expressed in bytes, kilobytes, or megabytes,
using the following suffixes:

b: Bytes
k: Kilobytes (1024 bytes)
m: Megabytes (1024 × 1024 = 1,048,576 bytes)

An unsuffixed value is expressed in bytes; a value of −1 denotes
an unlimited message size.

Examples:
1600: 1600 bytes
1600b: 1600 bytes
16k: 16 kilobytes (= 16,384 bytes)
16m: 16 megabytes (= 16,777,216 bytes)
−1: No limit

maxTotalMsgBytes
1 String −1 Maximum total memory, in bytes, for unconsumed messages

The syntax is the same as for maxBytesPerMsg (see above).

For the dead message queue, the default value is 10m.

limitBehavior String REJECT_NEWEST Broker behavior when memory-limit threshold reached:
FLOW_CONTROL: Slow down producers

REMOVE_OLDEST: Throw out oldest messages

REMOVE_LOW_PRIORITY: Throw out lowest-priority
messages according to age; no notification to producing
client

REJECT_NEWEST: Reject newest messages; notify producing
client with an exception only if message is persistent

When FLOW_CONTROL is specified, it is still possible for the
number of messages to exceed imq.system.max_count. In this
situation, the broker generates a
ResourceAllocationException indicating that the destination
is full and rejecting new messages.

1 In a cluster environment, applies to each individual instance of a destination rather than collectively to all instances in the cluster

Physical Destination Properties

Open Message Queue 4.5 Administration Guide • February 2011388

TABLE 18–1 Physical Destination Properties (Continued)
Property Type Default Value Description

If the value is REMOVE_OLDEST or REMOVE_LOW_PRIORITY and the
useDMQ property is true, excess messages are moved to the dead
message queue. For the dead message queue itself, the default
limit behavior is REMOVE_OLDEST and cannot be set to
FLOW_CONTROL.

maxNumProducers
2 Integer 100 Maximum number of message producers for destination

When this limit is reached, no new producers can be created. A
value of −1 denotes an unlimited number of producers.

maxNumActiveConsumers
3 Integer -1 Maximum number of active message consumers in

load-balanced delivery from queue destination

A value of −1 denotes an unlimited number of consumers.

This property used mostly in cases where message order is
important and you want to provide backup consumers in case
the principal consumer of a queue fails. If message order is not
important, then you would simply use multiple consumers to
provide for scalability and availability.

maxNumBackupConsumers
3 Integer 0 Maximum number of backup message consumers in

load-balanced delivery from queue destination

A value of −1 denotes an unlimited number of consumers.

consumerFlowLimit Integer 1000 Maximum number of messages delivered to a consumer in a
single batch

In load-balanced queue delivery, this is the initial number of
queued messages routed to an active consumer before load
balancing begins.

The client runtime can override this limit by specifying a lower
value on the connection factory object.

A value of −1 denotes an unlimited number of messages.

Not used when the JMS resource adapter, jmsra, is used to
consume messages in a GlassFish Server cluster.

isLocalOnly
2 Boolean false Local delivery only?

This property applies only to destinations in broker clusters,
and cannot be changed once the destination has been created. If
true, the destination is not replicated on other brokers and is
limited to delivering messages only to local consumers (those
connected to the broker on which the destination is created).

2 Does not apply to dead message queue
3 Queue destinations only

Physical Destination Properties

Chapter 18 • Physical Destination Property Reference 389

TABLE 18–1 Physical Destination Properties (Continued)
Property Type Default Value Description

localDeliveryPreferred
2 ,3 Boolean false Local delivery preferred?

This property applies only to load-balanced queue delivery in
broker clusters. If true, messages will be delivered to remote
consumers only if there are no consumers on the local broker;
the destination must not be restricted to local-only delivery
(isLocalOnly must be false).

useDMQ
2 Boolean true Send dead messages to dead message queue?

If false, dead messages will simply be discarded.

validateXMLSchemaEnabled

4

Boolean false XML schema validation is enabled?

When XML validation is enabled, the Message Queue client
runtime will attempt to validate an XML message against the
specified XSDs (or against the DTD, if no XSD is specified)
before sending it to the broker. If the specified schema cannot be
located or the message cannot be validated, the message is not
sent, and an exception is thrown. Client applications using this
feature should use JRE 1.5 or above.

If set to false or not set, then XML schema validation is not
enabled for the destination.

XMLSchemaURIList
4 String null Space separated list of XML schema document (XSD) URI

strings

The URIs point to the location of one or more XSDs to use for
XML schema validation, if enabled.

Use double quotes around this value if multiple URIs are
specified.

Example:

“http://foo/flap.xsd http://test.com/test.xsd”

If this property is not set or null and XML validation is enabled,
XML validation is performed using a DTD specified in the XML
document.

if an XSD is changed, as a result of changing application
requirements, all client applications producing XML messages
based on the changed XSD must reconnect to the broker.

2 Does not apply to dead message queue
3 Queue destinations only
4 This property should be set when a destination is inactive: when it has no consumers or producers and when there are no messages in the destination. Otherwise

the producer must reconnect.

Physical Destination Properties

Open Message Queue 4.5 Administration Guide • February 2011390

TABLE 18–1 Physical Destination Properties (Continued)
Property Type Default Value Description

reloadXMLSchemaOnFailure
4 Boolean false Reload XML schema on failure enabled?

If set to true and XML validation fails, then the Message Queue
client runtime will attempt to reload the XSD before attempting
again to validate a message. The client runtime will throw an
exception if the validation fails using the reloaded SXD.

If set to false or not set, then the schema is not reloaded if
validation fails.

4 This property should be set when a destination is inactive: when it has no consumers or producers and when there are no messages in the destination. Otherwise
the producer must reconnect.

Physical Destination Properties

Chapter 18 • Physical Destination Property Reference 391

392

Administered Object Attribute Reference

This chapter provides reference information about the attributes of administered objects. It
consists of the following sections:

■ “Connection Factory Attributes” on page 393
■ “Destination Attributes” on page 401

Connection Factory Attributes
The attributes of a connection factory object are grouped into categories described in the
following sections below:

■ “Connection Handling” on page 393
■ “Client Identification” on page 397
■ “Reliability and Flow Control” on page 398
■ “Queue Browser and Server Sessions” on page 399
■ “Standard Message Properties” on page 400
■ “Message Header Overrides” on page 401

Connection Handling
Table 19–1 lists the connection factory attributes for connection handling.

19C H A P T E R 1 9

393

TABLE 19–1 Connection Factory Attributes for Connection Handling

Attribute Type Default Value Description

imqAddressList String An existing
Message Queue 3.0
address, if any; if
none, the first
entry in
Table 19–2

List of broker addresses

The list consists of one or more addresses, separated by
commas. Each address specifies (or implies) the host name, port
number, and connection service for a broker instance to which
the client can connect. Address syntax varies depending on the
connection service and port assignment method; see below for
details.

Literal IP addresses as host names: You can use a literal IPv4 or
IPv6 address as a host name. If you use a literal IPv6 address, its
format must conform to RFC2732, Format for Literal IPv6
Addresses in URL's.

Note – In an enhanced broker cluster, the value of this attribute is
updated dynamically as brokers enter and leave the cluster, so
that it always reflects the cluster’s current membership.

imqAddressListBehavior String PRIORITY Order in which to attempt connection to broker addresses:
PRIORITY: Order specified in address list
RANDOM: Random order

Note – If many clients share the same connection factory, specify
random connection order to prevent them from all attempting
to connect to the same address.

imqAddressListIterations Integer 1 Number of times to iterate through address list attempting to
establish or reestablish a connection

A value of −1 denotes an unlimited number of iterations.

Note – In the event of broker failure in an enhanced broker
cluster, this attribute is ignored and the Message Queue client
runtime iterates through the address list indefinitely until it
succeeds in reconnecting to a takeover broker. The effect is
equivalent to an imqAddressListIterations value of −1,
overriding any other explicit or default setting of this attribute.
The only way for a client application to avoid this behavior is to
close the connection explicitly on broker failure.

imqPingInterval Integer 30 Interval, in seconds, at which to test connection between client
and broker

A value of 0 or −1 disables periodic testing of the connection.

Connection Factory Attributes

Open Message Queue 4.5 Administration Guide • February 2011394

http://www.ietf.org/rfc/rfc2732.txt

TABLE 19–1 Connection Factory Attributes for Connection Handling (Continued)
Attribute Type Default Value Description

imqReconnectEnabled Boolean false Attempt to reestablish a lost connection?

Note – In the event of broker failure in an enhanced broker
cluster, this attribute is ignored and automatic reconnection is
always attempted. The effect is equivalent to an
imqReconnectEnabled value of true, overriding any other
explicit or default setting of this attribute. The only way for a
client application to avoid this behavior is to close the
connection explicitly on broker failure.

imqReconnectAttempts Integer 0 Number of times to attempt connection (or reconnection) to
each address in address list before moving on to next

A value of −1 denotes an unlimited number of connection
attempts: attempt repeatedly to connect to first address until
successful. For example, in an enhanced broker cluster, this
value will allow for connection to the failover broker.

imqReconnectInterval Long integer 3000 Interval, in milliseconds, between reconnection attempts

This value applies both for successive attempts on a given
address and for successive addresses in the list.

Note – Too small a value may give the broker insufficient
recovery time; too large a value may cause unacceptable
connection delays.

imqSSLIsHostTrusted Boolean false Trust any certificate presented by broker?

If false, the Message Queue client runtime will validate all
certificates presented to it. Validation will fail if the signer of the
certificate is not in the client's trust store.

If true, validation of certificates is skipped. This can be useful,
for instance, during software testing when a self-signed
certificate is used.

NOTE: To use signed certificates from a certification authority,
set this attribute to false.

The value of the imqAddressList attribute is a comma-separated string specifying one or more
broker addresses to which to connect. The general syntax for each address is as follows:

scheme://address

where scheme identifies one of the addressing schemes shown in the first column of Table 19–2
and address denotes the broker address itself. The exact syntax for specifying the address
depends on the addressing scheme, as shown in the last column of the table.

Connection Factory Attributes

Chapter 19 • Administered Object Attribute Reference 395

TABLE 19–2 Message Broker Addressing Schemes

Scheme Service Syntax Description

mq jms or
ssljms

[hostName][:portNumber][/serviceName] Assign port dynamically for jms or ssljms
connection service

The address list entry specifies the host name
and port number for the Message Queue Port
Mapper. The Port Mapper itself dynamically
assigns a port to be used for the connection.

Default values:
hostName = localhost

portNumber = 7676

serviceName = jms

For the ssljms connection service, all variables
must be specified explicitly.

Literal IP addresses as host names: You can
use a literal IPv4 or IPv6 address as a host name.
If you use a literal IPv6 address, its format must
conform to RFC2732, Format for Literal IPv6
Addresses in URL's.

mqtcp jms hostName:portNumber/jms Connect to specified port using jms connection
service

Bypasses the Port Mapper and makes a TCP
connection directly to the specified host name
and port number.

mqssl ssljms hostName:portNumber/ssljms Connect to specified port using ssljms
connection service

Bypasses the Port Mapper and makes a secure
SSL connection directly to the specified host
name and port number.

http httpjms http://hostName:portNumber/contextRoot/tunnel

If multiple broker instances use the same tunnel servlet,
the following syntax connects to a specific broker instance
rather than a randomly selected one:

http://hostName:portNumber/contextRoot/tunnel?
ServerName=hostName:instanceName

Connect to specified port using httpjms
connection service

Makes an HTTP connection to a Message
Queue tunnel servlet at the specified URL. The
broker must be configured to access the HTTP
tunnel servlet.

Connection Factory Attributes

Open Message Queue 4.5 Administration Guide • February 2011396

http://www.ietf.org/rfc/rfc2732.txt

TABLE 19–2 Message Broker Addressing Schemes (Continued)
Scheme Service Syntax Description

https httpsjms https://hostName:portNumber/contextRoot/tunnel

If multiple broker instances use the same tunnel servlet,
the following syntax connects to a specific broker instance
rather than a randomly selected one:

https://hostName:portNumber/contextRoot/tunnel?
ServerName=hostName:instanceName

Connect to specified port using httpsjms
connection service

Makes a secure HTTPS connection to a
Message Queue tunnel servlet at the specified
URL. The broker must be configured to access
the HTTPS tunnel servlet.

TABLE 19–3 Message Broker Address Examples

Service Broker Host Port Example Address

Not specified Not specified Not specified No address (mq://localHost:7676/jms)

Not specified Specified host Not specified myBkrHost (mq://myBkrHost:7676/jms)

Not specified Not specified Specified Port Mapper port 1012 (mq://localHost:1012/jms)

ssljms Local host Standard Port Mapper port mq://localHost:7676/ssljms

ssljms Specified host Standard Port Mapper port mq://myBkrHost:7676/ssljms

ssljms Specified host Specified Port Mapper port mq://myBkrHost:1012/ssljms

jms Local host Specified service port mqtcp://localhost:1032/jms

ssljms Specified host Specified service port mqssl://myBkrHost:1034/ssljms

httpjms Not applicable Not applicable http://websrvr1:8085/imq/tunnel

httpsjms Not applicable Not applicable https://websrvr2:8090/imq/tunnel

Client Identification
Table 19–4 lists the connection factory attributes for client identification.

TABLE 19–4 Connection Factory Attributes for Client Identification

Attribute Type Default Value Description

imqDefaultUsername String guest Default user name for authenticating with broker

imqDefaultPassword String guest Default password for authenticating with broker

imqConfiguredClientID String null Administratively configured client identifier

imqDisableSetClientID Boolean false Prevent client from changing client identifier using
setClientID method?

Connection Factory Attributes

Chapter 19 • Administered Object Attribute Reference 397

Reliability and Flow Control
Table 19–5 lists the connection factory attributes for reliability and flow control.

TABLE 19–5 Connection Factory Attributes for Reliability and Flow Control

Attribute Type Default Value Description

imqAckTimeout String 0 Maximum time, in milliseconds, to wait for broker
acknowledgment before throwing an exception

A value of 0 denotes no timeout (wait indefinitely).

Note – In some situations, too low a value can cause premature
timeout: for example, initial authentication of a user against an
LDAP user repository using a secure (SSL) connection can take
more than 30 seconds.

imqConnectionFlowCount Integer 100 Number of payload messages in a metered batch

Delivery of payload messages to the client is temporarily
suspended after this number of messages, allowing any
accumulated control messages to be delivered. Payload message
delivery is resumed on notification by the client runtime, and
continues until the count is again reached.

A value of 0 disables metering of message delivery and may
cause Message Queue control messages to be blocked by heavy
payload message traffic.

imqConnectionFlowLimitEnabled Boolean false Limit message flow at connection level?

imqConnectionFlowLimit Integer 1000 Maximum number of messages per connection to deliver and
buffer for consumption

Message delivery on a connection stops when the number of
unconsumed payload messages pending (subject to flow
metering governed by imqConnectionFlowCount) exceeds this
limit. Delivery resumes only when the number of pending
messages falls below the limit. This prevents the client from
being overwhelmed with pending messages that might cause it
to run out of memory.

This attribute is ignored if imqConnectionFlowLimitEnabled is
false.

Connection Factory Attributes

Open Message Queue 4.5 Administration Guide • February 2011398

TABLE 19–5 Connection Factory Attributes for Reliability and Flow Control (Continued)
Attribute Type Default Value Description

imqConsumerFlowLimitPrefetch Boolean true Is message prefetching and buffering as specified by
imqConsumerFlowLimit and imqConsumerFlowThreshold

enabled?

When set to false, message prefetching and buffering is
disabled, and each consumer is delivered one message at a time,
which can give rise to a number of performance issues.

This property should be set to false only when business logic
demands that each consumer have only one message at a time.

imqConsumerFlowLimit Integer 1000 Maximum number of messages per consumer to deliver and
buffer for consumption

Message delivery to a given consumer stops when the number of
unconsumed payload messages pending for that consumer
exceeds this limit. Delivery resumes only when the number of
pending messages for the consumer falls below the percentage
specified by imqConsumerFlowThreshold. This can be used to
improve load balancing among multiple consumers and prevent
any single consumer from starving others on the same
connection.

This limit can be overridden by a lower value set for a queue’s
own consumerFlowLimit attribute (see Chapter 18, “Physical
Destination Property Reference”). Note also that message
delivery to all consumers on a connection is subject to the
overall limit specified by imqConnectionFlowLimit.

imqConsumerFlowThreshold Integer 50 Number of messages per consumer buffered in the client
runtime, as a percentage of imqConsumerFlowLimit, below
which to resume message delivery

Queue Browser and Server Sessions
Table 19–6 lists the connection factory attributes for queue browsing and server sessions.

Connection Factory Attributes

Chapter 19 • Administered Object Attribute Reference 399

TABLE 19–6 Connection Factory Attributes for Queue Browser and Server Sessions

Attribute Type
Default
Value Description

imqQueueBrowserMaxMessagesPerRetrieve Integer 1000 Maximum number of messages to retrieve at one time
when browsing contents of a queue destination

Note – This attribute does not affect the total number of
messages browsed, only the way they are chunked for
delivery to the client runtime (fewer but larger chunks or
more but smaller ones). The client application will always
receive all messages in the queue. Changing the attribute's
value may affect performance, but will not affect the total
amount of data retrieved.

imqQueueBrowserRetrieveTimeout Long integer 60000 Maximum time, in milliseconds, to wait to retrieve
messages, when browsing contents of a queue destination,
before throwing an exception

imqLoadMaxToServerSession Boolean true Load up to maximum number of messages into a server
session?

If false, the client will load only a single message at a
time.

This attribute applies only to JMS application server
facilities.

Standard Message Properties
The connection factory attributes listed in Table 19–7 control whether the Message Queue
client runtime sets certain standard message properties defined in the Java Message Service
Specification.

TABLE 19–7 Connection Factory Attributes for Standard Message Properties

Property Type Default Value Description

imqSetJMSXUserID Boolean false Set JMSXUserID property (identity of user sending message) for
produced messages?

imqSetJMSXAppID Boolean false Set JMSXAppID property (identity of application sending
message) for produced messages?

imqSetJMSXProducerTXID Boolean false Set JMSXProducerTXID property (transaction identifier of
transaction within which message was produced) for produced
messages?

Connection Factory Attributes

Open Message Queue 4.5 Administration Guide • February 2011400

TABLE 19–7 Connection Factory Attributes for Standard Message Properties (Continued)
Property Type Default Value Description

imqSetJMSXConsumerTXID Boolean false Set JMSXConsumerTXID property (transaction identifier of
transaction within which message was consumed) for
consumed messages?

imqSetJMSXRcvTimestamp Boolean false Set JMSXRcvTimestamp property (time message delivered to
consumer) for consumed messages?

Message Header Overrides
Table 19–8 lists the connection factory attributes for overriding JMS message header fields.

TABLE 19–8 Connection Factory Attributes for Message Header Overrides

Attribute Type Default Value Description

imqOverrideJMSDeliveryMode Boolean false Allow client-set delivery mode to be
overridden?

imqJMSDeliveryMode Integer 2 Overriding value of delivery mode:

1 Nonpersistent

2 Persistent

imqOverrideJMSExpiration Boolean false Allow client-set expiration time to be
overridden?

imqJMSExpiration Long integer 0 Overriding value of expiration time, in
milliseconds

A value of 0 denotes an unlimited expiration
time (message never expires).

imqOverrideJMSPriority Boolean false Allow client-set priority level to be overridden?

imqJMSPriority Integer 4 (normal) Overriding value of priority level (0 to 9)

imqOverrideJMSHeadersToTemporaryDestinations Boolean false Apply overrides to temporary destinations?

Destination Attributes
Table 19–9 lists the attributes that can be set for a destination administered object.

Destination Attributes

Chapter 19 • Administered Object Attribute Reference 401

TABLE 19–9 Destination Attributes

Attribute Type Default Value Description

imqDestinationName String Untitled_Destination_Object Name of physical destination

The destination name may contain only
alphanumeric characters (no spaces) and must
begin with an alphabetic character or the
underscore (_) or dollar sign ($) character. It may
not begin with the characters mq.

imqDestinationDescription String None Descriptive string for destination

Destination Attributes

Open Message Queue 4.5 Administration Guide • February 2011402

JMS Resource Adapter Property Reference

This chapter describes the configuration properties of the Message Queue JMS Resource
Adapter (JMS RA), which enables you to integrate Open Message Queue with any J2EE 1.4
application server by means of the standard J2EE connector architecture (JCA). When plugged
into an application server, the Resource Adapter allows applications deployed in that
application server to use Message Queue to send and receive JMS messages.

The Message Queue JMS Resource Adapter exposes its configuration properties through three
JavaBean components:

■ The ResourceAdapter JavaBean (“ResourceAdapter JavaBean” on page 405) affects the
behavior of the Resource Adapter as a whole.

