
1

Subversion - svn
Source Code Management System

Dinesh Patil

2

Agenda
Why move to Subversion?
Subversion client side
Subversion Installation
Basic Work Cycle
How do Revisions Work?
Conflict Resolution
Tags/branches
Log Messages
Subversion local repository
Subversion through Netbeans

3

Why move to Subversion?
(CVS vs SVN)

Functional replacement for CVS
Directory versioning (renames and moves)
Atomic commits (all or nothing)
Faster network access (binary diffs)
File & directory meta-data
Requires less network access

4

Subversion Client Side

Each working directory has a .svn directory
Similar to CVS’s CVS directory
Repository password stored in $HOME/.svn
Stores a pristine copy of each file in directory

5

Subversion Installation
Windows, Linux, Mac : Easy installation

Refer to instructions here:
http://downloads.open.collab.net/collabnet-subver-
sion.html

Ubuntu: "sudo apt-get install subversion"
Solaris 9, 10

Install all dependent packages and subversion from:
http://www.sunfreeware.com/
Easier option is to follow these instructions.

Solaris 10: http://www.blastwave.org/howto.html
Solaris 8/9:http://www.blastwave.org/howto_S8.html
Last step : To install : # pkg-get -i subversionLast step : To install : # pkg-get -i subversion

6

SVN Command Line Differences
CVS

Argument position matters
% cvs –d /export/home1/cvs update –d

SVN
Argument position does not matter

% svn log –r 123 foo.c

% svn log foo.c –r 123

Authenticating the server
 $ svn command URL…

 Password for 'user': XXXXXX

7

Basic Work Cycle (Part 1)

Checkout a working copy
Update working copy
Make changes
Examine your changes
Merge other’s changes
Commit your changes

8

Basic Work Cycle (Part 2)
Checkout a working copy
% svn checkout file:///c:/sun/glassfish-svn

Update working copy
Update all files and directories to the most current version
% svn update
Go to a particular older revision for all files and directories
% svn update –r 1345
I want an even older version of svn-doc.el
% svn update –r 999 svn-doc.el

9

Basic Work Cycle (Part 2)

Update output
U `foo' : File `foo' was (U)pdated received changes from the server.)
A `foo' : File or directory `foo' was (A)dded to your working copy.
D `foo' : File or directory `foo' was (D)eleted from your working
copy.
R `foo': File or directory `foo' was (R)eplaced in your working copy;
that is, `foo' was deleted, and a new item with the same name was
added. While they may have the same name, the repository considers
them to be distinct objects with distinct histories.
G `foo' : File `foo' received new changes, but also had changes of
your own to begin with. The changes did not intersect, however, so
Subversion has mer(G)ed the repository's changes into the file without
a problem.
C `foo' : File `foo' received (C)onflicting changes from the server.
The changes from the server directly overlap your own changes to the
file. No need to panic, though. This overlap needs to be resolved by a
human (you).

10

Basic Work Cycle (Part 3)
Make changes

Add new files and directories

% vi blair_super_algorithm.c

% mkdir data-files

% touch data-files/file1

% svn add blair_super_algorithm.c data-files

data-files/file1 added unless –N passed to svn add

Delete files

% svn rm foo what_do_they_know.c

Rename file
% svn mv README.txt README_OLD.txt

This is identical to

% svn cp README.txt README_OLD.txt; svn rm README.txt

Copy files and directories

% svn cp test_datafiles test_datafiles_new

If test_datafiles is a directory, then test_datafiles_new

is an exact copy of test_datafiles

11

Basic Work Cycle (Part 4)
Examine your changes : svn status: Normal amount of information
% svn status

_ L ./abc.c [svn has a lock in its .svn directory for abc.c]

M ./bar.c [the content in bar.c has local modifications]

_M ./baz.c [baz.c has property but no content modifications]

? ./foo.o [svn doesn't manage foo.o]

! ./foo.c [svn knows foo.c but a non-svn program deleted it]

~ ./qux [versioned as dir, but is file, or vice versa]

A + ./moved_dir [added with history of where it came from]

M + ./moved_dir/README [added with history and has local modifications]

D ./stuff/fish.c [this file is scheduled for deletion]

A ./stuff/things/bloo.h [this file is scheduled for addition]

