
Oracle® GlassFish Server 3.1 Application
Development Guide

Part No: 821–2418
November 2010

For Review Purposes Only

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110127@25097

List of Remarks

REMARK 13–1 Writer Still need to determine the main steps for GlassFish User's-only workflow 20
REMARK 13–2 Writer FROM WIKI - "How this directory works is already described in a previous blog —

http://weblogs.java.net/blog/ss141213/archive/2009/05/using_filesyste.html" -- NEED
NEW SECTION IN ADMIN GUIDE CHAP FOR THIS .. 21

REMARK 13–3 Writer There's not enough content in the related wiki page for me add as suitable
documentation:
http://weblogs.java.net/blog/ss141213/archive/2010/03/30/ejb-osgi-service-demo-eclipsecon
... 24

REMARK 13–4 Writer I can't find and such information on the OSGi wiki --
http://wikis.sun.com/display/GlassFish/BlogsGfOsgi .. 28

REMARK 13–5 Writer There are no persistence topics on the OSGi wiki -- ... 28
REMARK 13–6 Writer We need a better overivew of this section. ... 29

3

4

Contents

Preface ...9

Part I Development Tasks and Tools ... 15

Part II Developing Applications and Application Components .. 17

13 Developing OSGi-enabled Java EE Applications .. 19
Overview of OSGi and Java EE Applications ... 19
Create a Simple OSGi Service and Client ... 20
Deploying an OSGi-enabled Web Application (WAR) as an OSGi Bundle 20
Using Typesafe Injection of Dynamic OSGi Services in Hybrid Java EE Applications 21
Using an EJB as OSGi Service .. 24
Using JMS Message Consumer and Producer Services In an OSGi Bundle 25

▼ Create and Deploy the JMS Topic and Connection Factory Resources 28
Using JDBC Resources as OSGi Services .. 28
Using JAX-WS Web Services In an OSGi Bundle ... 29

▼ Create and Deploy the OSGi Service and Web Service Bundles ... 30

Part III Using Services and APIs ... 33

Index ..

5

6

Tables

7

8

Preface

This Application Development Guide describes how to create and run Java Platform, Enterprise
Edition (Java EE platform) applications that follow the open Java standards model for Java EE
components and APIs in the Oracle GlassFish Server environment. Topics include developer
tools, security, and debugging. This book is intended for use by software developers who create,
assemble, and deploy Java EE applications using Oracle servers and software.

This preface contains information about and conventions for the entire Oracle GlassFish Server
(GlassFish Server) documentation set.

GlassFish Server 3.1 is developed through the GlassFish project open-source community at
https://glassfish.dev.java.net/. The GlassFish project provides a structured process for
developing the GlassFish Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the GlassFish Server source code and to contribute to the
development of the GlassFish Server. The GlassFish project is designed to encourage
communication between Oracle engineers and the community.

The following topics are addressed here:

■ “GlassFish Server Documentation Set” on page 9
■ “Related Documentation” on page 11
■ “Typographic Conventions” on page 12
■ “Symbol Conventions” on page 12
■ “Default Paths and File Names” on page 13
■ “Documentation, Support, and Training” on page 14
■ “Searching Oracle Product Documentation” on page 14
■ “Third-Party Web Site References” on page 14

GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for GlassFish Server documentation is
http://download.oracle.com/docs/cd/E18930_01/index.htm. For an introduction to
GlassFish Server, refer to the books in the order in which they are listed in the following table.

9

https://glassfish.dev.java.net/
http://download.oracle.com/docs/cd/E18930_01/index.htm

TABLE P–1 Books in the GlassFish Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK), and
database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Deployment Planning Guide Explains how to build a production deployment of GlassFish Server that
meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Application Deployment Guide Explains how to assemble and deploy applications to the GlassFish Server
and provides information about deployment descriptors.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the GlassFish
Server. These applications follow the open Java standards model for Java EE
components and application programmer interfaces (APIs). This guide
provides information about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to develop
add-on components for GlassFish Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for GlassFish Server.

Embedded Server Guide Explains how to run applications in embedded GlassFish Server and to
develop applications in which GlassFish Server is embedded.