■ The ManagedConnectionFactory JavaBean (“ManagedConnectionFactory JavaBean” on
page 408) affects connections created by the Resource Adapter for use by message-driven
beans (MDBs).

■ The ActivationSpec JavaBean (“ActivationSpec JavaBean” on page 410) affects message
endpoints that represent MDBs in their interactions with the messaging system.

To set property values for these entities, you use the tools provided by your application server
for configuration and deployment of the Resource Adapter and for deployment of MDBs.

This chapter lists and describes the configuration properties of the Message Queue JMS
Resource Adapter. It contains the following sections:

■ “About Shared Topic Subscriptions for Clustered Containers” on page 404
■ “ResourceAdapter JavaBean” on page 405
■ “ManagedConnectionFactory JavaBean” on page 408
■ “ActivationSpec JavaBean” on page 410

20C H A P T E R 2 0

403

About Shared Topic Subscriptions for Clustered Containers
The Message Queue JMS Resource Adapter provides a special feature called shared
subscriptions for containers that support clustering, such as GlassFish Server. This feature
enables clustered containers to share the load of processing messages for topic subscriptions
across the instances of a cluster.

When this feature is enabled, the following behaviors apply:

■ Attempts by multiple connections to use the same client id do not result in an exception,
provided that the connections are from different instances in the cluster.

■ Two or more subscriptions on the same topic with the same client id and (if the subscription
is durable) the same durable subscription name are considered "shared"; that is, they are
treated as a single subscription, with each message being sent to only one of the participating
subscriptions.

The sharing of subscriptions relies on client id being set, not only for durable subscriptions
(which always require client id) but for non-durable subscriptions (which do not normally
require client id). If the subscription is being created by the resource adapter for use by a
message-driven bean (MDB), and client id is not set, then the resource adapter will set the client
id to the name of the MDB. However if the subscription is being created programmatically
using the JMS API, and client id is not set, then an exception will be thrown.

Note that, in the EJB or web container, applications that create a connection using a connection
factory are not permitted to set client id on the newly created connection, but must set it on the
connection factory instead. This restriction is imposed by the EJB specification, though it
applies to web components as well. There is no such restrictions in the application client
container.

Disabling Shared Subscriptions
By default, the shared subscriptions feature is enabled. In some applications that use
non-durable subscriptions, however, the shared behavior is not desired. In such cases, disable
the shared subscriptions feature by setting the
useSharedSubscriptionInClusteredContainer property to false on either the
ActivationSpec or ManagedConnectionFactory, as appropriate:

■ For an MDB, set the ActivationSpec property to false. Do this in exactly the same way as
with other ActivationSpec properties, using annotations in the MDB itself or in the
deployment descriptor ejb-jar.xml or glassfish-ejb-jar.xml. Alternatively, if the
glassfish-ejb-jar.xml deployment descriptor specifies a connection factory using the
<mdb-connection-factory> element, then the property can be configured on the
connection factory instead, as described in the next item.

About Shared Topic Subscriptions for Clustered Containers

Open Message Queue 4.5 Administration Guide • February 2011404

■ For GlassFish applications creating a non-durable subscription using the JMS API rather
than using an MDB, set the connection factory property
useSharedSubscriptionInClusteredContainer to false using the GlassFish
Administration Console, the GlassFish asadmin command or the resource descriptor
glassfish-resources.xml.

Only set useSharedSubscriptionInClusteredContainer to false for non-durable
subscriptions.

Consumer Flow Control When Shared Subscriptions
Are Used
When shared subscriptions are being used, then consumer flow control operates slightly
differently than is described in “Client Runtime Message Flow Adjustments” on page 286.

With a normal topic subscription, the maximum number of messages that can be held pending
for any single subscriber, waiting to be consumed, is defined by the broker property
imq.autocreate.topic.consumerFlowLimit for auto-created topics, or the destination
property consumerFlowLimit for administratively-created topics. Both properties have a
default value of 1000. This can be overridden on a per-connection basis by setting the
connection factory property imqConsumerFlowLimit to a lower value than that defined for the
topic.

When the subscription is shared, however, different logic applies. In this case, the limit is
defined by the broker property imq.autocreate.topic.sharedConsumerFlowLimit for
auto-created topics or the broker property
imq.admincreate.topic.sharedConsumerFlowLimit for all administratively-created topics. It
is not possible to set this limit on individual administratively-created topics. Both properties
have a default value of 5. This can be overridden on a per-connection basis by setting the
connection factory property imqConsumerFlowLimit to a lower value than that defined for the
topic. Note that, as with all connection factory properties, this is specified using the options
property of the managed connection factory.

ResourceAdapter JavaBean
The ResourceAdapter configuration configures the default JMS Resource Adapter behavior.
Table 20–1 lists and describes the properties with which you can configure this JavaBean.

ResourceAdapter JavaBean

Chapter 20 • JMS Resource Adapter Property Reference 405

TABLE 20–1 Resource Adapter Properties

Property Type Default Value Description

addressList
1 String mq://localhost:7676/jmsMessage service address for

connecting to Message Queue service

Equivalent to connectionURL (below).

connectionURL
1 String mq://localhost:7676/jmsMessage service address for

connecting to the Message Queue
service

Equivalent to addressList(above).

brokerInstanceName String imqbroker Name of broker instance

brokerPort Integer 7676 Port number for connecting to broker

brokerBindAddress String Null Address to which broker binds on
host machine

If null, the broker will bind to all
addresses on the host machine.

userName
2 String guest Default user name for connecting to

Message Queue service

password
2 String guest Default password for connecting to

Message Queue service

addressListBehavior String PRIORITY Order in which to attempt connection
to Message Queue service:

PRIORITY: Order specified in
address list
RANDOM: Random order

Note – Reconnection attempts after a
connection failure start with the
broker whose connection failed and
proceed sequentially through the
address list, regardless of the value set
for this property.

addressListIterations Integer 1 Number of times to iterate through
address list attempting to establish or
reestablish a connection

reconnectEnabled Boolean false Attempt to reestablish a lost
connection?

1 Exactly one of these properties must be specified
2 Required

ResourceAdapter JavaBean

Open Message Queue 4.5 Administration Guide • February 2011406

TABLE 20–1 Resource Adapter Properties (Continued)
Property Type Default Value Description

reconnectAttempts Integer 6 Number of times to attempt
reconnection to each address in
address list before moving on to next

reconnectInterval Long integer 30000 Interval, in milliseconds, between
reconnection attempts

brokerEnableHA Boolean false Enable high availability?

clusterID String None Cluster identifier

If specified, only brokers with the
same cluster identifier can be
clustered together. In the event of
broker failure, client connections will
fail over only to brokers with the same
cluster identifier as the original
broker. If not specified, client
connections can fail over to any other
broker with an unspecified cluster
identifier.

For standalone brokers (those not
belonging to a cluster), this property is
ignored.

The identifier may contain only
alphabetic letters (A–Z, a–z), numeric
digits (0–9), and the underscore
character (_).

brokerID String None Broker identifier

For brokers using a JDBC-based
persistent data store, this string is
appended to the names of all database
tables to make them unique in the case
where more than one broker instance
is using the same database. For
brokers using a file-based data store,
this property is ignored.

In an enhanced cluster, each broker
must have a unique broker identifier.

The identifier may contain only
alphabetic letters (A–Z, a–z), numeric
digits (0–9), and the underscore
character (_).

ResourceAdapter JavaBean

Chapter 20 • JMS Resource Adapter Property Reference 407

ManagedConnectionFactory JavaBean
A managed connection factory is used to create connections managed by the resource adapter.
Table 20–2 shows the properties of the ManagedConnectionFactory JavaBean; if set, these
properties override the corresponding properties of the ResourceAdapter JavaBean.

TABLE 20–2 Managed Connection Factory Properties

Property Type Default Value Description

addressList String Inherited from
ResourceAdapter

JavaBean (see
Table 20–1)

List of message service addresses for
connecting to Message Queue service

userName
1 String guest User name for connecting to Message

Queue service

password
1 String guest Password for connecting to Message

Queue service

clientID String None Client identifier for connections to
Message Queue service

addressListBehavior String PRIORITY Order in which to attempt connection
to Message Queue service:

PRIORITY: Order specified in
address list
RANDOM: Random order

Note – Reconnection attempts after a
connection failure start with the
broker whose connection failed and
proceed sequentially through the
address list, regardless of the value set
for this property.

addressListIterations Integer 1 Number of times to iterate through
address list attempting to establish or
reestablish a connection

reconnectEnabled Boolean false Attempt to reestablish a lost
connection?

reconnectAttempts Integer 6 Number of times to attempt
reconnection to each address in
address list before moving on to next

1 Optional

ManagedConnectionFactory JavaBean

Open Message Queue 4.5 Administration Guide • February 2011408

TABLE 20–2 Managed Connection Factory Properties (Continued)
Property Type Default Value Description

reconnectInterval Long integer 30000 Interval, in milliseconds, between
reconnection attempts

options
1 String None A list of additional connection factory

properties to be used when creating
connections to a Message Queue
broker.

When specified, the value of options
must be a comma-separated list of
connection factory properties and
their values, in the form:

propertyName=value

If value contains a comma or an
equals sign, precede the symbol with a
backslash (\) or enclose the entire
value in quotes; for example:

prop1=comma\,val,prop2="equals=val"

The options property cannot specify
properties that are configured
internally or that have their own setter
methods, specifically:
imqReconnectEnabled,
imqReconnectAttempts,
imqReconnectInterval,
imqDefaultUsername,
imqDefaultPassword,
imqAddressList,
imqAddressListIterations.
Any values specified in options for
these properties are ignored.

1 Optional

ManagedConnectionFactory JavaBean

Chapter 20 • JMS Resource Adapter Property Reference 409

TABLE 20–2 Managed Connection Factory Properties (Continued)
Property Type Default Value Description

useSharedSubscriptionInClusteredContainer Boolean true Controls whether topic subscriptions
created using this
ManagedConnectionFactory will be
shared when running in a clustered
container, as described in “About
Shared Topic Subscriptions for
Clustered Containers” on page 404.

Set to true (the default) to share
subscriptions. The clientID property
must also be set, even if the
subscription is nondurable.

Set to false to not share
subscriptions. This setting should
only be used for nondurable
subscriptions. The clientID property
does not need to be set.

ActivationSpec JavaBean
Table 20–3 shows the configurable properties of the ActivationSpec JavaBean. These
properties are used by the application server when instructing the Resource Adapter to activate
a message endpoint and associate it with a message-driven bean.

TABLE 20–3 ActivationSpec Properties

Property Type Default Value Description

addressList
1,2 String Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

Message service address for
connecting to Message Queue service

userName
1,2 String Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

User name for connecting to Message
Queue service.

password
1,2 String Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

Password for connecting to Message
Queue service.

1 Optional
2 Property specific to Message Queue JMS Resource Adapter

ActivationSpec JavaBean

Open Message Queue 4.5 Administration Guide • February 2011410

TABLE 20–3 ActivationSpec Properties (Continued)
Property Type Default Value Description

clientId
3 String None Client ID for connections to Message

Queue service

This property must be set if
subscriptionDurability is set to
Durable.

addressListBehavior
1,2 String Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

Order in which to attempt connection
or reconnection to Message Queue
service:

PRIORITY: order specified in address
list

RANDOM: Random order

addressListIterations
1,2 Integer Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

Number of times to iterate through
addressList attempting to establish or
reestablish a connection.

When this limit is reached an
exception will be thrown and a new
connection attempt will begin, with
no limit.

reconnectAttempts
1,2 Integer Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

Number of times to attempt
connection or reconnection to each
address in addressList before moving
on to next.

reconnectInterval1
1,2 Integer Inherited from

ResourceAdapter

JavaBean (see
Table 20–1)

Interval, in milliseconds, between
reconnection attempts

destination
3 String None Name of destination from which to

consume messages

The value must be that of the
destinationName property for a
Message Queue destination
administered object.

3 Standard Enterprise JavaBean (EJB) and J2EE Connector Architecture (CA) property
1 Optional
2 Property specific to Message Queue JMS Resource Adapter

ActivationSpec JavaBean

Chapter 20 • JMS Resource Adapter Property Reference 411

TABLE 20–3 ActivationSpec Properties (Continued)
Property Type Default Value Description

destinationType
3 String None Type of destination specified by

destination property:
javax.jms.Queue: Queue
destination
javax.jms.Topic: Topic
destination

messageSelector
1,3 String None Message selector for filtering messages

delivered to consumer

subscriptionName
3 String None Name for durable subscriptions

This property must be set if
subscriptionDurability is set to
Durable.

subscriptionDurability
3 String NonDurable Durability of consumer for topic

destination:
Durable: Durable consumer
NonDurable: Nondurable
consumer

This property is valid only if
destinationType is set to
javax.jms.Topic, and is optional for
nondurable subscriptions and
required for durable ones. If set to
Durable, the clientID and
subscriptionName properties must
also be set.

acknowledgeMode
1,3 String Auto-acknowledge Acknowledgment mode:

Auto-acknowledge:
Auto-acknowledge mode
Dups-ok-acknowledge:
Dups-OK-acknowledge mode

3 Standard Enterprise JavaBean (EJB) and J2EE Connector Architecture (CA) property
1 Optional

ActivationSpec JavaBean

Open Message Queue 4.5 Administration Guide • February 2011412

TABLE 20–3 ActivationSpec Properties (Continued)
Property Type Default Value Description

customAcknowledgeMode String None Acknowledgment mode for MDB
message consumption

Valid values are No_acknowledge or
null.

You can use no-acknowledge mode
only for a nontransacted, nondurable
topic subscription; if you use this
setting with a transacted subscription
or a durable subscription,
subscription activation will fail.

endpointExceptionRedeliveryAttempts Integer 6 Number of times to redeliver a
message when MDB throws an
exception during message delivery

sendUndeliverableMsgsToDMQ Boolean true Place message in dead message queue
when MDB throws a runtime
exception and number of redelivery
attempts exceeds the value of
endpointExceptionRedeliveryAttempts?

If false, the Message Queue broker
will attempt redelivery of the message
to any valid consumer, including the
same MDB.

ActivationSpec JavaBean

Chapter 20 • JMS Resource Adapter Property Reference 413

TABLE 20–3 ActivationSpec Properties (Continued)
Property Type Default Value Description

options
1 String None A list of additional connection factory

properties to be used when creating
connections to a Message Queue
broker.

When specified, the value of options
must be a comma-separated list of
connection factory properties and
their values, in the form:

propertyName=value

If value contains a comma or an
equals sign, precede the symbol with a
backslash (\) or enclose the entire
value in quotes; for example:

prop1=comma\,val,prop2="equals=val"

The options property cannot be used
to specify properties that are
configured internally or that have
their own setter methods, specifically:
imqReconnectEnabled,
imqReconnectAttempts,
imqReconnectInterval,
imqDefaultUsername,
imqDefaultPassword,
imqAddressList,
imqAddressListIterations,
imqAddressListBehavior.
Any values specified in options for
these properties are ignored.

useSharedSubscriptionInClusteredContainer Boolean true Controls whether topic subscriptions
created using this ActivationSpec will
be shared when running in a clustered
container, as described in “About
Shared Topic Subscriptions for
Clustered Containers” on page 404.

Set to true (the default) to share
subscriptions.

Set to false to not share
subscriptions. This setting should
only be used for nondurable
subscriptions.

1 Optional

ActivationSpec JavaBean

Open Message Queue 4.5 Administration Guide • February 2011414

Note that there is no reconnectEnabled property for the ActivationSpec JavaBean.

ActivationSpec JavaBean

Chapter 20 • JMS Resource Adapter Property Reference 415

416

Metrics Information Reference

This chapter describes the metrics information that a Message Queue broker can provide for
monitoring, tuning, and diagnostic purposes. This information can be made available in a
variety of ways:

■ In a log file (see “Sending Metrics Data to Log Files” on page 257)
■ Interactively with the Command utility’s imqcmd metrics subcommand (see “Using the

Command Utility” on page 86)
■ In metrics messages sent to a metrics topic destination (see “Using the Message-Based

Monitoring API ” on page 264)
■ Through JMX MBeans that can be accessed programmatically by Java applications using the

JMX Administration API.

The tables in this chapter list the kinds of metrics information available and the forms in which
it can be provided. For metrics provided through the Command utility’s imqcmd metrics
subcommand, the tables list the metric type with which they can be requested; for those
provided in metrics messages, the tables list the metrics topic destination to which they are
delivered. All the metrics information in this chapter can be accessed progamatically using the
JMX Administration API as described in the Message Queue Developer’s Guide for JMX Clients

The chapter consists of the following sections:

■ “JVM Metrics” on page 418
■ “Brokerwide Metrics” on page 418
■ “Connection Service Metrics” on page 420
■ “Physical Destination Metrics” on page 421

21C H A P T E R 2 1

417

JVM Metrics
Table 21–1 shows the metrics information that the broker reports for the broker process JVM
(Java Virtual Machine) heap.

TABLE 21–1 JVM Metrics

Metrics Quantity Description Log File?
metrics bkr

Metric Type Metrics Topic

JVM heap: total memory Current total memory, in bytes Yes cxn mq.metrics.jvm

JVM heap: free memory Amount of memory currently available for use, in
bytes

Yes cxn mq.metrics.jvm

JVM heap: max memory Maximum allowable heap size, in bytes Yes None mq.metrics.jvm

Brokerwide Metrics
Table 21–2 shows the brokerwide metrics information that the broker reports.

TABLE 21–2 Brokerwide Metrics

Metrics Quantity Description Log File?
metrics bkr

Metric Type Metrics Topic

Connections

Num connections Total current number of connections for all
connection services

Yes cxn mq.metrics.broker

Num threads Total current number of threads for all connection
services

Yes cxn None

Min threads Total minimum number of threads for all connection
services

Yes cxn None

Max threads Total maximum number of threads for all connection
services

Yes cxn None

Stored Messages

Num messages Current number of payload messages stored in
memory and persistent store

No None1
mq.metrics.broker

Total message bytes Total size in bytes of payload messages currently
stored in memory and persistent store

No None1
mq.metrics.broker

Message Flow1 Use query bkr command instead

JVM Metrics

Open Message Queue 4.5 Administration Guide • February 2011418

TABLE 21–2 Brokerwide Metrics (Continued)

Metrics Quantity Description Log File?
metrics bkr

Metric Type Metrics Topic

Num messages in Cumulative number of payload messages received
since broker started

Yes ttl mq.metrics.broker

Num messages out Cumulative number of payload messages sent since
broker started

Yes ttl mq.metrics.broker

Rate messages in Current rate of flow of payload messages into broker Yes rts None

Rate messages out Current rate of flow of payload messages out of
broker

Yes rts None

Message bytes in Cumulative size in bytes of payload messages
received since broker started

Yes ttl mq.metrics.broker

Message bytes out Cumulative size in bytes of payload messages sent
since broker started

Yes ttl mq.metrics.broker

Rate message bytes in Current rate of flow of payload message bytes into
broker

Yes rts None

Rate message bytes out Current rate of flow of payload message bytes out of
broker

Yes rts None

Num packets in Cumulative number of payload and control packets
received since broker started

Yes ttl mq.metrics.broker

Num packets out Cumulative number of payload and control packets
sent since broker started

Yes ttl mq.metrics.broker

Rate packets in Current rate of flow of payload and control packets
into broker

Yes rts None

Rate packets out Current rate of flow of payload and control packets
out of broker

Yes rts None

Packet bytes in Cumulative size in bytes of payload and control
packets received since broker started

Yes ttl mq.metrics.broker

Packet bytes out Cumulative size in bytes of payload and control
packets sent since broker started

Yes ttl mq.metrics.broker

Rate packet bytes in Current rate of flow of payload and control packet
bytes into broker

Yes rts None

Rate packet bytes out Current rate of flow of payload and control packet
bytes out of broker

Yes rts None

Destinations

Num destinations Current number of physical destinations No None mq.metrics.broker

Brokerwide Metrics

Chapter 21 • Metrics Information Reference 419

Connection Service Metrics
Table 21–3 shows the metrics information that the broker reports for individual connection
services.

