
Functional Specification: Application Server
Administration

Table of Contents (Status: Draft, Ready for Review, Reviewed, ARC'ed)
1. Introduction

1.1 Project/Component Working Name
1.2 Name(s) and e-mail address of Document Author(s)/Supplier
1.3. Date of This Document

2. Project Summary

2.1 Project Description
2.2 Risks and Assumptions

3. Problem Summary

3.1 Problem Area
3.2 Justification

4. Technical Description

4.1 Details
4.2 Bugs/RFE's
4.3 Scope
4.4 Out-of-scope
4.5 Interfaces
4.6 Documentation Impact
4.7 Configuration/administration Impact
4.8 High Availability Impact
4.9 Internationalization
4.10 Packaging
4.11 Security Impact
4.12 Compatibility
4.12 Dependencies

5. References
6. Schedule
7. Document History

1. Introduction

1.1. Project/Component Working Name

GlassFish V2/Sun Java System Application Server 9.1.

1.2. Name(s) and e-mail address of Document Author(s)/Supplier

Kedar Mhaswade (Kedar.Mhaswade@Sun.Com)

1.3. Date of This Document

09/01/2006.

2. Project Summary

2.1. Project Description

The project is about administration and management support for GlassFish V2. This also covers the overall domain
configuration. It includes the following areas: Domain Configuration Management, Administrative MBeans
Infrastructure, Inter Process Communication using JMX Connectors, Management API, JSR 77 Support, Administrative
Security, Process Launcher and Startup, Synchronization, Dynamic Reconfiguration, and Node Agent.

It is assumed that the reader is familiar with the overall application server architecture. The general administration
architecture of application server is more or less similar to that of the previous releases. The GlassFish V2 (Application
server 9.1) administrative projects are focused more on the improved scalability, performance and ease-of-use
feature set.

Since most of the server side entities are being enhanced in this release, this document just lists the enhancements/changes
made to the existing features, along with new features, if any.

2.2. Risks and Assumptions

There are no risks in this project.

3. Problem Summary

3.1. Problem Area

The administration experience of application server should be enhanced. It is also important that the scalability and

performance of the Domain Admin Server is improved.

3.2. Justification

Administration of application server should always be improved and made more robust.

4. Technical Description

4.1. Details

Here is a list of things that we will be doing, for this release.

Domain Configuration Management
Administrative MBeans and JMX Infrastructure
Inter Process Communication using JMX Connectors
Management API (AMX)
JSR 77 Support
Administrative Security
Process Launcher and Startup/Shutdown
Synchronization
Node Agent
Miscellaneous

Item Details

Domain
Configuration
Management

Background

The configuration is stored in various files on disk. There are no new configuration files planned for
this release.

Changes planned for this release

The domain's configuration DTD changes are being tracked independently
http://www.glassfishwiki.org/gfwiki/Wiki.jsp?page=GlassFishV2ApplicationServer9.1
Administrative interface will be provided to default web tier configuration (that is stored in
default-web.xml). The exact list of settings that will be managed is

The default web-tier configuration is applicable to all the web applications deployed in the
domain.
All the affected servers will require a restart. In other words, changes made to default-
web.xml are not dynamic.

The default-web.xml editing support is NOT PLANNED for this

Management It will be possible to copy the entire domain configuration folder (e.g. <install-
dir>/domains/domain1) somewhere else on the same host. The idea is that a domain's
configuration does not depend on where the application software bits are stored on
the user/administrator responsibility to make sure that the source and target versions of the
application server are the same. Following should be noted in this regard:

This feature should not be confused with backup-restore of the domain configuration. One
is not a replacement of the other.
The start-domain command might have to change, after the
moved from one place to another.
The name of the domain (root folder containing domain's
same.

It will also be possible to copy the entire installation somewhere
(6418805, 90). Following should be noted in this regard:

All the scripts in the <install-dir>/bin folder should continue to work seamlessly, as long
as their "execute" permission is retained.

Administrative
MBeans and
JMX
Infrastructure

Background

These are the MBeans that pertain to the configuration changes of the domain. The Admin GUI and
CLI usually communicate with these MBeans to perform configuration tasks.

Changes planned for this release

No changes are planned here.

Inter Process
Communication
using JMX
Connectors

Background

The JMX Connectors are used for two distinct purposes within application

One-way communication between asadmin client and DAS. This is
implementation of client-side JSR-160, over HTTP/HTTPS.
Two-way communication between DAS and node-agents + other server
communicates with these over RMI/JMX -- the standard JSR-160 Connector that is integrated
into the Java Platform.

