
Using the JDBC API for Database Access

This chapter describes how to use the Java Database Connectivity (JDBC) API for database
access with the Oracle GlassFish Server. This chapter also provides high level JDBC
implementation instructions for servlets and EJB components using the GlassFish Server. If the
JDK version 1.6 is used, the GlassFish Server supports the JDBC 4.0 API.

The JDBC specifications are available at http://java.sun.com/products/jdbc/
download.html.

A useful JDBC tutorial is located at http://java.sun.com/docs/books/tutorial/jdbc/
index.html.

Note – The GlassFish Server does not support connection pooling or transactions for an
application’s database access if it does not use standard Java EE DataSource objects.

This chapter discusses the following topics:

■ “Statements” on page 258
■ “Connections” on page 261
■ “Connection Wrapping” on page 266
■ “Allowing Non-Component Callers” on page 268
■ “Using Application-Scoped Resources” on page 268
■ “Restrictions and Optimizations” on page 269

14C H A P T E R 1 4

257

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

Statements
The following features pertain to statements:

■ “Using an Initialization Statement” on page 258
■ “Setting a Statement Timeout” on page 258
■ “Statement Leak Detection and Leaked Statement Reclamation” on page 259
■ “Statement Caching” on page 259
■ “Statement Tracing” on page 260

Using an Initialization Statement
You can specify a statement that executes each time a physical connection to the database is
created (not reused) from a JDBC connection pool. This is useful for setting request or session
specific properties and is suited for homogeneous requests in a single application. Set the Init
SQL attribute of the JDBC connection pool to the SQL string to be executed in one of the
following ways:

■ Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --initsql option in the asadmin create-jdbc-connection-pool command.
For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

■ Specify the init-sql option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

Setting a Statement Timeout
An abnormally long running JDBC query executed by an application may leave it in a hanging
state unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees
that all queries automatically time out if not completed within the specified period. When
statements are created, the queryTimeout is set according to the statement timeout setting. This
works only when the underlying JDBC driver supports queryTimeout for Statement,
PreparedStatement, CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

■ Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in
the Administration Console. For more information, click the Help button in the
Administration Console.

Statements

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 2010258

■ Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1 Reference
Manual.

Statement Leak Detection and Leaked Statement
Reclamation
If statements are not closed by an application after use, it is possible for the application to run
out of cursors. Enabling statement leak detection causes statements to be considered as leaked if
they are not closed within a specified period. Additionally, leaked statements can reclaimed
automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC
connection pool to a positive, nonzero value in one of the following ways:

■ Specify the --statementleaktimeout option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-leak-timeout-in-seconds option in the set subcommand. For
example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-seconds=300

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

■ It is less than the Connection Leak Timeout; otherwise, the connection could be closed
before the statement leak is recognized.

■ It is greater than the Statement Timeout; otherwise, a long running query could be mistaken
as a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting
Reclaim Leaked Statements for the JDBC connection pool to a true value in one of the
following ways:

■ Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-leak-reclaim option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true

Statement Caching
Statement caching stores statements, prepared statements, and callable statements that are
executed repeatedly by applications in a cache, thereby improving performance. Instead of the
statement being prepared each time, the cache is searched for a match. The overhead of parsing
and creating new statements each time is eliminated.

Statements

Chapter 14 • Using the JDBC API for Database Access 259

Statement caching is usually a feature of the JDBC driver. The GlassFish Server provides
caching for drivers that do not support caching. To enable this feature, set the Statement Cache
Size for the JDBC connection pool in one of the following ways:
■ Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page

in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1 Reference
Manual.

■ Specify the statement-cache-size option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-size=10

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

By default, this attribute is set to zero and the statement caching is turned off. To enable
statement caching, you can set any positive nonzero value. The built-in cache eviction strategy
is LRU-based (Least Recently Used). When a connection pool is flushed, the connections in the
statement cache are recreated.

Statement Tracing
You can trace the SQL statements executed by applications that use a JDBC connection pool.
Set the SQL Trace Listeners attribute to a comma-separated list of trace listener implementation
classes in one of the following ways:
■ Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page

in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1 Reference
Manual.

■ Specify the sql-trace-listeners option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-listeners=listeners

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

The GlassFish Server provides a public interface, org.glassfish.api.jdbc.SQLTraceListener, that
implements a means of recording SQLTraceRecord objects. To make custom implementations
of this interface available to the GlassFish Server, place the implementation classes in
as-install/lib.

