
One Pager: Usage Profile Support for Application
Server

Table of Contents (Status: Draft, Ready for Review, Reviewed, ARC'ed)
1. Introduction

1.1 Project/Component Working Name
1.2 Name(s) and e-mail address of Document Author(s)/Supplier
1.3. Date of This Document

2. Project Summary

2.1 Project Description
2.2 Risks and Assumptions

3. Problem Summary

3.1 Problem Area
3.2 Justification

4. Technical Description

4.1 Details
4.2 Bugs/RFE's
4.3 Scope
4.4 Out-of-scope
4.5 Interfaces
4.6 Documentation Impact
4.7 Configuration/administration Impact
4.8 High Availability Impact
4.9 Internationalization
4.10 Packaging
4.11 Security Impact
4.12 Compatibility
4.12 Dependencies

5. References
6. Schedule
7. Document History

1. Introduction

1.1. Project/Component Working Name

GlassFish V2/Sun Java System Application Server 9.1.

1.2. Name(s) and e-mail address of Document Author(s)/Supplier

Kedar Mhaswade (Kedar.Mhaswade@Sun.Com)

1.3. Date of This Document

09/11/2006.

2. Project Summary

This project discusses the support for application server usage profiles (profiles, for short). A
identifies how a particular kind of users use the application server software. Once a profile is identified by a user, the
support for the same planned for this release will take care of relevant out-of-the box configuration
server runtime such that its user-experience is in sync with the expectation.

2.1. Project Description

Application Server Software is used in a few significantly different ways for significantly different purposes. A
developer might want to try out the latest technology advancements in and out of the Java EE
relatively painless manner. In such cases, the general security requirements are not that stringent. A
the server however, can make significant difference to the user-experience. A deployer on the other hand, might want
to deploy the state-of-the-art Java EE applications in a production environment that has to be
Although the same software can be manually tuned to specific requirements using administrative tools, it is the
the-box configuration (that reasonably meets user expectations) that matters and that is the focus of this project.

Traditionally, this kind of tweaking of the configuration of the runtime was achieved through provision of multiple
editions of the software. For example, the Platform Edition of Sun's Application Server was geared
developers and Enterprise Edition was geared towards large enterprises. However, this is too heavyweight a solution
to realize the aim to use the software in a particular manner and has following limitations:

It creates unnecessary barricades in users' perception of capabilities of the application server software. This
problem worsens when virtually all of the source-code is open. It becomes complex to maintain
distributions in that case and then limit a particular distribution of the open-source project to a subset of things
that you can do with it.

It unnecessarily associates application server binaries and configurable domain runtime
manner. For example, all the distinct server runtimes (domains) created in a Platform Edition distribution are
functionally equivalent. In other words, in a given distribution of application server software,
configure two runtimes, one of which is tuned for developers and other for deployers. This is an artificial
demarcation that is not sustainable for long.

What is needed is a single distribution of application server software (that fully implements Java EE Specification) that
is capable of behaving according to its expected primary usage, based on its configuration. Usage
to be a step in that direction. In this release, the foundations for this will be laid. The exact relationship of the
deliverables of this project with server software distributions is rather unspecified at this point
for this is the backward compatibility requirements of application server and various environments (e.g. Solaris
Operating System, Java Enterprise System etc.) in which it integrates. It might then be the case that a particular profile
is available on a particular distribution of application server, but it would make sense to not
far as possible.

It is important to distinguish the intended scope of profiles in GlassFish V2 and their (that of
extensions. Going ahead, it is required that application server runtime is configured to a particular
rather than a particular kind of users. This is expected to optimize the performance (startup time, memory footprint
etc.) of application server while hosting applications of a given kind. An example would be a
where the users intend to use the runtime to develop/deploy only the web applications. To
demand usage of application server, a more modular structure of application server components is needed and that is
clearly out-of-scope for this release (but it is in line with the general direction we seem to be taking now). Both these
points of view should work in concert and should not interfere with each other.

A key enabler of this feature is the careful distinction between binaries and runtime configuration that Sun's
application server has been promoting, historically. When the bits are put on the disk, what is of essence is
of an administrative domain which optionally provides a pre-configured runtime for the user applications. Various
administrators are already able to exploit the same set of bits to suit their specific needs. This
sound foundation.