High Availability
Administration Guide

Explains how to configure GlassFish Server to provide higher availability and
scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of GlassFish Server.

Troubleshooting Guide Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Preface

Oracle GlassFish Server 3.1 Application Development Guide • November 201010

http://download.oracle.com/docs/cd/E18930_01/html/821-2434
http://download.oracle.com/docs/cd/E18930_01/html/821-2432
http://download.oracle.com/docs/cd/E18930_01/html/821-2427
http://download.oracle.com/docs/cd/E18930_01/html/821-2437
http://download.oracle.com/docs/cd/E18930_01/html/821-2419
http://download.oracle.com/docs/cd/E18930_01/html/821-2416
http://download.oracle.com/docs/cd/E18930_01/html/821-2433
http://download.oracle.com/docs/cd/E18930_01/html/821-2417
http://download.oracle.com/docs/cd/E18930_01/html/821-2418
http://download.oracle.com/docs/cd/E18930_01/html/821-2415
http://download.oracle.com/docs/cd/E18930_01/html/821-2415
http://download.oracle.com/docs/cd/E18930_01/html/821-2424
http://download.oracle.com/docs/cd/E18930_01/html/821-2426
http://download.oracle.com/docs/cd/E18930_01/html/821-2426
http://download.oracle.com/docs/cd/E18930_01/html/821-2431
http://download.oracle.com/docs/cd/E18930_01/html/821-2436

TABLE P–1 Books in the GlassFish Server Documentation Set (Continued)
Book Title Description

Error Message Reference Describes error messages that you might encounter when using GlassFish
Server.

Reference Manual Provides reference information in man page format for GlassFish Server
administration commands, utility commands, and related concepts.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for GlassFish
Message Queue.

Message Queue Administration
Guide

Explains how to set up and manage a Message Queue messaging system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue for
programmatically configuring and monitoring Message Queue resources in
conformance with the Java Management Extensions (JMX).

Related Documentation
The following tutorials explain how to develop Java EE applications:

■ Your First Cup: An Introduction to the Java EE Platform. For beginning Java EE
programmers, this short tutorial explains the entire process for developing a simple
enterprise application. The sample application is a web application that consists of a
component that is based on the Enterprise JavaBeans specification, a JAX-RS web service,
and a JavaServer Faces component for the web front end.

■ Java EE 6 Tutorial. This comprehensive tutorial explains how to use Java EE 6 platform
technologies and APIs to develop Java EE applications.

Javadoc tool reference documentation for packages that are provided with GlassFish Server is
available as follows.

■ The API specification for version 6 of Java EE is located at http://download.oracle.com/
javaee/6/api/.

■ The API specification for GlassFish Server 3.1, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications (http://www.oracle.com/technetwork/java/
javaee/tech/index.html) might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see the NetBeans Documentation, Training & Support page
(http://www.netbeans.org/kb/).

Preface

11

http://download.oracle.com/docs/cd/E18930_01/html/821-2425
http://download.oracle.com/docs/cd/E18930_01/html/821-2433
http://download.oracle.com/docs/cd/E18930_01/html/821-2442
http://download.oracle.com/docs/cd/E18930_01/html/821-2438
http://download.oracle.com/docs/cd/E18930_01/html/821-2438
http://download.oracle.com/docs/cd/E18930_01/html/821-2441
http://download.oracle.com/docs/cd/E18930_01/html/821-2441
http://docs.sun.com/doc/821-1770
http://docs.sun.com/doc/821-1841
http://download.oracle.com/javaee/6/api/
http://download.oracle.com/javaee/6/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/

For information about the Java DB database for use with the GlassFish Server, see the Java DB
product page (http://www.oracle.com/technetwork/java/javadb/overview/index.html).

The Java EE Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The Java EE Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the Java EE Samples project page
(http://java.net/projects/glassfish-samples).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

Preface

Oracle GlassFish Server 3.1 Application Development Guide • November 201012

http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://java.net/projects/glassfish-samples
http://java.net/projects/glassfish-samples

TABLE P–3 Symbol Conventions (Continued)
Symbol Description Example Meaning

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
GlassFish Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3/glassfish

Windows, all installations:

SystemDrive:\glassfish3\glassfish

as-install-parent Represents the parent of the base installation
directory for GlassFish Server.

