
1

GlassFish V3
Intro to Maven 2.0
v1.0

Paul Sterk
GlassFish V3 Planning Team
November 1, 2007

1

2

3

Goals
• To explain the features and usage of the Maven2 project

management tool.

• The focus is on approach this subject from the point-of-view of
the Maven user and opposed to the Maven plugin developer.

• Learn by doing examples.

4

Agenda
• Why Maven?

• What is Maven?

• Migrating Maven 1.x to 2.0

• Installation and configuration

• Getting started

• Directory layout

• POM

• Plugins

• Lifecycles and phases

• How do I?

• Netbeans plugin

• Resources

5

Advanced Topics Not Covered
• Maven2 Architecture
• Maven2 Plugins
• Netbeans Maven IDE plugin
• Reports generation
• In-depth lifecycle phase discussion
• Profiles
• New packaging types

6

Why Maven?

• First, understand the problem. Each project has its
own:
> directory layout
> process of building binaries
> method of resolving dependencies
> set of build technologies (SCM, Ant)
> build lifecycle
> way of defining a project
> process for publishing artifacts (jars, docs)

• No best practices or collaboration

7

Why not just use Ant?
• Does not solve problems on previous slide. Also...
• Ant build scripts are much longer than Maven

scripts because every task needs to be fully
qualified
• Ant tasks difficult to debug
• Scripting is more difficult to integrate

8

What is Maven?
• A tool for building and managing any Java project
• A software project management and comprehension

tool.
• Based on the concept of a project object model

(POM), Maven can manage a project's build,
reporting and documentation from a central piece of
information.
• Glassfish v3 uses version 2.0

A maven is a trusted expert in a particular field, who seeks to pass his or her knowledge on to
others. Comes from the Yiddish meyvn and Hebrew mevin, which in turn derives from the
Hebrew binah, meaning understanding.

9

Maven Objectives
• Making the build process easy
• Providing a uniform build system
• Providing quality project information
• Providing guidelines for best practices development
• Allowing transparent migration to new features

http://maven.apache.org/what-is-maven.html

10

Comparing Maven 1.x to 2.0
• Complete rewrite of Maven 1.x
• Maven 2.0 has the following:
> Uses command 'mvn' instead of 'maven'
> Supports Java-based plugins
> Offers a managed lifecycle
> Supports multi-project builds
> Updated Project Object Model (POM)
> Uses pom.xml instead of project.xml
> Resolves transitive dependencies

• GF v3 uses Maven 2.0
• Possible to mix 1.x and 2.0 versions

11

Converting From 1.x to 2.0
• Move content in project.xml to pom.xml
• Move build.properties and project.properties to

settings.xml
• Discard maven.xml
• Move files to Maven2 directory structure
• Migrate plugins

http://maven.apache.org/guides/mini/guide-m1-m2.html

12

Maven: Installation
• Maven depends on a JRE in your env
• Download and install:

http://maven.apache.org/download.html

• Add the system variable M2_HOME
• Add $M2_HOME/bin directory to your system path.
• Type the following:
mvn – ve rs ion
• You should see:
Mave n ve rsion: 2.0.7

http://maven.apache.org/download.html

13

Maven: Configuration

• Configuration occurs at three levels:
> Project: most static configuration occurs in pom.xml
> Installation: this is configuration added once for a Maven

installation (covered in previous slide)
> User: this is configuration specific to a particular user

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

14

Maven: Configuration

• User configurations are specified in:
${user.home}/.m2/settings.xml

• Able to configure:
> a local repository
> a proxy:
> security and deployment settings
> repository mirrors
> profiles

• http://maven.apache.org/guides/mini/guide-configuring-maven.html

15

Maven: Configuration
• Able to pass command line flags:
> mvn <plugin>:<goal> [-Doption1 -Doption2]

