L R 2 4 CHAPTER 4

Broker Clusters

Message Queue supports the use of broker clusters: groups of brokers working together to
provide message delivery services to clients. Clusters enable a Message Queue service to scale
messaging operations by distributing client connections among multiple brokers. Because a
cluster consists of multiple brokers, the cluster helps protect against individual broker failure.
Two cluster models provide different levels of message service availability.

This chapter discusses the architecture and internal functioning of broker clusters. It covers the
following topics:

“Cluster Models” on page 85

“Cluster Message Delivery” on page 86
“Conventional Clusters” on page 89
“Enhanced Clusters” on page 92
“Cluster Models Compared” on page 95
“Cluster Configuration” on page 96

Cluster Models

Message Queue supports two clustering models both of which provide a scalable message
service, but with each providing a different level of message service availability:

= Conventional broker clusters. A conventional broker cluster provides for service
availability. When a broker or a connection fails, clients connected to the failed broker
reconnect to another broker in the cluster. However, messages and state information stored
in the failed broker cannot be recovered until the failed broker is brought back online. The
broker or connection failure can therefore result in a significant delay and in messages being
delivered out of order.

= Enhanced broker clusters. An enhanced broker cluster provides for data availability in
addition to service availability. When a broker or a connection fails, another broker takes
over the pending work of the failed broker. The failover broker has access to the failed
broker's messages and state information. Clients connected to the failed broker reconnect to

85

Cluster Message Delivery

the failover broker. In an enhanced cluster, as compared to a conventional cluster, a broker
or connection failure rarely results in significant delays in message delivery and messages
are always delivered in order.

Note - Despite the message service availability offered by both conventional and enhanced
broker clusters, they do not provide a guarantee against failure and the possibility that certain
failures, for example in the middle of a transaction, could require that some operations be
repeated. It is the responsibility of the messaging application (both producers and consumers)
to handle and respond appropriately to failure notifications from the messaging service.

Conventional and enhanced broker clusters are built on the same underlying infrastructure and
message delivery mechanisms. They differ in how brokers in the cluster are synchronized with
one another and in how the cluster detects and responds to failures.

The sections that follow first describe the infrastructure and delivery mechanisms common to
both clustering models, after which the unique aspects of each model is explained.

Cluster Message Delivery

86

A broker cluster facilitates the delivery of messages between client applications that are
connected to different brokers in the cluster.

The following illustration shows salient features of a Message Queue broker cluster. Each of
three brokers is connected to the other brokers in the cluster: the cluster is fully-connected. The
brokers communicate with each other and pass messages by way of a special cluster connection
service, shown in Figure 4-1 by the dashed lines.

Open Message Queue 4.5 Technical Overview « December 2010

Cluster Message Delivery

FIGURE4-1 Message Queue Broker Cluster

Message Queue Broker Cluster

Broker 1
Clients P
IA)
17\
7\
1 \\
Broker 2 /I \| Broker 3
Vi \
Clients —» (A [------ <] Clients

Each broker typically has a set of messaging clients (producers and/or consumers) that are
directly connected to that broker. For these client applications, the broker to which they are
directly connected is called their home broker. Each client communicates directly only with its
home broker, sending and receiving messages as if that broker were the only broker in the
cluster.

Accordingly, a producer in the cluster produces messages to a destination in its home broker.
The home broker is responsible for routing and delivering the messages to all consumers of the
destination, whether these consumers are local (connected to the home broker) or remote
(connected to other brokers in the cluster). The home broker works in concert with the other
brokers to deliver messages to all consumers, no matter what brokers they are connected to.

Propagation of Information Across a Cluster

To facilitate delivery of messages across the cluster, information about the destinations and
consumers of each broker is propagated to all brokers in the cluster. Each broker therefore
stores the following information:

= The name, type, and properties of all physical destinations in the cluster
= The name, location, and destination of interest of each message consumer

Changes in this information are propagated whenever one of the following events occurs:

= A destination on one of the cluster’s brokers is created or destroyed.

There are minor variations in the propagation of destinations, depending on the kind of
destination:

Chapter4 - Broker Clusters 87

Cluster Message Delivery

88

= Admin-created destinations. When the destination is created, it is propagated across the
cluster. When the destination is deleted on any broker in the cluster, it's deletion is
propagated across the cluster.

= Auto-created destinations. When a producer is created and the corresponding
destination does not exist, the destination is auto-created on the producer's home
broker, but is not immediately propagated across the cluster. By contrast, when a
consumer is created and the corresponding destination does not exist, the destination is
auto-created on the consumer's home broker and is propagated across the cluster (as
part of the propagation of information about the consumer). An auto-created
destination can be explicitly deleted by an administrator on each broker. Otherwise, the
destination will be automatically deleted on each broker either when it has had no
consumers and has contained no messages for two minutes, or when the broker restarts
and there are no messages in the destination.

