
The GlassFish Community: An Overview

The GlassFish Community
Delivering a Java EE Application Server

Eduardo Pelegri-Llopart
Yutaka Yoshida

Alexis Moussine-Pouchkine
Sun Microsystems, Inc.

http://blogs.sun.com/theaquarium

Last Updated September 2007

The GlassFish Community 1

http://blogs.sun.com/theaquarium

At JavaOne 2005, Sun announced Project
GlassFish, an initiative to open source its
Application Server and the Java EE
Reference Implementation (see inset:
Project GlassFish). This was the first step
of open sourcing all the Java platform, but it
also had other effects. Project GlassFish
accelerated the adoption of Java EE 5,
added a new enterprise-quality App Server
to the options available to the Open Source
community, and has lead to a
transformation of how Sun's AppServer is
developed, tested, made available, and
evolved, in the process creating a much
better product.

A year and a half after the initial launch, the
GlassFish community has already delivered
its first final release and is on its way to its
second. In this article we will provide an
overview of all the aspects of the GlassFish
Community and the GlassFish AppServer.

What is GlassFish
GlassFish is a Community and an Application Server. The community's main
deliverables are a Java EE 5 compatible Application Server, the GlassFish
AppServer, and the Reference Implementation for the Java Persistence API,
TopLink Essentials.

The GlassFish Community also delivers many other useful components including
reusable modules for JCP technologies included in Java EE 5, like JAXB, JAX-WS,
JAXP, StAX, JSP and JSF. GlassFish also includes several popular Web.Next
projects like jMaki, Phobos and DynaFaces, many tools, like the Continuous
Integration tool Hudson, and useful infrastructure like Grizzly the NIO-based server
framework. The GlassFish community also maintains a Maven repository for all
these components.

Java Platforms and Application Servers
Sun released Java in 1995 and the next year the Java Servlet API was presented
during the first JavaOne(tm) conference. In 1999, Java Server Pages and Enterprise
JavaBeans were combined with Java Servlets into the first enterprise Java

The GlassFish Community 2

Project GlassFish
Sun launched Project GlassFish
in June 2005, during JavaOne, to
Open Source the Reference
Implementation for Java EE 5 and
Sun's Application Server.

The first release followed less
than a year after, at JavaOne 2006
(May 2006).

The second release was released
in September 2007.

The focus is now on GlassFish v3,
the modular and lightweight
application server (see HK2).

platform: J2EE 1.2 - the version
number was chosen to match the
accompanying J2SE. Addition releases
followed in 2001 (J2EE 1.3) and 2003
(J2EE 1.4) and then, in a name change,
Java EE 5 in 2006.

The Java EE specifications have been
adopted widely by both vendors and
enterprises and many software
vendors, Sun included, have
implemented them in their Application
Servers. For a number of years, Sun
used to distribute both a Reference
Implementation (see inset: What is a
Reference Implementations) and a
Commercial Application Server,
marketed under different brands.

These two offerings had different
properties: the RI was focused on
development and teaching the
specifications and was free for
development but could not be
used in deployments, while the
Commercial product was for
revenue and was focused on
Deployers. The two offerings
have converged over time,
starting with the 7.0 release
where the commercial product
(then under the Sun One brand)
included for the first time the
functionality from the J2EE 1.3
SDK and continuing through the
8.x and 9.x releases under the
Sun Java System brand (see inset:
Java AppServers at Sun).

By J2EE 1.4, the RI was identical
to the SJS AS 8.0 PE, was free
for development and
deployments, and was included in

The GlassFish Community 3

What is a Reference
Implementation

Specifications created through the Java
Community Process (JCP) are the outcome
of an Expert Group (EG) coordinated
through an EG Lead.

The Expert Group delivers:

● A Specification Document
● A Technology Compatibility Kit (TCK)
● A Reference Implementation (RI)

The RI implements the Specification and
passes the TCK.

The quality of the RI can vary from a proof
of concept to a production-quality
implementation. GlassFish is production
quality, Java EE 5 compliant, Application
Server.

Strictly speaking, the Java EE 5 RI is a
specific snapshot of the GlassFish code base
that has been declared as such.

Application Servers at Sun
Sun has used several brands for its
Application Servers. The most recent
releases are:

● iPlanet AS 6.0 – Originally from
Netscape (Netscape AS) J2EE 1.2
compatible

● SunOne AppServer 7.0 – First release
including J2EE 1.3 RI

● Sun Java System AppServer 8.0 –
J2EE 1.4 compatible

● Sun Java System AppServer 9.0 –
Java EE 5 compatible. GlassFish v1.

● Sun Java System AppServer 9.1 –
Java EE 5 compatible. GlassFish v2.

wide distribution releases like the J2EE 1.4 SDK.

The SJS AS 8.x products were still available in 3 different versions: a Platform
Edition (PE) which was identical to the RI, a Standard Edition (SE) that included
some enterprise-quality features like
Clustering and Failover, and an
Enterprise Edition (EE) version that was
targeted to the high-availability (99.999%
availability) market. Starting with the 9.x
releases, all these features are being
incorporated into a single version which
is being developed transparently by the
GlassFish community under an Open
Source license. The user is free to
configure GlassFish using profiles:
developer, cluster, and enterprise.

The GlassFish AppServer
Sun announced Project GlassFish in June
2005, during JavaOne 2005. Less than a
year after that, at the next JavaOne in
May 2006, the first release was made
available to the public and the Java EE 5
specification went final . This AppServer
was made available at Sun's download
sites under the Sun Java System 9.0 PE
name and at the community site under the
GlassFish v1 name but both are identical
except for the choice of installer.

GlassFish v1 focused on implementing the Java EE 5 specification and some of the
enterprise-level features were not included in the first release. To reflect this, the
AppServer was labeled PE in the Sun distribution. GlassFish v2 adds back all these
features and drops the PE label altogether because the features have been fully
integrated: the same executable can be installed in a developer, an enterprise or a
cluster profile, depending on the intended use.

GlassFish v2 is from Sun's sites under the Sun Java System AS 9.1 name. It was
released in September 2007.

