
Kohsuke Kawaguchi

1



What’s Hudson?

Hudson is a “continuous integration” 
server
• It looks for changes and builds your project

• It publishes the result

• It keeps track of how your project is used 
elsewhere

• It brings transparency to projects

2



What’s Hudson?

 Evolved with us

• Started from JAXB, then to web services, 
SWDP, and now GlassFish

• Other Sun teams are using it, like 
NetBeans, Access Manager, SwingLab, 
OpenDS, JavaFX, etc.

• Plugins written to cater to our specific 
needs

3



More about Hudson

Open-source project at java.net

• http://hudson.dev.java.net/

 Extensible architecture

• Lots of community developed plugins

 Very active

• 116 person yrs worth of code, FWIW

• 3 years old, 161 releases to date

• 30+ committers

4



What does Hudson do?

 Starts a build whenever a change is 
made

• Listen to SCM change notification e-mail

• Build results available (in few minutes)

• Other people can then…

• Download artifacts

• See javadoc

• Build failure triggers a notification

5



6



What does Hudson do?

 Starts a new test whenever a new build 
is ready

• Test results become available quickly
(depends on how long your test takes)

• Other people can then...

• See build stability

• Analyze failure reports and history

• Test failure triggers a notification

7



8



9



More Hudson features

 RSS feeds

 Permalinks to download “latest” bits

• You can now write a build target to integrate a 
dependency jar

• Tests on Hudson can grab the latest RI bits from 
Hudson

 IM notifications

10



More Hudson features

 Fire-and-forget batch operation

• Arbitrary shell script

• Post a release, push binaries, etc.

• Tag builds after the fact

• Build #3269 turns out to be good. Let’s tag it

 Post builds to java.net

 Run performance benchmarks

11



Matrix projects

 Run the same thing 
on different 
environments

• such as different 
JDKs, different 
databases, and 
different OSes

 Aggregate the 
results

12



More Hudson features

 Dependency tracking
• SQE finds a test failure. Dev thinks he just fixed it. 

Did that fix went into that test run or not?

• I made a large change. I want to check that the 
corresponding SQE test result is good

• We are close to a release. We need tags from all 
the dependencies. Which versions are we using 
today?

 Hudson can tell you
• “JAXB unit test #35 tested JAXB RI #192”

• “JAX-WS #52 uses JAXB #185 and FI #52”

13



FindBugs integration

14



Tracking Changes

15



… and more

Browse workspaces Build time trend report

16



… and more

OpenSearch

 Build Promotion

17



… and still some more

Distributed builds
• Cluster idle workstations in people’s office

More SCM support
• Subversion, Mercurial (but not TeamWare)

 Kill GF when tests are over

 Emma integration

 JIRA integration

18



Why do I care?

 Life before Hudson

• RE nightly build breaks. It blocks SQE

• Dev rebuilds before commit to avoid this

• People waste time

 Life after Hudson

• Dev just commits it right away

• Dev moves on to work on another thing

• Hudson will tell you in 5 mins if a build 
broke

19



Why do I care?

 Life before Hudson

• Dev makes a change Monday AM

• SQE nightly finds a bug Monday night

• Dev fixes it Tuesday

• Lot of wasted time

 Life after Hudson

• Dev makes a change Monday AM

• Hudson finds a regression 30 mins later

• Dev can fix it before lunch

20



Why do I care?

 Life before Hudson

• SQE test runs every night, results sent out 
in e-mail

• After the enthusiasm of the 1st week is 
gone, nobody looks at them anymore

• Regressions go unnoticed until it’s too late

 Life after Hudson

• Tests run Hudson after every commit

• E-mail sent out only when tests start failing

• So it manages to keep people’s attention
21



Why do I care?

 Life before Hudson
• PHB says “we need to automate test. Can 

you take care of that, Ashok?”

• Ashok sets up a cron job on his machine

• Ashok takes a long vacation / maternity 
leave / left company. Nobody knows how 
to fix that cron job anymore

 Life after Hudson
• Anyone can see and mofiy project build 

configuration

22



Got the idea?

 Automation

 Reduce turn-around time

Make things transparent

 Remove people from the loop

 Save people’s time

 Push jobs to servers, keep workstations 
idle for you

23



24



Today’s problems

GF build picks up everybody’s tip

• Builds tend to be unstable as project grows

• Mathematically speaking, the chance of good 
builds decreases exponentially

• Discourages commits

• … because cost of breaking builds is high

• Encourages local test executions

• This wastes people’s time

• People need to be extra careful

• Distract our attention from the real work

25



How do we fix this?

 Exploit Maven2 so that we can…

• Break builds w/o blocking others

• Emphasize tests at earlier levels

26



Continuous integration

27

 Continuously build modules

• 1st line of defense against bad code

• Builds get published to GFv3 maven repository

• By build numbers

• “Garbage collection” needed to keep disk usage under 
control

Build Status

#100 Success

#101 Failed

#102 Success

#103 Success

#104 Success

#105 Success

JAXB

Maven
Repository



Continuous integration

28

 Run tests continuously

• 2nd line of defense against bad code

• “tests” maybe unit/SQE tests, or maybe simulated 
integration build of another module with this new 
bit

Build Status Tests

#100 Success All pass

#101 Failed

#102 Success 5 failed

#103 Success All pass

#104 Success All pass

#105 Success (in progress)

JAXB



Continuous integration

29

 When builds pass certain bars, Hudson 
updates other POMs to pick up new build

• IOW, until now other people are protected from 
your builds

• Bar may be “never” (=integration is manual)

JAXB Build Status Tests Action

#100 Success All pass Picked by JAX-WS

#101 Failed

#102 Success 5 failed

#103 Success All pass Picked by JAX-WS

#104 Success All pass Picked by JAX-WS

#105 Success (in progress)



Continuous integration

30

 Propagation will work as further bars

• e.g., update to JAX-WS POM will cause new JAX-
WS builds and its test runs, whose results will feed 
back to JAXB

JAXB Build Status Tests WS tests

#100 Success All pass All pass

#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass

#105 Success (in progress)



Continuous integration

31

 ... and those feed backs can be used to 
trigger further propagation

JAXB Build Status Tests WS tests GF

#100 Success All pass All pass Picked by GF

#101 Failed

#102 Success 5 failed

#103 Success All pass 3 failed

#104 Success All pass All pass Picked by GF

#105 Success (in progress)



Recap

32

 Think of this as a graph of projects where 
builds (hence changes) propagate through 
controlled fashion

JAXB JAX-WS WSIT

PE
Quick Look

GF+WSIT
integration

WSIT QA

EJB

JMS

PE

PE CTS



33



Think about tests

 Emphasis on component-level tests

• Don’t just test the whole GF

• Instead, let’s try to test pieces individually

• Goes hand-in-hand with module systems

Why?

• Protect other people from your mistake

• Give yourself a safety net

34



Play with our Hudson

 At http://kohsuke.sfbay/hudson/

 A cluster of about two dozen machines

• Good mixture of Windows, Solaris & Linux

Many of tools pre-deployed

• Ant, Maven, JDK4/5/6, SVN, CVS, Hg

 Anyone is welcome, any job is welcome

• Feel free to create test jobs

35



Share your machines

Got any idle workstations that you 
rarely use?

• Let Hudson use it when you aren’t using it

• You can still keep it to yourself when you 
need it

 Got any old desktops/laptops that you 
are throwing away?

• Think about donating to us.

36



Send me feedback

Hudson has evolved to meet our needs

• But only because you guys have told me 
what you wanted/hated

Help me fix problems

37


