
Administering Database Connectivity

This chapter provides procedures for performing database connectivity tasks in the Oracle
GlassFish Server 3.1 environment by using the asadmin command-line utility.

The following topics are addressed here:

■ “About Database Connectivity” on page 215
■ “Setting Up the Database” on page 216
■ “Configuring Access to the Database” on page 219
■ “Configuration Specifics for JDBC Drivers” on page 232

Instructions for accomplishing these tasks by using the Administration Console are contained
in the Administration Console online help.

About Database Connectivity
A database management system (DBMS) provides facilities for storing, organizing, and
retrieving data. The information in databases is often described as persistent data because it is
saved on disk and exists after the application process ends. Most business applications store
data in relational databases. Applications can access database information by using the Java
Database Connectivity (JDBC) API.

The key elements of database connectivity are the following:

■ Database. The repository where data is stored for an enterprise. Java EE applications access
relational databases through the JDBC API. For administration procedures, see “Setting Up
the Database” on page 216.

■ JDBC Connection Pool. A JDBC connection pool is a group of reusable connections for a
particular database. For administration procedures, see “Administering JDBC Connection
Pools” on page 220.

11C H A P T E R 1 1

215

■ JDBC Resource. A JDBC resource (data source) provides applications with a means of
connecting to a database. To create a JDBC resource, specify the connection pool with
which it is associated. Multiple JDBC resources can specify a single connection pool. A
JDBC resource is identified by its Java Naming and Directory Interface (JNDI) name. For
administration procedures, see “Administering JDBC Resources” on page 228.

■ JDBC Driver. A database driver is a software component that enables a Java application to
interact with a database connectivity API . Each database requires its own driver. For
administration procedures, see “Integrating the JDBC Driver” on page 231.

At runtime, the following sequence occurs when an application connects to a database:

1. The application gets the JDBC resource associated with the database by making a call
through the JNDI API.

Using the JNDI name of the resource, the naming and directory service locates the JDBC
resource. Each JDBC resource specifies a connection pool.

2. Using the JDBC resource, the application gets a database connection.

GlassFish Server retrieves a physical connection from the connection pool that corresponds
to the database. The pool defines connection attributes such as the database name (URL),
user name, and password.

3. After the database connection is established, the application can read, modify, and add data
to the database.

The application accesses the database by making calls to the JDBC API. The JDBC driver
translates the application’s JDBC calls into the protocol of the database server.

4. When the application is finished accessing the database, the application closes the
connection and returns the connection to the connection pool.

Setting Up the Database
Most applications use relational databases to store, organize, and retrieve data. Applications
access relational databases through the Java Database Connectivity (JDBC) API.

The following topics are addressed here:

■ “To Install the Database and Database Driver” on page 217
■ “To Start the Database” on page 217
■ “To Stop the Database” on page 218
■ “Java DB Utility Scripts” on page 218

Setting Up the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010216

▼ To Install the Database and Database Driver
Install a supported database product.
To see the current list of database products supported by GlassFish Server, refer to the GlassFish
Server Open Source Edition 3.1 Release Notes.

Install a supported JDBC driver for the database product.
For a list of drivers supported by GlassFish Server, see “Configuration Specifics for JDBC
Drivers” on page 232.

Make the JDBC driver JAR file accessible to the domain administration server (DAS).
See “Integrating the JDBC Driver” on page 231.

Create the database.
The application provider usually delivers scripts for creating and populating the database.

You are now ready to create a connection pool for the database, and a JDBC resource that
points to the connection pool. See “To Create a JDBC Connection Pool” on page 220 and “To
Create a JDBC Resource” on page 229. The final step is to integrate the JDBC driver into an
administrative domain as described in “Integrating the JDBC Driver” on page 231.

▼ To Start the Database
GlassFish Server includes an implementation of Java DB (formerly known as Derby), however,
you can use any JDBC-compliant database. The database is not started automatically when you
start GlassFish Server, so if you have applications that require a database, you need to start Java
DB manually by using the local start-database subcommand.

Start the database by using the start-database(1) subcommand.

When the database server starts, or a client connects to it successfully, the following files are
created at the location that is specified by the --dbhome option:

■ The derby.log file contains the database server process log along with its standard output
and standard error information.

■ The database files contain your schema (for example, database tables).

Starting a Database

This example starts Derby on the host host1 and port 5001.

1

2

3

4

Next Steps

●

Example 11–1

Setting Up the Database

Chapter 11 • Administering Database Connectivity 217

asadmin> start-database --dbhost host1 --dbport 5001 --terse=true

Starting database in the background.

Log redirected to /opt/SUNWappserver/databases/javadb.log.

Command start-database executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

start-database at the command line.

▼ To Stop the Database
Use the local stop-database subcommand to stop Java DB on a specified port. A single host
can have multiple database server processes running on different ports.

If necessary, notify users that the database is being stopped.