The GlassFish Community 4

Open Source Licenses
The Open Source Initiative (OSI)
recognizes a diverse set of licenses.
Licenses often have a lineage from
which they inherit some of their
properties.

The ASL license is in the lineage of
BSD and the MIT license. ASL is
quite flexible in usage.

GPL, LGPL, GPLv2 and GPL+CPE
are all GNU licenses. GNU licenses
emphasize preserving the “freedom”
of the code base. The GPL licenses
are project based.

The CDDL license is a derivative
from MPL, the Mozilla Public
License. Unlike the GPL licenses,
these licenses are file-based.

A good place to learn about open
source licenses is the OSI
foundation (opensource.org).

The Java Platforms
The Java EE specification is an umbrella specification that builds on the
corresponding Java SE specification (e.g. Java EE 5 requires Java SE 5) and
includes many other JCP specs; the GlassFish community reflects this and includes
a number of subprojects that are the official reference implementation for most of
these specifications. Using separate subprojects has several benefits, including
making it easier to reuse the implementation by other groups and projects. For
example, the JAXB implementation is used in many projects, most of them not
related to Sun.

The Java standard APIs are developed in Expert Groups using the Java Community
Process and many Expert Group leaders are members of the GlassFish community.
The GlassFish community implements these specs and also provides feedback
during the review process and submits requests towards future releases.

The work on Java EE 6 has started with JSR 316 which is an umbrella project
grouping together specifications such as EJB 3.1, JPA 2.0, etc... GlassFish v3 will
implement Java EE 6.

Open Source and GlassFish
One of the first widely adopted server-side Java projects was Tomcat. Tomcat was
started at Apache by a group that included Sun and the JServ developers and
became the Reference Implementation for the early versions of the Java Servlets
and Java Server Pages specifications (the RI for the latest specs is GlassFish).
Tomcat was critical to the early adoption of server-side Java, was available under
an Open Source license and contributed to the popularity of Open Source software
within enterprise organizations.

There are many different licenses (see inset: Open Source Licenses) and we will
not try to characterize them in detail in this article. Different licenses have different
properties that attract different communities: what one community perceives as a
benefit in one license may be perceived as a drawback by another; for example, the
Apache community uses ASL licenses while the GNU community uses GPL
licenses.

When GlassFish was launched, it used only the Common Development and
Distribution License (CDDL) but, for the open sourcing of Java SE and Java ME in
November 2006, Sun reevaluated the requirements of the different communities
and decided to use the GPLv2 license for Java ME and GPLv2 with the ClassPath
Exception (GPLv2+CPE) for Java SE. Using a GPL license provided more synergy
with the GNU ClassPath and Kaffe communities, and CPE enables linking against
non-GPL artifacts. At that moment, the GlassFish community added GPLv2+CPE

The GlassFish Community 5

to CDDL and became dual-licensed.
Dual license means that either license
can be used, and thus we can maintain
the benefits that CDDL provides to the
GlassFish commercial partners and add
synergies with the GNU, Java SE and
Java ME communities. In any case,
there is no binary license in the
GlassFish distribution.

GlassFish and Java EE 5
Adoption
The presence of an Open Sourced,
production quality, implementation of
Java EE 5 has accelerated the adoption
of the Java EE 5 platform by creating
demand and providing supply.

As of this writing, there have been
over 3.5 million downloads of
GlassFish and these developers and
deployers (see insert: Going to
Production) have been exposed to the
benefits of Java EE 5 and has
increased demand for its support. The
GlassFish AppServer has satisfied
some of that demand but it has also
helped other Java vendors as
GlassFish's production-quality
components can be used to complete
a Java EE 5 compliant
implementation more quickly and/or
more cost-effectively.

Vendors using GlassFish include
TmaxSoft, Oracle, BEA, JBoss, Jetty
and Geronimo. TmaxSoft is a leading
Java EE licensee in Korea and their
latest relese JEUS 6 uses JAXB,
JAX-WS, Fast Infoset, JSP, JSF and
TopLink Essentials Through its
participation in the GlassFish

The GlassFish Community 6

WS Endpoints in Java EE 5
The following code snippet shows a WS
end point:

import javax.jws.WebService;
@WebService
public class MySimpleWS {
 public String sayHello(String s) {
 return “Hello” +s;
 }
}
This can be converted into a (transactional)
Stateless Session Bean as follows:

import javax.jws.WebService;
import javax.ejb.Stateless;
@WebService
@Stateless
public class MySimpleWS {
 public String sayHello(String s) {
 return “Hello” +s;
 }
}

Resource Injection
J2EE 1.4 requires a fair amount of
template code. The following is
typical for EJB References:
Context initial = new InitialContext();
Context myEnv = (Context)initial....
Object objref = myEnv.lookup(“...”);
ConverterHome home = (ConverterHome)
PortableRemoteObject.narrow(...);
Converter currentConverter = home.create();

In Java EE 5, through convention
and resource injection, we can just
say:

@EJB Converter currencyConverter;

community, TmaxSoft had early access and ensured that a number of components
were well suited to their needs. This meant that TmaxSoft's JEUS 6 became the
first Java EE 5 certified AppServer after Sun's own AppServer.

Oracle has not yet released a full Java EE 5 AppServer but they are a main
contributor to the TopLink Essentials project in the GlassFish community and
Oracle is including this implementation in their products. Of the vendors
mentioned above, BEA uses JAXB and JAX-WS, JBoss uses JAXB and JSF, Jetty
uses JSP and Grizzly and Geronimo uses JAXB.

Overview of JavaEE 5
The main theme of Java EE 5 is Ease of Development and a main tool to
accomplish this is the use of annotations from Java SE 5 to enable programming
based on POJOs – Plain Old Java Objects. Annotations are used in many ways
including indicating properties of methods and classes (see inset: Endpoints in
Java EE 5), resource injection (see inset: Resource Injection), and as portable
descriptions of behavior (see inset: Annotations Are the Default).
The main Java EE 5 specifications are:

● JAX-WS 2.0 & JAXB 2.0
● EJB 3.0 & Java Persistence API
● JSF 1.2 & JSP 2.1
● StAX

A number of other specifications (like JAXP and Servlet) have also had smaller,
maintenance, releases. The overall effect of all these changes in the developer
experience has been very substantial.