TABLE 21–3 Connection Service Metrics

Metrics Quantity Description Log File?
metrics svc

Metric Type Metrics Topic

Connections

Num connections Current number of connections No cxn
1 None

Num threads Current number of threads No cxn
1 None

Min threads Minimum number of threads assigned to service No cxn None

Max threads Maximum number of threads assigned to service No cxn None

Message Flow

Num messages in Cumulative number of payload messages received
through connection service since broker started

No ttl None

Num messages out Cumulative number of payload messages sent
through connection service since broker started

No ttl None

Rate messages in Current rate of flow of payload messages into broker
through connection service

No rts None

Rate messages out Current rate of flow of payload messages out of
broker through connection service

No rts None

Message bytes in Cumulative size in bytes of payload messages
received through connection service since broker
started

No ttl None

Message bytes out Cumulative size in bytes of payload messages sent
through connection service since broker started

No ttl None

Rate message bytes in Current rate of flow of payload message bytes into
broker through connection service

No rts None

Rate message bytes out Current rate of flow of payload message bytes out of
broker through connection service

No rts None

Num packets in Cumulative number of payload and control packets
received through connection service since broker
started

No ttl None

Num packets out Cumulative number of payload and control packets
sent through connection service since broker started

No ttl None

1 Also available with query svc command

Connection Service Metrics

Open Message Queue 4.5 Administration Guide • February 2011420

TABLE 21–3 Connection Service Metrics (Continued)

Metrics Quantity Description Log File?
metrics svc

Metric Type Metrics Topic

Rate packets in Current rate of flow of payload and control packets
into broker through connection service

No rts None

Rate packets out Current rate of flow of payload and control packets
out of broker through connection service

No rts None

Packet bytes in Cumulative size in bytes of payload and control
packets received through connection service since
broker started

No ttl None

Packet bytes out Cumulative size in bytes of payload and control
packets sent through connection service since broker
started

No ttl None

Rate packet bytes in Current rate of flow of payload and control packet
bytes into broker through connection service

No rts None

Rate packet bytes out Current rate of flow of payload and control packet
bytes out of broker through connection service

No rts None

Physical Destination Metrics
Table 21–4 shows the metrics information that the broker reports for individual destinations.

TABLE 21–4 Physical Destination Metrics

Metrics Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Message Consumers

Num consumers Current number of
associated message
consumers

For queue destinations,
this attribute includes
both active and backup
consumers. For topic
destinations, it includes
both nondurable and
(active and inactive)
durable subscribers and
is equivalent to “Num
active consumers.”

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Physical Destination Metrics

Chapter 21 • Metrics Information Reference 421

TABLE 21–4 Physical Destination Metrics (Continued)

Metrics Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Peak num consumers Peak number of
associated message
consumers since broker
started

For queue destinations,
this attribute includes
both active and backup
consumers. For topic
destinations, it includes
both nondurable and
(active and inactive)
durable subscribers and
is equivalent to “Peak
num active consumers.”

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Avg num consumers Average number of
associated message
consumers since broker
started

For queue destinations,
this attribute includes
both active and backup
consumers. For topic
destinations, it includes
both nondurable and
(active and inactive)
durable subscribers and
is equivalent to “Avg
num active consumers.”

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Num active consumers Current number of
associated active
message consumers

For topic destinations,
this attribute includes
both nondurable and
(active and inactive)
durable subscribers and
is equivalent to “Num
consumers.”

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Physical Destination Metrics

Open Message Queue 4.5 Administration Guide • February 2011422

TABLE 21–4 Physical Destination Metrics (Continued)

Metrics Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Peak num active consumers Peak number of
associated active
message consumers
since broker started

For topic destinations,
this attribute includes
both nondurable and
(active and inactive)
durable subscribers and
is equivalent to “Peak
num consumers.”

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Avg num active consumers Average number of
associated active
message consumers
since broker started

For topic destinations,
this attribute includes
both nondurable and
(active and inactive)
durable subscribers and
is equivalent to “Avg
num consumers.”

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Num backup consumers1 Current number of
associated backup
message consumers

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Peak num backup consumers1 Peak number of
associated backup
message consumers
since broker started

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Avg num backup consumers1 Average number of
associated backup
message consumers
since broker started

No con mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Stored Messages

Num messages Current number of
messages stored in
memory and persistent
store

No con

ttl

rts
2

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

1 Queue destinations only
2 Also available with query dst command

Physical Destination Metrics

Chapter 21 • Metrics Information Reference 423

TABLE 21–4 Physical Destination Metrics (Continued)

Metrics Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Num messages remote Current number of
messages stored in
memory and persistent
store that were sent
from a remote broker in
a cluster. This number
does not include
messages included in
transactions.

No Not
Available
3

Not Available

Peak num messages Peak number of
messages stored in
memory and persistent
store since broker
started

No con

ttl

rts

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Avg num messages Average number of
messages stored in
memory and persistent
store since broker
started

No con

ttl

rts

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Total message bytes Current total size in
bytes of messages stored
in memory and
persistent store

No ttl

rts
2

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Total message bytes remote Current total size in
bytes of messages stored
in memory and
persistent store that
were sent from a remote
broker in a cluster. This
value does not include
messages included in
transactions.

No Not
Available
3

Not Available

Peak total message bytes Peak total size in bytes
of messages stored in
memory and persistent
store since broker
started

No ttl

rts

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

3 Available only with imqcmd query dst command
2 Also available with query dst command

Physical Destination Metrics

Open Message Queue 4.5 Administration Guide • February 2011424

TABLE 21–4 Physical Destination Metrics (Continued)

Metrics Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Avg total message bytes Average total size in
bytes of messages stored
in memory and
persistent store since
broker started

No ttl

rts

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Message Flow

Num messages in Cumulative number of
messages received since
broker started

No ttl mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Num messages out Cumulative number of
messages sent since
broker started

No ttl mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Msg bytes in Cumulative size in bytes
of messages received
since broker started

No ttl mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Msg bytes out Cumulative size in bytes
of messages sent since
broker started

No ttl mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Peak message bytes Size in bytes of largest
single message received
since broker started

No ttl

rts

mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Rate num messages in Current rate of flow of
messages received

No rts None

Rate num messages out Current rate of flow of
messages sent

No rts None

Rate msg bytes in Current rate of flow of
message bytes received

No rts None

Rate msg bytes out Current rate of flow of
message bytes sent

No rts None

Disk Utilization

Disk reserved4 Amount of disk space,
in bytes, reserved for
destination

No dsk mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

Disk used4 Amount of disk space,
in bytes, currently in use
by destination

No dsk mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

4 File-based persistence only

Physical Destination Metrics

Chapter 21 • Metrics Information Reference 425

TABLE 21–4 Physical Destination Metrics (Continued)

Metrics Quantity Description Log File?
metrics dst

Metric Type Metrics Topic

Disk utilization ratio4 Ratio of disk space in
use to disk space
reserved for destination

No dsk mq.metrics.destination.queue.queueName
mq.metrics.destination.topic.topicName

4 File-based persistence only

Physical Destination Metrics

Open Message Queue 4.5 Administration Guide • February 2011426

JES Monitoring Framework Reference

This chapter describes the monitoring information items that Message Queue exposes through
the Sun Java Enterprise System Monitoring Framework (JESMF), using the Monitoring
Framework’s Common Monitoring Model (CMM). It contains the following sections:
■ “Common Attributes” on page 427
■ “Message Queue Product Information” on page 428
■ “Broker Information” on page 428
■ “Port Mapper Information” on page 429
■ “Connection Service Information” on page 429
■ “Destination Information” on page 430
■ “Persistent Store Information” on page 431
■ “User Repository Information” on page 432

Common Attributes
The attributes listed in Table 22–1 are common to all (or almost all) CMM objects.

TABLE 22–1 JESMF Common Object Attributes

Attribute Description

Name Object name

Caption Short description

Description Full description

LastUpdateTime Time last updated

OperationalStatus Current status (for example, OK or DORMANT)

StatusDescriptions Description of status

OperationalStatusLastChange Time of last change in operational status

22C H A P T E R 2 2

427

Message Queue Product Information
Table 22–2 shows attributes of the Message Queue product itself that can be accessed with
JESMF.

TABLE 22–2 JESMF-Accessible Message Queue Product Attributes

Attribute Description

ProductName Product name

ProductIdentifyingNumber Identifying number of product, in the form
urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Value changes for every version.

ProductVendor Vendor name

ProductVersion Version number

RevisionNumber Revision number

BuildNumber Build number

PatchID Patch identifier (if any)

CollectionID Identification key for installed product object

Differentiates among product installations; usually identifies the installation
location.

InstallDate Installation date

Broker Information
Table 22–3 shows the JESMF-accessible attributes pertaining to each broker instance.

TABLE 22–3 JESMF-Accessible Message Queue Broker Attributes

Attribute Description

PrimaryOwnerName Name of primary system owner (broker property imq.primaryowner.name;
see Table 17–12)

PrimaryOwnerContact Contact information for primary system owner (broker property
imq.primaryowner.contact; see Table 17–12)

Roles Array of strings denoting broker’s roles (taken from broker properties
imq.broker.adminDefinedRoles.namen; see Table 17–12)

StartupTime Time of last startup (date and time in milliseconds)

Message Queue Product Information

Open Message Queue 4.5 Administration Guide • February 2011428

TABLE 22–3 JESMF-Accessible Message Queue Broker Attributes (Continued)
Attribute Description

URL URL of Port Mapper

ConfigurationDirectory Broker instance directory (for example, /var/imq/instances/mybroker)

DirectoryName Distinguished name of directory (for example, LDAP) entry where static
information about application is stored

An empty string indicates that no information about the application is
available in the directory.

Port Mapper Information
The attributes shown in Table 22–4 provide information about a broker’s Port Mapper.

TABLE 22–4 JESMF-Accessible Message Queue Port Mapper Attributes

Attribute Description

LabeledURI URI for accessing Port Mapper, in the form
mq://hostName:portNumber

Secured Is Port Mapper access secure (SSL/TLS)?

Connection Service Information
Table 22–5 shows the JESMF-accessible attributes pertaining to each connection service.

TABLE 22–5 JESMF-Accessible Message Queue Connection Service Attributes

Attribute Description

LabeledURI URI for accessing connection service, in the form
mq://hostName:portNumber/serviceName

if dynamically allocated, or
mqtcp://hostName:servicePort/serviceName

or
mqssl://hostName:servicePort/serviceName

if statically assigned

Secured Is connection service access secure (SSL/TLS)?

ConnectionsCount Current number of connections

NumConnectionsCreated Cumulative number of connections created since broker started

Connection Service Information

Chapter 22 • JES Monitoring Framework Reference 429

TABLE 22–5 JESMF-Accessible Message Queue Connection Service Attributes (Continued)
Attribute Description

FailedConnectionsCount Cumulative number of connections rejected since broker started

CurrentNumberOfThreads Current number of threads actively handling connections

MinThreadPoolSize Minimum number of threads maintained in connection service’s thread
pool (broker property imq.serviceName.min_threads; see Table 17–1)

MaxThreadPoolSize Number of threads beyond which no new threads are added to thread pool
for use by connection service (broker property
imq.serviceName.max_threads; see Table 17–1)

NumProducers Current number of message producers

NumConsumers Current number of message consumers

NumMsgsIn Cumulative number of messages received since broker started

NumMsgsOut Cumulative number of messages sent since broker started

InBytesCount Cumulative size in bytes of messages received since broker started

OutBytesCount Cumulative size in bytes of messages sent since broker started

NumPktsIn Cumulative number of packets received since broker started

NumPktsOut Cumulative number of packets sent since broker started

PktBytesIn Cumulative size in bytes of packets received since broker started

PktBytesOut Cumulative size in bytes of packets sent since broker started

Destination Information
Table 22–6 shows the JESMF-accessible attributes pertaining to each destination. Each of these
attributes corresponds to a Message Queue physical destination property; see Table 18–1 for
further information.

TABLE 22–6 JESMF-Accessible Message Queue Destination Attributes

Attribute Corresponding Property Description

Type Destination type (q = queue, t = topic)

MaxNumMsgs maxNumMsgs Maximum number of unconsumed
messages

MaxBytesPerMsg maxBytesPerMsg Maximum size, in bytes, of any single
message

Destination Information

Open Message Queue 4.5 Administration Guide • February 2011430

TABLE 22–6 JESMF-Accessible Message Queue Destination Attributes (Continued)
Attribute Corresponding Property Description

MaxTotalMsgBytes maxTotalMsgBytes Maximum total memory, in bytes, for
unconsumed messages

LimitBehavior limitBehavior Broker behavior when memory-limit
threshold reached

MaxNumProducers
1

maxNumProducers Maximum number of associated message
producers

MaxNumActiveConsumers
2

maxNumActiveConsumers Maximum number of associated active
message consumers in load-balanced
delivery

MaxNumBackupConsumers
2

maxNumBackupConsumers Maximum number of associated backup
message consumers in load-balanced
delivery

ConsumerFlowLimit consumerFlowLimit Maximum number of messages delivered
to consumer in a single batch

LocalOnly
1

isLocalOnly Local delivery only?

LocalDeliveryPreferred
1 ,2

localDeliveryPreferred Local delivery preferred?

UseDMQ
1

useDMQ Send dead messages to dead message
queue?

1 Does not apply to dead message queue
2 Queue destinations only

Persistent Store Information
The attributes shown in Table 22–7 pertain to the persistent data store.

TABLE 22–7 JESMF-Accessible Message Queue Persistent Store Attributes

Attribute Description

AccessInfo URL for accessing JDBC database

InfoFormat Format of AccessInfo attribute (URL)

JDBCDriver JDBC driver

UserName User name for authentication

Persistent Store Information

Chapter 22 • JES Monitoring Framework Reference 431

User Repository Information
The attributes shown in Table 22–8 pertain to the LDAP user repository.

TABLE 22–8 JESMF-Accessible Message Queue User Repository Attributes

Attribute Description

AccessInfo URL for accessing LDAP server

InfoFormat Format of AccessInfo attribute (URL)

Base Root or base node for user lookup

GroupBase Root or base node for group lookup

UserName User name for authentication

User Repository Information

Open Message Queue 4.5 Administration Guide • February 2011432

Appendixes
■ Appendix A, “Distribution-Specific Locations of Message Queue Data”
■ Appendix B, “Stability of Message Queue Interfaces”
■ Appendix C, “HTTP/HTTPS Support”
■ Appendix D, “JMX Support”
■ Appendix E, “Frequently Used Command Utility Commands”

P A R T I V

433

434

Distribution-Specific Locations of Message
Queue Data

Open Message Queue data is stored in different locations based on the distribution used to
install Message Queue. The tables that follow show the location of various types of Message
Queue data for the following types of installations:

■ “Installations from an IPS image” on page 435
■ “Installations from Solaris SVR4 Packages” on page 437
■ “Installations from Linux RPMs” on page 438

In the tables, instanceName denotes the name of the broker instance with which the data is
associated.

Installations from an IPS image
Table A–1 shows the location of Message Queue data when Message Queue is installed from an
IPS image, such as when the Message Queue installer is used. Locations denote the IMQ_HOME
and IMQ_VARHOME directory variables defined in “Directory Variable Conventions” on page 27.

TABLE A–1 Message Queue Data Locations for Installations from an IPS Image

Data Category Location

Command line executable
files

IMQ_HOME/bin

Broker instance
configuration properties

IMQ_VARHOME/instances/instanceName/props/config.properties

Broker configuration file
templates

IMQ_HOME/lib/props/broker/

AA P P E N D I X A

435

TABLE A–1 Message Queue Data Locations for Installations from an IPS Image (Continued)
Data Category Location

Persistent data store
(messages, destinations,
durable subscriptions,
transactions,
acknowledgements)

IMQ_VARHOME/instances/instanceName/fs370/
or a JDBC-accessible data store

Broker instance log file
directory (default location)

IMQ_VARHOME/instances/instanceName/log/

Administered objects
(object store)

Local directory of your choice or an LDAP server

Security: user repository IMQ_VARHOME/instances/instanceName/etc/passwd
or an LDAP server

Security: access control file
(default location)

IMQ_VARHOME/instances/instanceName/etc/accesscontrol.properties

Security: password file
directory (default location)

IMQ_HOME/etc/

Security: example
password file

IMQ_HOME/etc/passfile.sample

Security: broker’s key store
file location

IMQ_HOME/etc/

JavaDoc API
documentation

IMQ_HOME/javadoc/index.html

Example applications and
configurations

IMQ_HOME/examples/

Java archive (.jar), Web
archive (.war), and
Resource Adapter archive
(.rar) files

IMQ_HOME/lib/

External resource (.jar)
files such as JDBC drivers,
JAAS login modules, and
so forth

IMQ_HOME/lib/ext

JMS Bridge DTD file IMQ_HOME/lib/dtd

Installations from an IPS image

Open Message Queue 4.5 Administration Guide • February 2011436

Installations from Solaris SVR4 Packages
Table A–2 shows the location of Message Queue data when Message Queue is installed from
Solaris SVR4 packages.

TABLE A–2 Message Queue Data Locations for Installations from Solaris SVR4 Packages

Data Category Location

Command line executable
files

/usr/bin

Broker instance
configuration properties

/var/imq/instances/instanceName/props/config.properties

Broker configuration file
templates

/usr/share/lib/imq/props/broker/

Persistent data store
(messages, destinations,
durable subscriptions,
transactions,
acknowledgements)

/var/imq/instances/instanceName/fs370
or a JDBC-accessible data store

Broker instance log file
directory (default location)

/var/imq/instances/instanceName/log/

Administered objects
(object store)

Local directory of your choice or an LDAP server

Security: user repository /var/imq/instances/instanceName/etc/passwd
or an LDAP server

Security: access control file
(default location)

/var/imq/instances/instanceName/etc/accesscontrol.properties

Security: password file
directory (default location)

/var/imq/instances/instanceName/etc/

Security: example
password file

/etc/imq/passfile.sample

Security: broker’s key store
file location

/etc/imq/

JavaDoc API
documentation

/usr/share/javadoc/imq/index.html

Example applications and
configurations

/usr/demo/imq/

Installations from Solaris SVR4 Packages

Appendix A • Distribution-Specific Locations of Message Queue Data 437

TABLE A–2 Message Queue Data Locations for Installations from Solaris SVR4 Packages (Continued)
Data Category Location

Java archive (.jar), Web
archive (.war), and
Resource Adapter archive
(.rar) files

/usr/share/lib/imq

External resource (.jar)
files such as JDBC drivers,
JAAS login modules, and
so forth

/usr/share/lib/imq/ext

JMS Bridge DTD file /usr/share/lib/imq/dtd

Installations from Linux RPMs
Table A–3 shows the location of Message Queue data when Message Queue is installed from
Linux RPMs.

TABLE A–3 Message Queue Data Locations for Installations from Linux RPMs

Data Category Location

Command line executable
files

/opt/sun/mq/bin

Broker instance
configuration properties

/var/opt/sun/mq/instances/instanceName/props/config.properties

Broker configuration file
templates

/opt/sun/mq/private/share/lib/props/

Persistent data store
(messages, destinations,
durable subscriptions,
transactions,
acknowledgements)

/var/opt/sun/mq/instances/instanceName/fs370/
or a JDBC-accessible data store

Broker instance log file
directory (default location)

/var/opt/sun/mq/instances/instanceName/log/

Administered objects
(object store)

Local directory of your choice or an LDAP server

Security: user repository /var/opt/sun/mq/instances/instanceName/etc/passwd
or an LDAP server

Security: access control file
(default location)

/var/opt/sun/mq/instances/instanceName/etc/accesscontrol.properties

Installations from Linux RPMs

Open Message Queue 4.5 Administration Guide • February 2011438

TABLE A–3 Message Queue Data Locations for Installations from Linux RPMs (Continued)
Data Category Location

Security: password file
directory (default location)

/var/opt/sun/mq/instances/instanceName/etc/

Security: example
password file

/etc/opt/sun/mq/passfile.sample

Security: broker’s key store
file location

/etc/opt/sun/mq/

JavaDoc API
documentation

/opt/sun/mq/javadoc/index.html

Example applications and
configurations

/opt/sun/mq/examples/

Java archive (.jar), Web
archive (.war), and
Resource Adapter archive
(.rar) files

/opt/sun/mq/share/lib/

External resource (.jar)
files such as JDBC drivers,
JAAS login modules, and
so forth

/opt/sun/mq/share/lib/ext

Shared library (.so) files /opt/sun/mq/lib/

JMS Bridge DTD file /opt/sun/mq/share/lib/dtd

Installations from Linux RPMs

Appendix A • Distribution-Specific Locations of Message Queue Data 439

440

Stability of Message Queue Interfaces

Open Message Queue uses many interfaces that can help administrators automate tasks. This
appendix classifies the interfaces according to their stability. The more stable an interface is, the
less likely it is to change in subsequent versions of the product.

Any interface that is not listed in this appendix is private and not for customer use.

Classification Scheme
Appendix B, “Stability of Message Queue Interfaces,” describes the stability classification
scheme.

TABLE B–1 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed in any release.

Evolving For use by customers. Subject to incompatible change at a major (e.g. 3.0,
4.0) or minor (e.g. 3.1, 3.2) release. The changes will be made carefully and
slowly. Reasonable efforts will be made to ensure that all changes are
compatible but that is not guaranteed.