The GlassFish Server provides an SQL tracing logger to log the SQL operations in the form of
SQLTraceRecord objects in the server.log file. The module name under which the SQL

Statements

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 2010260

operation is logged is javax.enterprise.resource.sqltrace. SQL traces are logged as FINE
messages along with the module name to enable easy filtering of the SQL logs. A sample SQL
trace record looks like this:

[#|2009-11-27T15:46:52.202+0530|FINE|glassfishv3.0|javax.enterprise.resource.sqltrace.com.sun.gjc.util

|_ThreadID=29;_ThreadName=Thread-1;ClassName=com.sun.gjc.util.SQLTraceLogger;MethodName=sqlTrace;

|ThreadID=77 | ThreadName=p: thread-pool-1; w: 6 | TimeStamp=1259317012202

| ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 | MethodName=executeUpdate

| arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | |#]

This trace shows that an executeUpdate(String sql, String columnNames) operation is
being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled,
GlassFish Server maintains a tracing cache of recent queries and their frequency of use. The
following JDBC connection pool properties can be configured to control this cache and the
monitoring statistics available from it:

time-to-keep-queries-in-minutes

Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of
use. The default value is 5 minutes.

number-of-top-queries-to-report

Specifies how many of the most used queries, in frequency order, are listed the monitoring
report. The default value is 10 queries.

Set these parameters in one of the following ways:

■ Add them as properties in the Edit JDBC Connection Pool Properties page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify them using the --property option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Set them using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.time-to-keep-queries-in-minutes=10

Connections
The following features pertain to connections:

■ “Transparent Pool Reconfiguration” on page 262
■ “Disabling Pooling” on page 262
■ “Associating Connections with Threads” on page 263
■ “Custom Connection Validation” on page 264
■ “Sharing Connections” on page 264
■ “Marking Bad Connections” on page 265

Connections

Chapter 14 • Using the JDBC API for Database Access 261

■ “Handling Invalid Connections” on page 265

Transparent Pool Reconfiguration
When the properties or attributes of a JDBC connection pool are changed, the connection pool
is destroyed and re-created. Normally, applications using the connection pool must be
redeployed as a consequence. This restriction can be avoided by enabling transparent JDBC
connection pool reconfiguration. When this feature is enabled, applications do not need to be
redeployed. Instead, requests for new connections are blocked until the reconfiguration
operation completes. Connection requests from any in-flight transactions are served using the
old pool configuration so as to complete the transaction. Then, connections are created using
the pool's new configuration, and any blocked connection requests are served with connections
from the re-created pool..

To enable transparent JDBC connection pool reconfiguration, set the
dynamic-reconfiguration-wait-timeout-in-seconds property of the JDBC connection
pool to a positive, nonzero value in one of the following ways:

■ Add it as a property in the Edit JDBC Connection Pool Properties page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify it using the --property option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Set it using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-reconfiguration-wait-timeout-in-seconds=15

This property specifies the time in seconds to wait for in-use connections to close and in-flight
transactions to complete. Any connections in use or transaction in flight past this time must be
retried.

Disabling Pooling
To disable connection pooling, set the Pooling attribute to false. The default is true. You can
enable or disable connection pooling in one of the following ways:

■ Enter a Pooling value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --pooling option in the asadmin create-jdbc-connection-pool command.
For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

■ Specify the pooling option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.pooling=false

Connections

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 2010262

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

The pooling option and the system property com.sun.enterprise.connectors.
SwitchoffACCConnectionPooling, which turns off connection pooling in the Application
Client Container, do not affect each other.

An exception is thrown if associate-with-thread is set to true and pooling is disabled. An
exception is thrown if you attempt to flush a connection pool when pooling is disabled. A
warning is logged if the following attributes are used, because they are useful only in a pooled
environment:

■ connection-validation

■ validate-atmost-once-period

■ match-connections

■ max-connection-usage

■ idle-timeout

Associating Connections with Threads
To associate connections with a thread, set the Associate With Thread attribute to true. The
default is false. A true setting allows connections to be saved as ThreadLocal in the calling
thread. Connections get reclaimed only when the calling thread dies or when the calling thread
is not in use and the pool has run out of connections. If the setting is false, the thread must
obtain a connection from the pool each time the thread requires a connection.