Stop the database by using the stop-database(1) subcommand.

Stopping a Database

This example stops Java DB on port 5001 of localhost.

asadmin> stop-database --dbhost=localhost --dbport=5001

onnection obtained for host: localhost, port number 5001.

Apache Derby Network Server - 10.2.2.1 - (538595) shutdown

at 2008-10-17 23:34:2 7.218 GMT

Command stop-database executed successfully.

For a laptop that roams between networks, you might have trouble shutting down the database.
If you start Java DB and then change your IP address, you will not be able to stop Java DB unless
you add a specific --dbhost argument. For example, if you run asadmin start-database

--dbhost = 0.0.0.0, and then disconnect Ethernet and switch to wifi, you should run a
command similar to the following to stop the database:

asadmin stop-database --dbhost localhost

You can also view the full syntax and options of the subcommand by typing asadmin help

stop-database at the command line.

Java DB Utility Scripts
The Java DB configuration that is available for use with GlassFish Server includes scripts that
can help you use Java DB. The following scripts are available in the
as-install/javadb/frameworks/NetworkServer/bin directory:

See Also

1

2

Example 11–2

Troubleshooting

See Also

Setting Up the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010218

startNetworkServer,startNetworkServer.bat

Script to start the network server

stopNetworkServer,stopNetworkServer.bat

Script to stop the network server

ij,ij.bat

Interactive JDBC scripting tool

dblook,dblook.bat

Script to view all or part of the DDL for a database

sysinfo, sysinfo.bat

Script to display versioning information about the Java DB environment

NetworkServerControl,NetworkServerControl.bat

Script to execute commands on the NetworkServerControl API

▼ To Configure Your Environment to Run Java DB Utility Scripts

Ensure that the JAVA_HOME environment variable specifies the directory where the JDK is
installed.

Set the JAVADB_HOME environment variable to point to the as-install/derbydirectory.

For more information about these utilities, see the following documentation:
■ Derby Tools and Utilities Guide (http://db.apache.org/derby/docs/10.6/tools/)
■ (Derby Server and Administration Guide (http://db.apache.org/derby/docs/10.6/

adminguide/))

Configuring Access to the Database
After establishing the database, you are ready to set up access for GlassFish Server applications.
The high-level steps include creating a JDBC connection pool, creating a JDBC resource for the
connection pool, and integrating a JDBC driver into an administrative domain.

Instructions for performing these steps are contained in the following sections:

■ “Administering JDBC Connection Pools” on page 220
■ “Administering JDBC Resources” on page 228
■ “Integrating the JDBC Driver” on page 231

1

2

See Also

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 219

http://db.apache.org/derby/docs/10.6/tools/
http://db.apache.org/derby/docs/10.6/adminguide/
http://db.apache.org/derby/docs/10.6/adminguide/

Administering JDBC Connection Pools
A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, GlassFish Server maintains a pool of
available connections. When an application requests a connection, it obtains one from the pool.
When an application closes a connection, the connection is returned to the pool. JDBC
connection pools can be globally accessible or be scoped to an enterprise application, web
module, EJB module, connector module or application client module, as described in
“Application-Scoped Resources” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide.

A JDBC resource is created by specifying the connection pool with which the resource is
associated. Multiple JDBC resources can specify a single connection pool. The properties of
connection pools can vary with different database vendors. Some common properties are the
database name (URL), the user name, and the password.

The following tasks and information are used to administer JDBC connection pools:

■ “To Create a JDBC Connection Pool” on page 220
■ “To List JDBC Connection Pools” on page 221
■ “To Contact (Ping) a Connection Pool” on page 222
■ “To Reset (Flush) a Connection Pool” on page 222
■ “To Update a JDBC Connection Pool” on page 223
■ “To Delete a JDBC Connection Pool” on page 224
■ “Configuring Specific JDBC Connection Pool Features” on page 224

▼ To Create a JDBC Connection Pool
Use the create-jdbc-connection-pool subcommand in remote mode to register a new JDBC
connection pool with the specified JDBC connection pool name. A JDBC connection pool or a
connector connection pool can be created with authentication. You can either use a
subcommand option to specify user, password, or other connection information using the
asadmin utility, or specify the connection information in the XML descriptor file.

One connection pool is needed for each database, possibly more depending on the application.
When you are building the connection pool, certain data specific to the JDBC driver and the
database vendor is required. You can find some of the following specifics in“Configuration
Specifics for JDBC Drivers” on page 232:

■ Database vendor name
■ Resource type, such as javax.sql.DataSource (local transactions only)

javax.sql.XADataSource (global transactions)
■ Data source class name
■ Required properties, such as the database name (URL), user name, and password

Configuring Access to the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010220

Creating a JDBC connection pool is a dynamic event and does not require server restart.
However, there are some parameters that do require server restart. See “Configuration Changes
That Require Server Restart” on page 35.