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3

Windows, all installations:

SystemDrive:\glassfish3

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Preface

13

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.sun.com/)
■ Support (http://www.sun.com/support/)
■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the http://docs.sun.com web site, you
can use a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Oracle web sites in your search (for example, the Java Developer site on the
Oracle Technology Network at http://www.oracle.com/technetwork/java/index.html),
use oracle.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Preface

Oracle GlassFish Server 3.1 Application Development Guide • November 201014

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/
http://docs.sun.com
http://www.oracle.com/technetwork/java/index.html

Development Tasks and Tools

P A R T I

15

16

Developing Applications and Application
Components

P A R T I I

17

18

Developing OSGi-enabled Java EE Applications

This chapter describes how to configure OSGi services and OSGi client bundles for deployment
on GlassFish Server, where they can then interoperate with Java EE applications. This chapter
includes the following sections:

■ “Overview of OSGi and Java EE Applications” on page 19
■ “Create a Simple OSGi Service and Client” on page 20
■ “Deploying an OSGi-enabled Web Application (WAR) as an OSGi Bundle” on page 20
■ “Using Typesafe Injection of Dynamic OSGi Services in Hybrid Java EE Applications” on

page 21
■ “Using an EJB as OSGi Service” on page 24
■ “Using JMS Message Consumer and Producer Services In an OSGi Bundle” on page 25
■ “Using JDBC Resources as OSGi Services” on page 28
■ “Using JAX-WS Web Services In an OSGi Bundle” on page 29

The OSGi module management subsystem that is provided with GlassFish Server is the Apache
Felix OSGi framework. To enable you to administer this framework, the Apache Felix Remote
Shell is enabled by default in GlassFish Server. For instructions on accessing and using the
Apache Felix Remote Shell, see Oracle GlassFish Server 3.1 Administration Guide.

Overview of OSGi and Java EE Applications
GlassFish Serverenables interaction between OSGi components and Java EE components.
Interaction automatically means bi-directional communication. For example, you can export
EJBs as OSGi services without having to write any OSGi code. That allows any pure OSGi
component, which is running without EE context, to discover the EJB and call it. That in turn
allows you to write business components, such as EJBs, so that they can take advantage of things
like declarative security, transaction, context dependency and injection, and yet allow them to
be accessible to non-EE components.

You can perform distributed transactions as well since you can also configure various EE
infrastructure services, such as TransactionManager, Data Sources, as OSGi services. Then you

13C H A P T E R 1 3

19

http://felix.apache.org
http://felix.apache.org
http://felix.apache.org/site/apache-felix-remote-shell.html
http://felix.apache.org/site/apache-felix-remote-shell.html
http://download.oracle.com/docs/cd/E18930_01/html/821-2416

can start a transaction in your pure OSGi bundle, invoke an EJB as an OSGi service, and the
transaction context will propagate. The same holds true for security or persistence context
propagation as well.

In fact, you can also mix and match in the same application. If you do not want to use the EE
component model, GlassFish Server is extensible enough to be augmented with blueprint
containers or something else to support their model. By default, GlassFish Server ships with a
declarative services bundle. GlassFish Server support for such hybrid applications is not just
limited to EJB applications, there is support for hybrid web applications as well.

Create a Simple OSGi Service and Client
This section explains how to create a simple OSGi service that is invoked by an OSGi client. The
same OSGi service is then invoked by a Web Application Bundle (WAB) client, which is
actually a web application plus an OSGi bundle (also known as a hybrid application). The OSGi
service is then replaced by an EJB-based service using Java Persistence API. This demonstrates
how OSGi client and service can interoperate with Java EE counterparts.

[Remark 13–1 Writer: Still need to determine the main steps for GlassFish User's-only workflow]

Deploying an OSGi-enabled Web Application (WAR) as an
OSGi Bundle

GlassFish Server allows web applications (WAR files) to be deployed as OSGi bundles, and
thereby taking advantage of OSGi platform, as well as the Java EE platform. There are basically
two starting points:

■ You have a war file that has OSGi metadata in it.
■ You have a vanilla war file.