Stable For use by customers. Subject to incompatible change at a major (for
example, 3.0 or 4.0) release only.

Standard For use by customers. These interfaces are defined by a formal standard, and
controlled by a standards organization. Incompatible changes to these
interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a major (e.g. 3.0,
4.0) or minor (e.g. 3.1, 3.2) release. Customers are advised that these
interfaces may be removed or changed substantially and in an incompatible
way in a future release. It is recommended that customers not create explicit
dependencies on unstable interfaces.

BA P P E N D I X B

441

Interface Stability
Appendix B, “Stability of Message Queue Interfaces,” lists the interfaces and their classifications.

TABLE B–2 Stability of Message Queue Interfaces

Interface Classification

Command Line Interfaces

imqbrokerd command line interface Evolving

imqadmin command line interface Unstable

imqcmd command line interface Evolving

imqdbmgr command line interface Unstable

imqkeytool command line interface Evolving

imqobjmgr command line interface Evolving

imqusermgr command line interface Unstable

imqbridgemgr command line interface Evolving

Output from imqbrokerd, imqadmin, imqcmd, imqdbmgr, imqkeytool, imqobjmgr,
imqusermgr

Unstable

Commands

imqobjmgr command file Evolving

imqbrokerd command Stable

imqadmin command Unstable

imqcmd command Stable

imqdbmgr command Unstable

imqkeytool command Stable

imqobjmgr command Stable

imqusermgr command Unstable

imqbridgemgr command Evolving

APIs

JMS API (javax.jms) Standard

JAXM API (javax.xml) Standard

C-API Evolving

Interface Stability

Open Message Queue 4.5 Administration Guide • February 2011442

TABLE B–2 Stability of Message Queue Interfaces (Continued)
Interface Classification

C-API environment variables Unstable

Message-based monitoring API Evolving

Administered Object API (com.sun.messaging) Evolving

.jar and .war Files

imq.jar location and name Stable

jms.jar location and name Evolving

imqbroker.jar location and name Private

imqutil.jar location and name Private

imqadmin.jar location and name Private

imqservlet.jar location and name Evolving

imqhttp.war location and name Evolving

imqhttps.war location and name Evolving

imqjmsra.rar location and name Evolving

imqxm.jar location and name Evolving

jaxm-api.jar location and name Evolving

saaj-api.jar location and name Evolving

saaj-impl.jar location and name Evolving

activation.jar location and name Evolving

mail.jar location and name Evolving

dom4j.jar location and name Private

fscontext.jar location and name Unstable

Files

Broker log file location and content format Unstable

password file Unstable

accesscontrol.properties file Unstable

System Destinations

mq.sys.dmq destination Stable

mq.metrics.* destinations Evolving

Interface Stability

Appendix B • Stability of Message Queue Interfaces 443

TABLE B–2 Stability of Message Queue Interfaces (Continued)
Interface Classification

Configuration Properties

Message Queue JMS Resource Adapter configuration properties Evolving

Message Queue JMS Resource Adapter JavaBean and ActivationSpec configuration
properties

Evolving

Message Properties and Formats

Dead message queue message property, JMSXDeliveryCount Standard

Dead message queue message properties, JMS_SUN_* Evolving

Message Queue client message properties: JMS_SUN_* Evolving

JMS message format for metrics or monitoring messages Evolving

Miscellaneous

Message Queue JMS Resource Adapter package, com.sun.messaging.jms.ra Evolving

JDBC schema for storage of persistent messages Evolving

Interface Stability

Open Message Queue 4.5 Administration Guide • February 2011444

HTTP/HTTPS Support

Message Queue includes support for Java clients to communicate with a message broker by
means of the HTTP or secure HTTP (HTTPS) transport protocols, rather than through a direct
TCP connection. (HTTP/HTTPS support is not available for C clients.) Because HTTP/HTTPS
connections are normally allowed through firewalls, this allows client applications to be
separated from the broker by a firewall.

This appendix describes the architecture used to enable HTTP/HTTPS support and explains
the setup work needed to allow Message Queue clients to use such connections. It has the
following sections:

■ “HTTP/HTTPS Support Architecture” on page 445
■ “Enabling HTTP/HTTPS Support” on page 446
■ “Troubleshooting” on page 460

HTTP/HTTPS Support Architecture
Message Queue’s support architecture is very similar for both HTTP and HTTPS support, as
shown in Figure C–1:

■ On the client side, an HTTP or HTTPS transport driver (part of the Message Queue client
runtime) encapsulates each message into an HTTP request and makes sure that these
requests are transmitted in the correct sequence.

■ If necessary, the client can use an HTTP proxy server to communicate with the broker. The
proxy’s address is specified using command line options when starting the client; see“Using
an HTTP Proxy” on page 460 for more information.

■ An HTTP or HTTPS tunnel servlet (both bundled with Message Queue) is loaded into an
application server or Web server on the broker side and used to pull payload messages from
client HTTP requests before forwarding them to the broker. The tunnel servlet also sends
broker messages back to the client in response to the client’s HTTP requests. A single tunnel
servlet can be used to access multiple brokers.

CA P P E N D I X C

445

■ On the broker side, the httpjms or httpsjms connection service unwraps and
demultiplexes incoming messages from the corresponding tunnel servlet.

The main difference between HTTP and HTTPS connections is that in the HTTPS case
(httpsjms connection service), the tunnel servlet has a secure connection to both the client
application and the broker. The secure connection to the broker is established by means of the
Secure Socket Layer (SSL) protocol. Message Queue’s SSL-enabled HTTPS tunnel servlet passes
a self-signed certificate to any broker requesting a connection. The broker uses the certificate to
establish an encrypted connection to the tunnel servlet. Once this connection is established, a
secure connection between the client application and the tunnel servlet can be negotiated by the
client application and the application server or Web server.

Enabling HTTP/HTTPS Support
The procedures for enabling HTTP and HTTPS support are essentially the same for both
protocols, although a few extra steps are required in the HTTPS case to generate and access the
needed encryption keys and certificates. The steps are as follows. (For HTTPS, start with step 1;
for non-secure HTTP, start with step 4.)

1. (HTTPS only) Generate a self-signed certificate for the HTTPS tunnel servlet.

FIGURE C–1 HTTP/HTTPS Support Architecture

JMS Client

Broker

Connection
Services

httpjms/httpsjms

HTTP
Proxy

Message Queue
Client Runtime

HTTP
Tunnel
Servlet

HTTPS
Tunnel
Servlet

Web Server or
Application Server

HTTPS

HTTP

TLS TCP
F

irew
all

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011446

2. (HTTPS only) Modify the deployment descriptor in the tunnel servlet’s .war file to specify
the location and password of the certificate key store.

3. (HTTPS only) Validate the Web or application server’s self-signed certificate and install it in
the client application’s trust store.

4. (HTTP and HTTPS) Deploy the HTTP or HTTPS tunnel servlet.
5. (HTTP and HTTPS) Configure the broker’s httpjms or httpsjms connection service and

start the broker.
6. (HTTP and HTTPS) Configure an HTTP or HTTPS connection.

The following subsections describe each of these steps in greater detail, using Open Server as an
example for purposes of illustration. If you are using a different application server or Web
server (such as Oracle iPlanet Web Server), the procedures will be substantially similar but may
differ in detail; see your server product’s own documentation for specifics.

Step 1 (HTTPS Only): Generating a Self-Signed
Certificate for the Tunnel Servlet
Message Queue’s SSL support is oriented toward securing on-the-wire data, on the assumption
that the client is communicating with a known and trusted server. Therefore, SSL is
implemented using only self-signed server certificates. Before establishing an HTTPS
connection, you must obtain such a certificate. (This step is not needed for ordinary,
non-secure HTTP connections.)

Run the Message Queue Key Tool utility (imqkeytool) to generate a self-signed certificate for
the tunnel servlet. (On UNIX systems, you may need to run the utility as the root user in order
to have permission to create the key store.) Enter the following at the command prompt:

imqkeytool -servlet keyStoreLocation

where keyStoreLocation is the location of Message Queue’s key store file.

The Key Tool utility prompts you for a key store password:

Enter keystore password:

After you have entered a valid password, the utility prompts you for identifying information
from which to construct an X.500 distinguished name. Table C–1 shows the prompts and the
values to be provided for each prompt. Values are case-insensitive and can include spaces.

TABLE C–1 Distinguished Name Information Required for a Self-Signed Certificate

Prompt X.500 Attribute Description Example

What is your first and last

name?

commonName (CN) Fully qualified name of server running
the broker

mqserver.sun.com

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 447

TABLE C–1 Distinguished Name Information Required for a Self-Signed Certificate (Continued)
Prompt X.500 Attribute Description Example

What is the name of your

organizational unit?

organizationalUnit (OU) Name of department or division purchasing

What is the name of your

organization?

organizationName (ON) Name of larger organization, such as a
company or government entity

Acme Widgets, Inc.

What is the name of your city

or locality?

localityName (L) Name of city or locality San Francisco

What is the name of your state

or province?

stateName (ST) Full (unabbreviated) name of state or
province

California

What is the two-letter

country code for this unit?

country (C) Standard two-letter country code US

When you have entered the information, the Key Tool utility displays it for confirmation: for
example,

Is CN=mqserver.sun.com, OU=purchasing, ON=Acme Widgets, Inc.,

L=San Francisco, ST=California, C=US correct?

To accept the current values and proceed, enter yes; to reenter values, accept the default or
enter no. After you confirm, the utility pauses while it generates a key pair.

Next, the utility asks for a password to lock the key pair (key password). Press Return in
response to this prompt to use the same password for both the key password and the key store
password.

Caution – Be sure to remember the password you specify. You must provide this password later
to the tunnel servlet so it can open the key store.

The Key Tool utility generates a self-signed certificate and places it in Message Queue’s key store
file at the location you specified for the keyStoreLocation argument.

Caution – The HTTPS tunnel servlet must be able to see the key store. Be sure to move or copy
the generated key store from the location specified by keyStoreLocation to one accessible to the
tunnel servlet (see “Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet” on page 454).

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011448

Step 2 (HTTPS Only): Specifying the Key Store Location
and Password
The tunnel servlet’s Web archive (.war) file includes a deployment descriptor, an XML file
containing the basic configuration information needed by the application server or Web server
to load and run the servlet. Before deploying the .war file for the HTTPS tunnel servlet, you
must edit the deployment descriptor to specify the location and password of the certificate key
store. (This step is not needed for ordinary, non-secure HTTP connections.)

▼ To Specify the Location and Password of the Certificate Key Store

Copy the .warfile to a temporary directory:
The location of the HTTPS tunnel servlet’s .war file varies, depending on how Message Queue
was installed (see Appendix A, “Distribution-Specific Locations of Message Queue Data”):

IPS packages: cp IMQ_HOME/lib/imqhttps.war /tmp

Solaris SVR4 packages: cp /usr/share/lib/imq/imqhttps.war /tmp

Linux RPM packages: cp /opt/sun/mq/share/lib/imqhttps.war /tmp

Make the temporary directory your current directory.
cd /tmp

Extract the contents of the .warfile.
jar xvf imqhttps.war

List the .warfile’s deployment descriptor.
Enter the command

ls -l WEB-INF/web.xml

to confirm that the deployment descriptor file (WEB-INF/web.xml) was successfully extracted.

Edit the deployment descriptor to specify the key store location and password.
Edit the web.xml file to provide appropriate values for the keystoreLocation and
keystorePassword elements (as well as servletPort and servletHost, if necessary): for
example,

<init-param>

<param-name>keystoreLocation</param-name>

<param-value>/local/tmp/imqhttps/keystore</param-value>

</init-param>

<init-param>

<param-name>keystorePassword</param-name>

<param-value>shazam</param-value>

1

2

3

4

5

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 449

</init-param>

<init-param>

<param-name>servletHost</param-name>

<param-value>localhost</param-value>

</init-param>

<init-param>

<param-name>servletPort</param-name>

<param-value>7674</param-value>

</init-param>

Note – If you are concerned about exposure of the key store password, you can use file-system
permissions to restrict access to the imqhttps.war file.)

Reassemble the contents of the .warfile.

jar uvf imqhttps.war WEB-INF/web.xml

Step 3 (HTTPS Only): Validating and Installing the
Server’s Self-Signed Certificate
In order for a client application to communicate with the Web or application server, you must
validate the server’s self-signed certificate and install it in the application’s trust store. The
following procedure shows how:

▼ To Validate and Install the Server’s Self-Signed Certificate

Validate the server’s certificate.
By default, the Open Server generates a self-signed certificate and stores it in a key store file at
the location

appServerRoot/glassfish/domains/domain1/config/keystore.jks

where appServerRoot is the root directory in which the application server is installed.

Note – If necessary, you can use the JDK Key Tool utility to generate a key store of your own and
use it in place of the default key store. For more information, see the section “Establishing a
Secure Connection Using SSL” in Chapter 28, “Introduction to Security in Java EE,” of the Java
EE 5 Tutorial at

http://java.sun.com/javaee/5/docs/tutorial/doc/Security-Intro7.html

6

1

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011450

a. Make the directory containing the key store file your current directory.

For example, to use the Application Server’s default key store file (as shown above), navigate
to its directory with the command

cd appServerRoot/glassfish/domains/domain1/config

where appServerRoot is, again, the root directory in which the application server is installed.

b. List the contents of the key store file.

The Key Tool utility’s -list option lists the contents of a specified key store file. For
example, the following command lists the Application Server’s default key store file
(keystore.jks):

keytool -list -keystore keystore.jks -v

The -v option tells the Key Tool utility to display certificate fingerprints in human-readable
form.

c. Enter the key store password.

The Key Tool utility prompts you for the key store file’s password:

Enter keystore password:

By default, the key store password is set to changeit; you can use the Key Tool utility’s
-storepasswd option to change it to something more secure. After you have entered a valid
password, the Key Tool utility will respond with output like the following:

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 451

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

Alias name: slas

Creation date: Nov 13, 2007

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=helios, OU=Sun Java System Application Server, O=Sun Microsystems,

L=Santa Clara, ST=California, C=US

Issuer: CN=helios, OU=Sun Java System Application Server, O=Sun Microsystems,

L=Santa Clara, ST=California, C=US

Serial number: 45f74784

Valid from: Tue Nov 13 13:18:39 PST 2007 until: Fri Nov 10 13:18:39 PST 2017

Certificate fingerprints:

MD5: 67:04:CC:39:83:37:2F:D4:11:1E:81:20:05:98:0E:D9

SHA1: A5:DE:D8:03:96:69:C5:55:DD:E1:C4:13:C1:3D:1D:D0:4C:81:7E:CB

Signature algorithm name: MD5withRSA

Version: 1

d. Verify the certificate’s fingerprints.

Obtain the correct fingerprints for the Application Server’s self-signed certificate by
independent means (such as by telephone) and compare them with the fingerprints
displayed by the keytool -list command. Do not accept the certificate and install it in
your application’s trust store unless the fingerprints match.

Export the Application Server’s certificate to a certificate file.

Use the Key Tool utility’s -export option to export the certificate from the Application Server’s
key store to a separate certificate file, from which you can then import it into your application’s
trust store. For example, the following command exports the certificate shown above, whose
alias is slas, from the Application Server’s default key store (keystore.jks) to a certificate file
named slas.cer:

keytool -export -keystore keystore.jks -storepass changeit

-alias slas -file slas.cer

The Key Tool utility responds with the output

Certificate stored in file <slas.cer>

2

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011452

Verify the contents of the certificate file.

If you wish, you can double-check the contents of the certificate file to make sure it contains the
correct certificate:

a. List the contents of the certificate file.

The Key Tool utility’s -printcert option lists the contents of a specified certificate file. For
example, the following command lists the certificate file slas.cer that was created in the
preceding step:

keytool -printcert -file slas.cer -v

Once again, the -v option tells the Key Tool utility to display the certificate’s fingerprints in
human-readable form. The resulting output looks like the following:

Owner: CN=helios, OU=Sun Java System Application Server, O=Sun Microsystems,

L=Santa Clara, ST=California, C=US

Issuer: CN=helios, OU=Sun Java System Application Server, O=Sun Microsystems,

L=Santa Clara, ST=California, C=US

Serial number: 45f74784

Valid from: Tue Nov 13 13:18:39 PST 2007 until: Fri Nov 10 13:18:39 PST 2017

Certificate fingerprints:

MD5: 67:04:CC:39:83:37:2F:D4:11:1E:81:20:05:98:0E:D9

SHA1: A5:DE:D8:03:96:69:C5:55:DD:E1:C4:13:C1:3D:1D:D0:4C:81:7E:CB

Signature algorithm name: MD5withRSA

Version: 1

b. Confirm the certificate’s contents.

Examine the output from the keytool -printcert command to make sure that the
certificate is correct.

Import the certificate into your application’s trust store.

The Key Tool utility’s -import option installs a certificate from a certificate file in a specified
trust store. For example, if your client application’s trust store is kept in the file
/local/tmp/imqhttps/appKeyStore, the following command will install the certificate from
the file slas.cer created above:

keytool -import -file slas.cer -keystore "/local/tmp/imqhttps/appKeyStore"

3

4

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 453

Step 4 (HTTP and HTTPS): Deploying the Tunnel
Servlet
You can deploy the HTTP or HTTPS tunnel servlet on Open Server either from the command
line or by using the application server’s Web-based administration GUI. In either case, you
must then modify the Application Server’s security policy file to grant permissions for the
tunnel servlet.

To deploy the tunnel servlet from the command line, use the deploy subcommand of the
application server administration utility (asadmin): for example,

asadmin deploy --user admin --passwordfile pfile.txt --force=true

/local/tmp/imqhttps/imqhttps.war

The procedure below shows how to use the Web-based GUI to deploy the servlet.

After deploying the tunnel servlet (whether from the command line or with the Web-based
GUI), proceed to “Modifying the Application Server’s Security Policy File” on page 455 for
instructions on how to grant it the appropriate permissions.

▼ To Deploy the HTTP or HTTPS Tunnel Servlet

Deploy the tunnel servlet:

a. In the Web-based administration GUI, choose

App Server>Instances>appServerInstance>Applications>Web Applications

where appServerInstance is the application server instance on which you are deploying the
tunnel servlet.

b. Click the Deploy button.

Specify the .warfile location:

a. Enter the location of the tunnel servlet’s Web archive file (imqhttp.war or imqhttps.war) in
the File Path text field.

The file is located in the Message Queue installation directory containing .jar, .war, and
.rar files, depending on your operating system platform (see Appendix A,
“Distribution-Specific Locations of Message Queue Data”).

b. Click the OK button.

1

2

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011454

Specify the context root directory:

a. Enter the /contextRoot portion of the tunnel servlet’s URL.
The URL has the form

http://hostName:portNumber/contextRoot/tunnel

or

https://hostName:portNumber/contextRoot/tunnel

For example, if the URL for the tunnel servlet is

http://hostName:portNumber/imq/tunnel

the value you enter would be

/imq

b. Click the OK button.
A confirmation screen appears, showing that the tunnel servlet has been successfully
deployed and is enabled by default. The servlet is now available at the URL

http://hostName:portNumber/contextRoot/tunnel

or

https://hostName:portNumber/contextRoot/tunnel

where contextRoot is the context root directory you specified in step a above. Clients can
now use this URL to connect to the message service using an HTTP or HTTPS connection.

Modify the server’s security policy file
Once you have deployed the HTTP or HTTPS tunnel servlet, you must grant it the appropriate
permissions by modifying the Application Server’s security policy file, as described in the next
procedure.

▼ Modifying the Application Server’s Security Policy File
Each application server instance has a security policy file specifying its security policies or rules.
Unless modified, the default security policies would prevent the HTTP or HTTPS tunnel servlet
from accepting connections from the Message Queue message broker. In order for the broker to
connect to the tunnel servlet, you must add an additional entry to this policy file:

Open the security policy file.
The file is named server.policy and resides at a location that varies depending on your
operating system platform. On the Solaris platform, for example, the policy file for server
jeeves would be located at

appServerRoot/glassfish/domains/domain1/jeeves/config/server.policy

3

4

1

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 455

where appServerRoot is the root directory in which Open Server is installed.

Add the following entry to the file:
grant codeBase

"file:appServerRoot/glassfish/domains/domain1/jeeves
/applications/j2ee-modules/imqhttps/-

{

permission java.net.SocketPermission "*","connect,accept,resolve";
};

Save and close the security policy file.

Step 5 (HTTP and HTTPS): Configuring the Connection
Service
HTTP/HTTPS support is not activated for a broker by default, so before connecting using these
protocols, you need to reconfigure the broker to activate the httpjms or httpsjms connection
service. Table C–2 shows broker configuration properties pertaining specifically to these two
connection services. Once reconfigured, the broker can be started normally, as described under
“Starting Brokers” on page 70.