Basic maven invocation of <goal> (multiple goals possible)
> mvn <phase> [-Doption1 -Doption2 ...] Execute

maven until <phase> (multiple phases possible)
> To make maven install without launching the tests:

mvn install -Dmaven.test.skip=true
> To continue the maven build even if a test fails:

mvn -DtestFailureIgnore=true <goal>

• http://maven.apache.org/guides/mini/guide-configuring-maven.html

16

Maven: Getting Started
• On your command line, execute the following maven goal:
> mvn archetype:create -DgroupId=com.

mycompany.app -DartifactId=my-app

• Maven will then download required artifacts (plugin jars)
from a remote repository and place in your local
repository (by default):
> ${user.home}/.m2/repository

• The create goal created a directory called my-app

17

New project: what did I just do?
• You executed the Maven goal archetype:create

and passed parameters to it
• The prefix archetype is the plugin that contains

the goal. This is similar to an Ant task.
• The create goal created a simple project based

upon an archetype.
• A plugin is a collection of goals with a general

common purpose

18

New Project: Directory Layout
• cd to my-app directory
• Notice the directory layout:

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

19

New Project: Directory Layout (cont)

• The src/main/java directory contains the project source
code
• The src/test/java directory contains the test source
• The pom.xml is the project's Project Object Model, or

POM.

20

Project Object Model (POM)
• The pom.xml file is a single configuration file that

contains the majority of information required to build
a project
• Declarative project configuration:
> Name and description
> Source control, issue tracking, etc.
> Company and developers
> Source layout
> Dependencies on external projects
> Build requirements and configuration

http://maven.apache.org/pom.html

21

Project Object Model (POM)
  <project xmlns="http://maven.apache.org/POM/4.0.0" ...>

  <modelVersion>4.0.0</modelVersion>
  <groupId>com.mycompany.app</groupId>
  <artifactId>my-app</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>Maven Quick Start Archetype</name>
  <url>http://maven.apache.org</url>
  <dependencies>

  <dependency>
  <groupId>junit</groupId>
  <artifactId>junit</artifactId>
  <version>3.8.1</version>
  <scope>test</scope>

  </dependency>
  </dependencies>

  </project>

http://maven.apache.org/POM/4.0.0
http://maven.apache.org/

22

POM: Key Elements
• project this is the top-level element in all Maven pom.xml

files

• modelVersion version of the object model this POM is
using (4.0.0)

• groupId the unique identifier of the organization or group
that created the project. Typically the fully qualified domain
name of your organization.

• artifactId the unique base name of the primary artifact
being generated by this project. A typical artifact will have
the form <artifactId>-<version>.<extension> (e.g., myapp-
1.0.jar).

23

POM: Key Elements
• packaging the package type to be used by this artifact.

Default is 'jar'.

• version the version of the artifact generated by the project.
The version will often contain 'SNAPSHOT' to indicate that
it is in a state of development.

• name This element indicates the display name used for the
project.

• url This element indicates where the project's site can be
found.

• description This element provides a basic description of
your project.

24

POM: Additional Elements
• dependency An artifact on which this project depends. Each one

has a scope. Default is compile.

• build Contains info on how to build the current artifact.
> sourceDirectory Contains java source files. Default is src/main/java
> scriptSourceDirectory Contains script files. Default is

src/main/script
> testSourceDirectory Contains test files. Default is src/test/java
> outputDirectory Where to place compiled files, scripts and resources.

Default is
target/classes

> testOutputDirectory Default is target/test-classes

25

POM: Additional Elements
• build How to build the current artifact.
> resources Points to the resource directories. This contains files that are

not compiled. Content copied to outputDirectory. Default is
src/main/resources

> testResources Points to test resource directories. Content copied to
outputTestDirectory. Default is src/test/resources

> directory Top-level directory where built files are placed. Default is
target

> finalName The name to use for build objects like jar. Default is
${artifactId}-{$version}

> filters Points to properties files used for filtering.
> plugins The plugins required to build the artifact

26

POM: Additional Elements
• profiles A profile setting that controls which build elements are used. Sets

up a standard environment (development, test, QA, production)

