
■ If all Message Queue brokers are down, it can take up to 30 minutes for GlassFish Server to
go down or up when you are using the default values in JMS. You can change the default
values for this timeout. For example:

asadmin set domain1.jms-service.reconnect-interval-in-seconds=5

Using the Generic Resource Adapter for JMS to Integrate
Supported External JMS Providers

GlassFish Server supports the integration and use of Oracle WebLogic JMS and IBM
WebSphere MQ JMS providers through the use of the Generic Resource Adapter for JMS
(GenericJMSRA), which is available as an Add-On in the Administration Console's Update
Tool. This Java EE connector 1.5 resource adapter can wrap the JMS client library of Oracle
WebLogic JMS and IBM WebSphere MQ and make it available for use by GlassFish. The
adapter is a .rar archive that can be deployed and configured using GlassFish Server
administration tools.

The following topics are addressed here:
■ “Configuring GenericJMSRA for Supported External JMS Providers” on page 35
■ “Using GenericJMSRA with WebLogic JMS” on page 42
■ “Using GenericJMSRA with IBM WebSphere MQ” on page 55

Configuring GenericJMSRA for Supported External
JMS Providers
The GenericJMSRA can be configured to indicate whether the JMS provider supports XA or
not. It is also possible to indicate what mode of integration is possible with the JMS provider.
Two modes of integration are supported by GenericJMSRA. The first one uses JNDI as the
means of integration. In this situation, administered objects are set up in the JMS provider's
JNDI tree and will be looked up for use by GenericJMSRA. Depending on the JMS provider
being used, you may need to use either JNDI or JavaBean mode or have the choice of both. If
that mode is not suitable for integration, it is also possible to use the Java reflection of JMS
administered object JavaBean classes as the mode of integration.

▼ To Deploy and Configure GenericJMSRA
Before deploying GenericJMSRA, JMS client libraries must be made available to GlassFish
Server. For some JMS providers, client libraries might also include native libraries. In such
cases, these native libraries must be made available to any GlassFish Server JVMs.

Download the genericra.rar archive as an Add-On in the Administration Console's Update
Tool.

1

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 35



Deploy GenericJMSRA the same way you would deploy a connector module.

See “Deploying a Connector Module” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide

Create a connector connection pool.

See “To Create a Connector Connection Pool” on page .

Create a connector resource.

See “To Create a Connector Resource” on page .

Create an administered object resource.

See “To Create an Administered Object” on page .

GenericJMSRA Configuration Properties
The following table describes the properties that can be set to when configuring the resource
adapter.

Property Name Valid Values Default Value Description

ProviderIntegration

Mode

javabean/jndi javabean Decides the mode of integration
between the resource adapter and the
JMS client. If jndi is specified, then
the resource adapter will obtain JMS
connection factories and destinations
from the JMS provider's JNDI
repository. If javabean is specified
then the resource adapter will obtain
JMS connection factories and
destinations by instantiating the
appropriate classes directly. Which
option is specified determines which
other properties need to be set.

ConnectionFactory

ClassName

A valid class name None Class name of
javax.jms.ConnectionFactory

implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
javabean.

2

3

4

5

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201036



Property Name Valid Values Default Value Description

QueueConnection

FactoryClassName

A valid class name None Class name of
javax.jms.QueueConnectionFactory

implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
javabean.

TopicConnectionFactory

ClassName

A valid class name None Class name of
javax.jms.TopicConnectionFactory

implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
specified as javabean.

XAConnectionFactory

ClassName

A valid class name None Class name of
javax.jms.ConnectionFactory

implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
specified as javabean.

XAQueueConnection

FactoryClassName

A valid class name None Class name of javax.jms.
XAQueueConnectionFactory

implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
specified as javabean.

XATopicConnection

FactoryClassName

A valid class name None Class name of javax.jms.
XATopicConnectionFactory

implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
javabean.

TopicClassName A valid class name None Class Name of javax.jms.Topic
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
javabean.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 37



Property Name Valid Values Default Value Description

QueueClassName A valid class name None Class Name of javax.jms.Queue
implementation of the JMS client.
This class must be made available on
the application server classpath. Used
if ProviderIntegrationMode is
specified as a javabean.

SupportsXA True/false FALSE Specifies whether the JMS client
supports XA or not.

ConnectionFactory

Properties

Name value pairs separated
by comma

None Specifies the javabean property
names and values of the
ConnectionFactory of the JMS client.
Required only if
ProviderIntegrationMode is
javabean.

JndiProperties Name value pairs separated
by comma

None Specifies the JNDI provider properties
to be used for connecting to the JMS
provider's JNDI. Used only if
ProviderIntegrationMode is jndi.

CommonSetter

MethodName

Method name None Specifies the common setter method
name that some JMS vendors use to
set the properties on their
administered objects. Used only if
ProviderIntegrationMode is
javabean. In the case of Sun Java
System Message Queue, this property
is named setProperty.

UserName Name of the JMS user None User name to connect to the JMS
Provider.

Password Password for the JMS user None Password to connect to the JMS
provider.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201038



Property Name Valid Values Default Value Description

RMPolicy ProviderManaged or
OnePerPhysicalConnection

Provider

Managed

The isSameRM method on an
XAResource is used by the
Transaction Manager to determine if
the Resource Manager instance
represented by two XAResources are
the same. When RMPolicy is set to
ProviderManaged (the default value),
the JMS provider is responsible for
determining the RMPolicy and the
XAResource wrappers in the Generic
Resource Adapter merely delegate the
isSameRM call to the message queue
provider's XA resource
implementations. This should ideally
work for most message queue
products.

Some XAResource implementations
such as WebSphere MQ rely on a
resource manager per physical
connection and this causes issues
when there is inbound and outbound
communication to the same queue
manager in a single transaction (for
example, when an MDB sends a
response to a destination). When
RMPolicy is set to
OnePerPhysicalConnection, the
XAResource wrapper
implementation's isSameRM in
Generic Resource Adapter would
check if both the XAResources use the
same physical connection, before
delegating to the wrapped objects.

Connection Factory Properties
ManagedConnectionFactory properties are specified when a connector-connection-pool is
created. All the properties specified while creating the resource adapter can be overridden in a
ManagedConnectionFactory. Additional properties available only in
ManagedConnectionFactory are given below.

Property Name Valid Value Default Value Description

ClientId A valid client ID None ClientID as specified by JMS 1.1
specification.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 39



Property Name Valid Value Default Value Description

ConnectionFactory

JndiName

JNDI Name None JNDI name of the connection factory
bound in the JNDI tree of the JMS
provider. The administrator should
provide all connection factory properties
(except clientID) in the JMS provider
itself. This property name will be used only
if ProviderIntegratinMode is jndi.

ConnectionValidation

Enabled

true/false FALSE If set to true, the resource adapter will use
an exception listener to catch any
connection exception and will send a
CONNECTION_ERROR_OCCURED event to
application server.

Destination Properties
Properties in this section are specified when a destination (queue or topic) is created. All the
resource adapter properties can be overridden in a destination. Additional properties available
only in the destination are given below.

