GlassFish v3
configuration

mechanism

awaguchi



Problem statement

Every module needs to expose configuration

e HTTP port, JDBC connection pool size, security realm,
access log, security permission, SSL certificate, ...

Having every module define its own mechanism is a
disaster

* One configuration file per one module!?
* Lots of system properties!?
The whole thing will need to look coherent to users

* We need domain.xml --- single file that configures
everything



One example of this problem

Extensions only get 2" class treatment

<lifecycle-module
class—-name="com.sun.jbi.SunASJBIBootstrap"
classpath=Yooabiiba by abivrrameworkiprar

e e g e e ey
name="JBIFramework" object-type="system-all">

<description>...</description>
<property name="com.sun.]jbi.home"
Va lue=tstcom sunvaasiinstallRoot A ibi />
<property name="com.sun.]Jbi.defaultLogLevel"
value="WARNING" />
</lifecycle-module>



One example of this problem

It needs to look like this

IR e R
default-log-level="WARNING" />



Config beans don’t work

Because it makes closed-world assumption

» A 3" party module developer can’t expose his configuration
in domain.xml

* Exposing config means changing DTD and recompiling it

Because it forces us to do things eagerly

e To interpret values in config, we need to load respective
modules

e e.g., we need to open TCP port for IIOP right away, but
without loading any IIOP code

Just doesn’t work very well with dependency injection



But above all...

Because config beans need to go up the meta ladder

Making something work for everyone

No inherent knowledge about anyone



So instead...

In essence, we’d like to do it like Spring does
e But with the power of Java5 language features

Main ideas
e Read domain.xml as a blueprint to build component graph
* Components should behave like real objects

That is, state encapsulated by behaviors
e Have HK2 inject configurations to components
* Have HK2 do the whole thing as lazily as possible
e |f necessary provide the config beans as compatibility layer



#1 Define components
HTTP Listener

@Configured class HttpListener ({
ERromAb bt envordyset Port tariylatay

@FromAttribute void setVirtualHost (VirtualHost) {...

}
Virtual Host

@Configured class VirtualHost {
R e R

}



#2 domain.xml

Annotations determine the shape of XML

<domain>
cvartbalb-hostyrd="main’>
<doc-root>/abc</doc-root>
Ll v EualshesEs
<http-listener port="80” wvirtual-host=“main”/>
<http-listener port=%"81" virtual-host=“main”/>

</domain>



—_—

/

| #3 Runtime does the magic

/

It will create 3 objects, inject config, and set up references

HK2 World

HttpListener

port=80
VirtualHost

docRoot=/abc

HttpListener

port=81

10



#4 Reflexive domain.xml access

HK2 lets you access domain.xml as mini-DOM
» Used by admin GUI/CUI, AMX, etc. for accessing values

* Support write back to domain.xml
A good library needed to preserve whitespace & comments

DOM also used for order-insensitive variable expansion

R e e e L e T o A b e e s T A S AR L P T e i

Bi-directional access between DOM and actual
components
DOM changes can be pushed to live objects

* Components responsible for reacting to changes

11



Benefits

Flexible enough to remain compatible with domain.xml

Promotes good component design
 Self-sufficient, encapsulated-by-behavior objects

Eliminates boiler-plate code
* Configuration is delivered to you, in the right type
e Much of validation and error diagnostics now done by HK2

Exposing more configuration is easier & de-centralized
Module boundary not visible in domain.xml

But wait! There’s more!

12



Boot performance

| expect this to be faster than what we have today
* Validation now done by DOM impl

Validation by DTD/schema etc is an overkill
e JAXB/schema2beans is slower than W3C DOM

e This should be faster than W3C DOM

13



Lazy processing

Initially port listener will listen to all ports
e Think of it as inetd

HK2 World

HttpListener

d port=80
VirtualHost Port Listener

docRoot=/abc port=80,81
HttpListener

port=81




Lazy processing

PortListener requests an actual object from “the world”,
which triggers activation

HK2 World

HttpListener

port=80
VirtualHost Port Listener

docRoot=/abc port=80,81,...
\ HttpListener

port=81

15



Schema generation

At development time

e Given a distribution POM, we can generate the schema for
domain.xml

At runtime

e Given the modules that are running, we can generate the
schema

We can also generate HTML documentations

» Description of configuration now belongs to the code,
where it should be.

16



Dynamic reconfiguration

Configuration can be changed at runtime

» Triggers re-injection to reflect changes to running program
e Change done at infoset-level

domyabEribute N doeroob s tinstraTIResb Tt docs)

e Can also consider writing code generator that provides
statically-typed access

java.lang.reflect.Proxy based

Note the datatypes are always string because of variables

interface VirtualHostDom {
R EFrihaEeidocro o)

vold docroot (String value) ;

}

17



N

Making it practical




Existing code to be affected

Everyone reading values from domain.xml|
e But some of the cost shall be absorbed into m12n cost
* More about compatibility layer next

AMX implementation

Admin CLI/GUI

e Anissa told me that they interact with domain.xml through
AMX, so maybe it’s OK

19



Compatibility layer
If the change to the existing code is too much, we need a

compatibility layer that feels like old config beans

Approach
e Have JAXB generate beans once, commit the source to CVS
* Replace JAXB annotations by HK2 config annotations

20



Characteristics

Cheap and easy. We already do JAXB code generation
from domain.xml DTD

Compatibility config bean can be replaced by real
component one element at a time

* No need for coordinated upgrade

New modules can take advantage of the new
configuration mechanism

21



— =

Beyond HK2 config

Truly extensible configurati




AMX

3" party modules need to be able to expose their config
through AMX

e That means we can’t be manually writing
interfaces

* We need more dynamic runtime + code generator
IOW, AMX needs to go up the “meta” ladder, too

23


https://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/config/package-summary.html

Admin GUI

Every modules must be able to expose its configuration
via GUI, too

e Admin GUI needs to go up the “meta” ladder too
Some vague ideas, but need serious design

» Set of annotation/XML/what-not to let module developers
contribute GUI

24