• modules Child artifacts of the current artifact

• repositories Locations from where artifacts can be downloaded

• pluginRepositories Locations from where plugins can be downloaded

• reporting Special plugins used for site generation

• properties Name-value pairs used to simplify configuration

27

Maven: Getting Started
• Execute: 'mvn package'
• The command line will print out various actions, display

the message 'BUILD SUCCESSFUL' and place the
created artifact in the target directory
• You may test the newly compiled and packaged JAR

with the following command:
java -cp target/my-app-1.0-SNAPSHOT.jar
com.mycompany.app.App

28

Maven Phases

• Unlike the first command (archetype:create) the
second is a single word - package. Rather than a goal,
this is a phase.
• A phase is a step in the build lifecycle, which is an

ordered sequence of phases.
• When a phase is given, Maven will execute every phase

in the sequence up to and including the one defined.

29

Maven Plugins
• When a user executes a goal or a phase, a

configured plugin is executed.
• Each plugin is made up of one or more Maven Java

Objects (Mojos).
• Each Mojo is mapped to a goal or can belong to a

phase.
> mvn org.apache.maven.plugins:maven-jar-plugin:jar
> mvn jar:jar
> mvn package

http://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html

30

Maven Plugins
• Plugin Description

• antrun Run a set of ant tasks from a phase of the build.

• assembly Build an assembly (distribution) of sources and
 binaries.

• checkstyle Generate a checkstyle report.

• clean Clean up after the build.

• compiler Compiles Java sources.

• deploy Deploy the built artifact to the remote repository.

• ear Generate an EAR from the current project.

• eclipse Generate an Eclipse project file for the current
 project.

• ejb Build an EJB (and optional client) from the current
 project.

• help Get information about the working environment
 for the project.

31

Maven Plugins
• Plugin Description

• install Install the built artifact into the local repository.

• jar Build a JAR from the current project.

• javadoc Generate Javadoc for the project.

• jxr Generate a source cross reference (analog to javadoc).

• netbeans Netbeans IDE plugin:
 http://maven.apache.org/netbeans-module.html

• resources Copy the resources to the output directory for
 including in the JAR.

• site Generate a site for the current project.

• source Build a JAR of sources for use in IDEs and
 distribution to the repository.

• surefire Run the Junit tests in an isolated classloader.

• war Build a WAR from the current project.

http://maven.apache.org/plugins/

32

How do I use plugins?
• Whenever you want to customize the build for a

Maven project, this is done by adding or
reconfiguring plugins.
• plugins in Maven 2.0 look much like a dependency
• plugin will be automatically downloaded and used -

including a specific version if you request it (the
default is to use the latest available).
• The configuration element applies the given

parameters to every goal from the compiler plugin

33

How do I use plugins?
• To find out what configuration is available for a

plugin, you can see the Plugins List:
http://maven.apache.org/plugins/

34

Maven Lifecycles
• Maven knows by default the following three lifecycles
> default Is used for most activities on artifacts like performing

a traditional build.
> clean Is mostly used to delete generated parts.
> site Is used to generate a website for the current artifact.

• A lifecycle has one or more phases, and a plugin can
join a phase.

35

Maven Lifecycle Phases
• Phases are actually mapped to underlying goals.
• The specific goals executed per phase is dependent

upon the packaging type of the project. (e.g., mvn
package executes jar:jar if the project type is a JAR)
• Typically, when phases of the lifecycles above are

activated, some predefined plugin-goals are
automatically executed.

36

Default Lifecycle: Common Phases

> validate : validate the project is correct and all necessary
information is available

> compile : compile the source code of the project
> test : test the compiled source code using a suitable unit

testing framework. These tests should not require the
code be packaged or deployed

> package : take the compiled code and package it in its
distributable format, such as a JAR.

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

37

Default Lifecycle: Common Phases

> integration-test : process and deploy the package if
necessary into an environment where integration tests can be
run

> verify : run any checks to verify the package is valid and
meets quality criteria

> install : install the package into the local repository, for use
as a dependency in other projects locally

> deploy : done in an integration or release environment,
copies the final package to the remote repository for sharing
with other developers and projects.

