
Project Shoal
– A Generic Clustering
Framework
Shreedhar Ganapathy(GlassFish)
shreed@sun.com
Mohamed Abdelaziz(JXTA)
hamada@jxta.org

2

What is Project Shoal?
• A Java.net project aimed at building a Clustering Framework
> for Java EE/J2EE Application Servers and any other product

requiring clustering features
> At https://shoal.dev.java.net

• Shoal provides a Group Management Service (GMS) that
provides
>group membership management through discovery of

events
– join, shutdown and failure notifications, delegated

recovery initiation, and
>state caching facilities

• Applications interact with Shoal's GMS API using their logical
identity semantics to communicate with other group members

https://shoal.dev.java.net/

Shoal GMS Feature Themes

Three broad feature themes:
• Features providing
> a group sensory-action theme.
> a group communications theme.
> Shared or Distributed Storage theme.

Shoal GMS Group Sensory-Action features
• Provides a set of Client APIs for signalling cluster

events. Such Signals include
> Lifecycle Signals
>Cluster Member(s)

– joining the cluster at runtime
– leaving the cluster at runtime
– going into in-doubt(suspected) state.
– being confirmed failed

> Recovery oriented Signals and Support
>Automatic Recovery Member Selection Signal
>Protective failure fencing operations

Shoal GMS Group Communication Theme

• GMS provides Group Communication Provider SPI
> Group communication technologies such as JXTA,

JGroups, etc. integrate through SPI
• GMS provides a group messaging handle
> to clients to send messages to group or particular

member(s),
> client components can address messages to specific

components in destination
• GMS hands Message Signals in recipient clients
> GMS delivers the Signal to the target component

Shared or Distributed Storage Theme
• GMS provides a Distributed State Cache (DSC)

interface
> Can be implemented to suit custom requirements
> Default Implementation is a shared concurrent hashmap

• DSC can be implemented for in-memory
shared/distributed cache for application state
• Group communication providers provide tunable

performance properties for better throughput

Application, Shoal GMS, Group Communication
Provider Relationships

Application

SPI Impl for JXTA/JGroups/others

JVM

Network

Startup &
Shutdown

View Change

Analyze View

Register ActionFactory
ProduceAction
& Deliver Signal

Notify MessageListenerJoin Leave

GMS Client API

GMS Service Provider Interface
GMS

Shoal GMS in Application Server Instance
Application Server starts various in-process Services, one of which is the GMS

JVM

9

Shoal Group Management Service
• At startup, GMS in each process joins predefined group (and at shutdown

leaves that group).
• Pluggable GroupCommunicationProvider Impl provide communication

channels, and protocols for group composition and failure monitoring
• When member joins, leaves or fails, GMS calls client components informing

them
• On failure confirmation, if enabled, Recovery Oriented Computing Support

kicks in –
> GMS selects a recovery candidate member
> Notifies registered client components in selected member process
> Shares this selection information through DSC.
> Protects recovery operations through failure fencing
> Ensures recovery-in-progress ops are tracked for multiple failures

• Provides a default Distributed State Cache implementation for caching
recovery states and application lightweight data

Shoal GMS in an Application Server
Cluster

What do Shoal GMS clients get?
• Peace of mind :)
• Saves many person years of work in writing

complex code to emulate its functionality in common
enterprise applications
• GMS takes on the complexity of group formation,

discovery of members, preconfigured endpoint
locational details, networking semantics
• Clients simply use the group's logical membership

identities to communicate and be notified of events

12

What do Shoal GMS Clients get ?
• Allows client components in a process to :

> Send and Receive Messages using app level addressing semantics ex. Using
instance Id or name for addressing the destination.

> Use GMS Event Model for receiving Group Event Notifications & Message
Delivery

> Use GMS APIs for getting member states, current group composition, caching
app level information, and for messaging one-to-one, one-to-many, and one-to-
all.

• Each system installation uses a particular Group Communication Provider,
plugs in the same with SPI implementation. Clients don't change any code.

• Useful features yet a lightweight component providing an engine for building
enterprise distributed systems functionality

• Recovery oriented computing semantics without application specific
artifacts, a basis for building fault tolerance solutions.

• Several current use cases within Sun's Appserver, more to come...

13

Shoal GMS Startup code sample
public class GMSLifecycleManager {

Runnable gms;
public void startGMS(){

try {
//creates a Runnable and inits with serverId, groupId, membertype and lifetime
//config properties.
gms = GMSFactory.startGMSModule(serverId, groupName,

GroupManagementService.MemberType.CORE, properties);
Thread t = new Thread(gms, “GMSThread”);
t.start();

}
catch (GMSException e){
 //deal with it :)
}

public void shutdownGMS(){
gms.shutdown(GMSConstants.ShutdownType.INSTANCE_SHUTDOWN)

}
}

14

Shoal GMS Client CodeSample
public class GMSClient implements CallBack {

.....
registerWithGMS(){

GroupManagementService gms = GMSFactory.getGMSModule(clusterName);
//register interest in events
gms.addActionFactory(new JoinNotificationActionFactoryImpl(this));
gms.addActionFactory(new FailureSuspectedActionFactoryImpl(this));
gms.addActionFactory(new FailureNotificationActionFactoryImpl(this));
gms.addActionFactory(new FailureRecoveryActionFactoryImpl(this));
gms.addActionFactory(new PlannedShutdownActionFactoryImpl(this));

}

processNotification(Signal signal){
//process the appropriate Signal type, say FailureNotificationSignal according to client logic

}
As seen above, for GMS clients, this is a Breeze to do and very simple.
GMS takes on complexities of Group and Endpoint discovery, failures, etc.