Property Name Valid Value Default Value Description

DestinationJndiName JNDI Name None JNDI name of the destination bound in
the JNDI tree of the JMS provider. The
Administrator should provide all
properties in the JMS provider itself.
This property name will be used only if
ProviderIntegrationMode is jndi.

DestinationProperties Name value pairs
separated by a comma

None Specifies the javabean property names
and values of the destination of the JMS
client. Required only if
ProviderIntegrationMode is
javabean.

Activation Spec Properties
Properties in this section are specified in the Sun-specific deployment descriptor of MDB as
activation-config-properties. All the resource adapter properties can be overridden in an
Activation Spec. Additional properties available only in ActivationSpec are given below.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201040



Property Name Valid Value Default Value Description

MaxPoolSize An integer 8 Maximum size of server session pool
internally created by the resource
adapter for achieving concurrent
message delivery. This should be equal
to the maximum pool size of MDB
objects.

MaxWaitTime An integer 3 The resource adapter will wait for the
time in seconds specified by this
property to obtain a server session
from its internal pool. If this limit is
exceeded, message delivery will fail.

Subscription

Durability

Durable or Non-Durable Non-Durable SubscriptionDurability as specified
by JMS 1.1 specification.

SubscriptionName None SubscriptionName as specified by
JMS 1.1 specification.

MessageSelector A valid message selector None MessageSelector as specified by JMS
1.1 specification.

ClientID A valid client ID None ClientID as specified by JMS 1.1
specification.

ConnectionFactory

JndiName

A valid JNDI Name None JNDI name of connection factory
created in JMS provider. This
connection factory will be used by
resource adapter to create a
connection to receive messages. Used
only if ProviderIntegrationMode is
configured as jndi.

DestinationJndiName A valid JNDI Name None JNDI name of destination created in
JMS provider. This destination will be
used by resource adapter to create a
connection to receive messages from.
Used only if
ProviderIntegrationMode is
configured as jndi.

DestinationType javax.jms.Queue or
javax.jms.Topic

Null Type of the destination the MDB will
listen to.

Destination

Properties

Name-value pairs separated
by comma

None Specifies the javabean property
names and values of the destination of
the JMS client. Required only if
ProviderIntegrationMode is
javabean.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 41



Property Name Valid Value Default Value Description

RedeliveryAttempts integer Number of times a message will be
delivered if a message causes a
runtime exception in the MDB.

RedeliveryInterval time in seconds Interval between repeated deliveries, if
a message causes a runtime exception
in the MDB.

SendBadMessages

ToDMD

true/false False Indicates whether the resource
adapter should send the messages to a
dead message destination, if the
number of delivery attempts is
exceeded.

DeadMessage

Destination

JndiName

a valid JNDI name. None JNDI name of the destination created
in the JMS provider. This is the target
destination for dead messages. This is
used only if
ProviderIntegrationMode is jndi.

DeadMessage

Destination

ClassName

class name of destination
object.

None Used if ProviderIntegrationMode is
javabean.

DeadMessage

Destination

Properties

Name Value Pairs
separated by comma

None Specifies the javabean property
names and values of the destination of
the JMS client. This is required only if
ProviderIntegrationMode is
javabean.

DeadMessageConnectionFactoryJndiNamea valid JNDI name None JNDI name of the connection factory
created in the JMS provider. This is
the target connection factory for dead
messages. This is used only if
ProviderIntegrationMode is jndi.

DeadMessageDestinationTypequeue or topic destination None The destination type for dead
messages.

ReconnectAttempts integer 0 Number of times a reconnect will be
attempted in case exception listener
catches an error on connection.

ReconnectInterval time in seconds 0 Interval between reconnects.

Using GenericJMSRA with WebLogic JMS
You can configure GenericJMSRA to enable applications running in GlassFish Server to send
messages to, and receive messages from, Oracle WebLogic JMS.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201042



Due to the nature of the WebLogic Server Thin T3 Client that is supported for this purpose,
messages exchanged between GlassFish Server and WebLogic Server cannot contain XA
transactions, nor can they be asynchronous, as described in detail in “Limitations When Using
GenericJMSRA with WebLogic JMS” on page 49.

The following topics are addressed here:

■ “Deploy the WebLogic Thin T3 Client JAR in GlassFish Server” on page 43
■ “Configure WebLogic JMS Resources for Integration” on page 43
■ “Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic

JMS” on page 44
■ “Deploy the GenericJMSRA Archive” on page 45
■ “Configuring an MDB to Receive Messages from WebLogic JMS” on page 45
■ “Accessing Connections and Destinations Directly” on page 47
■ “Limitations When Using GenericJMSRA with WebLogic JMS” on page 49
■ “Configuration Reference of GenericJMSRA Properties for WebLogic JMS” on page 51

Deploy the WebLogic Thin T3 Client JAR in GlassFish Server
WebLogic Server provides several different clients for use by stand-alone applications that run
outside of WebLogic Server. These client are summarized in Overview of Stand-alone Clients in
Programming Stand-alone Clients for Oracle WebLogic Server. When connecting from
GlassFish Server to WebLogic JMS resources you must use the WebLogic Thin T3 client,
wlthint3client.jar. For Glassfish 3.1 or later, simply add the Thin T3 client JAR to the
classpath of your running applications.

There are a couple of methods to deploy the WebLogic Thin T3 client in GlassFish Server:

■ To make the Thin T3 client available to all applications, copy the wlthint3client.jar to
the as-install/lib directory under your GlassFish Server installation. The Thin T3 client can
be found in a WebLogic Server installation in a directory similar to
MW_HOME/server/lib.

■ It is also possible to deploy the Thin T3 client in a less global manner, so that it is specific to
an individual application. For information on how to do this, see “Application-Specific
Class Loading” in GlassFish Server Open Source Edition 3.1 Application Development Guide.

Configure WebLogic JMS Resources for Integration
If you need to configure the necessary WebLogic JMS resources on the WebLogic Server from
which you want to access messages using GlassFish Server, then follow the instructions in the
WebLogic Server documentation for configuring the necessary resources, such as destinations,
and connection factories.

■ JMS System Module Configuration
■ Queue and Topic Destination Configuration
■ Connection Factory Configuration

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 43

http://www.oracle.com/pls/as1111/lookup?id=SACLT117


The example code snippets in this section refer to a WebLogic JMS connection factory named
WLoutboundQueueFactory and queue destination named WLoutboundQueue. For conceptual
overviews on configuring WebLogic JMS resources, refer to Understanding JMS Resource
Configuration in Configuring and Managing JMS for Oracle WebLogic Server. For detailed
instructions on configuring WebLogic JMS resources, refer to Configure JMS system modules
and add JMS resources in the WebLogic Administration Console Online Help.

