
Project SailFin

http://sailfin.dev.java.net

Functional Specification for NetBeans SIP test client
Author(s): elnyvbo@dev.java.net

Version: 0.3

1 Introduction
This document describes a SIP client which integrates with NetBeans. The client
offers a graphical user interface for constructing SIP requests and responses. The
client was developed as a NetBeans plugin. It should be relatively easy, though, to
remove the NetBeans-dependent code and run the client as a standalone Java
application.

1.1 Terminology
The following table lists the most important terms and abbrevations used in this
document.

EAS Ericsson Application Server
GUI Graphical User Interface
Matisse Framework in NetBeans offering drag & drop GUI development.
NBM NetBeans Module
NetBeans Integrated development environment developed by Sun.
SDS Service Development Studio
SIP Session Initiation Protocol
TCP Transport Control Protocol
UDP Universal Datagram Protocol
UAS User Agent Server

Project SailFin

http://sailfin.dev.java.net

2 Design Overview
The GUI was developed in Swing and is based on the look and feel of Ericsson’s
SDS Test Agent. The client is stateless, only basic dialogue awareness was added
so subsequent messages automatically copy CallId and tags from preceeding
responses.

The GUI operates on a very simple datamodel, consisting of SIPRequest and
SIPResponse objects and some additional helper objects to represent the
SIPDialogue and the basic state info contained in it.

Only SIP signaling is supported, no media streaming whatsoever. Basic bytestream
socket communication is used. The client does not contain a SIP stack as this
would inevitably introduce typical behaviour, something you do not want in a
barebone testclient.

To parse the bytestream arriving at the socket, the SIP parser from the EAS SIP
stack was reused. This is esssentially the same SIP parser that is present in the
SailFin code (com.ericsson.ssa.sip.SipParser). Socket sending will just
mean serializing the SIPrequests and responses to a bytestream.

2.1 Package overview

Figure 1 Package overview
The ui package has been developed using the GUI builder framework in NetBeans.
The model package offers objects representing SIP requests and SIP responses,
and a SIP parser which was reused from the SailFin SIP container.
Model objects are never constructed directly by the frontend, but always via the
backend package. The backend package is also capable of receiving raw data from
the transport layer and deserializing that data into SIP requests and responses.

The test agent is heavily SIP aware, though it shouldn’t be too difficult to refactor it
and extend it for use with other (header/value-based) protocols.

Project SailFin

http://sailfin.dev.java.net

Figure 2 Important classes (obsolete, todo update)

Project SailFin

http://sailfin.dev.java.net

2.2 Usage instructions
The following screenshots were taken from the NetBeans SIP Test Agent. To start
the Agent, use either the toolbar button or the popup-menu which is available in the
Files view, as shown in the following pictures.

Figure 3 SIP Agent toolbar button

Figure 4 SIP Agent popup menu

Figure 5 shows the main window, offering some basic client configuration options
and an overview of the SIP messages sent and received. The following options can
be configured:

Agent Name Just a logical name to distinguish several agent instances.
Listening Port Port on which the Test Agent receives incoming SIP traffic.
Transport Specify whether to use UDP or TCP for SIP traffic.
Log File All SIP traffic can be logged to a log file.
Host IP address of the UAS.
Port Port of the UAS.

Project SailFin

http://sailfin.dev.java.net

Figure 5 Main screen
The table below describes the functionality of the main screen.

New Request… Will open the request editor with the text in the Message

Creation area as a starting point.
Send Message Will attempt to send the text displayed in the Message

Creation area to the configured destination.
Message History Lists messages sent and received. Select one of the

messages in the history to display its contents.
ACK Prepare a default ACK request, based on the response

selected in the message history.
BYE Prepare a default BYE request, based on the response

selected in the message history.
CANCEL Prepare a default CANCEL request, based on the

response selected in the message history.
Request… Open the request editor.
200 OK Prepare a default 200 OK response, based on the request

selected in the message history.
Copy Message Copy the selected message from the history to the

Message Creation area.

Project SailFin

http://sailfin.dev.java.net

Figure 6 shows the SIP request editor, which is used to construct SIP requests. The
test agent will fill in some header defaults (Cseq, Max-Forwards, etc.) and allow the
user to specify additional headers and modify the message content. To accept the
SIP request shown in the Message Preview area, click OK. The test agent will close
the request editor and copy the prepared SIP request to the Message Creation area
of the main screen.

Figure 6 SIP request editor

Figure 7 shows the SIP response editor, which is used to construct SIP responses.
Similar to the request editor, the test agent will fill in some header defaults and allow
the user to specify additional headers and modify the message content. Again,
clicking OK closes the editor and the agent returns to the main screen with the
prepared SIP responses copied to the Message Creation area.

Project SailFin

http://sailfin.dev.java.net

Figure 7 SIP response editor

3 Quality and Availability
Quality is assured by regular prototype deliveries. Testing was mostly carried out by
hand. Function test could be automated using robot software. At the time of writing,
this has not yet been done.

4 Performance
No specific requirements on performance. GUI responsiveness should be fast, e.g.
reception of retransmitted SIP messages should be displayed more or less in real
time.
Memory consumption should be measured using basic tools such as Jconsole. It is
expected that memory consumption will be low.

5 Management and Monitoring
N/A

6 Packaging, Files, and Location
Test client will be delivered as several NetBeans modules (.nbm archive). The tabel
below lists the deliverables:

Project SailFin

http://sailfin.dev.java.net

File Description
com-ericsson-sip-sipagent.nbm

The NetBeans SIP TestAgent plugin

com-ericsson-ssa.nbm Ericsson SSA library module
javax.nbm JavaEE API library module
javax-servlet-sip.nbm javax.servlet servlet library module
updates.xml NetBeans plugin info file.

7 Documentation Requirements
Basic user instructions have been included in this document, see chapter 2.2.

8 Open Issues
The following issues need further attention:

1. Sun/Ericsson licensing issues related to SDS / Eclipse
2. Integration with SIP application wizard developed by Ajay Acharya.
3. Testing

