
Load Balancing With the Apache mod_jkModule
A common load balancing configuration for GlassFish Server 3.1 is to use the Apache HTTP
Server as the Web server front-end, and the Apache mod_jk module as the connector between
the Web Server and GlassFish Server. See “Configuring GlassFish Server with Apache HTTP
Server and mod_jk” on page 126 for more information.

High Availability Session Persistence
GlassFish Server provides high availability of HTTP requests and session data (both HTTP
session data and stateful session bean data).

Java EE applications typically have significant amounts of session state data. A web shopping
cart is the classic example of a session state. Also, an application can cache frequently-needed
data in the session object. In fact, almost all applications with significant user interactions need
to maintain session state. Both HTTP sessions and stateful session beans (SFSBs) have session
state data.

Preserving session state across server failures can be important to end users. If the GlassFish
Server instance hosting the user session experiences a failure, the session state can be recovered,
and the session can continue without loss of information. High availability is implemented in
GlassFish Server by means of in-memory session replication on GlassFish Server instances
running in a cluster.

For more information about in-memory session replication in GlassFish Server, see “How
GlassFish Server Provides High Availability” on page 20. For detailed instructions on
configuring high availability session persistence, see Chapter 9, “Configuring High Availability
Session Persistence and Failover.”

High Availability Java Message Service
GlassFish Server supports the Java Message Service (JMS) API and JMS messaging through its
built-in jmsra resource adapter communicating with Open Message Queue as the JMS provider.
This combination is often called the JMS Service.

The JMS service makes JMS messaging highly available as follows:

Connection Failover
If the primary JMS host (Message Queue broker) in use by a GlassFish instance fails, Message
Queue can automatically fail over connections to the failed JMS host to other hosts in the
JMS host list, maintaining JMS messaging semantics.

For more information about JMS connection failover, see “Connection Failover” on
page 153.

Overview of High Availability

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • February 201118



Message Queue Broker Clusters
By default, when a GlassFish cluster is created, the JMS service automatically configures a
Message Queue broker cluster to provide JMS messaging services, with one clustered broker
assigned to each cluster instance. This automatically created broker cluster is configurable to
take advantage of the two types of broker clusters, conventional and enhanced, supported by
Message Queue.

Additionally, Message Queue broker clusters created and managed using Message Queue
itself can be used as external, or remote, JMS hosts. Using external broker clusters provides
additional deployment options, such as deploying Message Queue brokers on different hosts
from the GlassFish instances they service, or deploying different numbers of Message Queue
brokers and GlassFish instances.

For more information about Message Queue clustering, see “Using Message Queue Broker
Clusters with GlassFish Server” on page 147.

RMI-IIOP Load Balancing and Failover
With RMI-IIOP load balancing, IIOP client requests are distributed to different server instances
or name servers, which spreads the load evenly across the cluster, providing scalability. IIOP
load balancing combined with EJB clustering and availability also provides EJB failover.

When a client performs a JNDI lookup for an object, the Naming Service essentially binds the
request to a particular server instance. From then on, all lookup requests made from that client
are sent to the same server instance, and thus all EJBHome objects will be hosted on the same
target server. Any bean references obtained henceforth are also created on the same target host.
This effectively provides load balancing, since all clients randomize the list of target servers
when performing JNDI lookups. If the target server instance goes down, the lookup or EJB
method invocation will failover to another server instance.

IIOP Load balancing and failover happens transparently. No special steps are needed during
application deployment. If the GlassFish Server instance on which the application client is
deployed participates in a cluster, the GlassFish Server finds all currently active IIOP endpoints
in the cluster automatically. However, a client should have at least two endpoints specified for
bootstrapping purposes, in case one of the endpoints has failed.

For more information on RMI-IIOP load balancing and failover, see Chapter 11, “RMI-IIOP
Load Balancing and Failover.”

Overview of High Availability

Chapter 1 • High Availability in GlassFish Server 19



How GlassFish Server Provides High Availability
GlassFish Server provides high availability through the following subcomponents and features:

■ “Storage for Session State Data” on page 20
■ “Highly Available Clusters” on page 20

Storage for Session State Data
Storing session state data enables the session state to be recovered after the failover of a server
instance in a cluster. Recovering the session state enables the session to continue without loss of
information. GlassFish Server supports in-memory session replication on other servers in the
cluster for maintaining HTTP session and stateful session bean data.

In-memory session replication is implemented in GlassFish Server 3.1 as OSGi module.
Internally, the replication module uses a consistent hash algorithm to pick a replica server
instance within a cluster of instances. This allows the replication module to easily locate the
replica or replicated data when a container needs to retrieve the data.

The use of in-memory replication requires the Group Management Service (GMS) to be
enabled. For more information about GMS, see “Group Management Service” on page 64.

If server instances in a cluster are located on different hosts, ensure that the following
prerequisites are met:

■ To ensure that GMS and in-memory replication function correctly, the hosts must be on the
same subnet.

■ To ensure that in-memory replication functions correctly, the system clocks on all hosts in
the cluster must be synchronized as closely as possible.

Highly Available Clusters
A highly available cluster integrates a state replication service with clusters and load balancer.

Clusters, Instances, Sessions, and Load Balancing
Clusters, server instances, load balancers, and sessions are related as follows:

■ A server instance is not required to be part of a cluster. However, an instance that is not part
of a cluster cannot take advantage of high availability through transfer of session state from
one instance to other instances.

■ The server instances within a cluster can be hosted on one or multiple hosts. You can group
server instances across different hosts into a cluster.

