
08/11/11 16:47Automatability: Tomcat vs Glassfish

Page 1 of 3file:///Users/AlexisMP/Downloads/Automatability%20%20Tomcat%20vs%20Glassfish.html

Automatability: Tomcat vs Glassfish
By Kohsuke Kawaguchi

Background
I was writing an end-to-end test harness for the JAX-WS RI and WSIT. One of the requirements for this
attempt was to completely automate the interaction with containers. This was needed so that we can reliably
run multiple instances of tests, perhaps with different configurations, on the same machine. To put this into
another way, I needed to programatically control containers. I did this for both Tomcat and Glassfish. This
document summarizes what I found, in the hope that the Glassfish team will find useful.

FULL DISCLOSURE: when I attempted this work, I had more experience of working with Tomcat than with
Glassfish.

Comparisons
The following table compares Tomcat and Glassfish from key automation requirements.

Regarding "initial setup" and "create new configuration" --- To automate containers, you first need to have a
master copy of a container. This is where all the jars will be loaded. Then for each run of container you need
to have a "configuration". This is where we tell things like "use HTTP port 18520 and put logs into
/var/tmp/wstest19303/logs/foo.log". This is analogous to class/instance relationship in Java.

Metrix Tomcat Glassfish

Initial setup
Extract tomcat bundle. Done. The same
image can be used on any test platforms,
and can be moved to any directory freely.

Run the poorman's installer, which
occasionally hangs on some system. Then run
"ant -f setup.xml". The master Glassfish set up
in this way cannot be moved to other
directories, because
$GLASSFISH_HOME/config/asenv.conf is
hard-coded to a particular location. Also, I
need to prepare a separate image for each
platform (linux-amd64, solaris-sparcv9, and
solaris-i586)
Also, it hard-codes path to JDK, making it
even harder to move.

Create a new
configuration
for a test run

Create a few directories. Then copy a few
XML files into conf/ folder, and the
manager app if you want. Configuration
can be changed by modifying these XML
files (such as HTTP port and logger
setting.) The whole thing takes less than a
second. Configuration files are well-
documented, and it's easy to learn how to
tweak them.

Invoke "asadmin create-domain" as a separate
process. Some configurations can be specified
as command-line options (such as HTTP port),
but not logging. The whole operation takes 5 to
10 seconds to complete. Generated
configuration XML (config/domain.xml) says
"Avoid manual edits", and it's not documented.

Configure conf/server.xml shows how to do this. I
can send log output to stdout/stderr, so that

08/11/11 16:47Automatability: Tomcat vs Glassfish

Page 2 of 3file:///Users/AlexisMP/Downloads/Automatability%20%20Tomcat%20vs%20Glassfish.html

logging so
that I can
capture logs
in a way I
want.

can send log output to stdout/stderr, so that
I can capture all Tomcat output at once.
With some additional work, I can also
choose to capture logs per web application,
allowing concurrent tests to differenciate
log output.

I took a look inside config/domain.xml, but
failed to find the configuration.

Start and
stop
container

Invoke "java -jar
$CATALINA_HOME/bin/bootstrap.jar" as
a separate process with Runtime.exec()

Invoke "asadmin start-domain" as a separate
process. Note that you can't just use
Runtime.exec(). See bug 885. Also, if start-
domain fails, the caller can't find that out. See
bug 884. Finally, Glassfish takes considerably
longer to launch than Tomcat.

Deploy and
undeploy
applications

If server and client are on the same
machine, I can use the manager app to
deploy any WAR or directory anywhere in
the file system. This is fast, because there's
no packaging and file copying involved.
I can also choose to put a war on webapps
directory to be auto-deployed, or copy a
WAR over network (via manager app) for
remote deployment.

This whole feature is well-documented.

Deployment via JSR-88. This requires a WAR
to be created, which is additional processing
that takes more time. JSR-88 was an OK API
to use, but you need additional jars in the test
harness to use JSR-88.

I couldn't locate JSR-88 sample with Glassfish
on the web, even though some steps are GF-
specific (such as initial connection
establishment.) But when I asked, friendly
fellow GF developers sent me a few pointers
quickly.

Embedded
container

Possible, although not well-documented.
This set up works very quickly, because
(1) it avoids overhead of creating a new
JVM, (2) I don't need to rebundle JAX-
WS/WSIT runtime into each war, (3) a
simple System.exit() will terminate both
the container and the test, and (4)
debugging is easy because you only need
to have one debug session.
I found this mode to be ideal for the JAX-
WS test harness.

Impossible.

Source zip,
when I need
to debug into
container

Available for download, even though it
doesn't contain all the source code for
everything. Source files were split to many
sub directories per each module, so it's not
easy to configure IDE to recognize needed
source files.

The same as Tomcat. The problem is worse
with Glassfish, however, because there are
many modules.

There are two kinds of people who read the source; one who wants to hack the code, and the
other who wants to learn what's going on. I was the latter; I only wanted to step into GF's
code, just to make sure I'm not doing something stupid in my code, or to diagnose the
problem better. For this, all I needed was a single source zip that contains all source files
according to their package structure.

It would have been a lot nicer if the container comes with two kinds of source bundle, for
these two kinds of audience.

Conclusion

08/11/11 16:47Automatability: Tomcat vs Glassfish

Page 3 of 3file:///Users/AlexisMP/Downloads/Automatability%20%20Tomcat%20vs%20Glassfish.html

Automatability is important, because automation improves productivity. More people are interested in
automation these days, as you can see in the raise of Ant, Maven, and countless CI tools.

Unfortunately, on most of the key points that mattered to me, I have to report that Glassfish is lagging
behind Tomcat. I hope this situation will be improved in future.