Create a Resource Adapter Configuration for GenericJMSRA to Work
With WebLogic JMS
Before deploying GenericJMSRA, you need to create a resource adapter configuration in
GlassFish Server. You can do this using either the GlassFish Server Administration console or
the asadmin command. Here's an example using asadmin:

asadmin create-resource-adapter-config --host localhost --port 4848

--property SupportsXA=false:DeliveryType=Synchronous:ProviderIntegrationMode

=jndi:JndiProperties=java.naming.factory.initial\

=weblogic.jndi.WLInitialContextFactory,java.naming.provider.url\

=t3\://localhost\:7001,java.naming.factory.url.pkgs\

=weblogic.corba.client.naming genericra

This creates a resource adapter configuration with the name genericra, and Oracle
recommends not changing the default name. The resource adapter configuration is configured
with the properties specified using the --properties argument; multiple properties are
configured as a colon-separated list of name-value pairs that are entered as a single line. You
will also need to change the host and port that WebLogic Server is running on to suit your
installation.

In this example, the following properties are configured:

Property Value

SupportsXA false

DeliveryType Synchronous

ProviderIntegration

Mode

jndi

JndiProperties java.naming.factory.initial

=weblogic.jndi.WLInitialContextFactory,java.naming.provider.url

=t3://localhost:7001,java.naming.factory.url.pkgs

=weblogic.corba.client.naming

(replace "localhost:7001" with the host:port of WebLogic Server)

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201044

http://www.oracle.com/pls/as1111/lookup?id=JMSAD123
http://www.oracle.com/pls/as1111/lookup?id=JMSAD123
http://www.oracle.com/pls/as1111/lookup?id=WLACH01854
http://www.oracle.com/pls/as1111/lookup?id=WLACH01854


You must use the same values for SupportsXA, DeliveryType and ProviderIntegrationMode

as the required values that are used in this table. The JndiProperties value must be set to a list
of JNDI properties needed for connecting to WebLogic JNDI.

Note – When using asadmin you need to escape each = and any : characters by prepending a
backward slash \. The escape sequence is not necessary if the configuration is performed
through the Administration Console GUI.

For a description of all the resource adapter properties that are relevant for WebLogic JMS, see
the “Configuration Reference of GenericJMSRA Properties for WebLogic JMS” on page 51.

▼ Deploy the GenericJMSRA Archive
The supported version of the GenericJMSRA archive is available as an Add-On in the
Administration Console's Update Tool.

Download the GenericJMSRA archive (genericra.rar) from the GlassFish Server Update Center.

Deploy the resource adapter using the asadmindeploy command:
$ asadmin deploy --user admin --password adminadmin

<location of the generic resource adapter rar file>

▼ Configuring an MDB to Receive Messages from WebLogic JMS
In this example, all configuration information is defined in two deployment descriptor files:
ejb-jar.xml and the GlassFish Server glassfish-ejb-jar.xml file. To configure a MDB to
receive messages from WebLogic JMS, you would configure these deployment descriptor files
as follows:

Configure the ejb-jar.xml deployment descriptor:
<ejb-jar>

<enterprise-beans>

<message-driven>

<ejb-name>SimpleMessageEJB</ejb-name>

<ejb-class>test.simple.queue.ejb.SimpleMessageBean</ejb-class>

<transaction-type>Container</transaction-type>

</message-driven>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>SimpleMessageEJB</ejb-name>

<method-name>onMessage</method-name>

<method-params>

<method-param>javax.jms.Message</method-param>

</method-params>

</method>

1

2

1

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 45



<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Note – If container-managed transactions are configured, then the transactional attribute must
be set to NotSupported. For more information, see “Limitations When Using GenericJMSRA
with WebLogic JMS” on page 49.

Configure the glassfish-ejb-jar.xml deployment descriptor:
<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>SimpleMessageEJB</ejb-name>

<mdb-resource-adapter>

<resource-adapter-mid>genericra</resource-adapter-mid>

<activation-config>

<activation-config-property>

<activation-config-property-name>

ConnectionFactoryJndiName

</activation-config-property-name>

<activation-config-property-value>

jms/WLInboundQueueFactory

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

DestinationJndiName

</activation-config-property-name>

<activation-config-property-value>

jms/WLInboundQueue

</activation-config-property-value>

</activation-config-property>

</activation-config>

</mdb-resource-adapter>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

where:

The <resource-adapter-mid>genericra</resource-adapter-mid> element is used to
specify the resource adapter and resource adapter configurations that was deployed in the
“Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS”
on page 44 instructions. It is recommended you stick to genericra as is used here.

The activation-config element in glassfish-ejb-jar.xml is the one which defines how and
where the MDB receives messages, as follows:

■ The ConnectionFactoryJndiName property must be set to the JNDI name of the connection
factory in the WebLogic JNDI store that will be used to receive messages. Therefore, replace
jms/WLInboundQueueFactory in the example above with the JNDI name used in your
environment.

2

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201046



■ The DestinationJndiName property must be set to the JNDI name of the destination (the
queue or topic from which messages will be consumed) in the WebLogic JNDI store.
Therefore, replace jms/WLInboundQueue in the example above with the JNDI name used in
your environment.

For a description of all the ActivationSpec properties that are relevant for WebLogic JMS, see
the “Configuration Reference of GenericJMSRA Properties for WebLogic JMS” on page 51.

Make sure to use the appropriate WebLogic administration tools, such as the WebLogic
Administration Console or the WebLogic Scripting Tool (WLST). For more information, see
Configure Messaging in the WebLogic Server Administration Console Online Help and the
WebLogic Server WLST Online and Offline Command Reference.

▼ Accessing Connections and Destinations Directly
When configuring a MDB to consume messages from WebLogic JMS your code does not need
to access the WebLogic JMS connection factory and destination directly. You simply define
them in the activation configuration, as shown in “Configuring an MDB to Receive Messages
from WebLogic JMS” on page 45. However when configuring an MDB to send messages, or
when configuring a EJB, Servlet, or application client to either send or receive messages, your
code needs to obtain these objects using a JNDI lookup.

Note – If you want configure connections and destination resources using the Administration
Console, this is explained in the Administration Console online help. When using
Administration Console, following the instruction for creating a new Connector Connection
Pool and Admin Object Resources, and not the instructions for creating a JMS Connection
Pool and Destination Resources. For more information about using asadmin to create these
resources, see “To Create a Connector Connection Pool” on page and “To Create a
Connector Resource” on page .

Looking up the connection factory and destination

The following code looks up a connection factory with the JNDI name jms/QCFactory and a
queue with the namejms/outboundQueue from the GlassFish Server JNDI store:

Context initialContect = new InitialContext();

QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)

jndiContext.lookup("java:comp/env/jms/MyQCFactory");
Queue queue = (Queue) jndiContext.lookup("java:comp/env/jms/outboundQueue");

Note that the resources used are GlassFish Server resources, not WebLogic JMS resources. For
every connection factory or destination that you want to use in the WebLogic JMS JNDI store,
you need to create a corresponding connection factory or destination in the GlassFish Server
JNDI store and configure the GlassFish Server object to point to the corresponding WebLogic
JMS object.

