
GlassFish Server Open Source
Edition 3.1 Application
Development Guide

Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

Part No: 821–2447–12
July 2011

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110725@25097

Contents

Preface ...15

Part I Development Tasks and Tools ... 23

1 Setting Up a Development Environment .. 25
Installing and Preparing the Server for Development .. 25
High Availability Features .. 26
Development Tools ... 26

The asadmin Command .. 27
The Administration Console .. 27
The Migration Tool ... 27
The NetBeans IDE .. 27
The Eclipse IDE .. 28
Debugging Tools .. 28
Profiling Tools .. 28

Sample Applications .. 28

2 Class Loaders ..29
The Class Loader Hierarchy ... 30
Delegation .. 31
Using the Java Optional Package Mechanism .. 31
Using the Endorsed Standards Override Mechanism ... 32
Class Loader Universes ... 32
Application-Specific Class Loading .. 32
Circumventing Class Loader Isolation ... 34

Using the Common Class Loader .. 34
Sharing Libraries Across a Cluster ... 34

3

Packaging the Client JAR for One Application in Another Application 35
▼ To Package the Client JAR for One Application in Another Application 35

3 Debugging Applications ..37
Enabling Debugging ... 37

▼ To Set the Server to Automatically Start Up in Debug Mode ... 38
JPDA Options .. 38
Generating a Stack Trace for Debugging .. 39
Application Client Debugging ... 39
Open Message Queue Debugging ... 40
Enabling Verbose Mode ... 40
Class Loader Debugging ... 40
GlassFish Server Logging .. 41
Profiling Tools ... 41

The NetBeans Profiler ... 41
The HPROF Profiler .. 42
The JProbe Profiler .. 43

Part II Developing Applications and Application Components .. 45

4 Securing Applications ...47
Security Goals .. 48
GlassFish Server Specific Security Features .. 48
Container Security .. 49

Declarative Security ... 49
Programmatic Security .. 50

Roles, Principals, and Principal to Role Mapping ... 50
Realm Configuration .. 52

Supported Realms .. 52
How to Configure a Realm .. 52
How to Set a Realm for an Application or Module ... 53
Creating a Custom Realm ... 53

JACC Support .. 56
Pluggable Audit Module Support .. 56

Contents

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 20114

Configuring an Audit Module .. 56
The AuditModule Class ... 57

The server.policy File ... 58
Default Permissions ... 58
System Properties ... 59
Changing Permissions for an Application .. 59
Enabling and Disabling the Security Manager ... 61

Configuring Message Security for Web Services ... 62
Message Security Providers .. 63
Message Security Responsibilities .. 65
Application-Specific Message Protection ... 66
Understanding and Running the Sample Application .. 69

Programmatic Login ... 72
Programmatic Login Precautions .. 72
Granting Programmatic Login Permission .. 73
The ProgrammaticLogin Class .. 73

User Authentication for Single Sign-on .. 74
Adding Authentication Mechanisms to the Servlet Container .. 76

The GlassFish Server and JSR 196 .. 76
Writing a Server Authentication Module .. 77
Sample Server Authentication Module ... 78
Compiling and Installing a Server Authentication Module .. 82
Configuring a Server Authentication Module .. 82
Binding a Server Authentication Module to Your Application .. 83

5 Developing Web Services ...85
Creating Portable Web Service Artifacts .. 86
Deploying a Web Service .. 86
The Web Service URI, WSDL File, and Test Page ... 87
GlassFish Java EE Service Engine .. 88

Using the jbi.xml File .. 88

6 Using the Java Persistence API .. 91
Specifying the Database .. 92
Additional Database Properties ... 94

Contents

5

Configuring the Cache .. 94
Setting the Logging Level .. 94
Using Lazy Loading ... 94
Primary Key Generation Defaults ... 95
Automatic Schema Generation .. 95

Annotations .. 96
Generation Options ... 96

Query Hints .. 98
Changing the Persistence Provider ... 98
Restrictions and Optimizations ... 99

Oracle Database Enhancements ... 99
Extended Persistence Context .. 99
Using @OrderBy with a Shared Session Cache .. 100
Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver .. 100
Database Case Sensitivity .. 100
Sybase Finder Limitation .. 101
MySQL Database Restrictions .. 102

7 Developing Web Applications ...105
Using Servlets ... 105

Caching Servlet Results ... 106
About the Servlet Engine ... 109

Using JavaServer Pages ... 110
JSP Tag Libraries and Standard Portable Tags ... 110
JSP Caching ... 111
Options for Compiling JSP Files .. 114

Creating and Managing Sessions ... 114
Configuring Sessions ... 115
Session Managers ... 118

Using Comet .. 122
Introduction to Comet .. 122
Grizzly Comet .. 124
Bayeux Protocol ... 133

Advanced Web Application Features .. 135
Internationalization Issues .. 136

Contents

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 20116

Virtual Server Properties ... 137
Class Loader Delegation .. 137
Using the default-web.xml File .. 138
Configuring Logging and Monitoring in the Web Container .. 139
Configuring Idempotent URL Requests ... 139
Header Management ... 140
Configuring Valves and Catalina Listeners .. 140
Alternate Document Roots ... 140
Using a context.xml File .. 142
Enabling WebDav .. 143
Using SSI ... 144
Using CGI ... 145

8 Using Enterprise JavaBeans Technology ...149
Value Added Features ... 149

Read-Only Beans .. 150
The pass-by-reference Element ... 150
Pooling and Caching .. 151
Priority Based Scheduling of Remote Bean Invocations ... 152
Immediate Flushing ... 152

EJB Timer Service .. 153
▼ To Deploy an EJB Timer to a Cluster ... 154

Using Session Beans .. 156
About the Session Bean Containers ... 156
Stateful Session Bean Failover .. 157
Session Bean Restrictions and Optimizations .. 162

Using Read-Only Beans .. 163
Read-Only Bean Characteristics and Life Cycle ... 164
Read-Only Bean Good Practices .. 165
Refreshing Read-Only Beans .. 165
Deploying Read-Only Beans .. 166

Using Message-Driven Beans .. 167
Message-Driven Bean Configuration .. 167
Message-Driven Bean Restrictions and Optimizations .. 168

Contents

7

9 Using Container-Managed Persistence ...171
GlassFish Server Support for CMP .. 171
CMP Mapping ... 172

Mapping Capabilities .. 172
The Mapping Deployment Descriptor File ... 173
Mapping Considerations .. 174

Automatic Schema Generation for CMP ... 177
Supported Data Types for CMP ... 177
Generation Options for CMP ... 179

Schema Capture ... 182
Automatic Database Schema Capture ... 183
Using the capture-schema Utility ... 183

Configuring the CMP Resource ... 184
Performance-Related Features ... 184

Version Column Consistency Checking ... 184
Relationship Prefetching ... 185
Read-Only Beans .. 186

Default Fetch Group Flags .. 186
Configuring Queries for 1.1 Finders ... 187

About JDOQL Queries .. 187
Query Filter Expression ... 188
Query Parameters .. 189
Query Variables .. 189
JDOQL Examples ... 189

CMP Restrictions and Optimizations ... 191
Disabling ORDER BY Validation .. 191
Setting the Heap Size on DB2 ... 191
Eager Loading of Field State ... 192
Restrictions on Remote Interfaces ... 192
PostgreSQL Case Insensitivity .. 192
No Support for lock-when-loaded on Sybase ... 192
Sybase Finder Limitation .. 193
Date and Time Fields ... 193
Set RECURSIVE_TRIGGERS to false on MSSQL .. 193
MySQL Database Restrictions .. 194

Contents

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 20118

10 Developing Java Clients ...197
Introducing the Application Client Container .. 197

ACC Security .. 198
ACC Naming .. 198
Application Client Annotation .. 198
Java Web Start ... 199
Application Client JAR File ... 199

Developing Clients Using the ACC ... 199
▼ To Access an EJB Component From an Application Client ... 199
▼ To Access a JMS Resource From an Application Client .. 201

Using Java Web Start ... 202
Using the Embeddable ACC ... 212
Running an Application Client Using the appclient Script .. 213
Using the package-appclient Script ... 214
The client.policy File .. 214
Using RMI/IIOP Over SSL .. 214
Connecting to a Remote EJB Module Through a Firewall .. 216
Specifying a Splash Screen .. 216
Setting Login Retries .. 217
Using Libraries with Application Clients .. 217

Developing Clients Without the ACC .. 217
▼ To access an EJB component from a stand-alone client .. 218
▼ To access an EJB component from a server-side module .. 219
▼ To access a JMS resource from a stand-alone client .. 221

11 Developing Connectors ..223
Connector Support in the GlassFish Server ... 224

Connector Architecture for JMS and JDBC ... 225
Connector Configuration ... 225

Advanced Connector Configuration Options ... 225
Thread Associations .. 226
Security Maps ... 226
Work Security Maps .. 227
Overriding Configuration Properties .. 227
Testing a Connector Connection Pool .. 228

Contents

9

Flushing a Connector Connection Pool .. 228
Handling Invalid Connections ... 229
Setting the Shutdown Timeout ... 229
Specifying the Class Loading Policy ... 230
Using Last Agent Optimization of Transactions ... 230
Disabling Pooling for a Connection .. 231
Using Application-Scoped Connectors .. 231

Inbound Communication Support ... 231
Outbound Communication Support .. 232
Configuring a Message Driven Bean to Use a Resource Adapter .. 232

12 Developing Lifecycle Listeners ..235
Server Life Cycle Events .. 236
The LifecycleListener Interface .. 236
The LifecycleEvent Class .. 236
The Server Lifecycle Event Context ... 237
Deploying a Lifecycle Module .. 237
Considerations for Lifecycle Modules .. 238

13 Developing OSGi-enabled Java EE Applications .. 239
Overview of OSGi Application and GlassFish Server ... 239

Benefits of Using OSGi in Enterprise Java Applications ... 240
Developing OSGi Application Bundles for GlassFish Server ... 240

Developing Plain OSGi Bundles .. 241
Developing Web Application Bundles .. 244
Developing EJB Application Bundles .. 246

Deploying OSGi Bundles in GlassFish Server .. 247

Part III Using Services and APIs ... 249

14 Using the JDBC API for Database Access ... 251
Statements .. 252

Using an Initialization Statement .. 252
Setting a Statement Timeout .. 252

Contents

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201110

Statement Leak Detection and Leaked Statement Reclamation ... 253
Statement Caching ... 253
Statement Tracing .. 254

Connections ... 255
Transparent Pool Reconfiguration .. 256
Disabling Pooling ... 256
Associating Connections with Threads ... 257
Custom Connection Validation ... 258
Sharing Connections ... 259
Marking Bad Connections .. 259
Handling Invalid Connections ... 259

Connection Wrapping .. 260
Wrapping Connections ... 260
Obtaining a Physical Connection From a Wrapped Connection .. 261
Using the Connection.unwrap() Method .. 261

Allowing Non-Component Callers ... 262
Using Application-Scoped Resources ... 262
Restrictions and Optimizations ... 263

Disabling Stored Procedure Creation on Sybase .. 263

15 Using the Transaction Service ...265
Handling Transactions with Databases .. 265

Using JDBC Transaction Isolation Levels ... 266
Using Non-Transactional Connections .. 267

Handling Transactions with Enterprise Beans .. 268
Flat Transactions .. 269
Global and Local Transactions ... 269
Commit Options .. 269
Bean-Level Container-Managed Transaction Timeouts .. 270

Handling Transactions with the Java Message Service ... 270
Transactions and Non-Persistent Messages ... 270
Using the ConfigurableTransactionSupport Interface ... 270

The Transaction Manager, the Transaction Synchronization Registry, and
UserTransaction .. 271

Contents

11

16 Using the Java Naming and Directory Interface .. 273
Accessing the Naming Context .. 273

Global JNDI Names ... 274
Accessing EJB Components Using the CosNaming Naming Context 275
Accessing EJB Components in a Remote GlassFish Server ... 275
Naming Environment for Lifecycle Modules ... 276

Configuring Resources ... 276
External JNDI Resources .. 277
Custom Resources .. 277
Built-in Factories for Custom Resources .. 277
Disabling GlassFish Server V2 Vendor-Specific JNDI Names ... 279
Using Application-Scoped Resources ... 280

Using a Custom jndi.properties File .. 280
Mapping References .. 280

17 Using the Java Message Service .. 283
Using Application-Scoped JMS Resources ... 283
Load-Balanced Message Inflow ... 284
Authentication With ConnectionFactory .. 284
Delivering SOAP Messages Using the JMS API ... 285

▼ To Send SOAP Messages Using the JMS API ... 285
▼ To Receive SOAP Messages Using the JMS API ... 286

18 Using the JavaMail API ...289
Introducing JavaMail .. 289
Creating a JavaMail Session .. 290
JavaMail Session Properties .. 290
Looking Up a JavaMail Session .. 290
Sending and Reading Messages Using JavaMail .. 291

▼ To Send a Message Using JavaMail .. 291
▼ To Read a Message Using JavaMail .. 292

Using Application-Scoped JavaMail Resources ... 292

Index ... 293

Contents

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201112

Tables

TABLE 2–1 Oracle GlassFish Server Class Loaders .. 30
TABLE 4–1 Predefined System Properties .. 59
TABLE 4–2 Message Security Provider Properties ... 65
TABLE 6–1 The asadmin deploy and asadmin deploydir Generation Options 97
TABLE 6–2 The asadmin undeploy Generation Options .. 97
TABLE 7–1 The cacheAttributes ... 112
TABLE 7–2 The flushAttributes ... 114
TABLE 7–3 Object Types Supported for Java EE Web Application Session State Failover .117
TABLE 7–4 SSIServlet init-paramValues .. 145
TABLE 7–5 CGIServlet init-paramValues .. 146
TABLE 8–1 Object Types Supported for Java EE Stateful Session Bean State Failover 158
TABLE 9–1 Java Type to JDBC Type Mappings for CMP ... 177
TABLE 9–2 Mappings of JDBC Types to Database Vendor Specific Types for CMP 179
TABLE 9–3 The glassfish-ejb-jar.xmlGeneration Elements .. 180
TABLE 9–4 The asadmin deploy and asadmin deploydir Generation Options for CMP

.. 181
TABLE 9–5 The asadmin undeploy Generation Options for CMP 182
TABLE 10–1 Owned JNLP File Content .. 211
TABLE 10–2 Defaulted JNLP File Content ... 211
TABLE 10–3 Merged JNLP File Content ... 211
TABLE 15–1 Transaction Isolation Levels .. 266

13

14

Preface

This Application Development Guide describes how to create and run Java Platform, Enterprise
Edition (Java EE platform) applications that follow the open Java standards model for Java EE
components and APIs in the Oracle GlassFish Server environment. Topics include developer
tools, security, and debugging. This book is intended for use by software developers who create,
assemble, and deploy Java EE applications using Oracle servers and software.

This preface contains information about and conventions for the entire GlassFish Server Open
Source Edition (GlassFish Server) documentation set.

GlassFish Server 3.1 is developed through the GlassFish project open-source community at
http://glassfish.java.net/. The GlassFish project provides a structured process for
developing the GlassFish Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the GlassFish Server source code and to contribute to the
development of the GlassFish Server. The GlassFish project is designed to encourage
communication between Oracle engineers and the community.

The following topics are addressed here:

■ “GlassFish Server Documentation Set” on page 15
■ “Related Documentation” on page 17
■ “Typographic Conventions” on page 18
■ “Symbol Conventions” on page 19
■ “Default Paths and File Names” on page 19
■ “Documentation, Support, and Training” on page 20
■ “Searching Oracle Product Documentation” on page 20
■ “Third-Party Web Site References” on page 21

GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. For an introduction to GlassFish Server, refer to the books in the order in which
they are listed in the following table.

15

http://glassfish.java.net/

TABLE P–1 Books in the GlassFish Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK), and
database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Deployment Planning Guide Explains how to build a production deployment of GlassFish Server that
meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Security Guide Provides instructions for configuring and administering GlassFish Server
security.

Application Deployment Guide Explains how to assemble and deploy applications to the GlassFish Server
and provides information about deployment descriptors.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the GlassFish
Server. These applications follow the open Java standards model for Java EE
components and application programmer interfaces (APIs). This guide
provides information about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to develop
add-on components for GlassFish Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for GlassFish Server.

Embedded Server Guide Explains how to run applications in embedded GlassFish Server and to
develop applications in which GlassFish Server is embedded.

High Availability
Administration Guide

Explains how to configure GlassFish Server to provide higher availability and
scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of GlassFish Server.

Preface

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201116

TABLE P–1 Books in the GlassFish Server Documentation Set (Continued)
Book Title Description

Troubleshooting Guide Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using GlassFish
Server.

Reference Manual Provides reference information in man page format for GlassFish Server
administration commands, utility commands, and related concepts.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for Open
Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue Administration
Guide

Explains how to set up and manage a Message Queue messaging system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue for
programmatically configuring and monitoring Message Queue resources in
conformance with the Java Management Extensions (JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing Java
messaging applications (Java clients) that work with GlassFish Server.

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers working
with Message Queue who want to use the C language binding to the Message
Queue messaging service to send, receive, and process Message Queue
messages.

Related Documentation
The following tutorials explain how to develop Java EE applications:

■ Your First Cup: An Introduction to the Java EE Platform (http://download.oracle.com/
javaee/6/firstcup/doc/). For beginning Java EE programmers, this short tutorial
explains the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on the Enterprise
JavaBeans specification, a JAX-RS web service, and a JavaServer Faces component for the
web front end.

■ The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/). This
comprehensive tutorial explains how to use Java EE 6 platform technologies and APIs to
develop Java EE applications.

Preface

17

http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/tutorial/doc/

Javadoc tool reference documentation for packages that are provided with GlassFish Server is
available as follows.

■ The API specification for version 6 of Java EE is located at http://download.oracle.com/
javaee/6/api/.

■ The API specification for GlassFish Server 3.1, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications (http://www.oracle.com/technetwork/java/
javaee/tech/index.html) might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see the NetBeans Documentation, Training & Support page
(http://www.netbeans.org/kb/).

For information about the Java DB database for use with the GlassFish Server, see the Java DB
product page (http://www.oracle.com/technetwork/java/javadb/overview/index.html).

The Java EE Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The Java EE Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the Java EE Samples project page
(http://java.net/projects/glassfish-samples).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Preface

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201118

http://download.oracle.com/javaee/6/api/
http://download.oracle.com/javaee/6/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://java.net/projects/glassfish-samples
http://java.net/projects/glassfish-samples

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
GlassFish Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac OS operating system:

user’s-home-directory/glassfish3/glassfish

Windows, all installations:

SystemDrive:\glassfish3\glassfish

Preface

19

TABLE P–4 Default Paths and File Names (Continued)
Placeholder Description Default Value

as-install-parent Represents the parent of the base installation
directory for GlassFish Server.

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3

Windows, all installations:

SystemDrive:\glassfish3

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://www.oracle.com/technetwork/indexes/documentation/
index.html)

■ Support (http://www.oracle.com/us/support/index.html)
■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the Oracle Documentation
(http://www.oracle.com/technetwork/indexes/documentation/index.html) web site, you
can use a search engine by typing the following syntax in the search field:

search-term site:oracle.com

For example, to search for “broker,” type the following:

broker site:oracle.com

Preface

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201120

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/us/support/index.html
http://education.oracle.com/
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Preface

21

22

Development Tasks and Tools

P A R T I

23

24

Setting Up a Development Environment

This chapter gives guidelines for setting up an application development environment in the
Oracle GlassFish Server. Setting up an environment for creating, assembling, deploying, and
debugging your code involves installing the mainstream version of the GlassFish Server and
making use of development tools. In addition, sample applications are available.

The following topics are addressed here:

■ “Installing and Preparing the Server for Development” on page 25
■ “High Availability Features” on page 26
■ “Development Tools” on page 26
■ “Sample Applications” on page 28

Installing and Preparing the Server for Development
For more information about GlassFish Server installation, see the GlassFish Server Open Source
Edition 3.1 Installation Guide.

The following components are included in the full installation.

■ JDK
■ GlassFish Server core

■ Java Platform, Standard Edition (Java SE) 6
■ Java EE 6 compliant application server
■ Administration Console
■ asadmin utility
■ Other development and deployment tools
■ Open Message Queue software
■ Java DB database, based on the Derby database from Apache (http://db.apache.org/

derby/manuals)
■ Load balancer plug-ins for web servers

1C H A P T E R 1

25

http://db.apache.org/derby/manuals
http://db.apache.org/derby/manuals

The NetBeans Integrated Development Environment (IDE) bundles the GlassFish edition of
the GlassFish Server, so information about this IDE is provided as well.

After you have installed GlassFish Server, you can further optimize the server for development
in these ways:

■ Locate utility classes and libraries so they can be accessed by the proper class loaders. For
more information, see “Using the Common Class Loader” on page 34.

■ Set up debugging. For more information, see Chapter 3, “Debugging Applications.”
■ Configure the Virtual Machine for the Java platform (JVM software). For more information,

see Chapter 4, “Administering the Virtual Machine for the Java Platform,” in GlassFish
Server Open Source Edition 3.1 Administration Guide.

High Availability Features
High availability features such as load balancing and session failover are discussed in detail in
the GlassFish Server Open Source Edition 3.1 High Availability Administration Guide. This book
describes the following features in the following sections:

■ For information about HTTP session persistence, see “Distributed Sessions and Persistence”
on page 116.

■ For information about checkpointing of the stateful session bean state, see “Stateful Session
Bean Failover” on page 157.

■ For information about failover and load balancing for Java clients, see Chapter 10,
“Developing Java Clients.”

■ For information about load balancing for message-driven beans, see “Load-Balanced
Message Inflow” on page 284.

Development Tools
The following general tools are provided with the GlassFish Server:

■ “The asadmin Command” on page 27
■ “The Administration Console” on page 27

The following development tools are provided with the GlassFish Server or downloadable from
Oracle:

■ “The Migration Tool” on page 27
■ “The NetBeans IDE” on page 27

The following third-party tools might also be useful:

■ “The Eclipse IDE” on page 28

High Availability Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201126

■ “Debugging Tools” on page 28
■ “Profiling Tools” on page 28

The asadminCommand
The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The asadmin command is located in the as-install/bin directory. Type asadmin help for a list
of subcommands.

The Administration Console
The Administration Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Administration
Console, click the Help button in the Administration Console. This displays the GlassFish
Server online help.

To access the Administration Console, type http://host:4848 in your browser. The host is the
name of the machine on which the GlassFish Server is running. By default, the host is
localhost. For example:

http://localhost:4848

The Migration Tool
The Migration Tool converts and reassembles Java EE applications and modules developed on
other application servers. This tool also generates a report listing how many files are
successfully and unsuccessfully migrated, with reasons for migration failure. For more
information and to download the Migration Tool, see http://java.sun.com/j2ee/tools/
migration/index.html.

The NetBeans IDE
The NetBeans IDE allows you to create, assemble, and debug code from a single, easy-to-use
interface. The GlassFish edition of the GlassFish Server is bundled with the NetBeans 6.1 IDE.
To download the NetBeans IDE, see http://www.netbeans.org. This site also provides
documentation on how to use the NetBeans IDE with the bundled GlassFish edition of the
GlassFish Server.

You can also use the GlassFish Server with the Java Studio Enterprise software, which is built on
the NetBeans IDE. For more information, see http://developers.sun.com/jsenterprise/.

Development Tools

Chapter 1 • Setting Up a Development Environment 27

http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/j2ee/tools/migration/index.html
http://www.netbeans.org
http://developers.sun.com/jsenterprise/

The Eclipse IDE
A plug-in for the Eclipse IDE is available at https://glassfishplugins.dev.java.net/. This
site also provides documentation on how to register the GlassFish Server and use GlassFish
Server deployment descriptors.

Debugging Tools
You can use several debugging tools with the GlassFish Server. For more information, see
Chapter 3, “Debugging Applications.”

Profiling Tools
You can use several profilers with the GlassFish Server. For more information, see “Profiling
Tools” on page 41.

Sample Applications
Sample applications that you can examine and deploy to the GlassFish Server are available. If
you installed the GlassFish Server as part of installing the Java EE 6 SDK bundle from Java EE 6
Downloads (http://www.oracle.com/technetwork/java/javaee/downloads/index.html),
the samples may already be installed. You can download these samples separately from the
Code Samples (http://www.oracle.com/technetwork/java/javaee/documentation/
index.html) page if you installed the GlassFish Server without them initially.

Most GlassFish Server samples have the following directory structure:

■ The docs directory contains instructions for how to use the sample.
■ The build.xml file defines Ant targets for the sample.
■ The src/java directory under each component contains source code for the sample.
■ The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure described
here: http://java.sun.com/blueprints/code/projectconventions.html.

The samples-install-dir/bp-project/main.xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy, and undeploy
sample applications. In most sample applications, the build.xml file imports main.xml.

In addition to the Java EE 6 sample applications, samples are also available at GlassFish Samples
(https://glassfish-samples.dev.java.net/) and at as-install/glassfish/samples/.

Sample Applications

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201128

https://glassfishplugins.dev.java.net/
http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.oracle.com/technetwork/java/javaee/documentation/index.html
http://www.oracle.com/technetwork/java/javaee/documentation/index.html
http://java.sun.com/blueprints/code/projectconventions.html
https://glassfish-samples.dev.java.net/
https://glassfish-samples.dev.java.net/

Class Loaders

Understanding Oracle GlassFish Server class loaders can help you determine where to place
supporting JAR and resource files for your modules and applications. For general information
about J2SE class loaders, see Understanding Network Class Loaders (http://java.sun.com/
developer/technicalArticles/Networking/classloaders/).

In a JVM implementation, the class loaders dynamically load a specific Java class file needed for
resolving a dependency. For example, when an instance of java.util.Enumeration needs to be
created, one of the class loaders loads the relevant class into the environment.

The following topics are addressed here:

■ “The Class Loader Hierarchy” on page 30
■ “Delegation” on page 31
■ “Using the Java Optional Package Mechanism” on page 31
■ “Using the Endorsed Standards Override Mechanism” on page 32
■ “Class Loader Universes” on page 32
■ “Application-Specific Class Loading” on page 32
■ “Circumventing Class Loader Isolation” on page 34

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

For information about class loader debugging, see “Class Loader Debugging” on page 40.

2C H A P T E R 2

29

http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

The Class Loader Hierarchy
Class loaders in the GlassFish Server runtime follow a delegation hierarchy that is fully
described in Table 2–1.

The following table describes the class loaders in the GlassFish Server.

TABLE 2–1 Oracle GlassFish Server Class Loaders

Class Loader Description

Bootstrap The Bootstrap class loader loads the basic runtime classes provided by the JVM
software.

Extension The Extension class loader loads classes from JAR files present in the system extensions
directory, domain-dir/lib/ext. It is parent to the Public API class loader. See “Using
the Java Optional Package Mechanism” on page 31.

Public API The Public API class loader makes available all classes specifically exported by the
GlassFish Server runtime for use by deployed applications. This includes, but is not
limited to, Java EE APIs and other Oracle APIs. It is parent to the Common class loader.

Common The Common class loader loads JAR files in the as-install/lib directory, then classes in
the domain-dir/lib/classes directory, followed by JAR files in the domain-dir/lib
directory. Using domain-dir/lib/classes or domain-dir/lib is recommended
whenever possible, and required for custom login modules and realms. It is parent to the
Connector class loader. See “Using the Common Class Loader” on page 34.

Connector The Connector class loader is a single class loader instance that loads individually
deployed connector modules, which are shared across all applications. It is parent to the
Applib class loader and the LifeCycleModule class loader.

LifeCycleModule The LifeCycleModule class loader is created once per lifecycle module. Each lifecycle
module’s classpath is used to construct its own class loader. For more information on
lifecycle modules, see Chapter 12, “Developing Lifecycle Listeners.”

Applib The Applib class loader loads the library classes, specified during deployment, for a
specific enabled module or Java EE application; see “Application-Specific Class
Loading” on page 32. One instance of this class loader is present in each class loader
universe; see “Class Loader Universes” on page 32. It is parent to the Archive class
loader.

When multiple deployed applications use the same library, they share the same instance
of the library. One library cannot reference classes from another library.

Archive The Archive class loader loads classes from the WAR, EAR, and JAR files or directories
(for directory deployment) of applications or modules deployed to the GlassFish Server.
This class loader also loads any application-specific classes generated by the GlassFish
Server runtime, such as stub classes or servlets generated by JSP pages.

The Class Loader Hierarchy

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201130

Delegation
Note that the class loader hierarchy is not a Java inheritance hierarchy, but a delegation
hierarchy. In the delegation design, a class loader delegates class loading to its parent before
attempting to load a class itself. If the parent class loader cannot load a class, the class loader
attempts to load the class itself. In effect, a class loader is responsible for loading only the classes
not available to the parent. Classes loaded by a class loader higher in the hierarchy cannot refer
to classes available lower in the hierarchy.

The Java Servlet specification recommends that a web module's class loader look in the local
class loader before delegating to its parent. You can make this class loader follow the delegation
inversion model in the Servlet specification by setting delegate="false" in the class-loader
element of the glassfish-web.xml file. It is safe to do this only for a web module that does not
interact with any other modules. For details, see “class-loader” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

The default value is delegate="true", which causes a web module's class loader to delegate in
the same manner as the other class loaders. You must use delegate="true" for a web
application that accesses EJB components or that acts as a web service client or endpoint. For
details about glassfish-web.xml, see GlassFish Server Open Source Edition 3.1 Application
Deployment Guide.

For a number of packages, including java.* and javax.*, symbol resolution is always
delegated to the parent class loader regardless of the delegate setting. This prevents
applications from overriding core Java runtime classes or changing the API versions of
specifications that are part of the Java EE platform.

