
GlassFish v3 Build System

Kohsuke Kawaguchi

Goals

2

 Do more at development time

 Less boiler plate code, less build script

 Facilitate automation

 With the eventual goal of fully automating all integrations

 Work nicely with mercurial’s hierarchical workspaces

 I couldn’t make this goal work. More later

 Must be usable for developing 3rd party modules

 This includes other Sun products built on top of GF

 This also helps component teams like Metro

 Deliver GF in more ways

Key ingredients

3

 Maven2
 Enabler for “do more with less build script”

 Enabler for automation, 3rd party use

 Risks
 Poor implementation

 Horrible error messages

 But in practice, only practical choice

 Hudson
 Enabler for automated integration

 GFv3 maven repository
 Build artifacts are deposited and downloaded from here

 Enabler for network install / update center

Term Check

4

 Module

 Unit of build and deployment

 A distribution of Glassfish = a collection of modules

 Corresponds to one maven module

 Belongs to one SCM repository

 SCM repository

 Place for keeping source code for 1 or more modules

 Project: a java.net project

 Unit of presentation

 A project might use 2 SCM repositories

 2 projects might host the code on 1 SCM repository

SCM Repositories

5

 We don’t really care where repositories are created
or how many

 … except almost certainly # of repo > 1

 We don’t really care if it’s CVS or Mercurial

 Factors for deciding what should be a repository

 Bigger repository is costly

 Two unrelated teams would prefer two repositories

 Closely related modules would prefer one repository

Module

6

 A GF module is a maven module

 Roughly speaking it contains the following stuff

 Lots of APT processing

 Metadata generation and code generation

 All hidden behind Maven

somemodule

+- pom.xml (build script)

+- src

+- main

| +- java (source code)

| +- resources

+- test (unit test code)

Module

7

 Build will eventually produce a jar

 Contains all the necessary metadata for runtime

 More metadata for later builds, such as distribution build

 POM eventually extends from GFv3 super POM

 Directly or indirectly

 Upload super POM to central maven repo so that modules
can be built without special ~/.m2/settings.xml

Module

8

 We don’t really care how many modules we have

 But it will be a very large number

 It will be open-ended as we encourage 3rd party modules

 Factors for deciding what should be a module

 Working on too many small modules are tedious

 Module is abstraction/grouping tool like package

 Module is the smallest unit of deployment

Distribution Module

9

 Distribution module is a maven module that builds
the runnable Glassfish image

 Basically just list up modules to be included

<project>

<artifactId>pe</artfactId>

<dependencies>

<dependency>jaxb:2.2-build-1500</dependency>

<dependency>jax-ws:2.2-build-923</dependency>

<dependency>ejb:10.0-build-329</dependency>

Distribution Module

10

 Support inheritance

 Not via POM inheritance but through transitive
dependency traversal

 Will be used to create bleeding-edge GF images

<project>

<artifactId>pe</artfactId>

<dependencies>

<dependency>jaxb:2.2-build-1500</dependency>

<dependency>jax-ws:2.2-build-923</dependency>

<dependency>ejb:10.0-build-329</dependency>

<project>

<artifactId>pe-webservice-bleeding-edge</artifactId>

<dependencies>

<dependency>pe:10.0-SNAPSHOT</dependency>

<dependency>jaxb:2.2-SNAPSHOT</dependency>

<dependency>jax-ws:2.2-SNAPSHOT</dependency>

Continuous Integration

11

 Continuously build modules

 1st line of defense against bad code

 Builds get published to GFv3 maven repository

 By build numbers*

 “Garbage collection” needed to keep disk usage under control

Build Status

#100 Success

#101 Failed

#102 Success

#103 Success

#104 Success

#105 Success

JAXB

Maven
Repository

* We should be able to do this without touching POM. Needs more research

Continuous Integration

12

 Run tests continuously

 2nd line of defense against bad code

 “tests” maybe unit/SQE/TCK tests, or maybe integration
build of another module with this new bit

Build Status Tests

#100 Success All pass

#101 Failed

#102 Success 5 failed

#103 Success All pass

#104 Success All pass

#105 Success (in progress)

JAXB

Continuous Integration

13

 When builds pass certain bars, Hudson updates
other POMs to pick up new build

 What POMs to get updated will be configurable

 That bar might be “never”, meaning manual integration

JAXB Build Status Tests Action

#100 Success All pass Picked by JAX-WS

#101 Failed

#102 Success 5 failed

#103 Success All pass Picked by JAX-WS

#104 Success All pass Picked by JAX-WS

#105 Success (in progress)

Continuous Integration

14

 Propagation will work as further bars

 e.g., update to JAX-WS POM will cause new JAX-WS
builds and its test runs, whose results will feed back to
JAXB