1

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 47

http://www.oracle.com/pls/as1111/lookup?id=WLACH01853
http://www.oracle.com/pls/as1111/lookup?id=WLSTC112


Declaring the connection factory and destination

In accordance with standard Java EE requirements, these resources need to be declared in the
deployment descriptor for the MDB, EJB or other component. For example, for a session bean,
configure the ejb-jar.xml with <resource-env-ref> elements, as follows:
<ejb-jar>

<enterprise-beans>

<session>

. . .

<resource-env-ref>

<resource-env-ref-name>jms/QCFactory</resource-env-ref-name>

<resource-env-ref-type>javax.jms.QueueConnectionFactory</resource-env-ref-type>

</resource-env-ref>

<resource-env-ref>

<resource-env-ref-name>jms/outboundQueue</resource-env-ref-name>

<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

Create a Connector Connection Pool and Connector Resource by entering the following asadmin

commands, both all in one line:

In order to configure a JMS Connection Factory using GenericJMSRA, a Connector connection
pool and resource need to be created in GlassFish Server using names that map to the
corresponding connection factory in the WebLogic JNDI store.
asadmin create-connector-connection-pool --host localhost --port 4848

--raname genericra --connectiondefinition javax.jms.QueueConnectionFactory

--target server --transactionsupport LocalTransaction

--property ConnectionFactoryJndiName=jms/WLOutboundQueueFactory

qcpool

asadmin create-connector-resource --host localhost --port 4848

--poolname qcpool --target server jms/QCFactory

These asadmin commands together creates a connection factory in GlassFish Server and its
corresponding connection pool.

■ The connection pool has the JNDI name jms/WLoutboundQueueFactory and obtains
connections from a connection pool named qcpool.

■ The connection pool qcpool uses the resource adapter genericra and contains objects of
type javax.jms.QueueConnectionFactory.

■ The transactionsupport argument is set to LocalTransaction, which specifies that the
connection will be used in local transactions only. You can also specify NoTransaction.
However, the default setting of XATransaction cannot be used. For more information, see
“Limitations When Using GenericJMSRA with WebLogic JMS” on page 49.

■ The connection pool is configured with the properties specified using the properties
argument; multiple properties are configured as a colon-separated list of name-value pairs.
Only one property is configured in this example, as follows:

ConnectionFactoryJndiName=jms/WLOutboundQueueFactory

2

3

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201048



The ConnectionFactoryJndiName property must be set to the JNDI name of the
corresponding connection factory in the WebLogic JMS JNDI store. Therefore, replace
jms/WLOutboundQueueFactory in the example above with the JNDI name used in your
environment.

■ For a description of the ManagedConnectionFactory properties that are relevant for
WebLogic JMS, see the “Configuration Reference of GenericJMSRA Properties for
WebLogic JMS” on page 51.

Create a destination object that refers to a corresponding WebLogic JMS destination by
entering the following asadmin command, all in one line:
asadmin create-admin-object --host localhost --port 4848 --target server

--restype javax.jms.Queue --property DestinationJndiName=jms/WLOutboundQueue

--raname genericra jms/outboundQueue

This asadmin command creates a destination in GlassFish Server.
■ The destination has the JNDI name jms/outboundQueue, uses the resource adapter

genericra, and is of type javax.jms.Queue.
■ The destination is configured with the properties specified using the properties argument;

multiple properties are configured as a colon-separated list of name-value pairs. Only one
property is configured in this example, as follows:

DestinationJndiName=jms/WLOutboundQueue

The DestinationJndiName property must be set to the JNDI name of the corresponding
destination in the WebLogic JMS JNDI store. Therefore, replace jms/WLOutboundQueue in
the example above with the JNDI name used in your environment.

■ For a description of the destination properties that are relevant for WebLogic JMS, see the
“Configuration Reference of GenericJMSRA Properties for WebLogic JMS” on page 51.

Limitations When Using GenericJMSRA with WebLogic JMS
Due to the nature of the WebLogic T3 Thin Client there are a number of limitations in the way
in which it can be used with GenericJMSRA.

No Support for XA Transactions

WebLogic JMS does not support the optional JMS "Chapter 8" interfaces for XA transactions in
a form suitable for use outside of WebLogic Server. Therefore, the GenericJMSRA
configuration must have the SupportsXA property set to -false. This has a number of
implications for the way in which applications may be used, as described in this section.

Using a MDB to Receive Messages: Container-managed Transactions (CMT)
■ If container-managed transactions are used, the transactional attribute of a MDB should be

set to NotSupported. No transaction will be started. Messages will be received in a
non-transacted session with an acknowledgeMode of AUTO_ACKNOWLEDGE.

4

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 49



■ A transactional Required attribute should not be used; otherwise, MDB activation will fail
with an exception: javax.resource.ResourceException: MDB is configured to use

container managed transaction. But SupportsXA is configured to false in the

resource adapter.

The remaining transactional attributes are normally considered inappropriate for use with a
MDB. If used, the following behavior will occur:

■ If the transactional attribute is RequiresNew, then MDB activation will fail with an
exception: javax.resource.ResourceException: MDB is configured to use

container managed transaction But SupportsXA is configured to false in the

resource adapter.

■ If the transactional attribute is Mandatory, the MDB can be activated but a
TransactionRequiredException (or similar) will always be thrown by the server.

■ If the transactional attribute is Supports, then no transaction will be started and the MDB
will work as if NotSupported had been used.

■ If the transactional attribute is Never, then no transaction will be started and the MDB will
work as if NotSupported had been used.

Using a MDB to Receive Messages: Bean-managed Transactions (BMT)

■ If bean-managed transactions are configured in accordance with the EJB specification any
UserTransaction started by the bean will have no effect on the consumption of messages.

■ Messages will be received in a non-transacted session with an acknowledgeMode of
AUTO_ACKNOWLEDGE.

Accessing Connections and Destinations Directly - Container-managed Transactions
(CMT)

When accessing connections directly (such as when sending messages from a MDB or an EJB)
and container-managed transactions are being used, the connection pool's
transaction-support property should be set to either LocalTransaction or NoTransaction.
If the default value of XATransaction is used, an exception will be thrown at runtime when
createConnection() is called. This is the case irrespective of the transactional attribute of the
MDB or EJB. Note that MDBs must have their transactional attribute set to NotSupported as
specified above; whereas, an EJB can use any transactional attribute.

If there is no transaction in progress within the bean method (for example, notSupported is
being used) then it does not make any difference whether the connection pool's
transaction-support property is set to LocalTransaction or NoTransaction; the
transactional behavior will be determined by the arguments to createSession(). If you want
the outbound message to be sent without a transaction, call createSession(false, ...). If
you want the outbound message to be sent in a local transaction call createSession(true,
Session.SESSION_TRANSACTED), remembering to call session.commit() or
session.rollback()after the message is sent.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201050



If there is a transaction in progress within the bean method (which will only be possible for
EJBs), then setting the connection pool's transaction-support property to LocalTransaction

or NoTransaction gives different results:

■ If it is set to NoTransaction then a non-transacted session will be used.
■ If it is set to LocalTransaction then a (local, non-XA) transacted session will be used,

which will be committed or rolled back when the UserTransaction is committed or rolled
back. In this case, calling session.commit() or session.rollback() will cause an
exception.