Using the Java Optional Package Mechanism
Optional packages are packages of Java classes and associated native code that application
developers can use to extend the functionality of the core platform.

To use the Java optional package mechanism, copy the JAR files into the domain-dir/lib/ext
directory, then restart the server.

For more information, see Optional Packages - An Overview (http://download.oracle.com/
javase/6/docs/technotes/guides/extensions/extensions.html) and Understanding
Extension Class Loading (http://download.oracle.com/javase/tutorial/ext/basics/
load.html).

Using the Java Optional Package Mechanism

Chapter 2 • Class Loaders 31

http://download.oracle.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://download.oracle.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://download.oracle.com/javase/tutorial/ext/basics/load.html
http://download.oracle.com/javase/tutorial/ext/basics/load.html
http://download.oracle.com/javase/tutorial/ext/basics/load.html

Using the Endorsed Standards Override Mechanism
Endorsed standards handle changes to classes and APIs that are bundled in the JDK but are
subject to change by external bodies.

To use the endorsed standards override mechanism, copy the JAR files into the
domain-dir/lib/endorsed directory, then restart the server.

For more information and the list of packages that can be overridden, see Endorsed Standards
Override Mechanism (http://download.oracle.com/javase/6/docs/technotes/guides/
standards/).

Class Loader Universes
Access to components within applications and modules installed on the server occurs within
the context of isolated class loader universes, each of which has its own Applib and Archive class
loaders.

■ Application Universe – Each Java EE application has its own class loader universe, which
loads the classes in all the modules in the application.

■ Individually Deployed Module Universe – Each individually deployed EJB JAR or web
WAR has its own class loader universe, which loads the classes in the module.

A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in one of
the following locations:

■ A directory pointed to by the Libraries field or ----libraries option used during
deployment

■ A directory pointed to by the library-directory element in the application.xml
deployment descriptor

■ A directory pointed to by the application or module’s classpath; for example, a web module’s
classpath includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/lib

Application-Specific Class Loading
You can specify module- or application-specific library classes during deployment in one of the
following ways:

■ Use the Administration Console. Open the Applications component, then go to the page for
the type of application or module. Select the Deploy button. Type the comma-separated
paths in the Libraries field. For details, click the Help button in the Administration Console.

Using the Endorsed Standards Override Mechanism

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201132

http://download.oracle.com/javase/6/docs/technotes/guides/standards/
http://download.oracle.com/javase/6/docs/technotes/guides/standards/
http://download.oracle.com/javase/6/docs/technotes/guides/standards/

■ Use the asadmin deploy command with the ----libraries option and specify
comma-separated paths. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

Note – The Libraries field in the Administration Console's deployment page and the
----libraries option of the asadmin deploy command do not apply to application clients.
For more information, see “Using Libraries with Application Clients” on page 217.

You can only specify module- or application-specific library classes during deployment. You
can update a library JAR file using dynamic reloading or by restarting (disabling and
re-enabling) a module or application. To add or remove library JAR files, you must redeploy the
module or application.

Application libraries are included in the Applib class loader. Paths to libraries can be relative or
absolute. A relative path is relative to domain-dir/lib/applibs. If the path is absolute, the path
must be accessible to the domain administration server (DAS). The GlassFish Server
automatically synchronizes these libraries to all remote cluster instances when the cluster is
restarted. However, libraries specified by absolute paths are not guaranteed to be synchronized.

Tip – You can use application-specific class loading to specify a different XML parser than the
default GlassFish Server XML parser.

You can also use application-specific class loading to access different versions of a library from
different applications.

If multiple applications or modules refer to the same libraries, classes in those libraries are
automatically shared. This can reduce the memory footprint and allow sharing of static
information. However, applications or modules using application-specific libraries are not
portable. Other ways to make libraries available are described in “Circumventing Class Loader
Isolation” on page 34.

One library cannot reference classes from another library.

For general information about deployment, including dynamic reloading, see the GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

Note – If you see an access control error message when you try to use a library, you may need to
grant permission to the library in the server.policy file. For more information, see “Changing
Permissions for an Application” on page 59.

Application-Specific Class Loading

Chapter 2 • Class Loaders 33

Circumventing Class Loader Isolation
Since each application or individually deployed module class loader universe is isolated, an
application or module cannot load classes from another application or module. This prevents
two similarly named classes in different applications or modules from interfering with each
other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules
accessed by more than one application, you can include the relevant path to the required classes
in one of these ways:

■ “Using the Common Class Loader” on page 34
■ “Sharing Libraries Across a Cluster” on page 34
■ “Packaging the Client JAR for One Application in Another Application” on page 35

Using the Common Class Loader
To use the Common class loader, copy the JAR files into the domain-dir/lib or as-install/lib
directory or copy the .class files (and other needed files, such as .properties files) into the
domain-dir/lib/classes directory, then restart the server.

Using the Common class loader makes an application or module accessible to all applications
or modules deployed on servers that share the same configuration. However, this accessibility
does not extend to application clients. For more information, see “Using Libraries with
Application Clients” on page 217.

For example, using the Common class loader is the recommended way of adding JDBC drivers
to the GlassFish Server. For a list of the JDBC drivers currently supported by the GlassFish
Server, see the GlassFish Server Open Source Edition 3.1-3.1.1 Release Notes. For configurations
of supported and other drivers, see “Configuration Specifics for JDBC Drivers” in GlassFish
Server Open Source Edition 3.1 Administration Guide.

To activate custom login modules and realms, place the JAR files in the domain-dir/lib
directory or the class files in the domain-dir/lib/classes directory, then restart the server.

Sharing Libraries Across a Cluster
To share libraries across a specific cluster, copy the JAR files to the
domain-dir/config/cluster-config-name/lib/classes directory.

Circumventing Class Loader Isolation

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201134

Packaging the Client JAR for One Application in
Another Application
By packaging the client JAR for one application in a second application, you allow an EJB or
web component in the second application to call an EJB component in the first (dependent)
application, without making either of them accessible to any other application or module.

As an alternative for a production environment, you can have the Common class loader load
the client JAR of the dependent application as described in “Using the Common Class Loader”
on page 34. Restart the server to make the dependent application accessible to all applications or
modules deployed on servers that share the same configuration.

▼ To Package the Client JAR for One Application in
Another Application
Deploy the dependent application.

Add the dependent application’s client JAR file to the calling application.

■ For a calling EJB component, add the client JAR file at the same level as the EJB component.
Then add a Class-Path entry to the MANIFEST.MF file of the calling EJB component. The
Class-Path entry has this syntax:

Class-Path: filepath1.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the MANIFEST.MF file. For
details, see the Java EE specification.

■ For a calling web component, add the client JAR file under the WEB-INF/lib directory.

If you need to package the client JAR with both the EJB and web components, set
delegate="true" in the class-loader element of the glassfish-web.xml file.
This changes the Web class loader so that it follows the standard class loader delegation model
and delegates to its parent before attempting to load a class itself.

For most applications, packaging the client JAR file with the calling EJB component is sufficient.
You do not need to package the client JAR file with both the EJB and web components unless
the web component is directly calling the EJB component in the dependent application.

Deploy the calling application.
The calling EJB or web component must specify in its glassfish-ejb-jar.xml or
glassfish-web.xml file the JNDI name of the EJB component in the dependent application.
Using an ejb-link mapping does not work when the EJB component being called resides in
another application.

1

2

3

4

Circumventing Class Loader Isolation

Chapter 2 • Class Loaders 35

You do not need to restart the server.

Circumventing Class Loader Isolation

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201136

Debugging Applications

This chapter gives guidelines for debugging applications in the Oracle GlassFish Server.

The following topics are addressed here:

■ “Enabling Debugging” on page 37
■ “JPDA Options” on page 38
■ “Generating a Stack Trace for Debugging” on page 39
■ “Application Client Debugging” on page 39
■ “Open Message Queue Debugging” on page 40
■ “Enabling Verbose Mode” on page 40
■ “Class Loader Debugging” on page 40
■ “GlassFish Server Logging” on page 41
■ “Profiling Tools” on page 41

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the ----debug option as follows:

asadmin start-domain --debug [domain-name]

You can then attach to the server from the Java Debugger (jdb) at its default Java Platform
Debugger Architecture (JPDA) port, which is 9009. For example, for UNIX systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

For more information about the jdb debugger, see the following links:

3C H A P T E R 3

37

■ Java Platform Debugger Architecture - The Java Debugger: http://java.sun.com/javase/
technologies/core/toolsapis/jpda/

■ Java Platform Debugger Architecture - Connecting with JDB: http://java.sun.com/
javase/technologies/core/toolsapis/jpda/

GlassFish Server debugging is based on the JPDA. For more information, see “JPDA Options”
on page 38.

You can attach to the GlassFish Server using any JPDA compliant debugger, including that of
NetBeans (http://www.netbeans.org), Java Studio Enterprise, JBuilder, Eclipse, and so on.

You can enable debugging even when the GlassFish Server is started without the ----debug
option. This is useful if you start the GlassFish Server from the Windows Start Menu, or if you
want to make sure that debugging is always turned on.

▼ To Set the Server to Automatically Start Up in Debug
Mode

Use the Administration Console. Select the JVM Settings component under the relevant
configuration.

Check the Debug Enabled box.

To specify a different port (from 9009, the default) to use when attaching the JVM software to a
debugger, specify address= port-number in the Debug Options field.

To add JPDA options, add any desired JPDA debugging options in Debug Options. See “JPDA
Options”on page 38.

For details, click the Help button in the Administration Console from the JVM Settings page.

JPDA Options
The default JPDA options in GlassFish Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM software starts in suspended mode and stays suspended
until a debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM
software starts.

1

2

3

4

See Also

JPDA Options

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201138

http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://www.netbeans.org

To specify a different port (from 9009, the default) to use when attaching the JVM software to a
debugger, specify address=port-number.

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/javase/technologies/core/toolsapis/jpda/.

Generating a Stack Trace for Debugging
To generate a Java stack trace for debugging, use the asadmin generate-jvm-report
--type=thread command. The stack trace goes to the domain-dir/logs/server.log file and
also appears on the command prompt screen. For more information about the asadmin
generate-jvm-report command, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

Application Client Debugging
When the appclient script executes the java command to run the Application Client
Container (ACC), which in turn runs the client, it includes on the command line the value of
the VMARGS environment variable. You can set this variable to any suitable value. For example:

VMARGS=-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8118

The following example also works:

set VMARGS=-Xdebug -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=8118

For debugging an application client, you should set suspend to y so you can connect the
debugger to the client before any code has actually executed. Otherwise, the client may start
running and execute past the point you want to examine.

You should use different ports for the server and client if you are debugging both concurrently.
For details about setting the port, see “JPDA Options” on page 38.

You can also include JVM options such as -Xdebug and -Xrunjwdp in the appclient script
directly. For information about the appclient script, see GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

Note – The Application Client Container is supported only in the full GlassFish Server, not in the
Web Profile. See Chapter 10, “Developing Java Clients.”

Application Client Debugging

Chapter 3 • Debugging Applications 39

http://java.sun.com/javase/technologies/core/toolsapis/jpda/

Open Message Queue Debugging
Open Message Queue has a broker logger, which can be useful for debugging Java Message
Service (JMS) applications, including message-driven bean applications. You can adjust the
logger’s verbosity, and you can send the logger output to the broker’s console using the broker’s
-tty option. For more information, see the Open Message Queue 4.5 Administration Guide.

Note – JMS resources are supported only in the full GlassFish Server, not in the Web Profile. See
Chapter 17, “Using the Java Message Service.”

Enabling Verbose Mode
To have the server logs and messages printed to System.out on your command prompt screen,
you can start the server in verbose mode. This makes it easy to do simple debugging using print
statements, without having to view the server.log file every time.

To start the server in verbose mode, use the ----verbose option as follows:

asadmin start-domain --verbose [domain-name]

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on
UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX
platforms, you can also print a thread dump using the jstack command (see
http://download.oracle.com/javase/6/docs/technotes/tools/share/jstack.html) or
the command kill -QUIT process_id.

Class Loader Debugging
To generate class loading messages, use the following asadmin create-jvm-options

command:

asadmin create-jvm-options -verbose\:class

To send the JVM messages to a special JVM log file instead of stdout, use the following asadmin
create-jvm-options commands:

asadmin create-jvm-options -XX\:+LogVMOutput

asadmin create-jvm-options -XX\:LogFile=${com.sun.aas.instanceRoot}/logs/jvm.log

Open Message Queue Debugging

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201140

http://download.oracle.com/javase/6/docs/technotes/tools/share/jstack.html

Note – These -XX options are specific to the OpenJDK (or Hotspot) JVM and do not work with
the JRockit JVM.

To send the GlassFish Server messages to the Administration Console instead of stderr, start
the domain in verbose mode as described in “Enabling Verbose Mode” on page 40.

GlassFish Server Logging
You can use the GlassFish Server’s log files to help debug your applications. Use the
Administration Console. Select the Stand-Alone Instances component, select the instance from
the table, then click the View Log Files button in the General Information page. Or select the
Cluster component, select the cluster from the table, select the Instances tab, select the instance
from the table, then click the View Log Files button in the General Information page.

To change logging settings, select Logger Settings under the relevant configuration.

For details about logging, click the Help button in the Administration Console.

Profiling Tools
You can use a profiler to perform remote profiling on the GlassFish Server to discover
bottlenecks in server-side performance. This section describes how to configure profilers for
use with GlassFish Server.

The following topics are addressed here:

■ “The NetBeans Profiler” on page 41
■ “The HPROF Profiler” on page 42
■ “The JProbe Profiler” on page 43

Information about comprehensive monitoring and management support in the Java 2 Platform,
Standard Edition (J2SE platform) is available at http://download.oracle.com/
javase/6/docs/technotes/guides/management/index.html.

The NetBeans Profiler
For information on how to use the NetBeans profiler, see http://profiler.netbeans.org/
index.html.

Profiling Tools

Chapter 3 • Debugging Applications 41

http://download.oracle.com/javase/6/docs/technotes/guides/management/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/index.html
http://profiler.netbeans.org/index.html
http://profiler.netbeans.org/index.html

The HPROF Profiler
The Heap and CPU Profiling Agent (HPROF) is a simple profiler agent shipped with the Java 2
SDK. It is a dynamically linked library that interacts with the Java Virtual Machine Profiler
Interface (JVMPI) and writes out profiling information either to a file or to a socket in ASCII or
binary format.

HPROF can monitor CPU usage, heap allocation statistics, and contention profiles. In addition,
it can also report complete heap dumps and states of all the monitors and threads in the Java
virtual machine. For more details on the HPROF profiler, see the technical article at
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html.

After HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

▼ To Use HPROF Profiling on UNIX

Use the Administration Console. Select the JVM Settings component under the relevant
configuration. Then select the Profiler tab.

Edit the following fields:

■ Profiler Name – hprof

■ Profiler Enabled – true

■ Classpath – (leave blank)
■ Native Library Path – (leave blank)
■ JVM Option – Select Add, type the HPROF JVM option in the Value field, then check its

box. The syntax of the HPROF JVM option is as follows:

-Xrunhprof[:help]|[:param=value,param2=value2, ...]

Here is an example of params you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file parameter determines where the stack dump is written.

Using help lists parameters that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|old CPU usage off

format=a|b ascii or binary output a

file=<file> write data to file java.hprof

(.txt for ascii)

1

2

Profiling Tools

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201142

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

net=<host>:<port> send data over a socket write to file

depth=<size> stack trace depth 4

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

Note – Do not use help in the JVM Option field. This parameter prints text to the standard
output and then exits.

The help output refers to the parameters as options, but they are not the same thing as JVM
options.

Restart the GlassFish Server.
This writes an HPROF stack dump to the file you specified using the file HPROF parameter.

The JProbe Profiler
Information about JProbe from Sitraka is available at http://www.quest.com/jprobe/.

After JProbe is installed using the following instructions, its libraries are loaded into the server
process.

▼ To Enable Remote Profiling With JProbe

Install JProbe 3.0.1.1.
For details, see the JProbe documentation.

Configure GlassFish Server using the Administration Console:

a. Select the JVM Settings component under the relevant configuration. Then select the
Profiler tab.

b. Edit the following fields before selecting Save and restarting the server:

■ Profiler Name – jprobe

■ Profiler Enabled – true

■ Classpath – (leave blank)
■ Native Library Path – JProbe-dir/profiler
■ JVM Option – For each of these options, select Add, type the option in the Value field,

then check its box
-Xbootclasspath/p:JProbe-dir/profiler/jpagent.jar

3

1

2

Profiling Tools

Chapter 3 • Debugging Applications 43

http://www.quest.com/jprobe/

-Xrunjprobeagent

-Xnoclassgc

Note – If any of the configuration options are missing or incorrect, the profiler might
experience problems that affect the performance of the GlassFish Server.

When the server starts up with this configuration, you can attach the profiler.

Set the following environment variable:
JPROBE_ARGS_0=-jp_input=JPL-file-path

See Step 6 for instructions on how to create the JPL file.

Start the server instance.

Launch the jpprofiler and attach to Remote Session. The default port is 4444.

Create the JPL file using the JProbe Launch Pad. Here are the required settings:

a. Select Server Side for the type of application.

b. On the Program tab, provide the following details:

■ Target Server – other-server
■ Server home Directory – as-install
■ Server class File – com.sun.enterprise.server.J2EERunner

■ Working Directory – as-install
■ Classpath – as-install/lib/appserv-rt.jar
■ Source File Path – source-code-dir (in case you want to get the line level details)
■ Server class arguments – (optional)
■ Main Package – com.sun.enterprise.server

You must also set VM, Attach, and Coverage tabs appropriately. For further details, see the
JProbe documentation. After you have created the JPL file, use this an input to
JPROBE_ARGS_0.

3

4

5

6

Profiling Tools

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201144

Developing Applications and Application
Components

P A R T I I

45

46

Securing Applications

This chapter describes how to write secure Java EE applications, which contain components
that perform user authentication and access authorization for the business logic of Java EE
components.

For information about administrative security for the Oracle GlassFish Server, see the GlassFish
Server Open Source Edition 3.1 Security Guide.

For general information about Java EE security, see Part VII, “Security,” in The Java EE 6
Tutorial.

The following topics are addressed here:

■ “Security Goals” on page 48
■ “GlassFish Server Specific Security Features” on page 48
■ “Container Security” on page 49
■ “Roles, Principals, and Principal to Role Mapping” on page 50
■ “Realm Configuration” on page 52
■ “JACC Support” on page 56
■ “Pluggable Audit Module Support” on page 56
■ “The server.policy File” on page 58
■ “Configuring Message Security for Web Services” on page 62
■ “Programmatic Login” on page 72
■ “User Authentication for Single Sign-on” on page 74
■ “Adding Authentication Mechanisms to the Servlet Container” on page 76

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

4C H A P T E R 4

47

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

Security Goals
In an enterprise computing environment, there are many security risks. The goal of the
GlassFish Server is to provide highly secure, interoperable, and distributed component
computing based on the Java EE security model. Security goals include:

■ Full compliance with the Java EE security model. This includes EJB and servlet role-based
authorization.

■ Support for single sign-on across all GlassFish Server applications within a single security
domain.

■ Support for web services message security.
■ Security support for application clients.
■ Support for several underlying authentication realms, such as simple file and Lightweight

Directory Access Protocol (LDAP). Certificate authentication is also supported for Secure
Socket Layer (SSL) client authentication. For Solaris, OS platform authentication is
supported in addition to these.

■ Support for declarative security through GlassFish Server specific XML-based role mapping.
■ Support for Java Authorization Contract for Containers (JACC) pluggable authorization as

included in the Java EE specification and defined by Java Specification Request (JSR) 115
(http://www.jcp.org/en/jsr/detail?id=115).

■ Support for Java Authentication Service Provider Interface for Containers as included in the
Java EE specification and defined by JSR 196 (http://www.jcp.org/en/jsr/
detail?id=196).

■ Support for Web Services Interoperability Technologies (WSIT) as described in Metro
Users Guide (https://metro.dev.java.net/guide/).

GlassFish Server Specific Security Features
The GlassFish Server supports the Java EE security model, as well as the following features
which are specific to the GlassFish Server:

■ Message security; see “Configuring Message Security for Web Services” on page 62
■ Single sign-on across all GlassFish Server applications within a single security domain; see

“User Authentication for Single Sign-on” on page 74
■ Programmatic login; see “Programmatic Login” on page 72

Security Goals

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201148

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
https://metro.dev.java.net/guide/
https://metro.dev.java.net/guide/

Container Security
The component containers are responsible for providing Java EE application security. The
container provides two security forms:
■ “Declarative Security” on page 49
■ “Programmatic Security” on page 50

Annotations (also called metadata) enable a declarative style of programming, and so
encompass both the declarative and programmatic security concepts. Users can specify
information about security within a class file using annotations. When the application is
deployed, this information can either be used by or overridden by the application or module
deployment descriptor.

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the Java EE
application’s security structure, including security roles, access control, and authentication
requirements.

The GlassFish Server supports the deployment descriptors specified by Java EE and has
additional security elements included in its own deployment descriptors. Declarative security is
the application deployer’s responsibility. For more information about GlassFish Server
deployment descriptors, see the GlassFish Server Open Source Edition 3.1 Application
Deployment Guide.

There are two levels of declarative security, as follows:
■ “Application Level Security” on page 49
■ “Component Level Security” on page 50

Application Level Security
For an application, roles used by any application must be defined in @DeclareRoles

annotations in the code or role-name elements in the application deployment descriptor
(application.xml). Those role names are scoped to the EJB XML deployment descriptors
(ejb-jar.xml and glassfish-ejb-jar.xml files) and to the servlet XML deployment
descriptors (web.xml and glassfish-web.xml files). For an individually deployed web or EJB
module, you define roles using @DeclareRoles annotations or role-name elements in the Java
EE deployment descriptor files web.xml or ejb-jar.xml.

To map roles to principals and groups, define matching security-role-mapping elements in
the glassfish-application.xml, glassfish-ejb-jar.xml, or glassfish-web.xml file for
each role-name used by the application. For more information, see “Roles, Principals, and
Principal to Role Mapping” on page 50.

Container Security

Chapter 4 • Securing Applications 49

Component Level Security
Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the
security policy laid out in the servlet XML deployment descriptors (web.xml and
glassfish-web.xml files).

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and
glassfish-ejb-jar.xml files).

Programmatic Security
Programmatic security involves an EJB component or servlet using method calls to the security
API, as specified by the Java EE security model, to make business logic decisions based on the
caller or remote user’s security role. Programmatic security should only be used when
declarative security alone is insufficient to meet the application’s security model.

The Java EE specification defines programmatic security as consisting of two methods of the
EJB EJBContext interface and two methods of the servlet HttpServletRequest interface. The
GlassFish Server supports these interfaces as specified in the specification.

For more information on programmatic security, see the following:

■ The Java EE Specification
■ “Programmatic Login” on page 72

Roles, Principals, and Principal to Role Mapping
For applications, you define roles in @DeclareRoles annotations or the Java EE deployment
descriptor file application.xml. You define the corresponding role mappings in the GlassFish
Server deployment descriptor file glassfish-application.xml. For individually deployed web
or EJB modules, you define roles in @DeclareRoles annotations or the Java EE deployment
descriptor files web.xml or ejb-jar.xml. You define the corresponding role mappings in the
GlassFish Server deployment descriptor files glassfish-web.xml or glassfish-ejb-jar.xml.

For more information regarding Java EE deployment descriptors, see the Java EE Specification.
For more information regarding GlassFish Server deployment descriptors, see Appendix C,
“Elements of the GlassFish Server Deployment Descriptors,” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

Each security-role-mapping element in the glassfish-application.xml,
glassfish-web.xml, or glassfish-ejb-jar.xml file maps a role name permitted by the
application or module to principals and groups. For example, a glassfish-web.xml file for an
individually deployed web module might contain the following:

Roles, Principals, and Principal to Role Mapping

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201150

<glassfish-web-app>

<security-role-mapping>

<role-name>manager</role-name>

<principal-name>jgarcia</principal-name>

<principal-name>mwebster</principal-name>

<group-name>team-leads</group-name>

</security-role-mapping>

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name>dsmith</principal-name>

</security-role-mapping>

</glassfish-web-app>

A role can be mapped to either specific principals or to groups (or both). The principal or group
names used must be valid principals or groups in the realm for the application or module. Note
that the role-name in this example must match the @DeclareRoles annotations or the
role-name in the security-role element of the corresponding web.xml file.

You can also specify a custom principal implementation class. This provides more flexibility in
how principals can be assigned to roles. A user's JAAS login module now can authenticate its
custom principal, and the authenticated custom principal can further participate in the
GlassFish Server authorization process. For example:

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name class-name="CustomPrincipalImplClass">
dsmith

</principal-name>

</security-role-mapping>

You can specify a default principal and a default principal to role mapping, each of which
applies to the entire GlassFish Server instance. The default principal to role mapping maps
group principals to the same named roles. Web modules that omit the run-as element in
web.xml use the default principal. Applications and modules that omit the
security-role-mapping element use the default principal to role mapping. These defaults are
part of the Security Service, which you can access in the following ways:

■ In the Administration Console, select the Security component under the relevant
configuration. For details, click the Help button in the Administration Console.

■ Use the asadmin set command. For details, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual. For example, you can set the default principal as follows.

asadmin set server-config.security-service.default-principal=dsmith

asadmin set server-config.security-service.default-principal-password=secret

You can set the default principal to role mapping as follows.

asadmin set server-config.security-service.activate-default-principal-to-role-mapping=true

asadmin set server-config.security-service.mapped-principal-class=CustomPrincipalImplClass

Roles, Principals, and Principal to Role Mapping

Chapter 4 • Securing Applications 51

Realm Configuration
The following topics are addressed here:

■ “Supported Realms” on page 52
■ “How to Configure a Realm” on page 52
■ “How to Set a Realm for an Application or Module” on page 53
■ “Creating a Custom Realm” on page 53

Supported Realms
The following realms are supported in the current release of the GlassFish Server:

■ file – Stores user information in a file. This is the default realm when you first install the
GlassFish Server.

■ ldap – Stores user information in an LDAP directory.
■ jdbc – Stores user information in a database.

In the JDBC realm, the server gets user credentials from a database. The GlassFish Server
uses the database information and the enabled JDBC realm option in the configuration file.
For digest authentication, a JDBC realm should be created with jdbcDigestRealm as the
JAAS context.

■ certificate – Sets up the user identity in the GlassFish Server security context, and
populates it with user data obtained from cryptographically verified client certificates.

■ solaris – Allows authentication using Solaris username+password data. This realm is only
supported on the Solaris operating system, version 9 and above.

For information about configuring realms, see “How to Configure a Realm” on page 52.

How to Configure a Realm
You can configure a realm in one of these ways:

■ In the Administration Console, open the Security component under the relevant
configuration and go to the Realms page. For details, click the Help button in the
Administration Console.

■ Use the asadmin create-auth-realm command to configure realms on local servers. For
details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Realm Configuration

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201152

How to Set a Realm for an Application or Module
The following deployment descriptor elements have optional realm or realm-name data
subelements or attributes that override the domain’s default realm:
■ glassfish-application element in glassfish-application.xml

■ web-app element in web.xml

■ as-context element in glassfish-ejb-jar.xml

■ client-container element in sun-acc.xml

■ client-credential element in sun-acc.xml

If modules within an application specify realms, these are ignored. If present, the realm defined
in glassfish-application.xml is used, otherwise the domain’s default realm is used.

For example, a realm is specified in glassfish-application.xml as follows:

<glassfish-application>

...

<realm>ldap</realm>

</glassfish-application>

For more information about the deployment descriptor files and elements, see Appendix C,
“Elements of the GlassFish Server Deployment Descriptors,” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

Creating a Custom Realm
You can create a custom realm by providing a custom Java Authentication and Authorization
Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login
modules are not suitable for use with the GlassFish Server.

To activate the custom login modules and realms, place the JAR files in the domain-dir/lib
directory or the class files in the domain-dir/lib/classes directory. For more information
about class loading in the GlassFish Server, see Chapter 2, “Class Loaders.”

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
JAAS provides a pluggable and extensible framework for programmatic user authentication
and authorization. JAAS is a core API and an underlying technology for Java EE security
mechanisms. For more information about JAAS, refer to the JAAS specification for Java SDK,
available at http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136007.html.

For general information about realms and login modules, see “Working with Realms, Users,
Groups, and Roles” in The Java EE 6 Tutorial.

For Javadoc tool pages relevant to custom realms, go to http://glassfish.java.net/nonav/

docs/v3/api/ and click on the com.sun.appserv.security package.

Realm Configuration

Chapter 4 • Securing Applications 53

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/

Custom login modules must extend the
com.sun.appserv.security.AppservPasswordLoginModule class. This class implements
javax.security.auth.spi.LoginModule. Custom login modules must not implement
LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not
implement any of the other methods, such as login, logout, abort, commit, or initialize.
Default implementations are provided in AppservPasswordLoginModule which hook into the
GlassFish Server infrastructure.

The custom login module can access the following protected object fields, which it inherits from
AppservPasswordLoginModule. These contain the user name and password of the user to be
authenticated:

protected String _username;

protected String _password;

The authenticateUser method must end with the following sequence:

String[] grpList;

// populate grpList with the set of groups to which

// _username belongs in this realm, if any

commitUserAuthentication(_username, _password,

_currentRealm, grpList);

Custom realms must extend the com.sun.appserv.security.AppservRealm class and
implement the following methods:

public void init(Properties props) throws BadRealmException,

NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm. The realm can do any initialization it
needs in this method. If the method returns without throwing an exception, the GlassFish
Server assumes that the realm is ready to service authentication requests. If an exception is
thrown, the realm is disabled.