2.2. Risks and Assumptions

There are no major technical risks with this project. A moderate risk is with respect to making various capabilities of
application server implemented as life cycle modules, configurable. These are pluggable components
server which are very closely related with the notion of profiles. In theory, a particular life cycle module should be
made pluggable and should be enabled/disabled depending upon its association with respect
however, this is a stretch goal for this release.

A moderate risk (non-technical) is with respect to the distribution of application server software. Even though a loose
coupling is desired between usage profiles and application server editions, an unspecified behavior
confusion and might result in lack of interest. A detailed discussion of various bundles and compositions thereof is
however beyond the scope of this document. A recommendation is made below in this regard.

For GlassFish V2, a set of predefined profiles will be provided. There is no provision of custom profiles
release.

3. Problem Summary

3.1. Problem Area

Several questions have been asked and suggestions have been given to improve the developer experience of
GlassFish. This specification is a vehicle to accumulate all such suggestions and formalize them into a product
The basic problem that is being attempted to solve is how to improve the response of application server when it is put
to a specific use.

3.2. Justification

This is the best time to offer such a feature, mainly to drive the GlassFish adoption efforts. Given the various flavors in
which GlassFish platform is available, it makes sense to provide usage-profile support for

4. Technical Description

4.1. Details

4.1.1 Presenting Profiles to Administrators/Developers

The proposed manner in which a user comes across the profiles is using the asadmin create-domain
command with a --profile option. An example invocation of this is as follows:

asadmin create-domain --user admin --adminport 4848 --profile developer
dev-domain

The domain here symbolizes an application server runtime that is suitable for both server administration and user
applications.

The valid values that the option profile accepts are: developer, cluster and enterprise
values are case insensitive. What follows describes in detail the contract of this command.

The value developer implies that the domain should be configured (as best as it could) to be run in a
development environment. The value cluster implies a user should be able to create clusters
server instances. The value enterprise implies that a user intends to use the given domain in production
environment for large-scale deployments. The details of these configurations that define
in 4.1.2 below.
Actually, there is no need for a separate cluster profile because it is logical for developers to be able to create

clusters incurring only marginal overhead. However, it is the current state of implementation
a separate profile which mostly resembles the developer profile, except that the clusters of application server
instances could be created. The main reason that we are introducing this profile is to avoid sweeping changes to
the server-side Pluggable FeatureFactory implementation for GlassFish V2 release. At some point in time, these
two profiles are expected to merge. That will happen when additional capabilities implemented in the server (as
life cycle modules) to support cluster deployments can be easily turned off if needed. From
the developer profile is a degenerate case of the cluster profile.

In addition to the above, two classic profiles are introduced. It might be possible to remove the classic profiles going
ahead. The need for classic profiles arises because we are introducing profiles for the first time in this release. See
section on installers for details.

4.1.2 Comparison of Various Profiles w.r.t. Configuration Parameters

The two tables (1, 2) below describe the gist of this project. The first table gives a glimpse of how the configuration of
a domain for a given profile should look like, whereas the second table provides the rationale for choosing a particular
configuration parameter.

It is important to note that even if most of domain's configuration is stored in the well-known interface called
domain.xml (here is the schema), there are other configuration files that will have to change to support
profiles.

Configuration/Other
Parameter

Value for

Developer Profile

Value for

Cluster Profile

Value for

Enterprise Profile
Security Store JKS JKS NSS
Quick Startup true (enabled) false (disabled) false (disabled)
Java Platform Security
Manager false (disabled) false (disabled) true (enabled)

JVM

Hotspot Client VM
-Xmx=
-Xms=

Hotspot Client VM
-Xmx=
-Xms=

Server Pluggable Feature
Factory PE EE EE

Default Static Ports

(All Profiles get a JPDA

HTTP (8080)
HTTPS(8181)
IIOP (3700)
IIOP/S(3820)

HTTP (8080)
HTTPS(8181)
IIOP (3700)
IIOP/S(3820)

(All Profiles get a JPDA
Debugger
Port(9009/disabled by
default))