No Support for Redelivery Limits and Dead Message Queue

Due to the lack of XA support when using WebLogic JMS, there is no support for
GenericJMSRA's dead message queue feature, in which a message that has been redelivered to a
MDB a defined number of times is sent to a dead message queue.

Limited Support for Asynchronous Receipt of Messages In a MDB

WebLogic JMS does not support the optional JMS "Chapter 8" interfaces for "Concurrent
Processing of a Subscription's Messages" (that is, ServerSession, ServerSessionPool and
ConnectionConsumer) in a form suitable for use outside of WebLogic Server. Therefore, the
generic JMSRA configuration must set the property DeliveryType to Synchronous.

This affects the way in which MDBs consume messages from a queue or topic as follows:

■ When messages are being received from a queue, each MDB instance will have its own
session and consumer, and it will consume messages by repeatedly calling
receive(timeout). This allows the use of a pool of MDBs to process messages from the
queue.

■ When messages are being received from a topic, only one MDB instance will be used
irrespective of the configured pool size. This means that a pool of multiple MDBs cannot be
used to share the load of processing messages, which may reduce the rate at which messages
can be received and processed.
This restriction is a consequence of the semantics of synchronously consuming messages
from topics in JMS: In the case of non-durable topic subscriptions, each consumer receives a
copy of all the messages on the topic, so using multiple consumers would result in multiple
copies of each message being received rather than allowing the load to be shared among the
multiple MDBs. In the case of durable topic subscriptions, only one active consumer is
allowed to exist at a time.

Configuration Reference of GenericJMSRA Properties for WebLogic JMS
The tables in this section list the properties that need to be set to configure the resource adapter
and any activation specs, managed connections, and other administered objects that are

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 51



relevant only when using GenericJMSRA to communicate with WebLogic JMS. For a complete
list of properties, see the comprehensive table in “GenericJMSRA Configuration Properties” on
page 36

Resource Adapter Properties

These properties are used to configure the resource adapter itself when it is deployed, and can
be specified using the create-resource-adapter-config command.

Property Name Required Value Description

SupportsXA false Specifies whether the JMS client
supports XA transactions.

Set to false for WebLogic JMS.

DeliveryType Synchronous Specifies whether an MDB
should use a
ConnectionConsumer

(Asynchronous) or
consumer.receive()

(Synchronous) when
consuming messages.

Set to Synchronous for
WebLogic JMS.

ProviderIntegration

Mode

jndi Specifies that connection
factories and destinations in
GlassFish's JNDI store are
configured to refer to
connection factories and
destinations in WebLogic's
JNDI store.

Set to jndi for WebLogic JMS.

JndiProperties java.naming.factory.initial

=weblogic.jndi.WLInitialContextFactory,

java.naming.provider.url

=t3://localhost:7001,java.naming.factory.url.pkgs

=weblogic.corba.client.naming

(replace localhost:7001 with

the host:port of WebLogic Server)

JNDI properties for connect to
WebLogic JNDI, specified as
comma-separated list of
name=value pairs without
spaces.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201052



Property Name Required Value Description

UserName Name of the WebLogic JMS user User name to connect to
WebLogic JMS. The user name
can be overridden in
ActivationSpec and
ManagedConnection. If no user
name is specified anonymous
connections will be used, if
permitted.

Password Password for the WebLogic JMS user Password to connect to
WebLogic JMS. The password
can be overridden in
ActivationSpec and
ManagedConnection.

LogLevel Desired log level of JDK logger Used to specify the level of
logging.

Connection Factory Properties

ManagedConnectionFactory objects are created in the GlassFish Server JNDI store using the
Administration Console or the asadmin connector-connection-pool command. All the
properties that can be set on a resource adapter configuration can be overridden by setting them
on a destination object. The properties specific to ManagedConnectionFactory objects are
listed in the following table.

Property Name Valid Value Default Value Description

ClientId A valid client ID None ClientID as specified by JMS 1.1
specification.

ConnectionFactory

JndiName

A valid JNDI Name None JNDI name of connection factory in the
GlassFish Server JNDI store. This
connection factory should be configured
to refer to the physical connection factory
in the WebLogic JNDI store.

ConnectionValidation

Enabled

true or false FALSE If set to true, the resource adapter will use
an exception listener to catch any
connection exception and will send a
CONNECTION_ERROR_OCCURED event to
GlassFish Server.

Destination Properties

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 53



Destination (queue or topic) objects are created in the GlassFish Server JNDI store using the
Administration Console or the asadmin connector-admin-object command. All the
properties that can be set on a resource adapter configuration can be overridden by setting them
on a destination object. The properties specific to destination objects are listed in the following
table.

Property Name Valid Value Default Value Description

DestinationJndiName A valid JNDI name None JNDI name of the destination object in
the GlassFish Server JNDI store. This
destination object should be configured
to refer to the corresponding physical
destination in the WebLogic JNDI store.

ActivationSpec Properties

An ActivationSpec is a set of properties that configures a MDB. It is defined either in the MDB's
Sun-specific deployment descriptor sun-ejb-jar.xml using activation-config-property
elements or in the MDB itself using annotation. All the resource adapter properties listed in the
table above can be overridden in a ActivationSpec. Additional properties available only to a
ActivationSpec are given below.

Property Name Valid Value Default Value Description

MaxPoolSize An integer 8 Maximum size of server session pool
internally created by the resource
adapter for achieving concurrent
message delivery. This should be equal
to the maximum pool size of MDB
objects.

Only used for queues; ignored for
topics, when a value of 1 is always
used.

Subscription

Durability

Durable or Non-Durable Non-Durable Only used for topics. Specifies
whether the subscription is durable or
non-durable.

SubscriptionName None Only used for topics when
SubscriptionDurability is Durable.
Specifies the name of the durable
subscription.

MessageSelector A valid message selector None JMS message selector.

ClientID A valid client ID None JMS ClientID.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201054



Property Name Valid Value Default Value Description

ConnectionFactory

JndiName

A valid JNDI Name None JNDI name of connection factory in
the GlassFish Server JNDI store. This
connection factory should be
configured to refer to the physical
connection factory in the WebLogic
JNDI store.

DestinationJndiName A valid JNDI Name None JNDI name of destination in the
GlassFish Server JNDI store. This
destination should be configured to
refer to the physical destination in the
WebLogic JNDI store.

DestinationType javax.jms.Queue or
javax.jms.Topic

Null Specifies whether the configured
DestinationJndiName refers to a
queue or topic.

ReconnectAttempts integer 0 Number of times a reconnect will be
attempted in case exception listener
catches an error on connection.

ReconnectInterval time in seconds 0 Interval between reconnection
attempts.