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this
realm.

public abstract Enumeration getGroupNames(String username) throws

InvalidOperationException, NoSuchUserException

Realm Configuration

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201154

This method returns an Enumeration (of String objects) enumerating the groups (if any) to
which the given username belongs in this realm.

Custom realms that manage users must implement the following additional methods:

public abstract boolean supportsUserManagement();

This method returns true if the realm supports user management.

public abstract Enumeration getGroupNames() throws BadRealmException;

This method returns an Enumeration of all group names.

public abstract Enumeration getUserNames() throws BadRealmException;

This method returns an Enumeration of all user names.

public abstract void refresh() throws BadRealmException;

This method refreshes the realm data so that new users and groups are visible.

public abstract void persist() throws BadRealmException;

This method persists the realm data to permanent storage.

public abstract User getUser(String name) throws NoSuchUserException,

BadRealmException;

This method returns the information recorded about a particular named user.

public abstract void addUser(String name, String password, String[] groupList) throws

BadRealmException, IASSecurityException;

This method adds a new user, who cannot already exist.

public abstract void removeUser(String name) throws NoSuchUserException,

BadRealmException;

This method removes a user, who must exist.

public abstract void updateUser(String name, String newName, String password,

String[] groups) throws NoSuchUserException, BadRealmException, IASSecurityException;

This method updates data for a user, who must exist.

Realm Configuration

Chapter 4 • Securing Applications 55

Note – The array passed to the commitUseAuthentication method should be newly created and
otherwise unreferenced. This is because the group name array elements are set to null after
authentication as part of cleanup. So the second time your custom realm executes it returns an
array with null elements.

Ideally, your custom realm should not return member variables from the authenticate
method. It should return local variables as the default JDBCRealm does. Your custom realm can
create a local String array in its authenticate method, copy the values from the member
variables, and return the String array. Or it can use clone on the member variables.

JACC Support
JACC (Java Authorization Contract for Containers) is part of the Java EE specification and
defined by JSR 115 (http://www.jcp.org/en/jsr/detail?id=115). JACC defines an interface
for pluggable authorization providers. Specifically, JACC is used to plug in the Java policy
provider used by the container to perform Java EE caller access decisions. The Java policy
provider performs Java policy decisions during application execution. This provides third
parties with a mechanism to develop and plug in modules that are responsible for answering
authorization decisions during Java EE application execution. The interfaces and rules used for
developing JACC providers are defined in the JACC 1.0 specification.

The GlassFish Server provides a simple file-based JACC-compliant authorization engine as a
default JACC provider, named default. An alternate provider named simple is also provided.
To configure an alternate provider using the Administration Console, open the Security
component under the relevant configuration, and select the JACC Providers component. For
details, click the Help button in the Administration Console.

Pluggable Audit Module Support
Audit modules collect and store information on incoming requests (servlets, EJB components)
and outgoing responses. You can create a custom audit module.

The following topics are addressed here:
■ “Configuring an Audit Module” on page 56
■ “The AuditModule Class” on page 57

For additional information about audit modules, see Audit Callbacks (http://
developers.sun.com/appserver/reference/techart/ws_mgmt3.html).

Configuring an Audit Module
To configure an audit module, you can perform one of the following tasks:

JACC Support

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201156

http://www.jcp.org/en/jsr/detail?id=115
http://developers.sun.com/appserver/reference/techart/ws_mgmt3.html
http://developers.sun.com/appserver/reference/techart/ws_mgmt3.html

■ To specify an audit module using the Administration Console, open the Security
component under the relevant configuration, and select the Audit Modules component. For
details, click the Help button in the Administration Console.

■ You can use the asadmin create-audit-module command to configure an audit module.
For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The AuditModuleClass
You can create a custom audit module by implementing a class that extends
com.sun.enterprise.security.audit.AuditModule.

For Javadoc tool pages relevant to audit modules, go to http://glassfish.java.net/nonav/

docs/v3/api/ and click on the com.sun.enterprise.security.audit package.

The AuditModule class provides default “no-op” implementations for each of the following
methods, which your custom class can override.

public void init(Properties props)

The preceding method is invoked during server startup when the audit module is initially
loaded. The props argument contains the properties defined for this module. The module can
do any initialization it needs in this method. If the method returns without throwing an
exception, the GlassFish Server assumes the module realm is ready to service audit requests. If
an exception is thrown, the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for the
given user. The success flag indicates whether the authorization was granted or denied.

public void webInvocation(String user, HttpServletRequest req, String type, boolean success)

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is the
standard HttpServletRequest object for this request. The type string is one of
hasUserDataPermission or hasResourcePermission (see JSR 115 (http://www.jcp.org/en/
jsr/detail?id=115)).

public void ejbInvocation(String user, String ejb, String method, boolean success)

This method is invoked when an EJB container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The ejb and method

strings describe the EJB component and its method that is being invoked.

public void webServiceInvocation(String uri, String endpoint, boolean success)

Pluggable Audit Module Support

Chapter 4 • Securing Applications 57

http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115

This method is invoked during validation of a web service request in which the endpoint is a
servlet. The uri is the URL representation of the web service endpoint. The endpoint is the
name of the endpoint representation. The success flag indicates whether the authorization was
granted or denied.

public void ejbAsWebServiceInvocation(String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
stateless session bean. The endpoint is the name of the endpoint representation. The success
flag indicates whether the authorization was granted or denied.

The server.policy File
Each GlassFish Server domain has its own global J2SE policy file, located in
domain-dir/config. The file is named server.policy.

The GlassFish Server is a Java EE compliant application server. As such, it follows the
requirements of the Java EE specification, including the presence of the security manager (the
Java component that enforces the policy) and a limited permission set for Java EE application
code.

The following topics are addressed here:
■ “Default Permissions” on page 58
■ “System Properties” on page 59
■ “Changing Permissions for an Application” on page 59
■ “Enabling and Disabling the Security Manager” on page 61

Default Permissions
Internal server code is granted all permissions. These are covered by the AllPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously. The GlassFish Server does not
distinguish between EJB and web module permissions. All code is granted the minimal set of
web component permissions (which is a superset of the EJB minimal set). Do not modify these
entries.

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. Java EE
application developers must not rely on these additional permissions. In some cases, deleting
these permissions might be appropriate. For example, one additional permission is granted
specifically for using connectors. If connectors are not used in a particular domain, you should
remove this permission, because it is not otherwise necessary.

The server.policy File

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201158

System Properties
The following predefined system properties, also called variables, are available for use in the
server.policy file. The system property most frequently used in server.policy is
${com.sun.aas.instanceRoot}. For more information about system properties, see the
asadmin create-system-properties command in the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

TABLE 4–1 Predefined System Properties

Property Default Description

com.sun.aas.installRoot depends on
operating system

Specifies the directory where the GlassFish Server is installed.

com.sun.aas.instanceRoot depends on
operating system

Specifies the top level directory for a server instance.

com.sun.aas.hostName none Specifies the name of the host (machine).

com.sun.aas.javaRoot depends on
operating system

Specifies the installation directory for the Java runtime.

com.sun.aas.imqLib depends on
operating system

Specifies the library directory for the Open Message Queue software.

com.sun.aas.configName server-config Specifies the name of the configuration used by a server instance.

com.sun.aas.instanceName server1 Specifies the name of the server instance. This property is not used in the
default configuration, but can be used to customize configuration.

com.sun.aas.clusterName cluster1 Specifies the name of the cluster. This property is only set on clustered server
instances. This property is not used in the default configuration, but can be
used to customize configuration.

com.sun.aas.domainName domain1 Specifies the name of the domain. This property is not used in the default
configuration, but can be used to customize configuration.

Changing Permissions for an Application
The default policy for each domain limits the permissions of Java EE deployed applications to
the minimal set of permissions required for these applications to operate correctly. Do not add
extra permissions to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the applications requiring the extra
permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you
can add the custom permissions that your applications need. The com.sun.aas.instanceRoot
variable refers to the domain-dir. For example:

The server.policy File

Chapter 4 • Securing Applications 59

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/-" {

...

}

You can add permissions to stub code with the following grant block:

grant codeBase "file:${com.sun.aas.instanceRoot}/generated/-" {

...

}

In general, you should add extra permissions only to the applications or modules that require
them, not to all applications deployed to a domain. For example:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-" {

...

}

For a module:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyModule/-" {

...

}

Note – Deployment directories may change between GlassFish Server releases.

An alternative way to add permissions to a specific application or module is to edit the
granted.policy file for that application or module. The granted.policy file is located in the
domain-dir/generated/policy/app-or-module-name directory. In this case, you add
permissions to the default grant block. Do not delete permissions from this file.

When the GlassFish Server policy subsystem determines that a permission should not be
granted, it logs a server.policy message specifying the permission that was not granted and
the protection domains, with indicated code source and principals that failed the protection
check. For example, here is the first part of a typical message:

[#|2005-12-17T16:16:32.671-0200|INFO|sun-appserver-pe9.1|

javax.enterprise.system.core.security|_ThreadID=14;_ThreadName=Thread-31;|

JACC Policy Provider: PolicyWrapper.implies, context(null)-

permission((java.util.PropertyPermission java.security.manager write))

domain that failed(ProtectionDomain

(file:/E:/glassfish/domains/domain1/applications/cejug-clfds/ ...)

...

Granting the following permission eliminates the message:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/cejug-clfds/-" {

permission java.util.PropertyPermission "java.security.manager", "write";
}

The server.policy File

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201160

Note – Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still get the
performance overhead associated with it.

As noted in the Java EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log.

If this is not sufficient, you can add the -Djava.security.debug=failure JVM option to the
domain. Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options -Djava.security.debug=failure

For more information about the asadmin create-jvm-options command, see the GlassFish
Server Open Source Edition 3.1-3.1.1 Reference Manual.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For
more information, see http://download.oracle.com/javase/tutorial/security/tour2/
index.html.

For detailed information about policy file syntax, see http://download.oracle.com/
javase/6/docs/technotes/guides/security/PolicyFiles.html.

For information about using system properties in the server.policy file, see
http://download.oracle.com/

javase/6/docs/technotes/guides/security/PolicyFiles.html.

For detailed information about the permissions you can set in the server.policy file, see
http://download.oracle.com/

javase/6/docs/technotes/guides/security/permissions.html.

The Javadoc for the Permission class is at http://download.oracle.com/javase/6/docs/
api/java/security/Permission.html.

Enabling and Disabling the Security Manager
The security manager is disabled by default.

In a production environment, you may be able to safely disable the security manager if all of the
following are true:
■ Performance is critical

The server.policy File

Chapter 4 • Securing Applications 61

http://download.oracle.com/javase/tutorial/security/tour2/index.html
http://download.oracle.com/javase/tutorial/security/tour2/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/6/docs/api/java/security/Permission.html
http://download.oracle.com/javase/6/docs/api/java/security/Permission.html

■ Deployment to the production server is carefully controlled
■ Only trusted applications are deployed
■ Applications don't need policy enforcement

Disabling the security manager may improve performance significantly for some types of
applications.

To enable the security manager, do one of the following:

■ To use the Administration Console, open the Security component under the relevant
configuration, and check the Security Manager Enabled box. Then restart the server. For
details, click the Help button in the Administration Console.

■ Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options -Djava.security.manager

To disable the security manager, use the corresponding delete-jvm-options command.
For more information about the create-jvm-options and asadmin delete-jvm-options

commands, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Configuring Message Security for Web Services
In message security, security information is applied at the message layer and travels along with
the web services message. Web Services Security (WSS) is the use of XML Encryption and XML
Digital Signatures to secure messages. WSS profiles the use of various security tokens including
X.509 certificates, Security Assertion Markup Language (SAML) assertions, and
username/password tokens to achieve this.

Message layer security differs from transport layer security in that it can be used to decouple
message protection from message transport so that messages remain protected after
transmission, regardless of how many hops they travel.

Note – Message security (JSR 196) is supported only in the full GlassFish Server, not in the Web
Profile.

Note – In this release of the GlassFish Server, message layer annotations are not supported.

For more information about web services, see Chapter 5, “Developing Web Services.”

For more information about message security, see the following:

■ Chapter 39, “Introduction to Security in the Java EE Platform,” in The Java EE 6 Tutorial
■ GlassFish Server Open Source Edition 3.1 Security Guide

Configuring Message Security for Web Services

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201162

■ JSR 196 (http://www.jcp.org/en/jsr/detail?id=196), Java Authentication Service
Provider Interface for Containers

■ The Liberty Alliance Project specifications at http://www.projectliberty.org/
resources/specifications.php/?f=resources/specifications.php

■ The Oasis Web Services Security (WSS) specification at http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

■ The Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP)
specification at http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

■ The XML and Web Services Security page at https://xwss.dev.java.net/
■ The WSIT page at https://wsit.dev.java.net/

The following topics are addressed here:
■ “Message Security Providers” on page 63
■ “Message Security Responsibilities” on page 65
■ “Application-Specific Message Protection” on page 66
■ “Understanding and Running the Sample Application” on page 69

Message Security Providers
When you first install the GlassFish Server, the providers XWS_ClientProvider and
XWS_ServerProvider are configured but disabled. You can enable them in one of the following
ways:
■ To enable the message security providers using the Administration Console, open the

Security component under the relevant configuration, select the Message Security
component, and select SOAP. Then select XWS_ServerProvider from the Default Provider
list and XWS_ClientProvider from the Default Client Provider list. For details, click the
Help button in the Administration Console.

■ You can enable the message security providers using the following commands.

asadmin set

server-config.security-service.message-security-config.SOAP.default_provider=XWS_ServerProvider

asadmin set

server-config.security-service.message-security-config.SOAP.default_client_provider=XWS_ClientProvider

For more information about the asadmin set command, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

The example described in “Understanding and Running the Sample Application” on page 69
uses the ClientProvider and ServerProvider providers, which are enabled when the Ant
targets are run. You don’t need to enable these on the GlassFish Server prior to running the
example.

If you install the OpenSSO, you have these additional provider choices:

Configuring Message Security for Web Services

Chapter 4 • Securing Applications 63

http://www.jcp.org/en/jsr/detail?id=196
http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
https://xwss.dev.java.net/
https://wsit.dev.java.net/

■ AMClientProvider and AMServerProvider – These providers secure web services and
Simple Object Access Protocol (SOAP) messages using either WS-I BSP or Liberty ID-WSF
tokens. These providers are used automatically if they are configured as the default
providers. If you wish to override any provider settings, you can configure these providers in
message-security-binding elements in the glassfish-web.xml,
glassfish-ejb-jar.xml, and glassfish-application-client.xml deployment
descriptor files.

■ AMHttpProvider – This provider handles the initial end user authentication for securing
web services using Liberty ID-WSF tokens and redirects requests to the OpenSSO for single
sign-on. To use this provider, specify it in the httpservlet-security-provider attribute
of the glassfish-web-app element in the glassfish-web.xml file.

Liberty specifications can be viewed at http://www.projectliberty.org/
resources/specifications.php/?f=resources/specifications.php. The WS-I BSP
specification can be viewed at http://www.ws-i.org/Profiles/
BasicSecurityProfile-1.0.html.

For more information about the GlassFish Server deployment descriptor files, see the GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

For information about configuring these providers in the GlassFish Server, see the GlassFish
Server Open Source Edition 3.1 Security Guide. For additional information about overriding
provider settings, see “Application-Specific Message Protection” on page 66.

You can create new message security providers in one of the following ways:

■ To create a message security provider using the Administration Console, open the Security
component under the relevant configuration, and select the Message Security component.
For details, click the Help button in the Administration Console.

■ You can use the asadmin create-message-security-provider command to create a
message security provider. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

In addition, you can set a few optional provider properties using the asadmin set command.
For example:

asadmin set server-config.security-service.message-security-config.provider-config.property.debug=true

The following table describes these message security provider properties.

Configuring Message Security for Web Services

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201164

http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

TABLE 4–2 Message Security Provider Properties

Property Default Description

security.config domain-dir/
config/

wss-server-

config-1.0.xml

Specifies the location of the message security configuration file. To point to a configuration
file in the domain-dir/config directory, use the system property
${com.sun.aas.instanceRoot}/config/, for example:

${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml

See “System Properties” on page 59.

debug false If true, enables dumping of server provider debug messages to the server log.

dynamic.username.

password

false If true, signals the provider runtime to collect the user name and password from the
CallbackHandler for each request. If false, the user name and password for
wsse:UsernameToken(s) is collected once, during module initialization. This property is
only applicable for a ClientAuthModule.

encryption.key.

alias

s1as Specifies the encryption key used by the provider. The key is identified by its keystore alias.

signature.key.

alias

s1as Specifies the signature key used by the provider. The key is identified by its keystore alias.

Message Security Responsibilities
In the GlassFish Server, the system administrator and application deployer roles are expected to
take primary responsibility for configuring message security. In some situations, the application
developer may also contribute, although in the typical case either of the other roles may secure
an existing application without changing its implementation and without involving the
developer.

The following topics are addressed here:
■ “Application Developer Responsibilities” on page 65
■ “Application Deployer Responsibilities” on page 66
■ “System Administrator Responsibilities” on page 66

Application Developer Responsibilities
The application developer can turn on message security, but is not responsible for doing so.
Message security can be set up by the system administrator so that all web services are secured,
or set up by the application deployer when the provider or protection policy bound to the
application must be different from that bound to the container.

The application developer is responsible for the following:
■ Determining if an application-specific message protection policy is required by the

application. If so, ensuring that the required policy is specified at application assembly
which may be accomplished by communicating with the application deployer.

Configuring Message Security for Web Services

Chapter 4 • Securing Applications 65

■ Determining if message security is necessary at the GlassFish Server level. If so, ensuring
that this need is communicated to the system administrator, or taking care of implementing
message security at the GlassFish Server level.

Application Deployer Responsibilities
The application deployer is responsible for the following:
■ Specifying (at application assembly) any required application-specific message protection

policies if such policies have not already been specified by upstream roles (the developer or
assembler)

■ Modifying GlassFish Server deployment descriptors to specify application-specific message
protection policies information (message-security-binding elements) to web service
endpoint and service references

These security tasks are discussed in “Application-Specific Message Protection” on page 66. A
sample application using message security is discussed in “Understanding and Running the
Sample Application” on page 69.

System Administrator Responsibilities
The system administrator is responsible for the following:
■ Configuring message security providers on the GlassFish Server.
■ Managing user databases.
■ Managing keystore and truststore files.
■ Installing the sample. This is only done if the xms sample application is used to demonstrate

the use of message layer web services security.

A system administrator uses the Administration Console to manage server security settings and
uses a command line tool to manage certificate databases. Certificates and private keys are
stored in key stores and are managed with keytool. If Network Security Services (NSS) is
installed, certificates and private keys are stored in an NSS database, where they are managed
using certutil. System administrator tasks are discussed in the GlassFish Server Open Source
Edition 3.1 Security Guide.

Application-Specific Message Protection
When the GlassFish Server provided configuration is insufficient for your security needs, and
you want to override the default protection, you can apply application-specific message security
to a web service.

Application-specific security is implemented by adding the message security binding to the web
service endpoint, whether it is an EJB or servlet web service endpoint. Modify GlassFish Server
XML files to add the message binding information.

Configuring Message Security for Web Services

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201166

Message security can also be specified using a WSIT security policy in the WSDL file. For
details, see the WSIT page at https://wsit.dev.java.net/.

For more information about message security providers, see “Message Security Providers” on
page 63.

For more details on message security binding for EJB web services, servlet web services, and
clients, see the XML file descriptions in Appendix C, “Elements of the GlassFish Server
Deployment Descriptors,” in GlassFish Server Open Source Edition 3.1 Application Deployment
Guide.

■ For glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in GlassFish Server Open
Source Edition 3.1 Application Deployment Guide.

■ For glassfish-web.xml, see “The glassfish-web.xml File” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

■ For glassfish-application-client.xml, see “The glassfish-application-client.xml file” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

The following topics are addressed here:

■ “Using a Signature to Enable Message Protection for All Methods” on page 67
■ “Configuring Message Protection for a Specific Method Based on Digital Signatures” on

page 68

Using a Signature to Enable Message Protection for All Methods
To enable message protection for all methods using digital signature, update the
message-security-binding element for the EJB web service endpoint in the application’s
glassfish-ejb-jar.xml file. In this file, add request-protection and response-protection

elements, which are analogous to the request-policy and response-policy elements
discussed in the GlassFish Server Open Source Edition 3.1 Security Guide. To apply the same
protection mechanisms for all methods, leave the method-name element blank. “Configuring
Message Protection for a Specific Method Based on Digital Signatures” on page 68 discusses
listing specific methods or using wildcard characters.

This section uses the sample application discussed in “Understanding and Running the Sample
Application” on page 69 to apply application-level message security to show only the
differences necessary for protecting web services using various mechanisms.

▼ To Enable Message Protection for All Methods Using Digital Signature

In a text editor, open the application’s glassfish-ejb-jar.xml file.
For the xms example, this file is located in the directory app-dir/xms-ejb/src/conf, where
app-dir is defined in “To Set Up the Sample Application” on page 70.

1

Configuring Message Security for Web Services

Chapter 4 • Securing Applications 67

https://wsit.dev.java.net/

Modify the glassfish-ejb-jar.xml file by adding the message-security-binding element as
shown:
<glassfish-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>

<message-security-binding auth-layer="SOAP">
<message-security>

<request-protection auth-source="content" />

<response-protection auth-source="content"/>
</message-security>

</message-security-binding>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</glassfish-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 71.

Configuring Message Protection for a Specific Method Based on Digital
Signatures
To enable message protection for a specific method, or for a set of methods that can be
identified using a wildcard value, follow these steps. As in the example discussed in “Using a
Signature to Enable Message Protection for All Methods” on page 67, to enable message
protection for a specific method, update the message-security-binding element for the EJB
web service endpoint in the application’s glassfish-ejb-jar.xml file. To this file, add
request-protection and response-protection elements, which are analogous to the
request-policy and response-policy elements discussed in the GlassFish Server Open Source
Edition 3.1 Security Guide. The administration guide includes a table listing the set and order of
security operations for different request and response policy configurations.

This section uses the sample application discussed in “Understanding and Running the Sample
Application” on page 69 to apply application-level message security to show only the
differences necessary for protecting web services using various mechanisms.

▼ To Enable Message Protection for a Particular Method or Set of
Methods Using Digital Signature

In a text editor, open the application’s glassfish-ejb-jar.xml file.
For the xms example, this file is located in the directory app-dir/xms-ejb/src/conf, where
app-dir is defined in “To Set Up the Sample Application” on page 70.

2

3

1

Configuring Message Security for Web Services

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201168

Modify the glassfish-ejb-jar.xml file by adding the message-security-binding element as
shown:
<glassfish-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>

<message-security-binding auth-layer="SOAP">
<message-security>

<message>

<java-method>

<method-name>ejbCreate</method-name>

</java-method>

</message>

<message>

<java-method>

<method-name>sayHello</method-name>

</java-method>

</message>

<request-protection auth-source="content" />

<response-protection auth-source="content"/>
</message-security>

</message-security-binding>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</glassfish-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 71.

Understanding and Running the Sample Application
This section discusses the WSS sample application. This sample application is installed on your
system only if you installed the J2EE 1.4 samples. If you have not installed these samples, see
“To Set Up the Sample Application” on page 70.

The objective of this sample application is to demonstrate how a web service can be secured
with WSS. The web service in the xms example is a simple web service implemented using a Java
EE EJB endpoint and a web service endpoint implemented using a servlet. In this example, a
service endpoint interface is defined with one operation, sayHello, which takes a string then
sends a response with Hello prefixed to the given string. You can view the WSDL file for the
service endpoint interface at app-dir/xms-ejb/src/conf/HelloWorld.wsdl, where app-dir is
defined in “To Set Up the Sample Application” on page 70.

2

3

Configuring Message Security for Web Services

Chapter 4 • Securing Applications 69

In this application, the client looks up the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to
invoke the operation using a given name. For the name Duke, the client gets the response Hello
Duke!

This example shows how to use message security for web services at the GlassFish Server level.
For information about using message security at the application level, see “Application-Specific
Message Protection” on page 66. The WSS message security mechanisms implement
message-level authentication (for example, XML digital signature and encryption) of SOAP
web services invocations using the X.509 and username/password profiles of the OASIS
WS-Security standard, which can be viewed from the following URL: http://
docs.oasis-open.org/

wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

The following topics are addressed here:
■ “To Set Up the Sample Application” on page 70
■ “To Run the Sample Application” on page 71

▼ To Set Up the Sample Application
To have access to this sample application, you must have previously installed the J2EE 1.4
samples. If the samples are not installed, follow the steps in the following section.

After you follow these steps, the sample application is located in the directory
as-install/j2ee14-samples/samples/webservices/security/ejb/apps/xms/ or in a
directory of your choice. For easy reference throughout the rest of this section, this directory is
referred to as simply app-dir.

Go to the J2EE 1.4 download URL (http://www.oracle.com/technetwork/java/javaee/
download-141771.html) in your browser.

Click on the Download button for the Samples Bundle.

Click on Accept License Agreement.

Click on the J2EE SDK Samples link.

Choose a location for the j2eesdk-1_4_03-samples.zip file.
Saving the file to as-install is recommended.

Unzip the file.
Unzipping to the as-install/j2ee14–samples directory is recommended. For example, you can
use the following command.
unzip j2eesdk-1_4_03-samples.zip -d j2ee14-samples

Before You Begin

1

2

3

4

5

6

Configuring Message Security for Web Services

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201170

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oracle.com/technetwork/java/javaee/download-141771.html
http://www.oracle.com/technetwork/java/javaee/download-141771.html

▼ To Run the Sample Application

Make sure that the GlassFish Server is running.
Message security providers are set up when the Ant targets are run, so you do not need to
configure these on the GlassFish Server prior to running this example.

If you are not running HTTP on the default port of 8080, change the WSDL file for the example to
reflect the change, and change the common.properties file to reflect the change as well.
The WSDL file for this example is located at app-dir/xms-ejb/src/conf/HelloWorld.wsdl.
The port number is in the following section:
<service name="HelloWorld">
<port name="HelloIFPort" binding="tns:HelloIFBinding">
<soap:address location="http://localhost:8080/service/HelloWorld"/>

</port>

</service>

Verify that the properties in the as-install/samples/common.properties file are set properly for
your installation and environment. If you need a more detailed description of this file, refer to
the “Configuration” section for the web services security applications at
as-install/j2ee14–samples/samples/webservices/security/docs/common.html#Logging.

Change to the app-dir directory.

Run the following Ant targets to compile, deploy, and run the example application:

a. To compile samples:
ant

b. To deploy samples:
ant deploy

c. To run samples:
ant run

If the sample has compiled and deployed properly, you see the following response on your
screen after the application has run:

run:[echo] Running the xms program:[exec] Established message level security :

Hello Duke!

To undeploy the sample, run the following Ant target:
ant undeploy

All of the web services security examples use the same web service name (HelloWorld) and web
service ports. These examples show only the differences necessary for protecting web services
using various mechanisms. Make sure to undeploy an application when you have completed

1

2

3

4

5

Configuring Message Security for Web Services

Chapter 4 • Securing Applications 71

running it. If you do not, you receive an Already in Use error and deployment failures when
you try to deploy another web services example application.

Programmatic Login
Programmatic login allows a deployed Java EE application or module to invoke a login method.
If the login is successful, a SecurityContext is established as if the client had authenticated
using any of the conventional Java EE mechanisms. Programmatic login is supported for servlet
and EJB components on the server side, and for stand-alone or application clients on the client
side. Programmatic login is useful for an application having special needs that cannot be
accommodated by any of the Java EE standard authentication mechanisms.

Note – Programmatic login is specific to the GlassFish Server and not portable to other
application servers.

The following topics are addressed here:

■ “Programmatic Login Precautions” on page 72
■ “Granting Programmatic Login Permission” on page 73
■ “The ProgrammaticLogin Class” on page 73

Programmatic Login Precautions
The GlassFish Server is not involved in how the login information (user, password) is obtained
by the deployed application. Programmatic login places the burden on the application
developer with respect to assuring that the resulting system meets security requirements. If the
application code reads the authentication information across the network, the application
determines whether to trust the user.

Programmatic login allows the application developer to bypass the GlassFish Server-supported
authentication mechanisms and feed authentication data directly to the security service. While
flexible, this capability should not be used without some understanding of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. It is also the application developer’s
responsibility to verify the status of the login attempt and to alter the behavior of the application
accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Programmatic Login

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201172

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated using the programmatic login method,
access is denied immediately and the application might fail if not coded to account for this
occurrence. One way to account for this occurrence is to catch the access control or security
exception, perform a programmatic login, and repeat the request.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application if the security manager is enabled. For information about the
security manager, see “The server.policy File” on page 58. This permission is not granted by
default to deployed applications because this is not a standard Java EE mechanism.

To grant the required permission to the application, add the following to the
domain-dir/config/server.policy file:

grant codeBase "file:jar-file-path" {

permission com.sun.appserv.security.ProgrammaticLoginPermission

"login";
};

The jar-file-path is the path to the application’s JAR file.

The ProgrammaticLoginClass
The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically.

For Javadoc tool pages relevant to programmatic login, go to http://glassfish.java.net/

nonav/docs/v3/api/ and click on the com.sun.appserv.security package.

The ProgrammaticLogin class has four login methods, two for servlets or JSP files and two for
EJB components.

The login methods for servlets or JSP files have the following signatures:

public java.lang.Boolean login(String user, String password,

javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

public java.lang.Boolean login(String user, String password,

String realm, javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response, boolean errors)

throws java.lang.Exception

The login methods for EJB components have the following signatures:

public java.lang.Boolean login(String user, String password)

Programmatic Login

Chapter 4 • Securing Applications 73

http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/

public java.lang.Boolean login(String user, String password,

String realm, boolean errors) throws java.lang.Exception

All of these login methods accomplish the following:
■ Perform the authentication
■ Return true if login succeeded, false if login failed

The login occurs on the realm specified unless it is null, in which case the domain’s default
realm is used. The methods with no realm parameter use the domain’s default realm.