Java EE 5 and GlassFish have had
a very symbiotic relationship: the
strength of the Java EE 5
specification has increased the
value of GlassFish and the
availability of GlassFish has
validated Java EE 5. We expect
this relationship to continue in
future versions of the Java EE
platform with an even more
effective feedback loop in the
evolution of the specifications
themselves, as the early availability
of the implementations enable the

The GlassFish Community 7

Annotations are the Default
This is a typical JAXB 2.0 generated code.

@XmlAccessorType(FIELD)
@XmlType(name=””,propOrder={“x”,”y”})
@XmlRootElement(name=”point”)
public class Point {
 protected float x, y;
 public float getX() {return x; }
 public setX(float value){ this.x = value; }
 public float getY() {return y; }
 public void setY(float value) { this.y = value;}
}

community to try the specifications earlier.

We are just starting to learn how to use annotations. For example, the JAXB 2.0
specification is structured in two parts. One part describes how to map between
XML Schema into annotations; the other describes the semantics of those
annotations. This means it is possible to change the generated code and it will still
run portably in any conformant AppServer. In particular, we take the code
described in the insert and add code that will perform side-effects on setters and
getters, and it will be portable.

GlassFish Releases
There are three versions of GlassFish at different phases of development: v1, v2
and v3. With the caveat that these are the early days of the community and we are
still creating the process, so far, the cycle for a GlassFish release is as follows:

● Concept Creation – Collecting key features, rough time-frame, prototyping
● Active Development – Implementation leading to usable Milestones and a final

release.
● Maintenance – Bug fixing of final releases, creating Update Releases.

GlassFish v1 is in maintenance mode, GlassFish v2 was very recently released and
thus has entered a maintenance mode. GlassFish v3 is currently moving from a
concept creation phase to active development. It will most likely be released in
phases given it's modular approach.

GlassFish v1
GlassFish v1 is in maintenance mode. The final v1 release was on May 2006, right
before JavaOne 2006 and was followed by a bug-fixing v1 UR1 in October 2006
and a second, smaller, v1 UR1p1 release in December 2006. There are no more
maintenance releases scheduled at this time, as the development has moved to v2.

A distinguished release of GlassFish v1 was named as the official Java EE 5 RI.

GlassFish v1 is also distributed by Sun under the name Sun Java System AS 9.0 PE
and it is included in a number of downloads distributed by Sun, including the Java
EE SDK, the Java Application Platform SDK and the NetBeans 5.5 Tools Bundle.
The only difference between GlassFish v1 and SJS AS 9.0 PE is the installer. Sun
provides different levels of commercial support for final versions of GlassFish v1
(and SJS AS 9.0 PE), and the community provides best-effort, but good, support.

The GlassFish Community 8

GlassFish v2
GlassFish v2 was released in September 2007. The main and most important
feature of this release is clustering (grouping, load-balancing, data replication).

GlassFish v2 includes all the enterprise-quality features from the SJS AS 8.2
SE/EE releases and will be tested against all the products in the Java Enterprise
System set of middleware offerings. GlassFish v2 supports the concept of profiles
and the same executable can be configured in a developer, enterprise or cluster
profile. The enterprise profile can also be configured to use HADB (High
Availability Data Base) for very high (99.999%) availability.

GlassFish v2 is also distributed by Sun under the Sun Java System AS 9.1 label and
included in a number of bundles (such as Java ES 5.1). Community and
Commercial support are provided.

GlassFish v3
GlassFish v3 was presented at JavaOne 2007 and drew quite a bit of interest. Its
architecture is modular by default, its kernel is extremely small (under 100Kb
which makes it suitable for desktop and even mobile use), and its startup time is
under a second. Containers supported by the modular kernel are multiple and so far
Java Web, PHP (via Caucho's Quercus), jRuby on Rails, Phobos JavaScript are
integrated. More will follow and you are encouraged to write your own.

A preview version of GlassFish v3 is available from http://glassfish.java.net and
documentation is available from http://wiki.glassfish.java.net and
http://hk2.dev.java.net.

Active development on GlassFish v3 is starting right now. Planning is still ongoing
but the modular nature of the development will likely enable phased releases up to
a full Highly-Available Java EE 6 product.

GlassFish v2 Features
This section describes the features in GlassFish v2 as that release should be in beta
by the time of publication. There are many features and will just provide a brief
overview of each of them; more information is available online (see inset: Useful
Links).

The Web Tier is the workhorse of most Enterprise Applications and GlassFish
provides very rich Web Tier support.

The GlassFish Community 9

http://hk2.dev.java.net/
http://hk2.dev.java.net/
http://hk2.dev.java.net/
http://wiki.glassfish.java.net/
http://wiki.glassfish.java.net/
http://wiki.glassfish.java.net/
http://glassfish.java.neta/
http://glassfish.java.neta/
http://glassfish.java.neta/

Web Tier Java Specifications
GlassFish includes support for the latest JCP specs: JSP 2.1, JSF 1.2, Servlet 2.5
and JSTL 1.2.

Java Server Faces (JSF, the next-generation standards-based MVC framework) was
added to the platform in Java EE 5 and provides a component model for the Java
presentation layer. JSF can be used with JavaServer Pages (JSP) or with other
technologies like facelets. JSF 1.2 has a number of improvements over the earlier
releases, most notably the unified expression language that is now shared between
JSF and JSP. JSF 1.2 also has several improvements targeted at the request cycle,
including improved AJAX support.

The main change in JSP 2.1 has been the unified EL; Servlet 2.5 and JSTL 1.2 have
also received some changes but not as deeper.

GlassFish also has a number of substantial improvements beyond the spec changes.
The JSF implementation has had substantial improvements on the performance and
it a few key bugs have been addressed. The JSF implementation is also used by
JBoss and a few other groups. The Servlet container still has its origins in Tomcat
but it is now maintained separately for stability and performance.