Using GenericJMSRA with IBM WebSphere MQ
You can configure GenericJMSRA to enable applications running in GlassFish Server to send
messages to, and receive messages from, IBM WebSphere MQ. GlassFish Serveronly supports
using GenericJMSRA with WebSphere MQ version 6.0 and WebSphere MQ version 7.0

These instructions assume that the WebSphere MQ broker and GlassFish Server are deployed
and running on the same physical host/machine. If you have the WebSphere MQ broker
running on a different machine and need to access it remotely, refer to the WebSphere MQ
documentation for configuration details. The resource adapter configuration and other
application server related configuration remains unchanged.

The following topics are addressed here:

■ “Preliminary Setup Procedures for WebSphere MQ Integration” on page 56
■ “Configure the WebSphere MQ Administered Objects” on page 57
■ “Create a Resource Adapter Configuration for GenericJMSRA to Work With WebSphere

MQ” on page 59
■ “Deploy the GenericJMSRA Archive” on page 62
■ “Create the Connection Factories and Administered Objects in GlassFish Server” on page 62
■ “Configuring an MDB to Receive Messages from WebSphere MQ” on page 64

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 55



Preliminary Setup Procedures for WebSphere MQ Integration
Before you can configure WebSphere MQ to exchange messages with GlassFish Server, you
must complete the following tasks:

■ The following permissions must be added to the server.policy and the client.policy file
to deploy GenericJMSRA and to run the client application.
■ Use a text editor to modify the server.policy file in the

${appserver-install-dir}/domains/domain1/config/directory by adding the
following line to the default grant block:

permission java.util.logging.LoggingPermission "control";
permission java.util.PropertyPermission "*", "read,write";

■ If you use an application client in your application, edit the client's client.policy file in
the ${appserver-install-dir}/lib/appclient/ directory by adding the following
permission:

permission javax.security.auth.PrivateCredentialPermission

"javax.resource.spi.security.PasswordCredential * \"*\"","read";
■ To integrate GlassFish Serverwith WebSphere MQ 6.0 or 7.0, copy the necessary JAR files to

the as-install/lib directory:
■ For WebSphere MQ 6.0, copy these JAR files to the as-install/lib directory:

/opt/mqm/java/lib/com.ibm.mq.jar

/opt/mqm/java/lib/com.ibm.mq.jms.Nojndi.jar

/opt/mqm/java/lib/com.ibm.mq.soap.jar

/opt/mqm/java/lib/com.ibm.mqjms.jar

/opt/mqm/java/lib/com.ibm.mqetclient.jar

/opt/mqm/java/lib/commonservices.jar

/opt/mqm/java/lib/dhbcore.jar

/opt/mqm/java/lib/rmm.jar

/opt/mqm/java/lib/providerutil.jar

/opt/mqm/java/lib/CL3Export.jar

/opt/mqm/java/lib/CL3Nonexport.jar

where /opt/mqm is the location of the WebSphere MQ 6.0 installation.
■ For WebSphere MQ 7.0, copy these JAR files to the as-install/lib directory:

/opt/mqm/java/lib/com.ibm.mq.jar,

/opt/mqm/java/lib/com.ibm.mq.jms.Nojndi.jar,

/opt/mqm/java/lib/com.ibm.mq.soap.jar,

/opt/mqm/java/lib/com.ibm.mqjms.jar,

/opt/mqm/java/lib/com.ibm.mq.jmqi.jar,

/opt/mqm/java/lib/com.ibm.mq.commonservices.jar,

/opt/mqm/java/lib/dhbcore.jar,

/opt/mqm/java/lib/rmm.jar,

/opt/mqm/java/lib/providerutil.jar,

/opt/mqm/java/lib/CL3Export.jar,

/opt/mqm/java/lib/CL3Nonexport.jar

where /opt/mqm is the location of the WebSphere MQ 7.0 installation.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201056



■ Set the LD_LIBRARY_PATH environment variable to the java/lib directory, and then restart
GlassFish Server. For example, in a Unix—based system, with WebSphere MQ installed
under /opt/mqm, you would enter:

$ export LD_LIBRARY_PATH=/opt/mqm/java/lib

▼ Configure the WebSphere MQ Administered Objects
This section provides an example of how you could configure the necessary administered
objects, such as destinations and connection factories, on the WebSphere MQ instance from
which you want to access messages using GlassFish Server. Therefore, you will need to change
the administered object names to suit your installation.

If WebSphere MQ created a user and a group named mqm during the installation, then you must
specify a password for the mqm user using the $ passwd mqm command.

Switch to the mqmuser:
$ su mqm

For Linux, set the following kernel version:
$ export LD_ASSUME_KERNEL=2.2.5

Create a new MQ queue manager named ”QM1”:
$ crtmqm QM1

Start the new MQ queue manager.
In the image above, QM1 is associated with the IBM WebSphere MQ broker.

Before You Begin

1

2

3

4

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 57



$ strmqm QM1

Start the MQ listener:
$ runmqlsr -t tcp -m QM1 -p 1414 &

Modify the default JMSAdmin console configuration as follows:

a. Edit the JMSAdmin script in the /opt/mqm/java/bin directory to change the JVM to a
location of a valid JVM your system.

b. Set the relevant environment variable required for JMSAdmin by sourcing the setjmsenv
script located in the /opt/mqm/java/bin directory.

$ cd /opt/mqm/java/bin

$ source setjmsenv

where /opt/mqm is the location of the WebSphere MQ installation.

c. Change the JMSAdmin.config file to indicate the Initial Context Factory you will be using by
setting the following name-value pairs and commenting out the rest:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

PROVIDER_URL=file:/opt/tmp

Create WebSphere MQ queues using the runmqsc console and MQJMS_PSQ.mqsc script.
$ runmqsc QM1 < MQJMS_PSQ.mqsc

Create user defined physical queue for your application using runmqsc console and an
appropriate physical queue name. An example of how this could be done is shown below.
In the image above, ORANGE.LOCAL.QUEUE is associated with QM1.

$ runmqsc QM1

> DEFINE QLOCAL(ORANGE.LOCAL.QUEUE)

> end

Start the WebSphere MQ Broker:
$ strmqbrk -m QM1

In the WebSphere MQ JMSAdmin console, use the following commands to create the connection
factories, XA connection factories, and destinations for your application, as shown in the
following sample, which lists each of the various JMS administered objects.
In the image above, QCF (for QM1) and TQueue (associated with ORANGE.LOCAL.QUEUE) are
defined in the FileSystem Naming Context.
$ ./JMSAdmin

InitCtx>def qcf<JNDI name to be given to the Queue Connection Factory>

hostname<IBM MQ server hostname> port(1414) channel(SYSTEM.DEF.SVRCONN)

transport(CLIENT) qmanager<name of queue manager defined>

5

6

7

8

9

10

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201058



For example:

def qcf(QCF) hostname(localhost) port(1414) channel(SYSTEM.DEF.SVRCONN)

transport(CLIENT) qmanager(QM1)