Before creating the connection pool, you must first install and integrate the database and its
associated JDBC driver. For instructions, see “Setting Up the Database” on page 216.

Ensure that the server is running.
Remote subcommands require a running server.

Create the JDBC connection pool by using the create-jdbc-connection-pool(1)
subcommand.

(Optional) If needed, restart the server.
Some parameters require server restart. See “Configuration Changes That Require Server
Restart” on page 35.

Creating a JDBC Connection Pool

This example creates a JDBC connection pool named sample_derby_pool on localhost.

asadmin> create-jdbc-connection-pool

--datasourceclassname org.apache.derby.jdbc.ClientDataSource

--restype javax.sql.XADataSource

--property portNumber=1527:password=APP:user=APP:serverName=

localhost:databaseName=sun-appserv-samples:connectionAttribut

es=\;create\\=true sample_derby_pool

Command create-jdbc-connection-pool executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create-jdbc-connection-pool at the command line.

▼ To List JDBC Connection Pools
Use the list-jdbc-connection-pools subcommand in remote mode to list all existing JDBC
connection pools.

Ensure that the server is running.
Remote subcommands require a running server.

List the JDBC connection pools by using the list-jdbc-connection-pools(1) subcommand.

Listing JDBC Connection Pools

This example lists the JDBC connection pools that are on localhost.

Before You Begin

1

2

3

Example 11–3

See Also

1

2

Example 11–4

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 221

asadmin> list-jdbc-connection-pools

sample_derby_pool2

poolA

__TimerPool

DerbyPool

sample_derby_pool

Command list-jdbc-connection-pools executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list-jdbc-connection-pools at the command line.

▼ To Contact (Ping) a Connection Pool
Use the ping-connection-pool subcommand in remote mode to test if a connection pool is
usable. For example, if you create a new JDBC connection pool for an application that is
expected to be deployed later, you can test the JDBC pool with this subcommand before the
application is deployed. Running a ping will force the creation of the pool if it hasn't already
been created.

Before you can contact a connection pool, the connection pool must be created with
authentication, and the server or database must be running.

Ensure that the server is running.
Remote subcommands require a running server.

Ping a connection pool by using the ping-connection-pool(1) subcommand.

Contacting a Connection Pool

This example tests to see if the DerbyPool connection pool is usable.

asadmin> ping-connection-pool DerbyPool

Command ping-connection-pool executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

ping-connection-pool at the command line.

You can also specify that a JDBC connection pool is automatically tested when created or
reconfigured by setting its --ping option to true (the default is false). See “To Create a JDBC
Connection Pool” on page 220 or “To Update a JDBC Connection Pool” on page 223.

▼ To Reset (Flush) a Connection Pool
Use the flush-connection-pool in remote mode to reinitialize all connections established in
the specified connection pool without the need for reconfiguring the pool. Connection pool
reconfiguration can result in application redeployment, which is a time-consuming operation.

See Also

Before You Begin

1

2

Example 11–5

See Also

Configuring Access to the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010222

The JDBC connection pool or connector connection pool is reset to its initial state. Any existing
live connections are destroyed, which means that the transactions associated with these
connections are lost and must be retried. The subcommand then recreates the initial
connections for the pool, and restores the pool to its steady pool size.

Ensure that the server is running.
Remote subcommands require a running server.

Reset a connection pool by using theflush-connection-pool(1) subcommand.

Resetting (Flushing) a Connection Pool

This example resets the JDBC connection pool named __TimerPool to its steady pool size.

asadmin> flush-connection-pool __TimerPool

Command flush-connection-pool executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

flush-connection-pool at the command line.

▼ To Update a JDBC Connection Pool
You can change all of the settings for an existing pool except its name. Use the get and set

subcommands to view and change the values of the JDBC connection pool properties.

List the JDBC connection pools by using the list-jdbc-connection-pools(1) subcommand.

View the attributes of the JDBC connection pool by using the get subcommand.
For example:
asadmin get resources.jdbc-connection-pool.DerbyPool.property

Set the attribute of the JDBC connection pool by using the set subcommand.
For example:
asadmin set resources.jdbc-connection-pool.DerbyPool.steady-pool-size=9

(Optional) If needed, restart the server.
Some parameters require server restart. See “Configuration Changes That Require Server
Restart” on page 35.

For information about how to tune a connection pool, see the Sun Java System Application
Server 9.1 Performance Tuning Guide.

1

2

Example 11–6

See Also

1

2

3

4

See Also

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 223

▼ To Delete a JDBC Connection Pool
Use the delete-jdbc-connection-pool subcommand in remote mode to delete an existing
JDBC connection pool. Deleting a JDBC connection pool is a dynamic event and does not
require server restart.

Before deleting a JDBC connection pool, all associations to the resource must be removed.

Ensure that the server is running.
Remote subcommands require a running server.

List the JDBC connection pools by using the list-jdbc-connection-pools(1) subcommand.

