The SIP Servlet Tutorial

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-3007-10
January, 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090119@21808

Contents

=Y - L3OO 5

Overview of Session Initiation Protocol (SIP) Application Development 11

ADOUL the STP PrOTOCOLecveveveiiiiiecicieie ettt bbbt bbb s s anenes 11
STP REQUESES ..ttt sttt ettt ettt st esene 11
SIP RESPOTISES ...ttt ettt bbbttt bbbttt bbbt enene

What Are SIP SEIVIEtS?coovveeieieiecicteieieeeeeeete et
Differences Between HTTP Servlets and SIP Servletscccceveeeririririeesnnereresssssennnns
SIP Servlets and Java EE COMPONENTSceuriiueiriciriieeirieieineeieeeietseeie et ssesesessessssensans 13
SIP Servlet MEthOdsSc.ccueiieieieiieieieieiicecece ettt b s se e 13
STP ANNOTATIONS 1.viuieveeirieteirieisteeeieteeeteeete et esteteseste s esseseseesesesesesessesessesansesasasessssesansssesensasan

Using SipFactory to Create SIP Servlet Instances

STP SESSIOMS ..ueviuieeiiieieietetrtei ettt ettt ettt sttt ettt b et st e bbb et e b e st b ese st ebenessenensenen
STP LISEEIIETS ...veuiveuiieuiieieirteieteietete ettt ettt sttt ettt sttt et st e et ek et et ese b esaneebenestenensesen 20
STP THITIEIS 1.veuvevenieieiirieieietetrte et te et ettt et se st e ae e te s et et esesbesa st esaneesesensesansesasarsesaneesanasesensasan 23
Back-to-Back User Agent APPLICAtIONSc.eueveuiireririeieieieiiieeeieseeeeseeeeeeesssesesesesssssseseens
SIP Servlets and the SIP Servlet Container
Structure 0f @ SIP APPLICALIONvuiueuiuciiirieeieiieiret ettt

Simple SIP Servlet EXamPpIEs ...ttt

Prerequisites for Running the Examples

The SIPProxXy EXAMPIE ...c.uiiuiiiiriciricieireciercet ettt ettt
Developing the STP SEIVIETccueiieuricieiecieieetseet ettt st 29
Deploying and RUNNING STPPIOXY c.c.eueueeeereriiietrieeessesseeseesssesssssesssssssssesssssssessssssssssssssssssnns 31

The Click-To-Dial EXQAMPIEcouruieriririeieiiiiceeeieiess ettt sttt sesesenenees
Architecture of the Click-To-Dial Example

Running the Click-To-Dial EXAMPIE ..c.ccoeueuriuririniciricieireeisieeisieeseeieeseie et

Contents

A SIPIMIESSAQGEScooiiiieieiiieiiiisiete ettt ettt bbb ettt b et e ettt ket e s an ettt esebesenenen 41
SIP REQUESES ..ottt sttt 41
STP RESPOMISES ..ottt ettt bbbttt seaes 42
INAEX ...ttt ettt 43

4 The SIP Servlet Tutorial - January, 2009

Preface

This is The SIP Servlet Tutorial, a tutorial that describes how to develop telecommunications
applications that use the session initialization protocol (SIP) on the Java EE platform. This
tutorial also covers how you can integrate SIP applications with other Java EE technologies, like
web applications and enterprise beans. Here we cover all the things you need to know to make
the best use of this tutorial.

Who Should Use This Book

This tutorial is intended for programmers who are interested in developing and deploying SIP
applications on the Sun Java System Communications Application Server 1.5, a Java EE server
that integrates a SIP servlet container. Communications Application Server 1.5 is based on the
open-source GlassFish and SailFin projects.

This tutorial is intended for the following readers:

= Java programming language developers interested in learning about how to create SIP
applications.

= SIP application developers who are new to server-side Java programming language
development.

= Anyone interested in how SIP applications work, and how they can be integrated in with
traditional web applications and Java EE components.

This tutorial assumes you are conversant in reading Java programming language source code,
and you have a basic understanding of client/server network applications.

About the Examples

This section tells you everything you need to know to install, build, and run the examples
included in the tutorial bundle.

Required Software

The following software is required to run the examples.

Preface

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of Java Platform, Standard Edition 5.0
(Java SE 5.0) or higher. You can download the Java SE 5.0 software from
http://java.sun.com/javase/downloads/index_jdk5.jsp. Download the current JDK
update that does not include any other software (such as the NetBeans IDE or Java EE).

Communications Application Server 1.5

Communications Application Server 1.5 is targeted as the build and runtime environment for
the tutorial examples. Communications Application Server 1.5 is based on the GlassFish and
SailFin open-source projects.

NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java programming language applications, including enterprise applications.
NetBeans IDE supports the Java EE 5 platform. You can build, package, deploy, and run the
tutorial examples from within NetBeans IDE.

SIP Modules for NetBeans IDE

Integrate the SailFin plug-in modules, which add SIP application development functionality to
NetBeans IDE. The modules are bundled with Communications Application Server 1.5.

In NetBeans IDE, select Tools—Plugins.

Click the Downloaded tab and click Add Plugins.

Navigate to the Install/tools/netbeans directory and select all the files in this directory.
Click Install, then Next.

Select I Agree in the License Agreement window and click Install.

AU

Click Continue to install the unsigned modules, then click Finish.

Sample Applications

The tutorial uses several sample applications available on the SailFin website.

1. Go to the following URL:
http://wiki.glassfish.java.net/gfwiki/Wiki.jsp?page=SipExamples.

2. Follow the instructions to download the SipProxy and SIP Servlet 1.1 Click-To-Dial
sample applications.

SIPp

SIPp is an application to test SIP clients and servers. It is available from
http://sipp.sourceforge.net/.

The SIP Servlet Tutorial « January, 2009

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://wiki.glassfish.java.net/gfwiki/Wiki.jsp?page=SipExamples
http://sipp.sourceforge.net/

Preface

X-Lite Soft Phone

X-Lite is a free multi-platform soft phone used in the examples. It is available from
http://www.counterpath.com/x-lite.html[amp Jactive=4.

Apache Ant

Antis a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org), and is used to build, package, and deploy the tutorial examples. Ant
is included with the Communications Application Server 1.5. To use the ant command, add
JAVAEE _HOME/1ib/ant/bin to your PATH environment variable.

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Directions for building the examples are provided in each chapter. Either NetBeans IDE or Ant
may be used to build, package, deploy, and run the examples.

Building the Examples Using NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must register your Communications
Application Server 1.5 installation as a NetBeans Server Instance. Follow these instructions to
register the Communications Application Server 1.5 in NetBeans IDE.

Select Tools-->Server Manager to open the Server Manager dialog.

Click Add Server.

Under Server, select Sun Java System Application Server and click Next.

Under Platform Location, enter the location of your Application Server installation.

Select Register Local Default Domain and click Next.

Under Admin Username and Admin Password, enter the admin name and password created
when you installed the Application Server.

Click Finish.

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:

http://www.counterpath.com/x-lite.html&active=4
http://ant.apache.org

Preface

= build.xml: Antbuild file

® src/java: Java source files for the module

= src/conf: configuration files for the module, with the exception of web applications

= web: JSP and HTML pages, style sheets, tag files, and images

= web/WEB-INF: configuration files for web applications

= nbproject: NetBeans IDE project files

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds

the packaged module file; and a client- jar directory, which holds the retrieved application
client JAR.