TABLE C–2 Broker Configuration Properties for the httpjms and httpsjmsConnection Services

Property Type Default Value Description

imq.httpjms.http.servletHost

imq.httpsjms.https.servletHost

String localhost Host name or IP address of (local or remote) host
running tunnel servlet

imq.httpjms.http.servletPort

imq.httpsjms.https.servletPort

Integer httpjms: 7675
httpsjms: 7674

Port number of tunnel servlet

imq.httpjms.http.pullPeriod

imq.httpsjms.https.pullPeriod

Integer −1 Interval, in seconds, between client HTTP/HTTPS
requests

If zero or negative, the client will keep one request
pending at all times.

imq.httpjms.http.connectionTimeout

imq.httpsjms.https.connectionTimeout

Integer 60 Tunnel servlet timeout interval

▼ To Activate the httpjmsor httpsjmsConnection Service

Open the broker’s instance configuration file.
The instance configuration file is named config.properties and is located in a directory
identified by the name of the broker instance to which it belongs:

2

3

1

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011456

.../instances/instanceName/props/config.properties

(See Appendix A, “Distribution-Specific Locations of Message Queue Data,” for the location of
the instances directory.)

Add httpjms or httpsjms to the list of active connection services.

Add the value httpjms or httpsjms to the imq.service.activelist property: for example,

imq.service.activelist=jms,admin,httpjms

or

imq.service.activelist=jms,admin,httpsjms

Set any other HTTP/HTTPS-related configuration properties as needed.

At startup, the broker looks for an application server or Web server and an HTTP or HTTPS
tunnel servlet running on its local host machine. If necessary, you can reconfigure the broker to
access a remote tunnel servlet instead, by setting the servletHost and servletPort properties
appropriately (see Table C–2): for example,

imq.httpjms.http.servletHost=helios

imq.httpjms.http.servletPort=7675

You can also improve performance by reconfiguring the connection service’s pullPeriod
property. This specifies the interval, in seconds, at which each client issues HTTP/HTTPS
requests to pull messages from the broker. With the default value of −1, the client will keep one
such request pending at all times, ready to pull messages as fast as possible. With a large number
of clients, this can cause a heavy drain on server resources, causing the server to become
unresponsive. Setting the pullPeriod property to a positive value configures the client’s
HTTP/HTTPS transport driver to wait that many seconds between pull requests, conserving
server resources at the expense of increased response times to clients.

The connectionTimeout property specifies the interval, in seconds, that the client runtime
waits for a response from the HTTP/HTTPS tunnel servlet before throwing an exception, as
well as the time the broker waits after communicating with the tunnel servlet before freeing a
connection. (A timeout is necessary in this case because the broker and the tunnel servlet have
no way of knowing if a client that is accessing the tunnel servlet has terminated abnormally.)

Step 6 (HTTP and HTTPS): Configuring a Connection
To make HTTP/HTTPS connections to a broker, a client application needs an appropriately
configured connection factory administered object. Before configuring the connection factory,
clients wishing to use secure HTTPS connections must also have access to SSL libraries
provided by the Java Secure Socket Extension (JSSE) and must obtain a trusted root certificate.

2

3

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 457

Installing a Root Certificate (HTTPS Only)
If the root certificate of the certification authority (CA) that signed your application server’s (or
Web server’s) certificate is not in the trust store by default, or if you are using a proprietary
application server or Web server certificate, you must install the root certificate in the trust
store. (This step is not needed for ordinary, non-secure HTTP connections, or if the CA’s root
certificate is already in the trust store by default.)

▼ Installing a Root Certificate in the Trust Store

Import the root certificate.
Execute the command

JRE_HOME/bin/keytool -import -trustcacerts

-alias certAlias -file certFile
-keystore trustStoreFile

where certFile is the file containing the root certificate, certAlias is the alias representing the
certificate, and trustStoreFile is the file containing your trust store.

Confirm that you trust the certificate.
Answer YES to the question Trust this certificate?

Identify the trust store to the client application.
In the command that launches the client application, use the -D option to specify the following
properties:

javax.net.ssl.trustStore=trustStoreFile
javax.net.ssl.trustStorePassword=trustStorePassword

Configuring the Connection Factory (HTTP and HTTPS)
To enable HTTP/HTTPS support, you need to set the connection factory’s imqAddressList
attribute to the URL of the HTTP/HTTPS tunnel servlet. The URL has the form

http://hostName:portNumber/contextRoot/tunnel

or

https://hostName:portNumber/contextRoot/tunnel

where hostName:portNumber is the host name and port number of the application server or
Web server hosting the tunnel servlet and contextRoot is the context root directory you
specified when deploying the tunnel servlet on the server, as described above under “Step 4
(HTTP and HTTPS): Deploying the Tunnel Servlet” on page 454.

You can set the imqAddressList attribute in any of the following ways:

1

2

3

Enabling HTTP/HTTPS Support

Open Message Queue 4.5 Administration Guide • February 2011458

■ Use the -o option to the imqobjmgr command that creates the connection factory
administered object (see “Adding a Connection Factory” on page 211).

■ Set the attribute when creating the connection factory administered object using the
Administration Console (imqadmin).

■ Use the -D option to the command that launches the client application.
■ Use an API call to set the attributes of the connection factory after you create it

programmatically in client application code (see the Message Queue Developer’s Guide for
Java Clients).

Using a Single Servlet to Access Multiple Brokers (HTTP and HTTPS)
It is not necessary to configure multiple application or Web servers and tunnel servlets in order
to access multiple brokers; you can share a single server instance and tunnel servlet among
them. To do this, you must configure the imqAddressList connection factory attribute as
follows:

http://hostName:portNumber/contextRoot/tunnel?ServerName=brokerHostName:instanceName

or

https://hostName:portNumber/contextRoot/tunnel?ServerName=brokerHostName:instanceName

where brokerHostName is the broker instance host name and instanceName is the name of the
specific broker instance you want your client to access.

To check that you have entered the correct values for brokerHostName and instanceName,
generate a status report for the HTTP/HTTPS tunnel servlet by accessing the servlet URL from
a browser:

http://localhost:8080/imqhttp/tunnel

The report lists all brokers being accessed by the servlet, as shown in Example C–1.

EXAMPLE C–1 Tunnel Servlet Status Report

HTTP tunnel servlet ready.

Servlet Start Time : Thu May 30 01:08:18 PDT 2002

Accepting secured connections from brokers on port : 7675

Total available brokers = 2

Broker List :

helios:broker1

selene:broker2

Enabling HTTP/HTTPS Support

Appendix C • HTTP/HTTPS Support 459

Using an HTTP Proxy
To use an HTTP proxy to access the HTTPS tunnel servlet, set the system properties
http.proxyHost and http.proxyPort to the proxy server’s host name and port number. You
can set these properties using the -D option to the command that launches the client
application.

Troubleshooting
This section describes possible problems with an HTTP or HTTPS connection and provides
guidance on how to handle them.

Server or Broker Failure
The consequences of a server or broker failure in an (HTTP or HTTPS) connection vary
depending on the specific component that has failed:

■ If the application server or Web server fails and is restarted, all existing connections are
restored with no effect on clients.

■ If the broker fails and is restarted, an exception is thrown and clients must reestablish their
connections.

■ In the unlikely event that both the broker and the application server or Web server fail and
the broker is not restarted, the application server or Web server will restore client
connections and continue waiting for a broker connection without notifying clients. To
avoid this situation, always restart the broker after a failure.

Client Failure to Connect Through the Tunnel Servlet
If an HTTPS client cannot connect to the broker through the tunnel servlet, do the following:

▼ If a Client Cannot Connect

Start the tunnel servlet and the broker.

Use a browser to access the servlet manually through the tunnel servlet URL.

Use the following administrative commands to pause and resume the connection:
imqcmd pause svc -n httpsjms -u admin

imqcmd resume svc -n httpsjms -u admin

When the service resumes, an HTTPS client should be able to connect to the broker through the
tunnel servlet.

1

2

3

Troubleshooting

Open Message Queue 4.5 Administration Guide • February 2011460

JMX Support

Message Queue includes support for Java-based client programs to programmatically configure
and monitor Message Queue resources by means of the Java Management Extensions (JMX)
application programming interface. These resources include brokers, connection services,
connections, destinations, durable subscribers, and transactions, Use of the JMX API from the
client side is fully described in the Message Queue Developer’s Guide for JMX Clients. This
appendix describes the JMX support infrastructure on the broker side, including the following
topics:

■ “JMX Connection Infrastructure” on page 461
■ “JMX Configuration” on page 464

JMX Connection Infrastructure
The JMX API allows Java client applications to monitor and manage broker resources by
programmatically accessing JMX MBeans (managed beans) that represent broker resources. As
explained in the “JMX-Based Administration” in Open Message Queue 4.5 Technical Overview,
the broker implements MBeans associated with individual broker resources, such as connection
services, connections, destinations, and so forth, as well as with whole categories of resources,
such as the set of all destinations on a broker. There are separate configuration MBeans and
monitor MBeans for setting a resource’s configuration properties and monitoring its runtime
state.

MBean Access Mechanism
In the JMX implementation used by Message Queue, JMX client applications access MBeans
using remote method invocation (RMI) protocols provided by JDK 1.5 (and later).

When a broker is started, it automatically creates MBeans that correspond to broker resources
and places them in an MBean server (a container for MBeans). JMX client applications access

DA P P E N D I X D

461

the MBean server by means of an JMX RMI connector (heretofore called a JMX connector),
which is used to obtain an MBean server connection, which, in turn, provides access to
individual MBeans.

The broker also creates and configures two default JMX connectors, jmxrmi and ssljmxrmi.
These connectors are similar to the broker connection services used to provide connections to
the broker from JMS clients. By default, only the jmxrmi connector is activated at broker
startup. The ssljmxrmi connector, which is configured to use SSL encryption, can be activated
using the imq.jmx.connector.activelist broker property (see “To Activate the SSL-Based
JMX connector ” on page 468).

JMX client applications programmatically access JMX MBeans by first obtaining an MBean
server connection from the jmxrmi or ssljmxrmi connector. The connector itself is accessed by
using a proxy object (or stub) that is obtained from the broker by the JMX client runtime, as
shown in the following figure. Encapsulated in the connector stub is the port at which the
connector resides, which is dynamically assigned each time a broker is started, and other
connection properties.

The JMX Service URL
JMX client applications obtain a JMX connector stub using an address called the JMX service
URL. The value and format of the JMX service URL depends on how the broker's JMX support
is configured:

■ Static JMX service URL. The JMX service URL specifies the location of the JMX connector
stub in an RMI registry. When the broker is started, it creates the JMX connector stub and
places it in the specified location in the RMI registry. This location is fixed across broker
startups.

■ Dynamic JMX service URL.The JMX service URL contains the JMX connector stub as a
serialized object. This URL is dynamically created each time the broker is started.

FIGURE D–1 Basic JMX Infrastructure

BrokerJMX Runtime

JMX
Client

JMX
Connector Stub

MBean Server

MBean
Server

Connection
MBeans

JMX Connector

JMX Connection Infrastructure

Open Message Queue 4.5 Administration Guide • February 2011462

A JMX service URL has the following form:

service:jmx:rmi://brokerHost[:connectorPort]urlpath

where rmi://brokerHost[:connectorPort] specifies the host (and optionally a port) used by the
JMX connector. By default the port is assigned dynamically on broker startup, but can be set to
a fixed value for JMX connections through a firewall.

The urlpath portion of the JMX service URL depends on whether the JMX service URL is static
(see “Static JMX Service URL: Using an RMI Registry” on page 466) or dynamic (see “Dynamic
JMX Service URL: Not Using an RMI Registry” on page 467). In either case, you can determine
the value of the JMX service URL by using the imqcmd list jmx subcommand (see the
examples in “RMI Registry Configuration” on page 464).

By default, the broker does not use an RMI registry, and the JMX runtime obtains a JMX
connector stub by extracting it from a dynamic JMX service URL. However, if the broker is
configured to use an RMI registry, then JMX runtime uses a static JMX service URL to perform
a JNDI lookup of the JMX connector stub in the RMI registry. This approach, illustrated in the
following figure, has the advantage of providing a fixed location at which the connector stub
resides, one that does not change across broker startups.

The Admin Connection Factory
Message Queue also provides, as a convenience, an AdminConnectionFactory class that hides
the details of the JMX Service URL and JMX connector stub. The Admin Connection Factory
uses the Message Queue Port Mapper service to get the relevant JMX Service URL (regardless of

FIGURE D–2 Obtaining a Connector Stub from an RMI Registry

Broker
JMX

Runtime
JMX

Client

JMX
Connector Stub

MBean Server

MBean
Server

Connection
MBeans

JMX Connector

JMX
Connector

Stub

RMI
Registry

JMX Connection Infrastructure

Appendix D • JMX Support 463

the form being used) and thereby obtain a JMX connector stub. JMX applications that use the
Admin Connection Factory only need to know the broker's host and Port Mapper port. The
scheme is shown in the following figure.

For programmatic details, see “Obtaining a JMX Connector from an Admin Connection
Factory” in Open Message Queue 4.5 Developer’s Guide for JMX Clients

JMX Configuration
Broker configuration properties that support JMX are listed in Table 17–17. These properties
can be set in the broker's instance configuration file (config.properties) or at broker startup
with the -D option of the Broker utility (imqbrokerd). None of these properties can be set
dynamically with the Command utility (imqcmd). In addition, as described below, some of these
properties can be set with corresponding imqbrokerd options.

This section discusses several JMX configuration topics:

■ “RMI Registry Configuration” on page 464
■ “SSL-Based JMX Connections” on page 467
■ “JMX Connections Through a Firewall” on page 469

RMI Registry Configuration
You can configure the broker to do any of the following:

■ Start an RMI registry (imq.jmx.rmiregistry.start=true)
If the broker is configured to start an RMI registry, then the broker will do the following:

FIGURE D–3 Obtaining a Connector Stub from an Admin Connection Factory

BrokerMQ/JMX
Runtime

Admin
Connection

Factory

JMX
Client

JMX
Connector Stub

MBean Server

MBean
Server

Connection
MBeans

JMX Connector

Port
Mapper

JMX Configuration

Open Message Queue 4.5 Administration Guide • February 2011464

■ Start an RMI registry in the broker process. The RMI registry will remain operational
during the lifetime of the broker.

■ Store the JMX connector stub for it's connectors in this RMI registry.
■ Advertise a static JMX Service URL that points to the relevant JMX connector stub in

this registry.
■ Shut down the RMI registry as part of the broker shutdown process.

■ Use an existing RMI registry (imq.jmx.rmiregistry.use=true)

If the broker is configured to use an existing RMI registry on the local host, then the broker
will do the following:
■ Expect an RMI registry to be running on the same host (at a port which can also be

specified)
■ Store the JMX connector stub for it's connectors in this externally managed RMI

registry.
■ Advertise a static JMX Service URL that points to the relevant JMX connector stub in

this registry. This means the registry must remain operational during the lifetime of the
broker.

■ Not shut down the RMI registry as part of the broker shutdown process.
■ Not use a registry at all (both imq.jmx.rmiregistry.start and

imq.jmx.rmiregistry.use are set to false).

If the broker is configured to not use a registry, then the broker will advertise a dynamic
JMX Service URL that contains the JMX connector stub as a serialized object.

The choice of using or not using an RMI registry depends upon whether you want a static or
dynamic JMX Service URL, respectively. The advantages and disadvantages of using an RMI
registry are shown in the following table.

TABLE D–1 Advantages and Disadvantages of Using an RMI Registry

Scenario Broker Configuration Advantages Disadvantages

Using a
Registry

(Static JMX
Service
URL)

Configuration Properties:

imq.jmx.rmigegistry.start

imq.jmx.rmigegistry.use

imq.jmx.rmigegistry.port

The value of the JMX Service
URL is constant across broker
restarts.

Broker depends on an RMI
registry, either one it starts or
one that is externally available.
There is therefore one more
port to worry about with
regard to port conflicts or
firewall configurations.

JMX Configuration

Appendix D • JMX Support 465

TABLE D–1 Advantages and Disadvantages of Using an RMI Registry (Continued)
Scenario Broker Configuration Advantages Disadvantages

Not Using
a Registry

(Dynamic
JMX
Service
URL)

Default Broker does not start up an
RMI registry. There is
therefore one less port to
worry about with regard to
port conflicts or firewall
configurations.

The value of the JMX Service
URL changes at every broker
startup. JMX applications need
to be provided a new URL
every time the broker restarts.
(This is not an issue with JMX
client applications that use the
AdminConnectionFactory

class.)

If a registry is being used, the imq.jmx.rmiregistry.port property specifies the port number
for the RMI registry. For convenience, you can also specify these RMI registry related properties
by using equivalent Broker utility (imqbrokerd) options at broker startup: -startRmiRegistry,
-useRmiRegistry, and -rmiRegistryPort, respectively (see Table 16–1).

Static JMX Service URL: Using an RMI Registry
When using an RMI Registry to store a JMX connector stub, the urlpath portion of the JMX
service URL (see “The JMX Service URL” on page 462) does not change across broker startups
and has the following form:

/jndi/rmi://brokerHost[:rmiPort]/brokerHost/portMapperPort/connectorName

This path consists of two segments:
■ /jndi/rmi://brokerHost[:rmiPort]

Specifies the RMI registry host and port at which the JMX contector stub is obtained by
performing a JNDI lookup. The default port is 1099.

■ /brokerHost/portMapperPort/connectorName
Specifies the location within the RMI registry where the JMX connector stub is stored.

EXAMPLE D–1 JMX Service URL When Using an RMI Registry

The following example shows the JMX service URL for the default jmxrmi connector in the case
where an RMI registry is started on port 1098 on a host called yourhost:

imqbrokerd -startRmiRegistry -rmiRegistryPort 1098

% imqcmd list jmx -u admin -passfile /myDir/psswds

Listing JMX Connectors on the broker specified by:

Host Primary Port

localhost 7676

JMX Configuration

Open Message Queue 4.5 Administration Guide • February 2011466

EXAMPLE D–1 JMX Service URL When Using an RMI Registry (Continued)

Name Active URL

jmxrmi true service:jmx:rmi://yourhost/jndi/rmi://yourhost:1098

/yourhost/7676/jmxrmi

ssljmxrmi false

Successfully listed JMX Connectors.

The JMX service URL could potentially contain a hostname and port three separate times,
indicating the location of the JMX connector, the RMI registry, and the broker, respectively.

Dynamic JMX Service URL: Not Using an RMI Registry
When not using an RMI Registry to store a JMX connector stub, the urlpath portion of the JMX
service URL is dynamically generated at broker startup and has the following form:

/stub/rO0ABdmVyLlJlpIDJyGvQkwAAAARod97VdgAEAeA==

where the string following /stub/ is the is the serialized JMX connector stub encoded in
BASE64 (shortened above for legibility)

EXAMPLE D–2 JMX Service URL When Not Using an RMI Registry

The following example shows the JMX service URL for the default jmxrmi connector when no
RMI registry is started by the broker and no existing registry is used.

imqbrokerd

% imqcmd list jmx -u admin -passfile /myDir/psswds

Listing JMX Connectors on the broker specified by:

Host Primary Port

localhost 7676

Name Active URL

jmxrmi true service:jmx:rmi://yourhost/stub/rO0ABdmVyLlJlpIDJy==

ssljmxrmi false

Successfully listed JMX Connectors.

SSL-Based JMX Connections
If you need to have secure, encrypted connections between a JMX client and the broker's
MBean server, then you need to configure both sides of the connection accordingly.

JMX Configuration

Appendix D • JMX Support 467

Broker Side SSL Configuration
As mentioned in “JMX Connection Infrastructure” on page 461, a broker is configured by
default for non-secure communication using the preconfigured jmxrmi connector.
Applications wishing to use the Secure Socket Layer (SSL) for secure communication must
activate the alternate ssljmxrmi connector. The ssljmxrmi connector is preconfigured with
imq.jmx.connector.RMIconnectorName.useSSL=true.

▼ To Activate the SSL-Based JMX connector

Obtain and install a signed certificate.
The procedure is the same as for the ssljms, ssladmin, or cluster connection service, as
described under “Using Signed Certificates” on page 167.

Install the root certification authority certificate in the trust store if necessary.

Add the ssljmxrmi connector to the list of JMX connectors to be activated at broker startup:
imq.jmx.connector.activelist=jmxrmi,ssljmxrmi

Start the broker.
Use the Broker utility (imqbrokerd), either passing it the keystore password in a passfile or
typing it from at the command line when prompted.

