
CommunityOne 2007 | Session GlassFishV3 | 1

Session ID

GlassFish V3
Jerome Dochez

Sun Microsystems, Inc.
hk2.dev.java.net, glassfish.dev.java.net

YOUR LOGO
HERE

CommunityOne 2007 | Session GlassFishV3 | 2

Goal of Your Talk

Learn how the GlassFish V3
groundbreaking architecture is based
on IoC, modules and maven 2.

What Your Audience Will Gain

CommunityOne 2007 | Session GlassFishV3 | 3

Agenda

Demo !
Modules Subsystem
Build System
Services, services
Inversion of Control
Components, scopes

CommunityOne 2007 | Session GlassFishV3 | 4

DEMO

CommunityOne 2007 | Session GlassFishV3 | 5

Agenda

Demo !
Modules Subsystem
Build System
Services, services
Inversion of Control
Components, scopes

CommunityOne 2007 | Session GlassFishV3 | 6

Introduction
Module Subsystem : HK2

● Loosely based on the work of JSR 277
● Due in Java SE 7
● Expert group still evolving the APIs
● Added hooks to provide extensibility points for

other module types :
● maven
● OSGi
● Fits in 50 Kb : Hundred Kilobytes Kernel
● Runs on Java SE 5.

Source: Please add the source of your data here

CommunityOne 2007 | Session GlassFishV3 | 7

Module Instances

● At runtime, modules are identified by Module
instances.

● Each Module has 2 ClassLoaders
● public that users have access to (facade)
● private that load all the module's classes
● Modules have a list of other module's class

loaders to load imported classes.
● Garbage collection happens when all

references to the public class loader are
released.

7

CommunityOne 2007 | Session GlassFishV3 | 8

private CL

Name : C
Imports: B

v.jar

private CL

Name : B
Imports:

t.jar

Private CL

Name : A
Imports: B, C

x.jar

Runtime network of class loaders

y.jar z.jar

public CL

u.jar

Module Definitions

public CL public CL

Runtime reference

CommunityOne 2007 | Session GlassFishV3 | 9

Repository

● Repositories hold modules
● Can be added and removed at run time
● Different types supported

● directory based
● maven
● OSGi ?

● Modules can be added/updated/removed from
repositories

9

CommunityOne 2007 | Session GlassFishV3 | 10

Bootstrapping

● Module subsystem can bootstrap itself
● No more classpath at invocation
● Application startup code is packaged in a jar

file.
● Application code only need to implement the

ApplicationStartup interface.
● Application code can declare dependencies in

its manifest code.
● to run : java -jar
● For GlassFish : java -jar glassfish.jar

10

CommunityOne 2007 | Session GlassFishV3 | 11

Build system : maven 2

● Each module is build from a maven project
(pom.xml)

● pom.xml describes the module’s
● name
● version
● dependencies

● manifest entries are created automatically from
pom.xml info

● pom.xml not used directly for performance
reasons.

11

CommunityOne 2007 | Session GlassFishV3 | 12

Module Example
Declare your module like :

 <groupId>com.sun.enterprise.glassfish</groupId>
 <artifactId>gf-web-connector</artifactId>
 <packaging>modsys-jar</packaging>

and dependencies with :

<dependencies>
 <dependency>
 <groupId>com.sun.enterprise.glassfish</groupId>
 <artifactId>webtier</artifactId>
 <version>${project.version}</version>
 </dependency>
....

CommunityOne 2007 | Session GlassFishV3 | 13

Resulting definition
Jar File Manifest file :

Built-By : dochez
Created-By : Apache Maven
Implementation-Title : gf-web-connector
Manifest-Version : 1.0
Extension-Name : gf-web-connector
Implementation-Version : 10.0-SNAPSHOT
Import-Bundles : com.sun.enterprise.glassfish:webtier,
com.sun.enterprise.glassfish:v3-core

CommunityOne 2007 | Session GlassFishV3 | 14

Build Repositories

● HK2 repository has been implemented using a
maven repository backend.

● Build system puts modules in the maven
repository.

● Running GlassFish gets the modules from the
maven repository

● Once we got passed the maven bugs and
quirks, build got a lot simpler than in V1/V2
leading to developer productivity.

14

CommunityOne 2007 | Session GlassFishV3 | 15

Agenda

Demo !
Modules Subsystem
Build System
Services, services
Inversion of Control
Components, scopes

CommunityOne 2007 | Session GlassFishV3 | 16

Services, services

● GlassFish V3 use extensively Services to
identify extension points like :
● Application Containers (like Web-App, Phobos,

JRuby...)
● Administrative Commands

● Services are :
● implementing an interface
● declared with META-INF/services file

● Can be stateless or statefull

16

CommunityOne 2007 | Session GlassFishV3 | 17

Services in V3

● Interfaces are declared with @Contract
● Implementations are declared with @Service
● Build system will generate META-INF/services file

automatically
@Contract
public interface Startup {...}

@Service
public class ConfigService implements Startup
{
...
}

CommunityOne 2007 | Session GlassFishV3 | 18

@Service definition
public @interface Service {

 String name() default "";

 Class<? extends Scope> scope() default PerLookup.class;

 Class<? extends Factory> factory() default Factory.class;

}
Example :

@Contract
public interface AdminCommand {...}

@Service(name=”deploy”)
public class DeployCommand implements AdminCommand {
 ...
}

CommunityOne 2007 | Session GlassFishV3 | 19

Current @Contract

● Startup : code to run at server startup
● Sniffer : code to identify deployable artifacts
● Deployer : code to deploy artifacts in a container
● AdminCommand : administrative commands
● Adapter : Grizzly adapter to receive web requests
● WebRequestHandler : adapter to service

particular URL web requests.