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

® The SailFin project home (https://sailfin.dev.java.net)

® The GlassFish project home (https://glassfish.dev.java.net)

m JSR 289: SIP Servlet 1.1 Specification (http://jcp.org/en/jsr/detail?id=289)
m SIP Servlet 1.1 Javadocs

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

» Documentation (http://www.sun.com/documentation/)
m Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

The SIP Servlet Tutorial « January, 2009

https://sailfin.dev.java.net
https://glassfish.dev.java.net
http://jcp.org/en/jsr/detail?id=289
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/index.html
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Preface

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-1 Typographic Conventions

Typeface

Meaning

Example

AaBbCc123

AaBbCc123

aabbccl23

AaBbCcl23

The names of commands, files, and directories,

and onscreen computer output

What you type, contrasted with onscreen

computer output

Placeholder: replace with a real name or value

Book titles, new terms, and terms to be
emphasized

Edit your . login file.

Use s -a to list all files.
machine name% you have mail.
machine_nameS% su

Password:

The command to remove a file is rm
filename.

Read Chapter 6 in the User’s Guide.

A cacheis a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples

The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLEP-2 Shell Prompts

Shell

Prompt

Cshell

C shell for superuser

machine_name%

machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

10

L K R 4 CHAPTER 1

Overview of Session Initiation Protocol (SIP)
Application Development

This chapter describes the SIP protocol and the background needed for developing SIP
applications using the Java programming language.

About the SIP Protocol

The session initiation protocol (SIP) is a simple network signalling protocol for creating and
terminating sessions with one or more participant. The SIP protocol is designed to be
independent of the underlying transport protocol, so SIP applications can run on TCP, UDP, or
other lower-layer networking protocols.

Typically, the SIP protocol is used for internet telephony and multimedia distribution between
two or more endpoints. For example, one person can initiate a telephone call to another person
using SIP, or someone may create a conference call with many participants.

The SIP protocol was designed to be very simple, with a limited set of commands. It is also
text-based, so human can read the SIP messages passed between endpoints in a SIP session.

SIP Requests

The SIP protocol defines some common request types:

TABLE1-1 Common SIP Requests

SIP Request Description

INVITE initiate a session between two participants

ACK the client acknowledges receiving the final message from an INVITE request

What Are SIP Servlets?

TABLE1-1 Common SIP Requests (Continued)
SIP Request Description
BYE terminates a connection
CANCEL cancels any pending actions, but does not terminate any accepted connections
OPTIONS queries the server for a list of capabilities
REGISTER registers the address in the To header with the server

SIP requests are codes used to indicate the various stages in a connection between SIP-enabled
entities.

See “SIP Requests” on page 41 for a list of all SIP requests.

SIP Responses

The SIP Protocol uses response codes similar to the HTTP protocol. Some common response
codes are as follows:

100 (Trying)

200 (OK)

404 (Not found)

500 (Server internal failure)

See “SIP Responses” on page 42 for more information on SIP responses.

What Are SIP Servlets?

12

A SIP servlet is a Java programming language server-side component that performs SIP
signalling. SIP servlets are managed by a SIP servlet container, which typically are part of a
SIP-enabled application server. SIP servlets interact with clients by responding to incoming SIP
requests and returning corresponding SIP responses.

SIP servlets are built off the generic servlet API provided by the Java Servlet Specification.

Differences Between HTTP Servlets and SIP Servlets

SIP servlets differ from typical HTTP servlets used in web applications in the following ways:
= HTTP servlets have a particular context (called the context-root) in which they run, while
SIP servlets have no context.

= HTTP servlets typically return HTML pages to the requesting client, while SIP servlets
typically connect SIP-enabled clients to enable telecommunications between the client and
server.

The SIP Servlet Tutorial « January, 2009

What Are SIP Servlets?

= SIPisa peer-to-peer protocol, unlike HTTP, and SIP servlets can originate SIP requests,
unlike HTTP servlets which only send responses to the originating client.

= SIP servlets often act as proxies to other SIP endpoints, while HTTP servlets are typically the
final endpoint for incoming HTTP requests.

= SIP servlets can generate multiple responses for a particular request.

= SIP servlets can communicate asynchronously, and are not obligated to respond to
incoming requests.

= SIP servlets often work in concert with other SIP servlets to respond to particular SIP
requests, unlike HTTP servlets which typically are solely responsible for responding to
HTTP requests.

SIP Servlets and Java EE Components

This section describes how SIP servlets can integrate with other Java EE components in a
converged application. A converged application has one or more SIP servlets and one or more
Java EE components, such as HTTP servlets, JavaServer Faces applications, enterprise beans, or
web services.

Converged applications allow you to integrate SIP functionality into Java EE applications and
frameworks. For example, a web application that acts as a front-end to an employee contact
information database could be enhanced by allowing users to make a Voice Over Internet
Protocol (VOIP) call to the employee for whom the user is searching. Or, an application could
route incoming calls to employees based on their schedule in a calendar server.

SIP Servlet Methods

A SIP servlet is a Java programming language class that extends the
javax.servlet.sip.SipServlet class, optionally overriding SipServlet's methods. These
methods correspond to the SIP protocol's requests, and are named doRequest where Request is a
SIP request name. For example, the doRegister method will respond to incoming SIP
REGISTER requests. See “SIP Requests” on page 11 for a list of all request methods.

SipServlet also defines several response methods: doProvisionalResponse for SIP 100 series
responses; doSuccessResponse for SIP 200 series responses; doRedirectResponse for SIP 300
series responses; and doErrorResponse for SIP 400, 500, and 600 series responses. See “SIP
Responses” on page 12 for more information about SIP responses.

All the response methods in SipServlet are empty, and a typical SIP servlet will override these
methods. All the other request methods defined in SipServlet will reject any incoming
corresponding SIP requests with a SIP 500 error (server error) response if the request method is
not overridden.

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 13

What Are SIP Servlets?

14

SIP Annotations

SIP Servlet 1.1 defines four annotations that may be used in SIP applications. Using these
annotations simplifies SIP application development by making the sip.xml deployment
descriptor optional. See “The sip.xml Deployment Descriptor” on page 26.

TABLE1-2 SIP Annotations

Annotation Description

@SipServlet Marks the class as a SIP servlet.

@SipListener Marks the class as an implementation class of one of
the SIP listeners.

@SipApplication An application-level class to define a collection of SIP
servlets.

@SipApplicationKey Associates an incoming request and SIP session with a

particular SipApplicationSession.

Using the@SipServliet Annotation

The javax.servlet.sip.annotation.SipServlet class-level annotation is used to mark the
class as a SIP servlet.

EXAMPLE1-1 Example of the @ipServlet Annotation

@SipServlet
public class MyServlet extends SipServlet {

@SipServlet has the following elements:

TABLE1-3 @SipServlet Elements

Element Description

applicationName Explicitly associates the SIP servlet with a particular
SIP application. This element is optional.

description An optional description of this SIP servlet.

The SIP Servlet Tutorial « January, 2009

What Are SIP Servlets?

TABLE1-3 @SipServlet Elements (Continued)
Element Description
loadOnStartup An int value representing the order this SIP servlet

should be loaded on application deployment. The
default value is - 1, meaning the SIP servlet will not
load until the container receives a request that the
servlet handles. The lower the non-negative integer
value in loadOnStartup, the earlier the SIP servlet will
be initialized.

name An optional name for this SIP servlet.

Using the@SipListener Annotation

The javax.servlet.sip.annotation.SipListener class-level annotation is used to mark the
class as an implementation class of one of the SIP event listener interfaces. See “SIP Listeners”
on page 20 for information on SIP listeners.