In the latter case, you have to instruct GlassFish Server that it has to add necessary OSGi
metadata to the WAR file. You can also customize the transformation step. It is achieved by
using a special URl protocol called a webbundle together with the use of URL query parameters.
GlassFish Server has a custom URL handler for this protocol and it does an in-place manifest
rewrite when it encounters this scheme.

To use it, you would run a command similar to this in GlassFish Server:

telnet localhost 6666

install webbundle:file:///tmp/mybundle.war

start #bundle_id

Create a Simple OSGi Service and Client

Oracle GlassFish Server 3.1 Application Development Guide • November 201020

Note – Telnet support in is provided by use of the Apache Felix Remote Shell, which is enabled
by default in GlassFish Server. This shell uses the Felix shell service to interact with the OSGi
module management subsystem, and enables you to perform administrative tasks, as described
in the Oracle GlassFish Server 3.1 Administration Guide.

These commands make your web application available in the localhost:8080/mybundle/
directory. A this point, you can control the life cycle of the web application using the OSGi
bundle. For example, if you stop the bundle by issuing the stop #bundle_id command, the web
application is undeployed. To deploy it again, issue the start #bundle_id command.

For vanilla web applications, you need to add a specific metadata called Web-ContextPath in the
manifest.mf to mark the OSGi bundle as a Web Application Bundle (WAB).

Once you have done that, you can either install and start by running the shell commands
without using the webbundleprotocol or simply copy the bundle to the
glassfish/domains/domain1/autodeploy-bundles/ directory.

FROM WIKI - "How this directory works is already described in a previous blog —
http://weblogs.java.net/blog/ss141213/archive/2009/05/using_filesyste.html" -- NEED NEW
SECTION IN ADMIN GUIDE CHAP FOR THIS

Using Typesafe Injection of Dynamic OSGi Services in Hybrid
Java EE Applications

With GlassFish Server, application components can express their dependency on an OSGi
Service, and have the container handle the discovery and binding of OSGi Services and inject
them, by providing an additional qualifier, @OSGiService, in the injection point. So instead of
all the verbose service discovery and binding code, you can state the requirement for an OSGi
Service as follows:

@Inject @OSGiService

StockQuoteService sqs;

Note that the specification of the OSGi service type in the injection point is type-safe. The
developer specifies that the injected service must implement the StockQuoteService interface
using the field's type. Type-safety usually implies lesser runtime errors and easier debugging
and, refactoring.

Since the injection is specified through standard @Inject coupled with a custom OSGiService
qualifier, all standard CDI injection capabilities are available (constructor, field, setter method
injection, programmatic lookup, etc). The container automatically manages service references
and releases them when the component scope is completed.

Remark 13–2
Writer

Using Typesafe Injection of Dynamic OSGi Services in Hybrid Java EE Applications

Chapter 13 • Developing OSGi-enabled Java EE Applications 21

http://felix.apache.org/site/apache-felix-remote-shell.html
http://download.oracle.com/docs/cd/E18930_01/html/821-2416

A standard CDI portable extension (org.glassfish.osgi-cdi) comes pre-installed with
GlassFish Server, that intercepts deployment of hybrid applications that has components who
have expressed dependencies on OSGi services, as shown above. The portable extension takes
care of discovering the service from the service registry using the criteria specified in the
injection point, to bind and track the service and inject the service. Additional service discovery
and injection related metadata could also be specified through annotation elements in the
OSGiService qualifier.

For example, these are the current metadata attributes that could be specified:
■ Service Discovery Criteria: The standard Filter syntax specified in the OSGi Core

Specification can be used to narrow down choices for the Service type in the Service registry.
■ Wait Timeouts: Waits for the specified amount of time for at least one service that matches

the criteria specified to be available in the OSGi Service registry.
■ Dynamic Binding: Used to handle service-dynamism. Since OSGi services are dynamic, they

may not match the life cycle of the application component that has injected a reference to
the service. Through this attribute, you could indicate that a service reference can be
obtained dynamically or not. For stateless or idempotent services, a dynamic reference to a
service implementation would be useful. The container then injects a proxy to the service
and dynamically switches to an available implementation when the current service reference
is invalid.

