
GlassFish v3 Build System

Kohsuke Kawaguchi

Goals

2

 Do more at development time

 Less boiler plate code, less build script

 Facilitate automation

 With the eventual goal of fully automating all integrations

 Work nicely with mercurial’s hierarchical workspaces

 I couldn’t make this goal work. More later

 Must be usable for developing 3rd party modules

 This includes other Sun products built on top of GF

 This also helps component teams like Metro

 Deliver GF in more ways

Key ingredients

3

 Maven2
 Enabler for “do more with less build script”

 Enabler for automation, 3rd party use

 Risks
 Poor implementation

 Horrible error messages

 But in practice, only practical choice

 Hudson
 Enabler for automated integration

 GFv3 maven repository
 Build artifacts are deposited and downloaded from here

 Enabler for network install / update center

Term Check

4

 Module

 Unit of build and deployment

 A distribution of Glassfish = a collection of modules

 Corresponds to one maven module

 Belongs to one SCM repository

 SCM repository

 Place for keeping source code for 1 or more modules

 Project: a java.net project

 Unit of presentation

 A project might use 2 SCM repositories

 2 projects might host the code on 1 SCM repository

SCM Repositories

5

 We don’t really care where repositories are created
or how many

 … except almost certainly # of repo > 1

 We don’t really care if it’s CVS or Mercurial

 Factors for deciding what should be a repository

 Bigger repository is costly

 Two unrelated teams would prefer two repositories

 Closely related modules would prefer one repository

Module

6

 A GF module is a maven module

 Roughly speaking it contains the following stuff

 Lots of APT processing

 Metadata generation and code generation

 All hidden behind Maven

somemodule

+- pom.xml (build script)

+- src

+- main

| +- java (source code)

| +- resources

+- test (unit test code)

Module

7

 Build will eventually produce a jar

 Contains all the necessary metadata for runtime

 More metadata for later builds, such as distribution build

 POM eventually extends from GFv3 super POM

 Directly or indirectly

 Upload super POM to central maven repo so that modules
can be built without special ~/.m2/settings.xml

Module

8

 We don’t really care how many modules we have

 But it will be a very large number

 It will be open-ended as we encourage 3rd party modules

 Factors for deciding what should be a module

 Working on too many small modules are tedious

 Module is abstraction/grouping tool like package

 Module is the smallest unit of deployment

Distribution Module

9

 Distribution module is a maven module that builds
the runnable Glassfish image

 Basically just list up modules to be included

<project>

<artifactId>pe</artfactId>

<dependencies>

<dependency>jaxb:2.2-build-1500</dependency>

<dependency>jax-ws:2.2-build-923</dependency>

<dependency>ejb:10.0-build-329</dependency>

Distribution Module

10

 Support inheritance

 Not via POM inheritance but through transitive
dependency traversal

 Will be used to create bleeding-edge GF images

<project>

<artifactId>pe</artfactId>

<dependencies>

<dependency>jaxb:2.2-build-1500</dependency>

<dependency>jax-ws:2.2-build-923</dependency>

<dependency>ejb:10.0-build-329</dependency>

<project>

<artifactId>pe-webservice-bleeding-edge</artifactId>

<dependencies>

<dependency>pe:10.0-SNAPSHOT</dependency>

<dependency>jaxb:2.2-SNAPSHOT</dependency>

<dependency>jax-ws:2.2-SNAPSHOT</dependency>

Continuous Integration

11

 Continuously build modules

 1st line of defense against bad code

 Builds get published to GFv3 maven repository

 By build numbers*

 “Garbage collection” needed to keep disk usage under control

Build Status

#100 Success

#101 Failed

#102 Success

#103 Success

#104 Success

#105 Success

JAXB

Maven
Repository

* We should be able to do this without touching POM. Needs more research

Continuous Integration

12

 Run tests continuously

 2nd line of defense against bad code

 “tests” maybe unit/SQE/TCK tests, or maybe integration
build of another module with this new bit

Build Status Tests

#100 Success All pass

#101 Failed

#102 Success 5 failed

#103 Success All pass

#104 Success All pass

#105 Success (in progress)

JAXB

Continuous Integration

13

 When builds pass certain bars, Hudson updates
other POMs to pick up new build

 What POMs to get updated will be configurable

 That bar might be “never”, meaning manual integration

JAXB Build Status Tests Action

#100 Success All pass Picked by JAX-WS

#101 Failed

#102 Success 5 failed

#103 Success All pass Picked by JAX-WS

#104 Success All pass Picked by JAX-WS

#105 Success (in progress)

Continuous Integration

14

 Propagation will work as further bars

 e.g., update to JAX-WS POM will cause new JAX-WS
builds and its test runs, whose results will feed back to
JAXB