TABLE1-4 @SipListener Elements

Element Description

applicationName Explicitly associates the SIP listener with a particular
SIP application. This element is optional.

name An optional name for this SIP listener.

Using the @SipApplication Annotation

The javax.servlet.sip.annotation.SipApplication application-level annotation is used to
define a collection of SIP servlets and SIP listeners with a common configuration.
@SipApplicationisannotated at the package level, and all SIP servlets or listeners within the
package are part of the defined SIP application unless the SIP servlet or listener explicitly sets
the applicationName element in the @ipServlet or @ipListener annotation, respectively.

@SipApplication should be annotated either in a package-info. java file in a package
hierarchy, or before the package definition in a particular source file.

EXAMPLE1-2 Example of @ipApplication Annotationinapackage-info.java File

@SipApplication(name="MySipApplication")
package com.example.sip;

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 15

What Are SIP Servlets?

16

TABLE1-5 @SipApplication Elements

Element

Description

name

description

displayName

distributable

largeIcon

mainServlet

proxyTimeout

sessionTimeout

smallIcon

The name of the logical collection of SIP servlets and
listeners. This element is required.

Optional description of the SIP application.

Optional name for displaying in container
administration tools. Defaults to the value of the name
element.

Optional boolean indicating whether the application
may be distributed by the container in a clustered
environment. The default value is false.

An optional String indicating the location, relative to
the root path of the archive, of a large icon for
representing this application in container
administration tools.

The optional name of the main SIP servlet for this
application.

An optional int value indicating the number of whole
seconds before a timeout for all proxy operations in
this SIP application.

An optional int value indicating the number of whole
minutes before an application session timeout for all
application sessions in this SIP application.

An optional String indicating the location, relative to
the root path of the archive, of a small icon for
representing this application in container
administration tools.

Using the @SipApplicationKey Annotation

The javax.servlet.sip.annotation.SipApplicatonKey method-level annotation associates
an incoming request with a particular SIpApplicationSession instance. The method

annotated by @ipApplicationKey must:

be public.
be static.
returna String.

define a single argument of type SipServletRequest.
not modify the passed-in SipServletRequest object.

The returned String is the key used to associate the request with a SipApplicationSession

instance.

The SIP Servlet Tutorial « January, 2009

What Are SIP Servlets?

EXAMPLE 1-3 Example of @ipApplicationKey

@SipApplication
package com.example.sip;

public class MySipApplication {
@SipApplicationKey

public static String sessionKey (SipServletRequest req) {
return hash(req.getRequestURI() + getDomain(req.getFrom());

Only one @SipApplicationKey method should be defined for a particular SIP application.

TABLE1-6 @SipApplicationKey Elements

Element Description

applicationName Explicitly associates the SIP application key with a
particular SIP application. This element is optional.

Using SipFactory to Create SIP Servlet Instances

The javax.servlet.sip.SipFactory interface defines several abstractions useful in SIP
applications. SIP applications use the container's SipFactory instance to create :

= requests using the createRequest methods.
= address objects such as URI, SipURI, Address, and Parameterable instances.
= application sessions.

For a full description of SipFactory's methods, see the SIP Servlet 1.1 Javadocs.

Use the javax.annotations.Resource annotation to inject an instance of SipFactoryina
class.

EXAMPLE 1-4 Injecting an Instance of SipFactory into a Class

@Resource
SipFactor sf;

You may also look up the container's SipFactory instance through the servlet context.

EXAMPLE 1-5 Looking Up SipFactory

SipFactory sf =
(SipFactory) getServletContext().getAttribute("javax.servlet.sip.SipFactory")

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 17

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipFactory.html

What Are SIP Servlets?

18

SIP Sessions

SIP servlets, like HTTP servlets, are stateless, meaning that they do not store data across
requests. SIP sessions allow SIP servlets to associate SIP messages with data stored by the SIP
container. This allows an application to provide functionality across a number of discreet
requests, and associating that series of requests with a single client.

The javax.servlet.sip.SipSession interface is SIP the equivalent of
javax.servlet.http.HttpSession interface. Instances of SipSession store SIP session data
and associate SIP user-agents so that they may communicate in a multiple-request dialog.

Many SIP applications, however, use multiple protocols (for example, a converged web and SIP
application uses both HTTP and SIP sessions), provide functionality across dialogs (for
example, a teleconferencing application involving multiple user-agents), or are used in concert
with other applications for a single VOIP call. The type of data stored in an instance of
SipSession does not cover these complicated use-cases. The
javax.servlet.sip.SipApplicationSession interface defines methods for storing protocol
information for both SIP and other protocols (for example, HT'TP), and storing session data for
the entire application. SipApplicationSession instances represent application instances, and
the all the data and protocol information needed to provide the functionality in an application.

SipApplicationSession Methods

SipApplicationSession defines a number of methods for managing application sessions and
session data.

SipApplicationSession Data Methods

Storing and retrieving session data is accomplished by using the following methods:

TABLE1-7 SipApplicationSession Data Methods

Method Description

getAttributes(String id) Returns the object bound to the specified ID. Returns null if no such
object ID exists.

getAttributeNames () Returns an Iterator over the String IDs of the objects bound to this

application session.

setAttribute(String name, Binds an object to the session using the specified String as the object's
java.lang.Object attribute) ID for later retrieval.
removeAttribute(String name) Removes an object from the session by specifying the bound object's ID.

The SIP Servlet Tutorial « January, 2009

What Are SIP Servlets?

SipApplicationSession Protocol Methods

Instances of SipApplicationSession typically have multiple protocol sessions contained
within the application session. Such protocol sessions are called child sessions. The following
table lists the methods defined in SipApplicationSession for managing child sessions:

TABLE 1-8 Child Session Methods in SipApplicationSession

Method Description

getSessions() Retrieves an Iterator over all valid child protocol sessions.

getSessions(String protocol) Retrieves an Iterator over all valid child sessions for a particular
protocol. For example, passing SIP to getSessions will return all SIP
protocol sessions.

getSipSession(String id) Retrieves a particular session by its ID.

getSession(String id, String Retrieves a particular session associated with the specified protocol by its
protocol) 1D.

SipApplicationSession Lifecycle Methods

The following table lists the methods defined in SipApplicationSession for managing the SIP
application session lifecycle:

TABLE1-9 SipApplicationSession Lifecycle Methods

Method Description

getCreationTime() Returns the time that the SipApplicationSession instance was
created as a long value representing the number of milliseconds since
midnight January 1, 1970 GMT.

getExpirationTime() Returns the time that the SipApplicationSession will expire as a long
value representing the number of milliseconds since midnight January
1,1970 GMT.

getInvalidateWhenReady () Returns a boolean value specifying whether the container will notify the
application when the SipApplicationSession instance is ready to be
invalidated.

getlLastAccessedTime() Returns the time that the SipApplicationSession instance was last
accessed as a long value representing the number of milliseconds since
midnight January 1, 1970 GMT.

setInvalidateWhenReady(boolean Tells the container to notify the application when the
invalidateWhenReady) SipApplicationSession instance is ready to be invalidated.

invalidate() Explicitly invalidates the SIP application session and unbinds any
objects bound to the session.

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 19

What Are SIP Servlets?