IIOP/S/MA(3920)
JMX (8686)
Admin/HTTP(4848)
JMS Broker (7676)

IIOP/S/MA(3920)
JMX (8686)
Admin/HTTPS(4848)
JMS Broker (7676)

Admin URL http://host:admin-port http://host:admin-port https
HTTP Access Logging false (disabled) false (disabled) true (enabled)

Heart-beat (GMS) false (disabled)
false (disabled)

true (enabled)
true (enabled)

JMS Implementation
Type EMBEDDED EMBEDDED for DAS,

LOCAL for instances

LOCAL

TBD: Need a decision

EMBEDDED for DAS,
LOCAL for instances

Default Startup of
Domain
(Background/Foreground)

Foreground

Background

Foreground

Background

Background

TBD: Need a decision
Ability to Create
Cluster/Standalone Java
EE Engines

Not available Available Available

Session Replication
Mechanism Not available Available, in memory. Available, HADB.

Table 1: Distinction within Profiles

Parameter Few details about what it means
Reasons to make it a

profile-defining -parameter

Security Store

Server uses at least a key-store and trust-
store each to deal with its certificates and
keys. There are two main types of stores:
JKS and NSS. These differ in terms of
formats and tools that know how to
configure the stores.

A particular organization has stringent
requirements around these. They might also
have processes built around the tools
configure their server side certs, for
example. Usually, an enterprise
(e.g. Java ES) prefers an NSS based
security store configuration.
Traditionally, the implementation of Quick
Startup gives an impression

Quick Startup
This is an Java-NIO based implementation
that is part of on-demand services
framework.

that perceived startup of the server is faster
than its actual startup.

Traditionally, this has
startup of administration
the non-administration servers in an
enterprise domain. We will keep it that
way.

Java Platform Security
Manager

A security manager controls the privileges
of a particular piece of Java code in
accordance with an administrator-defined
security policy.

Developers are not
CodeSources and
the security manager
developers are likely to be upset by
behavior of their application due to
(seemingly) unnecessary enablement of
platform security (AccessControlExceptions
all over).

JVM
By default, we use Sun's JVM's. As such, it
is obvious to leverage the optimizations
available in the JVM itself, especially the
Hotspot VM.

JVM configuration parameters amount to
significantly different behavior tailored to
certain situations. It is better to
VM parameters out-of-the-box rather than
making users read
documentation.

Server Pluggable Feature
Factory

Default Static Ports
Admin URL
HTTP Access Logging
Heartbeat enablement for
a Cluster (GMs)

JMS Implementation (SJS
MQ Broker) Type

Default Startup of
Domain
(Background/Foreground)

As of now, the only way to start a domain
is asadmin start-domain. By
default, the domain is started in the
background letting the user know the
location of the file where the server log is
redirected.

See a dependency here.

Competing products liked by developers
have this capability. Developers
to see the server log records on the console
rather than in a file like server.log.

In an enterprise scenario, a server instance
can only be started
such it is always in the background.

See a dependency here.
Ability to Create
Cluster/Standalone Java
EE Engines

Determines whether there is a runtime
support to create additional clustered or not
Java EE Engines.

A pivotal difference between domains that
are cluster-aware

Session Replication
Mechanism

A mechanism to replicate the session state
across various clustered server instances to
provide reasonable availability.

It is needed that users know
applications are made available.

TBD: Need more clarity

Table 2: Why a particular parameter is a profile-defining-parameter

4.1.3 Distinction Among Profiles

This specification does not define any specific rules regarding defining a profile. It (defining a profile) is largely an
outcome of need. There are various items to consider while defining a profile and hence it is not easy to make any
rules around this. In general, it is subjective whether to create a new profile or to make a set of configuration changes
a part of an existing profile.

This brings up an interesting point: Why have 2 profiles like developer and enterprise
and cluster? Can these be subsumed under one profile?

A reasonable explanation can be provided along the following lines:

At the center of it, a profile is almost completely defined by a set of configuration parameters. These are called
defining parameters of a profile. Two different profiles have different values for most
parameters.
A profile should result in optimized performance, expected user experience right of the bat
creation configuration changes to achieve its promise. A few changes here and there do not result in
profile. Thus a profile must represent a class of users.

