
Using SMF for Appserver Processes as Services: A
Design Document

TOC

1 Preliminary Introduction to SMF

Lot has been written about this novel way of looking at Solaris Platform Services. Refer
to bigadmin, docs.sun.com, predictive self-healing features of Solaris for the details.
Aligning Appserver with advances in the Solaris Platform makes (a lot of) sense.

Read the FAQ section as well.

We are leveraging this feature to satisfy following requirements:

To provide an automatic restart support for the Domain Administrative Server
(DAS) of SJSAS. This enables minimal loss of service in the event of DAs failure.
To provide an automatic restart support for the Node Agent (NA) of SJSAS. This
enables minimal loss of service in the event of NA failure.
To be able to restart the services where the service processes need to be owned by
users other than the super-user. This is a feature that Appserver 7.0 had but was
not carried forward in Appserver 8.x. The reintroduction of the so-called run-as
user helps in cases where the appserver domains (and servers and clusters therein)
are not owned by the super-user. It is believed that this is a significant value-add.

2 Appserver and Solaris 10: Service Configuration

Application Server software can be installed on a Solaris 10 system multiple times, such
that different operating system users can use it independently. This independence is
realized through an abstract boundary of an appserver administrative domain (domain,
henceforth unless noted otherwise). Almost always, a domain comprises of a domain
administrative server (DAs), one or more Node-Agents (NA) and a set of actual JEE
(Java Enterprise Edition) Engines typically grouped in clusters that run user applications.
An instance of DAs identifies a domain. One or more associated Node-Agent instances
control the life-cycle of JEE Engines underneath. Thus, SMF is leveraged for both DAs
and NA, whereas the NA controls the actual JEE Engines.

To adequately reflect the hierarchy, arranging the service manifests of various DAs and
NA instances on the given Solaris System is in order. SMF guidelines recommend that
we use the application namespace for this purpose. Following structure emerges:

|svc:|
 |
 |-----|application|
 | |-----------|sjsas|
 | |------[semi-unique-domain-id]
 | | |-------|manifest-of-domain-as-a-service=>
 | |------[semi-unique-node-agent-id]
 | |-------|manifest-of-node-agent-as-a-service=>
 |
 |
 |-----|device|
 |-----|milestone|
 ...

DAs and NA names are unique for the system. Following is the algorithm that
determines this id.

Id-of-the-domain = name-of-the-domain concatenated by dot-representation of absolute
location that stores domain configuration.

Id-of-the-node-agent=name-of-the-node-agent concatenated by dot-representation of
absolute location that stores node-agent configuration.

The dot-representation of the absolute location where a particular configuration resides is
the string obtained by replacing the '/' character in the location by a '.'. Following are the
examples of the unique-ids in certain cases:

Domain domain1 placed in root
directory

domain1.

Domain salesdomain placed in
/var/appserver/domains

salesdomain.var.appserver.domains

Node Agent node.agent.1 placed
in
/var/appserver/nodeagents

node.agent.1.var.appserver.nodeagents

It is important to note that the basic functionality of domain and node-agent
(configuration) creation already guards against creating two entities with the same name
in the same directory on the disk.

It should be noted that the above algorithm just preserves the dots that may be already

It should be noted that the above algorithm just preserves the dots that may be already
present in the name of the domain or node-agent.

The manifest-file-templates are distributed as part of appserver installation. As part of
CLI-command execution, following things happen sequentially:

Template is token-replaced by appropriate values
Concrete (token-replaced) service-manifest-file is copied to appropriate location
under appropriate name (e.g.
/var/svc/manifest/application/sjsas/<unique-domain-
id>/Domain-service.xml for domain, and
/var/svc/manifest/application/sjsas/<unique-node-
agent-id>/NodeAgent-service.xml)
The service-manifest-file is validated
The service-manifest-file is imported as a service
Clean-up in case service-creation fails

The templates used are:

Domain-service-smf.xml.template - for appserver Domain
NodeAgent-service-smf.xml.template - for appserver Node Agent

Following tokens are replaced:

ID
Token (a token appears as
%%%XYZ%%% in the
template)

Value

1 DATE_CREATED The standard date when the manifest file
was created (c.f. java.util.Date)

2 NAME Name of the Domain or Node-Agent. (e.g.
domain1, myagent)

3 LOCATION Absolute location where the configuration
of Domain or Node Agent resides

4 FQSN
Fully Qualified Service Name -- the unique
id (a function of NAME and LOCATION)
of the Domain or Node Agent

5 AS_ADMIN_PATH Absolute location of command line
interface, asadmin

6 PASSWORD_FILE_PATH
Absolute location of the (secure) file where
the administrative user, administrative

6 PASSWORD_FILE_PATH the administrative user, administrative
password and appserver master password
are stored in clear-text

7 TIMEOUT_SECONDS
Timeout in seconds ("0" implies infinite)
that determines how long the boot sequence
should wait before giving up
starting/stopping this service

8 OS_USER
The run-as user-id who owns the
configuration of the Domain or Node-
Agent, this denotes the user who owns all
the processes of this service

3 Goal for SJSAS 9.0

For SJSAS9.0, creation of a service alone is supported. No additional support to delete a
service or list services. Creating an existing service should result in an error.

It should be noted that this facility is not to replace or hide the svcs, svcadm interface(s)
available in Solaris 10. It only facilitates the creation of the service as it involves few
steps including creation of a manifest file.

The user is supposed to enable the service when needed.

4 CLI Support

The CLI command used for this purpose is create-service. The syntax could be found
[here].

5 Interfaces and Implementations

The interface and implementation Javadoc is here. The usage is shown clearly in the
Javadoc.

6 Limitations

For SJSAS 9.0, only creation of service is possible. Users have to depend on svcs,
svcadm, svccfg interfaces from Solaris 10 to actually enable the service.

TOC
Preliminary Introduction to SMF

Preliminary Introduction to SMF
Appserver and Solaris 10: Service Configuration
Goal for SJSAS 9.0
CLI Support
Interfaces and Implementations
Limitations

$Author: kedar $
$Id: design.html,v 1.2 2005/09/16 17:50:11 kedar Exp $