TABLE1-9 SipApplicationSession Lifecycle Methods (Continued)

Method Description

isReadyToInvalidate() Returns a boolean value specifying whether the
SipApplicationSession instance is ready to be invalidated.

isvalid() Returns a boolean value specifying whether the
SipApplicationSession instance is valid.

setExpires(int deltaMinutes) Extends the time of expiry for the SipApplicationSession instance by
the number of minutes specified by deltaMinutes. If deltaMinutes is
0 or a negative number, the session will never expire. Returns an int
value of the number of minutes by which the session was extended. If it
returns 0, the session was not extended.

Using SipSessionsUtil to Manage SIP Sessions

The SipSessionsUtil interface defines utility methods for managing SIP sessions in a
converged application. Use the javax.annotations.Resource annotation to inject the
container's SipSessionsUtil implementation class in your SIP servlets:

EXAMPLE 1-6 Example of Injecting SipSessionsUtil into a Class

@Resource
SipSessionsUtil sipSessionsUtil;

You may also manually look up SipSessionsUtil through the servlet context.

EXAMPLE 1-7 Example of Looking Up SipSessionsUtil
SipSessionsUtil sipSessionsUtil =

(SipSessionsUtil) getServletContext().
getAttribute("javax.servlet.sip.SipSessionsUtil")

For more information, see the SIP Servlet 1.1 Javadocs

SIP Listeners

SIP application listeners are Java servlet application listeners that listen for SIP-specific events.
SIP applications implement the SIP event listener interfaces by marking the implementation
class with a javax.servlet.sip.annotation.SipListener annotation.

EXAMPLE1-8 Example of @SipListener

@SipListener
public class MyListener implements SipServletListener {

20 The SIP Servlet Tutorial « January, 2009

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionsUtil.html

What Are SIP Servlets?

EXAMPLE 1-8 Example of @SipListener (Continued)

Sip servlet classes may also implement the SIP event listener interfaces.

EXAMPLE 1-9 Example of SIP Listener in SIP Servlet Class

@SipListener
@SipServlet
public class MySipServlet extends SipServlet implements SipServletListener {

SIP Servlet Listeners

The following SIP servlet listeners, in package javax.servlet.sip, are available to SIP servlet
developers:

TABLE 1-10 SIP Servlet Listeners

Listener Description

SipServletListener Implementations of SipServletListener receive notifications on
initialization of SipServlet instances. See the SIP Servlet 1.1 Javadocs for more
information.

SIP Application Session Listeners

The following SIP application listeners, in package javax.servlet.sip, are available to SIP
servlet developers:

TABLE1-11 SIP Application Listeners

Listener Description

SipApplicationSessionListener Implementations of SipApplicationSessionListener
receive notifications when SipApplicationSession
instances have been created, destroyed, timed out, or are
ready to be invalidated. See the SIP Servlet 1.1 Javadocs for
more information.

SipApplicationSessionAttributelListener Implementations of
SipApplicationSessionAttributelListener receive
notifications when attributes are added, removed, or
modified in SipApplicationSession instances. See the SIP
Servlet 1.1 Javadocs for more information.

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 21

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipServletListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipApplicationSessionListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipApplicationSessionAttributeListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipApplicationSessionAttributeListener.html

What Are SIP Servlets?

22

TABLE 1-11 SIP Application Listeners (Continued)

Listener

Description

SipApplicationSessionBindingListener

SipApplicationSessionActivationListener

Session attributes that implement
SipApplicationSessionBindingListener receive
notifications when they are bound or unbound to
SipApplicationSession instances. See the SIP Servlet 1.1
Javadocs for more information.

Implementations of
SipApplicationSessionActivationListener receive
notifications when SipApplicationSession instances are
activated or passivated. See the SIP Servlet 1.1 Javadocs for
more information.

SIP Session Listeners

The following SIP session listeners, in package javax.servlet.sip, are available to SIP servlet

developers:

TABLE 1-12 SIP Session Listeners

Listener

Description

SipSessionListener

SipSessionActivationListener

SipSessionAttributelListener

SipSessionBindingListener

Implementations of SipSessionListener receive
notifications when SipSession instances are created,
destroyed, or ready to be invalidated. See the SIP Servlet 1.1
Javadocs for more information.

Implementations of SipSessionActivationListener
receive notifications when SipSession instances are
activated or passivated. See the SIP Servlet 1.1 Javadocs for
more information.

Implementations of SipSessionAttributeListener
receive notifications when attributes are added, removed, or
modified in SipSession instances. See the SIP Servlet 1.1
Javadocs for more information.

Attributes that implement SipSessionBindingListener
receive notifications when they are bound or unbound from
SipSession instances. See the SIP Servlet 1.1 Javadocs for
more information.

SIP Error Listeners

The following SIP error listeners, in package javax.servlet.sip, are available to SIP servlet

developers:

The SIP Servlet Tutorial « January, 2009

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipApplicationSessionBindingListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipApplicationSessionBindingListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipApplicationSessionActivationListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionActivationListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionAttributeListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionAttributeListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipSessionBindingListener.html

What Are SIP Servlets?

TABLE 1-13 SIP Error Listeners

Listener Description

SipErrorListener Implementations of SipErrorListener receive notifications when an expected
ACK or PRACK SIP message is not received. See the SIP Servlet 1.1 Javadocs for
more information.

SIP Timer Listeners

The following SIP timer listeners, in package javax.servlet.sip, are available to SIP servlet
developers:

TABLE 1-14 SIP Timer Listeners

Listener Description

TimerListener Implementations of TimerListener receive notifications when ServletTimer
instances have fired. See the SIP Servlet 1.1 Javadocs for more information.

For information on SIP timers, see “SIP Timers” on page 23.

SIP Timers

The SIP timer service is provided by the SIP servlet container to allow SIP applications to
schedule and manage timers, and receive notifications when timers expire. Timers are events
that can be scheduled to run once at a specific time, or to repeat at configurable intervals.
Timers may be persistent, in which case the timer will be preserved across Communications
Application Server 1.5 restarts. Persistent timers will be fired on server startup if the server was
shut down when the timer was supposed to fire.

Repeating timers can be either fixed-delay or fixed-rate. Both fixed-delay and fixed-rate timers
will fire at approximately regular intervals, but fixed-delay timers will fire regardless of whether
previous timer firings were late. Fixed-rate timers are rescheduled based on the absolute time.

Managing SIP Timers

The container providesa javax.servlet.sip.TimerService implementation that allows you
to create timers, which are javax.servlet.sip.ServletTimer instances. The TimerService
interface defines the following methods for creating timers:

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 23

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/SipErrorListener.html
http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/TimerListener.html

What Are SIP Servlets?

24

TABLE 1-15 TimerService Timer Creation Methods

Method

Description

createTimer(SipApplicationSession
session,

long delay,

boolean isPersistent,
Serializable info)

createTimer(SipApplicationSession
session,

long delay,

long period,

boolean fixedDelay,

boolean isPersistent,
Serializable info)

Creates a single, optionally persistent timer associated with
the specified SIP application session. The delay parameter
is the time in milliseconds before a timer fires. The info
parameter is the application information delivered when
the timer expires.

Creates a recurring, optionally persistent timer associated
with the specified SIP application session. The delay
parameter is the time in milliseconds before the timer first
fires. The period parameter is the time in milliseconds
after the first timer firing that the timer will fire again. The
fixedDelay parameter specifies whether the timer is
fixed-delay or fixed-rate. The info parameter is the
application information delivered when the timer expires.

The ServletTimer interface defines the following methods for managing a particular timer:

TABLE1-16 TimerService Timer Management Methods

Method Description

cancel()
getApplicationSession()
getId()

getInfo()

getTimeRemaining()

Cancels the timer.