If the errors flag is set to true, any exceptions encountered during the login are propagated to
the caller. If set to false, exceptions are thrown.

On the client side, realm and errors parameters are ignored and the actual login does not occur
until a resource requiring a login is accessed. A java.rmi.AccessException with COBRA

NO_PERMISSION occurs if the actual login fails.

The logout methods for servlets or JSP files have the following signatures:

public java.lang.Boolean logout(HttpServletRequest request,

HttpServletResponse response)

public java.lang.Boolean logout(HttpServletRequest request,

HttpServletResponse response, boolean errors)

throws java.lang.Exception

The logout methods for EJB components have the following signatures:

public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)

throws java.lang.Exception

All of these logout methods return true if logout succeeded, false if logout failed.

If the errors flag is set to true, any exceptions encountered during the logout are propagated to
the caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on
The single sign-on feature of the GlassFish Server allows multiple web applications deployed to
the same virtual server to share the user authentication state. With single sign-on enabled, users
who log in to one web application become implicitly logged into other web applications on the
same virtual server that require the same authentication information. Otherwise, users would
have to log in separately to each web application whose protected resources they tried to access.

A sample application using the single sign-on scenario could be a consolidated airline booking
service that searches all airlines and provides links to different airline web sites. After the user

User Authentication for Single Sign-on

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201174

signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

■ Single sign-on applies to web applications configured for the same realm and virtual server.
The realm is defined by the realm-name element in the web.xml file. For information about
virtual servers, see Chapter 13, “Administering Internet Connectivity,” in GlassFish Server
Open Source Edition 3.1 Administration Guide.

■ As long as users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

■ As soon as a user accesses a protected resource in any web application associated with a
virtual server, the user is challenged to authenticate himself or herself, using the login
method defined for the web application currently being accessed.

■ After authentication, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

■ When the user logs out of one web application (for example, by invalidating the
corresponding session), the user’s sessions in all web applications are invalidated. Any
subsequent attempt to access a protected resource in any application requires the user to
authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that support
cookies.

To configure single sign-on, set the following virtual server properties:

■ sso-enabled - If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is false.

■ sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on record
becomes eligible for purging if no client activity is received. Since single sign-on applies
across several applications on the same virtual server, access to any of the applications keeps
the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values
provide longer single sign-on persistence for the users at the expense of more memory use
on the server.

■ sso-reap-interval-seconds - Specifies the interval between purges of expired single
sign-on records. The default value is 60.

Here are example asadmin set commands with default values:

asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-enabled="true"
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-max-inactive-seconds="300"
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-reap-interval-seconds="60"

User Authentication for Single Sign-on

Chapter 4 • Securing Applications 75

For more information about the asadmin set command, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

Adding Authentication Mechanisms to the Servlet Container
You can use JSR 196 in the web tier to facilitate the injection of pluggable authentication
modules within the servlet constraint processing engine. The GlassFish Server includes
implementations of a number of HTTP layer authentication mechanisms such as basic, form,
and digest authentication. You can add alternative implementations of the included
mechanisms or implementations of new mechanisms such as HTTP Negotiate/SPNEGO,
OpenID, or CAS.

The following topics are addressed here:

■ “The GlassFish Server and JSR 196” on page 76
■ “Writing a Server Authentication Module” on page 77
■ “Sample Server Authentication Module” on page 78
■ “Compiling and Installing a Server Authentication Module” on page 82
■ “Configuring a Server Authentication Module” on page 82
■ “Binding a Server Authentication Module to Your Application” on page 83

The GlassFish Server and JSR 196
The GlassFish Server implements the Servlet Container Profile of JSR 196, Java Authentication
Service Provider Interface for Containers. JSR 196 defines a standard service provider interface
(SPI) that extends the concepts of the Java Authentication and Authorization Service (JAAS) to
enable pluggability of message authentication modules in message processing runtimes. The
JSR 196 standard defines profiles that establish contracts for the use of the SPI in specific
contexts. The Servlet Container Profile of JSR 196 defines the use of the SPI by a Servlet
container such that:

■ The resulting container can be configured with new authentication mechanisms.
■ The container employs the configured mechanisms in its enforcement of the declarative

servlet security model (declared in a web.xml file using security-constraint elements).

The JSR 196 specification defines a simple message processing model composed of four
interaction points:

1. secureRequest on the client
2. validateRequest on the server
3. secureResponse on the server
4. validateResponse on the client

Adding Authentication Mechanisms to the Servlet Container

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201176

A message processing runtime uses the SPI at these interaction points to delegate the
corresponding message security processing to authentication providers, also called
authentication modules, integrated into the runtime by way of the SPI.

A compatible server-side message processing runtime, such as the GlassFish Server servlet
container, supports the validateRequest and secureResponse interaction points of the
message processing model. The servlet container uses the SPI at these interaction points to
delegate the corresponding message security processing to a server authentication module
(SAM), integrated by the SPI into the container.

Writing a Server Authentication Module
A key step in adding an authentication mechanism to a compatible server-side message
processing runtime such as the GlassFish Server servlet container is acquiring a SAM that
implements the desired authentication mechanism. One way to do that is to write the SAM
yourself.

A SAM implements the javax.security.auth.message.module.ServerAuthModule interface as
defined by JSR 196. A SAM is invoked indirectly by the message processing runtime at the
validateRequest and secureResponse interaction points. A SAM must implement the five
methods of the ServerAuthModule interface:

■ getSupportedMessageTypes — An array of Class objects where each element defines a
message type supported by the SAM. For a SAM to be compatible with the Servlet Container
Profile, the returned array must include the HttpServletRequest.class and
HttpServletResponse.class objects.

■ initialize(MessagePolicy requestPolicy, MessagePolicy responsePolicy,

CallbackHandler Map options) — The container calls this method to provide the SAM
with configuration values and with a CallbackHandler. The configuration values are
returned in the policy arguments and in the options Map. The SAM uses CallbackHandler
to access services, such as password validation, provided by the container.

■ AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject,

Subject serviceSubject) — The container calls this method to process each received
HttpServletRequest. The request and its associated HttpServletResponse are passed by
the container to the SAM in the messageInfo argument. The SAM processes the request and
may establish the response to be returned by the container. The SAM uses the provided
Subject arguments to convey its authentication results. The SAM returns different status
values to control the container's invocation processing. The status values and the
circumstances under which they are returned are as follows:
■ AuthStatus.SUCCESS is returned when the application request message is successfully

validated. The container responds to this status value by using the returned client
Subject to invoke the target of the request. When this value is returned, the SAM

Adding Authentication Mechanisms to the Servlet Container

Chapter 4 • Securing Applications 77

(provided a custom AuthConfigProvider is not being used) must use its
CallbackHandler to handle a CallerPrincipalCallback using the clientSubject as
an argument to the callback.

■ AuthStatus.SEND_CONTINUE indicates that message validation is incomplete and that
the SAM has established a preliminary response as the response message in
messageInfo. The container responds to this status value by sending the response to the
client.

■ AuthStatus.SEND_FAILURE indicates that message validation failed and that the SAM
has established an appropriate failure response message in messageInfo. The container
responds to this status value by sending the response to the client.

■ AuthStatus.SEND_SUCCESS is not typically returned. This status value indicates the end
of a multi-message security dialog originating after the service interaction and during
the processing of the application response. The container responds to this status value by
sending the response to the client.

The validateRequest method may also throw an AuthException to indicate that the
message processing by the SAM failed without establishing a failure response message in
messageInfo.

■ secureResponse(MessageInfo messageInfo, Subject serviceSubject) — The
container calls this method before sending a response, resulting from an application
invocation, to the client. The response is passed to the SAM in the messageInfo argument.
In most cases, this method should just return the SEND_SUCCESS status.

■ cleanSubject(MessageInfo messageInfo, Subject subject) — This method removes
the mechanism-specific principals, credentials, or both from the subject. This method is not
currently called by the container. A legitimate implementation could remove all the
principals from the argument subject.

See the Servlet Container Profile section in the JSR 196 specification for additional background
and details.

Sample Server Authentication Module
The class MySam.java is a sample SAM implementation. Notice that the sample implements the
five methods of the ServerAuthModule interface. This SAM implements an approximation of
HTTP basic authentication.

package tip.sam;

import java.io.IOException;

import java.util.Map;

import javax.security.auth.Subject;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

Adding Authentication Mechanisms to the Servlet Container

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201178

import javax.security.auth.message.AuthException;

import javax.security.auth.message.AuthStatus;

import javax.security.auth.message.MessageInfo;

import javax.security.auth.message.MessagePolicy;

import javax.security.auth.message.callback.CallerPrincipalCallback;

import javax.security.auth.message.callback.GroupPrincipalCallback;

import javax.security.auth.message.callback.PasswordValidationCallback;

import javax.security.auth.message.module.ServerAuthModule;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.catalina.util.Base64;

public class MySam implements ServerAuthModule {

protected static final Class[]

supportedMessageTypes = new Class[]{

HttpServletRequest.class,

HttpServletResponse.class

};

private MessagePolicy requestPolicy;

private MessagePolicy responsePolicy;

private CallbackHandler handler;

private Map options;

private String realmName = null;

private String defaultGroup[] = null;

privte static final String REALM_PROPERTY_NAME =

"realm.name";
private static final String GROUP_PROPERTY_NAME =

"group.name";
private static final String BASIC = "Basic";
static final String AUTHORIZATION_HEADER =

"authorization";
static final String AUTHENTICATION_HEADER =

"WWW-Authenticate";

public void initialize(MessagePolicy reqPolicy,

MessagePolicy resPolicy,

CallbackHandler cBH, Map opts)

throws AuthException {

requestPolicy = reqPolicy;

responsePolicy = resPolicy;

handler = cBH;

options = opts;

if (options != null) {

realmName = (String)

options.get(REALM_PROPERTY_NAME);

if (options.containsKey(GROUP_PROPERTY_NAME)) {

defaultGroup = new String[]{(String)

options.get(GROUP_PROPERTY_NAME)};

}

}

}

public Class[] getSupportedMessageTypes() {

return supportedMessageTypes;

}

public AuthStatus validateRequest(

Adding Authentication Mechanisms to the Servlet Container

Chapter 4 • Securing Applications 79

MessageInfo msgInfo, Subject client,

Subject server) throws AuthException {

try {

String username =

processAuthorizationToken(msgInfo, client);

if (username ==

null && requestPolicy.isMandatory()) {

return sendAuthenticateChallenge(msgInfo);

}

setAuthenticationResult(

username, client, msgInfo);

return AuthStatus.SUCCESS;

} catch (Exception e) {

AuthException ae = new AuthException();

ae.initCause(e);

throw ae;

}

}

private String processAuthorizationToken(

MessageInfo msgInfo, Subject s)

throws AuthException {

HttpServletRequest request =

(HttpServletRequest)

msgInfo.getRequestMessage();

String token =

request.getHeader(AUTHORIZATION_HEADER);

if (token != null && token.startsWith(BASIC + " ")) {

token = token.substring(6).trim();

// Decode and parse the authorization token

String decoded =

new String(Base64.decode(token.getBytes()));

int colon = decoded.indexOf(’:’);

if (colon <= 0 || colon == decoded.length() - 1) {

return (null);

}

String username = decoded.substring(0, colon);

// use the callback to ask the container to

// validate the password

PasswordValidationCallback pVC =

new PasswordValidationCallback(s, username,

decoded.substring(colon + 1).toCharArray());

try {

handler.handle(new Callback[]{pVC});

pVC.clearPassword();

} catch (Exception e) {

AuthException ae = new AuthException();

ae.initCause(e);

Adding Authentication Mechanisms to the Servlet Container

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201180

throw ae;

}

if (pVC.getResult()) {

return username;

}

}

return null;

}

private AuthStatus sendAuthenticateChallenge(

MessageInfo msgInfo) {

String realm = realmName;

// if the realm property is set use it,

// otherwise use the name of the server

// as the realm name.

if (realm == null) {

HttpServletRequest request =

(HttpServletRequest)

msgInfo.getRequestMessage();

realm = request.getServerName();

}

HttpServletResponse response =

(HttpServletResponse)

msgInfo.getResponseMessage();

String header = BASIC + " realm=\"" + realm + "\"";
response.setHeader(AUTHENTICATION_HEADER, header);

response.setStatus(

HttpServletResponse.SC_UNAUTHORIZED);

return AuthStatus.SEND_CONTINUE;

}

public AuthStatus secureResponse(

MessageInfo msgInfo, Subject service)

throws AuthException {

return AuthStatus.SEND_SUCCESS;

}

public void cleanSubject(MessageInfo msgInfo,

Subject subject)

throws AuthException {

if (subject != null) {

subject.getPrincipals().clear();

}

}

private static final String AUTH_TYPE_INFO_KEY =

"javax.servlet.http.authType";

// distinguish the caller principal

// and assign default groups

private void setAuthenticationResult(String name,

Subject s, MessageInfo m)

throws IOException,

Adding Authentication Mechanisms to the Servlet Container

Chapter 4 • Securing Applications 81

UnsupportedCallbackException {

handler.handle(new Callback[]{

new CallerPrincipalCallback(s, name)

});

if (name != null) {

// add the default group if the property is set

if (defaultGroup != null) {

handler.handle(new Callback[]{

new GroupPrincipalCallback(s, defaultGroup)

});

}

m.getMap().put(AUTH_TYPE_INFO_KEY, ""MySAM");
}

}

}

Note that the initialize method looks for the group.name and realm.name properties. The
group.name property configures the default group assigned as a result of any successful
authentication. The realm.name property defines the realm value sent back to the browser in
the WWW-Authenticate challenge.

Compiling and Installing a Server Authentication
Module
Before you can use the sample SAM, you need to compile, install, and configure it. Then you
can bind it to an application.

To compile the SAM, include the SPI in your classpath. When the GlassFish Server is installed,
the JAR file containing the SPI, jmac-api.jar, is installed in the as-install/lib directory. After
you compile the SAM, install it by copying a JAR file containing the compiled SAM to the
as-install/lib directory.

Configuring a Server Authentication Module
You can configure a SAM in one of these ways:

■ In the Administration Console, open the Security component under the relevant
configuration and go to the Message Security page. Set the following options:
■ Authentication Layer — HttpServlet

■ Provider Type — server or client-server
■ Provider ID — Specify a unique name for the SAM, for example MySAM
■ Class Name — Specify the fully qualified class name, for example tip.sam.MySam
■ Additional Property — Name: group-name Value: user
■ Additional Property — Name: realm-name Value: Sam

For details, click the Help button in the Administration Console.

Adding Authentication Mechanisms to the Servlet Container

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201182

■ Use the asadmin create-message-security-provider command to configure a SAM. Set
the following options:
■ ----layer HttpServlet

■ ----providertype server or ----providertype client-server

■ ----classname tip.sam.MySam

■ ----property group-name=user:realm-name=Sam

■ Provider name operand — Specify a unique name for the SAM, for example MySAM

For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Binding a Server Authentication Module to Your
Application
After you install and configure the SAM, you can bind it for use by the container on behalf of
one or more of your applications. You have two options in how you bind the SAM, depending
on whether you are willing to repackage and redeploy your application:

■ If you are willing to repackage and redeploy, you can bind the SAM using the
glassfish-web.xml file. Set the value of the httpservlet-security-provider attribute of
the glassfish-web-app element to the SAM's configured provider ID, for example, MySAM.
For more information about the glassfish-web.xml file, see the GlassFish Server Open
Source Edition 3.1 Application Deployment Guide. This option leverages the native
AuthConfigProvider implementation that ships with the GlassFish Server.

■ Another approach is to develop your own AuthConfigProvider and register it with the
GlassFish Server AuthConfigFactory for use on behalf of your applications. For example, a
simple AuthConfigProvider can obtain, through its initialization properties, the classname
of a SAM to configure on behalf of the applications for which the provider is registered. You
can find a description of the functionality of an AuthConfigProvider and of the registration
facilities provided by an AuthConfigFactory in the JSR 196 specification.

Adding Authentication Mechanisms to the Servlet Container

Chapter 4 • Securing Applications 83

84

Developing Web Services

This chapter describes Oracle GlassFish Server support for web services. Java API for
XML-Based Web Services (JAX-WS) version 2.2 is supported. Java API for XML-Based Remote
Procedure Calls (JAX-RPC) version 1.1 is supported for backward compatibility.

The following topics are addressed here:
■ “Creating Portable Web Service Artifacts” on page 86
■ “Deploying a Web Service” on page 86
■ “The Web Service URI, WSDL File, and Test Page” on page 87
■ “GlassFish Java EE Service Engine” on page 88

Note – If you installed the Web Profile, web services are not supported unless the optional Metro
Web Services Stack add-on component is downloaded from the Update Tool. Without the
Metro add-on component, a servlet or EJB component cannot be a web service endpoint, and
the glassfish-web.xml and glassfish-ejb-jar.xml elements related to web services are
ignored. For information about the Update Tool, see “Update Tool” in GlassFish Server Open
Source Edition 3.1 Administration Guide.

Part III, “Web Services,” in The Java EE 6 Tutorial shows how to deploy simple web services to
the GlassFish Server.

For additional information about JAX-WS and web services, see Java Specification Request
(JSR) 224 (http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html) and
JSR 109 (http://jcp.org/en/jsr/detail?id=109).

For information about web services security, see “Configuring Message Security for Web
Services” on page 62.

The Fast Infoset standard specifies a binary format based on the XML Information Set. This
format is an efficient alternative to XML. For information about using Fast Infoset, see the
following links:

5C H A P T E R 5

85

http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/en/jsr/detail?id=109

■ Java Web Services Developer Pack 1.6 Release Notes (http://download.oracle.com/
docs/cd/E17802_01/webservices/webservices/docs/1.6/ReleaseNotes.html)

■ Fast Infoset in Java Web Services Developer Pack, Version 1.6 (http://
download.oracle.com/

docs/cd/E17802_01/webservices/webservices/docs/1.6/jaxrpc/fastinfoset/

manual.html)
■ Fast Infoset Project (https://fi.dev.java.net/)

Creating Portable Web Service Artifacts
For a tutorial that shows how to use the wsimport and wsgen commands, see Part III, “Web
Services,” in The Java EE 6 Tutorial. For reference information on these commands, see the
GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Deploying a Web Service
You deploy a web service endpoint to the GlassFish Server just as you would any servlet,
stateless session bean (SLSB), or application.

Note – For complex services with dependent classes, user specified WSDL files, or other
advanced features, autodeployment of an annotated file is not sufficient.

The GlassFish Server deployment descriptor files glassfish-web.xml and
glassfish-ejb-jar.xml provide optional web service enhancements in the
webservice-endpoint and webservice-description elements, including a
debugging-enabled subelement that enables the creation of a test page. The test page feature is
enabled by default and described in “The Web Service URI, WSDL File, and Test Page” on
page 87.

For more information about deployment, autodeployment, and deployment descriptors, see
the GlassFish Server Open Source Edition 3.1 Application Deployment Guide. For more
information about the asadmin deploy command, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

Creating Portable Web Service Artifacts

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201186

http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.6/ReleaseNotes.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.6/ReleaseNotes.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
https://fi.dev.java.net/

The Web Service URI, WSDL File, and Test Page
Clients can run a deployed web service by accessing its service endpoint address URI, which has
the following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the application.xml or web.xml file, and can be overridden in
the glassfish-application.xml or glassfish-web.xml file. The servlet-mapping-url-pattern
is defined in the web.xml file.

In the following example, the context-root is my-ws and the servlet-mapping-url-pattern is
/simple:

http://localhost:8080/my-ws/simple

You can view the WSDL file of the deployed service in a browser by adding ?WSDL to the end of
the URI. For example:

http://localhost:8080/my-ws/simple?WSDL

For debugging, you can run a test page for the deployed service in a browser by adding ?Tester
to the end of the URL. For example:

http://localhost:8080/my-ws/simple?Tester

You can also test a service using the Administration Console. Open the Web Services
component, select the web service in the listing on the General tab, and select Test. For details,
click the Help button in the Administration Console.

Note – The test page works only for WS-I compliant web services. This means that the tester
servlet does not work for services with WSDL files that use RPC/encoded binding.

Generation of the test page is enabled by default. You can disable the test page for a web service
by setting the value of the debugging-enabled element in the glassfish-web.xml and
glassfish-ejb-jar.xml deployment descriptor to false. For more information, see the
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

The Web Service URI, WSDL File, and Test Page

Chapter 5 • Developing Web Services 87

GlassFish Java EE Service Engine
GlassFish Server 3.1 provides the GlassFish Java EE Service Engine, a JSR 208 compliant Java
Business Integration (JBI) runtime component that connects Java EE web services to JBI
components. The Java EE Service Engine is installed as an add-on component using the Update
Tool. Look for the JBI component named Java EE Service Engine. A JBI runtime is not installed
with or integrated into GlassFish Server 3.1 and must be obtained separately. For more
information about using the Update Tool to obtain the Java EE Service Engine and other
add-on components, see “Update Tool” in GlassFish Server Open Source Edition 3.1
Administration Guide.

The Java EE Service Engine acts as a bridge between the Java EE and JBI runtime environments
for web service providers and web service consumers. The Java EE Service Engine provides
better performance than a SOAP over HTTP binding component due to in-process
communication between components and additional protocols provided by JBI binding
components such as JMS, SMTP, and File.

The JSR 208 (http://jcp.org/en/jsr/detail?id=208) specification allows transactions to be
propagated to other components using a message exchange property specified in the
JTA_TRANSACTION_PROPERTY_NAME field. The Java EE Service Engine uses this property to set
and get a transaction object from the JBI message exchange. It then uses the transaction object
to take part in a transaction. This means a Java EE application or module can take part in a
transaction started by a JBI application. Conversely, a JBI application can take part in a
transaction started by a Java EE application or module.

Similarly, the JSR 208 specification allows a security subject to be propagated as a message
exchange property named javax.jbi.security.subject. Thus a security subject can be
propagated from a Java EE application or module to a JBI application or the reverse.

To deploy a Java EE application or module as a JBI service unit, use the asadmin deploy
command, or autodeployment. For more information about the asadmin deploy command,
see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual. For more information
about autodeployment, see “To Deploy an Application or Module Automatically” in GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

Using the jbi.xml File
Section 6.3.1 of the JSR 208 specification describes the jbi.xml file. This is a deployment
descriptor, located in the META-INF directory. To deploy a Java EE application or module as a
JBI service unit, you need only specify a small subset of elements in the jbi.xml file. Here is an
example provider:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi" xmlns:ns0="http://ejbws.jbi.misc/">
<services binding-component="false">

GlassFish Java EE Service Engine

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201188

http://jcp.org/en/jsr/detail?id=208

<provides endpoint-name="MiscPort" interface-name="ns0:Misc" service-name="ns0:MiscService"/>
</services>

</jbi>

Here is an example consumer:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi" xmlns:ns0="http://message.hello.jbi/">
<services binding-component="false">
<consumes endpoint-name="MsgPort" interface-name="ns0:Msg" service-name="ns0:MsgService"/>

</services>

</jbi>

The Java EE Service Engine enables the endpoints described in the provides section of the
jbi.xml file in the JBI runtime. Similarly, the Java EE Service Engine routes invocations of the
endpoints described in the consumes section from the Java EE web service consumer to the JBI
runtime.

GlassFish Java EE Service Engine

Chapter 5 • Developing Web Services 89

90

Using the Java Persistence API

Oracle GlassFish Server support for the Java Persistence API includes all required features
described in the Java Persistence Specification, also known as JSR 317 (http://jcp.org/en/
jsr/detail?id=317). The Java Persistence API can be used with non-EJB components outside
the EJB container.

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. For basic information about the Java Persistence
API, see Part VI, “Persistence,” in The Java EE 6 Tutorial.

This chapter contains GlassFish Server specific information on using the Java Persistence API.

The following topics are addressed here:

■ “Specifying the Database” on page 92
■ “Additional Database Properties” on page 94
■ “Configuring the Cache” on page 94
■ “Setting the Logging Level” on page 94
■ “Using Lazy Loading” on page 94
■ “Primary Key Generation Defaults” on page 95
■ “Automatic Schema Generation” on page 95
■ “Query Hints” on page 98
■ “Changing the Persistence Provider” on page 98
■ “Restrictions and Optimizations” on page 99

Note – The default persistence provider in the GlassFish Server is based on the EclipseLink Java
Persistence API implementation. All configuration options in EclipseLink are available to
applications that use the GlassFish Server's default persistence provider.

6C H A P T E R 6

91

http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Specifying the Database
The GlassFish Server uses the bundled Java DB (Derby) database by default, named
jdbc/__default. If the transaction-type element is omitted or specified as JTA and both the
jta-data-source and non-jta-data-source elements are omitted in the persistence.xml
file, Java DB is used as a JTA data source. If transaction-type is specified as RESOURCE_LOCAL
and both jta-data-source and non-jta-data-source are omitted, Java DB is used as a
non-JTA data source.

To use a non-default database, either specify a value for the jta-data-source element, or set
the transaction-type element to RESOURCE_LOCAL and specify a value for the
non-jta-data-source element.

If you are using the default persistence provider, the provider attempts to automatically detect
the database type based on the connection metadata. This database type is used to issue SQL
statements specific to the detected database type's dialect. You can specify the optional
eclipselink.target-database property to guarantee that the database type is correct. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em1">
<jta-data-source>jdbc/MyDB2DB</jta-data-source>

<properties>

<property name="eclipselink.target-database"
value="DB2"/>

</properties>

</persistence-unit>

</persistence>

The following eclipselink.target-database property values are allowed. Supported
platforms have been tested with the GlassFish Server and are found to be Java EE compatible.

//Supported platforms

JavaDB

Derby

Oracle

MySQL4

//Others available

SQLServer

DB2

Sybase

Specifying the Database

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201192

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

PostgreSQL

Informix

TimesTen

Attunity

HSQL

SQLAnyWhere

DBase

DB2Mainframe

Cloudscape

PointBase

For more information about the eclipselink.target-database property, see Using
EclipseLink JPA Extensions for Session, Target Database and Target Application Server.

To use the Java Persistence API outside the EJB container (in Java SE mode), do not specify the
jta-data-source or non-jta-data-source elements. Instead, specify the provider element
and any additional properties required by the JDBC driver or the database. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name ="em2">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

<class>ejb3.war.servlet.JpaBean</class>

<properties>

<property name="eclipselink.target-database"
value="Derby"/>

<!-- JDBC connection properties -->

<property name="eclipselink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
<property name="eclipselink.jdbc.url"

value="jdbc:derby://localhost:1527/testdb;retrieveMessagesFromServerOnGetMessage=true;create=true;"/>
<property name="eclipselink.jdbc.user" value="APP"/>
<property name="eclipselink.jdbc.password" value="APP"/>

</properties>

</persistence-unit>

</persistence>

For more information about eclipselink properties, see “Additional Database Properties” on
page 94.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the GlassFish
Server Open Source Edition 3.1-3.1.1 Release Notes. For configurations of supported and other
drivers, see “Configuration Specifics for JDBC Drivers” in GlassFish Server Open Source
Edition 3.1 Administration Guide.

To change the persistence provider, see “Changing the Persistence Provider” on page 98.

Specifying the Database

Chapter 6 • Using the Java Persistence API 93

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server

Additional Database Properties
If you are using the default persistence provider, you can specify in the persistence.xml file
the database properties listed at How to Use EclipseLink JPA Extensions for JDBC Connection
Communication.

For schema generation properties, see “Generation Options” on page 96. For query hints, see
“Query Hints” on page 98.

Configuring the Cache
If you are using the default persistence provider, you can configure whether caching occurs, the
type of caching, the size of the cache, and whether client sessions share the cache. Caching
properties for the default persistence provider are described in detail at Using EclipseLink JPA
Extensions for Entity Caching.

Setting the Logging Level
One of the default persistence provider's properties that you can set in the persistence.xml file
is eclipselink.logging.level. For example, setting the logging level to FINE or higher logs all
SQL statements. For details about this property, see Using EclipseLink JPA Extensions for
Logging.

You can also set the EclipseLink logging level globally in the GlassFish Server by setting a JVM
option using the asadmin create-jvm-options command. For example:

asadmin create-jvm-options -Declipselink.logging.level=FINE

Setting the logging level to OFF disables EclipseLink logging. A logging level set in the
persistence.xml file takes precedence over the global logging level.

Using Lazy Loading
OneToMany and ManyToMany mappings are loaded lazily by default in compliance with the Java
Persistence Specification. OneToOne and ManyToOne mappings are loaded eagerly by default.

For basic information about lazy loading, see What You May Need to Know About EclipseLink
JPA Lazy Loading.

Additional Database Properties

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201194

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_Connection_Communication
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_Connection_Communication
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Entity_Caching
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Entity_Caching
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Logging
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Logging
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#What_You_May_Need_to_Know_About_EclipseLink_JPA_Lazy_Loading
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#What_You_May_Need_to_Know_About_EclipseLink_JPA_Lazy_Loading

Primary Key Generation Defaults
In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator

annotations in the Java Persistence Specification, certain defaults are noted as specific to the
persistence provider. The default persistence provider's primary key generation defaults are
listed here.

@GeneratedValue defaults are as follows:

■ Using strategy=AUTO (or no strategy) creates a @TableGenerator named SEQ_GEN with
default settings. Specifying a generator has no effect.