Food for thought:

Do developers Need to Create Application Server Clusters? (Do we need yet another profile so that there is a
runtime support for clusters)?

4.1.4 Profiles and Administrative Clients

Profiles is a server-side phenomenon. It is not expected that admin clients know the profile of a particular domain and
behave differently. Here is how various admin clients will be impacted by profiles:

asadmin client: The asadmin client is designed in such a way that it can help an administrator administer various
domain runtimes (with unknown usage profiles) from a single shell. In other words, asadmin
agnostic and as such, it cannot (and should not) present a command set that is applicable to a domain with given

profile. For example, if there is asadmin is directed to a domain with developer profile, it is not possible for
asadmin to hide a command like create-cluster. The command set is thus not impacted by this project.
AMX client: AMX is the programmatic API. We have exactly one API that caters for the entire application
server administration. This is true for previous releases. Thus, by definition, AMX is not impacted by profiles.
For this release, as said elsewhere, there will be no AMX support to realize a particular profile. AMX can only
be used after the domain has been created and started.
Admin GUI client: This is implemented as a web application deployed to a particular domain that is being
administered. The current plan is to query the administrative MBeans about certain capabilities and
differences when certain support is not present in the MBeans. This, however is independent of this project on
profiles.

4.1.5 Profiles and Application Server Installers and GlassFish Bundles

As of now, we have following basic distribution mechanisms (this excludes the Java EE SDK distributions and
variations thereof. The Java EE SDK distributions are based on PE distribution).

Following has been decided at the architecture forum in this regard:

PE user and Java EE SDK user should be able to create clusters. In other words, in PE, cluster profile is
available.

Id Bundle/Distribution Comments Default Profile

1 Standalone Application
Server PE Bundle. Base Application Server. developer

2 Standalone Application
Server EE Bundle.

Base Application Server +
Enterprise capable portion +
Load balancer plugin +
HADB software.

classic-ee

enterprise

3 GlassFish Download
Zip

Similar to 1, with single
XML (setup.xml) for
configuration.

developer (User
has to run ant
setup.xml).

4 GlassFish Download
Zip

Similar to 3 with additional
support for
clusters/instances. Single
XML called setup-
cluster.xml for
configuration.

cluster (User has
to run ant setup-
cluster.xml).

5
Platform Specific
Packages and Java ES
Installer.

These is a mode where the
application server software
is distributed in terms of
defined set of packages and
post installation scripts. The
other software that integrates
into Java ES is leveraged,
rather than bundling it
ourselves unlike 2.

enterprise

To take care of these differences in the way we bundle the application server software, the
asaenv.conf[bat] has been made. Ideally, a pluggable architecture that lets users download
is a model we should embrace.

One of the goals for GlassFish V2 is provision of one bundle that has capabilities of clustering. This means that there
will be one bundle by merging bundles 3 and 4. The setup.xml will set up the developer profile, whereas the setup-
cluster.xml will set up the cluster profile.

Following should be noted in this regard:

Only a single set of templates will be used for all types of installations. These templates are stored at install-
dir/lib/install/templates/ee. The portion "ee" in the name of this path is restored to mitigate
with various environments in which application server is integrated. This should not be a problem because if a
particular jar (referred to in a particular template) is not available in given distribution, the associated
functionality will not be available.
In order to retain the user expectation of domain creation process, two additional profiles will be introduced
which will be the default profiles for respective installations. These are classic-pe and
will be the default profile for PE installation, whereas classic-ee will be the default profile for EE
The values for various profile-defining parameters in the case of classic-pe and classic-ee is not noted above
because they are defined by the classic templates that are available in PE and EE installations.
It is desirable that the standalone installers for PE and EE provide a choice to the users so that they can choose
the profile for the default domain. Note that the default domain is created by the installer and
users installing the product get to choose the profile for the default domain. It is explained above, what the
default profiles for each installer should be. Thus,

PE installer has a choice among developer, cluster and classicp-pe.
EE installer has a choice among developer, cluster, enterprise and classic-ee.