EXAMPLE 13–1 Example of an OSGi-enabled Stock Quote Service Interface

The following example demonstates how easy it to consume OSGi services in a hybrid Java EE application in a dynamic, type-safe manner u

For example, you could use your preferred IDE to create an OSGi bundle that registers a StockQuoteService
implementation when the bundle is started. You could then create another web application bundle (WAB) that uses
the StockQuoteService by having the container inject the service implementation using the @OSGiService qualifier.
Then the servlet could then find all the symbols for which stock quotes are available and print their current quotes.

1. Your StockQuoteService API service interface could be something like this:

org/acme/stockquoteservice/api/StockQuoteService.java

public interface StockQuoteService {

public Double getQuote(String symbol);

}

2. And the service implementation could be at
org/acme/stockquoteservice/impl/SimpleStockQuoteServiceImpl.java and could have a fixed list of
symbols and quotes. The service implementation is registered in the start() method in the BundleActivator

public class SimpleServiceActivator implements BundleActivator {

public void start(BundleContext context) throws Exception {

context.registerService(StockQuoteService.class.getName(),

new SimpleStockQuoteServiceImpl(), null);

}

}

3. To deploy the bundle, use the Apache Felix Gogo shell . For example, if the Stock Quote service resides in the
/tmp directory, install the bundle as follows:

Using Typesafe Injection of Dynamic OSGi Services in Hybrid Java EE Applications

Oracle GlassFish Server 3.1 Application Development Guide • November 201022

EXAMPLE 13–1 Example of an OSGi-enabled Stock Quote Service Interface (Continued)

telnet localhost 6666

install webbundle:file:///tmp/stockquote_service/target/stockquote_service.jar

The shell will provide a Bundle ID for the installed bundle, as follows:

Bundle ID: 275

4. Start the bundle as follows:

start #bundle275

Tip – (Remember to replace ”275” in this command with the bundle ID provided by your Gogo shell.)

The Stock Quote service implementation is initialized during the bundle startup and registered in the OSGi
Service Registry. An entry similar to the following must appear in the Apache Felix Gogo shell.

Registered:[IBM, MSFT, HPQ, ORCL]

5. The stockquoteweb application bundle references and uses the Stock Quote service, as follows:

public class StockQuoteServlet extends HttpServlet {

@Inject

@OSGiService(/* wait for 1 min */ waitTimeout=60*1000)

StockQuoteService sqs;

...

}

Note that this WAR is a normal web application bundle, with an empty beans.xml descriptor to indicate that it
is a CDI bean archive. The context root is specified as stock_quote, using the Web-ContextPath manifest
header:

Web-ContextPath /stockquote

For simplicity, the service API and one implementation of that service can be bundled in the
stockquote_service bundle.

6. Install the stock quote WAB bundle using the Gogo shell. For example, if the WAR file is in the /tmp directory,
use the shell to install WAB bundle, and then start the WAB bundle using the identifier provided by the shell, as
follows:

install file:///tmp/stockquote_cdi_wab/target/stockquote_cdi_wab.war

Bundle ID: 276

start 276

7. To see the stock quotes provided by the stock quote service, go to the following URL:
http://localhost:8080/stockquote/listThe web application uses the Stock Quote service implementation
to get the quotes for a set of stock symbols.