= Temporary destinations. When the destination is programmatically created, it is
propagated across the cluster. If the consumer of the temporary destination is set to
automatically reconnect in the event of failure, then the destination is stored
persistently, and propagated across the cluster as a persistent destination. When the
consumer connection to the temporary destination closes, the destination is deleted, and
it's deletion is propagated across the cluster. If the home broker of the consumer of a
persistent temporary destination fails and is restarted, and if the consumer does not
reconnect within a specific time interval, then it is assumed that the consumer has failed
and the temporary destination is deleted, and it's deletion is propagated across the
cluster.

= The properties of a destination are changed.
= A message consumer is registered with its home broker.

= A message consumer is disconnected from its home broker (whether explicitly or through
failure of the client, the broker, or the network).

The propagation of destination and consumer information across the cluster means that
destinations and consumers are essentially global to the cluster. In the case of destinations,
properties set for a physical destination (see “Configuring Physical Destinations” on page 67)
apply to all instances of that destination in the cluster. Distributing producers across a cluster
thus results in cumulative cluster-wide limits specified by destination properties such as the
maximum number of messages, the maximum number of message bytes, and the maximum
number of producers.

Message Delivery Mechanisms

Despite the global nature of destinations and consumers in a cluster, a home broker has special
responsibilities with respect to both its producers and consumers:

Open Message Queue 4.5 Technical Overview « December 2010

Conventional Clusters

= A producer’s home broker is responsible for persisting and routing messages originating
from that producer, for logging, for managing transactions, and for processing
acknowledgements from consuming clients across the cluster.

= A consumer’s home broker is responsible for persisting information about consumers, for
delivering remotely produced messages to the consumer, for letting a producer’s home
broker know whether the consumer is still available, and for letting a producer's home
broker know when each message has been successfully consumed.

The cluster connection service transports payload messages, when needed, from destinations
on a home broker to destinations on remote brokers. It also transports control messages, such
as client acknowledgements, from remote brokers back to a home broker. The cluster attempts
to minimize message traffic across the cluster. For example, it only sends a message to a remote
broker if the remote broker is home to a consumer of the message. If a remote broker has two
identical consumers for the same destination (for example two topic subscribers), the message
is sent over the wire only once. (You can further reduce traffic by setting a destination property
specifying that delivery to local consumers has priority over delivery to remote consumers.)

If secure message delivery is required, you can configure a cluster to also provide secure,
encrypted delivery of messages between brokers.

As aresult of the cluster delivery mechanisms described above, each broker in a cluster stores
different persistent messages and maintains different state information. If a broker fails, the
mechanisms for recovering its persistent information depends on the cluster model being used,
as described in subsequent sections.

Conventional Clusters

Message Queue supports two types of conventional clusters:

= Conventional cluster with master broker
= Conventional cluster of peer brokers

Both of these types provide service availability in the same way, but they differ in the way that
cluster state information is maintained.

The following figures illustrate the two types of conventional broker cluster.

Chapter4 - Broker Clusters 89

90

Conventional Clusters

FIGURE 4-2 Conventional Broker Cluster with Master Broker

Clients

Conventional Broker Cluster
Clients —» Configuration
Change
Record
K
7 \
L
\
Broker 2 :'I \| Broker3
/ \
Clients —P =op== <
Data Data Data
Store 2 Store 1 Store 3

Open Message Queue 4.5 Technical Overview « December 2010

Conventional Clusters

FIGURE 4-3 Conventional Broker Cluster of Peer Brokers

Conventional Broker Cluster of Peer Brokers

Configuration

Broker 1 Change Record
Clients
1 S o E
Data : Se ,ﬁ” :
Store 1 ' "c‘v‘\
: ‘0’ e 5
Broker 2 Broker 3
Clients | ()| @ <
Data Data
Store 2 Store 3

Conventional broker clusters have the following characteristics:

= Data Synchronization

Clients

Each broker has its own respective persistent data store in which destinations, persistent
messages, and other state information is stored. Some of this information (for example,
destinations and durable subscriptions) has been propagated to the broker from other
brokers in the cluster. If a broker fails, it is possible for this information to become out of
sync with the information stored by other brokers in the cluster. To guard against this
possibility in a conventional broker cluster, a configuration change record is maintained to
track changes to the cluster’s propagated persistent entities. In a conventional cluster with
master broker, one broker, designated as the master broker, maintains the configuration
change record. In a conventional cluster of peer brokers, the configuration change record is
maintained in a JDBC data store that is accessible to all the brokers.