Returns the SipApplicatonSession instance the timer is associated with.
Returns the ID of the timer as a String.

Returns a Serializable object of the information specified when the timer
was created.

Returns a long representing the number of milliseconds until the timer is

scheduled to next fire.

scheduledExecutionTime()

Returns a long representing the most recent time the timer was scheduled to

fire. If the timer has not yet fired, the return value is undefined.

For more information on the TimerService interface, see the SIP Servlet 1.1 Javadocs.

Back-to-Back User Agent Applications

A back-to-back user agent (B2BUA) is a SIP element that acts as an endpoint for two or more
SIP dialogs, forwarding requests and responses between the dialogs. B2ABUA applications are
extremely common SIP applications, and SIP Servlet 1.1 defines a helper class,
javax.servlet.sip.B2buaHelperto simplify the creation of B2BUA applications. B2ZBUA

The SIP Servlet Tutorial « January, 2009

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/javax/servlet/sip/TimerService.html

What Are SIP Servlets?

applications have the potential to break end-to-end communication between endpoints
because they sit between two endpoints in a communication chain. Using B2buaHelper
minimizes some of the risk of breaking the signaling between two endpoints.

Understanding the B2buaHelper Class

The B2buaHelper class contains all the necessary methods for creating B2BUA applications. It
is retrieved by calling SipServerRequest.getB2buaHelper.

EXAMPLE 1-10 Example of Retrieving B2buaHelper

private void sendInfoToClient(SipServletResponse resp) {
SipServletRequest req = resp.getRequest();
B2buaHelper b2buaHelper = req.getB2buaHelper();

A typical B2BUA application has two SIP sessions, one for each client. The B2buaHelper class is
typically used to create requests that are then forwarded to and from the SIP sessions. retrieve
linked sessions.

For a complete list of B2buaHelper's methods, see SIP Servlet 1.1 Javadocs.

Creating Requests with B2buaHelper

Once you've retrieved B2buaHelper, you can use it to link two SIP sessions by creating requests
using the createRequest method.

EXAMPLE 1-11 Creating a Request Using B2buaHelper

SipServletRequest clientRequest =
b2buaHelper.createRequest(serverReq, true, headerMap);

The createRequest method takes a SipServletRequest instance of the original request, an
optional boolean indicating whether the sessions should be linked, and a
java.util.Map<String, java.util.Set>map of headers that will be used instead of the
headers in the original request. The From and To headers are the keys in the map. The only
headers that can be set using this map are non-system headers and the From, To, and Route
headers.

See Example 2-6 for the full method where B2buaHelper is used to create a request that links

two sessions.

Retrieving Linked Sessions Using B2buaHelper

Once two client's sessions are linked you can then retrieve the sessions using
getLinkedSession.

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 25

http://download.oracle.com/docs/cd/E13153_01/wlcp/wlss40/javadoc/jsr289/B2buaHelper.html

What Are SIP Servlets?

26

EXAMPLE1-12 Retrieving Linked Sessions Using B2buaHelper

private void sendByeToServer(SipServletRequest clientBye)
throws ServletException, IOException {
B2buaHelper b2buaHelper = clientBye.getB2buaHelper();
SipSession serverSession = b2buaHelper.getLinkedSession(clientBye.getSession());
SipServletRequest serverBye = serverSession.createRequest("BYE")
logger.info("Sending BYE request.\n" + serverBye);
serverBye.send();

SIP Servlets and the SIP Servlet Container

The SIP servlet container manages the lifecycle of SIP servlets, enables network communication
for SIP requests and responses by listening on a particular listening point, and provides optional
services such as security and interaction with other server-side components.

Structure of a SIP Application

A typical SIP application consists of the following programming artifacts:

One or more SIP servlets.

Optional utility and helper classes such as SIP listeners.
Static resources used by the classes.

Metadata and optional configuration files.

The sip.xml Deployment Descriptor

The optional sip.xml deployment descriptor is used by the SIP servlet container to process
deployed SIP applications and configure the runtime to properly respond to incoming SIP
requests. It is similar in structure to web . xml deployment descriptor used by Java EE web
applications. You may bypass the need for a fully defined sip.xml if you use SIP annotations in
your application.

Packaging a SIP Application

SIP applications are packaged in either SAR (SIP archive) or WAR (web archive) files. These
archives are standard Java archives (JAR). The SAR format is similar to and based on the WAR
format, including the use of the presence of the WEB - INF folder that contains class files and
deployment descriptors. SIP containers will recognize either the . sar or .war extensions when
processing SIP applications.

Converged applications may be packaged in WAR files, or the SAR or WAR file may be itself
packaged within an Enterprise archive (EAR), similar to a typical Java EE application. This

The SIP Servlet Tutorial - January, 2009

What Are SIP Servlets?

means a SIP application that has been packaged in a SAR or WAR may be packaged with
enterprise bean components, Java Persistence API JARs, and any other Java EE component that
is allowed to be packaged in EAR files.

Chapter 1 - Overview of Session Initiation Protocol (SIP) Application Development 27

28

L K R 4 CHAPTER 2

Simple SIP Servlet Examples

This chapter describes several of the simple SIP servlet examples that are included with
Communications Application Server 1.5.

Prerequisites for Running the Examples

You should have done the following before you can run the examples:

1. Downloaded and installed the example bundle as described in “Sample Applications” on
page 6.
2. Installed NetBeans IDE as described in “NetBeans IDE” on page 6.

3. Downloaded and installed the SIP NetBeans IDE modules, including the SIP Test Agent
module as described in “SIP Modules for NetBeans IDE” on page 6.

The SipProxy Example

This example is a simple SIP proxy servlet. The proxy servlet will forward all SIP messages from
the caller client to the callee server.

Developing the SIP Servlet

The SIP servlet is called SimpleProxyServlet, and extends the base SipServlet class and
implements the SipErrorListener and Servlet interfaces.

@SipListener

@SipServlet

public class SimpleProxyServlet
extends SipServlet

29

The SipProxy Example

30

implements SipErrorListener,Servlet {

/** Creates a new instance of SimpleProxyServlet */
public SimpleProxyServlet() {
}

protected void doInvite(SipServletRequest request)
throws ServletException, IOException {

if (request.isInitial()) {
Proxy proxy = request.getProxy();
proxy.setRecordRoute(true);
proxy.setSupervised(true);
proxy.proxyTo(request.getRequestURI()); // bobs uri
}

System.out.println("SimpleProxyServlet: Got request:\n" + request);
protected void doBye(SipServletRequest request) throws
ServletException, IOException {

System.out.println("SimpleProxyServlet: Got BYE request:\n" + request);
super.doBye(request);

protected void doResponse(SipServletResponse response)
throws ServletException, IOException {

System.out.println("SimpleProxyServlet: Got response:\n" + response);
super.doResponse(response) ;
// SipErrorListener
public void noAckReceived(SipErrorEvent ee) {

System.out.println("SimpleProxyServlet: Error: noAckReceived.");

public void noPrackReceived(SipErrorEvent ee) {
System.out.println("SimpleProxyServlet: Error: noPrackReceived.");

The SIP Servlet Tutorial « January, 2009

The SipProxy Example

v

Before You Begin

SIP Methods

In SimpleProxyServlet, you override several methods to respond to the main SIP methods.

= doInvite-respondsto INVITE requests.