8. To see how service dynamism is handled, stop the service bundle by executing stop 275 in the Gogo shell. This
stops the service bundle and the registered service implementation is removed from the service registry and is
now unavailable for use. Refresh the http://localhost:8080/stockquote/list URL. Since the there is a wait

Using Typesafe Injection of Dynamic OSGi Services in Hybrid Java EE Applications

Chapter 13 • Developing OSGi-enabled Java EE Applications 23

EXAMPLE 13–1 Example of an OSGi-enabled Stock Quote Service Interface (Continued)

timeout of 30 seconds, the OSGi CDI extension waits for 30 seconds before it quits and the web application
prints service unavailable. However within the 30 seconds, if you execute start 275 to start the service
bundle, the service bundle would register the service implementation again and the container would get the
latest service implementation and provide it to the servlet.

stop 275

SimpleServiceActivator stopped

start 275

SimpleServiceActivator::start

SimpleStockQuoteServiceImpl::Initializing quotes

SimpleStockQuoteServiceImpl::getSymbols

Registered:[IBM, MSFT, HPQ, ORCL]

SimpleServiceActivator::registration of Stock quote service successful

Using an EJB as OSGi Service

There's not enough content in the related wiki page for me add as suitable documentation:
http://weblogs.java.net/blog/ss141213/archive/2010/03/30/ejb-osgi-service-demo-eclipsecon

The example is organized as shown in this diagram:

Remark 13–3
Writer

Using an EJB as OSGi Service

Oracle GlassFish Server 3.1 Application Development Guide • November 201024

All the components including the EJB are deployed as separate OSGi bundle.

EJB uses JPA in container-managed mode to communicate with the database.

Both the admin client and Web Application Bundle client use the EJB using OSGi service
registry.

Deployment order of bundles is irrelevant.

Local EJBs being accessed from other bundles.

Using JMS Message Consumer and Producer Services In an
OSGi Bundle

This section contains an example of a JMS hybrid (OSGi + Java EE) application. In fact, it is a
complete JMS consumer and producer bundle using OSGi and GlassFish Server.

JMS Message Consumer Bundle

FIGURE 13–1 Example of an EJB as an OSGi Service

Using JMS Message Consumer and Producer Services In an OSGi Bundle

Chapter 13 • Developing OSGi-enabled Java EE Applications 25

The JMS message consumer bundle is also an OSGi bundle that contains a single class, which is
the message consumer or listener. It is implemented as a Message Driven Bean (MDB). There is
nothing OSGi-specific in the bean. The JAR file contains OSGi metadata and an additional
GlassFish Server specific header called Export-EJB to indicate to the server that the OSGi
bundle contains EJBs that need to be processed.

The relevant metadata for the EJB OSGi bundle looks like this:

[MANIFEST osgijms1.consumer.jar]

Export-EJB NONE

Bundle-ManifestVersion 2

Bundle-SymbolicName my.osgijms1.consumer

Bundle-Version 1.0.0.SNAPSHOT

Import-Package javax.ejb,javax.jms

Manifest-Version 1.0

The MDB looks like this:

@MessageDriven(mappedName = "jms/osgi.Topic1")

public class AnMDB implements MessageListener {

public void onMessage(Message message) {

String str = null;

if (message instanceof TextMessage) {

try {

str = TextMessage.class.cast(message).getText();

} catch (JMSException e) {

// ignore

}

}

if (str == null) str = message.toString();

System.out.println("AnMDB Received: " + str);

}

}

JMS Message Producer Bundle

The JMS message producer bundle contains a single BundleActivator class. The bundle
activator is configured about JMS destination using the OSGi Configuration Administration
service. Upon configuration, it sends messages to the JMS destination. The complete source
code for the message producer is shown below:

public class Activator1 implements BundleActivator {

public void start(BundleContext context) throws Exception {

System.out.println("Message producer started -

waiting to be configured with topic name");
Properties props = new Properties();

props.put(Constants.SERVICE_PID, "osgijms1.producer");
context.registerService(ManagedService.class.getName(), new ManagedService() {

public void updated(Dictionary properties) throws ConfigurationException {

if (properties != null) {

String destinationName = (String) properties.get("osgijms1.Destination");

Using JMS Message Consumer and Producer Services In an OSGi Bundle

Oracle GlassFish Server 3.1 Application Development Guide • November 201026

String connectionFactoryName = (String) properties.get

("osgijms1.ConnectionFactory");
int noOfMsgs = Integer.valueOf((String) properties.get

("osgijms1.NoOfMsgs"));
sendMessage(connectionFactoryName, destinationName, noOfMsgs);

}

}

}, props);

