
Kohsuke Kawaguchi

1

Problem statement
 Every module needs to expose configuration

 HTTP port, JDBC connection pool size, security realm,
access log, security permission, SSL certificate, …

 Having every module define its own mechanism is a
disaster

 One configuration file per one module!?

 Lots of system properties!?

 The whole thing will need to look coherent to users

 We need domain.xml --- single file that configures
everything

2

One example of this problem

<lifecycle-module

class-name="com.sun.jbi.SunASJBIBootstrap"

classpath=".../jbi/lib/jbi_framework.jar"

enabled="true" is-failure-fatal="false"

name="JBIFramework" object-type="system-all">

<description>...</description>

<property name="com.sun.jbi.home"

value="${com.sun.aas.installRoot}/jbi"/>

<property name="com.sun.jbi.defaultLogLevel"

value="WARNING"/>

</lifecycle-module>

3

 Extensions only get 2nd class treatment

One example of this problem
 It needs to look like this

4

<jbi home="${com.sun.aas.installRoot}/jbi"

default-log-level="WARNING" />

Config beans don’t work
 Because it makes closed-world assumption

 A 3rd party module developer can’t expose his configuration
in domain.xml

 Exposing config means changing DTD and recompiling it

 Because it forces us to do things eagerly

 To interpret values in config, we need to load respective
modules

 e.g., we need to open TCP port for IIOP right away, but
without loading any IIOP code

 Just doesn’t work very well with dependency injection

5

But above all...
 Because config beans need to go up the meta ladder

6

Making something work for everyone
=

No inherent knowledge about anyone

So instead…
 In essence, we’d like to do it like Spring does

 But with the power of Java5 language features

 Main ideas

 Read domain.xml as a blueprint to build component graph

 Components should behave like real objects

 That is, state encapsulated by behaviors

 Have HK2 inject configurations to components

 Have HK2 do the whole thing as lazily as possible

 If necessary provide the config beans as compatibility layer

7

#1 Define components
 HTTP Listener

 Virtual Host

@Configured class HttpListener {

@FromAttribute void setPort(int) {...}

@FromAttribute void setVirtualHost(VirtualHost) {...}

}

@Configured class VirtualHost {

@FromElement void setDocRoot(File f) {...}

}

8

#2 domain.xml

<domain>

<virtual-host id=“main”>

<doc-root>/abc</doc-root>

</virtual-host>

<http-listener port=“80” virtual-host=“main”/>

<http-listener port=“81” virtual-host=“main”/>

</domain>

 Annotations determine the shape of XML

9

#3 Runtime does the magic
 It will create 3 objects, inject config, and set up references

HK2 World

VirtualHost

docRoot=/abc

HttpListener

port=80

HttpListener

port=81

10

#4 Reflexive domain.xml access
 HK2 lets you access domain.xml as mini-DOM
 Used by admin GUI/CUI, AMX, etc. for accessing values

 Support write back to domain.xml
 A good library needed to preserve whitespace & comments

 DOM also used for order-insensitive variable expansion

 Bi-directional access between DOM and actual
components

 DOM changes can be pushed to live objects

 Components responsible for reacting to changes

11

<doc-root>${com.sun.aas.instanceRoot}/htdocs</doc-root>

Benefits
 Flexible enough to remain compatible with domain.xml

 Promotes good component design

 Self-sufficient, encapsulated-by-behavior objects

 Eliminates boiler-plate code

 Configuration is delivered to you, in the right type

 Much of validation and error diagnostics now done by HK2

 Exposing more configuration is easier & de-centralized

 Module boundary not visible in domain.xml

12

But wait! There’s more!

Boot performance
 I expect this to be faster than what we have today

 Validation now done by DOM impl

 Validation by DTD/schema etc is an overkill

 JAXB/schema2beans is slower than W3C DOM

 This should be faster than W3C DOM

13

Lazy processing
 Initially port listener will listen to all ports

 Think of it as inetd

14

HK2 World

VirtualHost

docRoot=/abc

HttpListener

port=80

HttpListener

port=81

Port Listener

port=80,81

Lazy processing
 PortListener requests an actual object from “the world”,

which triggers activation

15

HK2 World

VirtualHost

docRoot=/abc

HttpListener

port=80

HttpListener

port=81

Port Listener

port=80,81,…

Schema generation
 At development time

 Given a distribution POM, we can generate the schema for
domain.xml

 At runtime

 Given the modules that are running, we can generate the
schema

 We can also generate HTML documentations

 Description of configuration now belongs to the code,
where it should be.

16

Dynamic reconfiguration
 Configuration can be changed at runtime

 Triggers re-injection to reflect changes to running program

 Change done at infoset-level

 Can also consider writing code generator that provides
statically-typed access

 java.lang.reflect.Proxy based

 Note the datatypes are always string because of variables

17

dom.attribute(“docroot”,” ${installRoot}/htdocs”)

interface VirtualHostDom {

@Attribute(“docroot”)

void docroot(String value);

}

18

Existing code to be affected
 Everyone reading values from domain.xml

 But some of the cost shall be absorbed into m12n cost

 More about compatibility layer next

 AMX implementation

 Admin CLI/GUI

 Anissa told me that they interact with domain.xml through
AMX, so maybe it’s OK

19

Compatibility layer
 If the change to the existing code is too much, we need a

compatibility layer that feels like old config beans

 Approach

 Have JAXB generate beans once, commit the source to CVS

 Replace JAXB annotations by HK2 config annotations

20

Characteristics
 Cheap and easy. We already do JAXB code generation

from domain.xml DTD

 Compatibility config bean can be replaced by real
component one element at a time

 No need for coordinated upgrade

 New modules can take advantage of the new
configuration mechanism

21

Truly extensible configuration takes more than HK2

22

AMX
 3rd party modules need to be able to expose their config

through AMX

 That means we can’t be manually writing
com.sun.appserv.management.config interfaces

 We need more dynamic runtime + code generator

 IOW, AMX needs to go up the “meta” ladder, too

23

https://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/config/package-summary.html

Admin GUI
 Every modules must be able to expose its configuration

via GUI, too

 Admin GUI needs to go up the “meta” ladder too

 Some vague ideas, but need serious design

 Set of annotation/XML/what-not to let module developers
contribute GUI

24