InitCtx%def xaqcf<JNDI name to be given to the XA Queue Connection Factory>

hostname<IBM MQ server hostname> port(1414) channel(SYSTEM.DEF.SVRCONN)

transport(CLIENT) qmanager<name of queue manager defined>

For example:

def xaqcf(XAQCF) hostname(localhost) port(1414) channel(SYSTEM.DEF.SVRCONN)

transport(CLIENT) qmanager(QM1)

InitCtx%def q<JNDI Name to be given to the Queue> queue<physical queue name>

qmanager(name of queue manager defined )

For example: def q(TQueue) queue(ORANGE.LOCAL.QUEUE) qmanager(QM1)

InitCtx%def tcf<JNDI Name to be given to the Topic Connection Factory>

qmanager(name of queue manager defined )

For example: def tcf(TCF) qmanager(QM1)

InitCtx%def xatcf<JNDI Name to be given to the XA Topic Connection Factory>

qmanager(name of queue manager defined )

For example: def xatcf(XATCF) qmanager(QM1)

InitCtx%def t<JNDI Name to be given to the Topic> topic<sample topic name>

For example: def t(TTopic) topic(topic)

Create a Resource Adapter Configuration for GenericJMSRA to Work
With WebSphere MQ
Before deploying GenericJMSRA, you need to create a resource adapter configuration in
GlassFish Server. You can do this using either the Administration Console or the asadmin
command. Use the following asadmin command to create a resource adapter configuration for
genericra to configure it to work with WebSphere MQ.

asadmin> create-resource-adapter-config

--user <adminname> --password <admin password>

--property SupportsXA=true:ProviderIntegrationMode

=jndi:UserName=mqm:Password=###:RMPolicy

=OnePerPhysicalConnection:JndiProperties

=java.naming.factory.url.pkgs\\

=com.ibm.mq.jms.naming,java.naming.factory.initial\\

=com.sun.jndi.fscontext.RefFSContextFactory,java.naming.provider.url\\

=file\\:\\/\\/opt\\/tmp:LogLevel=finest genericra

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 59



Note – When using asadmin you need to escape each = and any : characters by prepending a
backward slash \. The escape sequence is not necessary if the configuration is performed
through the Administration Console. Also , ensure that the provider URL is configured
correctly depending on the platform. For example, on Windows systems it should be
file:/C:/opt/tmp and on Unix—based systems it is file://opt/tmp.

This creates a resource adapter configuration with the name genericra, and Oracle
recommends not changing the default name. The resource adapter configuration is configured
with the properties specified using the --properties argument; multiple properties are
configured as a colon-separated list of name-value pairs that are entered as a single line.

In this example, the following properties are configured:

Note – The tables in this section describe the GenericJMSRA properties that are relevant only
when integrating with WebSphere MQ. For a complete list of properties, see the comprehensive
table in “GenericJMSRA Configuration Properties” on page 36.

Property Name Required Value Description

SupportsXA true Set the supports distributed
transactions attribute to true.
The level of transactional
support the adapter provides --
none, local, or XA -- depends
on the capabilities of the
Enterprise Information System
(EIS) being adapted. If an
adapter supports XA
transactions and this attribute
is XA, the application can use
distributed transactions to
coordinate the EIS resource
with JDBC and JMS resources.

ProviderIntegration

Mode

jndi Specifies that connection
factories and destinations in
GlassFish's JNDI store are
configured to refer to
connection factories and
destinations in WebSphere
MQ's JNDI store.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201060



Property Name Required Value Description

JndiProperties JndiProperties=

java.naming.factory.url.pkgs\\

=com.ibm.mq.jms.naming,java.naming.

factory.initial\\=com.sun.jndi.fscontext.

RefFSContextFactory,java.naming.

provider.url\\

=file\\:\\/\\/opt\\/tmp:

LogLevel=finest genericra

JNDI properties for connecting
to WebSphere MQ's JNDI,
specified as comma-separated
list of name=value pairs
without spaces.

UserName Name of the WebSphere MQ user User name to connect to
WebSphere MQ.

The user name can be
overridden in ActivationSpec

and ManagedConnection. If no
user name is specified
anonymous connections will be
used, if permitted.

Password Password for the WebSphere MQ user Password to connect to
WebSphere MQ.

The password can be
overridden in ActivationSpec

and ManagedConnection.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 61



Property Name Required Value Description

RMIPolicy OnePerPhysicalConnection Some XAResource
implementations, such as
WebSphere MQ, rely on a
Resource Manager per Physical
Connection, and this causes
issues when there is inbound
and outbound communication
to the same queue manager in a
single transaction (for example,
when an MDB sends a response
to a destination).

When RMPolicy is set to
OnePerPhysicalConnection,
the XAResource wrapper
implementation's isSameRM in
GenericJMSRA would check if
both the XAResources use the
same physical connection,
before delegating to the
wrapped objects. Therefore,
ensure that this attribute is set
to OnePerPhysicalConnection

if the application uses XA.

LogLevel Desired log level of JDK logger Used to specify the level of
logging.

Note – You must use the values for SupportsXA, RMPolicy and ProviderIntegrationMode as
the required values that are used in this table.

Deploy the GenericJMSRA Archive
The GenericJMSRA archive is available as an Add-On in the Administration Console's Update
Tool.

For instructions on downloading and deploying GenericJMSRA, see “Deploy the
GenericJMSRA Archive” on page 45.

Create the Connection Factories and Administered Objects in GlassFish
Server
In order to configure a JMS Connection Factory using GenericJMSRA, a Connector
Connection Pool and resource needs to be created in GlassFish Server, as described in this
section.

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201062



Using the example WebSphere MQ configuration in “Configure the WebSphere MQ
Administered Objects” on page 57, you will see mypool (pointing to GenericJMSRA and QCF)
and jms/MyQCF (for mypool) created in GlassFish Server.

Note – If you want configure connections and destination resources using the Administration
Console, this is explained in the Administration Console online help. When using
Administration Console, following the, instructions for creating a new Connector Connection
Pool and Admin Object Resources, and not the instructions for creating a JMS Connection
Pool and Destination Resources. For more information about using asadmin to create these
resources, see “To Create a Connector Connection Pool” on page and “To Create a
Connector Resource” on page .

▼ Creating Connections and Destinations
In order to configure a JMS Connection Factory, using GenericJMSRA, a Connector
Connection Pool and Destination resources need to be created in GlassFish Server using names
that map to the corresponding connection and destination resources in WebSphere MQ. The
connections and destination name in these steps map to the example WebSphere MQ
configuration in “Configure the WebSphere MQ Administered Objects” on page 57.

Create connection pools that point to the connection pools in WebSphere MQ.

The following asadmin command creates a Connection Pool called mypool and points to the
XAQCF created in WebSphere MQ:

asadmin create-connector-connection-pool -- raname genericra connectiondefinition

javax.jms.QueueConnectionFactory --transactionsupport XATransaction

--property ConnectionFactoryJndiName=QCF mypool

The following asadmin command creates a Connection Pool called mypool2 and points to the
XATCF created in WebSphere MQ:

asadmin create-connector-connection-pool

-- raname genericra connectiondefinition javax.jms.TopicConnectionFactory

--transactionsupport XATransaction

--property ConnectionFactoryJndiName=XATCF mypool2

Create the connector resources.