Disable validation of certificates if desired.
By default, the ssljmxrmi connector (or any other SSL-based connector) is configured to
validate all broker SSL certificates presented to it. Validation will fail if the signer of the
certificate is not in the client's trust store. To avoid this validation (for instance, when using
self-signed certificates during software testing), set the broker property
imq.jmx.connector.ssljmxrmi.brokerHostTrusted to true.

JMX Client Side SSL Configuration
On the client side, if the AdminConnectionFactory class is being used to obtain a JMX
connector, the AdminConnectionFactory object must be configured with a URL specifying the
ssljmxrmi connector:

AdminConnectionFactory acf = new AdminConnectionFactory();

acf.setProperty(AdminConnectionConfiguration.imqAddress,

"mq://myhost:7676/ssljmxrmi");

In addition, if the JMX client needs to access the trust store, use the system properties
javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword to point the JMX
client to the trust store. For example:

1

2

3

4

5

JMX Configuration

Open Message Queue 4.5 Administration Guide • February 2011468

java -Djavax.net.ssl.trustStore=/tmp/myStrustsore

-Djavax.net.ssl.trustStorePassword=myTurstword MyApp

JMX Connections Through a Firewall
If a JMX client application needs to connect to a broker that is located behind a firewall, the
broker must be configured to use fixed JMX ports so the firewall can, in turn, be configured to
allow traffic on these ports. The relevant ports are the following:

■ The port used by the JMX connector. The property used to configure this port is
imq.jmx.connector.connectorName.port, where connectorName can be jmxrmi or
ssljmxrmi.

■ The port used by the RMI registry, if any. The property used to configure this port is
imq.jmx.rmiregistry.port. The equivalent command line option for imqbrokerd is
-rmiRegistryPort.

Once these ports are specified, configure the firewall to allow traffic on these ports.

EXAMPLE D–3 JMX Configuration for Firewall When Not Using a RMI Registry

The following example starts a broker with no RMI registry and a jmxrmi connector on port
5656 on a host called yourhost, as follows:

imqbrokerd -Dimq.jmx.connector.jmxrmi.port=5656

The resulting JMX service URL is:

service:jmx:rmi://yourhost:5656/stub/rO0ABdmVyLlJlpIDJy==

The JMX service URL shows the connector port. In this case, you need to configure the firewall
to allow traffic only on port 5656.

EXAMPLE D–4 JMX Configuration for Firewall When Using an RMI Registry

The following example starts a broker with an RMI registry on port 1098 and a jmxrmi
connector on port 5656 on a host called yourhost, as follows:

imqbrokerd -startRmiRegistry -rmiRegistryPort 1098

-Dimq.jmx.connector.jmxrmi.port=5656

The resulting JMX service URL is:

service:jmx:rmi://yourhost:5656/jndi/rmi://yourhost:1098

/yourhost/7676/jmxrmi

The JMX service URL shows both these ports. You need to configure the firewall to allow traffic
on ports 1098 and 5656.

JMX Configuration

Appendix D • JMX Support 469

470

Frequently Used Command Utility Commands

This appendix lists some frequently used Message Queue Command utility (imqcmd)
commands. For a comprehensive list of command options and attributes available to you from
the command line, refer to “Command Utility” on page 322 in “Command Utility” on page 322

Syntax
imqcmd subcommand argument [

options]
imqcmd -h|H

imqcmd -v

-H or -h provides comprehensive help. The -v subcommand provides version information.

When you use imqcmd, the Command utility prompts you for a password. To avoid the prompt
(and to increase security), you can use the -passfile pathToPassfile option to point the utility
to a password file that contains the administrator user name and password.

Example: imqcmd query bkr -u adminUserName -passfile pathToPassfile -b myServer:7676

Broker and Cluster Management
imqcmd query bkr

imqcmd pause bkr

imqcmd restart bkr

imqcmd resume bkr

imqcmd shutdown bkr -b myBroker:7676
imqcmd update bkr -o "imq.system.max_count=1000"
imqcmd reload cls

EA P P E N D I X E

471

Broker Configuration Properties (-ooption)
“Broker Configuration Properties (-o option)” on page 472 lists frequently used broker
configuration properties. For a full list of broker configuration properties and their
descriptions, see Chapter 17, “Broker Properties Reference”

TABLE E–1 Broker Configuration Properties (-o option)

Property Notes

imq.autocreate.queue

imq.autocreate.queue.maxNumActiveConsumers Specify −1 for unlimited

imq.autocreate.queue.maxNumBackupConsumers Specify −1 for unlimited

imq.autocreate.topic

imq.cluster.url

imq.destination.DMQ.truncateBody

imq.destination.logDeadMessages

imq.log.file.rolloverbytes Specify −1 for unlimited

imq.log.file.rolloversecs Specify −1 for unlimited

imq.log.level NONE

ERROR

WARNING

INFO

imq.message.max_size Specify −1 for unlimited

imq.portmapper.port

imq.system.max_count Specify −1 for unlimited

imq.system.max_size Specify −1 for unlimited

Service and Connection Management
imqcmd list svc

imqcmd query svc

imqcmd update svc -n jms -o "minThreads=200" -o "maxThreads=400" -o "port=8995"
imqcmd pause svc -n jms

imqcmd resume svc -n jms

imqcmd list cxn -svn jms

imqcmd query cxn -n 1234567890

Service and Connection Management

Open Message Queue 4.5 Administration Guide • February 2011472

Durable Subscriber Management
imqcmd list dur -d MyTopic
imqcmd destroy dur -n myDurSub -c "clientID-111.222.333.444"
imqcmd purge dur -n myDurSub -c "clientID-111.222.333.444"

Transaction Management
imqcmd list txn

imqcmd commit txn -n 1234567890

imqcmd query txn -n 1234567890

imqcmd rollback txn -n 1234567890

Destination Management
imqcmd create dst -n MyQueue -t q -o "maxNumMsgs=1000" -o "maxNumProducers=5"
imqcmd update dst -n MyTopic -t t -o "limitBehavior=FLOW_CONTROL| REMOVE_OLDEST|REJECT_NEWEST|REMOVE_LOW_PRIORITY"
imqcmd compact dst -n MyQueue -t q

imqcmd purge dst -n MyQueue -t q

imqcmd pause dst -n MyQueue -t q -pst PRODUCERS|CONSUMERS|ALL

imqcmd resume dst -n MyQueue -t q

imqcmd destroy dst -n MyQueue -t q

imqcmd query dst -n MyQueue -t q

imqcmd list dst -tmp

Destination Configuration Properties (-ooption)
“Destination Configuration Properties (-o option)” on page 473 lists frequently used
destination configuration properties. For a full list of destination configuration properties and
their descriptions, see Chapter 18, “Physical Destination Property Reference”

TABLE E–2 Destination Configuration Properties (-o option)

Property Notes

consumerFlowLimit Specify −1 for unlimited

isLocalOnly (create only)

limitBehavior FLOW_CONTROL

REMOVE_OLDEST

REJECT_NEWEST

REMOVE_LOW_PRIORITY

localDeliveryPreferred (queue only)

maxNumActiveConsumers (queue only) Specify −1 for unlimited

Destination Management

Appendix E • Frequently Used Command Utility Commands 473

TABLE E–2 Destination Configuration Properties (-o option) (Continued)
Property Notes

maxNumBackupConsumers (queue only) Specify −1 for unlimited

maxBytesPerMsg Specify −1 for unlimited

maxNumMsgs Specify −1 for unlimited

maxNumProducers Specify −1 for unlimited

maxTotalMsgBytes Specify −1 for unlimited

useDMQ

Metrics
imqcmd metrics bkr -m cxn|rts|ttl -int 5 -msp 20

imqcmd metrics svc -m cxn|rts|ttl

imqcmd metrics dst -m con|dsk|rts|ttl

Metrics

Open Message Queue 4.5 Administration Guide • February 2011474

Index

A
access control file

location, 436, 437, 438
acknowledgeMode ActivationSpec property, 412
ActivationSpec JavaBean, 410
addressList ActivationSpec property, 410
addressList managed connection factory attribute, 408
addressList Resource Adapter attribute, 406
addressListBehavior managed connection factory

attribute, 408
addressListBehavior Resource Adapter attribute, 406
addressListIterations managed connection factory

attribute, 408
addressListIterations Resource Adapter attribute, 406
admin connection service, 97
ADMIN service type, 96
admin user

changing password, 146
initial entry, 142

administered objects
attributes (reference), 393
deleting, 212–213
listing, 213–214
managing, 199–218
object store

See object stores
querying, 214
required information, 210
updating, 215
XA connection factory

See connection factory administered objects

Administration Console
starting, 42
tutorial, 41

administration tasks
development environment, 35–36
production environment, 36–37

administration tools
Administration Console, 39
built-in, 38–39
command line utilities, 38
JMX-based administration, 40

administrator password, 146
API documentation, 436, 437, 439
attributes of physical destinations, 387–391
audit logging, 172
authentication

See also access control
about, 139
JAAS-based

See JAAS-based authentication
managing, 141–155

authorization
See also access control
about, 140
managing, 155–161
user groups, 140

auto-create destinations, access control settings, 140
auto-created destinations

access control settings, 160
broker properties (table), 348–352
default property values, 111

automatic reconnection, 204

475

automatic reconnection (Continued)
limitations, 204

AUTOSTART property, 72, 73

B
benchmarks, performance, 270–271
bottlenecks, performance, 273
broker clusters

adding brokers to, 185
architecture, 281
configuration file, 176, 183, 184, 191, 370
configuration properties, 175, 370–374
connecting conventional brokers, 183
conventional

automatic reconnection in, 204
high-availability

automatic reconnection in, 204
listing brokers, 94, 180–182, 327
pausing physical destinations in, 113
performance effect of, 281
purging physical destinations in, 113
reasons for using, 281
reloading configuration, 327
secure interbroker connections (SSL), 185

broker components
clustering services, 80
connection services, 79, 95
monitoring services, 80, 249–250
persistence services, 79, 127–128
routing services, 79, 121
security services, 79, 137–140

broker metrics
Logger properties, 253, 257, 369
metrics messages, 264
metrics quantities (table), 418–420
reporting interval, Logger, 322
using broker log files, 257
using imqcmd, 260–261, 262
using message-based monitoring, 264

broker monitoring service, properties, 366–370
broker responses, wait period for client, 398
broker states, 180–181
brokerEnableHA Resource Adapter attribute, 407

brokerID Resource Adapter attribute, 407
brokerInstanceName Resource Adapter attribute, 406
brokers

access control
See authorization

auto-create physical destination
properties, 348–352

clock synchronization, 69–70
clustering, 183
clusters

See broker clusters
commands for managing, 326–328
configuration files

See configuration files
displaying metrics, 327
failure recovery, 127
httpjms connection service properties, 456
httpsjms connection service properties, 456
instance configuration properties, 81
instance name, 318
interconnected

See broker clusters
JMX, and, 40, 262
limit behaviors, 122, 281
listing, 94
listing connection services, 101
listing property values, 327
logging

See Logger
managing, 85–94
memory management, 122, 281
message capacity, 92, 122, 346
message flow control

See message flow controls
metrics

See broker metrics
pausing, 91, 326
permissions required for starting, 70
programmatic management of, 40, 262
properties (reference), 343, 387
querying, 92
quiescing, 90, 326
re-creating state, 127
removing, 76

Index

Open Message Queue 4.5 Administration Guide • February 2011476

brokers (Continued)
restarting, 90, 326
restarting automatically, 72, 73
resuming, 91, 326
running as Windows service, 73–76
setting properties, 327
shutting down, 89, 326
starting automatically, 71–76
starting interactively, 70–71
startup with SSL, 165
states of

See broker states
takeover, 327
unquiescing, 90, 326
updating properties of, 91–92
viewing information about, 92–94
viewing metric information, 93

C
certificates

self-signed, 161–167, 447
signed, 167–170

client applications
example, 436, 437, 439
factors affecting performance, 274–278

client identifier (ClientID)
for durable subscribers, 206–207
in destroying durable subscription, 124

client runtime
configuration of, 282
message flow tuning, 286

clientID activation specification attribute, 412
clientID ActivationSpec property, 411
clientID managed connection factory attribute, 408
clients

clock synchronization, 69–70
starting, 76–77

clock synchronization, 69–70
cluster configuration file, 176, 183, 184, 191, 370
cluster configuration properties, 175, 370
cluster connection service

configuring for SSL, 161, 185
host name or IP address for, 177, 370

cluster connection service (Continued)
network transport for, 177, 371
port number for, 177, 371

cluster identifier, 179, 374
cluster.properties file, 80
clusterID Resource Adapter attribute, 407
clustering brokers, 183
clustering services, broker, 80
clusters, See broker clusters
command files, 215–218
command line syntax, 317
command line utilities

about, 38
basic syntax, 317
displaying version, 87, 144, 325
help, 88, 144, 325
imqbrokerd, See, imqbrokerd command, 38
imqcmd, See, imqcmd command, 38
imqdbmgr See, imqdbmgr command, 38
imqkeytool, See, imqkeytool command, 38
imqobjmgr, See, imqobjmgr command, 38
imqsvcadmin, See, imqsvcadmin command, 38
imqusermgr, See, imqusermgr command, 38

command line utility executables
location, 435, 437, 438

command options, as configuration overrides, 77
compacting

file-based data store, 129
physical destinations, 119

config.properties file, 80, 81, 186, 187, 456
configuration change record

backing up, 188
restoring, 189

configuration files
broker (figure), 81
cluster, 80, 176, 183, 184, 191, 370
default, 80
installation, 80
instance, 80, 81, 435, 437, 438
location, 435, 437, 438
modifying, 80
template location, 435, 437, 438
templates, 435, 437, 438

Index

477

connection factories, adding administered objects
for, 211

connection factory administered objects
application server support attributes, 400
attributes, 202–209
client identification attributes, 205–207
connection handling attributes, 202–205
JMS properties support attributes, 208
overriding message header fields, 208
queue browser behavior attributes, 208, 399–400
reliability and flow control attributes, 207–208
standard message properties, 400–401

connection service metrics
metrics quantities, 420–421
using imqcmd metrics, 261
using imqcmd query, 262

connection services
access control for, 138, 360
activated at startup, 344
admin

See admin connection service
cluster, 371

See cluster connection service
commands for managing, 328–329
displaying metrics, 329
HTTP

See HTTP connections
httpjms

See httpjms connection service
HTTPS

See HTTPS connections
httpsjms

See httpsjms connection service
jms

See jms connection service
listing, 101
listing available, 328
listing property values, 328
pausing, 99, 328
Port Mapper

See Port Mapper
properties, 344–346
protocol type, 96
querying, 101

connection services (Continued)
resuming, 100, 328
service type, 96
SSL-based, 164
ssladmin

See ssladmin connection service
ssljms

See ssljms connection service
ssljms connection service, 96
thread allocation, 100
thread pool management, 98
updating, 100, 328
viewing information about, 101–103
viewing metric information, 102

connection services, broker, 79
connections

automatic reconnection
See automatic reconnection

commands for managing, 329
destroying, 104, 329
failover

See automatic reconnection
limited by file descriptor limits, 70
listing, 103, 329
performance effect of, 279–280
querying, 104, 125, 329

connectionURL Resource Adapter attribute, 406
consumerFlowLimit destination property, 389, 431
consumerFlowLimit property, 207
customAcknowledgeMode ActivationSpec

property, 413

D
data store

about, 127, 128
compacting, 129
contents of, 127
file-based, 128–129
JDBC-based, 131–133
location, 436, 437, 438
performance effect of, 281–282
resetting, 320
synchronizing to disk, 129

Index

Open Message Queue 4.5 Administration Guide • February 2011478

dead message queue
configuring use of, 120
described, 120–121
logging, 121, 253
managing, 120–121
truncating message bodies, 121
UseDMQ property, 431
variant treatment of physical destination

properties, 120–121
dead messages

See also dead message queue
logging, 253

default.properties file, 80
deleting, broker instance, 76
delivery modes, performance effect of, 275
destination activation specification attribute, 412
destination ActivatioSpec property, 411
destination administered objects, attributes, 209
destination metrics

metrics quantities, 421–426
using imqcmd metrics, 259, 261–262
using imqcmd query, 262
using message-based monitoring, 264

destinations
See physical destinations
adding administered objects for, 211–212

destinationType activation specification attribute, 412
destinationType ActivationSpec property, 412
destroying

connections, 104, 329
durable subscriptions, 331
physical destinations, 112, 330

development environment administration
tasks, 35–36

directory lookup for clusters (Linux), 184
disk utilization by physical destinations, 118–120
displaying product version, 87, 144, 325
DN username format, 363
durable subscriptions

commands for managing, 331–332
destroying, 124, 331
listing, 123, 331
managing, 123
performance effect of, 277

durable subscriptions (Continued)
purging messages for, 331

E
encryption

about, 137, 140
implementing, 161–170
Key Tool and, 140

endpointExceptionRedeliveryAttempts ActivationSpec
property, 413

enhanced clusters, takeover states, 181
/etc/hosts file (Linux), 184
example applications, 436, 437, 439
external resource files directory, 436, 438, 439

F
file-based persistence

about, 128
configuring, 129
properties, 128–129

file-based persistence, tuning for performance, 285
file descriptor limits, 70

connection limits and, 70
file synchronization

imq.persist.file.sync.enabled option, 354
with Solaris Cluster, 354

firewalls, 445
flow control, See message flow controls
fragmentation of messages, 129

G
guest user, 142

H
hardware, performance effect of, 279
help (command line), 88, 144, 325
hosts file (Linux), 184

Index

479

HTTP
connection service

See httpjms connection service
proxy, 445
support architecture, 445–446
transport driver, 445

HTTP connections
request interval, 456
support for, 445
tunnel servlet

See HTTP tunnel servlet
HTTP protocol type, 97
HTTP tunnel servlet

about, 445
deploying, 454–456

httpjms connection service, 97
configuring broker for, 456–457

HTTPS
connection service

See httpsjms connection service
support architecture, 445–446

HTTPS connections
multiple brokers, for, 459–460
request interval, 456
support for, 445
tunnel servlet

See HTTPS tunnel servlet
HTTPS protocol type, 97
HTTPS tunnel servlet

about, 445
deploying, 454–456

httpsjms connection service, 161
configuring broker for, 456–457
intoduced, 97
setting up, 446–460

I
imq.accesscontrol.enabled property, 138, 360
imq.accesscontrol.file.filename property, 138, 360
imq.accesscontrol.file.url property, 361
imq.accesscontrol.type property, 360
imq.admin.tcp.port property, 171
imq.audit.bsm.disabled property, 362

imq.audit.enabled property, 172, 173, 362
imq.authentication.basic.user_repository

property, 139, 359
imq.authentication.client.response.timeout

property, 139, 360
imq.authentication.type property, 139, 359
imq.autocreate.destination.isLocalOnly property, 351
imq.autocreate.destination.limitBehavior

property, 348, 349
imq.autocreate.destination.maxBytesPerMsg

property, 348
imq.autocreate.destination.maxCount property, 348
imq.autocreate.destination.maxNumMsgs

property, 348
imq.autocreate.destination.maxNumProducers

property, 349
imq.autocreate.destination.maxTotalMsgBytes

property, 349, 351
imq.autocreate.destination.useDMQ property, 120
imq.autocreate.queue.consumerFlowLimit

property, 350
imq.autocreate.queue.localDeliveryPreferred

property, 351
imq.autocreate.queue.maxNumActiveConsumers

property, 92, 350
imq.autocreate.queue.maxNumBackupConsumers

property, 92, 350
imq.autocreate.queue property, 92, 348
imq.autocreate.reaptime property, 348
imq.autocreate.topic property, 92, 348
imq.broker.adminDefinedRoles.count property, 370,

380
imq.broker.adminDefinedRoles.nameN property, 370
imq.broker.adminDefinedRoles.namen property, 380,

428
imq.brokerid property, 132, 179, 344
imq.cluster.brokerlist property, 177, 183, 184, 186, 187,

371
imq.cluster.clusterid property, 179, 374
imq.cluster.ha, 371
imq.cluster.ha property, 179
imq.cluster.ha.takeoverWaitTimeout property, 374
imq.cluster.heartbeat.hostname property, 180, 374
imq.cluster.heartbeat.interval property, 180, 374

Index

Open Message Queue 4.5 Administration Guide • February 2011480

imq.cluster.heartbeat.port property, 180, 374
imq.cluster.heartbeat.threshold property, 180, 374
imq.cluster.hostname property, 177, 370
imq.cluster.masterbroker property, 372, 373
imq.cluster.monitor.interval property, 180, 374
imq.cluster.monitor.threshold property, 180, 374
imq.cluster.port property, 177, 371
imq.cluster.transport property, 177, 185, 186, 371
imq.cluster.url property, 92, 176, 184, 186, 187, 370
imq.destination.DMQ.truncateBody property, 92, 121,