In SimpleProxyServlet, upon receiving an INVITE request the servlet will create a
javax.servlet.sip.Proxy instance, set some options, and proxy the request to the target
SIP server.

= doBye- responds to BYTE requests.

In SimpleProxyServlet, the servlet logs a message upon receiving a BYE message, and calls
the doBye method of the parent class (javax.servlet.sip.SipServlet).

SipErrorListener Methods

Because SimpleProxyServlet implements the SipErrorListener interface, it must implement
the following methods:

= noAckReceived is invoked to notify the application that no ACK message was received for an
INVITE transaction.

= noPrackReceived is invoked when no PRACK message was received for a previously sent
response.

Deploying and Running SipProxy
Follow these instructions to deploy and run the example.
Deploying and Running SipProxy in NetBeans IDE

Click File—0pen Project and navigate to the location where you downloaded and expanded the
SimpeProxy example.

Select SipProxy and click Open Project.

Right-click on SipProxy in the Projects pane and click Run.

Testing SipProxy with the SIPp Application
Be sure you have installed the SIPp test application, as described in “SIPp” on page 6.

In a terminal, enter the following command to start the SIPp server on port 5090:
% Sipp -sn uas -p 5090

In a new terminal enter the following command to start the SIPp client on port 5080:
% Sipp -sn uac -rsa 127.0.0.1:5060 -p 5080 127.0.0.1:5090

Chapter2 « Simple SIP Servlet Examples 31

The Click-To-Dial Example

You should now see the messages from the client get returned by the server, with the SipProxy
application acting as a proxy between them.

The Click-To-Dial Example

32

The Click-To-Dial example demonstrates how to integrate a SIP servlet with a web application
by allowing users to place calls to other users by using an HTTP servlet. The example
demonstrates how SIP registration and invitation works, and how to share data between SIP
servlets and HTTP servlets.

Architecture of the Click-To-Dial Example

The Click-To-Dial application allows users to call each other after registering their information
using a web application. The example consists of two SIP servlets (RegistrarServlet and
CallSipServlet)and two HTTP servlets (LoginServlet and PlaceCallServlet). The user
data is stored in a database using the Java Persistence API.

The following scenario shows the procedure for using the Click-To-Dial example:

1. Users Alice and Bob login to the web application, using the LoginServiet HTTP servlet.

2. Alice and Bob register their SIP soft-phone with the web application. Registration is handled
by the RegistrarServlet SIP servlet, which stores registration data in a database using the
Java Persistence API.

3. Alice clicks on Bob's Call link from the web application to start a phone call to Bob. The
PlaceCallServletHTTP servlet passes the data to CallSipServlet in order to initiate the
connection.

4. Alice's phone rings.
5. When Alice picks up her phone, a call is placed to Bob's phone, and Bob's phone rings.

6. When Bob picks up his phone, the connection is established, and Alice and Bob can have a
conversation.

7. When Alice or Bob hangs up, the connection is terminated, and they are able to receive calls
again.

Click-To-Dial's SIP Servlets

The SIP functionality in Click-To-Dial is split into two separate SIP servlets, RegistrarServlet
and CallSipServlet.

The SIP Servlet Tutorial - January, 2009

The Click-To-Dial Example

SIP Application Annotations in CllickToDial

A @SipApplication annotation is used in ClickToDial to define a set of SIP servlets used
together to provide SIP functionality. The @ipApplication annotation is set at the package
level by putting it in the package-info. java file in the clicktodial. sip package.

EXAMPLE2-1 Package-level @ipApplicaton Annotationin ClickToDial

@javax.servlet.sip.annotation.SipApplication(
name="ClickToDial"
mainServlet="RegistrarServlet")

package clicktodial.sip;

The @SipApplication annotation sets two elements: the name of the application, and the main
servlet. The name element is required, and is set to the application name. The optional
mainServlet element defines which SIP servlet will initially respond to SIP requests. In this
case, the RegistrarServlet, which registers SIP clients so they can be later contacted for calls,
is the main servlet for ClickToDial.

TheRegistrarServlet

TheRegistrarServlet allows users to register soft-phones with the application, and stores the
user's data in a database using the Java Persistence API.

RegistrarServlet has three methods: doRegister, handleRegister, and handleUnregister.

The doRegister method responds to REGISTER messages and performs some checks on the
incoming request, extracts the user name from the request, looks the user up in the database of
users, and examines the EXPIRES header of the request to determine whether the request is a
registration or unregistration request. If it is a registration request, the handleRegister private
helper method is called. If it is an unregistration request, the handleUnregister private helper
method is called. These methods will return a SIP response to send back to the client.

EXAMPLE2-2 The doResponse Method

@Override
protected void doRegister(SipServletRequest req)
throws ServletException, IOException {
logger.info("Received register request: " + req.getTo());

int response = SipServletResponse.SC SERVER INTERNAL ERROR;
ModelFacade mf = (ModelFacade) getServletContext().getAttribute("Model")

// Figure out the name the user is registering with. This is the

// user portion of the SIP URI, e.g. "Bob" in "sip:Bob@x.y.z:port"
String username = null;

Chapter2 « Simple SIP Servlet Examples 33

The Click-To-Dial Example

EXAMPLE2-2 The doResponse Method (Continued)

if (req.getTo().getURI().isSipURI()) {
username = ((SipURI) req.getTo().getURI()).getUser();

// get the Person object from the database
Person p = mf.getPerson(username);
if (p !'= null) {
// the Expires header tells us if this is a registration or
// unregistration attempt. An expires value of @ or no Expires
// header means it is an unregistration.
int expires = 0;
String expStr = req.getHeader("Expires");
if (expStr != null) {
expires = Integer.parselnt(expStr);

if (expires == 0) {
// unregister
response = handleUnregister(req, p);
} else {
// register
response = handleRegister(req, p);
}
} else {
// no person found in the database
response = SipServletResponse.SC NOT FOUND;

// send the response
SipServletResponse resp = req.createResponse(response);
resp.send();

The handleRegister method extracts the user's SIP address from the request, stores it in the
user database, and returns a SIP OK response. The user can now place and receive calls.

EXAMPLE2-3 The handleRegister Method

private int handleRegister(SipServletRequest req, Person p)
throws ServletException {

// Get the contact address from the request. Prefer the

// "Contact" address if given, otherwise use the "To" address
Address addr = req.getTo();

String contact = req.getHeader("Contact");

34 The SIP Servlet Tutorial « January, 2009

The Click-To-Dial Example

EXAMPLE2-3 The handleRegister Method (Continued)

if (contact != null) {
addr = sf.createAddress(contact);

logger.info("Register address: " + addr);

// store the contact address in the database
p.setTelephone(addr.getURI().toString());

ModelFacade mf = (ModelFacade) getServletContext().getAttribute("Model")
mf.updatePerson(p);

return SipServletResponse.SC OK;

The handleUnregister method removes the user's SIP address from the database by setting it
to null, then sends a SIP OK response back. The user cannot place or receive calls after being
unregistered.

EXAMPLE2-4 ThehandleUnregister Method

private int handleUnregister(SipServletRequest req, Person p) {
// store the contact address in the database
p.setTelephone(null);

ModelFacade mf = (ModelFacade) getServletContext().getAttribute("Model")
mf.updatePerson(p);

return SipServletResponse.SC OK;

The CallSipServlet

The CallSipServlet SIP servlet connects registered SIP users to one another, allowing users to
place calls to one another. There are 5 main SIP methods in CallSipServlet:
doSuccessResponse, sendInviteToClient, sendAckToClient, sendAckToServer, and
sent2000KToClient.