15

Shoal GMS in GlassFish V2
• In GlassFish v2 cluster mode, Shoal GMS is used

for
> Automated delegated transaction recovery
> Timer migrations
> IIOP Failover Loadbalancer
> Self Management
> Read-only Bean's cache change notifications
> Domain Admin Server for cluster health
> In-memory replication component's discovery and failure

detection needs.

16

Shoal GMS in the enterprise world
• Shoal can be used for common enterprise clustering

requirements
• Some products that can benefit
> MQ Broker Clusters
> Directory Server Clusters
> Sun Grid
> App level clustering in small scale deployments (plug in

Shoal into a PE instance and apps directly use it for their
cluster needs)

> Several others limited only by imagination and some
contrarian thinking :)

17

GMS SPI Highlights
• Goaled to work with both JGroups and JXTA
• Extracted out of common functionalities from both

the group communication technologies and GMS
client requirements
• Open to other GCP implementations as suitable for

a specific application
• SPI rev in progress

18

GMS's Use of JXTA
• GMS requirements
• Jxta Management – a collaborative effort between

Appserver Group and JXTA (Advanced
Development) Group
• Critical JXTA Platform Functionality

19

GMS Requirements
• At the minimum
> Group and Membership detection
> Failure Detection
> Guaranteed Message delivery
> Ordered Messaging (particularly for group membership

messages)
• Of Added Use
> Flow Control (Dynamic Sliding Window management)
> Merging of split groups
> Fragmentation of packets over 64K

20

JxtaManagement Architecture
• Shoal GMS utilizes JxtaManagement component (a JXTA based group

service provider) for dynamic cluster configuration, formation, and
monitoring.

21

JxtaManagement Architecture
• NetworkManager

> Given instance and group name, uses a SHA-1 hash to encode the cluster GroupID, and
NodeID

> defines a set of predefined communication identifiers used for formation, monitoring and
messaging.

> Application can pass additional config parameters, such as bootstrapping addresses to
facilitate cross sub-net and firewall communication.

• SystemAdvertisement
> An extensible XML document describing system characteristics (HW/SW configuration.

CPU load would be a nice extension).
> Envisioned that this would serve at the foundation of a Grid framework.

• MasterNode
> Lightweight protocol allowing a set of nodes to discover one another, and autonomously

elect a master for the cluster.
> Resilient to multi node collisions and employs an autonomous mechanism to avoid

network chatter to resolve collisions.

22

Jxta Management Architecture
• ClusterView
> Maintains an ordered view of the Cluster

• HealthMonitor
> A lightweight protocol allowing a set of nodes to monitor the health of a

cluster.
> Relies on a tunable heart beat,

> acted upon by MasterNode to notify the group of failures,
> and by other members to elect a new master if the master node fails.

• ClusterManager
> Manages lifecycle of this SPI

23

Critical Jxta Platform Functionality
• Membership scoping - Infrastructure NetPeerGroup provides

group isolation from the world
• Rendezvous Protocol - PeerGroup and Peer locational and

route tracking, and provides end point routing abstraction
• Platform provides virtualizing of PeerID to network addresses
• Platform's messaging envelope - the Message object

encapsulates MessageElements allowing for separation of
payload from metadata

• Secure communication channels – PKI-based public key for
Unicast, shared keystore based for multicast

• NetworkConfigurator – API for programmatic configuration,
configuration stays in-memory during lifetime of peer.

24

Current Status, Tests Run
Current Status
• Source code has been made available at Project Shoal. Download it

and have fun with it :)
• GMS SPI implementation uses Jxta layer implementing Group

Communication Provider SPI
• Weekly review meetings with JXTA team for continuous improvement
Tests Run
• Tests covered: Various time Startup scenarios, Join tests, Shutdown

tests, Failure tests, and Recovery behaviors tests
• QE ran 15 most important test cases from GMS suite of 40 with

several iterations.
• Fixing P3s as they are identified.

25

Plans
• Stabilize current implementation for release with

GlassFish Application Server 9.1
• Involve user community to test and deploy Shoal

and contribute bugs and RFEs.
• Possible Shoal Cache implementation being looked

at.
• Engage within and outside Sun for adoption.
• Use Shoal as a driver for GlassFish downloads.