JAXB Build Status Tests WS tests

#100 Success All pass All pass

#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass

#105 Success (in progress)

Continuous Integration

15

 ... and those feed backs can be used to trigger
further propagation

JAXB Build Status Tests WS tests GF

#100 Success All pass All pass Picked by GF

#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass Picked by GF

#105 Success (in progress)

Recap: Mental Picture of Continuous Integration

16

 Think of this as a graph of projects where builds
(hence changes) propagate through controlled
fashion

JAXB JAX-WS WSIT

PE
Quick Look

GF+WSIT
integration

WSIT QA

EJB

JMS

PE

PE CTS

Tests

17

 Speed of change propagation depends squarely on
tests

 This proposal does not force any changes, but fully
automated, fast-running tests will make a real
difference
 Not just speeds in which changes propagate, but more

importantly keeping qualities high constantly and allowing
developers to take a larger risk

 The same goes to component specific tests

 There’s a lot of rooms for taking advantages of this
in tests
 Needs further discussion

Module Developer Experience

18

 Build a module

 dependencies downloaded from maven repository

 Debug

 This will launch Glassfish inside Maven with …

 modules listed in some build of some distribution

 configured in this module over by CLI argument

 plus the current module

$ hg clone http://hg.glassfish.java.net/ejb/
$ cd ejb
$ mvn install

$ MVN_OPTS=-Xrunjdwp:… mvn gf:run

Module Developer Experience

19

 You just need to check out modules you are working

 Maven modules can be opened by any IDE

 Making changes across modules

 Modules on different SCM repositories need to be
checked out individually

 May have to invoke maven multiple times to build all
relevant modules

 that is, if they don’t have the common parent POM

 in such case, POMs needed to be updated manually to use
SNAPSHOT dependency

 This is not as easy as it should be

3rd Party Module Developer Experience

20

 I should be able to write a few modules

 Write one maven module per one GF module

 Build them by “mvn package”

 Run them with “mvn gf:run”

 Install the resulting jars on any GFv3 installation

 GFv3 needs to provide a directory to drop them

 Update center to further automate distribution and installation

 Very much like how you handle NetBeans modules

3rd Party Module Developer Experience

21

 I should be able to create custom distribution

 Write a custom distribution module

 Derive from existing distribution and add more modules

 Distribute resulting image

 The same automation scheme would work for this

 Bring what MyEclipse does to Eclipse to GFv3

 We need a lot of custom distributions internally, too

 e.g., WSIT SQE needs to have a GF image with latest
WSIT to run tests

Release Engineering

22

 No separate RE outside continuous integration

 Qualified CI builds will replace promoted builds

 No single command will build the entire GFv3 from
scratch

 Why? Think about …

 bunch of components picked up from maven repo as binaries

 multiple repositories spread all over the places

 GFv3 will be more like a federation of loosely coupled
modules

 We are still building everything from the source

 It’s just that we are not doing this all at once

Issue: This Proposal and Mercurial

23

 Not taking full advantages of workspace hierarchy

 IOW, this proposal just works fine with SVN/CVS

 Why?

 Dealing with multiple lines of builds from single module
difficult in Maven

 In particular, declaring dependency on them is difficult

Issue: This Proposal and Mercurial

24

 Why is that hard? Let’s assume…

 stable JAX-WS depends on stable JAXB, unstable JAX-WS
depends on unstable JAXB

 Now all tests passed in “JAX-WS unstable” and so you
pushed your changes upstream

 Which JAXB stable build are you going to depend on?

JAX-WS
stable ws

JAX-WS
unstable ws

JAXB
stable ws

JAXB
unstable ws

Issue: This Proposal and Mercurial

25

 It doesn’t mean we can’t use workspace hierarchy

 Modules can locally create them and use them

 In fact could be a great “personal build” mechanism to
avoid running any tests on your local machine
whatsoever

Kohsuke

Jitu

Kohsuke’s
JAX-WS ws

Jitu’s
JAX-WS ws

JAX-WS
master ws

Issue: This Proposal and Mercurial

26

 This proposal still achieves the same goal

 Downstream projects can avoid picking up unstable bits

 It just does so in a different way

 After all, when you integrate lower workspace to
higher workspace, how do you know the code is
good?

 It’s better to let tests run, than to rely on humans

Issue: This Proposal and Mercurial

27

 So I stopped worrying

 Whereas workspace hierarchy spreads builds of different
quality over spatial dimension, this proposal spreads
them over time dimension

 Keeping track of where the changes went is easier with
single line

 I just need to say “I fixed the bug you reported in jaxb #123”

 This proposal is closer to how we do things now

GlassFish v3 Build System

Kohsuke Kawaguchi

