GlassFish v3 Build System

Kohsuke Kawaguchi

Do more at development time

» Less boiler plate code, less build script

Facilitate automation

» With the eventual goal of fully automating all integrations
Work nicely with mercurial’s hierarchical workspaces
» I couldn’t make this goal work. More later

Must be usable for developing 3" party modules
» This includes other Sun products built on top of GF
» This also helps component teams like Metro

Deliver GF in more ways

Key ingredients

» Maven?2
» Enabler for “"do more with less build script”
» Enabler for automation, 3" party use

» Risks
Poor implementation
Horrible error messages
But in practice, only practical choice

» Hudson
» Enabler for automated integration

» GFv3 maven repository
» Build artifacts are deposited and downloaded from here
» Enabler for network install / update center

Term Check

» Module

» Unit of build and deployment
A distribution of Glassfish = a collection of modules

» Corresponds to one maven module

» Belongs to one SCM repository
» SCM repository

» Place for keeping source code for 1 or more modules
» Project: a java.net project

» Unit of presentation

» A project might use 2 SCM repositories

» 2 projects might host the code on 1 SCM repository

SCM Repositories

We don't really care where repositories are created
or how many

» ... except almost certainly # of repo > 1

We don't really care if it's CVS or Mercurial
Factors for deciding what should be a repository
» Bigger repository is costly

» Two unrelated teams would prefer two repositories
» Closely related modules would prefer one repository

Module

» A GF module is a maven module
» Roughly speaking it contains the following stuff

somemodule
+- pom.xml (build script)
+- src
+- main
| +- java (source code)
| +- resources

+- test (unit test code)

» Lots of APT processing

» Metadata generation and code generation
» All hidden behind Maven

Module

» Build will eventually produce a jar

» Contains all the necessary metadata for runtime

» More metadata for later builds, such as distribution build
» POM eventually extends from GFv3 super POM

» Directly or indirectly

» Upload super POM to central maven repo so that modules
can be built without special ~/.m2/settings.xml

Module

» We don't really care how many modules we have

» But it will be a very large number

» It will be open-ended as we encourage 3" party modules
» Factors for deciding what should be a module

» Working on too many small modules are tedious

» Module is abstraction/grouping tool like package

» Module is the smallest unit of deployment

Distribution Module

Distribution module is a maven module that builds
the runnable Glassfish image

» Basically just list up modules to be included

<project>
<artifactId>pe</artfactId>
<dependencies>
<dependency>jaxb:2.2-build-1500</dependency>
<dependency>jax-ws:2.2-build-923</dependency>
<dependency>ejb:10.0-build-329</dependency>

Distribution Module

» Support inheritance

» Not via POM inheritance but through transitive
dependency traversal

» Will be used to create bleeding-edge GF images

<project>
<artifactId>pe</artfactId>
<dependencies>
<dependency>jaxb:2.2-build-1500</dependency>
<dependency>jax-ws:2.2-build-923</dependency>
<dependency>ejb:10.0-build-329</dependency>

<project>
<artifactId>pe-webservice-bleeding-edge</artifactId>
<dependencies>
<dependency>pe:10.0-SNAPSHOT</dependency>
<dependency>jaxb:2.2-SNAPSHOT</dependency>
<dependency>jax-ws:2.2-SNAPSHOT</dependency>

Continuous Integration

» Continuously build modules
» 15t line of defense against bad code

» Builds get published to GFv3 maven repository
By build numbers*
“Garbage collection” needed to keep disk usage under control

JAXB Build Status

#100 Success

#101 Failed \
#102 Success \
#103 Success > :
#104 Success 7; Repository
#105 Success

p 11 * We should be able to do this without touching POM. Needs more research

Continuous Integration

» Run tests continuously
» 2™ |ine of defense against bad code

» “tests” maybe unit/SQE/TCK tests, or maybe integration
build of another module with this new bit

Build Status Tests

#100 Success All pass
#101 Failed

#102 Success 5 failed
#103 Success All pass
#104 Success All pass

#105 Success (in progress)

Continuous Integration

» When builds pass certain bars, Hudson updates
other POMs to pick up new build

» What POMs to get updated will be configurable
» That bar might be “never”, meaning manual integration

Build Status Tests Action

#100 Success All pass Picked by JAX-WS
#101 Failed

#102 Success 5 failed

#103 Success All pass Picked by JAX-WS
#104 Success All pass Picked by JAX-WS

#105 Success (in progress)