4.1.6 Profiles: Noteworthy

Here is something that you should know, about this implementation of profiles:

A running domain does not know anything about its own profile. For example, a domain created like
asadmin create-domain --profile enterprise ... does not have any

asadmin create-domain --profile enterprise ... does not have any
runtime about specifics of this profile. Coupling it loosely like this has several benefits above and beyond
making migration within profiles easy. If a user has forgotten about what profile a particular
and Admin GUI will have ways to identify possible profile of a domain but it is not a defined attribute of a
domain. The shortcoming of doing it this way is that the startup of the server cannot
behavior, since configuration does not have an explicit indication of the profile of the domain being started.
[TBD: Discussion Required].
In general, a user is supposed to know the profile of a domain. A profile is a user's view of application server
configuration.
It is quite possible that user reconfigures an existing domain to behave in a profile different from its original
profile. From this standpoint, a profile is a fluid property of a domain.
An important outcome of this discussion is that the so-called ClientPluggableFeatureFactory
The way the asadmin client deals with the domain creation will be determined completely by the profiles.

4.1.7 More about Enterprise and Cluster Profiles

 __
 | ____________ ___________ | NA: Node Agent
 | | | | Instance 1|---|cfg1| |
 | | DAS | |___________| | |
 | |____________| (NA1) |Template| |
 | | |Config | |
 | ___|___ ___________ | |
 | |das-cfg| |Instance 2 |---|cfg2| |--------Domain Boundary
 | |_______| |___________| |
 | (NA2) |
 |__|

The enterprise architecture (schematic) of the application server is shown above. DAS is the administration server
that manages other Java EE Engines (in that domain) that host the user applications. As an additional benefit, (at
additional costs that are arguably unnecessary) DAS is a fully functional, compliant Java EE Engine.
can choose (though they rarely, if at all, do so) to deploy applications to the DAS The essence however, of the
enterprise profile is the provision of standalone and clustered server instances. As shown in the diagram, each instance
has a configuration (shared or not) that is based on a Template Configuration. Note that Template Configuration
applies not only to the existing server instances, but also to the instances that might be created in future. DAS too, has
its own configuration (shown as das-cfg) that is independent of the Template Configuration.

DAS:das-cfg Instances:Template Configuration

It is quite important then to know what the profile-specific configurations apply to -- DAS Configuration or Template
Configuration. It applies to both unless specified otherwise. A significant outcome of this

Configuration. It applies to both unless specified otherwise. A significant outcome of this

When an administrator chooses to create a domain with Cluster/Enterprise Profile, a blueprint of the server
instances is also reasonably determined. This further reduces the administrative overhead to separately tune
those server instances when enterprise deployments occur.

4.2. Bug/RFE Number(s)

These are indicated throughout the document where applicable. This feature however, is an outcome of various
discussion threads on GlassFish Discussion Forum.

4.3. In Scope

All that has been said about realizing usage profiles in Section 4.1 is in scope for this project. Note that the
composition of any defined profile is based on experiential knowledge. It is a learning process.
learn over time that a particular configuration setting is suitable for a particular usage.

4.4. Out of Scope

Since this entire topic is of general interest and naturally has various interpretations, it is important to list down what
this project is not. Following things are not in scope for this project, at least for this release:

There is no programmatic (AMX) configuration support or Admin GUI (Console) support planned for profiles,
for this release. The only means to manifest profiles shall remain the asadmin command,
domain.
There is no migration planned for an existing domain that's created (or not) with a particular profile. It is not
planned that the profile of a domain can be changed after it is created. Thus, this feature is
conflict with the upgrade story for application server. It is to be noted however that this work can be extended
to provide a reasonable upgrade path, in following releases.
Although the concept of profiles can easily be extended to take care of custom needs, it is not planned to
provide such a support for this release. GlassFish V2 will only provide a profile foundation and basic
integrated into the product.

4.5. Interfaces

http://www.opensolaris.org/os/community/arc/policies/interface-taxonomy/ describes the permitted interface
taxonomy.

4.5.1 Exported Interfaces

Interface Stability
Former
Stability
(if
changing)

Comments

changing)
asadmin create-domain [--profile
(enterprise|cluster|developer)]

A new option named profile that takes
one of the following values:
"developer", "cluster", "enterprise".