How GlassFish Server Provides High Availability

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • February 201120



■ A particular load balancer can forward requests to server instances on multiple clusters. You
can use this ability of the load balancer to perform an online upgrade without loss of service.
For more information, see “Upgrading in Multiple Clusters” on page 132.

■ A single cluster can receive requests from multiple load balancers. If a cluster is served by
more than one load balancer, you must configure the cluster in exactly the same way on each
load balancer.

■ Each session is tied to a particular cluster. Therefore, although you can deploy an
application on multiple clusters, session failover will occur only within a single cluster.

The cluster thus acts as a safe boundary for session failover for the server instances within the
cluster. You can use the load balancer and upgrade components within the GlassFish Server
without loss of service.

SSH for Centralized Cluster Administration
GlassFish Server uses secure shell (SSH) to ensure that clusters that span multiple hosts can be
administered centrally. To perform administrative operations on GlassFish Server instances
that are remote from the domain administration server (DAS), the DAS must be able to
communicate with those instances. If an instance is running, the DAS connects to the running
instance directly. For example, when you deploy an application to an instance, the DAS
connects to the instance and deploys the application to the instance.

However, the DAS cannot connect to an instance to perform operations on an instance that is
not running, such as creating or starting the instance. For these operations, the DAS uses SSH to
contact a remote host and administer instances there. SSH provides confidentiality and security
for data that is exchanged between the DAS and remote hosts.

Note – The use of SSH to enable centralized administration of remote instances is optional. If the
use of SSH is not feasible in your environment, you can administer remote instances locally.

For more information, see Chapter 2, “Setting Up SSH for Centralized Administration.”

Recovering from Failures
You can use various techniques to manually recover individual subcomponents.

The following topics are addressed here:

■ “Recovering the Domain Administration Server” on page 22
■ “Recovering GlassFish Server Instances” on page 22
■ “Recovering the HTTP Load Balancer and Web Server” on page 22
■ “Recovering Message Queue” on page 22

Recovering from Failures

Chapter 1 • High Availability in GlassFish Server 21



Recovering the Domain Administration Server
Loss of the Domain Administration Server (DAS) affects only administration. GlassFish Server
clusters and standalone instances, and the applications deployed to them, continue to run as
before, even if the DAS is not reachable

Use any of the following methods to recover the DAS:
■ Back up the domain periodically, so you have periodic snapshots. After a hardware failure,

re-create the DAS on a new host, as described in “Re-Creating the Domain Administration
Server (DAS)” in GlassFish Server Open Source Edition 3.1 Administration Guide.

■ Put the domain installation and configuration on a shared and robust file system (NFS for
example). If the primary DAS host fails, a second host is brought up with the same IP
address and will take over with manual intervention or user supplied automation.

■ Zip the GlassFish Server installation and domain root directory. Restore it on the new host,
assigning it the same network identity.

Recovering GlassFish Server Instances
GlassFish Server provide tools for backing up and restoring GlassFish Server instances. For
more information, see “To Resynchronize an Instance and the DAS Offline” on page 109.

Recovering the HTTP Load Balancer and Web Server
There are no explicit commands to back up only a web server configuration. Simply zip the web
server installation directory. After failure, unzip the saved backup on a new host with the same
network identity. If the new host has a different IP address, update the DNS server or the
routers.

Note – This assumes that the web server is either reinstalled or restored from an image first.

The Load Balancer Plug-in (plugins directory) and configurations are in the Web server
installation directory, typically /opt/SUNWwbsvr. The web-install/web-instance/config
directory contains the loadbalancer.xml file.

Recovering Message Queue
JMS service configurations, including JMS host configurations for Embedded and Local JMS
hosts, are stored in the Domain and are recovered when the Domain Administration Server
(DAS) is recovered.

Recovering from Failures

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • February 201122



For Message Queue brokers acting as Embedded or Local JMS hosts, most private data, such as
file-based messages stores, is stored with the GlassFish instance the broker is servicing and is
recovered when the instance is recovered. However, if any of the following situations applies,
database data must be backed up and restored separately, according to the database vendor's
instructions:

■ The broker uses a JDBC-based persistent store, in which case persistent messages are stored
in a database.

■ The broker is a member of a conventional broker cluster of peer brokers, in which case the
cluster configuration change record is stored in a database.

■ The broker is a member of an enhanced broker cluster, in which case data is stored in a
highly available database.

For Message Queue brokers and broker clusters acting as Remote JMS hosts, use Message
Queue utilities to back up and restore configuration information and private data, as described
in the Open Message Queue 4.5 Administration Guide.

More Information
For information about planning a high-availability deployment, including assessing hardware
requirements, planning network configuration, and selecting a topology, see the GlassFish
Server Open Source Edition 3.1 Deployment Planning Guide. This manual also provides a
high-level introduction to concepts such as:

■ GlassFish Server components such as node agents, domains, and clusters
■ IIOP load balancing in a cluster
■ Message queue failover

For more information about developing applications that take advantage of high availability
features, see the GlassFish Server Open Source Edition 3.1 Application Development Guide.

For information on how to configure and tune applications and GlassFish Server for best
performance with high availability, see the GlassFish Server Open Source Edition 3.1
Performance Tuning Guide, which discusses topics such as:

■ Tuning persistence frequency and persistence scope
■ Checkpointing stateful session beans
■ Configuring the JDBC connection pool
■ Session size
■ Configuring load balancers for best performance

More Information

Chapter 1 • High Availability in GlassFish Server 23