12

Basic Work Cycle (Part 5)
Examine your changes

svn status: More information with -v
First column the same
Second column, working revision
Third column, last changed revision
Fourth column, who changed it

% svn status -v

M 44 23 joe ./README

_ 44 30 frank ./INSTALL

M 44 20 frank ./bar.c

_ 44 18 joe ./stuff

_ 44 35 mary ./stuff/trout.c

D 44 19 frank ./stuff/fish.c

_ 44 21 mary ./stuff/things

A 0 ? ? ./stuff/things/bloo.h

_ 44 36 joe ./stuff/things/gloo.c

13

Basic Work Cycle (Part 6)

Examine your changes
svn status: Even more information with -u

Asterisks show if the file would be updated if svn
update were run
Requires network access to the repository

% svn status -u -v

M * 44 23 joe ./README

M 44 20 frank ./bar.c

_ * 44 35 mary ./stuff/trout.c

D 44 19 frank ./stuff/fish.c

A 0 ? ? ./stuff/things/bloo.h

14

Basic Work Cycle (Part 7)
Examine your changes

svn diff: Show your modifications
Even shows modifications in properties
Show all differences in files and directories in local working copy

% svn diff

Diff between revision 3 of foo.c in repository and local working
foo.c

% svn diff –r 3 foo.c

Diff between revisions 2 and 3 of foo.c in the repository without
even touching local foo.c

% svn diff –r 2:3 foo.c

Revert or undo your changes : "svn revert" can cancel the "svn add" and
"svn rm"

Does not require network access
% svn revert

Commit your changes
% svn commit -m “Add message”

15

How do Revisions work? (Part 1)

Revision numbers are applied to an object to identify a unique
version of that object
Example files
% ls

bar.c foo.c

CVS
Revision numbers are per file
A revision number from one file does not necessarily have any
meaning to another file with the same revision number
A commit only updates the revision numbers of files that were
modified
bar.c may be at revision 1.2 and foo.c at 1.10
Updates to bar.c will not change foo.c’s revision number

16

How do Revisions work? (Part 2)

Subversion
Revision numbers are global across the whole repository
Identify how the entire repository looks at that instant in time
A commit creates a snapshot of the entire tree in the repository at that
revision number
Allows users to say, “Hey so-and-so, go get revision 1432 of XYZ
and try to compile it.”
Before an update, both bar.c and foo.c are at revision 25
Modify bar.c and commit
Then update the working copy
Now bar.c and foo.c are at revision 26, except that foo.c in revision
25 and 26 are identical
No additional space in repository required, i.e. a cheap copy or a
symbolic link is made

17

How do Revisions work? (Part 3)
Example revision update

Check out tree
% svn co http://svn.somewhere.com/repos

A Makefile

A document.c

A search.c

Checked out revision 4.

Edit search.c
% vi search.c

Commit the edit
% svn commit –m “Add better search”

Sending search.c

Transmitting data…

Committed revision 5.

18

How do Revisions work? (Part 4)
Status of files and directories

Directory `.’ is at 4 but revision 5 exists in the repository
Makefile is at 4
document.c is at 4
search.c is at 5

Get info on a particular file or directory
% svn info .

Path: .

Url: file:////tmp/repos/demo

Revision: 4

Node Kind: directory

Schedule: normal

Last Changed Author: blair

Last Changed Rev: 4

Last Changed Date: 2002-08-08 12:20:18 -0700 (Thu, 08
Aug 2002)

19

How do Revisions work? (Part 5)

Now Felix updates document.c
Update working copy
% svn update

U ./document.c

At revision 6.

20

Subversion Branch/Tags
Uses “Cheap Copies” similar to Unix hard links.

