
Kohsuke Kawaguchi

1

Problem statement
 Every module needs to expose configuration

 HTTP port, JDBC connection pool size, security realm,
access log, security permission, SSL certificate, …

 Having every module define its own mechanism is a
disaster

 One configuration file per one module!?

 Lots of system properties!?

 The whole thing will need to look coherent to users

 We need domain.xml --- single file that configures
everything

2

One example of this problem

<lifecycle-module

class-name="com.sun.jbi.SunASJBIBootstrap"

classpath=".../jbi/lib/jbi_framework.jar"

enabled="true" is-failure-fatal="false"

name="JBIFramework" object-type="system-all">

<description>...</description>

<property name="com.sun.jbi.home"

value="${com.sun.aas.installRoot}/jbi"/>

<property name="com.sun.jbi.defaultLogLevel"

value="WARNING"/>

</lifecycle-module>

3

 Extensions only get 2nd class treatment

One example of this problem
 It needs to look like this

4

<jbi home="${com.sun.aas.installRoot}/jbi"

default-log-level="WARNING" />

Config beans don’t work
 Because it makes closed-world assumption

 A 3rd party module developer can’t expose his configuration
in domain.xml

 Exposing config means changing DTD and recompiling it

 Because it forces us to do things eagerly

 To interpret values in config, we need to load respective
modules

 e.g., we need to open TCP port for IIOP right away, but
without loading any IIOP code

 Just doesn’t work very well with dependency injection

5

But above all...
 Because config beans need to go up the meta ladder

6

Making something work for everyone
=

No inherent knowledge about anyone

So instead…
 In essence, we’d like to do it like Spring does

 But with the power of Java5 language features

 Main ideas

 Read domain.xml as a blueprint to build component graph

 Components should behave like real objects

 That is, state encapsulated by behaviors

 Have HK2 inject configurations to components

 Have HK2 do the whole thing as lazily as possible

 If necessary provide the config beans as compatibility layer

7

#1 Define components
 HTTP Listener

 Virtual Host

@Configured class HttpListener {

@FromAttribute void setPort(int) {...}

@FromAttribute void setVirtualHost(VirtualHost) {...}

}

@Configured class VirtualHost {

@FromElement void setDocRoot(File f) {...}

}

8

#2 domain.xml

<domain>

<virtual-host id=“main”>

<doc-root>/abc</doc-root>

</virtual-host>

<http-listener port=“80” virtual-host=“main”/>

<http-listener port=“81” virtual-host=“main”/>

</domain>

 Annotations determine the shape of XML

9

#3 Runtime does the magic
 It will create 3 objects, inject config, and set up references

HK2 World

VirtualHost

docRoot=/abc

HttpListener

port=80

HttpListener

port=81

10

#4 Reflexive domain.xml access
 HK2 lets you access domain.xml as mini-DOM
 Used by admin GUI/CUI, AMX, etc. for accessing values

 Support write back to domain.xml
 A good library needed to preserve whitespace & comments

 DOM also used for order-insensitive variable expansion

 Bi-directional access between DOM and actual
components

 DOM changes can be pushed to live objects

 Components responsible for reacting to changes

11

<doc-root>${com.sun.aas.instanceRoot}/htdocs</doc-root>

Benefits
 Flexible enough to remain compatible with domain.xml

 Promotes good component design

 Self-sufficient, encapsulated-by-behavior objects

 Eliminates boiler-plate code

 Configuration is delivered to you, in the right type

 Much of validation and error diagnostics now done by HK2

 Exposing more configuration is easier & de-centralized

 Module boundary not visible in domain.xml

12

But wait! There’s more!

Boot performance
 I expect this to be faster than what we have today

 Validation now done by DOM impl

 Validation by DTD/schema etc is an overkill

 JAXB/schema2beans is slower than W3C DOM

 This should be faster than W3C DOM

13

Lazy processing
 Initially port listener will listen to all ports

 Think of it as inetd

14

HK2 World

VirtualHost

docRoot=/abc

HttpListener

port=80

HttpListener

port=81

Port Listener

port=80,81

Lazy processing
 PortListener requests an actual object from “the world”,

which triggers activation

15

HK2 World

VirtualHost

docRoot=/abc

HttpListener

port=80

HttpListener

port=81

Port Listener

port=80,81,…

Schema generation
 At development time

 Given a distribution POM, we can generate the schema for
domain.xml

 At runtime

 Given the modules that are running, we can generate the
schema

 We can also generate HTML documentations

 Description of configuration now belongs to the code,
where it should be.

16

Dynamic reconfiguration
 Configuration can be changed at runtime

 Triggers re-injection to reflect changes to running program

 Change done at infoset-level

 Can also consider writing code generator that provides
statically-typed access

 java.lang.reflect.Proxy based

 Note the datatypes are always string because of variables

17

dom.attribute(“docroot”,” ${installRoot}/htdocs”)

interface VirtualHostDom {

@Attribute(“docroot”)

void docroot(String value);

}

18

Existing code to be affected
 Everyone reading values from domain.xml

 But some of the cost shall be absorbed into m12n cost

 More about compatibility layer next

 AMX implementation

 Admin CLI/GUI

 Anissa told me that they interact with domain.xml through
AMX, so maybe it’s OK

19

Compatibility layer
 If the change to the existing code is too much, we need a

compatibility layer that feels like old config beans

 Approach

 Have JAXB generate beans once, commit the source to CVS

 Replace JAXB annotations by HK2 config annotations

20

Characteristics
 Cheap and easy. We already do JAXB code generation

from domain.xml DTD

 Compatibility config bean can be replaced by real
component one element at a time

 No need for coordinated upgrade

 New modules can take advantage of the new
configuration mechanism

21

Truly extensible configuration takes more than HK2

22

AMX
 3rd party modules need to be able to expose their config

through AMX

 That means we can’t be manually writing
com.sun.appserv.management.config interfaces

 We need more dynamic runtime + code generator

 IOW, AMX needs to go up the “meta” ladder, too

23

https://glassfish.dev.java.net/nonav/javaee5/amx/javadoc/com/sun/appserv/management/config/package-summary.html

Admin GUI
 Every modules must be able to expose its configuration

via GUI, too

 Admin GUI needs to go up the “meta” ladder too

 Some vague ideas, but need serious design

 Set of annotation/XML/what-not to let module developers
contribute GUI

24