■ Using strategy=TABLE without specifying a generator creates a @TableGenerator named
SEQ_GEN_TABLE with default settings. Specifying a generator but no @TableGenerator

creates and names a @TableGenerator with default settings.
■ Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are

database-specific.
■ For Oracle databases, not specifying a generator creates a @SequenceGenerator named

SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no
@SequenceGenerator creates and names a @SequenceGenerator with default settings.

■ For PostgreSQL databases, a SERIAL column named entity-table_pk-column_SEQ is
created.

■ For MySQL databases, an AUTO_INCREMENT column is created.
■ For other supported databases, an IDENTITY column is created.

The @SequenceGenerator annotation has one default specific to the default provider. The
default sequenceName is the specified name.

@TableGenerator defaults are as follows:

■ The default table is SEQUENCE.
■ The default pkColumnName is SEQ_NAME.
■ The default valueColumnName is SEQ_COUNT.
■ The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation
The automatic schema generation feature of the GlassFish Server defines database tables based
on the fields or properties in entities and the relationships between the fields or properties. This
insulates developers from many of the database related aspects of development, allowing them
to focus on entity development. The resulting schema is usable as-is or can be given to a
database administrator for tuning with respect to performance, security, and so on.

Automatic Schema Generation

Chapter 6 • Using the Java Persistence API 95

The following topics are addressed here:

■ “Annotations” on page 96
■ “Generation Options” on page 96

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. Instead, an error is written to the server log. This is done to allow you to
investigate the problem and fix it manually. You should not rely on the partially created
database schema to be correct for running the application.

Annotations
The following annotations are used in automatic schema generation: @AssociationOverride,
@AssociationOverrides, @AttributeOverride, @AttributeOverrides, @Column,
@DiscriminatorColumn, @DiscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue,
@Id, @IdClass, @JoinColumn, @JoinColumns, @JoinTable, @Lob, @ManyToMany, @ManyToOne,
@OneToMany, @OneToOne, @PrimaryKeyJoinColumn, @PrimaryKeyJoinColumns,
@SecondaryTable, @SecondaryTables, @SequenceGenerator, @Table, @TableGenerator,
@UniqueConstraint, and @Version. For information about these annotations, see the Java
Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic
schema generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the
resulting DDL files.

Generation Options
Schema generation properties or asadmin command line options can control automatic schema
generation by the following:

■ Creating tables during deployment
■ Dropping tables during undeployment
■ Dropping and creating tables during redeployment
■ Generating the DDL files

Automatic Schema Generation

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201196

Note – Before using these options, make sure you have a properly configured database. See
“Specifying the Database” on page 92.

Optional schema generation properties control the automatic creation of database tables. You
can specify them in the persistence.xml file. For more information, see Using EclipseLink JPA
Extensions for Schema Generation.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment.

TABLE 6–1 The asadmin deploy and asadmin deploydir Generation Options

Option Default Description

--createtables none If true, causes database tables to be created for entities that need them. No unique
constraints are created. If false, does not create tables. If not specified, the value of
the eclipselink.ddl-generation property in persistence.xml is used.

--dropandcreatetables none If true, and if tables were automatically created when this application was last
deployed, tables from the earlier deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the same names as
those that would have been automatically created are found, the deployment
proceeds, but a warning is thrown to indicate that tables could not be created.

If false, the eclipselink.ddl-generation property setting in persistence.xml

is overridden.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment.

TABLE 6–2 The asadmin undeploy Generation Options

Option Default Description

--droptables none If true, causes database tables that were automatically created when the entities were last
deployed to be dropped when the entities are undeployed. If false, does not drop tables.

If not specified, tables are dropped only if the eclipselink.ddl-generation property setting in
persistence.xml is drop-and-create-tables.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy

commands, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

When asadmin deployment options and persistence.xml options are both specified, the
asadmin deployment options take precedence.

Automatic Schema Generation

Chapter 6 • Using the Java Persistence API 97

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation

Query Hints
Query hints are additional, implementation-specific configuration settings. You can use hints
in your queries in the following format:

setHint("hint-name", hint-value)

For example:

Customer customer = (Customer)entityMgr.

createNamedQuery("findCustomerBySSN").
setParameter("SSN", "123-12-1234").
setHint("eclipselink.refresh", true).

getSingleResult();

For more information about the query hints available with the default provider, see How to Use
EclipseLink JPA Query Hints.

Changing the Persistence Provider

Note – The previous sections in this chapter apply only to the default persistence provider. If you
change the provider for a module or application, the provider-specific database properties,
query hints, and schema generation features described in this chapter do not apply.

You can change the persistence provider for an application in the manner described in the Java
Persistence API Specification.

First, install the provider. Copy the provider JAR files to the domain-dir/lib directory, and
restart the GlassFish Server. For more information about the domain-dir/lib directory, see
“Using the Common Class Loader” on page 34. The new persistence provider is now available
to all modules and applications deployed on servers that share the same configuration.
However, the default provider remains the same.

In your persistence unit, specify the provider and any properties the provider requires in the
persistence.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em3">
<provider>com.company22.persistence.PersistenceProviderImpl</provider>

<properties>

<property name="company22.database.name" value="MyDB"/>
</properties>

</persistence-unit>

</persistence>

Query Hints

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 201198

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Query_Hints
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Query_Hints

To migrate from Oracle TopLink to EclipseLink, see Migrating from Oracle TopLink to
EclipseLink (http://wiki.eclipse.org/EclipseLink/Examples/
MigratingFromOracleTopLink).

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the Java
Persistence API.

The following topics are addressed here:

■ “Oracle Database Enhancements” on page 99
■ “Extended Persistence Context” on page 99
■ “Using @OrderBy with a Shared Session Cache” on page 100
■ “Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver” on page 100
■ “Database Case Sensitivity” on page 100
■ “Sybase Finder Limitation” on page 101
■ “MySQL Database Restrictions” on page 102

Oracle Database Enhancements
EclipseLink features a number of enhancements for use with Oracle databases. These
enhancements require classes from the Oracle JDBC driver JAR files to be visible to EclipseLink
at runtime. If you place the JDBC driver JAR files in domain-dir/lib, the classes are not visible
to GlassFish Server components, including EclipseLink.

If you are using an Oracle database, put JDBC driver JAR files in domain-dir/lib/ext instead.
This ensures that the JDBC driver classes are visible to EclipseLink.

If you do not want to take advantage of Oracle-specific extensions from EclipseLink or you
cannot put JDBC driver JAR files in domain-dir/lib/ext, set the
eclipselink.target-database property to the value
org.eclipse.persistence.platform.database.OraclePlatform. For more information
about the eclipselink.target-database property, see “Specifying the Database” on page 92.

Extended Persistence Context
The Java Persistence API specification does not specify how the container and persistence
provider should work together to serialize an extended persistence context. This also prevents
successful serialization of a reference to an extended persistence context in a stateful session
bean.

Even in a single-instance environment, if a stateful session bean is passivated, its extended
persistence context could be lost when the stateful session bean is activated.

Restrictions and Optimizations

Chapter 6 • Using the Java Persistence API 99

http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink
http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink
http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink

Therefore, in GlassFish Server, a stateful session bean with an extended persistence context is
never passivated and cannot be failed over.

Using @OrderBy with a Shared Session Cache
Setting @OrderBy on a ManyToMany or OneToMany relationship field in which a List represents
the Many side doesn't work if the session cache is shared. Use one of the following
workarounds:
■ Have the application maintain the order so the List is cached properly.
■ Refresh the session cache using EntityManager.refresh() if you don't want to maintain

the order during creation or modification of the List.
■ Disable session cache sharing in persistence.xml as follows:

<property name="eclipselink.cache.shared.default" value="false"/>

Using BLOB or CLOB Types with the Inet Oraxo JDBC
Driver
To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC
Driver for Oracle Databases, you must set the database's streamstolob property value to true.

Database Case Sensitivity
Mapping references to column or table names must be in accordance with the expected column
or table name case, and ensuring this is the programmer's responsibility. If column or table
names are not explicitly specified for a field or entity, the GlassFish Server uses upper case
column names by default, so any mapping references to the column or table names must be in
upper case. If column or table names are explicitly specified, the case of all mapping references
to the column or table names must be in accordance with the case used in the specified names.

The following are examples of how case sensitivity affects mapping elements that refer to
columns or tables. Programmers must keep case sensitivity in mind when writing these
mappings.

Unique Constraints
If column names are not explicitly specified on a field, unique constraints and foreign key
mappings must be specified using uppercase references. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "DEPTNAME" }) })

The other way to handle this is by specifying explicit column names for each field with the
required case. For example:

Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011100

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "deptName" }) })

public class Department{ @Column(name="deptName") private String deptName; }

Otherwise, the ALTER TABLE statement generated by the GlassFish Server uses the incorrect
case, and the creation of the unique constraint fails.

Foreign Key Mapping
Use @OneToMany(mappedBy="COMPANY") or specify an explicit column name for the Company
field on the Many side of the relationship.

SQL Result Set Mapping
Use the following elements:

<sql-result-set-mapping name="SRSMName" >

<entity-result entity-class="entities.someEntity" />

<column-result name="UPPERCASECOLUMNNAME" />

</sql-result-set-mapping>

Or specify an explicit column name for the upperCaseColumnName field.

Named Native Queries and JDBC Queries
Column or table names specified in SQL queries must be in accordance with the expected case.
For example, MySQL requires column names in the SELECT clause of JDBC queries to be
uppercase, while PostgreSQL and Sybase require table names to be uppercase in all JDBC
queries.

PostgreSQL Case Sensitivity
PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve
column or table names in lowercase unless the names are quoted. For example:

use aliases Select m.ID AS \"ID\" from Department m

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

Restrictions and Optimizations

Chapter 6 • Using the Java Persistence API 101

To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the GlassFish Server for
persistence.
■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields

in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.
■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an

error message, start the MySQL database in strict SQL mode.
■ The order of fields in a foreign key index must match the order in the explicitly created

index on the primary table.
■ The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an
example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,

Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011102

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

Restrictions and Optimizations

Chapter 6 • Using the Java Persistence API 103

http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

104

Developing Web Applications

This chapter describes how web applications are supported in the Oracle GlassFish Server.

The following topics are addressed here:

■ “Using Servlets” on page 105
■ “Using JavaServer Pages” on page 110
■ “Creating and Managing Sessions” on page 114
■ “Using Comet” on page 122
■ “Advanced Web Application Features” on page 135

For general information about web applications, see Part II, “The Web Tier,” in The Java EE 6
Tutorial.

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Using Servlets
GlassFish Server supports the Java Servlet Specification version 3.0.

Note – Servlet API version 3.0 is fully backward compatible with versions 2.3, 2.4, and 2.5, so all
existing servlets should work without modification or recompilation.

To develop servlets, use the Java Servlet API. For information about using the Java Servlet API,
see the documentation at http://www.oracle.com/technetwork/java/javaee/servlet/
index.html.

7C H A P T E R 7

105

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

The GlassFish Server provides the wscompile and wsdeploy tools to help you implement a web
service endpoint as a servlet. For more information about these tools, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

This section describes how to create effective servlets to control application interactions
running on a GlassFish Server, including standard-based servlets. In addition, this section
describes the GlassFish Server features to use to augment the standards.

The following topics are addressed here:

■ “Caching Servlet Results” on page 106
■ “About the Servlet Engine” on page 109

Caching Servlet Results
The GlassFish Server can cache the results of invoking a servlet, a JSP, or any URL pattern to
make subsequent invocations of the same servlet, JSP, or URL pattern faster. The GlassFish
Server caches the request results for a specific amount of time. In this way, if another data call
occurs, the GlassFish Server can return the cached data instead of performing the operation
again. For example, if your servlet returns a stock quote that updates every 5 minutes, you set
the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how a GlassFish Server web application handles response caching, you edit specific
fields in the glassfish-web.xml file.

Note – A servlet that uses caching is not portable.

For Javadoc tool pages relevant to caching servlet results, go to http://glassfish.java.net/

nonav/docs/v3/api/ and click on the com.sun.appserv.web.cache package.

For information about JSP caching, see “JSP Caching” on page 111.

The following topics are addressed here:

■ “Caching Features” on page 107
■ “Default Cache Configuration” on page 107
■ “Caching Example” on page 108
■ “The CacheKeyGenerator Interface” on page 109

Using Servlets

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011106

http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/

Caching Features
The GlassFish Server has the following web application response caching capabilities:
■ Caching is configurable based on the servlet name or the URI.
■ When caching is based on the URI, this includes user specified parameters in the query

string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

■ Cache size, entry timeout, and other caching behaviors are configurable.
■ Entry timeout is measured from the time an entry is created or refreshed. To override this

timeout for an individual cache mapping, specify the cache-mapping subelement timeout.
■ To determine caching criteria programmatically, write a class that implements the

com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows
when a back end data source was last modified, you can write a helper class to retrieve the
last modified timestamp from the data source and decide whether to cache the response
based on that timestamp.

■ To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See “The CacheKeyGenerator
Interface” on page 109.

■ All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

■ Since newly updated classes impact what gets cached, the web container clears the cache
during dynamic deployment or reloading of classes.

■ The following HttpServletRequest request attributes are exposed.
■ com.sun.appserv.web.cachedServletName, the cached servlet target
■ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

■ Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those
resources. For details, see “cache-mapping” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide and “dispatcher” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide. These are elements in the glassfish-web.xml file.

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

■ The default cache timeout is 30 seconds.
■ Only the HTTP GET method is eligible for caching.
■ HTTP requests with cookies or sessions automatically disable caching.

Using Servlets

Chapter 7 • Developing Web Applications 107

■ No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
■ The default key consists of the Servlet Path (minus pathInfo and the query string).
■ A “least recently used” list is maintained to evict cache entries if the maximum cache size is

exceeded.
■ Key generation concatenates the servlet path with key field values, if any are specified.
■ Results produced by resources that are the target of a RequestDispatcher.include() or

RequestDispatcher.forward() call are never cached.

Caching Example
Here is an example cache element in the glassfish-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet-name>

<timeout name="timefield">120</timeout>
<http-method>GET</http-method>

<http-method>POST</http-method>

</cache-mapping>

<cache-mapping>

<url-pattern> /catalog/* </url-pattern>

<!-- cache the best selling category; cache the responses to

-- this resource only when the given parameters exist. Cache

-- only when the catalog parameter has ’lilies’ or ’roses’

-- but no other catalog varieties:

-- /orchard/catalog?best&category=’lilies’

-- /orchard/catalog?best&category=’roses’

-- but not the result of

-- /orchard/catalog?best&category=’wild’

-->

<constraint-field name=’best’ scope=’request.parameter’/>

<constraint-field name=’category’ scope=’request.parameter’>

<value> roses </value>

<value> lilies </value>

</constraint-field>

<!-- Specify that a particular field is of given range but the

-- field doesn’t need to be present in all the requests -->

<constraint-field name=’SKUnum’ scope=’request.parameter’>

<value match-expr=’in-range’> 1000 - 2000 </value>

</constraint-field>

<!-- cache when the category matches with any value other than

-- a specific value -->

<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">
bogus

</value>

</constraint-field>

</cache-mapping>

<cache-mapping>

<servlet-name> InfoServlet </servlet-name>

<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>

</cache>

Using Servlets

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011108

For more information about the glassfish-web.xml caching settings, see “cache” in GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

The CacheKeyGenerator Interface
The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the
glassfish-web.xml deployment descriptor. For more information, see “default-helper” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

About the Servlet Engine
Servlets exist in and are managed by the servlet engine in the GlassFish Server. The servlet
engine is an internal object that handles all servlet meta functions. These functions include
instantiation, initialization, destruction, access from other components, and configuration
management.

The following topics are addressed here:

■ “Instantiating and Removing Servlets” on page 109
■ “Request Handling” on page 109

Instantiating and Removing Servlets
After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init method
to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy method in the
servlet so that the servlet can perform any final tasks and deallocate resources. You can override
this method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Request Handling
When a request is made, the GlassFish Server hands the incoming data to the servlet engine.
The servlet engine processes the request’s input data, such as form data, cookies, session
information, and URL name-value pairs, into an HttpServletRequest request object type.

The servlet engine also creates an HttpServletResponse response object type. The engine then
passes both as parameters to the servlet’s service method.

Using Servlets

Chapter 7 • Developing Web Applications 109

In an HTTP servlet, the default service method routes requests to another method based on
the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example,
HTTP POST requests are sent to the doPost method, HTTP GET requests are sent to the doGet
method, and so on. This enables the servlet to process request data differently, depending on
which transfer method is used. Since the routing takes place in the service method, you
generally do not override service in an HTTP servlet. Instead, override doGet, doPost, and so
on, depending on the request type you expect.

To perform the tasks to answer a request, override the service method for generic servlets, and
the doGet or doPost methods for HTTP servlets. Very often, this means accessing EJB
components to perform business transactions, then collating the information in the request
object or in a JDBC ResultSet object.

Using JavaServer Pages
The GlassFish Server supports the following JSP features:
■ JavaServer Pages (JSP) Specification
■ Precompilation of JSP files, which is especially useful for production servers
■ JSP tag libraries and standard portable tags

For information about creating JSP files, see the JavaServer Pages web site at
http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

For information about Java Beans, see the JavaBeans web page at http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-138795.html.

This section describes how to use JavaServer Pages (JSP files) as page templates in a GlassFish
Server web application.

The following topics are addressed here:
■ “JSP Tag Libraries and Standard Portable Tags” on page 110
■ “JSP Caching” on page 111
■ “Options for Compiling JSP Files” on page 114

JSP Tag Libraries and Standard Portable Tags
GlassFish Server supports tag libraries and standard portable tags. For more information, see
the JavaServer Pages Standard Tag Library (JSTL) page at http://www.oracle.com/
technetwork/java/index-jsp-135995.html.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP
tag libraries (in as-install/lib) to use JavaServer Faces technology or JSTL, respectively. These
tag libraries are automatically available to all web applications.

Using JavaServer Pages

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011110

http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html

However, the as-install/lib/jspcachtags.jar tag library for JSP caching is not automatically
available to web applications. See “JSP Caching” on page 111, next.

JSP Caching
JSP caching lets you cache tag invocation results within the Java engine. Each can be cached
using different cache criteria. For example, suppose you have invocations to view stock quotes,
weather information, and so on. The stock quote result can be cached for 10 minutes, the
weather report result for 30 minutes, and so on.

The following topics are addressed here:
■ “Enabling JSP Caching” on page 111
■ “Caching Scope” on page 112
■ “The cache Tag” on page 112
■ “The flush Tag” on page 113

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 106.

Enabling JSP Caching
To globally enable JSP caching, set the jspCachingEnabled property to true. The default is
false. For example:

asadmin set server-config.web-container.property.jspCachingEnabled="true"

For more information about the asadmin set command, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

To enable JSP caching for a single web application, follow these steps:

1. Extract the META-INF/jspcachtags.tld file from the
as-install/glassfish/modules/web-glue.jar file.

2. Create a new JAR file (for example, jspcachtags.jar) containing just the
META-INF/jspcachtags.tld file previously extracted.

3. Bundle this new JAR file in the WEB-INF/lib directory of your web application.

Note – Web applications that use JSP caching without bundling the tag library are not portable.

Refer to GlassFish Server tags in JSP files as follows:

<%@ taglib prefix="prefix" uri="http://glassfish.org/taglibs/cache" %>

Subsequently, the cache tags are available as <prefix:cache> and <prefix:flush>. For example,
if your prefix is mypfx, the cache tags are available as <mypfx:cache> and <mypfx:flush>.

Using JavaServer Pages

Chapter 7 • Developing Web Applications 111

Caching Scope
JSP caching is available in three different scopes: request, session, and application. The
default is application. To use a cache in request scope, a web application must specify the
com.sun.appserv.web.taglibs.cache.CacheRequestListener in its web.xml deployment
descriptor, as follows:

<listener>

<listener-class>

com.sun.appserv.web.taglibs.cache.CacheRequestListener

</listener-class>

</listener>

Likewise, for a web application to utilize a cache in session scope, it must specify the
com.sun.appserv.web.taglibs.cache.CacheSessionListener in its web.xml deployment
descriptor, as follows:

<listener>

<listener-class>

com.sun.appserv.web.taglibs.cache.CacheSessionListener

</listener-class>

</listener>

To utilize a cache in application scope, a web application need not specify any listener. The
com.sun.appserv.web.taglibs.cache.CacheContextListener is already specified in the
jspcachtags.tld file.

The cache Tag
The cache tag caches the body between the beginning and ending tags according to the
attributes specified. The first time the tag is encountered, the body content is executed and
cached. Each subsequent time it is run, the cached content is checked to see if it needs to be
refreshed and if so, it is executed again, and the cached data is refreshed. Otherwise, the cached
data is served.

Attributes of cache

The following table describes attributes for the cache tag.

TABLE 7–1 The cacheAttributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry. The
cache key is suffixed to the servlet path to generate a key to access the
cached entry. If no key is specified, a number is generated according to the
position of the tag in the page.

Using JavaServer Pages

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011112

TABLE 7–1 The cacheAttributes (Continued)
Attribute Default Description

timeout 60s (optional) The time in seconds after which the body of the tag is executed
and the cache is refreshed. By default, this value is interpreted in seconds.
To specify a different unit of time, add a suffix to the timeout value as
follows: s for seconds, m for minutes, h for hours, d for days. For example,
2h specifies two hours.

nocache false (optional) If set to true, the body content is executed and served as if there
were no cache tag. This offers a way to programmatically decide whether
the cached response is sent or whether the body has to be executed, though
the response is not cached.

refresh false (optional) If set to true, the body content is executed and the response is
cached again. This lets you programmatically refresh the cache
immediately regardless of the timeout setting.

scope application (optional) The scope of the cache. Can be request, session, or
application. See “Caching Scope” on page 112.

Example of cache

The following example represents a cached JSP file:

<%@ taglib prefix="mypfx" uri="http://glassfish.org/taglibs/cache" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<mypfx:cache key="${sessionScope.loginId}"
nocache="${param.nocache}"
refresh="${param.refresh}"
timeout="10m">

<c:choose>

<c:when test="${param.page == ’frontPage’}">
<%-- get headlines from database --%>

</c:when>

<c:otherwise>

...

</c:otherwise>

</c:choose>

</mypfx:cache>

<mypfx:cache timeout="1h">
<h2> Local News </h2>

<%-- get the headline news and cache them --%>

</mypfx:cache>

The flush Tag
Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no
key is specified, the entire cache is flushed.

Attributes of flush

The following table describes attributes for the flush tag.

Using JavaServer Pages

Chapter 7 • Developing Web Applications 113

TABLE 7–2 The flushAttributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry. The
cache key is suffixed to the servlet path to generate a key to access the
cached entry. If no key is specified, a number is generated according to the
position of the tag in the page.

scope application (optional) The scope of the cache. Can be request, session, or
application. See “Caching Scope” on page 112.

Examples of flush

To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<c:if test="${empty sessionScope.clearCache}">
<mypfx:flush />

</c:if>

Options for Compiling JSP Files
GlassFish Server provides the following ways of compiling JSP source files into servlets:

■ JSP files are automatically compiled at runtime.
■ The asadmin deploy command has a ----precompilejsp option. For details, see the

GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.
■ The jspc command line tool allows you to precompile JSP files at the command line. For

details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Creating and Managing Sessions
This section describes how to create and manage HTTP sessions that allows users and
transaction information to persist between interactions.

The following topics are addressed here:

■ “Configuring Sessions” on page 115
■ “Session Managers” on page 118

Creating and Managing Sessions

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011114

Configuring Sessions
The following topics are addressed here:
■ “HTTP Sessions, Cookies, and URL Rewriting” on page 115
■ “Coordinating Session Access” on page 115
■ “Saving Sessions During Redeployment” on page 115
■ “Logging Session Attributes” on page 116
■ “Distributed Sessions and Persistence” on page 116

HTTP Sessions, Cookies, and URL Rewriting
To configure whether and how HTTP sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elements in the glassfish-web.xml file for an
individual web application. For more about the properties you can configure, see
“session-properties” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide
and “cookie-properties” in GlassFish Server Open Source Edition 3.1 Application Deployment
Guide.

For information about configuring default session properties for the entire web container, see
“Using the default-web.xml File” on page 138 and the GlassFish Server Open Source Edition 3.1
High Availability Administration Guide.

Coordinating Session Access
Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways. If the persistence type is replicated (see “The replicated Persistence Type”
on page 120), the following message in the log file indicates that this might be happening:

Primary Key Constraint violation while saving session session_id

This is especially likely to occur in web applications that use HTML frames where multiple
servlets are executing simultaneously on behalf of the same client. A good solution is to ensure
that one of the servlets modifies the session and the others have read-only access.

Saving Sessions During Redeployment
Whenever a redeployment is done, the sessions at that transit time become invalid unless you
use the --keepstate=true option of the asadmin redeploy command. For example:

asadmin redeploy --keepstate=true --name hello.war

For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The default for --keepstate is false. This option is supported only on the default server
instance, named server. It is not supported and ignored for any other target.

For web applications, this feature is applicable only if in the glassfish-web-app.xml file the
persistence-type attribute of the session-manager element is file.

Creating and Managing Sessions

Chapter 7 • Developing Web Applications 115

If any active web session fails to be preserved or restored, none of the sessions will be available
when the redeployment is complete. However, the redeployment continues and a warning is
logged.

The new class loader of the redeployed application is used to deserialize any sessions previously
saved. The usual restrictions about serialization and deserialization apply. For example, any
application-specific class referenced by a session attribute may evolve only in a
backward-compatible fashion. For more information about class loaders, see Chapter 2, “Class
Loaders.”

Logging Session Attributes
You can write session attribute values to an access log. The access log format token
%session.name% logs one of the following:

■ The value of the session attribute with the name name
■ NULL-SESSION-ATTRIBUTE-name if the named attribute does not exist in the session
■ NULL-SESSION if no session exists

For more information about access logging and format tokens, see online help for the Access
Log tab of the HTTP Service page in the Administration Console.

Distributed Sessions and Persistence
A distributed HTTP session can run in multiple GlassFish Server instances, provided the
following criteria are met:

■ Each server instance has the same distributable web application deployed to it. The web-app
element of the web.xml deployment descriptor file must have the distributable
subelement specified.

■ The web application uses high-availability session persistence. If a non-distributable web
application is configured to use high-availability session persistence, a warning is written to
the server log, and the session persistence type reverts to memory. See “The replicated
Persistence Type” on page 120.

■ All objects bound into a distributed session must be of the types listed in Table 7–3.
■ The web application must be deployed using the deploy or deploydir command with the

--availabilityenabled option set to true. See the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

Creating and Managing Sessions

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011116

Note – Contrary to the Servlet 3.0 specification, GlassFish Server does not throw an
IllegalArgumentException if an object type not supported for failover is bound into a
distributed session.

Keep the distributed session size as small as possible. Session size has a direct impact on overall
system throughput.

In the event of an instance or hardware failure, another server instance can take over a
distributed session, with the following limitations:
■ If a distributable web application references a Java EE component or resource, the reference

might be lost. See Table 7–3 for a list of the types of references that HTTPSession failover
supports.

■ References to open files or network connections are lost.

For information about how to work around these limitations, see the GlassFish Server Open
Source Edition 3.1 Deployment Planning Guide.

In the following table, No indicates that failover for the object type might not work in all cases
and that no failover support is provided. However, failover might work in some cases for that
object type. For example, failover might work because the class implementing that type is
serializable.

For more information about the InitialContext, see “Accessing the Naming Context” on
page 273. For more information about transaction recovery, see Chapter 15, “Using the
Transaction Service.” For more information about Administered Objects, see “Administering
JMS Physical Destinations” in GlassFish Server Open Source Edition 3.1 Administration Guide.

TABLE 7–3 Object Types Supported for Java EE Web Application Session State Failover

Java Object Type Failover Support

Colocated or distributed stateless session, stateful
session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any
prepared global transactions are lost and might not be
correctly rolled back or committed.

JDBC DataSource No

Java Message Service (JMS) ConnectionFactory,
Destination

No

JavaMail Session No

Creating and Managing Sessions

Chapter 7 • Developing Web Applications 117

TABLE 7–3 Object Types Supported for Java EE Web Application Session State Failover (Continued)
Java Object Type Failover Support

Connection Factory No

Administered Object No

Web service reference No

Serializable Java types Yes

Extended persistence context No

Session Managers
A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

GlassFish Server offers these session management options, determined by the
session-manager element’s persistence-type attribute in the glassfish-web.xml file:

■ “The memory Persistence Type” on page 118, the default
■ “The file Persistence Type” on page 119, which uses a file to store session data
■ “The replicated Persistence Type” on page 120, which uses other servers in the cluster for

session persistence
■ “The coherence-web Persistence Type” on page 121, which uses Coherence*Web for session

persistence

Note – If the session manager configuration contains an error, the error is written to the server
log and the default (memory) configuration is used.

For more information, see “session-manager” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

The memoryPersistence Type
This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the session
state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for a specific web application, edit the
glassfish-web.xml file as in the following example. The persistence-type attribute is
optional, but must be set to memory if included. This overrides the web container availability
settings for the web application.

Creating and Managing Sessions

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011118

<glassfish-web-app>

...

<session-config>

<session-manager persistence-type="memory" />

<manager-properties>

<property name="sessionFilename" value="sessionstate" />

</manager-properties>

</session-manager>

...

</session-config>

...

</glassfish-web-app>

The only manager property that the memory persistence type supports is sessionFilename,
which is listed under “manager-properties” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide. The sessionFilename property specifies the name of the file
where sessions are serialized and persisted if the web application or the server is stopped. To
disable this behavior, specify an empty string as the value of sessionFilename. The default
value is an empty string.