Changes planned for this release

No changes are planned here, apart from some bug-fixes.
Background

AMX is the programmatic API to manage application server.

Changes planned for this release

Management API
(AMX)

Provide the offline configuration support for most of the configuration that is stored in the
domain.xml. This means that when a user wants to modify domain.xml while the DAS is not
running, s/he should be able to do that. This is required when the user
changes to be made and does not want to start the DAS to be running. Till now, in order to
modify the domain's configuration, we need the DAS to be running. Following
considered in this regard:

It is not required that application archive deployment is supported with this feature. The
reason is that the deployment is quite complex operation and is not supported outside the
running DAS In fact, following operations are not required
configuration, for this release:

Deployment of application archives.
Creation of users/groups that use the FileRealm.
Load Balancer configuration.

Minimum validation of the domain's configuration must be done.
It should be ensured by AMX that domain is NOT running,
perform offline configuration.
No Dynamic reconfiguration support will be provided. In other words, the affected server
instances will have to be restarted so that their configuration is modified. In general,
administrators should make sure that no server side entities
configuration is performed.
This facility is meant mainly for the configurators that want to modify the domain's
configuration in a certain manner, without having to start the DAS

Offline Configuration is NOT PLANNED for this release
Provide a way to reload an application.

JSR 77 Support

Background

JSR 77 Specification is in maintenance mode, so there is no new revision of the specification.

Changes planned for this release

The first time startup of the domain/instance causes the MEjb application (which is just an EJB
application) to be deployed. This causes some delay in bringing up the domain/instance. It
incurs minor overhead to make sure that it is not required to be deployed, on every startup. We
are going to prepackage the MEjb application, so that the startup time is improved. This will
marginally increase the application server bundle size.
See the administrative security section for other changes made to MEjb access by the JSR 77
clients.

Background

Administrative
Security

This section covers the changes being made to the administrative security

Changes planned for this release

There are no major changes planned for administrative security.

Currently, a group-name, asadmin is reserved for the group of administrators -- the users of
application server, who have administrative privileges. This works fine when the default
authentication realm (file-realm) is used. But when, LDAP is used
unfortunately all the users in this group get administrative access to
customer issue 6454224 which will be fixed for this release.
We should be able to use either JKS or NSS as our key-store and/or trust-store. Currently, by
default, the Platform Edition of the product gets JKS, where as Enterprise Edition gets NSS.
this release, rather than hard-coding these, there will be a way to choose what store is needed by
an administrator for a particular domain. Note however that, once a domain has a particular
of store, it will not be possible to change it. These details are covered in the one pager for
profiles.

Background

The process launcher code is responsible for launching the application
mode, a separate launcher VM is started that finally starts the application server JVM (the
JVM). This is the default for this release. In case of the other flavor, a native process is started (the
launcher process) that launches another native application server process which embeds
will need to maintain both the flavors for this release.

Changes planned for this release

Improve the startup performance in the case of default mode: Currently, when the Java Launcher
is used, there is a Launcher JVM (2) that is started and that invokes the application server
(3).

 ______________ ______________ _______________
 | asadmin JVM | ----- | Launcher JVM |-----| App Server JVM|
 |______(1)_____| |_____(2)______| |_______(3)_____|
 | |
 |__(proposed) asadmin JVM -> app server______|

It is desired that we eliminate the separate Launcher JVM and make the asadmin JVM
itself a launching JVM. For that matter, it should be possible for any JVM to launch the
app server JVM as a separate process. This will be made part of the AMX so that
becomes a public API. Note that following in this regard:

Process Launcher
and
Startup/Shutdown

If possible, streaming API for XML will be used to parse the
form the Java invocation command line.
There are some hairy issues here from a compatibility standpoint.
imperative that all the options on the start-domain and start-instance commands are
taken care of, while we try to make this change.
The changes should apply to both start-domain and start-instance
case of start-instance command, the node-agent being the
The Java-level thread-dump capability of the server must be
we have several ways to get the thread dump from the app server, the only reliable
way is to send an OS signal (e.g. SIGQUIT on Solaris) to the
Something that must be noted (which is actually a Java behavior) is that
while using the Java Launcher, we cannot get the thread dump in the application
server's server.log, by sending the SIGQUIT-like signal to the JVM process. This is
because the signal handler in the JVM (native code) does not recognize
PrintStream that Java-land understands.
There used to be an internal interface called processlauncher.xml
level of this interface will be assessed under changing circumstances. It might not
be required in the case of Java Launcher.
Debuggability of this code will be improved.