The Associate With Thread attribute associates connections with a thread such that when the
same thread is in need of connections, it can reuse the connections already associated with that
thread. In this case, the overhead of getting connections from the pool is avoided. However,
when this value is set to true, you should verify that the value of the Max Pool Size attribute is
comparable to the Max Thread Pool Size attribute of the thread pool. If the Max Thread Pool
Size value is much higher than the Max Pool Size value, a lot of time is spent associating
connections with a new thread after dissociating them from an older one. Use this attribute in
cases where the thread pool should reuse connections to avoid this overhead.

You can set the Associate With Thread attribute in the following ways:

■ Enter an Associate With Thread value in the Edit Connection Pool Advanced Attributes
page in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --associatewiththread option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1 Reference Manual.

■ Specify the associate-with-thread option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.associate-with-thread=true

Connections

Chapter 14 • Using the JDBC API for Database Access 263

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

Custom Connection Validation
You can specify a custom implementation for Connection Validation that is faster or optimized
for a specific database. Set the Validation Method attribute to the value custom-validation.
(Other validation methods available are table (the default), auto-commit, and meta-data.)
The GlassFish Server provides a public interface, org.glassfish.api.jdbc.ConnectionValidation,
which you can implement to plug in your implementation. A new attribute, Validation
Classname, specifies the fully qualified name of the class that implements the
ConnectionValidation interface. The Validation Classname attribute is required if Connection
Validation is enabled and Validation Method is set to Custom Validation.

To enable this feature, set Connection Validation, Validation Method, and Validation
Classname for the JDBC connection pool in one of the following ways:
■ Enter Connection Validation, Validation Method, and Validation Classname values in the

Edit Connection Pool Advanced Attributes page in the Administration Console. You can
select from among validation class names for common databases in the Validation
Classname field. For more information, click the Help button in the Administration
Console.

■ Specify the --isconnectionvalidatereq, --validationmethod, and
--validationclassname options in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1 Reference
Manual.

■ Specify the is-connection-validation-required, connection-validation-method, and
validation-classname options in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.MyPool.is-connection-validation-required=true

asadmin set domain1.resources.jdbc-connection-pool.MyPool.connection-validation-method=custom-validation

asadmin set domain1.resources.jdbc-connection-pool.MyPool.validation-classname=impl-class

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

By default, optimized validation mechanisms are provided for DB2, Java DB, MSSQL, MySQL,
Oracle, PostgreSQL and Sybase databases. Additionally, for JDBC 4.0 compliant database
drivers, a validation mechanism is provided that uses the Connection.isValid(0)
implementation.

Sharing Connections
When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If

Connections

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 2010264

Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by
the Java EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLs, see Chapter 11, “Administering
Database Connectivity,” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Marking Bad Connections
The DataSource implementation in the GlassFish Server provides a markConnectionAsBad
method. A marked bad connection is removed from its connection pool when it is closed. The
method signature is as follows:

public void markConnectionAsBad(java.sql.Connection con)

For example:

com.sun.appserv.jdbc.DataSource ds=

(com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();

Statement stmt = null;

try{

stmt = con.createStatement();

stmt.executeUpdate("Update");
}

catch (BadConnectionException e){

ds.markConnectionAsBad(con) //marking it as bad for removal

}

finally{

stmt.close();

con.close(); //Connection will be destroyed during close.

}

Handling Invalid Connections
If a ConnectionErrorOccured event occurs, the GlassFish Server considers the connection
invalid and removes the connection from the connection pool. Typically, a JDBC driver
generates a ConnectionErrorOccured event when it finds a ManagedConnection object
unusable. Reasons can be database failure, network failure with the database, fatal problems
with the connection pool, and so on.

If the fail-all-connections setting in the connection pool configuration is set to true, and a
single connection fails, all connections are closed and recreated. If this setting is false,
individual connections are recreated only when they are used. The default is false.

Connections

Chapter 14 • Using the JDBC API for Database Access 265

The is-connection-validation-required setting specifies whether connections have to be
validated before being given to the application. If a resource’s validation fails, it is destroyed,
and a new resource is created and returned. The default is false.