Another noteworthy change in GlassFish is Jasper, the JSP compiler, which can
now take advantage of the compiler APIs (JSR-199) in Java SE 6 to avoid file IO
and compile much faster (informally 10x faster). Jasper can also be configured to
use the Eclipse JDT compiler, although it is not as fast as when using JSR-199. The
JSF implementation has also been improved substantially although we do not have
benchmark results handy at the moment.

GlassFish recently also started using the high quality JSF components from Project
Woodstock, which should be of interest to many developers on their own right. The
components have been open sourced at http://woodstock.dev.java.net

Performance Improvements
There are many areas where the performance of GlassFish v2 has improved. A
partial list includes JSF, JSP and Grizzly in the web tier, JAXB and JAX-WS in
Web Services, CORBA and EJB.

The net result of all these efforts are simply a world record in SPECjAppServer
2004 numbers. In July 2007, Sun announced a the #1 result on a T2000 machine
with 883.66 JOPS@Standard. This is 60% faster than GlassFish V1/SJSAS 9.0,
10% faster than BEA WebLogic and 30% faster than IBM WebSphere 6.1!
Another benchmark result (813.73 JOPS@Standard using the PostgreSQL
database) shows a 3x price/perf ration versus an Oracle on HP score.

The GlassFish Community 10

http://woodstock.dev.java.net/
http://woodstock.dev.java.net/
http://woodstock.dev.java.net/

Clearly you no longer have to choose between Open Source and Enterprise
Features: you can have both.

Disclaimers: SPEC and the benchmark name SPECjAppServer 2004 are registered
trademarks of the Standard Performance Evaluation Corporation. Sun Fire T2000
(1 chips, 8 cores) 1.4ghz 883.66 SPECjAppServer2004 JOPS@Standard.
Competitive benchmark results stated above reflect results published on
www.spec.org as of 07/10/06. For the latest SPECjAppServer 2004 benchmark
results, visit http://www.spec.org/.

A separate effort has been made to improve start-up performance. The startup and
shutdown architecture has been simplified substantially and all start-up
dependencies have been analyzed to minimized unneeded service initializations.
The result is substantial reductions of start-up and shutdown times of both simple
instances or entire clusters.

Compatibility With Popular Frameworks
One of the core strengths of the Java community over the years has been its
diversity and this diversity is particularly visible in the Web Tier in the form of
many frameworks. These frameworks improve substantially the productivity of the
developers and one of the explicit goals in the GlassFish Community has been to
ensure that these frameworks work well, out of the box, with the different
GlassFish releases. A similar approach has been taken with popular applications.

The list of frameworks is large and always growing; a small subset includes
AppFuse, DWR, Facelets, IBATIS, JBoss Seam, Shale, Spring, Struts, Tapestry,
WebWork, Wicket... etc.

AJAX Support
The GlassFish Community is pursuing a number of projects in the area of AJAX.
In most of these cases, the projects are not GlassFish-specific, a few may depend
on extensions specific to GlassFish.

jMaki (ajax.dev.java.net) is a framework that provides a lightweight model for
creating JavaScript centric AJAX-enabled web applications using Java, PHP, and
Phobos. The model is based on JavaScript, HTML and CSS and can be modified
easily. jMaki works with a number of AJAX widget libraries, including Dojo,
Yahoo, Scriptaculous, Google and Spry and it is very easy to add new ones. jMaki
has shallow dependencies on the server model and it is easy to adopt and
incorporate.

The GlassFish Community 11

http://www.spec.org/

Phobos (phobos.dev.java.net) is a lightweight, scripting-friendly, web application
environment running on the Java platform, aimed at addressing emerging developer
requirements. The initial focus of Phobos is on the use of JavaScript but the design
supports the use of other dynamic languages as well. Phobos is a more ambitious
project than jMaki and it is at an earlier stage of development but it is showing
interesting synergies. Using JavaScript on the server and the client side simplifies
transfering content through JSON as well as reusing some code. The Java scripting
engine Rhino is also very solid and extensions such as E4X and bytecode
compilation are also available.

Phobos Architecture
GlassFish also have several JSF-specific projects related to AJAX, including
Woodstock, a collection of JSF components that include AJAX components, and
Dynamic Faces which explores high-quality integration of AJAX into JSF. AJAX
is also supported through projects like DWR and AJAX4JSF.

The GlassFish Community 12

Grizzly
The lower layers of the Web Tier in GlassFish are implemented through the
Grizzly Framework (grizzly.dev.java.net). The framework is written in Java taking
advantage of the NIO APIs (scalable network and file I/O) to provide scalability
and is also highly customizable, and fairly general. The role of the Grizzly HTTP
connector is similar to that of the Java-based Coyote connector used in Tomcat and
that of the C-based Apache Portable Runtime (APR). Informal initial tests have
shown very good scalability.

Grizzly has generated a fair amount of interest because it makes it much easier to
take advantage of NIO; for example, both AsyncWeb and Jetty have prototyped
integrations with it. Grizzly is in the process of being generalized further to provide
additional functionalities and better address the needs of other groups, inside and
outside the GlassFish community.

Grizzly can be used separately from GlassFish, and that is how it is for instance
used in the NetBeans plugins for Phobos and Ruby. Grizzly's flexibility can be
used to provide efficient support for “long-lasting HTTP connections”, also known
as Comet, which can be used in applications like Chat, online calendaring or
document sharing, and continuously updated content.

Alternatives in the Presentation Layer
A common theme in the GlassFish community is to embrace diversity. There are
many reasons for this, from “competition fosters quality” to “one size does not fit
all” to “innovation happens everywhere”. This applies specially to the presentation
layer where GlassFish enables the typical frameworks based on the Java platform
as well as several newer alternatives. In some cases these alternatives layer directly
on the GlassFish AppServer; in some, they live alongside it.

As indicated, server-side JavaScript is supported via the Phobos project. In this
case, the JavaScript server-side code is executed on GlassFish using the Rhino
interpreter.