For more information about the glassfish-web.xml file, see GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

The filePersistence Type
This persistence type provides session persistence to the local file system, and allows a single
server domain to recover the session state after a failure and restart. The session state is
persisted in the background, and the rate at which this occurs is configurable. The store also
provides passivation and activation of the session state to help control the amount of memory
used. This option is not supported in a production environment. However, it is useful for a
development system with a single server instance.

Note – Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 58.

To specify the file persistence type for a specific web application, edit the glassfish-web.xml
file as in the following example. Note that persistence-type must be set to file. This
overrides the web container availability settings for the web application.

<glassfish-web-app>

...

<session-config>

<session-manager persistence-type="file">
<store-properties>

<property name="directory" value="sessiondir" />

</store-properties>

</session-manager>

...

Creating and Managing Sessions

Chapter 7 • Developing Web Applications 119

</session-config>

...

</glassfish-web-app>

The file persistence type supports all the manager properties listed under
“manager-properties” in GlassFish Server Open Source Edition 3.1 Application Deployment
Guide except sessionFilename, and supports the directory store property listed under
“store-properties” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

For more information about the glassfish-web.xml file, see GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

The replicatedPersistence Type
The replicated persistence type uses other servers in the cluster for session persistence.
Clustered server instances replicate session state. Each backup instance stores the replicated
data in memory. This allows sessions to be distributed. For details, see “Distributed Sessions
and Persistence” on page 116. In addition, you can configure the frequency and scope of session
persistence. The other servers are also used as the passivation and activation store. Use this
option in a production environment that requires session persistence.

To use the replicated persistence type, you must enable availability. Select the Availability
Service component under the relevant configuration in the Administration Console. Check the
Availability Service box. To enable availability for the web container, select the Web Container
Availability tab, then check the Availability Service box. All instances in an GlassFish Server
cluster should have the same availability settings to ensure consistent behavior. For details, see
the GlassFish Server Open Source Edition 3.1 High Availability Administration Guide.

To change settings such as persistence frequency and persistence scope for the entire web
container, use the Persistence Frequency and Persistence Scope drop-down lists on the Web
Container Availability tab in the Administration Console, or use the asadmin set command.
For example:

asadmin set

server-config.availability-service.web-container-availability.persistence-frequency=time-based

For more information, see the description of the asadmin set command in the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

To specify the replicated persistence type for a specific web application, edit the
glassfish-web.xml file as in the following example. Note that persistence-type must be set
to replicated. This overrides the web container availability settings for the web application.

<glassfish-web-app>

...

<session-config>

<session-manager persistence-type="replicated">
<manager-properties>

Creating and Managing Sessions

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011120

<property name="persistenceFrequency" value="web-method" />

</manager-properties>

<store-properties>

<property name="persistenceScope" value="session" />

</store-properties>

</session-manager>

...

</session-config>

...

</glassfish-web-app>

The replicated persistence type supports all the manager properties listed under
“manager-properties” in GlassFish Server Open Source Edition 3.1 Application Deployment
Guide except sessionFilename, and supports the persistenceScope store property listed
under “store-properties” in GlassFish Server Open Source Edition 3.1 Application Deployment
Guide.

For more information about the glassfish-web.xml file, see GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

To specify that web sessions for which high availability is enabled are first buffered and then
replicated using a separate asynchronous thread, use the --asyncreplication=true option of
the asadmin deploy command. For example:

asadmin deploy --availabilityenabled=true --asyncreplication=true --name hello.war

If --asyncreplication is set to true (the default), performance is improved but availability is
reduced. If the instance where states are buffered but not yet replicated fails, the states are lost. If
set to false, performance is reduced but availability is guaranteed. States are not buffered but
immediately transmitted to other instances in the cluster.

The coherence-webPersistence Type
Built on top of Oracle Coherence, Coherence*Web is an HTTP session management module
dedicated to managing session state in clustered environments. Starting with Coherence 3.7
and GlassFish Server 3.1, there is a new feature of Coherence*Web called ActiveCache for
GlassFish. ActiveCache for GlassFish provides Coherence*Web functionality in web
applications deployed on GlassFish Servers. Within GlassFish Server, Coherence*Web
functions as an additional web container persistence type, named coherence-web.

For information about how to configure and deploy Coherence*Web on GlassFish Server, see
Using Coherence*Web with GlassFish Server (http://download.oracle.com/docs/cd/
E18686_01/coh.37/e18690/glassfish.htm).

Creating and Managing Sessions

Chapter 7 • Developing Web Applications 121

http://download.oracle.com/docs/cd/E18686_01/coh.37/e18690/glassfish.htm
http://download.oracle.com/docs/cd/E18686_01/coh.37/e18690/glassfish.htm

Using Comet
This section explains the Comet programming technique and how to create and deploy a
Comet-enabled application with the Oracle GlassFish Server.

The following topics are addressed here:
■ “Introduction to Comet” on page 122
■ “Grizzly Comet” on page 124
■ “Bayeux Protocol” on page 133

Introduction to Comet
Comet is a programming technique that allows a web server to send updates to clients without
requiring the clients to explicitly request them.

This kind of programming technique is called server push, which means that the server pushes
data to the client. The opposite style is client pull, which means that the client must pull the data
from the server, usually through a user-initiated event, such as a button click.

Web applications that use the Comet technique can deliver updates to clients in a more timely
manner than those that use the client-pull style while avoiding the latency that results from
clients frequently polling the server.

One of the many use cases for Comet is a chat room application. When the server receives a
message from one of the chat clients, it needs to send the message to the other clients without
requiring them to ask for it. With Comet, the server can deliver messages to the clients as they
are posted rather than expecting the clients to poll the server for new messages.

To accomplish this scenario, a Comet application establishes a long-lived HTTP connection.
This connection is suspended on the server side, waiting for an event to happen before
resuming. This kind of connection remains open, allowing an application that uses the Comet
technique to send updates to clients when they are available rather than expecting clients to
reopen the connection to poll the server for updates.

The Grizzly Implementation of Comet
A limitation of the Comet technique is that you must use it with a web server that supports
non-blocking connections to avoid poor performance. Non-blocking connections are those
that do not need to allocate one thread for each request. If the web server were to use blocking
connections then it might end up holding many thousands of threads, thereby hindering its
scalability.

The GlassFish server includes the Grizzly HTTP Engine, which enables asynchronous request
processing (ARP) by avoiding blocking connections. Grizzly's ARP implementation
accomplishes this by using the Java NIO API.

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011122

With Java NIO, Grizzly enables greater performance and scalability by avoiding the limitations
experienced by traditional web servers that must run a thread for each request. Instead,
Grizzly's ARP mechanism makes efficient use of a thread pool system and also keeps the state of
requests so that it can keep requests alive without holding a single thread for each of them.

Grizzly supports two different implementations of Comet:

■ “Grizzly Comet” on page 124 — Based on ARP, this includes a set of APIs that you use from a
web component to enable Comet functionality in your web application. Grizzly Comet is
specific to the Oracle GlassFish Server.

■ “Bayeux Protocol” on page 133 — Often referred to as Cometd, it consists of the JSON-based
Bayeux message protocol, a set of Dojo or Ajax libraries, and an event handler. The Bayeux
protocol uses a publish/subscribe model for server/client communication. The Bayeux
protocol is portable, but it is container dependent if you want to invoke it from an
Enterprise Java Beans (EJB) component. The Grizzly implementation of Cometd consists of
a servlet that you reference from your web application.

Client Technologies to Use With Comet
In addition to creating a web component that uses the Comet APIs, you need to enable your
client to accept asynchronous updates from the web component. To accomplish this, you can
use JavaScript, IFrames, or a framework, such as Dojo.

An IFrame is an HTML element that allows you to include other content in an HTML page. As
a result, the client can embed updated content in the IFrame without having to reload the page.

The example in this tutorial employs a combination of JavaScript and IFrames to allow the
client to accept asynchronous updates. A servlet included in the example writes out JavaScript
code to one of the IFrames. The JavaScript code contains the updated content and invokes a
function in the page that updates the appropriate elements in the page with the new content.

The next section explains the two kinds of connections that you can make to the server. While
you can use any of the client technologies listed in this section with either kind of connection, it
is more difficult to use JavaScript with an HTTP-streaming connection.

Types of Comet Connections
When working with Comet, as implemented in Grizzly, you have two different ways to handle
client connections to the server:

■ HTTP Streaming
■ Long Polling

HTTP Streaming

The HTTP Streaming technique keeps a connection open indefinitely. It never closes, even after
the server pushes data to the client.

Using Comet

Chapter 7 • Developing Web Applications 123

http://dojotoolkit.org

In the case of HTTP streaming, the application sends a single request and receives responses as
they come, reusing the same connection forever. This technique significantly reduces the
network latency because the client and the server don't need to open and close the connection.

The basic life cycle of an application using HTTP-streaming is:

request --> suspend --> data available --> write response --> data available --> write response

The client makes an initial request and then suspends the request, meaning that it waits for a
response. Whenever data is available, the server writes it to the response.

Long Polling

The long-polling technique is a combination of server-push and client-pull because the client
needs to resume the connection after a certain amount of time or after the server pushes an
update to the client.

The basic life cycle of an application using long-polling is:

request -> suspend --> data available --> write response --> resume

The client makes an initial request and then suspends the request. When an update is available,
the server writes it to the response. The connection closes, and the client optionally resumes the
connection.

How to Choose the Type of Connection

If you anticipate that your web application will need to send frequent updates to the client, you
should use the HTTP-streaming connection so that the client does not have to frequently
reestablish a connection. If you anticipate less frequent updates, you should use the long-polling
connection so that the web server does not need to keep a connection open when no updates are
occurring. One caveat to using the HTTP-streaming connection is that if you are streaming
through a proxy, the proxy can buffer the response from the server. So, be sure to test your
application if you plan to use HTTP-streaming behind a proxy.

Grizzly Comet
The following topics are addressed here:

■ “The Grizzly Comet API” on page 125
■ “The Hidden Frame Example” on page 125
■ “Creating a Comet-Enabled Application” on page 126
■ “Developing the Web Component” on page 126
■ “Creating the Client Pages” on page 130
■ “Creating the Deployment Descriptor” on page 132

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011124

■ “Deploying and Running a Comet-Enabled Application” on page 132

The Grizzly Comet API
Grizzly's support for Comet includes a small set of APIs that make it easy to add Comet
functionality to your web applications. The Grizzly Comet APIs that developers use most often
are the following:

■ CometContext: A Comet context, which is a shareable space to which applications subscribe
to receive updates.

■ CometEngine: The entry point to any component using Comet. Components can be servlets,
JavaServer Pages (JSP), JavaServer Faces components, or pure Java classes.

■ CometEvent: Contains the state of the CometContext object
■ CometHandler: The interface an application implements to be part of one or more Comet

contexts.

The way a developer would use this API in a web component is to perform the following tasks:

1. Register the context path of the application with the CometContext object:

CometEngine cometEngine =

CometEngine.getEngine();

CometContext cometContext =

cometEngine.register(contextPath)

2. Register the CometHandler implementation with the CometContext object:

cometContext.addCometHandler(handler)

3. Notify one or more CometHandler implementations when an event happens:

cometContext.notify((Object)(handler))

The Hidden Frame Example
This rest of this tutorial uses the Hidden Frame example to explain how to develop
Comet-enabled web applications. You can download the example from
grizzly.dev.java.net at Hidden example download. From there, you can download a
prebuilt WAR file as well as a JAR file containing the servlet code.

The Hidden Frame example is so called because it uses hidden IFrames. The example allows
multiple clients to increment a counter on the server. When a client increments the counter, the
server broadcasts the new count to the clients using the Comet technique.

The Hidden Frame example uses the long-polling technique, but you can easily modify it to use
HTTP-streaming by removing two lines. See “To Notify the Comet Handler of an Event” on
page 129 and “To Create a HTML Page That Updates and Displays the Content” on page 130 for
more information on converting the example to use the HTTP-streaming technique.

The client side of the example uses hidden IFrames with embedded JavaScript tags to connect to
the server and to asynchronously post content to and accept updates from the server.

Using Comet

Chapter 7 • Developing Web Applications 125

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

The server side of the example consists of a single servlet that listens for updates from clients,
updates the counter, and writes JavaScript code to the client that allows it to update the counter
on its page.

See “Deploying and Running a Comet-Enabled Application” on page 132 for instructions on
how to deploy and run the example.

When you run the example, the following happens:

1. The index.html page opens.

2. The browser loads three frames: The first one accesses the servlet using an HTTP GET; the
second one loads the count.html page, which displays the current count; and the third one
loads the button.html page, which is used to send the POST request.

3. After clicking the button on the button.html page, the page submits a POST request to the
servlet.

4. The doPost method calls the onEvent method of the Comet handler and redirects the
incremented count along with some JavaScript to the count.html page on the client.

5. The updateCount() JavaScript function on the count.html page updates the counter on the
page.

6. Because this example uses long-polling, the JavaScript code on count.html calls doGet
again to resume the connection after the servlet pushes the update.

Creating a Comet-Enabled Application
This section uses the Hidden Frame example application to demonstrate how to develop a
Comet application. The main tasks for creating a simple Comet-enabled application are the
following:

Developing the Web Component
This section shows you how to create a Comet-enabled web component by giving you
instructions for creating the servlet in the Hidden Frame example.

Developing the web component involves performing the following steps:

1. Create a web component to support Comet requests.
2. Register the component with the Comet engine.
3. Define a Comet handler that sends updates to the client.
4. Add the Comet handler to the Comet context.
5. Notify the Comet handler of an event using the Comet context.

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011126

▼ To Create a Web Component to Support Comet

Create an empty servlet class, like the following:
import javax.servlet.*;

public class HiddenCometServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

private String contextPath = null;

@Override

public void init(ServletConfig config) throws ServletException {}

@Override

protected void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {}

@Override

protected void doPost(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {);

}

Import the following Comet packages into the servlet class:
import com.sun.grizzly.comet.CometContext;

import com.sun.grizzly.comet.CometEngine;

import com.sun.grizzly.comet.CometEvent;

import com.sun.grizzly.comet.CometHandler;

Import these additional classes that you need for incrementing a counter and writing output to
the clients:
import java.io.IOException;

import java.io.PrintWriter;

import java.util.concurrent.atomic.AtomicInteger;

Add a private variable for the counter:
private final AtomicInteger counter = new AtomicInteger();

▼ To Register the Servlet With the Comet Engine

In the servlet's initmethod, add the following code to get the component's context path:
ServletContext context = config.getServletContext();

contextPath = context.getContextPath() + "/hidden_comet";

Get an instance of the Comet engine by adding this line after the lines from Step 1:
CometEngine engine = CometEngine.getEngine();

Register the component with the Comet engine by adding the following lines after those from
Step 2:
CometContext cometContext = engine.register(contextPath);

cometContext.setExpirationDelay(30 * 1000);

1

2

3

4

1

2

3

Using Comet

Chapter 7 • Developing Web Applications 127

▼ To Define a Comet Handler to Send Updates to the Client

Create a private class that implements CometHandler and add it to the servlet class:
private class CounterHandler

implements CometHandler<HttpServletResponse> {

private HttpServletResponse response;

}

Add the following methods to the class:
public void onInitialize(CometEvent event)

throws IOException {}

public void onInterrupt(CometEvent event)

throws IOException {

removeThisFromContext();

}

public void onTerminate(CometEvent event)

throws IOException {

removeThisFromContext();

}

public void attach(HttpServletResponse attachment) {

this.response = attachment;

}

private void removeThisFromContext() throws IOException {

response.getWriter().close();

CometContext context =

CometEngine.getEngine().getCometContext(contextPath);

context.removeCometHandler(this);

}

You need to provide implementations of these methods when implementing CometHandler.
The onInterrupt and onTerminate methods execute when certain changes occur in the status
of the underlying TCP communication. The onInterrupt method executes when
communication is resumed. The onTerminate method executes when communication is
closed. Both methods call removeThisFromContext, which removes the CometHandler object
from the CometContext object.

▼ To Add the Comet Handler to the Comet Context

Get an instance of the Comet handler and attach the response to it by adding the following lines
to the doGetmethod:
CounterHandler handler = new CounterHandler();

handler.attach(res);

Get the Comet context by adding the following lines to doGet:
CometEngine engine = CometEngine.getEngine();

CometContext context = engine.getCometContext(contextPath);

1

2

1

2

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011128

Add the Comet handler to the Comet context by adding this line to doGet:
context.addCometHandler(handler);

▼ To Notify the Comet Handler of an Event

Add an onEventmethod to the CometHandler implementation class to define what happens
when an event occurs:
public void onEvent(CometEvent event)

throws IOException {

if (CometEvent.NOTIFY == event.getType()) {

int count = counter.get();

PrintWriter writer = response.getWriter();

writer.write("<script type=’text/javascript’>" +

"parent.counter.updateCount(’" + count + "’)" +

"</script>\n");
writer.flush();

event.getCometContext().resumeCometHandler(this);

}

}

This method first checks if the event type is NOTIFY, which means that the web component is
notifying the CometHandler object that a client has incremented the count. If the event type is
NOTIFY, the onEvent method gets the updated count, and writes out JavaScript to the client. The
JavaScript includes a call to the updateCount() function, which will update the count on the
clients' pages.

The last line resumes the Comet request and removes it from the list of active CometHandler
objects. By this line, you can tell that this application uses the long-polling technique. If you
were to delete this line, the application would use the HTTP-Streaming technique.

■ For HTTP-Streaming:
Add the same code as for long-polling, except do not include the following line:
event.getCometContext().resumeCometHandler(this);

You don't include this line because you do not want to resume the request. Instead, you want
the connection to remain open.

Increment the counter and forward the response by adding the following lines to the doPost
method:
counter.incrementAndGet();

CometEngine engine = CometEngine.getEngine();

CometContext<?> context =

engine.getCometContext(contextPath);

context.notify(null);

req.getRequestDispatcher("count.html").forward(req, res);

When a user clicks the button, the doPost method is called. The doPost method increments the
counter. It then obtains the current CometContext object and calls its notify method. By calling
context.notify, the doPost method triggers the onEvent method you created in the previous
step. After onEvent executes, doPost forwards the response to the clients.

3

1

2

Using Comet

Chapter 7 • Developing Web Applications 129

Creating the Client Pages
Developing the HTML pages for the client involves performing these steps:

1. Create a welcome HTML page, called index.html, that contains: one hidden frame for
connecting to the servlet through an HTTP GET; one IFrame that embeds the count.html
page, which contains the updated content; and one IFrame that embeds the button.html
page, which is used for posting updates using HTTP POST.

2. Create the count.html page that contains an HTML element that displays the current count
and the JavaScript for updating the HTML element with the new count.

3. Create the button.html page that contains a button for the users to submit updates.

▼ To Create a HTML Welcome Page That Contains IFrames for Receiving
and Sending Updates

Create an HTML page called index.html.

Add the following content to the page:
<html>

<head>

<title>Comet Example: Counter with Hidden Frame</title>

</head>

<body>

</body>

</html>

Add IFrames for connecting to the server and receiving and sending updates to index.html in
between the body tags:

<frameset>

<iframe name="hidden" src="hidden_comet"
frameborder="0" height="0" width="100%"></iframe>

<iframe name="counter" src="count.html"
frameborder="0" height="100%" width="100%"></iframe>

<iframe name="button" src="button.html" frameborder="0" height="30%" widget="100%"></iframe>
</frameset>

The first frame, which is hidden, points to the servlet by referencing its context path. The
second frame displays the content from count.html, which displays the current count. The
second frame displays the content from button.html, which contains the submit button for
incrementing the counter.

▼ To Create a HTML Page That Updates and Displays the Content

Create an HTML page called count.html and add the following content to it:
<html>

<head>

</head>

1

2

3

1

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011130

<body>

<center>

<h3>Comet Example: Counter with Hidden Frame</h3>

<p>

<b id="count">
<p>

</center>

</body>

</html>

This page displays the current count.

Add JavaScript code that updates the count in the page. Add the following lines in between the
head tags of count.html:
<script type=’text/javascript’>

function updateCount(c) {

document.getElementById(’count’).innerHTML = c;

parent.hidden.location.href = "hidden_comet";
};

</script>

The JavaScript takes the updated count it receives from the servlet and updates the count
element in the page. The last line in the updateCount() function invokes the servlet's doGet
method again to reestablish the connection.

■ For HTTP-Streaming:
Add the same code as for long-polling, except for the following line:
parent.hidden.location.href = “hidden_comet”

This line invokes the doGet method of CometServlet again, which would reestablish the
connection. In the case of HTTP-Streaming, you want the connection to remain open.
Therefore, you don't include this line of code.

▼ To Create the HTML Page That Allows Submitting Updates

Create an HTML page called button.html and add the following content to it:
<html>

<head>

</head>

<body>

<center>

<form method="post" action="hidden_comet">
<input type="submit" value="Click">

</form>

</center>

</body>

</html>

This page displays a form with a button that allows a user to update the count on the server. The
servlet will then broadcast the updated count to all clients.

2

●

Using Comet

Chapter 7 • Developing Web Applications 131

Creating the Deployment Descriptor
This section describes how to create a deployment descriptor to specify how your
Comet-enabled web application should be deployed.

▼ To Create the Deployment Descriptor

Create a file called web.xml and put the following contents in it:
<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd ">

<servlet>

<servlet-name>HiddenCometServlet</servlet-name>

<servlet-class>

com.sun.grizzly.samples.comet.HiddenCometServlet

</servlet-class>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HiddenCometServlet</servlet-name>

<url-pattern>/hidden_comet</url-pattern>

</servlet-mapping>

</web-app>

This deployment descriptor contains a servlet declaration and mapping for
HiddenCometServlet. The load-on-startup attribute must be set to 0 so that the
Comet-enabled servlet will not load until the client makes a request to it.

Deploying and Running a Comet-Enabled Application
Before running a Comet-enabled application in the GlassFish Server, you need to enable Comet
in the server. Then you can deploy the application just as you would any other web application.

When running the application, you need to connect to it from at least two different browsers to
experience the effect of the servlet updating all clients in response to one client posting an
update to the server.

Enabling Comet in the GlassFish Server

Before running a Comet-enabled application, you need to enable Comet in the HTTP listener
for your application by setting a special attribute in the associated protocol configuration. The
following example shows the asadmin set command that adds this attribute:

asadmin set server-config.network-config.protocols.protocol.http-1.http.comet-support-enabled="true"

Substitute the name of the protocol for http-1.

●

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011132

▼ To Deploy the Example
These instructions tell you how to deploy the Hidden Frame example.

Download grizzly-comet-hidden-1.7.3.1.war.

Run the following command to deploy the example:
as-install/bin/asadmin deploy grizzly-comet-hidden-1.7.3.1.war

▼ To Run the Example
These instructions tell you how to run the Hidden Frame example.

Open two web browsers, preferably two different brands of web browser.

Enter the following URL in both browsers:
http://localhost:8080/grizzly-comet-hidden/index.html

When the first page loads in both browsers, click the button in one of the browsers and watch
the count change in the other browser window.

Bayeux Protocol
The Bayeux protocol, often referred to as Cometd, greatly simplifies the use of Comet. No
server-side coding is needed for servers such as GlassFish Server that support the Bayeux
protocol. Just enable Comet and the Bayeux protocol, then write and deploy the client.

The following topics are addressed here:

■ “Enabling Comet” on page 133
■ “To Configure the web.xml File” on page 134
■ “To Write, Deploy, and Run the Client” on page 134

Enabling Comet
Before running a Comet-enabled application, you need to enable Comet in the HTTP listener
for your application by setting a special attribute in the associated protocol configuration. The
following example shows the asadmin set command that adds this attribute:

asadmin set server-config.network-config.protocols.protocol.http-1.http.comet-support-enabled="true"

Substitute the name of the protocol for http-1.

1

2

1

2

3

Using Comet

Chapter 7 • Developing Web Applications 133

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

▼ To Configure the web.xml File
To enable the Bayeux protocol on the GlassFish Server, you must reference the CometdServlet
in your web application's web.xml file. In addition, if your web application includes a servlet, set
the load-on-startup value for your servlet to 0 (zero) so that it will not load until the client
makes a request to it.

Open the web.xmlfile for your web application in a text editor.

Add the following XML code to the web.xmlfile:
<servlet>

<servlet-name>Grizzly Cometd Servlet</servlet-name>

<servlet-class>

com.sun.grizzly.cometd.servlet.CometdServlet

</servlet-class>

<init-param>

<description>

expirationDelay is the long delay before a request is

resumed. -1 means never.

</description>

<param-name>expirationDelay</param-name>

<param-value>-1</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Grizzly Cometd Servlet</servlet-name>

<url-pattern>/cometd/*</url-pattern>

</servlet-mapping>

Note that the load-on-startup value for the CometdServlet is 1.

If your web application includes a servlet, set the load-on-startup value to 0 for your servlet
(not the CometdServlet) as follows:
<servlet>

...

<load-on-startup>0</load-on-startup>

</servlet>

Save the web.xmlfile.

▼ To Write, Deploy, and Run the Client

Add script tags to the HTML page. For example:
<script type="text/javascript" src="chat.js"></script>

In the script, call the needed libraries. For example:
dojo.require("dojo.io.cometd");

1

2

3

4

1

2

Using Comet

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011134

In the script, use publish and subscribemethods to send and receive messages. For example:
cometd.subscribe("/chat/demo", false, room, "_chat");
cometd.publish("/chat/demo", { user: room._username, chat: text});

Deploy the web application as you would any other web application. For example:
asadmin deploy cometd-example.war

Run the application as you would any other web application.

The context root for the example chat application is /cometd and the HTML page is
index.html. So the URL might look like this:
http://localhost:8080/cometd/index.html

For more information about deployment in the GlassFish Server, see the GlassFish Server Open
Source Edition 3.1 Application Deployment Guide.

For more information about the Bayeux protocol, see Bayeux Protocol (http://
svn.cometd.com/trunk/bayeux/bayeux.html).

For more information about the Dojo toolkit, see http://dojotoolkit.org/.

For information about REpresentational State Transfer (RESTful) web services and Comet, see
RESTful Web Services and Comet (http://developers.sun.com/appserver/reference/
techart/cometslideshow.html).

Advanced Web Application Features
The following topics are addressed here:

■ “Internationalization Issues” on page 136
■ “Virtual Server Properties” on page 137
■ “Class Loader Delegation” on page 137
■ “Using the default-web.xml File” on page 138
■ “Configuring Logging and Monitoring in the Web Container” on page 139
■ “Configuring Idempotent URL Requests” on page 139
■ “Header Management” on page 140
■ “Configuring Valves and Catalina Listeners” on page 140
■ “Alternate Document Roots” on page 140
■ “Using a context.xml File” on page 142
■ “Enabling WebDav” on page 143
■ “Using SSI” on page 144
■ “Using CGI” on page 145

3

4

5

See Also

Advanced Web Application Features

Chapter 7 • Developing Web Applications 135

http://svn.cometd.com/trunk/bayeux/bayeux.html
http://svn.cometd.com/trunk/bayeux/bayeux.html
http://dojotoolkit.org/
http://developers.sun.com/appserver/reference/techart/cometslideshow.html
http://developers.sun.com/appserver/reference/techart/cometslideshow.html

Internationalization Issues
The following topics are addressed here:

■ “The Server's Default Locale” on page 136
■ “Servlet Character Encoding” on page 136

The Server's Default Locale
To set the default locale of the entire GlassFish Server, which determines the locale of the
Administration Console, the logs, and so on, use the Administration Console. Select the
domain component. Then type a value in the Locale field. For details, click the Help button in
the Administration Console.

Servlet Character Encoding
This section explains how the GlassFish Server determines the character encoding for the
servlet request and the servlet response. For encodings you can use, see http://
download.oracle.com/

javase/6/docs/technotes/guides/intl/encoding.doc.html.

Servlet Request

When processing a servlet request, the server uses the following order of precedence, first to
last, to determine the request character encoding:

■ The getCharacterEncoding method
■ A hidden field in the form, specified by the form-hint-field attribute of the

parameter-encoding element in the glassfish-web.xml file
■ The default-charset attribute of the parameter-encoding element in the

glassfish-web.xml file
■ The default, which is ISO-8859-1

For details about the parameter-encoding element, see “parameter-encoding” in GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

Servlet Response

When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

■ The setCharacterEncoding or setContentType method
■ The setLocale method
■ The default, which is ISO-8859-1

Advanced Web Application Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011136

http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Virtual Server Properties
You can set virtual server properties in the following ways:

■ You can define virtual server properties using the asadmin create-virtual-server
command. For example:

asadmin create-virtual-server --hosts localhost --property authRealm=ldap MyVS

For details and a complete list of virtual server properties, see create-virtual-server(1).
■ You can define virtual server properties using the asadmin set command. For example:

asadmin set server-config.http-service.virtual-server.MyVS.property.authRealm="ldap"

For details, see set(1).
■ You can define virtual server properties using the Administration Console. Select the HTTP

Service component under the relevant configuration, select Virtual Servers, and select the
desired virtual server. Select Add Property, enter the property name and value, check the
enable box, and select Save. For details and a complete list of virtual server properties, click
the Help button in the Administration Console.

Some virtual server properties can be set for a specific web application. For details, see
“glassfish-web-app” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Class Loader Delegation
The Servlet specification recommends that a web application class loader look in the local class
loader before delegating to its parent. To make the web application class loader follow the
delegation model in the Servlet specification, set delegate="false" in the class-loader
element of the glassfish-web.xml file. It’s safe to do this only for a web module that does not
interact with any other modules.

The default value is delegate="true", which causes the web application class loader to delegate
in the same manner as the other class loaders. Use delegate="true" for a web application that
accesses EJB components or that acts as a web service client or endpoint. For details about
glassfish-web.xml, see GlassFish Server Open Source Edition 3.1 Application Deployment
Guide.