CallSipServlet is annotated at the class-level with a @SipServlet and @SipListener
annotation.

@javax.servlet.sip.annotation.SipServlet
@SipListener
public class CallSipServlet extends SipServlet implements SipSessionListener {

Chapter2 « Simple SIP Servlet Examples 35

The Click-To-Dial Example

36

}

The doSuccessResponse method connects a call between two registered users. When the first
user Alice initiates a call to the second user Bob, first Alice's phone rings. If Alice answers her
phone, a SIP OK message is sent. At that point, Bob's address is extracted from the request, a SIP
INVITE message is sent to Bob's address by calling the sendInviteToClient private method,
and Bob's phone rings. If Bob answers the phone, a SIP 0K message is sent. The two SIP sessions,
from Alice and Bob respectively, are linked, and a SIP ACK message is sent to both user's phones
by calling the sendAckToClient and sendAckToServer private methods. Alice and Bob are now
connected and can have a conversation. When the call is terminated, a BYE message is sent from
the server, and the send2000KToClient private method is called.

EXAMPLE2-5 The doSuccessResponse Method

@Override
protected void doSuccessResponse(SipServlietResponse resp)
throws ServletException, IOException {
logger.info("Received a response.\n" + resp);

if (resp.getMethod().equals("INVITE")) {
List<SipSession> sipSessions = getSipSessions(resp.getApplicationSession());
if (sipSessions.size() == 1) {
sipSessions.get(0).setAttribute("ACK", resp.createAck());
sendInviteToClient(resp);
} else { // 200 OK from Client
sendAckToClient(resp);
sendAckToServer(resp);
}
} else if (resp.getMethod().equals("BYE")) {
send2000KToClient(resp);

EXAMPLE2-6 The sendInviteToClient Method

private void sendInviteToClient(SipServletResponse serverResp)
throws ServletException, IOException {
SipServletRequest serverReq = serverResp.getRequest();
B2buaHelper b2buaHelper = serverReq.getB2buaHelper();

// Swap To & From headers.

Map<String, List<String>> headerMap = new HashMap<String, List<String>>();
List<String> from = new ArrayList<String>();
from.add(serverResp.getHeader("From"));

headerMap.put("To", from);

List<String> to = new ArrayList<String>();

The SIP Servlet Tutorial « January, 2009

The Click-To-Dial Example

EXAMPLE2-6 The sendInviteToClient Method (Continued)

to.add(serverResp.getHeader("To"));
headerMap.put ("From", to);

SipServletRequest clientRequest = b2buaHelper
.createRequest(serverReq, true, headerMap);
clientRequest.setRequestURI(clientRequest.getAddressHeader("To").getURI());
if (serverResp.getContent() !'= null) { // set sdpl
clientRequest.setContent(serverResp.getContent(),
serverResp.getContentType());
}
logger.info("Sending INVITE to client.\n" + clientRequest);
clientRequest.send();

EXAMPLE2-7 The sendAckToClient Method

private void sendAckToClient(SipServletResponse clientResp)
throws ServletException, IOException {
SipServletRequest ack = clientResp.createAck();
logger.info("Sending ACK to client.\n" + ack);
ack.send();

EXAMPLE2-8 The sendAckToServer Method

private void sendAckToServer(SipServletResponse clientResp)
throws ServletException, IOException {
B2buaHelper b2buaHelper = clientResp.getRequest().getB2buaHelper();
SipSession clientSession = clientResp.getSession();
SipSession serverSession = b2buaHelper.getLinkedSession(clientSession);
SipServletRequest ack = (SipServletRequest) serverSession.getAttribute("ACK")
serverSession.removeAttribute ("ACK");
if (clientResp.getContent() != null) { // set sdp2
ack.setContent(clientResp.getContent(), clientResp.getContentType());
}
logger.info("Sending ACK to server.\n" + ack);
ack.send();

EXAMPLE2-9 The send2000KToClient Method

protected void doBye(SipServletRequest request)
throws ServletException, IOException

Chapter2 « Simple SIP Servlet Examples

37

The Click-To-Dial Example

38

EXAMPLE2-9 The send2000KToClient Method (Continued)
logger.info("Got bye");
SipSession session = request.getSession();

// end the linked call
SipSession linkedSession = (SipSession) session.getAttribute("LinkedSession");
if (linkedSession != null) {

// create a BYE request to the linked session

SipServletRequest bye = linkedSession.createRequest("BYE")

logger.info("Sending bye to " + linkedSession.getRemoteParty());

// send the BYE request

bye.send();

// send an OK for the BYE
SipServletResponse ok = request.createResponse(SipServletResponse.SC OK);
ok.send();

There are three SIP session listener methods implemented in CallSipServlet, from the
SipSessionListener interface: sessionCreated, sessionDestroyed, and
sessionReadyToInvalidate.In CallSipServlet,the methods simply log the events.

EXAMPLE2-10 SipSessionListener Methods Implementedin CallSipServlet

public void sessionCreated(SipSessionEvent sse) {
logger.info("Session created");

public void sessionDestroyed(SipSessionEvent sse) {
logger.info("Session destroyed");

public void sessionReadyToInvalidate(SipSessionEvent sse) {
logger.info("Session ready to be invalidated");

Running the Click-To-Dial Example

This section describes how to deploy and run the Click-To-Dial Example in NetBeans IDE.

The SIP Servlet Tutorial « January, 2009

The Click-To-Dial Example

Deploying and Running Click-To-Dial in NetBeans IDE

In NetBeans IDE, click Open Project and navigate to sip-tutorial/examples/ClickToDial.
Right-click on the ClickToDial project and select Run.

This will open a browser to http://localhost:8080/ClickToDial.
Registering Alice's SIP Phone

In your web browser select Alice from the drop-down menu and click Login.
In X-Lite right-click on the phone and select SIP Account Settings.

Click Add.

Enter Alice under Display Name, User Name, and Authorization User Name.
Enter test.comunder Domain.

Check Register With Domain and Receive Incoming Calls.

Under Send Outbound Via select Proxy and enter Communications Application Server 1.5 IP
address:5060. For example, 192.168.0.2:5060.

Click Ok.

Registering Bob's SIP Phone

On a different machine in your web browser go to http://Communications Application Server
1.5IP Address:8080/ClickToDial. For example, http://192.168.0.2:8080/ClickToDial.

Select Bob from the drop-down menu and click Login.

In the second machine's X-Lite right-click on the phone and select SIP Account Settings.
Click Add.

Enter Bob under Display Name, User Name, and Authorization User Name.

Enter test.comunder Domain.

Check Register With Domain and Receive Incoming Calls.

Chapter2 « Simple SIP Servlet Examples 39

http://localhost:8080/ClickToDial

The Click-To-Dial Example

40

Under Send Outbound Via select Proxy and enter Communications Application Server 1.5 IP
address:5060. For example, 192.168.0.2:5060.

Click Ok.

Placing a Call From Alice To Bob
On Alice's machine, refresh the web browser to see that both Alice and Bob are registered.
Click Call next to Bob's SIP address to place a call to Bob.

In X-Lite click Answer to place the call to Bob.

X-Lite will initiate a call to Bob's X-Lite instance using Communications Application Server 1.5
asa proxy.

On Bob's machine, click Answer to receive the call from Alice.

Alice and Bob are now connected and may talk.

The SIP Servlet Tutorial - January, 2009

L K R 4 APPENDIX A

SIP Messages

This appendix describes the SIP requests and responses.