Removal of Launcher from the stop-domain/stop-instance logic:
why this is there to begin with. It makes no sense to go through Launcher to send an RMI-
SHUTDOWN event to a running application server JVM.

 ______________ ______________ _______________
 | asadmin JVM | ----- | Launcher JVM |-----| RMI ClientJVM |
 |______(1)_____| |_____(2)______| |_______(3)_____|
 | |
 | | RMI Shutdown Event
 | | (current)
 | ____|__________
 +----(proposed)RMI Shutdown Event--- | Running app |
 | server VM |
 |_______________|

Whenever the server starts up an RMI Stub (A live object) is written to the server's config
folder. If a piece of software can access this Stub, it can be an RMI client to the running
server. So, while stopping the domain or server instance, all that's needed
this stub. In fact, the logic through the Launcher does the same thing -- a Class called
PEMain is called with an argument, stop and that becomes the RMI Client,
SHUTDOWN event to the running server. To achieve this, we don't need 3 JVM's. We
just need one JVM and that is of the asadmin, while stopping the domain and that of

node-agent, while stopping the server instance. This has huge benefits while removing
complexity. See Issue No. 949 for some hideous side effects of the way we do it

Synchronization

Background

This is the piece of code that is supposed to take care of bringing the cache repositories in sync with
the central repository. For all practical purposes, the central repository = "config"
domain's folder.

Changes planned for this release

Nazrul Islam is supposed to provide the details here.

Background

Node Agent controls the life cycle of the server instances on a given node. It optionally starts the
instances, stops them, initiates synchronization of their repositories and attempts to restart the
instances among other things.

Changes planned for this release

Handling of admin password change across the domain: Currently,
changed, it is dynamically applicable only to the DAS The communication between node-
agents/server-instances and DAS still continues to assume the older password through a
JMX connections. The upshot of this is that unless the DAS, all the node-agents and server
instances are restarted after changing the admin password (providing the new admin password
the process), the communication between DAS and node agents/server
unpredictable. But having to restart all the entities in the domain after an admin-password-
change operation seems illogical. It might be hard to take care of all the edge-cases
release, when admin password is changed, but user experience needs to be improved in this
case. Following is what will be attempted for this release in this regard:

Admin Interfaces (admin CLI, GUI, AMX) should clearly indicate
what needs to restarted and how, after the admin password is changed. It is important to
stress that until the restart is done in the described fashion, the DAS
instances will continue to use older admin password for internal communication.
don't know what happens when the auth-realm for administrators
this reason that we take a safe approach for this release.

Synchronize an instance on restarting the node-agent: We have
administrators would like to forcefully sync the instance's cache repository with central
repository on restarting the node-agent. Today, when a node-agent is restarted
stop-node-agent followed by asadmin start-node-agent, the synchronization does not happen.

Node Agent

That's by design and cannot be overridden. But in some cases, an administrator would
knowingly want to synchronize the instances, an option could be provided.
will provide an explicit option to synchronize the instances when the node-agent is restarted.
Administrators must know however that when used, all the instances will
node-agent's startup.
Improved restore of DAS from a backup(6380268): When a DAS is restored on some machine
(after a machine failure), all the node-agents must be manually made aware of this
this release, we will make changes such that since the DAS knows the locations of all the node-
agents (that have shaken hands with DAS) in the given domain, DAS will convey its
changed location to the node-agents. This way, node-agents don't have to be manually modified.

For this release, this applies to all the node-agents that are running at the time of restored
DAS's startup. Any node-agents that are not running at that time will have to be manually
modified to know DAS's changed location.
There is no explicit command/interface defined for this operation. [
implications of doing this implicitly, TBD]. DAS performs this
background task at the time of its own startup.
A node-agent establishes the trust with the new incarnation

DAS has the right admin user and admin password.
DAS sends the right server certificate that is already
that a node-agent is either unbound or is bound to exactly one DAS A
agent can be contacted by a DAS (or its reincarnation)
one handshake between the two. Also note that every DAS has its own
server certificate, by default.