If necessary, notify users that the JDBC connection pool is being deleted.

Delete the connection pool by using the delete-jdbc-connection-pool(1) subcommand.

Deleting a JDBC Connection Pool

This example deletes the JDBC connection pool named DerbyPool.

asadmin> delete-jdbc-connection-pool jdbc/DerbyPool

Command delete-jdbc-connection-pool executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

delete-jdbc-connection-pool at the command line.

Configuring Specific JDBC Connection Pool Features
In GlassFish Server, JDBC Connection Pools support a variety of features to simplify
administration, monitoring and performance tuning. The following topics address several of
these features:

■ “Transparent Pool Reconfiguration” on page 224
■ “Using an Initialization Statement” on page 225
■ “Setting a Statement Timeout” on page 225
■ “Statement Leak Detection and Leaked Statement Reclamation” on page 226
■ “Statement Caching” on page 227
■ “Statement Tracing” on page 227

Transparent Pool Reconfiguration

When the properties or attributes of a JDBC connection pool are changed, the connection pool
is destroyed and re-created. Normally, applications using the connection pool must be
redeployed as a consequence. This restriction can be avoided by enabling transparent JDBC

Before You Begin

1

2

3

4

Example 11–7

See Also

Configuring Access to the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010224

connection pool reconfiguration. When this feature is enabled, applications do not need to be
redeployed. Instead, requests for new connections are blocked until the reconfiguration
operation completes. Connection requests from any in-flight transactions are served using the
old pool configuration so as to complete the transaction. Then, connections are created using
the pool's new configuration, and any blocked connection requests are served with connections
from the re-created pool..

To enable transparent JDBC connection pool reconfiguration, set the
dynamic-reconfiguration-wait-timeout-in-seconds property of the JDBC connection
pool to a positive, nonzero value in one of the following ways:
■ Add it as a property in the Edit JDBC Connection Pool Properties page in the

Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify it using the --property option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Set it using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-reconfiguration-wait-timeout-in-seconds=15

This property specifies the time in seconds to wait for in-use connections to close and in-flight
transactions to complete. Any connections in use or transaction in flight past this time must be
retried.

Using an Initialization Statement

You can specify a statement that executes each time a physical connection to the database is
created (not reused) from a JDBC connection pool. This is useful for setting request or session
specific properties and is suited for homogeneous requests in a single application. Set the Init
SQL attribute of the JDBC connection pool to the SQL string to be executed in one of the
following ways:

■ Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --initsql option in the asadmin create-jdbc-connection-pool command.
For more information, see create-jdbc-connection-pool(1).

■ Specify the init-sql option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"

Setting a Statement Timeout

An abnormally long running JDBC query executed by an application may leave it in a hanging
state unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees
that all queries automatically time out if not completed within the specified period. When

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 225

statements are created, the queryTimeout is set according to the statement timeout setting. This
works only when the underlying JDBC driver supports queryTimeout for Statement,
PreparedStatement, CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

■ Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in
the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool
command. For more information, see create-jdbc-connection-pool(1).

Statement Leak Detection and Leaked Statement Reclamation

If statements are not closed by an application after use, it is possible for the application to run
out of cursors. Enabling statement leak detection causes statements to be considered as leaked if
they are not closed within a specified period. Additionally, leaked statements can reclaimed
automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC
connection pool to a positive, nonzero value in one of the following ways:

■ Specify the --statementleaktimeout option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-leak-timeout-in-seconds option in the set subcommand. For
example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-seconds=300

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

■ It is less than the Connection Leak Timeout; otherwise, the connection could be closed
before the statement leak is recognized.

■ It is greater than the Statement Timeout; otherwise, a long running query could be mistaken
as a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting
Reclaim Leaked Statements for the JDBC connection pool to a true value in one of the
following ways:

■ Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-leak-reclaim option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true

Configuring Access to the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010226

Statement Caching

Statement caching stores statements, prepared statements, and callable statements that are
executed repeatedly by applications in a cache, thereby improving performance. Instead of the
statement being prepared each time, the cache is searched for a match. The overhead of parsing
and creating new statements each time is eliminated.

Statement caching is usually a feature of the JDBC driver. The GlassFish Server provides
caching for drivers that do not support caching. To enable this feature, set the Statement Cache
Size for the JDBC connection pool in one of the following ways:
■ Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page

in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool
command. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-cache-size option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-size=10

By default, this attribute is set to zero and the statement caching is turned off. To enable
statement caching, you can set any positive nonzero value. The built-in cache eviction strategy
is LRU-based (Least Recently Used). When a connection pool is flushed, the connections in the
statement cache are recreated.

Statement Tracing

You can trace the SQL statements executed by applications that use a JDBC connection pool.
Set the SQL Trace Listeners attribute to a comma-separated list of trace listener implementation
classes in one of the following ways:
■ Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page

in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool
command. For more information, see create-jdbc-connection-pool(1).