When an offline broker comes back online (or when a new broker is added to the cluster), it
consults the configuration change record for information about destinations and durable
subscribers, then exchanges information with other brokers about its currently active

message consumers.

Chapter4 - Broker Clusters

91

Enhanced Clusters

In a conventional cluster with master broker, the master broker should always be the first
broker started within the cluster because other brokers cannot complete their initialization
without accessing the configuration change record. Furthermore, if the master broker goes
offline, destination and durable subscriber information cannot be propagated across the
cluster. Under these conditions, you get an exception if you try to create, reconfigure, or
destroy a destination or a durable subscription (auto-created destinations and temporary
destinations are not affected), or attempt a related operation. Similarly, in the absence of a
master broker, any client application attempting to create a durable subscriber or
unsubscribe from a durable subscription gets an error. Nevertheless, client applications can
successfully interact with an existing durable subscriber.

Message production, delivery, and consumption can continue uninterrupted without a
master broker.

Failure Detection and Recovery

A conventional broker cluster detects failures when one broker tries to send data to another
broker and an exception is thrown. When the cluster encounters a failed connection
between brokers, it cannot do anything to recover, other than stop sendng data. It is the
responsibility of an administrator to monitor brokers in the cluster by using Message Queue
administration tools (see “Administration Tools” on page 78) and perform the appropriate
recovery operations.

Client Reconnect

If a broker or its connection to a client fails, the client automatically attempts to reconnect to
the same or another broker in the cluster. The reconnect is governed by connection
properties that specify the order and frequency by which the client attempts to reconnect to
brokers in the cluster. The broker to which the client successfully reconnects becomes the
client's new home broker.

In this scenario, the new home broker (if different from the failed broker) does not have all
the client-related state information that was previously held by the failed broker. For
example, messages to have been consumed by the client or the state of transactions
involving the client might have been lost. As a result, the failure of a broker in a conventional
cluster can cause a delay in message delivery (until the failed broker restarts and the client
reconnects).

Enhanced Clusters

92

The following figure illustrates an enhanced broker cluster. An enhanced broker cluster
provides both service availability and data availability.

Open Message Queue 4.5 Technical Overview « December 2010

Enhanced Clusters

FIGURE4-4 Enhanced Cluster

Enhanced Broker Cluster

Broker 1
Clients >
71\
II, \‘
Broker2 | \ | Broker3
\
/ \
Clients — S mey < Clients

Shared
Highly-Available
Data Store

An enhanced broker cluster has the following characteristics:

Data Synchronization

All brokers in an enhanced cluster share a common persistent data store in which
destinations, persistent messages, and other state information is stored for each broker.
Because all brokers share the same data store, each broker is able to access the state
information stored by other brokers in the cluster. When a broker that has been offline
rejoins the cluster (or when a new broker is added to the cluster) it is able to access the most
current information simply by accessing the shared data store. Similarly, if a broker fails,
another broker is able to access and take over the failed broker's information in the shared
data store.

To achieve data availability, the shared data store must be a highly-available JDBC database.
While it is possible to use a shared data store that is not highly-available, such a data store
would represent a single point of failure for the cluster, and pose a normally unacceptable
risk for a production message service: all brokers in the cluster would be impacted if the
shared data store were to become unavailable.

Failure Detection and Recovery

An enhanced cluster makes use of a distributed heartbeat service by which brokers inform
other brokers that they are online and accessible by the cluster connection service. The
heartbeat service also updates broker state information in the cluster's shared data store.
When no heartbeat packet is detected from a broker for a configurable number of heartbeat

Chapter4 - Broker Clusters 93

Enhanced Clusters

94

intervals, the broker is considered suspect of failure. The other brokers in the cluster then
begin to monitor the suspect broker’s state information in the shared data store to confirm
whether the broker is still online. If the suspect broker does not update its state information
within a configurable interval, it is considered to have failed. There is a trade-off between the
speed and the accuracy of failure detection: configuring the cluster for quick failure
detection increases the likelihood that a slow broker will erroneously be considered to have
failed.

If these failure detection services operating in tandem determine that a broker has failed,
then a failover broker is selected from among the remaining online brokers to take over the
pending work of the failed broker.

The failover broker attempts to take over the failed broker’s persistent state (pending
messages, destinations, durable subscriptions, pending acknowledgments, and open
transactions) so as to provide uninterrupted service to the failed broker’s clients. If two or
more brokers attempt such a takeover, only the first will succeed (the first acquires a lock on
the failed broker’s data in the shared data store, preventing subsequent takeover attempts).

The takeover of a failed broker's state happens very rapidly, however while in process, the
failover broker cannot accept new client connections.