Continuous Integration

» Propagation will work as further bars

» e.g., update to JAX-WS POM will cause new JAX-WS

builds and its test runs, whose results will feed back to
JAXB

Build Status Tests WS tests
#100 Success All pass All pass
#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed
#104 Success All pass All pass

#105 Success (in progress)

Continuous Integration

» ... and those feed backs can be used to trigger

further propagation

Build Status Tests WS tests GF

#100 Success All pass All pass Picked by GF
#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass Picked by GF
#105 Success (in progress)

Recap: Mental Picture of Continuous Integration

» Think of this as a graph of projects where builds
(hence changes) propagate through controlled
fashion

=
Quick Look

PE CTS

GF+WSIT
integration

WSIT QA

Tests

Speed of change propagation depends squarely on
tests

This proposal does not force any changes, but fully
automated, fast-running tests will make a real
difference

Not just speeds in which changes propagate, but more
importantly keeping qualities high constantly and allowing
developers to take a larger risk

The same goes to component specific tests

There’s a lot of rooms for taking advantages of this
In tests
Needs further discussion

17

Module Developer Experience

Build a module

$ hg clone http://hg.glassfish.java.net/ejb/
$ cd ejb
$ mvn install

» dependencies downloaded from maven repository
Debug
$ MVN_OPTS=-Xrunjdwp:... mvn gfirun

» This will launch Glassfish inside Maven with ...

modaules listed in some build of some distribution
o configured in this module over by CLI argument

plus the current module

Module Developer Experience

You just need to check out modules you are working
Maven modules can be opened by any IDE

Making changes across modules

» Modules on different SCM repositories need to be
checked out individually

» May have to invoke maven multiple times to build all
relevant modules

that is, if they don’t have the common parent POM

in such case, POMs needed to be updated manually to use
SNAPSHOT dependency

» This is not as easy as it should be

3" Party Module Developer Experience

I should be able to write a few modules

» Write one maven module per one GF module

» Build them by “"mvn package”

» Run them with “"mvn gf:run”

» Install the resulting jars on any GFv3 installation
GFv3 needs to provide a directory to drop them

Update center to further automate distribution and installation
Very much like how you handle NetBeans modules

3" Party Module Developer Experience

» I should be able to create custom distribution
» Write a custom distribution module
Derive from existing distribution and add more modules
» Distribute resulting image
» The same automation scheme would work for this
» Bring what MyEclipse does to Eclipse to GFv3

» We need a lot of custom distributions internally, too

» e.g., WSIT SQE needs to have a GF image with latest
WSIT to run tests

Release Engineering

No separate RE outside continuous integration
» Qualified CI builds will replace promoted builds

No single command will build the entire GFv3 from
scratch

» Why? Think about ...

bunch of components picked up from maven repo as binaries
multiple repositories spread all over the places

» GFv3 will be more like a federation of loosely coupled
modules

» We are still building everything from the source
It's just that we are not doing this all at once

Issue: This Proposal and Mercurial

» Not taking full advantages of workspace hierarchy
» IOW, this proposal just works fine with SVN/CVS
» Why?

» Dealing with multiple lines of builds from single module
difficult in Maven

In particular, declaring dependency on them is difficult

Issue: This Proposal and Mercurial

» Why is that hard? Let's assume...

» stable JAX-WS depends on stable JAXB, unstable JAX-WS
depends on unstable JAXB

» Now all tests passed in "JAX-WS unstable” and so you
pushed your changes upstream

Which JAXB stable build are you going to depend on?

JAXB JAX-WS
stable ws stable ws

JAXB JAX-WS
unstable ws unstable ws

Issue: This Proposal and Mercurial

» It doesn’t mean we can’t use workspace hierarchy
» Modules can locally create them and use them

» In fact could be a great “personal build” mechanism to
avoid running any tests on your local machine
whatsoever

Kohsuke's
JAX-WS ws ‘&

NENGERYS

JAX-WS ws ‘%

Issue: This Proposal and Mercurial

This proposal still achieves the same goal
» Downstream projects can avoid picking up unstable bits
» It just does so in a different way

After all, when you integrate lower workspace to

higher workspace, how do you know the code is
good?
» It's better to let tests run, than to rely on humans

Issue: This Proposal and Mercurial

» So I stopped worrying

» Whereas workspace hierarchy spreads builds of different
quality over spatial dimension, this proposal spreads
them over time dimension

» Keeping track of where the changes went is easier with
single line
I just need to say "I fixed the bug you reported in jaxb #123”
» This proposal is closer to how we do things now

GlassFish v3 Build System

Kohsuke Kawaguchi