38

How do I compile source files?
• In the my-app directory execute:

mvn compile

39

How do I compile source files?
• The first time you execute this (or any other)

command, Maven will need to download all the
plugins and related dependencies it needs to fulfill
the command.
• The compiled classes were placed in

${basedir}/target/classes
• If you follow the standard directory layout, you do

not have to specify source files or the target
directory.

40

How do I compile and run tests?
• Execute 'maven test'
• Maven downloads dependencies and plugins

necessary for executing the tests.
• Before compiling and executing the tests Maven

compiles the main code.
• If you simply want to compile your test sources (but

not execute the tests), execute 'maven test-
compile'

41

How do I compile and run tests?
• Note that the surefire plugin (which executes the

test) looks for tests contained in files with a
particular naming convention. By default the tests
included are:
> **/*Test.java
> **/Test*.java
> **/*TestCase.java

• And the default excludes are:
> **/Abstract*Test.java
> **/Abstract*TestCase.java

42

How do I create a Jar of my compiled
source file?
• Execute 'mvn package'
• In the default POM, the packaging element is set

to jar. This is how Maven knows to produce a JAR
file from the above command
• The jar file is placed in the ${basedir}/target

directory

43

How do I add resources to my jar
file?
• Add files to src/main/resources

44

What does Maven add to my jar file?

• Maven adds files from the resources directory. It
also adds pom.properties and pom.xml, and
generates a MANIFEST.MF file

http://maven.apache.org/guides/getting-started/index.html#How_do_I_add_resources_to_my_JAR

45

How do I filter resource files?
• Sometimes a resource file will need to contain a value

that can only be supplied at build time.
• Put a reference to the property that will contain the

value into your resource file using the syntax
${<property name>}
• Add the property value to

src/main/filters/filter.properties

• In pom.xml, set <filtering> to true and add
reference to filter.properties

http://maven.apache.org/guides/getting-started/index.html#How_do_I_filter_resource_files

46

How do I use external
dependencies?
• The dependencies section of the pom.xml lists all of

the external dependencies that our project needs in
order to build
• For each external dependency, you'll need to define

groupId, artifactId, version, and scope.
• The scope element indicates how your project uses

that dependency, and can be values like compile ,
test , and runtime .

http://maven.apache.org/guides/getting-started/index.html
#How_do_I_use_external_dependencies

47

How do I use external
dependencies?

• With this information, Maven will be able to reference the
dependency when it builds the project.
• Maven looks in your local repository (~/.m2/repository

is the default) to find all dependencies.
• If not found locally, Maven will download the dependency

from a remote repository. Default repo is:
http://repo1.maven.org/maven2/

http://maven.apache.org/guides/introduction/introduction-to-repositories.html

48

How do I use external
dependencies?

• It is possible to disable transitive dependency resolution
using the excludeTransitive parameter of the
dependency:resolve goal. See:
http://maven.apache.org/plugins/maven-dependency-plugin/resolve-mojo.html

49

How do I use external
dependencies?

50

How do I install the Jar file in my
local repository?
• Execute 'mvn install'
• In the default POM, the packaging element is set

to jar. This is how Maven knows to produce a JAR
file from the above command
• The jar file is placed in the ${basedir}/target

directory
• You will see the following output:

http://maven.apache.org/guides/introduction/introduction-to-repositories.html

51

Maven install output

52

How do I create site docs?
• Execute: mvn archetype:create -DarchetypeGroupId=org.

apache.maven.archetypes -DarchetypeArtifactId=maven-archetype-site
-DgroupId=com.mycompany.app
-DartifactId=my-app-site

53

How do I create site docs?
• There is a $basedir/src/site directory which contains

a site descriptor along with various directories
corresponding to the supported document types.
> Xdoc format
> APT format, "Almost Plain Text", is a wiki-like format
> FML format is the FAQ format

• Execute 'mvn site'
• site.xml describes the site layout

http://maven.apache.org/guides/getting-started/index.html
#How_do_I_create_documentation

54

What kind of reports can Maven
create?
• Reports can be generated to show the current state

of the project
• Maven can generate code coverage reports (e.g.,

Clover), test results, code style, and others.