JAXB Build Status Tests WS tests

#100 Success All pass All pass

#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass

#105 Success (in progress)

Continuous Integration

15

 ... and those feed backs can be used to trigger
further propagation

JAXB Build Status Tests WS tests GF

#100 Success All pass All pass Picked by GF

#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass Picked by GF

#105 Success (in progress)

Recap: Mental Picture of Continuous Integration

16

 Think of this as a graph of projects where builds
(hence changes) propagate through controlled
fashion

JAXB JAX-WS WSIT

PE
Quick Look

GF+WSIT
integration

WSIT QA

EJB

JMS

PE

PE CTS

Tests

17

 Speed of change propagation depends squarely on
tests

 This proposal does not force any changes, but fully
automated, fast-running tests will make a real
difference
 Not just speeds in which changes propagate, but more

importantly keeping qualities high constantly and allowing
developers to take a larger risk

 The same goes to component specific tests

 There’s a lot of rooms for taking advantages of this
in tests
 Needs further discussion

Module Developer Experience

18

 Build a module

 dependencies downloaded from maven repository

 Debug

 This will launch Glassfish inside Maven with …

 modules listed in some build of some distribution

 configured in this module over by CLI argument

 plus the current module

$ hg clone http://hg.glassfish.java.net/ejb/
$ cd ejb
$ mvn install

$ MVN_OPTS=-Xrunjdwp:… mvn gf:run

Module Developer Experience

19

 You just need to check out modules you are working

 Maven modules can be opened by any IDE

 Making changes across modules

 Modules on different SCM repositories need to be
checked out individually

 May have to invoke maven multiple times to build all
relevant modules

 that is, if they don’t have the common parent POM

 in such case, POMs needed to be updated manually to use
SNAPSHOT dependency

 This is not as easy as it should be

3rd Party Module Developer Experience

20

 I should be able to write a few modules

 Write one maven module per one GF module

 Build them by “mvn package”

 Run them with “mvn gf:run”

 Install the resulting jars on any GFv3 installation

 GFv3 needs to provide a directory to drop them

 Update center to further automate distribution and installation

 Very much like how you handle NetBeans modules

3rd Party Module Developer Experience

21

 I should be able to create custom distribution

 Write a custom distribution module

 Derive from existing distribution and add more modules

 Distribute resulting image

 The same automation scheme would work for this

 Bring what MyEclipse does to Eclipse to GFv3

 We need a lot of custom distributions internally, too

 e.g., WSIT SQE needs to have a GF image with latest
WSIT to run tests

Release Engineering

22

 No separate RE outside continuous integration

 Qualified CI builds will replace promoted builds

 No single command will build the entire GFv3 from
scratch

 Why? Think about …

 bunch of components picked up from maven repo as binaries

 multiple repositories spread all over the places

 GFv3 will be more like a federation of loosely coupled
modules

 We are still building everything from the source

 It’s just that we are not doing this all at once

Issue: This Proposal and Mercurial

23

 Not taking full advantages of workspace hierarchy

 IOW, this proposal just works fine with SVN/CVS

 Why?

 Dealing with multiple lines of builds from single module
difficult in Maven

 In particular, declaring dependency on them is difficult

Issue: This Proposal and Mercurial

24

 Why is that hard? Let’s assume…

 stable JAX-WS depends on stable JAXB, unstable JAX-WS
depends on unstable JAXB

 Now all tests passed in “JAX-WS unstable” and so you
pushed your changes upstream

 Which JAXB stable build are you going to depend on?

JAX-WS
stable ws

JAX-WS
unstable ws

JAXB
stable ws

JAXB
unstable ws

Issue: This Proposal and Mercurial

25

 It doesn’t mean we can’t use workspace hierarchy

 Modules can locally create them and use them

 In fact could be a great “personal build” mechanism to
avoid running any tests on your local machine
whatsoever

Kohsuke

Jitu

Kohsuke’s
JAX-WS ws

Jitu’s
JAX-WS ws

JAX-WS
master ws

Issue: This Proposal and Mercurial

26

 This proposal still achieves the same goal

 Downstream projects can avoid picking up unstable bits

 It just does so in a different way

 After all, when you integrate lower workspace to
higher workspace, how do you know the code is
good?

 It’s better to let tests run, than to rely on humans

Issue: This Proposal and Mercurial

27

 So I stopped worrying

 Whereas workspace hierarchy spreads builds of different
quality over spatial dimension, this proposal spreads
them over time dimension

 Keeping track of where the changes went is easier with
single line

 I just need to say “I fixed the bug you reported in jaxb #123”

 This proposal is closer to how we do things now

GlassFish v3 Build System

Kohsuke Kawaguchi