Separation of client trust-store and server trust-store: Currently, we have a trust-store named
.asadmintruststore in the user's home directory that is used to store the server certificates of
the secure domains that are contacted by asadmin over HTTPS,
As of now, the same trust-store is used by the node-agents. The plan is to use the server side
trust store for server side communication between node-agents,
Using the domain-specific trust-stores for an intra-domain communication has several benefits
including avoiding the accidental trust of a node-agent on a DAS that looks
that it has trusted at the time of binding (See 6450817).

Following miscellaneous changes will be done for this release.

Provision of sample resource creation templates for frequently used database vendors: This is to
improve the usability of the asadmin add-resources command, which accepts an XML that
defines the resources (See RFE - 582). Following templates will be provided. Appropriate
database vendor specific properties will be provided, so that the users can use them as ready
reference. For this release, only templates would be provided for following database vendors
with appropriate resource types (e.g. JDBC Resource, JDBC Connection
template):

Miscellaneous

Oracle
JavaDB
MySQL

Attempt to do better integration with the operating platforms: Today, we have a command called
create-service in asadmin that creates the so-called Operating System Services. We only have
Solaris-10 SMF integration as of now. We will need to do following
release. Creation of services pertains to Domain and node-agents. Once node-agents are
integrated with services infrastructure on a particular platform, we automatically get
for server instances.

Fix the issues 695, 726 blocking SMF integration on Solaris-10.
Provide etc/rc scripts for RedHat Linux. Integrate them with create-service command.
Revive and enhance the support for Windows. Integrate it
We have an executable called appservService.exe, that is used for this purpose,
approach is not usable.

4.2. Bug/RFE Number(s)

These are noted against the details above.

4.3. In Scope

The items covered in 4.1 are in scope.

4.4. Out of Scope

The items not covered in 4.1 are not in scope. Nothing in particular. Not all bugs and RFE's that will be fixed for this
release can be mentioned here.

4.5. Interfaces

http://www.opensolaris.org/os/community/arc/policies/interface-taxonomy/ describes the permitted interface taxonomy.

4.5.1 Exported Interfaces

Interface Stability Former Stability (if
changing) Comments

sun-domain_1_3.dtd (An
XML file) EVOLVING EVOLVING The configuration schema governing the

entire domain.
The schema derived from sun-

sun-resources_1_3.dtd (An
XML file) EVOLVING EVOLVING

The schema derived from sun-
domain_1_3.dtd, and pertaining
the resources. All the resource definitions
in any XML used by
resources must comply with this DTD.

New asadmin commands EVOLVING EVOLVING These are covered in the

New AMX interfaces EVOLVING EVOLVING These will be covered in the AMX
Javadocs.

processlauncher.xml UNSTABLE UNSTABLE
Customers edit this file for some reasons
and because we did not hide this file, it
has become a sort of interface.

4.5.2 Imported interfaces

Interface Stability Exporting Project: Name,
Specification or other Link. Comments

schema2beans.jar EVOLVING NetBeans
Contains some config bean
runtime classes (super classes).
Pertains to NetBeans 5.5.

schema2beansdev.jar EVOLVING NetBeans
Used for generation of config
beans. Pertains to NetBeans
5.5.

jdmkrt.jar EVOLVING Java SE Java DMK for cascading
feature.

Jakarta Commons Modeler EVOLVING Apache
Used for Config
MBeans/Model MBean
generation support.

4.5.3 Other interfaces (Optional)

Not applicable.

4.6. Doc Impact

Moderate impact.

Moderate impact.

4.7. Admin/Config Impact

Administration specification, this is.

4.8. HA Impact

Not applicable.

4.9. I18N/L10N Impact

Not applicable.

4.10. Packaging & Delivery

Standard packages, zip files that are documented in the packaging specification.

4.11. Security Impact

Not applicable.

4.12. Compatibility Impact

TBD.

4.13. Dependencies

Security Functional Specification
Profiles Functional Specification
CLI One Pager

5. Reference Documents

// List of related documents, if any (BugID's, RFP's, papers, Blogs).
// Explain how/where to obtain the documents, and what each
// contains, not just their titles.

6. Schedule

6.1. Projected Availability

Covered elsewhere.

Covered elsewhere.

7. Document History

Version Date Author, Comment

1.0 06 January 2007 Incorporated some feedback. Made changes for
features that could not make it.

0.91 01 September 2006 Kedar Mhaswade, Added material related to
platform services.

0.9 31 August 2006 Kedar Mhaswade. Added material, Made it
ready for review.

0.8 29 August 2006 Kedar Mhaswade, created.

