
Open Message QueueOpen Message Queue

Dave Whitla
Technical Architect

Wotif.com

mq.dev.java.net

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

• As applications grow they need to evolve

• The Monolith

• Absence of Discrete Components

• Performance Issues

• Central Bottleneck

• Scalability Problems

Application EvolutionApplication Evolution

• An “event-driven” architecture

• A shared, centralised event notifcation service

• Reduces unnecessary “polling” communication

• Reduces instance, API, performance and availability coupling

• Components are coupled only to the messaging domain

Application EvolutionApplication Evolution

Message Oriented Middleware

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

• Originally developed to allow Java access to existing systems

• Now widely adopted by existing MOM vendors

Core concepts:

• Provision of routing and delivery services

• Support for point-to-point and publish-subscribe patterns

• Synchronous and asynchronous message receipt

• Support for reliability assurance

• Built-in support for common existing message formats

The Java Message ServiceThe Java Message Service

The JMS ProviderThe JMS Provider

JMS Providers must “provide” the following:

•Client libraries that implement the JMS interfaces

•Functionality for routing and delivery of messages

•Administrative tools for management, monitoring and tuning

•Lowest common denominator of MOM features

•Providers typically cannot communicate directly with each
other

Messaging Objects & DomainsMessaging Objects & Domains

JMS Messaging Objects

•Connection

•Session

•Producer / Consumer

•Destination

•Message

JMS Messaging Domains

•Point-to-Point (Queues)

•Publish-Subscribe (Topics)

Messaging Objects & DomainsMessaging Objects & Domains

JMS Messaging Objects

•Connection

•Session

•Producer / Consumer

•Destination

•Message

JMS Messaging Domains

•Point-to-Point (Queues)

•Publish-Subscribe (Topics)

Senders produce messages to

Queues from which

Receivers consume

Point-to-point MessagingPoint-to-point Messaging

Senders produce messages to

Queues from which

Receivers consume

Point-to-point MessagingPoint-to-point Messaging

Point-to-point MessagingPoint-to-point Messaging

• Multiple Senders per Queue

• Multiple Receivers per Queue (OpenMQ extension)

• No send-receive timing dependency

Publishers produce messages to
Topics from which
Subscribers may consume after they have subscribed

Publish-subscribe MessagingPublish-subscribe Messaging

Publish-subscribe MessagingPublish-subscribe Messaging

Publishers produce messages to
Topics from which
Subscribers may consume after they have subscribed

Publish-subscribe MessagingPublish-subscribe Messaging

• More than one producer possible per topic

• More than one subscriber possible per topic

• All subscribers receive all messages

• Send-receive timing dependency

• Durability

• Broadcast

Common & Unified DomainCommon & Unified Domain

• Messages can be consumed synchronously or asynchronously

• Consumers can flter which messages they receive

• Messages are placed in destinations in sent order

• Message consumption order cannot be guaranteed

Base Type (Unifed Domain) Point-to-Point Domain Publish-Subscribe Domain

Destination Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

Administered ObjectsAdministered Objects

• JMS scheme is extensible

• Need for vendor portability of JMS object references

• Two fundamental objects which vary in construction
requirements from one vendor to the next:

• Connections (or rather their factories)

• Destinations

Administered ObjectsAdministered Objects

Administered ObjectsAdministered Objects

Administered Objects provide clear benefts:

•Administrators can tune messaging performance globally by
reconfguring these objects. No code changes necessary.

•Administrators can control destination proliferation on the
broker.

•Developers can catch programming errors early which might
otherwise silently create an incorrect destination.

•They shield developers from vendor-specifc provider details
maintaining vendor portability without code changes.

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

• A Java Message Oriented Middleware server

• A complete JMS provider implementation

• Provides a reference implementation of the JMS APIs

• OpenMQ IS Sun Java System Message Queue

• A member of the GlassFish community

• “Stand-alone” or embedded within GlassFish

• Completely open source software with a strong community

• Project home at mq.dev.java.net

What is Open Message Queue?What is Open Message Queue?

• Complete source code

• Dual licence CDDL and GPLv2 like GlassFish

• Stable binaries and source are are available for each release

• Since version 4.0 / GlassFish V1

• Today 4.1 / GlassFish V2

• Promoted builds (unstable) of next generation 4.2

Licencing & AvailabilityLicencing & Availability

• Messaging Server

• known as a “broker”

• Client Libraries

• Java language runtime

• C language runtime

• JCA 1.5 adaptor for JEE containers

• Administration Tools

• Command-line tools

• GUI tool

• JMX API

OpenMQ ComponentsOpenMQ Components

OpenMQ is composed of 3 major elements

Broker features:

•The full JMS specifcation

•Clustering / load-balanced and failover (HA service)

•Dead Message Queue

•SOAP over HTTP, SOAP over JMS, SSLJMS and TLS transport

•Multiple Queue Receiver extension

•No-Acknowledge extension

•Message body compression and encryption

•Message store - fle or JDBC - for guaranteed delivery

OpenMQ FeaturesOpenMQ Features

Client features:

•Java and C client libraries

•JCA 1.5 resource adaptor

•Client runtime logging

•Connection event notifcation

OpenMQ FeaturesOpenMQ Features

Administration features:

•Destination consumer limits

•Destination message count limits

•Quiesce destinations and/or broker for managed hot upgrades

•JMX API - remote programmatic management and monitoring

•Pure Java GUI (uses JMX)

•Comprehensive command-line tools

OpenMQ FeaturesOpenMQ Features

New in version 4.1:

•New installer built from OpenInstaller

•HA service AND data with HA storage

•Pluggable JAAS authentication

•Improved deployment and performance in GlassFish

OpenMQ FeaturesOpenMQ Features

Scaling & RedundancyScaling & Redundancy

• Vertical Scaling

• Stateless Horizontal Scaling

• Stateless Redundancy (service failover)

• Stateful Horizontal Scaling

• Conventional Clustering (service availability)

• HA Clustering (service + data availability)

Scaling & RedundancyScaling & Redundancy

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

Producing and ConsumingProducing and Consuming

Producing a Message Consuming a Message

1 Administrator creates a ConnectionFactory administered object

2 Administrator creates a physical destination and the administered object refence to it

3 Client obtains a ConnectionFactory instance through a JNDI lookup

4 Client obtains a Destination instance through a JNDI lookup

5 Client uses the ConnectionFactory to create a Connection to the broker (sets properties)

6 Client uses the Connection to create a Session and sets properties for message reliability

7 Client uses the Sesion to create a MessageProducer Client creates a MessageConsumer

8 Client uses the Session to create a Message Client starts the Connection

9 Client uses the Session to send the Message Client receives the Message

Message ConsumptionMessage Consumption

3 factors affect how the broker delivers messages to a consumer

•Synchronous / Asynchronous

•Property Selector Filtering (eg colour = “red” or size > 10)

•Subscription Durability (Topics only)

Reliable MessagingReliable Messaging

• Message delivery occurs in two separate steps

• Messages have 3 opportunities for loss

• Reliable delivery only applies to persistent messages

• Two mechanisms for ensuring reliable delivery

• Persistent message storage

• Acknowledgements / Transactions

AcknowledgementsAcknowledgements

• Sent between client and broker

• Production

• Message received, placed in destination and persisted

• send() blocks

• Consumption

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE

• NO_ACKNOWLEDGE (OpenMQ extension)

TransactionsTransactions

• Groups production and/or consumption of one or more
messages into an atomic unit

• Applies to a single Session

• Therefore not end-to-end

• End-to-end requires distributed transactions (JTA)

• Requires a distributed transaction manager (GlassFish)

• Cover multiple XA resources using a two-phase commit

Message LifecycleMessage Lifecycle

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

AgendaAgenda

• Architectural forces

• The Java Message Service

• What is Open Message Queue?

• How do I develop with Open Message Queue?

• The Wotif.com experience

• Application evolving - messaging is at the core of our architecture

• ESB patterns rather than products

Features we were looking for:

• Active product support and development

• High performance and robustness

• JMX monitoring and administration

• High availability - migration path from HA service to HA data

• Standards support - JAAS authentication

Features we have made good use of:

• Scripting of the CLI tools for simple deployment

• Flexibility in redundancy implementation

Wotif.comWotif.com

Dive into OpenMQ now atDive into OpenMQ now at

mq.dev.java.netmq.dev.java.net

Message Consumer ExampleMessage Consumer Example
package somepackage;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.ejb.MessageDriven;
import javax.ejb.MessageDrivenContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.ejb.ActivationConfigProperty;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

@MessageDriven(
 name = "SomeMDB", mappedName = “jms/SomeTopic”,
 activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Topic"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge"),
 @ActivationConfigProperty(propertyName = "messageSelector", propertyValue = "Colour = ‘red’"),
 @ActivationConfigProperty(propertyName = "subscriptionDurability", propertyValue = "Durable")
 }
(
public class SomeMDB implements MessageListener {

 private static final Logger LOGGER = Logger.getLogger(SomeMDB.class.getName());

 @Resource
 private MessageDrivenContext ejbContext;
 @EJB
 private SomeService someService;
 private MessageHandler handler;

 @PostConstruct
 public void postConstruct() {
 handler = new MessageHandler(someService);
 }

 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
 public void onMessage(Message jmsMessage) {
 try {
 handler.handleMessage((TextMessage) jmsMessage);
 } catch (Exception e) {
 LOGGER.log(Level.SEVERE, "Message could not be processed, message has been swallowed, please resend the message", e);
 // Need to explicitly acknowledge the message, as the transaction rollback seems to stop it.
 try {
 jmsMessage.acknowledge();
 } catch (JMSException jmse) {
 // ignore
 }
 ejbContext.setRollbackOnly();
 }
 }
}

Message Consumer ExampleMessage Consumer Example

 <enterprise-beans> <message-driven> <ejb-name>RelayMDB</ejb-name> <mapped-
name>jms/InputTopic</mapped-name> <resource-ref> <res-ref-
name>jms/RemoteConnectionFactory</res-ref-name> <res-
type>javax.jms.ConnectionFactory</res-type> <mapped-
name>jms/RemoteConnectionFactory</mapped-name> <injection-target> <injection-
target-class>com.wotif.bogus.RelayMDB</injection-target-class> <injection-target-
name>jmsConnectionFactory</injection-target-name> </injection-target> </resource-ref>
 <message-destination-ref> <message-destination-ref-name>jms/OutputTopic</message-
destination-ref-name> <message-destination-type>javax.jms.Topic</message-destination-type>
 <message-destination-usage>Produces</message-destination-usage> <mapped-name>jms/
SomeTopic</mapped-name> <injection-target> <injection-target-
class>com.wotif.bogus.RelayMDB</injection-target-class> <injection-target-
name>outputTopic</injection-target-name> </injection-target> </message-destination-ref>
 </message-driven> </enterprise-beans>

Dave Whitla
Technical Architect

Wotif.com

mq.dev.java.net