■ Specify the sql-trace-listeners option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-listeners=listeners

The GlassFish Server provides a public interface, org.glassfish.api.jdbc.SQLTraceListener, that
implements a means of recording SQLTraceRecord objects. To make custom implementations
of this interface available to the GlassFish Server, place the implementation classes in
as-install/lib.

The GlassFish Server provides an SQL tracing logger to log the SQL operations in the form of
SQLTraceRecord objects in the server.log file. The module name under which the SQL

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 227

operation is logged is javax.enterprise.resource.sqltrace. SQL traces are logged as FINE
messages along with the module name to enable easy filtering of the SQL logs. A sample SQL
trace record looks like this:

[#|2009-11-27T15:46:52.202+0530|FINE|glassfishv3.0|javax.enterprise.resource.sqltrace.com.sun.gjc.util

|_ThreadID=29;_ThreadName=Thread-1;ClassName=com.sun.gjc.util.SQLTraceLogger;MethodName=sqlTrace;

|ThreadID=77 | ThreadName=p: thread-pool-1; w: 6 | TimeStamp=1259317012202

| ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 | MethodName=executeUpdate

| arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | |#]

This trace shows that an executeUpdate(String sql, String columnNames) operation is
being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled,
GlassFish Server maintains a tracing cache of recent queries and their frequency of use. The
following JDBC connection pool properties can be configured to control this cache and the
monitoring statistics available from it:

time-to-keep-queries-in-minutes

Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of
use. The default value is 5 minutes.

number-of-top-queries-to-report

Specifies how many of the most used queries, in frequency order, are listed the monitoring
report. The default value is 10 queries.

Set these parameters in one of the following ways:

■ Add them as properties in the Edit JDBC Connection Pool Properties page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify them using the --property option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Set them using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.time-to-keep-queries-in-minutes=10

Administering JDBC Resources
A JDBC resource, also known as a data source, provides an application with a means of
connecting to a database. Typically, you create a JDBC resource for each database that is
accessed by the applications deployed in a domain. Multiple JDBC resources can be specified
for a database. JDBC resources can be globally accessible or be scoped to an enterprise
application, web module, EJB module, connector module or application client module, as
described in “Application-Scoped Resources” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

Configuring Access to the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010228

A JDBC resource is created by specifying the connection pool with which the resource will be
associated . Use a unique Java Naming and Directory Interface (JNDI) name to identify the
resource. For example, the JNDI name for the resource of a payroll database might be
java:comp/env/jdbc/payrolldb.

The following tasks and information are used to administer JDBC resources:

■ “To Create a JDBC Resource” on page 229
■ “To List JDBC Resources” on page 230
■ “To Update a JDBC Resource” on page 230
■ “To Delete a JDBC Resource” on page 230

▼ To Create a JDBC Resource
Use the create-jdbc-resource subcommand in remote mode to create a JDBC resource.
Creating a JDBC resource is a dynamic event and does not require server restart.

Because all JNDI names are in the java:comp/env subcontext, when specifying the JNDI name
of a JDBC resource in the Administration Console, use only the jdbc/name format. For
example, a payroll database might be specified as jdbc/payrolldb.

Before creating a JDBC resource, you must first create a JDBC connection pool. For
instructions, see “To Create a JDBC Connection Pool” on page 220.

Ensure that the server is running.

Remote subcommands require a running server.

Create a JDBC resource by using the create-jdbc-resource(1) subcommand.

Information about properties for the subcommand is included in this help page.

If necessary, notify users that the new resource has been created.

Creating a JDBC Resource

This example creates a JDBC resource named DerbyPool.

asadmin> create-jdbc-resource --connectionpoolid DerbyPool jdbc/DerbyPool

Command create-jdbc-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create-jdbc-resource at the command line.

Before You Begin

1

2

3

Example 11–8

See Also

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 229

▼ To List JDBC Resources
Use the list-jdbc-resources subcommand in remote mode to list the existing JDBC
resources.

Ensure that the server is running.
Remote subcommands require a running server.

List JDBC resources by using the list-jdbc-resources(1) subcommand.

Listing JDBC Resources

This example lists JDBC resources for localhost.

asadmin> list-jdbc-resources

jdbc/__TimerPool

jdbc/DerbyPool

jdbc/__default

jdbc1

Command list-jdbc-resources executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list-jdbc-resources at the command line.

▼ To Update a JDBC Resource
You can enable or disable a JDBC resource by using the set subcommand. The JDBC resource
is identified by its dotted name.

List JDBC resources by using the list-jdbc-resources(1) subcommand.

Modify the values for the specified JDBC resource by using the set(1) subcommand.
For example:

Updating a JDBC Resource

This example changes the res1 enabled setting to false.

asadmin>set resources.jdbc-resource.res1.enabled=false

▼ To Delete a JDBC Resource
Use the delete-jdbc-resource subcommand in remote mode to delete an existing JDBC
resource. Deleting a JDBC resource is a dynamic event and does not require server restart.