The following asadmin command creates a connector resource named jms/MyQCF and binds
this resource to JNDI for applications to use:

asadmin create-connector-resource --poolname mypool jms/MyQCF

The following asadmin command creates a connector resource named jms/MyTCF and binds
this resource to JNDI for applications to use:

asadmin create-connector-resource --poolname mypool2 jms/MyTCF

1

2

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 63



Create the JMS destination resources as administered objects.
In the image above, jms/MyQueue (pointing to GenericJMSRA and TQueue) is created in
GlassFish Server.

The following asadmin command creates a javax.jms.Queue administered object and binds it
to the GlassFish Server JNDI tree at jms/MyQueue and points to the jms/TQueue created in
WebSphere MQ.

asadmin create-admin-object --raname genericra --restype javax.jms.Queue

--property DestinationJndiName=TQueue jms/MyQueue

The following asadmin command creates a javax.jms.Topic administered object and binds it
to the GlassFish Server JNDI tree at jms/MyTopic and points to the jms/TTopic created in
WebSphere MQ.

asadmin create-admin-object --raname genericra --restype javax.jms.Topic

--property DestinationJndiName=TTopic jms/MyTopic

Configuring an MDB to Receive Messages from WebSphere MQ
The administered object names in the sample deployment descriptor below map to the example
WebSphere MQ configuration in “Configure the WebSphere MQ Administered Objects” on
page 57. The deployment descriptors need to take into account the resource adapter and the
connection resources that have been created. A sample sun-ejb-jar.xml for a Message Driven
Bean that listens to a destination called TQueue in WebSphere MQ, and publishes back reply
messages to a destination resource named jms/replyQueue in GlassFish Server, as shown
below.

<sun-ejb-jar>

<enterprise-beans>

<unique-id.1</unique-id>

<ejb>

<ejb-name>SimpleMessageEJB</ejb-name>

<jndi-name>jms/SampleQueue</jndi-name>

<!-- QCF used to publish reply messages -->

<resource-ref>

<res-ref-name>jms/MyQueueConnectionFactory</res-ref-name>

<jndi-name>jms/MyQCF</jndi-name>

<default-resource-principal>

<name>mqm</name>

<password>mqm</password>

</default-resource-principal>

</resource-ref>

<!-- reply destination resource> Creating of this replyQueue destination resource is not

shown above, but the steps are similar to creating the "jms/MyQueue" resource -->

<resource-env-ref>

<resource-env-ref-name>jms/replyQueue</resource-env-ref-name>

<jndi-name>jms/replyQueue</jndi-name>

</resource-env-ref>

<!-- Activation related RA specific configuration for this MDB -->

<mdb-resource-adapter>

<!-- resource-adapter-mid points to the Generic Resource Adapter for JMS -->

3

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201064



<resource-adapter-mid>genericra</resource-adapter-mid>

<activation-config>

<activation-config-property>

<activation-config-property-name>DestinationType</activation-config-property-name>

<activation-config-property-value>javax>jms>Queue</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>ConnectionFactoryJndiName</activation-config-property-name>

<activation-config-property-value>QCF</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>DestinationJndiName</activation-config-property-name>

<activation-config-property-value>TQueue</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>MaxPoolSize</activation-config-property-name>

<activation-config-property-value>32</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>RedeliveryAttempts</activation-config-property-name>

<activation-config-property-value>0</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>ReconnectAttempts</activation-config-property-name>

<activation-config-property-value>4</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>ReconnectInterval</activation-config-property-name>

<activation-config-property-value>10</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>RedeliveryInterval</activation-config-property-name>

<activation-config-property-value>1</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>SendBadMessagesToDMD</activation-config-property-name>

<activation-config-property-value>false</activation-config-property-value>

</activation-config-property>

</activation-config>

</mdb-resource-adapter>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

The business logic encoded in Message Driven Bean could then lookup the configured
QueueConnectionFactory/Destination resource to create a connection as shown below.

Context context = null;

ConnectionFactory connectionFactory = null;

logger>info("In PublisherBean>ejbCreate()");
try {

context = new InitialContext();

queue = (javax>jms>Queue) context>lookup ("java:comp/env/jms/replyQueue");
connectionFactory = (ConnectionFactory) context>lookup("java:comp/env/jms/MyQueueConnectionFactory");
connection = connectionFactory>createConnection();

} catch (Throwable t) {

logger>severe("PublisherBean>ejbCreate:" + "Exception: " +

t>toString());

}

Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers

Chapter 16 • Administering the Java Message Service (JMS) 65



66



Appendixes

P A R T I I I

67



68


	GlassFish Server Open Source Edition 3.1 Administration Guide
	Preface
	GlassFish Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Runtime Administration
	Resources and Services Administration
	Administering the Java Message Service (JMS)
	About the JMS Service
	JMS Service High Availability

	Updating the JMS Service Configuration
	Administering JMS Hosts
	About JMS Host Modes
	Configuring Embedded and Local JMS Hosts
	To Create a JMS Host
	To List JMS Hosts
	To Update a JMS Host
	To Delete a JMS Host

	Administering JMS Connection Factories and Destinations
	To Create a Connection Factory or Destination Resource
	To List JMS Resources
	To Delete a Connection Factory or Destination Resource

	Administering JMS Physical Destinations
	To Create a JMS Physical Destination
	To List JMS Physical Destinations
	To Purge Messages From a Physical Destination
	To Delete a JMS Physical Destination

	Troubleshooting the JMS Service
	Using the Generic Resource Adapter for JMS to Integrate Supported External JMS Providers
	Configuring GenericJMSRA for Supported External JMS Providers
	To Deploy and Configure GenericJMSRA
	GenericJMSRA Configuration Properties
	Connection Factory Properties
	Destination Properties
	Activation Spec Properties

	Using GenericJMSRA with WebLogic JMS
	Deploy the WebLogic Thin T3 Client JAR in GlassFish Server
	Configure WebLogic JMS Resources for Integration
	Create a Resource Adapter Configuration for GenericJMSRA to Work With WebLogic JMS
	Deploy the GenericJMSRA Archive
	Configuring an MDB to Receive Messages from WebLogic JMS
	Accessing Connections and Destinations Directly
	Limitations When Using GenericJMSRA with WebLogic JMS
	No Support for XA Transactions
	Limited Support for Asynchronous Receipt of Messages In a MDB

	Configuration Reference of GenericJMSRA Properties for WebLogic JMS

	Using GenericJMSRA with IBM WebSphere MQ
	Preliminary Setup Procedures for WebSphere MQ Integration
	Configure the WebSphere MQ Administered Objects
	Create a Resource Adapter Configuration for GenericJMSRA to Work With WebSphere MQ
	Deploy the GenericJMSRA Archive
	Create the Connection Factories and Administered Objects in GlassFish Server
	Creating Connections and Destinations

	Configuring an MDB to Receive Messages from WebSphere MQ




	Appendixes