}

private void sendMessage(String connectionFactoryName, String destinationName,

int noOfMsgs) {

Connection connection = null;

try {

InitialContext ctx = new InitialContext();

ConnectionFactory connectionFactory = (ConnectionFactory)

ctx.lookup(connectionFactoryName);

connection = connectionFactory.createConnection();

Session session = connection.createSession(

false,

Session.AUTO_ACKNOWLEDGE);

Destination dest = (Destination) ctx.lookup(destinationName);

MessageProducer producer = session.createProducer(dest);

TextMessage message = session.createTextMessage();

for (int i = 0; i < noOfMsgs; i++) {

message.setText("This is message " + (i + 1));

System.out.println("Sending message: " + message.getText());

producer.send(message);

}

/*

* Send a non-text control message indicating end of

* messages.

*/

producer.send(session.createMessage());

} catch (JMSException e) {

System.err.println("Exception occurred: " + e.toString());

} catch (NamingException e) {

System.err.println("Exception occurred: " + e.toString());

} finally {

if (connection != null) {

try {

connection.close();

} catch (JMSException e) {

}

}

}

}

public void stop(BundleContext context) throws Exception {

}

}

Using JMS Message Consumer and Producer Services In an OSGi Bundle

Chapter 13 • Developing OSGi-enabled Java EE Applications 27

▼ Create and Deploy the JMS Topic and Connection
Factory Resources

Create the JMS topic and connection factory resources by executing the following asadmin

commands:
asadmin create-jms-resource --restype javax.jms.Topic jms/osgi.Topic1

asadmin create-jms-resource --restype javax.jms.ConnectionFactory

jms/osgi.ConnectionFactory1

Copy the message consumer and producer bundles and the configuration file to the
domain1/autodeploy/bundles/ directory. You can copy them in any order you want, but it is
recommended that you copy them in the following order and monitor the
domain1/logs/server.log. (For example, you can usetail -f) to see the action.)
cp ./message-consumer/target/osgijms1.consumer.jar

$glassfish/domain1/autodeploy/bundles

cp ./message-producer/target/osgijms1.producer.jar

$glassfish/domain1/autodeploy/bundles/

cp ./osgijms1.producer.cfg $glassfish/domain1/autodeploy/bundles/

We will make the JMS resources available as OSGi services just like we make JDBC resources
available as OSGi services. Once we do that, our message producer can track the service and
send message once the resource is deployed.

I can't find and such information on the OSGi wiki --
http://wikis.sun.com/display/GlassFish/BlogsGfOsgi

Using JDBC Resources as OSGi Services
This section contains an example that demonstrates how to make JDBC resources available as
OSGi services.

There are no persistence topics on the OSGi wiki --

1

2

3

Remark 13–4
Writer

Remark 13–5
Writer

Using JDBC Resources as OSGi Services

Oracle GlassFish Server 3.1 Application Development Guide • November 201028

Using JAX-WS Web Services In an OSGi Bundle
This section contains an example that demonstrates a JAX-WS web service invoking an OSGi
service using an OSGi service registry. The flow of the application modules is demonstrated in
the following diagram:

We need a better overivew of this section.

■ web-service-client.jar -- A plain JAR file that makes use of JAX-WS stack of Java SE
environment to invoke the web service. It has a single class named
sahoo.hybridapp.jaxws1.webserviceclient.Main. The rest of the classes that are part of
the JAR are generated by the WSDL compiler as part of the build.

■ web-service.war -- A Web Application Bundle (WAB). A WAB is a hybrid application -- it
is both a Java EE archive as well as an OSGi bundle. In this case, it is a WAR file as well as an
OSGi bundle. It is a WAR file, because it contains a servlet-based JAX-WS endpoint. It is an
OSGi bundle, because we want to make use of OSGi service in the implementation of our
web service. It contains a single class named
sahoo.hybridapp.jaxws1.webservice.WatchWebService, which is defined as follows:

package sahoo.hybridapp.jaxws1.webservice;

import sahoo.hybridapp.jaxws1.service.Watch;

import org.osgi.framework.*;

import javax.jws.*;

@WebService

FIGURE 13–2 Example of a Web Service in an OSGi Bundle

Remark 13–6
Writer

Using JAX-WS Web Services In an OSGi Bundle

Chapter 13 • Developing OSGi-enabled Java EE Applications 29

public class WatchWebService {

@WebMethod public String currentTime() {

Watch watch = getService(Watch.class);

System.out.println("WatchService: OSGi service is: " + watch);

if (watch == null) {

return "I don’t have a watch";
} else {

return watch.currentTime();

}

}

/**

* This method looks up service of given type in OSGi service registry and returns if found.