CommunityOne 2007 | Session GlassFishV3 | 20

Agenda

Demo !
Modules Subsystem
Build System
Services, services
Inversion of Control
Components, scopes

CommunityOne 2007 | Session GlassFishV3 | 21

Dependency Injection
● @Inject to declare a dependency

● On any @Service annotated class
● Field :
@Inject
ConfigService config;

● Setter method :
@Inject
public void set(ConfigService svc) {..}

● Use ComponentManager to retrieve services
instances :
● public <T> T getComponent(Class<T> providerClass)
● public Iterable<T>
getComponents(Class<T> contract)

●

CommunityOne 2007 | Session GlassFishV3 | 22

Extraction

● All @Service annotated classes are extracted
and available using an @Inject annotation.

● @Extract to declare extra values extraction
● On any @Service annotated class
● Field :
@Extract
ConfigService config;

● Getter method :
@Extract
public ConfigService getConfigService() {..}

CommunityOne 2007 | Session GlassFishV3 | 23

@Service life-cycle methods

● PostContruct interface
● one method : postConstruct()
● called after injection is performed and before it is made

publicly available
● PreDestroy interface

● one method : preDestroy()
● called after the service is removed from public access.

● Available to all @Service annotated class
● Handled by the HK2 Runtime.

CommunityOne 2007 | Session GlassFishV3 | 24

Components Instantiation stages

● Components Creation
● new()
● injection of all @Inject annotated resources
● postConstruct()
● extraction of all @Extract annotated resources
● extraction of the instance

● Components Destruction
● removed from public
● all @Extract annotated resources removed from public
● preDestroy() called

CommunityOne 2007 | Session GlassFishV3 | 25

Instantiation cascading
@Contract
public interface Startup {...}

Iterable<Startup> startups;
startups = componentMgr.getComponents(Startup.class);

DeploymentService:java
@Service
public class DeploymentService implements Startup {

@Inject
ConfigService config;
}

ConfigService.java:
@Service
public Class ConfigService implements ... {...}

will trigger
instantiation of
the service
impl

Injection of
that resource

CommunityOne 2007 | Session GlassFishV3 | 26

Components Scopes

● Components have scopes.
@Service(Scope=Singleton.class)
public class ConfigService implements Startup {...}

● Scopes are components...
● therefore extensible

@Service
public MyScope implements Scope {...}

● Scopes defines the boundaries of components
visibility.

CommunityOne 2007 | Session GlassFishV3 | 27

Agenda

Demo !
Modules Subsystem
Build System
Services, services
Inversion of Control
Container life-cycle

CommunityOne 2007 | Session GlassFishV3 | 28

Application container life-cycle
startup

● Each container ship with a connector module
● containing at least one Sniffer
@Contract
public interface Sniffer {

 public boolean handles(File location);
 public String getModuleType();
 public void setup(String containerHome,
 Logger logger) throws IOException;
 public void tearDown();
 }

● Each sniffer gets called on deployment request
● handles() return true when they recognize a

module type

CommunityOne 2007 | Session GlassFishV3 | 29

Application container life-cycle
startup

● Once a Sniffer is selected :
● Sniffer::setup() is responsible for the container’s

installation (eventually from the internet).
● Sniffer::setup() is also adding HK2 Repositories to the

module subsystems.
● Deployer service is looked up from the new

Repositories with the right module type (obtained from
Sniffer::getModuleType()).

● Deployer service is invoked.

CommunityOne 2007 | Session GlassFishV3 | 30

Application container life-cycle
shutdown

● When last application is undeployed
● Sniffer:tearDown() will be called :

● should remove any repositories added to the module
system.

● must return in a state where setup() can be called
successfully

● Glassfish v3 will release all references to the
container’s runtime.

● Container should be garbage collected.

CommunityOne 2007 | Session GlassFishV3 | 31

Application Server startup

● GlassFish v3 startup implemented by Startup
interfaces.

● AppServerStartup.java is a component itself

@Inject
ComponentManager cm;

...
Iterable<Startup> startupsvcs =
 cm.getComponents(Startup.class);

CommunityOne 2007 | Session GlassFishV3 | 32

GlassFish shutdown
@Service(name=”stop-domain”)
public class StopDomainCommand
 implements AdminCommand, PostConstruct{

@Inject
Startup[] startupSvcs;

@Inject
ComponentManager cm;

public void postConstruct() {

 cm.removeComponents(startupSvcs);
}
}

CommunityOne 2007 | Session GlassFishV3 | 33

Summary : GlassFish V3

● Decomposition of the Java EE application server
implementation

● Easy to embed all types of container that run on
the JVM

● Embeddable
● Based on module subsystem (HK2)
● Use innovative and reusable components

technology
● Available today in preview

CommunityOne 2007 | Session GlassFishV3 | 34

For More Information

Links
● http://hk2.dev.java.net/
● http://glassfish.dev.java.net/
● http://wiki.glassfish.java.net/

Emails
● jerome.dochez@sun.com
● kohsuke.kawaguchi@sun.com

http://hk2.dev.java.net/
http://wiki.glassfish.java.net/
mailto:jerome.dochez@sun.com
mailto:kohsuke.kawaguchi@sun.com

CommunityOne 2007 | Session GlassFishV3 | 35

Q&A

Optional Speaker Names Here

Instructions:
(Delete this red box before
submitting your slides)

Use this slide to mark the
beginning of the Question
& Answer section of your
presentation.