Before deleting a JDBC resource, all associations with this resource must be removed.

1

2

Example 11–9

See Also

1

2

Example 11–10

Before You Begin

Configuring Access to the Database

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010230

Ensure that the server is running.
Remote subcommands require a running server.

List JDBC resources by using the list-jdbc-resources(1) subcommand.

If necessary, notify users that the JDBC resource is being deleted.

Delete a JDBC resource by using the delete-jdbc-resource(1) subcommand.

Deleting a JDBC Resource

This example deletes a JDBC resource named DerbyPool.

asadmin> delete-jdbc-resource jdbc/DerbyPool

Command delete-jdbc-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

delete-jdbc-resource at the command line.

Integrating the JDBC Driver
To use JDBC features, you must choose a JDBC driver to work with the GlassFish Server, then
you must set up the driver. This section covers these topics:
■ “Supported Database Drivers” on page 231
■ “Making the JDBC Driver JAR Files Accessible” on page 231
■ “Automatic Detection of Installed Drivers” on page 232

Supported Database Drivers
Supported JDBC drivers are those that have been fully tested by Oracle. For a list of the JDBC
drivers currently supported by the GlassFish Server, see the GlassFish Server Open Source
Edition 3.1 Release Notes. For configurations of supported and other drivers, see “Configuration
Specifics for JDBC Drivers” on page 232.

Note – Because the drivers and databases supported by the GlassFish Server are constantly being
updated, and because database vendors continue to upgrade their products, always check with
Oracle technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible
To integrate the JDBC driver into a GlassFish Server domain, copy the JAR files into the
domain-dir/lib directory, then restart the server. This makes classes accessible to all

1

2

3

4

Example 11–11

See Also

Configuring Access to the Database

Chapter 11 • Administering Database Connectivity 231

applications or modules deployed on servers that share the same configuration. For more
information about GlassFish Server class loaders, see Chapter 2, “Class Loaders,” in GlassFish
Server Open Source Edition 3.1 Application Development Guide.

If you are using an Oracle database with EclipseLink extensions, copy the JAR files into the
domain-dir/lib/ext directory, then restart the server. For details, see “Oracle Database
Enhancements” in GlassFish Server Open Source Edition 3.1 Application Development Guide.

Automatic Detection of Installed Drivers
The Administration Console detects installed JDBC Drivers automatically when you create a
JDBC connection pool. To create a JDBC connection pool using the Administration Console,
open the Resources component, open the JDBC component, select Connection Pools, and click
on the New button. This displays the New JDBC Connection Pool page.

Based on the Resource Type and Database Vendor you select on the New JDBC Connection
Pool page, data source or driver implementation class names are listed in the Datasource
Classname or Driver Classname field when you click on the Next button. When you choose a
specific implementation class name on the next page, additional properties relevant to the
installed JDBC driver are displayed in the Additional Properties section.

Configuration Specifics for JDBC Drivers
GlassFish Server is designed to support connectivity to any database management system by
using a corresponding JDBC driver.
■ “JDBC Drivers, Full Support” on page 232
■ “JDBC Drivers, Limited Support” on page 238

JDBC Drivers, Full Support
The following JDBC driver and database combinations have been tested and are supported for
container-managed persistence:

■ “IBM DB2 Database Type 2 DataDirect JDBC Driver” on page 233
■ “IBM DB2 Database Type 2 JDBC Driver” on page 233
■ “Java DB/Derby Type 4 JDBC Driver” on page 234
■ “Microsoft SQL Server Database Type 4 DataDirect JDBC Driver” on page 234
■ “MySQL Server Database Type 4 DataDirect JDBC Driver” on page 235
■ “MySQL Server Database Type 4 JDBC Driver” on page 235
■ “Oracle 11 Database DataDirect JDBC Driver” on page 235
■ “Oracle OCI Type 2 Driver for Oracle Databases” on page 236
■ “Oracle 11 Database Thin Type 4 JDBC Driver” on page 236
■ “PostgreSQL Type 4 JDBC Driver” on page 237

Configuration Specifics for JDBC Drivers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010232

■ “Sybase Database Type 4 DataDirect JDBC Driver” on page 238

To see the most current list of supported JDBC drivers, refer to the GlassFish Server Open Source
Edition 3.1 Release Notes.

IBM DB2 Database Type 2 DataDirect JDBC Driver
The JAR file for DataDirect driver is db2.jar. Configure the connection pool using the
following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: DB2
■ DataSource Classname: com.ddtek.jdbcx.db2.DB2DataSource
■ Properties:

■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate.
■ user – Set as appropriate.
■ password – Set as appropriate.