55

How do I...?
• Deploy my site? 'mvn site-deploy'
• Create javadocs? 'mvn javadoc:javadoc'. See:

http://maven.apache.org/plugins/maven-javadoc-plugin/javadoc-mojo.html

• Add arbitrary resources to my site, support
internationalization and do report configuration?
http://maven.apache.org/guides/getting-started/index.html#How_do_I_deploy_my_site

• Create different projects such as web apps?
http://maven.apache.org/guides/getting-started/index.html#How_do_I_build_other_types_of_projects

http://maven.apache.org/guides/getting-started/index.html#How_do_I_build_other_types_of_projects

56

Is there a Maven2 Netbeans plugin?

• Yes. Mevenide2-Netbeans is a Netbeans plugin
which integrates all the maven2 project
management possibilities into Netbeans.
• See: http://mevenide.codehaus.org/m2-site/

57

Resources
• users@maven.apache.org
• http://maven.apache.org
• maven-users@sun.com
• nb-maven@sun.com
• http://el4j.sourceforge.net/docs/pdf/MavenCheatSheet_EL4J.pdf

• http://maven.apache.org/general.html
• http://maven.apache.org/users/getting-help.html

http://maven.apache.org/general.html
http://maven.apache.org/users/getting-help.html

58

Q & A
• Questions or comments?
• Suggestions for an advanced Maven session?

59

GlassFish V3
Intro to Maven 2.0
v1.0

Paul Sterk
GlassFish V3 Planning Team
November 1, 2007

59

60

Appendix
• Maven2 Architecture

• Default (Build) Lifecycle Phases

61

Maven2 Architecture
• User invokes the 'mvn' CLI

• The CLI invokes a plugin inside the Plexus Container.

• The Plexus Container is an Inversion of Control (IoC) container
that injects object dependencies into the plugin

• The plugin is managed by a Plugin Manager

• The Plugin Manager calls the Artifact Handler which uses
Wagon.

• Wagon a transport abstraction that is used in up/download
artifacts. Supports file, http, https, ftp, sftp and scp.

62

Build Lifecycle Phases
• validate validate the project is correct and all necessary information is available.

• generate-sources generate any source code for inclusion in compilation.

• process-sources process the source code, for example to filter any values.

• generate-resources generate resources for inclusion in the package.

• process-resources copy and process the resources into the destination directory,
ready for packaging.

• compile compile the source code of the project.

• process-classes post-process the generated files from compilation, for example
to do bytecode enhancement on Java classes.

• generate-test-sources generate any test source code for inclusion in compilation.

63

Build Lifecycle Phases
• process-test-sources process the test source code, for example to filter any

values.

• generate-test-resources create resources for testing.

• process-test-resources copy and process the resources into the test destination
directory.

• test-compile compile the test source code into the test destination directory

• test run tests using a suitable unit testing framework. These tests should not
require the code be packaged or deployed.

• prepare-package perform any operations necessary to prepare a package before
the actual packaging. This often results in an unpacked, processed version of the
package. (Maven 2.1 and above)

• package take the compiled code and package it in its distributable format, such as
a JAR.

64

Build Lifecycle Phases
• pre-integration-test perform actions required before integration tests are

executed. This may involve things such as setting up the required environment.

• integration-test process and deploy the package if necessary into an
environment where integration tests can be run.

• post-integration-test perform actions required after integration tests have been
executed. This may including cleaning up the environment.

• verify run any checks to verify the package is valid and meets quality criteria.

• install install the package into the local repository, for use as a dependency in
other projects locally.

• deploy done in an integration or release environment, copies the final package to
the remote repository for sharing with other developers and projects.