SIP Requests

The following table lists the SIP requests.

TABLEA-1 SIP Requests

SIP Request Description

INVITE A client is being invited to participate in a call.

ACK The client has confirmed the INVITE request.

BYE The call has been terminated by either the caller or
callee.

CANCEL Cancel any pending requests.

OPTIONS Queries the server for its capabilities.

REGISTER Registers the client with the server according to the
address in the To header.

PRACK Similar to ACK, but a provisional confirmation.

SUBSCRIBE Subscribes the device for an event notification.

NOTIFY Notifies all subscribers of an event.

PUBLISH Publishes an event to a server.

INFO Sends information in the middle of a session that

doesn't modify the session's state.

4

SIP Responses

TABLEA-1 SIP Requests (Continued)
SIP Request Description
REFER Asks the client to issue a SIP request, typically a call
transfer.
MESSAGE Sends an instant message using SIP.
UPDATE Modifies a session's state without altering the dialog

state.

For alist of all SIP requests and links to their definitions in their respective RFCs, see the SIP
requests Wikipedia entry.

SIP Responses

TABLEA-2 SIP Responses

SIP Response

Description

100-199

200-299

300-399

400-499

500-599

600-699

Information responses.
Successful responses
Redirection responses
Client error responses
Server error responses

Global failure responses

For alist of all SIP responses, see the SIP responses Wikipedia entry.

42 The SIP Servlet Tutorial « January, 2009

http://en.wikipedia.org/wiki/SIP_Requests
http://en.wikipedia.org/wiki/SIP_Requests
http://en.wikipedia.org/wiki/SIP_Responses

Index

A

annotations, 14-17
audience, intended, 5

B
B2buaHelper class, 24-26

C

converged applications, See SIP: converged applicatons

D
databases, 32-38
deployment descriptors, 14-17,26

E

errors, 22-23

examples
about, 5-8
architecture, 32-38
building, 7
deploying, 31-32,38-40
downloading, 6
prerequisites, 29
required software, 5-7
running, 31-32,38-40

examples (Continued)
SIP servlets, 32-38
SipProxy, 29-32
structure, 7-8

G
GlassFish, 5,8

H
HTTP, See protocols: HTTP

1
injection, 17
Integrated Development Environment, 6

J

Java EE, components, 13
Java Persistence API, 32-38
JSR 289, See SIP:1.1

L

lifecycle, SIP sessions, 19-20
listeners, See SIP: listeners

43

Index

N
NetBeans, 6,7,29,31,38-40

P
packaging, 26-27
protocols
HTTP, 12
SIP, 11-12
TCP, 11-12
UDP, 11-12

R

requests, See SIP: requests
@Resource annotation, 17,20
resource, injection, 17
responses, See SIP: responses

S
SailFin, 5,8
Servlet interface, 29-31
servlets, 12-27
HTTP, 12-13,32-40
SIP
See SIP: servlets
ServletTimer interface, 23-24
Session Initiation Protocol, See SIP
SIP
1.1, 8
about, 11-12
annotations, 14-17,33
application keys, 16-17
applications, 15-16,26-27
packaging, 26-27
containers, 12-27
converged applications, 13,26-27,32-40
errors, 22-23
events, 20-23
factories, 17
Java EE, 13

44 The SIP Servlet Tutorial « January, 2009

SIP (Continued)
Javadocs, 8
listeners, 15,20-23,22,23,29-31,31
messages, 11-12,33-35,41-42
methods, 13,31
proxies, 29-32
proxying, 24-26
requests, 11-12,13,24-26,41-42
responses, 12,13,24-26,42
servlets, 12-27,13,14-15
collection of, 15-16
contexts, 17,20
loading order, 14-15
sessions, 14-17,18-20,21-22,22
lifecycle, 19-20
linking, 25
managing, 20
testing software, 6,7
timers, 23
creating, 23-24
destroying, 23-24
managing, 23-24
@SipApplication annotation, 14-17,33
@SipApplicatonKey annotation, 14-17
SipApplicationSession interface, 18-20
SipApplicationSessionActivationListener
interface, 21-22
SipApplicationSessionAttributelListener
interface, 21-22
SipApplicationSessionBindingListener
interface, 21-22
SipApplicationSessionlListener interface, 21-22
SipErrorListener interface, 22-23,29-31,31
SipFactory, interface, 17
@SipListener annotation, 14-17,20-23,29-31,35-38
SIPp, 31-32
@SipServlet annotation, 14-17,29-31, 35-38
SipServlet class, 29-31
SipServletListener interface, 21
SipSession, interface, 18-20
SipSession interface, 18-20
SipSessionActivationListener interface, 22
SipSessionAttributelListener interface, 22
SipSessionBindingListener interface, 22

Index

SipSessionListener interface, 22

T
TCP, See protocols: TCP
TimerListener interface, 23
timers, See SIP: timers
TimerService interface, 23-24

U
UDP, See protocols: UDP

X
X-Lite, 38-40

45

46

	The SIP Servlet Tutorial
	Preface
	Who Should Use This Book
	About the Examples
	Required Software
	Java Platform, Standard Edition
	Communications Application Server 1.5
	NetBeans IDE
	SIP Modules for NetBeans IDE
	Sample Applications
	SIPp
	X-Lite Soft Phone
	Apache Ant

	Building the Examples
	Building the Examples Using NetBeans IDE

	Tutorial Example Directory Structure

	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of Session Initiation Protocol (SIP) Application Development
	About the SIP Protocol
	SIP Requests
	SIP Responses

	What Are SIP Servlets?
	Differences Between HTTP Servlets and SIP Servlets
	SIP Servlets and Java EE Components
	SIP Servlet Methods
	SIP Annotations
	Using the @SipServlet Annotation
	Using the @SipListener Annotation
	Using the @SipApplication Annotation
	Using the @SipApplicationKey Annotation

	Using SipFactory to Create SIP Servlet Instances
	SIP Sessions
	SipApplicationSession Methods
	SipApplicationSession Data Methods
	SipApplicationSession Protocol Methods
	SipApplicationSession Lifecycle Methods

	Using SipSessionsUtil to Manage SIP Sessions

	SIP Listeners
	SIP Servlet Listeners
	SIP Application Session Listeners
	SIP Session Listeners
	SIP Error Listeners
	SIP Timer Listeners

	SIP Timers
	Managing SIP Timers

	Back-to-Back User Agent Applications
	Understanding the B2buaHelper Class
	Creating Requests with B2buaHelper
	Retrieving Linked Sessions Using B2buaHelper

	SIP Servlets and the SIP Servlet Container
	Structure of a SIP Application
	The sip.xml Deployment Descriptor
	Packaging a SIP Application

	Simple SIP Servlet Examples
	Prerequisites for Running the Examples
	The SipProxy Example
	Developing the SIP Servlet
	SIP Methods
	SipErrorListener Methods

	Deploying and Running SipProxy
	Deploying and Running SipProxy in NetBeans IDE
	Testing SipProxy with the SIPp Application

	The Click-To-Dial Example
	Architecture of the Click-To-Dial Example
	Click-To-Dial's SIP Servlets
	SIP Application Annotations in CllickToDial
	The RegistrarServlet
	The CallSipServlet

	Running the Click-To-Dial Example
	Deploying and Running Click-To-Dial in NetBeans IDE
	Registering Alice's SIP Phone
	Registering Bob's SIP Phone
	Placing a Call From Alice To Bob

	SIP Messages
	SIP Requests
	SIP Responses

	Index