IBM DB2 Database Type 2 JDBC Driver
The JAR files for the DB2 driver are db2jcc.jar, db2jcc_license_cu.jar, and db2java.zip.
Set your environment variables . For example:

LD_LIBRARY_PATH=/usr/db2user/sqllib/lib:${Java EE.home}/lib

DB2DIR=/opt/IBM/db2/V8.2

DB2INSTANCE=db2user

INSTHOME=/usr/db2user

VWSPATH=/usr/db2user/sqllib

THREADS_FLAG=native

Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: DB2
■ DataSource Classname: com.ibm.db2.jcc.DB2SimpleDataSource

DataDirect DataSource Classname: com.ddtek.jdbcx.db2.DB2DataSource
■ Properties:

■ databaseName - Set as appropriate.
■ user – Set as appropriate.
■ password – Set as appropriate.

Configuration Specifics for JDBC Drivers

Chapter 11 • Administering Database Connectivity 233

■ driverType – Set to 2.
■ deferPrepares – Set to false.

Java DB/Derby Type 4 JDBC Driver
The JAR file for the Java DB driver is derbyclient.jar. (Java DB is based upon Apache Derby.)
Configure the connection pool using the following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Java DB
■ DataSource Classname: Specify one of the following:

org.apache.derby.jdbc.ClientDataSource

org.apache.derby.jdbc.ClientXADataSource

■ Properties:
■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server if it is different from the

default.
■ databaseName – Specify the name of the database.
■ user - Specify the database user.

This is only necessary if Java DB is configured to use authentication. Java DB does not
use authentication by default. When the user is provided, it is the name of the schema
where the tables reside.

■ password – Specify the database password.
This is only necessary if Java DB is configured to use authentication.

Microsoft SQL Server Database Type 4 DataDirect JDBC Driver
The JAR file for the DataDirect driver is sqlserver.jar. Configure the connection pool using
the following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Microsoft SQL Server
■ DataSource Classname: com.ddtek.jdbcx.sqlserver.SQLServerDataSource
■ Properties:

■ serverName – Specify the host name or IP address and the port of the database server.
■ portNumber – Specify the port number of the database server.
■ user – Set as appropriate.
■ password – Set as appropriate.

Configuration Specifics for JDBC Drivers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010234

■ selectMethod – Set to cursor.

MySQL Server Database Type 4 DataDirect JDBC Driver
The JAR file for the DataDirect driver is mysql.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: MySQL Server
■ DataSource: com.ddtek.jdbcx.mysql.MySQLDataSource
■ Properties:

■ serverName – Specify the host name or IP address and the port of the database server.
■ portNumber – Specify the port number of the database server.
■ user – Set as appropriate.
■ password – Set as appropriate.
■ selectMethod – Set to cursor.

MySQL Server Database Type 4 JDBC Driver
The JAR file for the MySQL driver is mysql-connector-java-5.1.7-bin.jar. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Microsoft SQL Server
■ DataSource Classname:

com.mysql.jdbc.jdbc2.optional.MysqlDataSource

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource

■ Properties:
■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate.
■ user – Set as appropriate.
■ password – Set as appropriate.

Oracle 11 Database DataDirect JDBC Driver
The JAR file for the DataDirect driver is oracle.jar.

Configuration Specifics for JDBC Drivers

Chapter 11 • Administering Database Connectivity 235

Note – To make the Oracle driver behave in a Java EE-compliant manner, you must set this
system property as true: oracle.jdbc.J2EE13Compliant=true.

Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: com.ddtek.jdbcx.oracle.OracleDataSource
■ Properties:

■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ user – Set as appropriate.
■ password – Set as appropriate.

Oracle OCI Type 2 Driver for Oracle Databases
The JAR file for the OCI Oracle driver is ojdbc14.jar. Make sure that the shared library is
available through LD_LIBRARY_PATH and that the ORACLE_HOME property is set. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource

oracle.jdbc.xa.client.OracleXADataSource

■ Properties:
■ user – Set as appropriate.
■ password – Set as appropriate.

Oracle 11 Database Thin Type 4 JDBC Driver
The JAR file for the Oracle driver is ojdbc6.jar.

Note – When using this driver, keep in mind that you cannot insert more than 2000 bytes of data
into a column. To circumvent this problem, use the OCI driver (JDBC type 2).

Configuration Specifics for JDBC Drivers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010236

Note – To make the Oracle driver behave in a Java EE-compliant manner, you must set this
system property as true: oracle.jdbc.J2EE13Compliant=true.

Configure the connection pool using the following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource

oracle.jdbc.xa.client.OracleXADataSource

DataDirect DataSource Classname: com.ddtek.jdbcx.oracle.OracleDataSource
■ Properties:

■ user – Set as appropriate.
■ password – Set as appropriate.

Note – For the Oracle thin driver, the XAResource.recover method repeatedly returns the
same set of in-doubt Xids regardless of the input flag. According to the XA specifications,
the Transaction Manager initially calls this method with TMSTARTSCAN and then with
TMNOFLAGS repeatedly until no Xids are returned. The XAResource.commit method also has
some issues.