The prefer-validate-over-recreate property specifies that validating idle connections is
preferable to closing them. This property has no effect on non-idle connections. If set to true,
idle connections are validated during pool resizing, and only those found to be invalid are
destroyed and recreated. If false, all idle connections are destroyed and recreated during pool
resizing. The default is false.

You can set the fail-all-connections, is-connection-validation-required, and
prefer-validate-over-recreate configuration settings during creation of a JDBC
connection pool. Or, you can use the asadmin set command to dynamically reconfigure a
setting. For example:

asadmin set server.resources.jdbc-connection-pool.JCPool1.fail-all-connections="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.is-connection-validation-required="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.property.prefer-validate-over-recreate="true"

For details, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The GlassFish Server
checks if the JDBC driver implements this interface, and if it does, invalid connections are
removed when the connection pool is resized.

Connection Wrapping
The following features pertain to connection wrapping:

■ “Wrapping Connections” on page 266
■ “Obtaining a Physical Connection From a Wrapped Connection” on page 267
■ “Using the Connection.unwrap() Method” on page 267

Wrapping Connections
If the Wrap JDBC Objects option is true (the default), wrapped JDBC objects are returned for
Statement, PreparedStatement, CallableStatement, ResultSet, and DatabaseMetaData.

This option ensures that Statement.getConnection() is the same as
DataSource.getConnection(). Therefore, this option should be true when both
Statement.getConnection() and DataSource.getConnection() are done.

You can specify the Wrap JDBC Objects option in the following ways:

Connection Wrapping

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 2010266

■ Check or uncheck the Wrap JDBC Objects box on the Edit Connection Pool Advanced
Attributes page in the Administration Console. For more information, click the Help button
in the Administration Console.

■ Specify the --wrapjdbcobjects option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1 Reference
Manual.

Obtaining a Physical Connection From a Wrapped
Connection
The DataSource implementation in the GlassFish Server provides a getConnection method
that retrieves the JDBC driver’s SQLConnection from the GlassFish Server’s Connection
wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)

throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con); //get physical connection from wrapper

// Do db operations.

// Do not close driver connection.

con.close(); // return wrapped connection to pool.

Using the Connection.unwrap()Method
If the JDK version 1.6 is used, the GlassFish Server supports JDBC 4.0 if the JDBC driver is
JDBC 4.0 compliant. Using the Connection.unwrap() method on a vendor-provided interface
returns an object or a wrapper object implementing the vendor-provided interface, which the
application can make use of to do vendor-specific database operations. Use the
Connection.isWrapperFor() method on a vendor-provided interface to check whether the
connection can provide an implementation of the vendor-provided interface. Check the JDBC
driver vendor's documentation for information on these interfaces.

Connection Wrapping

Chapter 14 • Using the JDBC API for Database Access 267

Allowing Non-Component Callers
You can allow non-Java-EE components, such as servlet filters, lifecycle modules, and third
party persistence managers, to use this JDBC connection pool. The returned connection is
automatically enlisted with the transaction context obtained from the transaction manager.
Standard Java EE components can also use such pools. Connections obtained by
non-component callers are not automatically closed at the end of a transaction by the container.
They must be explicitly closed by the caller.

You can enable non-component callers in the following ways:

■ Check the Allow Non Component Callers box on the Edit Connection Pool Advanced
Attributes page in the Administration Console. The default is false. For more information,
click the Help button in the Administration Console.

■ Specify the --allownoncomponentcallers option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1 Reference Manual.

■ Specify the allow-non-component-callers option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.allow-non-component-callers=true

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.
■ Create a JDBC resource with a __pm suffix.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires
setting Allow Non Component Callers to true. For more information about the Transaction
Synchronization Registry, see “The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction” on page 277.

Using Application-Scoped Resources
You can define an application-scoped database or other resource for an enterprise application,
web module, EJB module, connector module, or application client module by supplying a
glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped
Resources” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Allowing Non-Component Callers

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 2010268

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the JDBC
API.

Disabling Stored Procedure Creation on Sybase
By default, DataDirect and Oracle JDBC drivers for Sybase databases create a stored procedure
for each parameterized PreparedStatement. On the GlassFish Server, exceptions are thrown
when primary key identity generation is attempted. To disable the creation of these stored
procedures, set the property PrepareMethod=direct for the JDBC connection pool.

Restrictions and Optimizations

Chapter 14 • Using the JDBC API for Database Access 269