Once takeover is complete and a period for clients to reconnect to the failover broker has
elapsed, the failover broker will clean up any transient resources (such as transactions and
temporary destinations) belonging to the failed broker.

= Client Reconnect

If a broker fails, its clients automatically reconnect to the failover broker, which becomes
their new home broker. The reconnect process is a dynamic interplay between the client
runtime and the broker cluster: if a client attempts to reconnect to a broker that is not the
failover broker, the reconnect is rejected and the client is redirected to the failover broker.

In this scenario, the new home broker (the failover broker) has immediate access to all the
client-related state information that was previously held by the failed broker. The failover
broker can therefore take over where the failed broker left off. As a result, the failure of a
broker in an enhanced cluster will not cause a failure in message delivery. However, during
the short time required for takeover to complete, the failover broker cannot accept new
client connections, causing a short delay in client reconnects, and a corresponding short
delay in message delivery.

To configure an enhanced cluster you set cluster configuration properties for each broker in the
cluster. These properties are detailed in “Enhanced Broker Cluster Properties” in Open Message
Queue 4.5 Administration Guide.

Open Message Queue 4.5 Technical Overview « December 2010

Cluster Models Compared

Cluster Models Compared

Conventional and enhanced cluster models share the same basic infrastructure. They both use
the cluster communication service to enable message delivery between producers and
consumers across the cluster. However, as shown in the following figure and described in
previous sections, these models differ in how destination and consumer information is
synchronized across the cluster, in the mechanisms for detecting failure, in how client
reconnect takes place.

FIGURE4-5 Cluster Infrastructure

e D\
Broker Cluster Infrastructure

Cluster Communication Service

Message Routing and Delivery

(Conventional Cluster Y (Enhanced Cluster B

Distributed Heartbeat and
Monitoring Services

Configuration Change Record

Configured Client Reconnect Failover Broker and
Automatic Client Reconnect
- || L/
\ File-Based | JDBC-based P N File-based | | JDBC-based V
Persistence Persistence Persistence Persistence

=

JDBC
Database

Highly-Available

File-Based
Dla?a gtso?e JDBC Database
Individual Broker Shared Highly-Available
Data Stores Data Store

In addition, while both models rely on the broker's persistence interfaces (both flat-file and
JDBC), in the case of enhanced clusters the shared data store must be a highly-available JDBC
database (a highly-available file-based data store has not yet been implemented).

The following table summarizes the functional differences between the two cluster models. This
information might help in deciding which model to use or whether to switch from one to
another.

Chapter4 - Broker Clusters 95

Cluster Configuration

TABLE4-1 Clustering Model Differences

Functionality Conventional Enhanced

Performance Faster than enhanced cluster Slower than conventional cluster
model. model.

Service availability Yes, but some operations are not Yes.

possible if master broker is down.

Data availability No. State information in failed Yes at all times.
broker is not available until broker
restarts.

Transparent recovery from failure ~ No. Message delivery is Yes. No interruption in message
interrupted. Also, client reconnects ~ delivery. If failure occurs during a
might not be possible if failure transaction commit, an exception
occurs during a transaction might be thrown indicating that the
commit (rare). transaction could not be

committed (extremely rare).

Configuration Set appropriate cluster Set appropriate cluster
configuration properties for each ~ configuration properties for each
broker. broker.

Additional requirements None. Highly-available database.

Restricted to subnet No. Yes.

Cluster Configuration

96

Depending on the clustering model used, you must specify appropriate broker properties to
enable the Message Queue service to manage the cluster. This information is specified by a set of
cluster configuration properties,. Some of these properties must have the same value for all
brokers in a cluster; others must be specified for each broker individually. It is recommended
that you place all configuration properties that must be the same for all brokers in one central
cluster configuration file that is referenced by each broker at startup time. This ensures that all
brokers share the same common cluster configuration information.

See “Configuring Broker Clusters” in Open Message Queue 4.5 Administration Guidefor
detailed information on cluster configuration properties.

Note - Although the cluster configuration file was originally intended for configuring clusters, it
is also a convenient place to store other (non-cluster-related) properties that are shared by all
brokers in a cluster.

For complete information about administering broker clusters, see Chapter 10, “Configuring
and Managing Broker Clusters,” in Open Message Queue 4.5 Administration Guide. For

Open Message Queue 4.5 Technical Overview « December 2010

Cluster Configuration

information about the effect of reconnection on the client, see “Connection Event Notification”
in Open Message Queue 4.5 Developer’s Guide for Java Clients and “Client Connection Failover
(Auto-Reconnect)” in Open Message Queue 4.5 Developer’s Guide for Java Clients.

Chapter4 - Broker Clusters 97