For a number of packages, including java.* and javax.*, symbol resolution is always
delegated to the parent class loader regardless of the delegate setting. This prevents
applications from overriding core Java runtime classes or changing the API versions of
specifications that are part of the Java EE platform.

For general information about class loaders, see Chapter 2, “Class Loaders.”

Advanced Web Application Features

Chapter 7 • Developing Web Applications 137

Using the default-web.xml File
You can use the default-web.xml file to define features such as filters and security constraints
that apply to all web applications.

For example, directory listings are disabled by default for added security. To enable directory
listings, in your domain's default-web.xml file, search for the definition of the servlet whose
servlet-name is equal to default, and set the value of the init-param named listings to
true. Then redeploy your web application if it has already been deployed, or restart the server.

<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

If listings is set to true, you can also determine how directory listings are sorted. Set the value
of the init-param named sortedBy to NAME, SIZE, or LAST_MODIFIED. Then redeploy your web
application if it has already been deployed, or restart the server.

<init-param>

<param-name>sortedBy</param-name>

<param-value>LAST_MODIFIED</param-value>

</init-param>

The mime-mapping elements in default-web.xml are global and inherited by all web
applications. You can override these mappings or define your own using mime-mapping
elements in your web application's web.xml file. For more information about mime-mapping
elements, see the Servlet specification.

You can use the Administration Console to edit the default-web.xml file. For details, click the
Help button in the Administration Console. As an alternative, you can edit the file directly using
the following steps.

▼ To Use the default-web.xml File

Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib
directory.

Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

Restart the server.

1

2

3

Advanced Web Application Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011138

Configuring Logging and Monitoring in the Web
Container
For information about configuring logging and monitoring in the web container using the
Administration Console, click the Help button in the Administration Console. Select Logger
Settings under the relevant configuration, or select the Stand-Alone Instances component,
select the instance from the table, and select the Monitor tab.

Configuring Idempotent URL Requests
An idempotent request is one that does not cause any change or inconsistency in an application
when retried. To enhance the availability of your applications deployed on an GlassFish Server
cluster, configure the load balancer to retry failed idempotent HTTP requests on all the
GlassFish Server instances in a cluster. This option can be used for read-only requests, for
example, to retry a search request.

The following topics are addressed here:
■ “Specifying an Idempotent URL” on page 139
■ “Characteristics of an Idempotent URL” on page 139

Specifying an Idempotent URL
To configure idempotent URL response, specify the URLs that can be safely retried in
idempotent-url-pattern elements in the glassfish-web.xml file. For example:

<idempotent-url-pattern url-pattern="sun_java/*" no-of-retries="10"/>

For details, see “idempotent-url-pattern” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

If none of the server instances can successfully serve the request, an error page is returned.

Characteristics of an Idempotent URL
Since all requests for a given session are sent to the same application server instance, and if that
GlassFish Server instance is unreachable, the load balancer returns an error message. Normally,
the request is not retried on another GlassFish Server instance. However, if the URL pattern
matches that specified in the glassfish-web.xml file, the request is implicitly retried on
another GlassFish Server instance in the cluster.

In HTTP, some methods (such as GET) are idempotent, while other methods (such as POST)
are not. In effect, retrying an idempotent URL should not cause values to change on the server
or in the database. The only difference should be a change in the response received by the user.

Examples of idempotent requests include search engine queries and database queries. The
underlying principle is that the retry does not cause an update or modification of data.

Advanced Web Application Features

Chapter 7 • Developing Web Applications 139

A search engine, for example, sends HTTP requests with the same URL pattern to the load
balancer. Specifying the URL pattern of the search request to the load balancer ensures that
HTTP requests with the specified URL pattern are implicitly retried on another GlassFish
Server instance.

For example, if the request URL sent to the GlassFish Server is of the type
/search/something.html, then the URL pattern can be specified as /search/*.

Examples of non-idempotent requests include banking transactions and online shopping. If
you retry such requests, money might be transferred twice from your account.

Header Management
In all Editions of the GlassFish Server, the Enumeration from request.getHeaders() contains
multiple elements (one element per request header) instead of a single, aggregated value.

The header names used in HttpServletResponse.addXXXHeader() and
HttpServletResponse.setXXXHeader() are returned as they were created.

Configuring Valves and Catalina Listeners
You can configure custom valves and Catalina listeners for web modules or virtual servers by
defining properties. A valve class must implement the org.apache.catalina.Valve interface from
Tomcat or previous GlassFish Server releases, or the org.glassfish.web.valve.GlassFishValve
interface from the current GlassFish Server release. A listener class for a virtual server must
implement the org.apache.catalina.ContainerListener or org.apache.catalina.LifecycleListener
interface. A listener class for a web module must implement the
org.apache.catalina.ContainerListener, org.apache.catalina.LifecycleListener, or
org.apache.catalina.InstanceListener interface.

In the glassfish-web.xml file, valve and listener properties for a web module look like this:

<glassfish-web-app ...>

...

<property name="valve_1" value="org.glassfish.extension.Valve"/>
<property name="listener_1" value="org.glassfish.extension.MyLifecycleListener"/>

</glassfish-web-app>

You can define these same properties for a virtual server. For more information, see “Virtual
Server Properties” on page 137.

Alternate Document Roots
An alternate document root (docroot) allows a web application to serve requests for certain
resources from outside its own docroot, based on whether those requests match one (or more)
of the URI patterns of the web application's alternate docroots.

Advanced Web Application Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011140

To specify an alternate docroot for a web application or a virtual server, use the
alternatedocroot_n property, where n is a positive integer that allows specification of more
than one. This property can be a subelement of a glassfish-web-app element in the
glassfish-web.xml file or a virtual server property. For more information about these
elements, see “glassfish-web-app” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide or .

A virtual server's alternate docroots are considered only if a request does not map to any of the
web modules deployed on that virtual server. A web module's alternate docroots are considered
only once a request has been mapped to that web module.

If a request matches an alternate docroot's URI pattern, it is mapped to the alternate docroot by
appending the request URI (minus the web application's context root) to the alternate docroot's
physical location (directory). If a request matches multiple URI patterns, the alternate docroot
is determined according to the following precedence order:

■ Exact match
■ Longest path match
■ Extension match

For example, the following properties specify three glassfish-web.xml docroots. The URI
pattern of the first alternate docroot uses an exact match, whereas the URI patterns of the
second and third alternate docroots use extension and longest path prefix matches, respectively.

<property name="alternatedocroot_1" value="from=/my.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_2" value="from=*.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_3" value="from=/jpg/* dir=/src/images"/>

The value of each alternate docroot has two components: The first component, from, specifies
the alternate docroot's URI pattern, and the second component, dir, specifies the alternate
docroot's physical location (directory).

Suppose the above examples belong to a web application deployed at
http://company22.com/myapp. The first alternate docroot maps any requests with this URL:

http://company22.com/myapp/my.jpg

To this resource:

/svr/images/jpg/my.jpg

The second alternate docroot maps any requests with a *.jpg suffix, such as:

http://company22.com/myapp/*.jpg

To this physical location:

/svr/images/jpg

Advanced Web Application Features

Chapter 7 • Developing Web Applications 141

The third alternate docroot maps any requests whose URI starts with /myapp/jpg/, such as:

http://company22.com/myapp/jpg/*

To the same directory as the second alternate docroot.

For example, the second alternate docroot maps this request:

http://company22.com/myapp/abc/def/my.jpg

To:

/srv/images/jpg/abc/def/my.jpg

The third alternate docroot maps:

http://company22.com/myapp/jpg/abc/resource

To:

/srv/images/jpg/abc/resource

If a request does not match any of the target web application's alternate docroots, or if the target
web application does not specify any alternate docroots, the request is served from the web
application's standard docroot, as usual.

Using a context.xml File
You can define a context.xml file for all web applications, for web applications assigned to a
specific virtual server, or for a specific web application.

To define a global context.xml file, place the file in the domain-dir/config directory and name
it context.xml.

Use the contextXmlDefault property to specify the name and the location, relative to
domain-dir, of the context.xml file for a specific virtual server. Specify this property in one of
the following ways:
■ In the Administration Console, open the HTTP Service component under the relevant

configuration. Open the Virtual Servers component and scroll down to the bottom of the
page. Enter contextXmlDefault as the property name and the path and file name relative to
domain-dir as the property value.

■ Use the asadmin create-virtual-server command. For example:

asadmin create-virtual-server --property contextXmlDefault=config/vs1ctx.xml vs1

■ Use the asadmin set command for an existing virtual server. For example:

asadmin set server-config.http-service.virtual-server.vs1.property.contextXmlDefault=config/myctx.xml

Advanced Web Application Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011142

To define a context.xml file for a specific web application, place the file in the META-INF
directory and name it context.xml.

For more information about virtual server properties, see “Virtual Server Properties” on
page 137. For more information about the context.xml file, see The Context Container
(http://tomcat.apache.org/tomcat-5.5-doc/config/context.html). Context parameters,
environment entries, and resource definitions in context.xml are supported in the GlassFish
Server.

Enabling WebDav
To enable WebDav in the GlassFish Server, you edit the web.xml and glassfish-web.xml files
as follows.

First, enable the WebDav servlet in your web.xml file:

<servlet>

<servlet-name>webdav</servlet-name>

<servlet-class>org.apache.catalina.servlets.WebdavServlet</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

<init-param>

<param-name>readonly</param-name>

<param-value>false</param-value>

</init-param>

</servlet>

Then define the servlet mapping associated with your WebDav servlet in your web.xml file:

<servlet-mapping>

<servlet-name>webdav</servlet-name>

<url-pattern>/webdav/*</url-pattern>

</servlet-mapping>

To protect the WebDav servlet so other users can't modify it, add a security constraint in your
web.xml file:

<security-constraint>

<web-resource-collection>

<web-resource-name>Login Resources</web-resource-name>

<url-pattern>/webdav/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>Admin</role-name>

</auth-constraint>

Advanced Web Application Features

Chapter 7 • Developing Web Applications 143

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>default</realm-name>

</login-config>

<security-role>

<role-name>Admin</role-name>

</security-role>

</security-constraint>

Then define a security role mapping in your glassfish-web.xml file:

<security-role-mapping>

<role-name>Admin</role-name>

<group-name>Admin</group-name>

</security-role-mapping>

If you are using the file realm, create a user and password. For example:

asadmin create-file-user --groups Admin --authrealmname default admin

Enable the security manager as described in “Enabling and Disabling the Security Manager” on
page 61.

You can now use any WebDav client by connecting to the WebDav servlet URL, which has this
format:

http://host:port/context-root/webdav/file

For example:

http://localhost:80/glassfish-webdav/webdav/index.html

You can add the WebDav servlet to your default-web.xml file to enable it for all applications,
but you can't set up a security role mapping to protect it.

Using SSI
To enable SSI (server-side includes) processing for a specific web module, add the SSIServlet
to your web.xml file as follows:

<web-app>

<servlet>

<servlet-name>ssi</servlet-name>

<servlet-class>org.apache.catalina.ssi.SSIServlet</servlet-class>

</servlet>

...

<servlet-mapping>

<servlet-name>ssi</servlet-name>

Advanced Web Application Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011144

<url-pattern>*.shtml</url-pattern>

</servlet-mapping>

...

<mime-mapping>

<extension>shtml</extension>

<mime-type>text/html</mime-type>

</mime-mapping>

</web-app>

To enable SSI processing for all web modules, un-comment the corresponding sections in the
default-web.xml file.

If the mime-mapping is not specified in web.xml, GlassFish Server attempts to determine the
MIME type from default-web.xml or the operating system default.

You can configure the following init-param values for the SSIServlet.

TABLE 7–4 SSIServlet init-paramValues

init-param Type Default Description

buffered boolean false Specifies whether the output should be
buffered.

debug int 0 (for no debugging) Specifies the debugging level.

expires Long Expires header in
HTTP response not
set

Specifies the expiration time in seconds.

inputEncoding String operating system
encoding

Specifies encoding for the SSI input if there is
no URL content encoding specified.

isVirtualWebappRelative boolean false (relative to the
given SSI file)

Specifies whether the virtual path of the
#include directive is relative to the
content-root.

outputEncoding String UTF-8 Specifies encoding for the SSI output.

For more information about SSI, see http://httpd.apache.org/docs/2.2/mod/
mod_include.html.

Using CGI
To enable CGI (common gateway interface) processing for a specific web module, add the
CGIServlet to your web.xml file as follows:

<web-app>

<servlet>

<servlet-name>cgi</servlet-name>

Advanced Web Application Features

Chapter 7 • Developing Web Applications 145

http://httpd.apache.org/docs/2.2/mod/mod_include.html
http://httpd.apache.org/docs/2.2/mod/mod_include.html

<servlet-class>org.apache.catalina.servlets.CGIServlet</servlet-class>

</servlet>

...

<servlet-mapping>

<servlet-name>cgi</servlet-name>

<url-pattern>/cgi-bin/*</url-pattern>

</servlet-mapping>

</web-app>

To enable CGI processing for all web modules, un-comment the corresponding sections in the
default-web.xml file.

Package the CGI program under the cgiPathPrefix. The default cgiPathPrefix is
WEB-INF/cgi. For security, it is highly recommended that the contents and binaries of CGI
programs be prohibited from direct viewing or download. For information about hiding
directory listings, see “Using the default-web.xml File” on page 138.

Invoke the CGI program using a URL of the following format:

http://host:8080/context-root/cgi-bin/cgi-name

For example:

http://localhost:8080/mycontext/cgi-bin/hello

You can configure the following init-param values for the CGIServlet.

TABLE 7–5 CGIServlet init-paramValues

init-param Type Default Description

cgiPathPrefix String WEB-INF/cgi Specifies the subdirectory containing the
CGI programs.

debug int 0 (for no debugging) Specifies the debugging level.

executable String perl Specifies the executable for running the
CGI script.

parameterEncoding String System.getProperty

("file.encoding",
"UTF-8")

Specifies the parameter's encoding.

passShellEnvironment boolean false Specifies whether to pass shell environment
properties to the CGI program.

To work with a native executable, do the following:

1. Set the value of the init-param named executable to an empty String in the web.xml file.
2. Make sure the executable has its executable bits set correctly.

Advanced Web Application Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011146

3. Use directory deployment to deploy the web module. Do not deploy it as a WAR file,
because the executable bit information is lost during the process of jar and unjar. For more
information about directory deployment, see the GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

Advanced Web Application Features

Chapter 7 • Developing Web Applications 147

148

Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeans (EJB) technology is supported in the Oracle
GlassFish Server.

The following topics are addressed here:

■ “Value Added Features” on page 149
■ “EJB Timer Service” on page 153
■ “Using Session Beans” on page 156
■ “Using Read-Only Beans” on page 163
■ “Using Message-Driven Beans” on page 167

For general information about enterprise beans, see Part IV, “Enterprise Beans,” in The Java
EE 6 Tutorial.

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

The GlassFish Server is backward compatible with 1.1, 2.0, 2.1, and 3.0 enterprise beans.
However, to take advantage of version 3.1 features, you should develop new beans as 3.1
enterprise beans.

Value Added Features
The GlassFish Server provides a number of value additions that relate to EJB development.
References to more in-depth material are included.

8C H A P T E R 8

149

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

The following topics are addressed here:

■ “Read-Only Beans” on page 150
■ “The pass-by-reference Element” on page 150
■ “Pooling and Caching” on page 151
■ “Priority Based Scheduling of Remote Bean Invocations” on page 152
■ “Immediate Flushing” on page 152

Read-Only Beans
Another feature that the GlassFish Server provides is the read-only bean, an EJB 2.1 entity bean
that is never modified by an EJB client. Read-only beans avoid database updates completely.

Note – Read-only beans are specific to the GlassFish Server and are not part of the Enterprise
JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a non-portable
application.

To make an EJB 3.0 entity read-only, use @Column annotations to mark its columns
insertable=false and updatable=false.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The GlassFish Server provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds element in the glassfish-ejb-jar.xml
file and the trans-attribute element (or @TransactionAttribute annotation) in the
ejb-jar.xml file, it is easy to configure a read-only bean that is one of the following:

■ Always refreshed
■ Periodically refreshed
■ Never refreshed
■ Programmatically refreshed

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 163.

The pass-by-reference Element
The pass-by-reference element in the glassfish-ejb-jar.xml file allows you to specify the
parameter passing semantics for colocated remote EJB invocations. This is an opportunity to
improve performance. However, use of this feature results in non-portable applications. See
“pass-by-reference” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Value Added Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011150

Pooling and Caching
The EJB container of the GlassFish Server pools anonymous instances (message-driven beans,
stateless session beans, and entity beans) to reduce the overhead of creating and destroying
objects. The EJB container maintains the free pool for each bean that is deployed. Bean
instances in the free pool have no identity (that is, no primary key associated) and are used to
serve method calls. The free beans are also used to serve all methods for stateless session beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after ejbCreate
and the business methods run. The size and behavior of each pool is controlled using
pool-related properties in the EJB container or the glassfish-ejb-jar.xml file.

In addition, the GlassFish Server supports a number of tunable parameters that can control the
number of “stateful” instances (stateful session beans and entity beans) cached as well as the
duration they are cached. Multiple bean instances that refer to the same database row in a table
can be cached. The EJB container maintains a cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache,
usually when cache overflows. These evicted bean instances return to the free bean pool. The
size and behavior of each cache can be controlled using the cache-related properties in the EJB
container or the glassfish-ejb-jar.xml file.

Pooling and caching parameters for the glassfish-ejb-jar.xml file are described in
“bean-cache” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Pooling Parameters
One of the most important parameters for GlassFish Server pooling is steady-pool-size.
When steady-pool-size is set to a value greater than 0, the container not only pre-populates
the bean pool with the specified number of beans, but also attempts to ensure that this number
of beans is always available in the free pool. This ensures that there are enough beans in the
ready-to-serve state to process user requests.

Note that the steady-pool-size and max-pool-size parameters only govern the number of
instances that are pooled over a long period of time. They do not necessarily guarantee that the
number of instances that may exist in the JVM at a given time will not exceed the value specified
by max-pool-size. For example, suppose an idle stateless session container has a
fully-populated pool with a steady-pool-size of 10. If 20 concurrent requests arrive for the
EJB component, the container creates 10 additional instances to satisfy the burst of requests.
The advantage of this is that it prevents the container from blocking any of the incoming
requests. However, if the activity dies down to 10 or fewer concurrent requests, the additional
10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify the
amount of time a bean instance can be idle in the pool. When pool-idle-timeout-in-seconds

is set to greater than 0, the container removes or destroys any bean instance that is idle for this
specified duration.

Value Added Features

Chapter 8 • Using Enterprise JavaBeans Technology 151

Caching Parameters
GlassFish Server provides a way that completely avoids caching of entity beans, using commit
option C. Commit option C is particularly useful if beans are accessed in large number but very
rarely reused. For additional information, refer to “Commit Options” on page 269.

The GlassFish Server caches can be either bounded or unbounded. Bounded caches have limits
on the number of beans that they can hold beyond which beans are passivated. For stateful
session beans, there are three ways (LRU, NRU and FIFO) of picking victim beans when cache
overflow occurs. Caches can also passivate beans that are idle (not accessed for a specified
duration).

Priority Based Scheduling of Remote Bean Invocations
You can create multiple thread pools, each having its own work queues. An optional element in
the glassfish-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool that processes
the requests for the bean. The bean must have a remote interface, or use-thread-pool-id is
ignored. You can create different thread pools and specify the appropriate thread pool ID for a
bean that requires a quick response time. If there is no such thread pool configured or if the
element is absent, the default thread pool is used.

Immediate Flushing
Normally, all entity bean updates within a transaction are batched and executed at the end of
the transaction. The only exception is the database flush that precedes execution of a finder or
select query.

Since a transaction often spans many method calls, you might want to find out if the updates
made by a method succeeded or failed immediately after method execution. To force a flush at
the end of a method’s execution, use the flush-at-end-of-method element in the
glassfish-ejb-jar.xml file. Only non-finder methods in an entity bean can be flush-enabled.
(For an EJB 2.1 bean, these methods must be in the Local, Local Home, Remote, or Remote
Home interface.) See “flush-at-end-of-method” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

Upon completion of the method, the EJB container updates the database. Any exception
thrown by the underlying data store is wrapped as follows:

■ If the method that triggered the flush is a create method, the exception is wrapped with
CreateException.

■ If the method that triggered the flush is a remove method, the exception is wrapped with
RemoveException.

■ For all other methods, the exception is wrapped with EJBException.

Value Added Features

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011152

All normal end-of-transaction database synchronization steps occur regardless of whether the
database has been flushed during the transaction.

EJB Timer Service
The EJB Timer Service uses a database to store persistent information about EJB timers. The
EJB Timer Service in GlassFish Server is preconfigured to use an embedded version of the Java
DB database.

The EJB Timer Service configuration can store persistent timer information in any database
supported by the GlassFish Server for persistence. For a list of the JDBC drivers currently
supported by the GlassFish Server, see the GlassFish Server Open Source Edition 3.1-3.1.1
Release Notes. For configurations of supported and other drivers, see “Configuration Specifics
for JDBC Drivers” in GlassFish Server Open Source Edition 3.1 Administration Guide.

The timer service is automatically enabled when you deploy an application or module that uses
it. You can verify that the timer service is running by accessing the following URL:

http://localhost:8080/ejb-timer-service-app/timer

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. If the EJB Timer Service has already been started
in a server instance, you must also create the timer database table. DDL files are located in
as-install/lib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager.
If an EJB component or application accesses a database either directly through JDBC or
indirectly (for example, through an entity bean’s persistence mechanism), and also interacts
with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

Minimum Delivery Interval
Specifies the minimum time in milliseconds before an expiration for a particular timer can
occur. This guards against extremely small timer increments that can overload the server.
The default is 1000.

Maximum Redeliveries
Specifies the maximum number of times the EJB timer service attempts to redeliver a timer
expiration after an exception or rollback of a container-managed transaction. The default is
1.

Redelivery Interval
Specifies how long in milliseconds the EJB timer service waits after a failed ejbTimeout

delivery before attempting a redelivery. The default is 5000.

EJB Timer Service

Chapter 8 • Using Enterprise JavaBeans Technology 153

Timer DataSource
Specifies the database used by the EJB Timer Service. The default is jdbc/__TimerPool.

Caution – Do not use the jdbc/__TimerPool resource for timers in clustered GlassFish Server
environments. You must instead use a custom JDBC resource or the jdbc/__default
resource. See the instructions below, in “To Deploy an EJB Timer to a Cluster” on page 154.
Also refer to “Enabling the jdbc/__default Resource in a Clustered Environment” in
GlassFish Server Open Source Edition 3.1 Administration Guide.

For information about the asadmin list-timers and asadmin migrate-timers

subcommands, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual. For
information about migrating EJB timers, see “Migrating EJB Timers” in GlassFish Server Open
Source Edition 3.1 High Availability Administration Guide.

You can use the --keepstate option of the asadmin redeploy command to retain EJB timers
between redeployments.

The default for --keepstate is false. This option is supported only on the default server
instance, named server. It is not supported and ignored for any other target.

When the --keepstate is set to true, each application that uses an EJB timer is assigned an ID
in the timer database. The EJB object that is associated with a given application is assigned an
ID that is constructed from the application ID and a numerical suffix. To preserve active timer
data, GlassFish Server stores the application ID and the EJB ID in the timer database. To restore
the data, the class loader of the newly redeployed application retrieves the EJB timers that
correspond to these IDs from the timer database.

For more information about the asadmin redeploy command, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

▼ To Deploy an EJB Timer to a Cluster
This procedure explains how to deploy an EJB timer to a cluster.

By default, the GlassFish Server 3.1 timer service points to the preconfigured
jdbc/__TimerPool resource, which uses an embedded Java DB (Derby) database configuration
that will not work in clustered environments.

The problem is that embedded Java DB runs in the GlassFish Server Java VM, so when you use
the jdbc/__TimerPool resource, each DAS and each clustered server instance will have its own
database table. Because of this, clustered server instances will not be able to find the database
table on the DAS, and the DAS will not be able to find the tables on the clustered server
instances.

EJB Timer Service

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011154

The solution is to use either a custom JDBC resource or the jdbc/__default resource that is
preconfigured but not enabled by default in GlassFish Server. The jdbc/__default resource
does not use embedded Java DB by default.

If creating a new timer resource, the resource should be created before deploying applications
that will use the timer.

Caution – Do not use the jdbc/__TimerPool resource for timers in clustered GlassFish Server
environments. You must instead use a custom JDBC resource or the jdbc/__default resource.
See “Enabling the jdbc/__default Resource in a Clustered Environment” in GlassFish Server
Open Source Edition 3.1 Administration Guide.

Execute the following command:
asadmin set configs.config.cluster_name-config.ejb-container.ejb-timer-service.timer-
datasource=jdbc/my-timer-resource

Restart the DAS and the target cluster(s).
asadmin stop-cluster cluster-name
asadmin stop-domain domain-name
asadmin start-domain domain-name
asadmin start-cluster cluster-name

If you inadvertently used the jdbc/__TimerPool resource for your EJB timer in a clustered
GlassFish Server environment, the DAS and the clustered server instances will be using separate
Java DB database tables that are running in individual Java VMs. For timers to work in a
clustered environment, the DAS and the clustered server instances must share a common
database table.

If you attempt to deploy an application with EJB timers without setting the timer resource
correctly, the startup will fail, and you will be left with a marker file, named
ejb-timer-service-app, on the DAS that will prevent the Timer Service from correctly
creating the database table.

The solution is to remove the marker file on the DAS, restart the DAS and the clusters, and then
redploy any applications that rely on the offending EJB timer. The marker file is located on the
DAS in as-install-parent/glassfish/domains/domain-name/generated/ejb/
ejb-timer-service-app.

Before You Begin

1

2

Troubleshooting

EJB Timer Service

Chapter 8 • Using Enterprise JavaBeans Technology 155

Using Session Beans
This section provides guidelines for creating session beans in the GlassFish Server environment.

The following topics are addressed here:

■ “About the Session Bean Containers” on page 156
■ “Stateful Session Bean Failover” on page 157
■ “Session Bean Restrictions and Optimizations” on page 162

Information on session beans is contained in the Enterprise JavaBeans Specification, v3.1.

About the Session Bean Containers
Like an entity bean, a session bean can access a database through Java Database Connectivity
(JDBC) calls. A session bean can also provide transaction settings. These transaction settings
and JDBC calls are referenced by the session bean’s container, allowing it to participate in
transactions managed by the container.

A container managing stateless session beans has a different charter from a container managing
stateful session beans.

The following topics are addressed here:

■ “Stateless Container” on page 156
■ “Stateful Container” on page 157

Stateless Container
The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The GlassFish Server
specific deployment descriptor file, glassfish-ejb-jar.xml, contains the properties that
define the pool:

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

For more information about glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

The GlassFish Server provides the wscompile and wsdeploy tools to help you implement a web
service endpoint as a stateless session bean. For more information about these tools, see the
GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Using Session Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011156

Stateful Container
The stateful container manages the stateful session beans, which, by definition, carry the
client-specific state. There is a one-to-one relationship between the client and the stateful
session beans. At creation, each stateful session bean (SFSB) is given a unique session ID that is
used to access the session bean so that an instance of a stateful session bean is accessed by a
single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session beans
cache are controlled by specifying the following glassfish-ejb-jar.xml parameters:
■ max-cache-size

■ resize-quantity

■ cache-idle-timeout-in-seconds

■ removal-timeout-in-seconds

■ victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held in
cache. If the cache overflows (when the number of beans exceeds max-cache-size), the
container then passivates some beans or writes out the serialized state of the bean into a file. The
directory in which the file is created is obtained from the EJB container using the configuration
APIs.

For more information about glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

The passivated beans are stored on the file system. The Session Store Location setting in the EJB
container allows the administrator to specify the directory where passivated beans are stored.
By default, passivated stateful session beans are stored in application-specific subdirectories
created under domain-dir/session-store.

Note – Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 58.

The Session Store Location setting also determines where the session state is persisted if it is not
highly available; see “Choosing a Persistence Store” on page 159.

Stateful Session Bean Failover
An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an
SFSB is saved to the persistent store at predefined points in its life cycle. This is called
checkpointing. If SFSB checkpointing is enabled, checkpointing generally occurs after any
transaction involving the SFSB is completed, even if the transaction rolls back.

Using Session Beans

Chapter 8 • Using Enterprise JavaBeans Technology 157

However, if an SFSB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of a bean method. Since the bean’s state might be
undergoing transition as a result of the method invocation, this is not an appropriate instant to
checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end
of the corresponding method, provided the bean is not in the scope of another transaction when
that method ends. If a bean-managed transaction spans across multiple methods,
checkpointing is delayed until there is no active transaction at the end of a subsequent method.

The state of an SFSB is not necessarily transactional and might be significantly modified as a
result of non-transactional business methods. If this is the case for an SFSB, you can specify a list
of checkpointed methods. If SFSB checkpointing is enabled, checkpointing occurs after any
checkpointed methods are completed.

The following table lists the types of references that SFSB failover supports. All objects bound
into an SFSB must be one of the supported types. In the table, No indicates that failover for the
object type might not work in all cases and that no failover support is provided. However,
failover might work in some cases for that object type. For example, failover might work
because the class implementing that type is serializable.

TABLE 8–1 Object Types Supported for Java EE Stateful Session Bean State Failover

Java Object Type Failover Support

Colocated or distributed stateless session, stateful
session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any
prepared global transactions are lost and might not be
correctly rolled back or committed.