Ruby-based applications, most notably Rails, can be executed in two different
approaches. In one, Rails executes on jRuby, on top of the Java Platform. In the
other Rails executes on the native Ruby interpreter, which communicates with
GlassFish via the CGI interface. Rails on GlassFish is a particularly attractive
arrangement and is being explored aggressively, so stay tuned for future
developments.

PHP can also be used with GlassFish and the Quercus PHP 5 implementation
developed by Caucho in Java. The Caucho and GlassFish communities are working
together to make Quercus work on GlassFish.

The GlassFish Community 13

Web Services – Metro
The Web Services stack in GlassFish is called Metro. GlassFish v1 delivered a big
improvement in Ease of Development through the new JAX-WS 2.0 API (jax-
ws.dev.java.net). GlassFish v2 refines that slightly into JAX-WS 2.1 but the major
change is in the implementation which is the result of several years of evolution
and several redesigns. The Metro implementation is very sophisticated, fully
featured and has high performance as shown in our benchmarks with 30%-100%
performance improvement over the AXIS 2 stack (see image below) we believe it
is industry-leading technology. JAX-WS 2.0 is also available in Sun's Java SE 6 RI
and it can be upgraded to JAX-WS 2.1.

SJS AS 8.2 had an implementation of JAX-RPC 1.1. The initial implementation of
JAX-WS 2.0, used in GlassFish v1, was loosely based on that but it has gone
through two sets of changes since then two address two major challenges. The first
challenge is driven by the new specification: unlike JAX-RPC 1.1, JAX-WS 2.0
delegates all data binding decisions to JAXB 2.0 and also carefully enables non-
HTTP protocols. On top of this, Sun recognized a while ago the performance cost
of XML textual encodings and has been participating in different standard bodies
involved in efficient XML encodings (see inset: Fast Infoset).
The result was a rearchitecture of the JAX-WS implementation that clearly
separated Transport, Encoding, and Data Binding. This new Metro architecture has
been integrated into GlassFish v2 and supports:

● Multiple Transports – HTTP, JMS and TCP/IP have been implemented and
SMTP has been designed.

● Multiple Encodings – Textual XML, MTOM, and Fast Infoset are
supported

● Data Binding – Data Binding is handled by JAXB and the handover is done
very carefully to avoid copying data around.

The architecture is designed to support multiple, stackable, processing entities,
each implementing one of the WS-* specifications, without incurring data copies.
The structure is as shown below.

The GlassFish Community 14

Performance is a moving target and the JAX-WS 2.0 implementation doubles the
performance of the (once highly performant and competitive) older JAX-RPC 1.1
stack. The performance results of recent Metro (JAX-WS 2.1) stack compared to
Axis 2 show the intent of the GlassFish team to provide the best stack in the
industry.

Throughput is not the only important performance metric; in some contexts
scalability is even more important and the Business Integration group wanted to be
able to process thousands of transactions, some of them fairly long-lived. The
implementation does this through an execution model where tasks share a pool of
execution threads so very few threads are needed to efficiently execute a very large
number of transactions.

WSIT and Project Tango
One of the appeals of Web Services is as an interoperability vehicle between the
Java and the Microsoft platforms. Project Tango is the initiative within the
GlassFish Community that is delivering that interoperability, and WSIT (Web
Services Interoperability Technologies) is the formal name (wsit.dev.java.net). This
is a subset of Metro (metro.dev.java.net).

A detailed description of the Project Tango feature in Metro is available in this
complete overview article: http://wsit.dev.java.net/docs/tango-overview.pdf

WSIT takes advantage of the new WS architecture in GlassFish v2 and the
different WS-* standards are processed by elements in the WS pipeline. WSIT

The GlassFish Community 15

http://wsit.dev.java.net/docs/tango-overview.pdf
http://wsit.dev.java.net/docs/tango-overview.pdf
http://wsit.dev.java.net/docs/tango-overview.pdf

works transparently; the developers can use the standard JAX-WS development
model and declaratively add WS-* attributes using NetBeans (a NB's plugin is
included). The standards are to ensure interoperability with other vendors, most
notably Microsoft. The interoperability has been tested in a number of WS
Plugfests.

The following standards are
currently supported:

● Boostrapping: WS-
MetadataExchange, WS-
MetadataExchange WSDL,
WS-Transfer

● Reliable Messaging: WS-
ReliableMessaging, WS-
ReliableMessaging Policy

● Atomic Transactions: WS-
Coordination and WS-
Atomic Transaction

● Security: WS-Security, WS-
SecurityPolicy, WS-Trust,
WS-SecureConversation

● Policy: WS-Policy, WS-
PolicyAttachment

XML Processing
GlassFish includes support for the
JAXP and the StAX APIs for XML
processing.

The Streaming API for XML
(StAX) is a new XML parsing API
that was lead by BEA and it is a
new addition to the Java Platform; it is included in the Java EE 5 and Java SE 6
platforms. StAX can be used as an alternative to SAX and DOM and has different
performance and API characteristics. DOM is an in-memory, document-centered
API. The result of parsing a document is a collection of objects than can then be
navigated in any order, but this flexibility is has substantial performance
implications both in memory consumption and in parsing performance. SAX is an
event-driven API where callbacks can be invoked as new elements in the XML
document are parsed. SAX has better performance characteristics than DOM but it

The GlassFish Community 16

Fast Infoset
XML documents can be quite verbose
which hinders their applicability in some
areas, not just because of size but also due
to transmission cost. An encoding like
Gzip reduces size but it does so at the
expense of encoding time, and the Fast
Infoset ANSI/ISO standard provides a
better overall trade-off.

As of this writing there are 4 different
commercial implementations of Fast
Infoset but other standards may also gain
traction (for instance the W3C EXI
Working Group is also looking into this
area), so the GlassFish Web Services
stack is designed to support multiple
encodings. It currently supports the
MTOM and Fast Infoset encodings – in
addition to textual encodings – but it will
also support other standards as they
appear.

Fast Infoset can be used with WSIT. The
Windows Communication Foundation
(WCF) also provides encoding isolation
and some vendors exploit it for FI support

leads to an inversion of control where state must be updated in response to events.