To disable this GlassFish Server workaround, the oracle-xa-recovery-workaround
property value must be set to false.

PostgreSQL Type 4 JDBC Driver
The JAR file for the PostgreSQL driver is postgresql-8.4-701.jdbc4.jar. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: PostgreSQL Server
■ DataSource Classname: org.postgresql.ds.PGSimpleDataSource
■ Properties:

■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate.
■ user – Set as appropriate.

Configuration Specifics for JDBC Drivers

Chapter 11 • Administering Database Connectivity 237

■ password – Set as appropriate.

Sybase Database Type 4 DataDirect JDBC Driver
The JAR file for the DataDirect driver is sybase.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Sybase
■ DataSource Classname: com.ddtek.jdbcx.sybase.SybaseDataSource
■ Properties:

■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate. This is optional.
■ user – Set as appropriate.
■ password – Set as appropriate.

JDBC Drivers, Limited Support
The following JDBC drivers can also be used with GlassFish Server, but have not been fully
tested. Although Oracle offers no product support for these drivers, Oracle does offer limited
support for the use of these drivers with GlassFish Server:

■ “IBM Informix Type 4 Driver for DataDirect” on page 238
■ “Inet Oraxo JDBC Driver for Oracle Databases” on page 239
■ “Inet Merlia JDBC Driver for Microsoft SQL Server Databases” on page 239
■ “Inet Sybelux JDBC Driver for Sybase Databases” on page 240
■ “JConnect Type 4 Driver for Sybase ASE 12.5 Databases” on page 240

IBM Informix Type 4 Driver for DataDirect
Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Informix
■ DataSource Classname: Specify one of the following:

com.informix.jdbcx.IfxDataSource

com.informix.jdbcx.IfxXADataSource

DataDirect DataSource Classname: com.ddtek.jdbcx.informix.InformixDataSourcee
■ Properties:

Configuration Specifics for JDBC Drivers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010238

■ serverName – Specify the Informix database server name.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate. This is optional.
■ user – Set as appropriate.
■ password – Set as appropriate.
■ IfxIFXHost – Specify the host name or IP address of the database server.

Inet Oraxo JDBC Driver for Oracle Databases
The JAR file for the Inet Oracle driver is Oranxo.jar. Configure the connection pool using the
following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: com.inet.ora.OraDataSource
■ Properties:

■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ user – Specify the database user.
■ password – Specify the database password.
■ serviceName – Specify the URL of the database. The syntax is as follows:

jdbc:inetora:server:port:dbname

For example:

jdbc:inetora:localhost:1521:payrolldb

In this example,localhost is the name of the host running the Oracle server, 1521 is the
Oracle server’s port number, and payrolldb is the SID of the database. For more
information about the syntax of the database URL, see the Oracle documentation.

■ streamstolob - If the size of BLOB or CLOB data types exceeds 4 KB and this driver is
used for CMP, this property must be set to true.

Inet Merlia JDBC Driver for Microsoft SQL Server Databases
The JAR file for the Inet Microsoft SQL Server driver is Merlia.jar. Configure the connection
pool using the following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Microsoft SQL Server
■ DataSource Classname: com.inet.tds.TdsDataSource

Configuration Specifics for JDBC Drivers

Chapter 11 • Administering Database Connectivity 239

■ Properties:
■ serverName – Specify the host name or IP address and the port of the database server.
■ portNumber – Specify the port number of the database server.
■ user – Set as appropriate.
■ password – Set as appropriate.

Inet Sybelux JDBC Driver for Sybase Databases
The JAR file for the Inet Sybase driver is Sybelux.jar. Configure the connection pool using the
following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Sybase
■ DataSource Classname: com.inet.syb.SybDataSource
■ Properties:

■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate. Do not specify the complete URL, only the database

name.
■ user – Set as appropriate.
■ password – Set as appropriate.

JConnect Type 4 Driver for Sybase ASE 12.5 Databases
The JAR file for the Sybase driver is jconn4.jar. Configure the connection pool using the
following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Sybase
■ DataSource Classname: Specify one of the following:

com.sybase.jdbc4.jdbc.SybDataSource

com.sybase.jdbc4.jdbc.SybXADataSource

■ Properties:
■ serverName – Specify the host name or IP address of the database server.
■ portNumber – Specify the port number of the database server.
■ databaseName – Set as appropriate. Do not specify the complete URL, only the database

name.

Configuration Specifics for JDBC Drivers

GlassFish Server Open Source Edition 3.1 Administration Guide • July 2010240

■ user – Set as appropriate.
■ password – Set as appropriate.
■ BE_AS_JDBC_COMPLIANT_AS_POSSIBLE – Set to true.
■ FAKE_METADATA – Set to true.

Configuration Specifics for JDBC Drivers

Chapter 11 • Administering Database Connectivity 241