122, 347
imq.destination.logDeadMsgs property, 92, 253, 366
imq.hostname property, 98, 344
imq.httpjms.http.connectionTimeout property, 456
imq.httpjms.http.pullPeriod property, 456
imq.httpjms.http.servletHost property, 456
imq.httpjms.http.servletPort property, 456
imq.httpsjms.https.connectionTimeout property, 456
imq.httpsjms.https.pullPeriod property, 456
imq.httpsjms.https.servletHost property, 456
imq.httpsjms.https.servletPort property, 456
imq.imqcmd.password property, 139, 171, 362
imq.jms.tcp.port property, 171
imq.jmx.connector.activelist property, 377
imq.jmx.connector.RMIconnectorName.

brokerHostTrusted property, 378
imq.jmx.connector.RMIconnectorName.port

property, 378
imq.jmx.connector.RMIconnectorName.urlpath

property, 377
imq.jmx.connector.RMIconnectorName.useSSL

property, 378
imq.jmx.rmiregistry.port property, 379
imq.jmx.rmiregistry.start property, 378
imq.jmx.rmiregistry.use property, 379
imq.keystore.file.dirpath property, 164, 361
imq.keystore.file.name property, 164, 361
imq.keystore.password property, 140, 171, 361
imq.log.console.output property, 253, 367
imq.log.console.stream property, 253, 366
imq.log.file.dirpath property, 253, 367
imq.log.file.filename property, 253, 367
imq.log.file.output property, 253, 367
imq.log.file.rolloverbytes property, 92, 253, 367

imq.log.file.rolloversecs property, 92, 253, 368
imq.log.level property, 92, 253, 366
imq.log.syslog.facility property, 368
imq.log.syslog.identity property, 368
imq.log.syslog.logconsole property, 369
imq.log.syslog.logpid property, 368
imq.log.syslog.output property, 253, 368
imq.log.timezone property, 369
imq.message.expiration.interval property, 122, 347
imq.message.max_size property, 92, 122, 347
imq.metrics.enabled property, 249, 369
imq.metrics.interval property, 249, 369
imq.metrics.topic.enabled property, 265, 369
imq.metrics.topic.interval property, 265, 369
imq.metrics.topic.persist property, 265, 369
imq.metrics.topic.timetolive property, 265, 370
imq.passfile.dirpath property, 139, 362
imq.passfile.enabled property, 139, 361
imq.passfile.name property, 139, 362
imq.persist.file.destination.message.filepool.limit

property, 129, 353
imq.persist.file.message.cleanup property, 129, 353
imq.persist.file.message.filepool.cleanratio

property, 129, 353
imq.persist.file.message.max_record_size

property, 353
imq.persist.file.message.vrfile.max_record_size

property, 129
imq.persist.file.newTxnLog.enabled property, 354
imq.persist.file.sync.enabled property, 129, 354
imq.persist.file.sync property, 129
imq.persist.file.transaction.memorymappedfile.enabled

property, 276, 354
imq.persist.file.txnLog.groupCommit property, 355
imq.persist.file.txnLog.logNonTransactedMsgAck

property, 356
imq.persist.file.txnLog.logNonTransactedMsgSend

property, 355
imq.persist.jdbc.connection.limit property, 358
imq.persist.jdbc.connection.reaptime property, 356
imq.persist.jdbc.connection.timeoutIdle property, 357
imq.persist.jdbc.connection.validateOnGet

property, 357

Index

481

imq.persist.jdbc.connection.validationQuery
property, 358

imq.persist.jdbc.dbVendor property, 132, 356
imq.persist.jdbc.max_connections property, 356
imq.persist.jdbc.min_connections property, 357
imq.persist.jdbc.password property, 171
imq.persist.jdbc.vendorName.closedburl property, 358
imq.persist.jdbc.vendorName.createdburl

property, 358
imq.persist.jdbc.vendorName.driver property, 358
imq.persist.jdbc.vendorName.needpassword

property, 132, 358
imq.persist.jdbc.vendorName.opendburl property, 358
imq.persist.jdbc.vendorName.password property, 132,

358
imq.persist.jdbc.vendorName.property.propName

property, 132, 359
imq.persist.jdbc.vendorName.tableoption

property, 359
imq.persist.jdbc.vendorName.tableoption

property., 132
imq.persist.jdbc.vendorName.user property, 132, 358
imq.persist.store property, 127, 131, 133, 352
imq.ping.interval property, 99, 346
imq.portmapper.backlog property, 98, 345
imq.portmapper.hostname property, 98, 344
imq.portmapper.port property, 92, 97, 344
imq.primaryowner.contact property, 370, 384, 428
imq.primaryowner.name property, 370, 384, 428
imq.protocol.protocolType.inbufsz, 283
imq.protocol.protocolType.nodelay, 283
imq.protocol.protocolType.outbufsz, 283
imq.resource_state.count property, 347
imq.resource_state.threshold property, 347
imq.resourceState.count property, 123
imq.service.activelist property, 97, 344
imq.service_name.accesscontrol.file.filename

property, 361
imq.service_name.accesscontrol.file.urlmax

property, 361
imq.service_name.authentication.type property, 359
imq.service_name.max_threads property, 345, 430
imq.service_name.min_threads property, 345, 430

imq.service_name.protocol_type.hostname
property, 344

imq.service_name.protocol_type.port property, 345
imq.service_name.threadpool_model property, 345
imq.serviceName.accesscontrol.enabled property, 138,

360
imq.serviceName.accesscontrol.file.filename

property, 138
imq.serviceName.authentication.type property, 139
imq.serviceName.max_threads property, 98
imq.serviceName.min_threads property, 98
imq.serviceName.protocolType.hostname property, 98
imq.serviceName.protocolType.port property, 97
imq.serviceName.threadpool_model property, 98
imq.shared.connectionMonitor_limit property, 99,

346
imq.ssladmin.tls.port property, 172
imq.ssljms.tls.port property, 171
imq.system.max_count property, 92, 122, 346
imq.system.max_size property, 92, 122, 346
imq.transaction.autorollback property, 347
imq.transaction.consumer.maxNumMsgs

property, 347
imq.transaction.producer.maxNumMsgs

property, 347
imq.user_repository.jaas.groupPrincipalClass

property, 365
imq.user_repository.jaas.name property, 364
imq.user_repository.jaas.userPrincipalClass

property, 365
imq.user_repository.ldap.base property, 363
imq.user_repository.ldap.gidattr property, 364
imq.user_repository.ldap.grpbase property, 364
imq.user_repository.ldap.grpfilter property, 364
imq.user_repository.ldap.grpsearch property, 364
imq.user_repository.ldap.memattr property, 364
imq.user_repository.ldap.password property, 139, 171,

363
imq.user_repository.ldap.principal property, 139, 363
imq.user_repository.ldap.property_name

property, 363
imq.user_repository.ldap.server property, 139, 362
imq.user_repository.ldap.ssl.enabled property, 364
imq.user_repository.ldap.timeout property, 364

Index

Open Message Queue 4.5 Administration Guide • February 2011482

imq.user_repository.ldap.uidattr property, 363
imq.user_repository.ldap.usrfilter property, 363
imq.user_repository.ldap.usrformat property, 363
imqAckTimeout attribute, 207, 398
imqAddressList attribute, 203, 204, 394

dynamically updated in enhanced clusters, 204, 394
imqAddressListBehavior attribute, 203, 204, 394
imqAddressListIterations attribute, 203, 204, 394
imqbridgemgr command

options, 339–340
reference, 337

imqbrokerd command, 70
about, 38
backing up configuration change record, 188
clearing the data store, 129
in password file, 170
options, 318–322
passing arguments to, 82
reference, 318
removing a broker, 76
removing a broker from a cluster, 188
restoring configuration change record, 189
setting logging properties, 255

imqbrokerd.conf file, 71
imqcmd command

about, 38
displaying version, 87
general options, 324
in password file, 170
metrics monitoring, 258–262
physical destination management, 108–109
physical destination subcommands

(table), 108–109
reference, 322
secure connection to broker, 166–167, 325
transaction management, 124
usage help, 88

imqConfiguredClientID attribute, 206, 397
imqConnectionFlowCount attribute, 207, 286, 398
imqConnectionFlowLimit attribute, 207, 288, 398
imqConnectionFlowLimitEnabled attribute, 207, 288,

398
imqConsumerFlowLimit attribute, 207, 287, 399
imqConsumerFlowThreshold attribute, 207, 287, 399

imqdbmgr command
about, 38
in password file, 170
options, 335–336
reference, 334

imqDefaultPassword attribute, 205, 206, 397
imqDefaultUsername attribute, 205, 206, 397
imqDestinationDescription attribute, 209, 402
imqDestinationName attribute, 209, 402
imqDisableSetClientID attribute, 397
imqFlowControlLimit attribute, 399
imqJMSDeliveryMode attribute, 401
imqJMSExpiration attribute, 401
imqJMSPriority attribute, 209, 401
imqkeytool command

about, 38
reference, 341
using, 163

imqLoadMaxToServerSession attribute, 208, 400
imqobjmgr command

about, 38
options, 333
reference, 332
subcommands, 332

imqOverrideJMSDeliveryMode attribute, 401
imqOverrideJMSExpiration attribute, 401
imqOverrideJMSHeadersToTemporaryDestinations

attribute, 209, 401
imqOverrideJMSPriority attribute, 209, 401
imqPingInterval attribute, 205
imqQueueBrowserMax MessagesPerRetrieve

attribute, 208, 400
imqQueueBrowserRetrieveTimeout attribute, 208, 400
imqReconnectAttempts attribute, 204, 395
imqReconnectEnabled attribute, 204, 395
imqReconnectInterval attribute, 204, 395
imqSetJMSXAppID attribute, 400
imqSetJMSXConsumerTXID attribute, 401
imqSetJMSXProducerTXID attribute, 400
imqSetJMSXRcvTimestamp attribute, 401
imqSetJMSXUserID attribute, 400
imqSSLIsHostTrusted attribute, 395
imqSSLIsHostTrusted attribute, 162

Index

483

imqsvcadmin command
about, 38
options, 340
reference, 340
subcommands, 340

imqusermgr command, 143–147
about, 38
displaying version, 144
general options, 337
general options (table), 144
options, 336
passwords, 144
reference, 336
subcommands, 336
subcommands (table), 143
usage help, 144
user names, 144

imqusermgr utility, 138
install.properties file, 80
instance configuration files, See configuration files
instance directory, removing, 76
isLocalOnly destination property, 389, 431

J
J2EE connector architecture (JCA), 403
JAAS-based authentication, 150–155

configuration file, 151
configuration file for, 152
JAAS API, 150
JAAS client, 150
login module, 150
setting up, 153–155

Java ES Monitoring Framework (JESMF), 263–264
Java Management Extensions, See JMX
java.naming.factory.initial attribute, 200, 201
java.naming.provider.url attribute, 200, 201
java.naming.security.authentication attribute, 201
java.naming.security.credentials attribute, 200
java.naming.security.principal attribute, 200
Java runtime

for Windows service, 75
specifying path to, 321, 325, 333, 340

Java Virtual Machine, See JVM

javahome option, 75
JCA (J2EE connector architecture), 403
JDBC-based persistence

about, 131
JDBC driver, 358
properties, 131–133
setting up, 133–134

JES Monitoring Framework (JESMF), 427–432
brokers, 428–429
common attributes, 427–428
connection services, 429–430
destinations, 430–431
Message Queue product, 428
persistent data store, 431
Port Mapper, 429
user repository, 432

JESMF, See JES Monitoring Framework
jms connection service, 96
JMSDeliveryMode message header field, 209
JMSExpiration message header field, 209
JMSPriority message header field, 209
JMSXAppID message property, 208
JMSXConsumerTXID message property, 208
JMSXProducerTXID message property, 208
JMSXRcvTimestamp message property, 208
JMSXUserID message property, 208
JMX

administrative support for, 461–469
commands for managing, 332
configuration properties, 377

JMX-based administration, 40, 262
JMX connectors, introduced, 462
JMX imqcmd subcommands, 332
JNDI

lookup, 55
lookup name, 210
object store, 38, 199
object store attributes, 200–201, 210

jrehome option, 75
JVM

metrics
See JVM metrics

performance effect of, 279
tuning for performance, 282–283

Index

Open Message Queue 4.5 Administration Guide • February 2011484

JVM metrics
metrics quantities, 418
using broker log files, 257
using imqcmd metrics, 260
using message-based monitoring, 264

K
key pairs

generating, 163, 448
regenerating, 164

key store, 164, 448
Key Tool, 140
keystore, file, 164
keytool command

command syntax, 447
using, 447

L
LDAP repository, 138
LDAP server

as user repository, 147–149
object store attributes, 200

limit behaviors
broker, 122
physical destinations, 122, 388

limitBehavior destination property, 387, 388, 431
load-balanced queue delivery, See queue load-balanced

delivery
localDeliveryPreferred destination property, 390, 431
log files

changing default location, 254
changing default name, 255
dead message logging, 257–258
default location, 436, 437, 438
names, 254
reporting metrics, 257
rollover criteria, 253, 256, 367
rollover frequency, 255
setting properties, 255

Logger
about, 252

Logger (Continued)
changing configuration, 255
dead message format, 258
levels, 253, 322, 366
message format, 253
metrics information, 369
output channels, 252, 253, 255–256
redirecting log messages, 256
rollover criteria, 256
setting properties, 255
writing to console, 253, 322, 367

logging, See Logger
loopback address, 183

M
ManagedConnectionFactory JavaBean, 408
master broker

management, 188–189
specifying, 177, 178

maxBytesPerMsg destination property, 388, 430
maxNumActiveConsumers destination property, 389,

431
maxNumBackupConsumers destination

property, 389, 431
maxNumMsgs destination property, 387, 430
maxNumProducers destination property, 389, 431
maxTotalMsgBytes destination property, 388, 431
MBean server, introduced, 462
MBeans

server
See MBean server

MDBs, See message-driven beans
memory management, for broker, 122
message-driven beans, Resource Adapter configuration

for, 403
message expiration, clock synchronization and, 69
message flow controls

broker, 122
connection factory attributes, 207–208
connection flow limits, 288
connection flow metering, 286
consumer flow limits, 287–288
tuning for performance, 286–288

Index

485

message header overrides, 208–209
message service architecture, 281
message service performance, 278–282
messages

body type and performance, 278
broker limits on, 92, 122, 346
destination limits on, 349, 388
flow control

See message flow controls
fragmentation, 129
metrics messages

See metrics messages
pausing flow of, 112
persistence of, 127
purging from a physical destination, 330
reclamation of expired, 122, 347
size, and performance, 277–278

messageSelector ActivationSpec property, 412
metric information

brokers, 93
connection services, 102
physical destinations, 117

metrics
about, 249
data

See metrics data
messages

See metrics messages
topic destinations, 264–265

metrics data
broker

See broker metrics
physical destination

See physical destination metrics
using broker log files, 257
using message-based monitoring API, 265–266

metrics messages
about, 264
type, 265

metrics monitoring tools
compared, 250–252
message-based monitoring API, 264–267
Message Queue Command Utility

(imqcmd), 258–262

metrics monitoring tools (Continued)
Message Queue log files, 257

monitoring, See performance monitoring
monitoring, support for Java ES, 263–264
monitoring services, broker, 80, 249–250
multiple queue consumers, 288

N
NORMAL service type, 96
nsswitch.conf file (Linux), 184

O
object stores, 199–202

file-system, 201–202
file-system store attributes, 201–202
initial context, 200
LDAP server, 199–201
LDAP server attributes, 200
location, 200
locations, 436, 437, 438
security, 200

operating system
performance effect of, 279
tuning Solaris performance, 282

options ActivationSpec property, 414
options managed connection factory attribute, 409
Oracle, 135
overrides

for message header, 208–209
on command line, 77

P
password file

broker configuration properties, 139, 362
command line option, 321
location, 171, 436, 437, 439
permissions, 170
using, 170–171

password managed connection factory attribute, 408

Index

Open Message Queue 4.5 Administration Guide • February 2011486

password Resource Adapter attribute, 406
passwords

administrator, 146, 171
default, 397
encoding of, 359
format, 144
JDBC, 171
LDAP, 171
password file

See password file
SSL key store, 171
SSL keystore, 164

pausing
brokers, 91, 326
connection services, 99, 328
physical destinations, 112, 330

performance
about, 269–272
baseline patterns, 271–272
benchmarks, 270–271
bottlenecks, 273
factors affecting

See performance factors
indicators, 270
measures of, 270
monitoring

See performance monitoring
optimizing

See performance tuning
reliability tradeoffs, 274
troubleshooting, 291
tuning

See performance tuning
performance factors

acknowledgment mode, 276
broker limit behaviors, 281
connections, 279–280
data store, 281–282
delivery mode, 275
durable subscriptions, 277
file synchronization, 354
hardware, 279
JVM, 279
message body type, 278

performance factors (Continued)
message flow control, 286
message service architecture, 281
message size, 277–278
operating system, 279
selectors, 277
transactions, 275–276
transport protocols, 280

performance monitoring
JES Monitoring Framework (JESMF)

See Java ES Monitoring Framework
metrics data

See metrics data
tools

See metrics monitoring tools
performance tuning

broker adjustments, 285–286
client runtime adjustments, 286–288
process overview, 269–270
system adjustments, 282–285

permissions
access control file, 140
admin service, 140
computing, 158–159
data store, 128
embedded database, 133
password file, 170
user repository, 143, 336

persistence
about, 127
data store

See data store
file-based data store, 128–129
JDBC-based

See JDBC-based persistence
options (figure), 127
properties, 353–354
security for, 130, 134

persistence services, broker, 79, 127–128
physical destinations

auto-created
See auto-created destinations

batching messages for delivery, 350, 389
commands for managing, 329–331

Index

487

physical destinations (Continued)
compacting, 119
compacting file-based data store, 330
creating, 109, 330
destroying, 112, 330
disk utilization, 118–120
displaying metrics, 331
getting information about, 331
limit behaviors, 388
listing, 114, 331
managing, 107–121
metrics

See destination metrics
naming conventions, 109
pausing, 112, 330
properties of, 387–391
purging, 113–114
purging messages from, 330
querying, 115
restricted scope in cluster, 351, 389
resuming, 113, 330
temporary, 115
types, 329
updating attributes, 330
updating properties, 114
using dead message queue, 120
viewing information about, 114–118
viewing metric information, 117

Port Mapper
about, 97
port assignment for, 318

precedence (of configuration properties), 81
producers

destination limits on, 349, 389
production environment

administration tasks, 36–37
maintaining, 37
setting up, 36–37

properties
auto-create, 348–352
broker instance configuration, 81
broker monitoring service, 366–370
cluster configuration, 370–374
connection services, 344–346

properties (Continued)
httpjms connection service, 456
httpsjms connection service, 456
JDBC-related, 356–359
Logger, 366–370
persistence, 353–354
physical destinations

See physical destinations, properties of
routine services, 346–348
security, 359–362
syntax, 82

protocol types
HTTP, 97
HTTPS, 97
TCP, 96, 97
TLS, 96, 97

protocols, See transport protocols
purging physical destinations, 113–114

Q
querying

broker clusters, 180–182
brokers, 92
connection services, 101
physical destinations, 115

queue load-balanced delivery
auto-created queue, 350
auto-created queues, 350
behavior, 288
properties, 389
tuning for performance, 289

queues, auto-created, 348
quiescing brokers, 90, 326

R
reconnectAttempts managed connection factory

attribute, 408
reconnectAttempts Resource Adapter attribute, 407
reconnectEnabled managed connection factory

attribute, 408
reconnectEnabled Resource Adapter attribute, 406

Index

Open Message Queue 4.5 Administration Guide • February 2011488

reconnectInterval managed connection factory
attribute, 409

reconnectInterval Resource Adapter attribute, 407
reconnection, automatic, See automatic reconnection
reliable delivery

and flow control, 207–208
performance tradeoffs, 274

reloadXMLSchemaOnFaulure destination
property, 391

Resource Adapter
properties, 403
reconnection, 406, 407, 408

ResourceAdapter JavaBean, 405
RESTART property, 72, 73
restarting brokers, 90, 326
resuming

brokers, 91, 326
connection services, 100, 328
physical destinations, 113, 330

routine services, properties, 346–348
routing services, broker, 79, 121

S
Secure Socket Layer standard, See SSL
security

authentication
See authentication

authorization
See authorization

encryption
See encryption

manager
See security manager

object store, for, 200
security manager

about, 137
properties, 359–362

security services, broker, 79, 137–140
selectors

about, 277
performance effect of, 277

self-signed certificates, 161–167, 447

sendUndeliverableMsgsToDMQ ActivationSpec
property, 413

server, MBean, See MBean server
service (Windows)