A pull parser has the performance characteristics of SAX but the main code
remains in control as it pulls the events when / if it needs them. Recent GlassFish
development include working with the Woodstox community (a highly optimized
StAX implementation from Codehaus.org).

The latest JAXP specification is JAXP 1.4. JAXP 1.4 is a maintenance release from
JAXP 1.3; JAXP 1.4 includes a number of improvements and cleanups but its
major change is that it incorporates StAX (by reference). JAXP 1.4 is included in
Java SE 6 while J2SE 5.0 only includes JAXP 1.3. GlassFish can be used with
J2SE 5 or Java SE 6.

The JAXP 1.4 implementation delivers both JAXP 1.4 and StAX, but the StAX
implementation is also available separately. All implementations are done within
the GlassFish community and are delivered through the different release vehicles.

XML Data Binding
XML Data Binding in Java EE is done through the JAXB API; the version required
by Java EE 5 is JAXB 2.0 (jaxb.dev.java.net) which, like in the case of JAX-WS,
provides a substantial improvement over the corresponding J2EE 1.4 specification.
This improvement has been recognized by the Java community and we are seeing a
very fast switch to the new specification.

The JAXB 2.0 implementation is very high quality, fast, and fully featured. The
JAXB developers have also been very receptive towards other communities and the
result has been that many groups are using the JAXB implementation, including
JBoss, Apache Axis, Apache XFire, TmaxSoft, ServiceMix, and ActiveSOAP.

Newer than Java EE 5
The Java EE 5 specification requires JAXB 2.0 and JAX-WS 2.0 and those are the
specifications implemented by GlassFish v1 and Java SE 6. Experience with these
implementations in multiple use cases, including Web Services Interoperability
with Microsoft's Windows Communication Framework, has lead to compatible
refinements to these specifications in the form of JAXB 2.1 and JAX-WS 2.1.x.
These are the specifications implemented by GlassFish v2.

The GlassFish Community 17

GlassFish Integration Technologies

TopLink Essentials and JPA
One of the big functional improvements in the Java EE 5 specification is the
addition of the Java Persistence API (JPA) and the new version of the Enterprise
JavaBeans Specification, EJB 3.0. These APIs evolve from the earlier EJB 2.1 but
take advantage of new Java language features like Java annotations and incorporate
the experiences from communities like Hibernate, Oracle TopLink and JDO.

The two APIs can be used separately. JPA provides a simple programming model
for entity persistence and it is available separately of Java EE 5 and can be used
with J2EE 1.4 and even Java SE; it also includes an API for plugging different
persistence providers. The rest of the EJB specification has gone through extensive
cleanup and simplification and uses JPA. Both specifications have been very well
received and are gaining wide adoption.

TopLink Essentials (TLE) is the JPA implementation in the GlassFish Community.
It was started with a big contribution from Oracle Corporation, building on their
long experience with the Top Link products, and since then it has been a joint
project with Sun. The initial implementation of TLE like GlassFish v1, was driven
by spec compliance, but TLE is intended to be a fully featured implementation and
Oracle's plan is to continuously enhance its features drawing on the capabilities in
TopLink and contributions from the wider community. TopLink Essentials is used
in a number of Oracle commercial products, including their AppServer, in Sun's
distributions of GlassFish and in NetBeans, and in several other containers
including Apache Tomcat, TmaxSoft's JEUS, Spring 2.0 and EasyBeans.

The pluggability feature also means that it is quite easy to take other JPA
implementations and plug them into the GlassFish AppServer. This has been
successfully done for Apache OpenJPA and Hibernate and is very popular.

CORBA
GlassFish includes a fully featured CORBA implementation. This implementation
has been improved consistently for a number of years, for instance in GlassFish v2
it now generates stubs and skeletons dynamically and it is exploiting the NIO
framework. GlassFish v2 will also include a number of key performance
improvements.

The GlassFish Community 18

OpenMQ Messaging
GlassFish includes a production-quality Message Queue implementation
(mq.dev.java.net) that provides:

● Message buffering between enterprise system components
● Scalable distribution of message servers (broker clustering)
● Integrated SOAP / HTTP messaging
● Java and C Client API
● Scalable JCA 1.5 compliant Resource Adapter
● Enterprise Administration Features
● Extensive JMX support

GlassFish also includes the Generic Resource Adaptor for JMS which can be used
with a number of different Messaging Solutions, including: Tibco, WebSphere MQ
6, Active MQ and JBoss Messaging.

Java Business Integration
GlassFish v2 also includes support for the Java Business Integration (JBI) API.
This JCP specification (JSR-208) defines the core of a service oriented integration
bus and component architecture for integration. JBI standardizes the common
message routing architecture, plug-in interfaces for service engines and bindings,
and a mechanism to combine multiple services into a single executable and
auditable unit of work.

The implementation included in GlassFish v2 is that from Project OpenESB and

The GlassFish Community 19

this implementation is used in other enterprise-level products at Sun. OpenESB
integrates into GlassFish through the JavaEE Service Engine, and this same
interface can be used to use other implementations like ServiceMix. There is also
first-class tooling provided by the Enterprise Pack of NetBeans (Service Assembly
editor, graphical WSDL and XSLT editors, and an Intelligent Event Processor.)

Clustering and State Replication
GlassFish v2 includes clustering support with dynamic clustering and memory
replication. Dynamic clustering is provided through Project Shoal
(shoal.dev.java.net) a generic framework that takes advantage of JXTA to enable
an application to dynamically become a member of a predefined cluster, and as
such, is subscribed to cluster events, such as:

● Member join, planned shutdown, failures
● Recovery member selection
● Automated delegated recovery initiation

GlassFish v2 also provides In-Memory Replication for a light-weight, low-cost
solution for HTTP Session persistence and Stateful (EJB) Session Bean
persistence. This is sufficient for most applications but, for those requiring
99.999% availability, it is still possible to use the High Availability Data Base
(HADB) persistence solution.

The GlassFish Community 20

Tools
GlassFish has been collaborating with the NetBeans community through the
development and implementation
of the Java EE 5 specification and
NetBeans was the first IDE to
support GlassFish. Since the
launch, IntelliJ, JBuilder and
MyEclipse have also added
support for GlassFish. More
recently a plugin for Eclipse 3.3
(Europa) was also released.