Instead of making a complete copy in the repository, an
internal link is created, pointing to a specific tree/revision.
As a result branches and tags are very quick to create, and
take up almost no extra space in the repository

No special commands for branching or tagging.
 % svn checkout file:///c:/sun/myglassfish-svn ws

 A ws/trunk... (Checked out revision 340)

% cd ws; % svn copy trunk branches/my-branch

% svn status

A + branches/my-branch('+' means copy of something, not new)

% svn commit -m “creating private branch”

Adding branches/my-branch

Committed revision 341

21

Subversion Branch/Tags
Creating Tag: Tag is just a “snapshot” of project in time

 % svn copy file:///c:/sun/myglassfish-svn/trunk \
file:///c:/sun/myglassfish-svn/tags/release-1.0 \
-m “Tagging the 1.0 release of the project”

 Committed revision 351

Merging: “svn merge” is very close cousin of “svn diff”
Instead of printing the differences between the revisions on

terminal, it applies directly to local copy.
 % svn merge -r 343:344 file:///a/b/trunk

 U integer.c

 % svn status

 M integer.c (copy of integer.c is patched)

22

svn switch
Switching a working Copy:

“svn switch” - transforms an existing working copy into a
different branch. Nice shortcut to users to change your working
copy /a/b/trunk to mirror of new branch location.

 % cd ws

 % svn info |grep URL

 URL: file:///a/b/trunk

 % svn switch file:///a/b/branches/my-branch

 U integer.c (Updated to revision 341)

 % svn info |grep URL

 URL: file:///a/b/branches/my-branch

After “switching” to the branch, working copy is
changed similar to fresh checkout copy of branch. Its
more efficient to use this command as branches only
differ by small degree.

23

Conflict Resolution
Look for the ‘C’ when you run svn update

Better than CVS

Conflict markers are placed into the file, to visibly demonstrate the overlapping areas. This matches
CVS' behavior.

Three fulltext files starting with `tmp' are created; these files are the original three files that could
not be merged together. This is better than CVS, because it allows users to directly examine all
three files, and even use 3rd-party merge tools (as an alternative to conflict markers.)

Another improvement over CVS conflict handling: Subversion will not allow you to "accidentally"
commit conflict markers, as so often happens in CVS. Unlike CVS, Subversion remembers that a
file remains in conflict, and requires definite action from the user to undo this state before it will
allow the item to be committed again.

Solutions to resolve

Hand-merge the conflicted text

Copy one of the tmpfiles on top of your working file

Run svn revert to toss all of your changes

Once resolved, you need to tell SVN that the conflict has been resolve

Run svn resolved

This deletes the tmp files

24

Log Messages (Part 1)

Log messages are not embedded in files, like
CVS
Messages are associated with a single commit
Possible to change log message after commit
View log messages with svn log command

25

Log Messages (Part 2)
See all log messages

% svn log

--

rev 3: fitz | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

Added include lines and corrected # of cheese slices.

--

rev 2: someguy | Mon, 15 Jul 2002 17:47:57 -0500 | 1 line

Added main() methods.

--

rev 1: fitz | Mon, 15 Jul 2002 17:40:08 -0500 | 2 lines

Initial import

--

Limit the range of log messages

% svn log -r 5:19

... # shows logs 5 through 19 in chronological order

% svn log -r 19:5

... # shows logs 5 through 19 in reverse order

% svn log -r 8

...

See logs for a single file

% svn log foo.c

... # shows log messages only for those revisions that foo.c changed

26

Subversion Local Repo for Practice
Familiarize svn by creating local repository

svnadmin create c:/sun/myglassfish-svn
svn checkout file:///c:/sun/myglassfish-svn c:/sun/myworkspace
(You can find .svn file in new workspace)

Checked out revision 0.
svn add bootstrap (Added bootstrap module recursively)
svn update maven.xml (Update the file and checkin)
svn commit -m “Updating maven.xml file” maven.xml
svn copy maven.xml newmaven.xml
svn commit -m “Copying file” newmaven.xml
svn move newmaven.xml mymaven.xml
svn commit -m “Moving file” newmaven.xml mymaven.xml
svn log mymaven.xml

27

Subversion through Netbeans
Subversion module is currently available for 5.5
and 6.0(dev) versions of NetBeans IDE.
http://subversion.netbeans.org/faq/index.html#fe
atures
Demo
Download TortoiseSVN tool for windows which
integrates svn into Windows Explorer.

http://tortoisesvn.net/downloads

28

References
Subversion home

http://subversion.tigris.org/

Subversion quick reference guide/book
http://svnbook.red-bean.com/
http://subversion.tigris.org/files/documents/15/177/foo.ps

Subversion source code and binary downloads
http://subversion.tigris.org/project_packages.html

CVS to SVN Crossover Guide
http://svn.collab.net/repos/svn/trunk/doc/user/cvs-crossover-guide.html