Java runtime for, 75
reconfiguring, 74
removing broker, 75
running broker as, 73–76
startup parameters for, 75
troubleshooting startup, 76

service types
ADMIN, 96
NORMAL, 96

shutting down brokers, 89, 326
as Windows service, 75

Simple Network Time Protocol (SNTP), 69
Solaris Cluster, configuration for, 354
SSL

about, 140
broker clusters, 185
connection services

See SSL-based connection services
SSL, enabling, 164
SSL

encryption and, 161
SSL-based connection services, implementing, 161
SSL-based connection services, starting up, 165
ssladmin connection service, 97, 161
ssljms connection service, 96, 161
starting

clients, 76–77
SSL-based connection services, 165

startup parameters for broker Windows service, 75
subscriptionDurability activation specification

attribute, 412
subscriptionDurability ActivationSpec property, 412
subscriptionName activation specification

attribute, 412
subscriptionName ActivationSpec property, 412
synchronizing

clocks, 69–70
memory to disk, 129

syntax for all commands, 317–318
syslog, 253, 256

Index

489

system clock synchronization, 69–70

T
TCP protocol type, 96, 97
temporary physical destinations, 115
thread pool management

about, 98
dedicated threads, 98
shared threads, 98

time synchronization service, 69
time-to-live, See message expiration
TLS protocol type, 96, 97
tools, administration, See administration tools
topics, auto-created, 348
transactions

commands for managing, 332
displaying information about, 332
managing, 124–126
performance effect of, 275–276

transport protocols
performance effect of, 280
protocol types

See protocol types
relative speeds, 280
tuning for performance, 283–285

troubleshooting, 291
Windows service startup, 76

tunnel servlet connection, 460
tutorial, 41

U
ulimit command, 70
unquiescing brokers, 90, 326
updating

brokers, 91–92
connection services, 100, 328

usage help, 88, 144, 325
useDMQ destination property, 390, 431
useDMQ property, 120
user data, 138

user groups
default, 140
deleting assignment, 141
predefined, 142

user names, 397
default, 143
format, 144

user repository
about, 138
activating and deactivating users, 146
changing passwords, 145–146
deleting users, 145
flat-file, 141–147
initial entries, 142
LDAP, 147–149
location, 436, 437, 438
platform dependence, 336
populating, 144–145
user groups, 141–143

userName managed connection factory attribute, 408
userName Resource Adapter attribute, 406
useSharedSubscriptionInClusteredContainer

ActivationSpec property, 414
useSharedSubscriptionInClusteredContainer managed

connection factory property, 410

V
validateXMLSchemaEnabled destination

property, 390
version, displaying, 87, 144, 325

W
W32Time service, 70
wildcards

destination names, 109
publishers, 110–111
subscribers, 111

Windows service, See service (Windows)
write operations (for file based store), 129

Index

Open Message Queue 4.5 Administration Guide • February 2011490

X
XMLSchemaURIList destination property, 390
xntpd daemon, 69

Index

491

492

	Open Message Queue 4.5 Administration Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompt Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Java Message Service (JMS) Specification
	JavaDoc
	Example Client Applications
	Example Java Client Applications
	Example C Client Programs
	Example JMX Client Programs

	Online Help

	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Introduction to Message Queue Administration
	Administrative Tasks and Tools
	Administrative Tasks
	Administration in a Development Environment
	Administration in a Production Environment
	Setup Operations
	Maintenance Operations

	Administration Tools
	Built-in Administration Tools
	Command Line Utilities
	Administration Console

	JMX-Based Administration

	Quick-Start Tutorial
	Starting the Administration Console
	Administration Console Online Help
	Working With Brokers
	Starting a Broker
	Adding a Broker to the Administration Console
	To Add a Broker to the Administration Console

	Connecting to a Broker
	To Connect to a Broker

	Viewing Connection Services
	To View Available Connection Services

	Working With Physical Destinations
	Creating a Physical Destination
	To Add a Physical Destination to a Broker

	Viewing Physical Destination Properties
	To View or Modify the Properties of a Physical Destination

	Purging Messages From a Physical Destination
	To Purge Messages From a Physical Destination

	Deleting a Physical Destination
	To Delete a Physical Destination

	Working With Object Stores
	Adding an Object Store
	To Add an Object Store to the Administration Console

	Connecting to an Object Store
	To Connect to an Object Store

	Working With Administered Objects
	Adding a Connection Factory
	To Add a Connection Factory to an Object Store

	Adding a Destination
	To Add a Destination to an Object Store

	Viewing Administered Object Properties
	To View or Modify the Properties of an Administered Object

	Deleting an Administered Object
	To Delete an Administered Object

	Running the Sample Application
	To Run the Sample Application

	Administrative Tasks
	Starting Brokers and Clients
	Preparing System Resources
	Synchronizing System Clocks
	Setting the File Descriptor Limit

	Starting Brokers
	Starting Brokers Interactively
	Starting Brokers Automatically
	Automatic Broker Startup on the Solaris Platforms
	Automatic Broker Startup on the Solaris 9 Platform
	Automatic Broker Startup on the Solaris 10 Platform
	To Implement Automatic Broker Startup on Solaris 10 OS
	To Disable Automatic Broker Startup on Solaris 10 OS

	Automatic Broker Startup on the Linux Platform
	Automatic Broker Startup on Windows
	Reconfiguring the Broker Service
	To Reconfigure a Broker Running as a Windows Service
	Using an Alternative Java Runtime
	Displaying Broker Service Startup Options
	Disabling a Broker From Running as a Windows Service
	Troubleshooting Service Startup Problems
	To See Logged Service Error Events

	Deleting a Broker Instance
	Starting Clients

	Configuring a Broker
	Broker Services
	Setting Broker Configuration Properties
	Modifying Configuration Files
	Setting Configuration Properties from the Command Line

	Managing a Broker
	Command Utility Preliminaries
	Using the Command Utility
	Specifying the User Name and Password
	Specifying the Broker Name and Port
	Displaying the Product Version
	Displaying Help
	Examples

	Managing Brokers
	Shutting Down and Restarting a Broker
	Quiescing a Broker
	Pausing and Resuming a Broker
	Updating Broker Properties
	Viewing Broker Information

	Configuring and Managing Connection Services
	Configuring Connection Services
	Port Mapper
	Thread Pool Management

	Managing Connection Services
	Pausing and Resuming a Connection Service
	Updating Connection Service Properties
	Viewing Connection Service Information

	Managing Connections

	Managing Message Delivery
	Configuring and Managing Physical Destinations
	Command Utility Subcommands for Physical Destination Management
	Creating and Destroying Physical Destinations
	Naming Destinations
	Supported Queue Destination Names
	Supported Topic Destination Names

	Setting Property Values
	Destroying Destinations

	Pausing and Resuming a Physical Destination
	Purging a Physical Destination
	Updating Physical Destination Properties
	Viewing Physical Destination Information
	Managing Physical Destination Disk Utilization
	Using the Dead Message Queue
	Managing the Dead Message Queue
	Enabling Dead Message Logging

	Managing Broker System-Wide Memory
	Managing Durable Subscriptions
	Managing Transactions

	Configuring Persistence Services
	Introduction to Persistence Services
	File-Based Persistence
	File-Based Persistence Properties
	Configuring a File-Based Data Store
	Securing a File-Based Data Store
	Optimizing File-Based Transaction Persistence

	JDBC-Based Persistence
	JDBC-Based Persistence Properties
	Configuring a JDBC-Based Data Store
	To Set Up a JDBC-Based Data Store
	To Display Information About a JDBC-Based Data Store

	Securing a JDBC-Based Data Store

	Data Store Formats

	Configuring and Managing Security Services
	Introduction to Security Services
	Authentication
	Authorization
	Encryption

	User Authentication
	Using a Flat-File User Repository
	User Groups and Status
	Using the User Manager Utility
	User Manager Preliminaries
	Subcommands and General Options
	Displaying the Product Version
	Displaying Help
	Adding a User to the Repository
	Deleting a User From the Repository
	Changing a User’s Password
	Activating or Deactivating a User
	Viewing User Information

	Using an LDAP User Repository
	To Set Up an Administrative User

	Using JAAS-Based Authentication
	Elements of JAAS
	JAAS and Message Queue
	Setting up JAAS-Compliant Authentication

	User Authorization
	Access Control File Syntax
	Application of Authorization Rules
	Authorization Rules for Connection Services
	Authorization Rules for Physical Destinations
	Authorization Rules for Auto—Created Physical Destinations

	Message Encryption
	Using Self-Signed Certificates
	Setting Up an SSL-Based Connection Service Using Self-Signed Certificates
	To Generate a Self-Signed Certificate
	To Regenerate a Key Pair
	To Enable an SSL-Based Connection Service in the Broker
	To Start the Broker

	Configuring and Running an SSL-Based Client Using Self-Signed Certificates
	Application Clients
	Administrative Clients

	Using Signed Certificates
	Obtaining and Installing a Signed Certificate
	To Obtain a Signed Certificate
	To Install a Signed Certificate

	Configuring the Client to Require Signed Certificates
	To Configure the Client Runtime to Require Signed Certificates

	Password Files
	Security Concerns
	Password File Contents

	Connecting Through a Firewall
	To Enable Broker Connections Through a Firewall

	Audit Logging with the Solaris BSM Audit Log

	Configuring and Managing Broker Clusters
	Configuring Broker Clusters
	The Cluster Configuration File
	Cluster Configuration Properties
	Cluster Connection Service Properties
	Conventional Broker Cluster Properties
	Additional Properties for Conventional Clusters with Master Broker
	Additional Properties for Conventional Clusters of Peer Brokers

	Enhanced Broker Cluster Properties
	Enhanced Clusters: General Configuration Properties
	Enhanced Clusters: JDBC Configuration Properties
	Enhanced Clusters: Failure Detection Properties

	Displaying a Cluster Configuration

	Managing Broker Clusters
	Managing Conventional Clusters
	Connecting Brokers into a Conventional Cluster
	To Connect Brokers Using a Cluster Configuration File
	To Connect Brokers from the Command Line
	To Establish Secure Connections Between Brokers

	Adding Brokers to a Conventional Cluster
	To Add a New Broker to a Conventional Cluster Using a Cluster Configuration File
	To Add a New Broker to a Conventional Cluster Without a Cluster Configuration File

	Removing Brokers From a Conventional Cluster
	To Remove a Broker From a Conventional Cluster Using a Cluster Configuration File
	To Remove a Broker From a Conventional Cluster Using the Command Line

	Changing the Master Broker in a Conventional Cluster with Master Broker
	Managing a Conventional Cluster's Configuration Change Record
	To Back Up the Configuration Change Record in a Master Broker
	To Back Up the Configuration Change Record in a Shared JDBC Data Store
	To Restore the Configuration Change Record to a Master Broker
	To Restore the Configuration Change Record to a Shared JDBC Data Store

	Converting Between Types of Conventional Clusters
	To Convert from Using a Master Broker to Using a Shared JDBC Data Store
	To Convert from Using a Shared JDBC Data Store to Using a Master Broker

	Managing Enhanced Clusters
	Connecting Brokers into an Enhanced Cluster
	To Connect Brokers Using a Cluster Configuration File
	To Connect Brokers Using Instance Configuration Files

	Adding and Removing Brokers in an Enhanced Cluster
	To Add a New Broker to an Enhanced Cluster
	To Remove a Broker from an Enhanced Cluster

	Restarting a Failed Broker
	Preventing or Forcing Broker Failover
	Backing up a Shared Data Store

	Converting a Conventional Cluster to an Enhanced Cluster
	Cluster Conversion : File-Based Data Store
	Cluster Conversion: JDBC-Based Data Store

	Managing Administered Objects
	Object Stores
	LDAP Server Object Stores
	File-System Object Stores

	Administered Object Attributes
	Connection Factory Attributes
	Connection Handling
	Broker Address List
	Automatic Reconnection
	Periodic Testing (Pinging) of Connections

	Client Identification
	Client Authentication
	Client Identifier

	Reliability And Flow Control
	Queue Browser and Server Sessions
	Standard Message Properties
	Message Header Overrides

	Destination Attributes

	Using the Object Manager Utility
	Adding Administered Objects
	Adding a Connection Factory
	Adding a Destination

	Deleting Administered Objects
	Listing Administered Objects
	Viewing Administered Object Information
	Modifying Administered Object Attributes
	Using Command Files

	Configuring and Managing Bridge Services
	The Bridge Service Manager
	Bridge-Related Broker Properties
	To Enable the Bridge Service Manager

	Bridge Manager Utility
	Logging of Bridge Services

	Configuring and Managing JMS Bridge Services
	JMS Bridge Components
	JMS Bridge Features
	Pooled, Shared, and Dedicated Connections
	Transactional Message Transfer
	Resource Manager Registration and The Built-In XA Transaction Coordinator

	JMS Bridges in High Availability (HA) Broker Clusters
	Message Transformation During Message Delivery
	JMSReplyTo Header Processing
	Dead Message Queue (DMQ) Processing

	Message Processing Sequence Across a Link in a JMS Bridge
	Configuring a JMS Bridge
	Specifying the Broker Properties for a JMS Bridge
	Creating the XML Configuration File for a JMS Bridge
	jmsbridge Attributes
	link Attributes
	source Attributes
	target Attributes
	dmq Attributes
	connection-factory Attributes
	destination Attributes

	Starting and Stopping JMS Bridges
	To Configure a JMS Bridge to Start at Broker Startup
	To Start a JMS Bridge Manually
	To Stop a JMS Bridge Manually

	Starting and Stopping Links in a JMS Bridge
	To Stop a Link Manually
	To Start a Link Manually

	Configuring and Managing STOMP Bridge Services
	Configuring the STOMP Bridge
	Starting and Stopping the STOMP Bridge
	To Activate the STOMP Bridge
	To Stop the STOMP Bridge Manually
	To Start the STOMP Bridge Manually

	Message Processing Sequence Across the STOMP Bridge
	Message Transformation During Message Processing

	STOMP Protocol Features and the STOMP Bridge

	Monitoring Broker Operations
	Monitoring Services
	Introduction to Monitoring Tools
	Configuring and Using Broker Logging
	Logger Properties
	Log Message Format
	Default Logging Configuration
	Changing the Logging Configuration
	To Change the Logger Configuration for a Broker
	Changing the Output Channel
	Changing Log File Rollover Criteria
	Sending Metrics Data to Log Files
	To Use Log Files to Report Metrics Information

	Logging Dead Messages

	Using the Command Utility to Display Metrics Interactively
	imqcmd metrics
	To Use the metrics Subcommand

	Metrics Outputs: imqcmd metrics
	Brokerwide Metrics
	Connection Service Metrics
	Physical Destination Metrics

	imqcmd query

	Using the JMX Administration API
	Using the Java ES Monitoring Console
	Using the Message-Based Monitoring API
	Setting Up Message-Based Monitoring
	To Set Up Message-based Monitoring

	Security and Access Considerations
	Metrics Outputs: Metrics Messages

	Analyzing and Tuning a Message Service
	About Performance
	The Performance Tuning Process
	Aspects of Performance
	Benchmarks
	Baseline Use Patterns

	Factors Affecting Performance
	Message Delivery Steps
	Application Design Factors Affecting Performance
	Delivery Mode (Persistent/Nonpersistent Messages)
	Use of Transactions
	Acknowledgment Mode
	Durable and Nondurable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type

	Message Service Factors Affecting Performance
	Hardware
	Operating System
	Java Virtual Machine (JVM)
	Connections
	Broker Connection Limits
	Transport Protocols

	Message Service Architecture
	Broker Limits and Behaviors
	Data Store Performance
	Client Runtime Configuration

	Adjusting Configuration To Improve Performance
	System Adjustments
	Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
	Java Virtual Machine Adjustments
	Tuning Transport Protocols
	nodelay
	inbufsz/outbufsz
	HTTP/HTTPS Tuning

	Tuning the File-based Persistent Store

	Broker Memory Management Adjustments
	Using Physical Destination Limits
	Using System-Wide Limits

	Client Runtime Message Flow Adjustments
	Message Flow Metering
	Message Flow Limits
	Consumer Flow Limits
	Connection Flow Limits

	Adjusting Multiple-Consumer Queue Delivery

	Troubleshooting
	A Client Cannot Establish a Connection
	Connection Throughput Is Too Slow
	A Client Cannot Create a Message Producer
	Message Production Is Delayed or Slowed
	Messages Are Backlogged
	Broker Throughput Is Sporadic
	Messages Are Not Reaching Consumers
	Dead Message Queue Contains Messages
	To Inspect the Dead Message Queue

	Reference
	Command Line Reference
	Command Line Syntax
	Broker Utility
	Command Utility
	General Command Utility Options
	Broker Management
	Connection Service Management
	Connection Management
	Physical Destination Management
	Durable Subscription Management
	Transaction Management
	JMX Management

	Object Manager Utility
	Database Manager Utility
	User Manager Utility
	Bridge Manager Utility
	Service Administrator Utility
	Key Tool Utility

	Broker Properties Reference
	Connection Properties
	Routing and Delivery Properties
	Persistence Properties
	File-Based Persistence Properties
	File-Based Persistence Properties for Transaction Logging
	JDBC-Based Persistence Properties

	Security Properties
	Monitoring Properties
	Cluster Configuration Properties
	Bridge Properties
	JMX Properties
	Alphabetical List of Broker Properties

	Physical Destination Property Reference
	Physical Destination Properties

	Administered Object Attribute Reference
	Connection Factory Attributes
	Connection Handling
	Client Identification
	Reliability and Flow Control
	Queue Browser and Server Sessions
	Standard Message Properties
	Message Header Overrides

	Destination Attributes

	JMS Resource Adapter Property Reference
	About Shared Topic Subscriptions for Clustered Containers
	Disabling Shared Subscriptions
	Consumer Flow Control When Shared Subscriptions Are Used

	ResourceAdapter JavaBean
	ManagedConnectionFactory JavaBean
	ActivationSpec JavaBean

	Metrics Information Reference
	JVM Metrics
	Brokerwide Metrics
	Connection Service Metrics
	Physical Destination Metrics

	JES Monitoring Framework Reference
	Common Attributes
	Message Queue Product Information
	Broker Information
	Port Mapper Information
	Connection Service Information
	Destination Information
	Persistent Store Information
	User Repository Information

	Appendixes
	Distribution-Specific Locations of Message Queue Data
	Installations from an IPS image
	Installations from Solaris SVR4 Packages
	Installations from Linux RPMs

	Stability of Message Queue Interfaces
	Classification Scheme
	Interface Stability

	HTTP/HTTPS Support
	HTTP/HTTPS Support Architecture
	Enabling HTTP/HTTPS Support
	Step 1 (HTTPS Only): Generating a Self-Signed Certificate for the Tunnel Servlet
	Step 2 (HTTPS Only): Specifying the Key Store Location and Password
	To Specify the Location and Password of the Certificate Key Store

	Step 3 (HTTPS Only): Validating and Installing the Server’s Self-Signed Certificate
	To Validate and Install the Server’s Self-Signed Certificate

	Step 4 (HTTP and HTTPS): Deploying the Tunnel Servlet
	To Deploy the HTTP or HTTPS Tunnel Servlet
	Modifying the Application Server’s Security Policy File

	Step 5 (HTTP and HTTPS): Configuring the Connection Service
	To Activate the httpjms or httpsjms Connection Service

	Step 6 (HTTP and HTTPS): Configuring a Connection
	Installing a Root Certificate (HTTPS Only)
	Installing a Root Certificate in the Trust Store

	Configuring the Connection Factory (HTTP and HTTPS)
	Using a Single Servlet to Access Multiple Brokers (HTTP and HTTPS)
	Using an HTTP Proxy

	Troubleshooting
	Server or Broker Failure
	Client Failure to Connect Through the Tunnel Servlet
	If a Client Cannot Connect

	JMX Support
	JMX Connection Infrastructure
	MBean Access Mechanism
	The JMX Service URL
	The Admin Connection Factory

	JMX Configuration
	RMI Registry Configuration
	Static JMX Service URL: Using an RMI Registry
	Dynamic JMX Service URL: Not Using an RMI Registry

	SSL-Based JMX Connections
	Broker Side SSL Configuration
	To Activate the SSL-Based JMX connector

	JMX Client Side SSL Configuration

	JMX Connections Through a Firewall

	Frequently Used Command Utility Commands
	Syntax
	Broker and Cluster Management
	Broker Configuration Properties (-o option)

	Service and Connection Management
	Durable Subscriber Management
	Transaction Management
	Destination Management
	Destination Configuration Properties (-o option)

	Metrics

	Index