In a different angle, the GlassFish
community includes a number of
tools and some of them have
become quite popular. on their
own right.

One tool worth mentioning here is Hudson, a Continuous Integration tool that is
being used to perform builds, execute tests, and more. Hudson is simple to setup,
supports multiple slave machines and has a plug-in architecture that can be used to
extend its functionality.

Administration
One of the strengths of GlassFish v2 is its administration. It includes a fully
featured task-driven GUI Administration, as well as a command-line interface with
a complete TCL interpreter and such niceties as a do what I mean mechanism for
correcting typos. GlassFish also includes JMX-based management, as well as
management for Clusters and Load Balancing.

The GlassFish Community 21

Installation Experience
As mentioned earlier, GlassFish v2 has a single Installer that can be installed in any
of 3 different user profiles: developer, cluster or enterprise. The install process
using the bits from http://glassfish.java.net is an easy two-step command-line
process: install, then configure. Note that it is possible to upgrade from a developer
profile to a cluster profile.

The bundle itself is substantially smaller (around 55 MB) than in the past thanks to
its use of the Pack200 compression technology (also used in the Java SE 6
installation bundle).

In its Sun Java System Application Server incarnation, the installer is a little more
sophisticated and graphical.

On Ubuntu, the installation is, as expected, available through apt-get.
Sun Java System Application Server 9.1 is also available and supported as part of
Java Enterprise System 5 Update 1.

The GlassFish Community 22

http://glassfish.java.net/

Update Center
Update Center to deliver GlassFish add-on components, updates and to provide a
mechanism to enable community contributions. Various different add-on
components are delivered through Update Center today.

The GlassFish Update Center is an open source project hosted on
http://updatecenter.dev.java.net. The initial release with GlassFish V2 is focusing
on providing simple download and installation experience of additional
applications for GlassFish.

The Update Center functionality in GlassFish is implemented across two tiers. On
the server side, we have Update Center modules and corresponding catalog XML
file. The client side is part of GlassFish V2 installation. When started, Update
Center client (located in the /updatecenter directory of the GlassFish
distribution) connects to a predefined Update Center server URL. It then
downloads available catalog file, compares it to local installed component registry
and uses catalog information to show components available for installation or
update. Afterwards, based on user's selection, components are downloaded and
installed.

The GlassFish Community 23

http://updatecenter.dev.java.net/
http://updatecenter.dev.java.net/
http://updatecenter.dev.java.net/

This mechanism can be used for deploying new GlassFish features, framework
libraries, and even entire web applications. You can create your own update center
add-on module, package it, test it and made it available by simply adding additional
Update Center definitions to the client software.

GlassFish in Production
A common property of Open Source projects is an accelerated adoption cycle as
users can decide when to use the technology based on their assessment of the
readiness of the technology and their own feature/risk status. In the case of
GlassFish we are seeing this accelerated adoption on GlassFish v1, and even on
GlassFish v2. Deployment stories are just the last stage of feedback loop that is
critical to the success of GlassFish, and we are collecting them at
http://blogs.sun.com/stories.

An adoption example is Peerflix (peerflix.com), the media-sharing community,
which recently re-architected their infrastructure and switched from a Microsoft
infrastructure to GlassFish v1. The newer site uses JSF with Facelets and Apache
Shale for the presentation layer and Kodo JDO for persistence on an MySQL
database, all running on Solaris 10. Initial experience with the site has been very
positive. Another great example is the high-volume (Australia's third largest
commercial site in Australia) wotif.com website choosing GlassFish over JBoss.

Developing GlassFish
GlassFish is developed in a transparent manner with community participation and
cooperating with other communities. The community and the development process
have had a core impact on the result and have created a product that, when
compared with one created through our earlier, traditional, development process, is
better suited to the needs of the customers, has higher quality through a faster and
more accurate feedback loop, and goes through a faster and more agile
development cycle.

Some of the impact has been unexpected; for instance, the use of external
communication vehicles (web sites, blogs, mailing lists, etc) enables the use of
tools like external search engines, blog readers and mailing list archives, and
leverages on the activities of the users in the Web. The result is that information
flows better across the heterogeneous GlassFish community than across a
homogeneous group within a single company even when the group is distributed
geographically and across diverse time zones company.

The GlassFish Community 24

Future Directions
GlassFish is a work in progress. We expect the community and the product to
continue to evolve. The community is formalizing its governance (the interim
governance board should be announced by the time you read this) and will continue
to expand. We also expect the fabric of the community to continue to strengthen in
multiple ways such as through GlassFish Days (like the one before JavaOne 2007)
and we want to start some GlassFish Users Groups. Note that if the Sun TechDays
conference (http://developers.sun.com/events/techdays/) is coming to a city near
you, chances are there will be a GlassFish Day as well.

Now that the community has delivered high-quality version 2 features, the short-
term goal is to increase adoption and deployments. GlassFish projects such as
Jersey and Sailfin (see paragraphs below) are important incremental additions. We
also want to see more applications and frameworks working with GlassFish, and
increase the relationships with other groups and communities.

The medium term is v3, a highly modular container code-named HK2 that will start
up very quickly and will use few resources, only activating the services needed to
execute the application it is managing. Such a container would be suitable in many
scenarios, from very light-weight uses to high-availability ones. Early builds of
HK2 are available at http://hk2.dev.java.net.

Jersey – RESTful Web Services
JAX-RS is a new technology being
developed within the JCP (JSR
311) to define a POJO-based
programming model for RESTful
Web Services. Resources are
simple annotated POJOs and HTTP
verbs are mapped to java methods
(see “JAX-RS annotations and
POJOs” inset). Consumer and
producer annotations further
simplify the manipulation of
MIME types.