EVOLVING NA
Exact changes that are made to the domain's
configuration for a given profile are subject to
change without notice.

A text-file named:

asadminenv.conf on all platforms
EVOLVING NA

This file is used to define the defaults to take
care of the interplay
application server installation. The asadmin
script will use this file as a preferences file
is expected that users edit this file judiciously
as it affects the installation

Note that the contents of this file are supposed
to define the default behavior of all the
asadmin commands.

The default location of
asadminenv.conf EVOLVING NA

Standalone Installers (PE/EE/GlassFish):

[install-dir]/config

Java ES Installers (EE):

/opt/SUNWappserver/appserver/config

The format of asadminenv.conf EVOLVING NA
The format is that of a property file. Each
is supposed to contain either a comment or a
'=' separated name-value
beginning with '#' is a comment.
These can be enhanced for releases to come.
For this release,

A Vanilla PE Solaris installation:

These are install-wide asadmin defaults
AS_ADMIN_PORT=
AS_ADMIN_PROFILE=
AS_ADMIN_SECURE=false

A Vanilla EE Solaris installation:

The contents of asadminenv.conf EVOLVING NA

These are install-wide asadmin defaults
AS_ADMIN_PORT=
AS_ADMIN_PROFILE=
AS_ADMIN_SECURE=true

A Vanilla GlassFish installation:

These are install-wide asadmin defaults
AS_ADMIN_PORT=
AS_ADMIN_PROFILE=
AS_ADMIN_SECURE=true

Note that the default domain that GlassFish
users would get is still a developer profile
domain.

Respective installers are supposed to populate
this file appropriately.

4.5.2 Imported interfaces

Interface Stability Exporting Project: Name,
Specification or other Link. Comments

4.5.3 Other interfaces (Optional)

Interface Stability
Exporting Project:
Name, Specification or
other Link.

Comments

4.6. Doc Impact

There will be considerable impact of this project on documentation. The following will be impacted:

There will be considerable impact of this project on documentation. The following will be impacted:

Admin Guide.
asadmin create-domain manpage.

4.7. Admin/Config Impact

This has been dealt with elsewhere (1, 2). If this dependency is resolved to have an indication of profile in a domain's
configuration, the configuration schema might change (although we can leverage a <property> element
accommodate that.

4.8. HA Impact

Not applicable.

4.9. I18N/L10N Impact

No considerable impact above and beyond product impact.

4.10. Packaging & Delivery

Here is the packaging impact:

Package Changes Comments
SUNWasu
sun-asu-9.1.rpm
SUNWasu.zip

$installdir/lib/install/templates/developer/domain.xml
$installdir/lib/install/templates/cluster/domain.xml
$installdir/lib/install/templates/enterprise/domain.xml

These are the XML style sheets
used to transform the
domain.xml for various profiles.

For installation impact, see here (section 4.1.5).

4.11. Security Impact

Not applicable.

4.12. Compatibility Impact

// Incompatible changes to interfaces that others expect
// to be stable may cause other parts of application server or
// other dependent products to break.

// Discuss changes to the imported or exported interfaces.
// Describe how an older version of the interface would
// be handled.

// List any requirements on upgrade tool and migration tool.

4.13. Dependencies

No dependencies on other projects. Some subtle dependencies with respect to positioning.

5. Reference Documents

Refer to Product Documentation for Sun's Application Servers, especially the admin guide.

6. Schedule

6.1. Projected Availability

Fully functional implementation by Milestone 3 - GlassFish V2. Refer to overall milestone

7. Document History

Version Date Author, Comment

1.00 06 January 2007

Kedar Mhaswade. Removed classic profiles,
cleaned asadminenv.conf related entries. Also,
updated GlassFish distribution information.

Some changes to fit the current
implementation direction.

0.97 01 October 2006 Kedar Mhaswade. Added classic profiles,
clarified templates.

0.95 14 September 2006
Kedar Mhaswade. Added various material for
profile-defining parameters, installers,
asadminenv.conf interface.

0.8 11 September 2006 Kedar Mhaswade, created.