* Returns null if no such service is available,

*/

private static <T> T getService(Class<T> type) {

BundleContext ctx = BundleReference.class.cast(WatchWebService.class.getClassLoader())

.getBundle().getBundleContext();

ServiceReference ref = ctx.getServiceReference(type.getName());

return ref != null ? type.cast(ctx.getService(ref)) : null;

}

}

The MANIFEST.MF of web-service.war looks like this:

Bundle-ClassPath WEB-INF/classes/

Bundle-ManifestVersion 2

Bundle-SymbolicName sahoo.hybridapp.jaxws1.web-service

Bundle-Version 1.0.0.SNAPSHOT

Import-Package javax.jws;version="2.0",org.osgi.framework;version="1.5",sahoo.hybridapp.jaxws1.service;version="1.0"
Web-ContextPath /hybridapp.jaxws1.web-service

■ osgi-service.jar -- An OSGi bundle that provides a service to other bundles. It contains
two POJOs:
– An interface named sahoo.hybridapp.jaxws1.service.Watch.
– An implementation of the same interface

calledsahoo.hybridapp.jaxws1.service.Activator, which is responsible for
registering an instance of WatchImpl in the OSGi service registry.

▼ Create and Deploy the OSGi Service and Web Service
Bundles
Use your preferred IDE to build the necessary OSGi service and WAB bundles. For the purposes
of this example name them osgi-service/target/osgi-service.jar and
web-service/target/web-service.war.

Deploy these OSGi service bundles to GlassFish by simply copying them to
domain1/autodeploy/bundles/ directory, as follows:
cp osgi-service/target/osgi-service.jar web-service/target/web-service.war

$glassfish.home/domains/domain1/autodeploy/bundles/

1

2

Using JAX-WS Web Services In an OSGi Bundle

Oracle GlassFish Server 3.1 Application Development Guide • November 201030

GlassFish will automatically detect that web-service.war is a WAB and will perform necessary
deployment of Java EE artifacts as a result of which a web service endpoint will be available. You
would see something like this appearing in server.log:

WS00018: Webservice Endpoint deployed WatchWebService listening at address at

http://localhost:8080/hybridapp.jaxws1.web-service/WatchWebServiceService

Once the web service is available, build the web-service-client.jar using a command such as this:
mvn -f web-service-client/pom.xml

This is necessary because the WSDL URL, as specified in web-service-client/pom.xml, is not
available until the web service is deployed.

To test the web service, run:
java -jar web-service-client.jar

The web service will print the current time as obtained from the web service, which in turn
obtains it from the OSGi service.

3

4

Using JAX-WS Web Services In an OSGi Bundle

Chapter 13 • Developing OSGi-enabled Java EE Applications 31

32

Using Services and APIs

P A R T I I I

33

34

	Oracle® GlassFish Server 3.1 Application Development Guide
	Preface
	GlassFish Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Development Tasks and Tools
	Developing Applications and Application Components
	Developing OSGi-enabled Java EE Applications
	Overview of OSGi and Java EE Applications
	Create a Simple OSGi Service and Client
	Deploying an OSGi-enabled Web Application (WAR) as an OSGi Bundle
	Using Typesafe Injection of Dynamic OSGi Services in Hybrid Java EE Applications
	Using an EJB as OSGi Service
	Using JMS Message Consumer and Producer Services In an OSGi Bundle
	Create and Deploy the JMS Topic and Connection Factory Resources

	Using JDBC Resources as OSGi Services
	Using JAX-WS Web Services In an OSGi Bundle
	Create and Deploy the OSGi Service and Web Service Bundles

	Using Services and APIs