The specification work is going on
at http://jsr311.dev.java.net/ (early
drafts available there). JAX-RS is
listed as a potential component of
the upcoming Java EE 6

The GlassFish Community 25

JAX-RS annotations and POJOs
This is a typical JAX-RS resource using a
POJO:
@UriTemplate("/helloworld")
public class HelloWorldResource {
 @HttpMethod("GET")
 @ProduceMime("text/plain")
 public String getMessage() {
 return "Hello World";
 }
}
Once deployed, the resource will be
available using the "/helloworld" URI
path.

http://jsr311.dev.java.net/
http://hk2.dev.java.net/

specification (JSR 316).

Jersey (http://jersey.dev.java.net) is the reference implementation for JSR 311 and
is closely following the evolution of the specification. The Jersey runtime can be
deployed in a variety of environments: GlassFish servlet container, Metro JAX-WS
endpoint, Grizzly, Java 6 (using its lightweight web server), Tomcat, etc...

Jersey is really a set of libraries and the installation in GlassFish can be trivial
using the Update Center. NetBeans 6.0 is set to support the creation of resources
from POJOs as well as the creation of test AJAX-based clients for JAX-RS
resources..

Sailfin – SIP Servlets technology for GlassFish
Project SailFin (http://sailfin.dev.java.net) is based on robust and scalable SIP
Servlets Technology contributed by Ericsson and the GlassFish v2 application
server.

SIP (Session Initiation Protocol) and SIP Servlets are behind many popular services
such as Voice-over-IP (VoIP) phone services, instant messaging, presence and
buddy list management, and web conferencing. SIP Servlets are expected to play
an even bigger part in building the next generation of Telecommunications
services.

Combined with Java EE, SIP Servlets can be used to add rich media interactions to
Enterprise applications. SIP Servlet 1.1 (JSR 289) updates the SIP Servlets API and
defines a standard application programming model to mix SIP Servlets and Java
EE components. Leveraging Java EE services like web services, persistence,
security and transactions, would enable faster development of smarter
communications-enabled applications. Project Sailfin's objective is to implement
JSR 289 in its first release.

The daily and milestone builds available from the SailFin website
(http://sailfin.dev.java.net) are self-contained and install just like a GlassFish
application server. The web site also provides sample documented applications.

The first release of SailFin is scheduled towards the middle of 2008.

The GlassFish Community 26

http://sailfin.dev.java.net/
http://sailfin.dev.java.net/
http://jersey.dev.java.net/

Getting Started
A good place where to track the activities of the GlassFish community is
TheAquarium (blogs.sun.com/theaquarium). This group blog provides daily
spotlights of the most important activity in the community. A related blog is
Stories (blogs.sun.com/stories) a collection of GlassFish adoption stories related.

The home page for the GlassFish Community is at java.net (glassfish.java.net);
documentation, mailing lists, forums, Wikis are all available there. All GlassFish
builds are also available there.

GlassFish builds come in different forms: Nightly and Weekly builds are regular
builds from the sources; Milestone builds go through a stabilization cycle and
usually include new features – the specific details are described in the associated
Highlight notes; Final builds are the most stable and are the ones we encourage for
deployment. Sun provides support for these final builds.

Stay in Touch
We hope this article has succeeded
in sketching the benefits of the
GlassFish community and
Application Server. We hope you
will give it a try and find it useful...
and we are always very interested in
any feedback you may have. See
you at: http://glassfish.java.net/ and
http://blogs.sun.com/theaquarium.

The GlassFish Community 27

About the Authors
Eduardo Pelegri-Llopart is
a Distinguished Engineer at
Sun Microsystems and the
overall lead for the

GlassFish Community.

Eduardo has worked in a number of Open
Source projects and has participated in
the Java Community since 1995. He
resides in the San Francisco Bay Area.

Yutaka Yoshida is a GlassFish engineer.

Alexis Moussine-Pouchkine is a
GlassFish evangelist based in Paris,
France.

http://blogs.sun.com/theaquarium
http://glassfish.java.net/

Table of Contents
What is GlassFish ..2

Java Platforms and Application Servers ..2
The GlassFish AppServer...4

The Java Platforms...5
Open Source and GlassFish..5
GlassFish and Java EE 5 Adoption...6

Overview of JavaEE 5..7
GlassFish Releases.. 8

GlassFish v1... 8
GlassFish v2... 9
GlassFish v3... 9

GlassFish v2 Features.. 9
Web Tier Java Specifications... 10
Performance Improvements..10
Compatibility With Popular Frameworks...11
AJAX Support.. 11
Grizzly.. 13
Alternatives in the Presentation Layer..13

Web Services – Metro... 14
WSIT and Project Tango.. 15
XML Processing... 16
XML Data Binding...17
Newer than Java EE 5...17

GlassFish Integration Technologies.. 18
TopLink Essentials and JPA...18
CORBA.. 18
OpenMQ Messaging...19
Java Business Integration... 19

Clustering and State Replication... 20
Tools..21
Administration...21

Installation Experience... 22
Update Center... 23

GlassFish in Production...24
Developing GlassFish.. 24
Future Directions..25

Jersey – RESTful Web Services..25
Sailfin – SIP Servlets technology for GlassFish... 26

The GlassFish Community 28

Getting Started... 27
Stay in Touch... 27

The GlassFish Community 29

	What is GlassFish
	Java Platforms and Application Servers
	The GlassFish AppServer

	The Java Platforms
	Open Source and GlassFish
	GlassFish and Java EE 5 Adoption

	Overview of JavaEE 5
	GlassFish Releases
	GlassFish v1
	GlassFish v2
	GlassFish v3

	GlassFish v2 Features
	Web Tier Java Specifications
	Performance Improvements
	Compatibility With Popular Frameworks
	AJAX Support
	Grizzly
	Alternatives in the Presentation Layer
	Web Services – Metro
	WSIT and Project Tango
	XML Processing
	XML Data Binding
	Newer than Java EE 5

	GlassFish Integration Technologies
	TopLink Essentials and JPA
	CORBA
	OpenMQ Messaging
	Java Business Integration

	Clustering and State Replication
	Tools
	Administration
	Installation Experience
	Update Center

	GlassFish in Production

	Developing GlassFish
	Future Directions
	Jersey – RESTful Web Services
	Sailfin – SIP Servlets technology for GlassFish

	Getting Started
	Stay in Touch