JDBC DataSource No

Java Message Service (JMS) ConnectionFactory,
Destination

No

JavaMail Session No

Connection Factory No

Administered Object No

Web service reference No

Serializable Java types Yes

Extended persistence context No

Using Session Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011158

For more information about the InitialContext, see “Accessing the Naming Context” on
page 273. For more information about transaction recovery, see Chapter 15, “Using the
Transaction Service.” For more information about Administered Objects, see “Administering
JMS Physical Destinations” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Note – Idempotent URLs are supported along the HTTP path, but not the RMI-IIOP path. For
more information, see “Configuring Idempotent URL Requests” on page 139.

If a server instance to which an RMI-IIOP client request is sent crashes during the request
processing (before the response is prepared and sent back to the client), an error is sent to the
client. The client must retry the request explicitly. When the client retries the request, the
request is sent to another server instance in the cluster, which retrieves session state
information for this client.

HTTP sessions can also be saved in a persistent store in case a server instance fails. In addition,
if a distributable web application references an SFSB, and the web application’s session fails
over, the EJB reference is also failed over. For more information, see “Distributed Sessions and
Persistence” on page 116.

If an SFSB that uses session persistence is undeployed while the GlassFish Server instance is
stopped, the session data in the persistence store might not be cleared. To prevent this,
undeploy the SFSB while the GlassFish Server instance is running.

Configure SFSB failover by:

■ “Choosing a Persistence Store” on page 159
■ “Enabling Checkpointing” on page 161
■ “Specifying Methods to Be Checkpointed” on page 161

Choosing a Persistence Store
The following types of persistent storage are supported for passivation and checkpointing of the
SFSB state:

■ The local file system - Allows a single server instance to recover the SFSB state after a failure
and restart. This store also provides passivation and activation of the state to help control
the amount of memory used. This option is not supported in a production environment that
requires SFSB state persistence. This is the default storage mechanism if availability is not
enabled.

■ Other servers - Uses other server instances in the cluster for session persistence. Clustered
server instances replicate session state. Each backup instance stores the replicated data in
memory. This is the default storage mechanism if availability is enabled.

Using Session Beans

Chapter 8 • Using Enterprise JavaBeans Technology 159

Choose the persistence store in one of the following ways:
■ To use the local file system, first disable availability. Select the Availability Service

component under the relevant configuration in the Administration Console. Uncheck the
Availability Service box. Then select the EJB Container component and edit the Session
Store Location value. The default is domain-dir/session-store.

■ To use other servers, select the Availability Service component under the relevant
configuration in the Administration Console. Check the Availability Service box. To enable
availability for the EJB container, select the EJB Container Availability tab, then check the
Availability Service box. All instances in an GlassFish Server cluster should have the same
availability settings to ensure consistent behavior.

For more information about SFSB state persistence, see the GlassFish Server Open Source
Edition 3.1 High Availability Administration Guide.

Using the --keepstate Option

If you are using the file system for persistence, you can use the --keepstate option of the
asadmin redeploy command to retain the SFSB state between redeployments.

The default for --keepstate is false. This option is supported only on the default server
instance, named server. It is not supported and ignored for any other target.

Some changes to an application between redeployments prevent this feature from working
properly. For example, do not change the set of instance variables in the SFSB bean class.

If any active SFSB instance fails to be preserved or restored, none of the SFSB instances will be
available when the redeployment is complete. However, the redeployment continues and a
warning is logged.

To preserve active state data, GlassFish Server serializes the data and saves it in memory. To
restore the data, the class loader of the newly redeployed application deserializes the data that
was previously saved.

For more information about the asadmin redeploy command, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

Using the --asyncreplication Option

If you are using replication on other servers for persistence, you can use the
--asyncreplication option of the asadmin deploy command to specify that SFSB states are
first buffered and then replicated using a separate asynchronous thread. If
--asyncreplication is set to true (default), performance is improved but availability is
reduced. If the instance where states are buffered but not yet replicated fails, the states are lost. If
set to false, performance is reduced but availability is guaranteed. States are not buffered but
immediately transmitted to other instances in the cluster.

Using Session Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011160

For more information about the asadmin deploy command, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

Enabling Checkpointing
The following sections describe how to enable SFSB checkpointing:

■ “Server Instance and EJB Container Levels” on page 161
■ “Application and EJB Module Levels” on page 161
■ “SFSB Level” on page 161

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance or EJB container level, see “Choosing a
Persistence Store” on page 159.

Application and EJB Module Levels

To enable SFSB checkpointing at the application or EJB module level during deployment, use
the asadmin deploy or asadmin deploydir command with the --availabilityenabled
option set to true. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

SFSB Level

To enable SFSB checkpointing at the SFSB level, set availability-enabled="true" in the ejb
element of the SFSB’s glassfish-ejb-jar.xml file as follows:

<glassfish-ejb-jar>

...

<enterprise-beans>

...

<ejb availability-enabled="true">
<ejb-name>MySFSB</ejb-name>

</ejb>

...

</enterprise-beans>

</glassfish-ejb-jar>

Specifying Methods to Be Checkpointed
If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction
involving the SFSB is completed, even if the transaction rolls back.

To specify additional optional checkpointing of SFSBs at the end of non-transactional business
methods that cause important modifications to the bean’s state, use the
checkpoint-at-end-of-method element within the ejb element in glassfish-ejb-jar.xml.

For example:

Using Session Beans

Chapter 8 • Using Enterprise JavaBeans Technology 161

<glassfish-ejb-jar>

...

<enterprise-beans>

...

<ejb availability-enabled="true">
<ejb-name>ShoppingCartEJB</ejb-name>

<checkpoint-at-end-of-method>

<method>

<method-name>addToCart</method-name>

</method>

</checkpoint-at-end-of-method>

</ejb>

...

</enterprise-beans>

</glassfish-ejb-jar>

For details, see “checkpoint-at-end-of-method” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

The non-transactional methods in the checkpoint-at-end-of-method element can be the
following:
■ create methods defined in the home or business interface of the SFSB, if you want to

checkpoint the initial state of the SFSB immediately after creation
■ For SFSBs using container managed transactions only, methods in the remote interface of

the bean marked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER
■ For SFSBs using bean managed transactions only, methods in which a bean managed

transaction is neither started nor committed

Any other methods mentioned in this list are ignored. At the end of invocation of each of these
methods, the EJB container saves the state of the SFSB to persistent store.

Note – If an SFSB does not participate in any transaction, and if none of its methods are explicitly
specified in the checkpoint-at-end-of-method element, the bean’s state is not checkpointed at
all even if availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods chosen should
accomplish a significant amount of work in the context of the Java EE application or should
result in some important modification to the bean’s state.

Session Bean Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some optimization
guidelines.

■ “Optimizing Session Bean Performance” on page 163
■ “Restricting Transactions” on page 163
■ “EJB Singletons” on page 163

Using Session Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011162

Optimizing Session Bean Performance
For stateful session beans, colocating the stateful beans with their clients so that the client and
bean are executing in the same process address space improves performance.

Restricting Transactions
The following restrictions on transactions are enforced by the container and must be observed
as session beans are developed:

■ A session bean can participate in, at most, a single transaction at a time.
■ If a session bean is participating in a transaction, a client cannot invoke a method on the

bean such that the trans-attribute element (or @TransactionAttribute annotation) in
the ejb-jar.xml file would cause the container to execute the method in a different or
unspecified transaction context or an exception is thrown.

■ If a session bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or business interface object, or an exception is thrown.

EJB Singletons
EJB Singletons are created for each server instance in a cluster, and not once per cluster.

Using Read-Only Beans
A read-only bean is an EJB 2.1 entity bean that is never modified by an EJB client. The data that a
read-only bean represents can be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Note – Read-only beans are specific to the GlassFish Server and are not part of the Enterprise
JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a non-portable
application.

To make an EJB 3.0 entity bean read-only, use @Column annotations to mark its columns
insertable=false and updatable=false.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently.

The following topics are addressed here:

■ “Read-Only Bean Characteristics and Life Cycle” on page 164
■ “Read-Only Bean Good Practices” on page 165
■ “Refreshing Read-Only Beans” on page 165

Using Read-Only Beans

Chapter 8 • Using Enterprise JavaBeans Technology 163

■ “Deploying Read-Only Beans” on page 166

Read-Only Bean Characteristics and Life Cycle
Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, a read-only bean can be used to represent a stock quote for a
particular company, which is updated externally. In such a case, using a regular entity bean
might incur the burden of calling ejbStore, which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:

■ Only entity beans can be read-only beans.
■ Either bean-managed persistence (BMP) or container-managed persistence (CMP) is

allowed. If CMP is used, do not create the database schema during deployment. Instead,
work with your database administrator to populate the data into the tables. See Chapter 9,
“Using Container-Managed Persistence.”

■ Only container-managed transactions are allowed; read-only beans cannot start their own
transactions.

■ Read-only beans don’t update any bean state.
■ ejbStore is never called by the container.
■ ejbLoad is called only when a transactional method is called or when the bean is initially

created (in the cache), or at regular intervals controlled by the bean’s
refresh-period-in-seconds element in the glassfish-ejb-jar.xml file.

■ The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary keys).

■ If the data that the bean represents can change, then refresh-period-in-seconds must be
set to refresh the beans at regular intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as a victim to make room in the cache, ejbPassivate is called and the
bean is returned to the free pool. When in the free pool, the bean has no identity and is used
only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Using Read-Only Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011164

Read-Only Bean Good Practices
For best results, follow these guidelines when developing read-only beans:
■ Avoid having any create or remove methods in the home interface.
■ Use any of the valid EJB 2.1 transaction attributes for the trans-attribute element.

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same
transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans
There are several ways of refreshing read-only beans, as addressed in the following sections:

■ “Invoking a Transactional Method” on page 165
■ “Refreshing Periodically” on page 165
■ “Refreshing Programmatically” on page 166

Invoking a Transactional Method
Invoking any transactional method invokes ejbLoad.

Refreshing Periodically
Use the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file to refresh a
read-only bean periodically.

■ If the value specified in refresh-period-in-seconds is zero or not specified, which is the
default, the bean is never refreshed (unless a transactional method is accessed).

■ If the value is greater than zero, the bean is refreshed at the rate specified.

Note – This is the only way to refresh the bean state if the data can be modified external to the
GlassFish Server.

By default, a single timer is used for all instances of a read-only bean. When that timer fires, all
bean instances are marked as expired and are refreshed from the database the next time they are
used.

Use the -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true flag to refresh
each bean instance independently upon access if its refresh period has expired. The default is
false. Note that each instance still has the same refresh period. This additional level of
granularity can improve the performance of read-only beans that do not need to be refreshed at
the same time.

To set this flag, use the asadmin create-jvm-options command. For example:

Using Read-Only Beans

Chapter 8 • Using Enterprise JavaBeans Technology 165

asadmin create-jvm-options -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true

Refreshing Programmatically
Typically, beans that update any data that is cached by read-only beans need to notify the
read-only beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of
read-only beans.

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier extends java.rmi.Remote {

refresh(Object PrimaryKey) throws RemoteException;

}

The implementation of the ReadOnlyBeanNotifier interface is provided by the container. The
bean looks up ReadOnlyBeanNotifier using a fragment of code such as the following example:

com.sun.appserv.ejb.ReadOnlyBeanHelper helper =

new com.sun.appserv.ejb.ReadOnlyBeanHelper();

com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =

helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer");
notifier.refresh(PrimaryKey);

For a local read-only bean notifier, the lookup has this modification:

helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer");

Beans that update any data that is cached by read-only beans need to call the refresh methods.
The next (non-transactional) call to the read-only bean invokes ejbLoad.

For Javadoc tool pages relevant to read-only beans, go to http://glassfish.java.net/nonav/

docs/v3/api/ and click on the com.sun.appserv.ejb package.

Deploying Read-Only Beans
Read-only beans are deployed in the same manner as other entity beans. However, in the entry
for the bean in the glassfish-ejb-jar.xml file, the is-read-only-bean element must be set
to true. That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file can be set
to some value that specifies the rate at which the bean is refreshed. If this element is missing, no
refresh occurs.

All requests in the same transaction context are routed to the same read-only bean instance. Set
the allow-concurrent-access element to either true (to allow concurrent accesses) or false
(to serialize concurrent access to the same read-only bean). The default is false.

Using Read-Only Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011166

http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/

For further information on these elements, refer to “The glassfish-ejb-jar.xml File” in GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

Using Message-Driven Beans
This section describes message-driven beans and explains the requirements for creating them in
the GlassFish Server environment.

The following topics are addressed here:

■ “Message-Driven Bean Configuration” on page 167
■ “Message-Driven Bean Restrictions and Optimizations” on page 168

Message-Driven Bean Configuration
The following topics are addressed here:

■ “Connection Factory and Destination” on page 167
■ “Message-Driven Bean Pool” on page 167
■ “Domain-Level Settings” on page 168

For information about setting up load balancing for message-driven beans, see “Load-Balanced
Message Inflow” on page 284.

Connection Factory and Destination
A message-driven bean is a client to a Connector inbound resource adapter. The
message-driven bean container uses the JMS service integrated into the GlassFish Server for
message-driven beans that are JMS clients. JMS clients use JMS Connection Factory- and
Destination-administered objects. A JMS Connection Factory administered object is a resource
manager Connection Factory object that is used to create connections to the JMS provider.

The mdb-connection-factory element in the glassfish-ejb-jar.xml file for a
message-driven bean specifies the connection factory that creates the container connection to
the JMS provider.

The jndi-name element of the ejb element in the glassfish-ejb-jar.xml file specifies the
JNDI name of the administered object for the JMS Queue or Topic destination that is associated
with the message-driven bean.

Message-Driven Bean Pool
The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The glassfish-ejb-jar.xml file contains the elements that define the
pool (that is, the bean-pool element):

Using Message-Driven Beans

Chapter 8 • Using Enterprise JavaBeans Technology 167

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

For more information about glassfish-ejb-jar.xml, see “The glassfish-ejb-jar.xml File” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Domain-Level Settings
You can control the following domain-level message-driven bean settings in the EJB container:

Initial and Minimum Pool Size
Specifies the initial and minimum number of beans maintained in the pool. The default is 0.

Maximum Pool Size
Specifies the maximum number of beans that can be created to satisfy client requests. The
default is 32.

Pool Resize Quantity
Specifies the number of beans to be created if a request arrives when the pool is empty
(subject to the Initial and Minimum Pool Size), or the number of beans to remove if idle for
more than the Idle Timeout. The default is 8.

Idle Timeout
Specifies the maximum time in seconds that a bean can remain idle in the pool. After this
amount of time, the bean is destroyed. The default is 600 (10 minutes). A value of 0 means a
bean can remain idle indefinitely.

For information on monitoring message-driven beans, click the Help button in the
Administration Console. Select the Stand-Alone Instances component, select the instance from
the table, and select the Monitor tab. Or select the Clusters component, select the cluster from
the table, select the Instances tab, select the instance from the table, and select the Monitor tab.

Note – Running monitoring when it is not needed might impact performance, so you might
choose to turn monitoring off when it is not in use. For details, see Chapter 8, “Administering
the Monitoring Service,” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Message-Driven Bean Restrictions and Optimizations
This section discusses the following restrictions and performance optimizations that pertain to
developing message-driven beans:

■ “Pool Tuning and Monitoring” on page 169
■ “The onMessage Runtime Exception” on page 169

Using Message-Driven Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011168

Pool Tuning and Monitoring
The message-driven bean pool is also a pool of threads, with each message-driven bean instance
in the pool associating with a server session, and each server session associating with a thread.
Therefore, a large pool size also means a high number of threads, which impacts performance
and server resources.

When configuring message-driven bean pool properties, make sure to consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server resources
(threads, memory, and so on), and any concurrency requirements and limitations from other
resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS provider
properties for the connection factory used by the container (the mdb-connection-factory
element in the glassfish-ejb-jar.xml file). For example, you can tune the Open Message
Queue flow control related properties for connection factory in situations where the message
incoming rate is much higher than max-pool-size can handle.

Refer to Chapter 8, “Administering the Monitoring Service,” in GlassFish Server Open Source
Edition 3.1 Administration Guide for information on how to get message-driven bean pool
statistics.

The onMessageRuntime Exception
Message-driven beans, like other well-behaved MessageListeners, should not, in general, throw
runtime exceptions. If a message-driven bean’s onMessage method encounters a system-level
exception or error that does not allow the method to successfully complete, the Enterprise
JavaBeans Specification, v3.0 provides the following guidelines:
■ If the bean method encounters a runtime exception or error, it should simply propagate the

error from the bean method to the container.
■ If the bean method performs an operation that results in a checked exception that the bean

method cannot recover, the bean method should throw the javax.ejb.EJBException that
wraps the original exception.

■ Any other unexpected error conditions should be reported using javax.ejb.EJBException
(javax.ejb.EJBException is a subclass of java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime exception from
a message-driven bean’s onMessage method, the container rolls back the container-started
transaction and the message is redelivered. This is because the message delivery itself is part of
the container-started transaction. By default, the GlassFish Server container closes the
container’s connection to the JMS provider when the first runtime exception is received from a
message-driven bean instance’s onMessage method. This avoids potential message redelivery
looping and protects server resources if the message-driven bean’s onMessage method
continues misbehaving. To change this default container behavior, use the
cmt-max-runtime-exceptions property of the MDB container. Here is an example asadmin
set command that sets this property:

Using Message-Driven Beans

Chapter 8 • Using Enterprise JavaBeans Technology 169

asadmin set server-config.mdb-container.property.cmt-max-runtime-exceptions="5"

For more information about the asadmin set command, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime
exceptions allowed from a message-driven bean’s onMessage method before the container starts
to close the container’s connection to the message source. By default this value is 1; -1 disables
this container protection.

A message-driven bean’s onMessage method can use the
javax.jms.Message.getJMSRedelivered method to check whether a received message is a
redelivered message.

Note – The cmt-max-runtime-exceptions property is deprecated.

Using Message-Driven Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011170

Using Container-Managed Persistence

This chapter contains information on how EJB 2.1 container-managed persistence (CMP)
works in Oracle GlassFish Server.

The following topics are addressed here:

■ “GlassFish Server Support for CMP” on page 171
■ “CMP Mapping” on page 172
■ “Automatic Schema Generation for CMP” on page 177
■ “Schema Capture” on page 182
■ “Configuring the CMP Resource” on page 184
■ “Performance-Related Features” on page 184
■ “Configuring Queries for 1.1 Finders” on page 187
■ “CMP Restrictions and Optimizations” on page 191

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

GlassFish Server Support for CMP
GlassFish Server support for EJB 2.1 CMP beans includes:

■ Full support for the J2EE v1.4 specification’s CMP model. Extensive information on CMP is
contained in chapters 10, 11, and 14 of the Enterprise JavaBeans Specification, v2.1. This
includes the following:
■ Support for commit options B and C for transactions. See “Commit Options” on

page 269.

9C H A P T E R 9

171

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

■ The primary key class must be a subclass of java.lang.Object. This ensures portability,
and is noted because some vendors allow primitive types (such as int) to be used as the
primary key class.

■ The GlassFish Server CMP implementation, which provides the following:
■ An Object/Relational (O/R) mapping tool that creates XML deployment descriptors for

EJB JAR files that contain beans that use CMP.
■ Support for compound (multi-column) primary keys.
■ Support for sophisticated custom finder methods.
■ Standards-based query language (EJB QL).
■ CMP runtime support. See “Configuring the CMP Resource” on page 184.

■ GlassFish Server performance-related features, including the following:
■ Version column consistency checking
■ Relationship prefetching
■ Read-Only Beans

For details, see “Performance-Related Features” on page 184.

CMP Mapping
Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields and
CMR fields (relationships) to the database.

The following topics are addressed here:

■ “Mapping Capabilities” on page 172
■ “The Mapping Deployment Descriptor File” on page 173
■ “Mapping Considerations” on page 174

Mapping Capabilities
Mapping refers to the ability to tie an object-based model to a relational model of data, usually
the schema of a relational database. The CMP implementation provides the ability to tie a set of
interrelated beans containing data and associated behaviors to the schema. This object
representation of the database becomes part of the Java application. You can also customize this
mapping to optimize these beans for the particular needs of an application. The result is a single
data model through which both persistent database information and regular transient program
data are accessed.

The mapping capabilities provided by the GlassFish Server include:

■ Mapping a CMP bean to one or more tables

CMP Mapping

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011172

■ Mapping CMP fields to one or more columns
■ Mapping CMP fields to different column types
■ Mapping tables with compound primary keys
■ Mapping tables with unknown primary keys
■ Mapping CMP relationships to foreign keys
■ Mapping tables with overlapping primary and foreign keys

The Mapping Deployment Descriptor File
Each module with CMP beans must have the following files:

■ ejb-jar.xml – The J2EE standard file for assembling enterprise beans. For a detailed
description, see the Enterprise JavaBeans Specification, v2.1.

■ glassfish-ejb-jar.xml – The GlassFish Server standard file for assembling enterprise
beans. For a detailed description, see “The glassfish-ejb-jar.xml File” in GlassFish Server
Open Source Edition 3.1 Application Deployment Guide.

■ sun-cmp-mappings.xml – The mapping deployment descriptor file, which describes the
mapping of CMP beans to tables in a database. For a detailed description, see “The
sun-cmp-mappings.xml File” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide.

The sun-cmp-mappings.xml file can be automatically generated and does not have to exist prior
to deployment. For details, see “Generation Options for CMP” on page 179.

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the
database. A primary table must be selected for each CMP bean, and optionally, multiple
secondary tables. CMP fields are mapped to columns in either the primary or secondary
table(s). CMR fields are mapped to pairs of column lists (normally, column lists are the lists of
columns associated with primary and foreign keys).

Note – Table names in databases can be case-sensitive. Make sure that the table names in the
sun-cmp-mappings.xml file match the names in the database.

Relationships should always be mapped to the primary key field(s) of the related table.

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping_1_2.dtd file and is
packaged with the user-defined bean classes in the EJB JAR file under the META-INF directory.

The GlassFish Server creates the mappings in the sun-cmp-mappings.xml file automatically
during deployment if the file is not present.

To map the fields and relationships of your entity beans manually, edit the
sun-cmp-mappings.xml deployment descriptor. Only do this if you are proficient in editing
XML.

CMP Mapping

Chapter 9 • Using Container-Managed Persistence 173

The mapping information is developed in conjunction with the database schema (.dbschema)
file, which can be automatically captured when you deploy the bean (see “Automatic Database
Schema Capture” on page 183). You can manually generate the schema using the
capture-schema utility (“Using the capture-schema Utility” on page 183).

Mapping Considerations
The following topics are addressed here:

■ “Join Tables and Relationships” on page 174
■ “Automatic Primary Key Generation” on page 174
■ “Fixed Length CHAR Primary Keys” on page 175
■ “Managed Fields” on page 175
■ “BLOB Support” on page 175
■ “CLOB Support” on page 176

The data types used in automatic schema generation are also suggested for manual mapping.
These data types are described in “Supported Data Types for CMP” on page 177.

Join Tables and Relationships
Use of join tables in the database schema is supported for all types of relationships, not just
many-to-many relationships. For general information about relationships, see section 10.3.7 of
the Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation
The GlassFish Server supports automatic primary key generation for EJB 1.1, 2.0, and 2.1 CMP
beans. To specify automatic primary key generation, give the prim-key-class element in the
ejb-jar.xml file the value java.lang.Object. CMP beans with automatically generated
primary keys can participate in relationships with other CMP beans. The GlassFish Server does
not support database-generated primary key values.

If the database schema is created during deployment, the GlassFish Server creates the schema
with the primary key column, then generates unique values for the primary key column at
runtime.

If the database schema is not created during deployment, the primary key column in the
mapped table must be of type NUMERIC with a precision of 19 or more, and must not be mapped
to any CMP field. The GlassFish Server generates unique values for the primary key column at
runtime.

CMP Mapping

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011174

Fixed Length CHAR Primary Keys
If an existing database table has a primary key column in which the values vary in length, but the
type is CHAR instead of VARCHAR, the GlassFish Server automatically trims any extra spaces when
retrieving primary key values. It is not a good practice to use a fixed length CHAR column as a
primary key. Use this feature with schemas that cannot be changed, such as a schema inherited
from a legacy application.

Managed Fields
A managed field is a CMP or CMR field that is mapped to the same database column as another
CMP or CMR field. CMP fields mapped to the same column and CMR fields mapped to exactly
the same column lists always have the same value in memory. For CMR fields that share only a
subset of their mapped columns, changes to the columns affect the relationship fields in
memory differently. Basically, the GlassFish Server always tries to keep the state of the objects in
memory synchronized with the database.

A managed field can have any fetched-with subelement. If the fetched-with subelement is
<default/>, the -DAllowManagedFieldsInDefaultFetchGroup flag must be set to true. See
“Default Fetch Group Flags” on page 186 and “fetched-with” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

BLOB Support
Binary Large Object (BLOB) is a data type used to store values that do not correspond to other
types such as numbers, strings, or dates. Java fields whose types implement java.io.Serializable
or are represented as byte[] can be stored as BLOBs.

If a CMP field is defined as Serializable, it is serialized into a byte[] before being stored in the
database. Similarly, the value fetched from the database is deserialized. However, if a CMP field
is defined as byte[], it is stored directly instead of being serialized and deserialized when stored
and fetched, respectively.

To enable BLOB support in the GlassFish Server environment, define a CMP field of type
byte[] or a user-defined type that implements the java.io.Serializable interface. If you map the
CMP bean to an existing database schema, map the field to a column of type BLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the GlassFish
Server Open Source Edition 3.1-3.1.1 Release Notes. For configurations of supported and other
drivers, see “Configuration Specifics for JDBC Drivers” in GlassFish Server Open Source
Edition 3.1 Administration Guide.

CMP Mapping

Chapter 9 • Using Container-Managed Persistence 175

For automatic mapping, you might need to change the default BLOB column length for the
generated schema using the schema-generator-properties element in
glassfish-ejb-jar.xml. See your database vendor documentation to determine whether you
need to specify the length. For example:

<schema-generator-properties>

<property>

<name>Employee.voiceGreeting.jdbc-type</name>

<value>BLOB</value>

</property>

<property>

<name>Employee.voiceGreeting.jdbc-maximum-length</name>

<value>10240</value>

</property>

...

</schema-generator-properties>

CLOB Support
Character Large Object (CLOB) is a data type used to store and retrieve very long text fields.
CLOBs translate into long strings.

To enable CLOB support in the GlassFish Server environment, define a CMP field of type
java.lang.String. If you map the CMP bean to an existing database schema, map the field to a
column of type CLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the GlassFish
Server Open Source Edition 3.1-3.1.1 Release Notes. For configurations of supported and other
drivers, see “Configuration Specifics for JDBC Drivers” in GlassFish Server Open Source
Edition 3.1 Administration Guide.

For automatic mapping, you might need to change the default CLOB column length for the
generated schema using the schema-generator-properties element in
glassfish-ejb-jar.xml. See your database vendor documentation to determine whether you
need to specify the length. For example:

<schema-generator-properties>

<property>

<name>Employee.resume.jdbc-type</name>

<value>CLOB</value>

</property>

<property>

<name>Employee.resume.jdbc-maximum-length</name>

<value>10240</value>

</property>

...

</schema-generator-properties>

CMP Mapping

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011176

Automatic Schema Generation for CMP
The automatic schema generation feature provided in the GlassFish Server defines database
tables based on the fields in entity beans and the relationships between the fields. This insulates
developers from many of the database related aspects of development, allowing them to focus
on entity bean development. The resulting schema is usable as-is or can be given to a database
administrator for tuning with respect to performance, security, and so on.

The following topics are addressed here:
■ “Supported Data Types for CMP” on page 177
■ “Generation Options for CMP” on page 179

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. This is done to allow you to investigate the problem and fix it manually. You
should not rely on the partially created database schema to be correct for running the
application.

Supported Data Types for CMP
CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL types.
Supported JDBC data types are as follows: BIGINT, BIT, BLOB, CHAR, CLOB, DATE,
DECIMAL, DOUBLE, FLOAT, INTEGER, NUMERIC, REAL, SMALLINT, TIME,
TIMESTAMP, TINYINT, VARCHAR.

The following table contains the mappings of Java types to JDBC types when automatic
mapping is used.

TABLE 9–1 Java Type to JDBC Type Mappings for CMP

Java Type JDBC Type Nullability

boolean BIT No

java.lang.Boolean BIT Yes

byte TINYINT No

java.lang.Byte TINYINT Yes

double DOUBLE No

java.lang.Double DOUBLE Yes

Automatic Schema Generation for CMP

Chapter 9 • Using Container-Managed Persistence 177

TABLE 9–1 Java Type to JDBC Type Mappings for CMP (Continued)
Java Type JDBC Type Nullability

float REAL No

java.lang.Float REAL Yes

int INTEGER No

java.lang.Integer INTEGER Yes

long BIGINT No

java.lang.Long BIGINT Yes

short SMALLINT No

java.lang.Short SMALLINT Yes

java.math.BigDecimal DECIMAL Yes

java.math.BigInteger DECIMAL Yes

char CHAR No

java.lang.Character CHAR Yes

java.lang.String VARCHAR or CLOB Yes

Serializable BLOB Yes

byte[] BLOB Yes

java.util.Date DATE (Oracle only)

TIMESTAMP (all other databases)

Yes

java.sql.Date DATE Yes

java.sql.Time TIME Yes

java.sql.Timestamp TIMESTAMP Yes

Note – Java types assigned to CMP fields must be restricted to Java primitive types, Java
Serializable types, java.util.Date, java.sql.Date, java.sql.Time, or java.sql.Timestamp.
An entity bean local interface type (or a collection of such) can be the type of a CMR field.

The following table contains the mappings of JDBC types to database vendor-specific types
when automatic mapping is used. For a list of the JDBC drivers currently supported by the
GlassFish Server, see the GlassFish Server Open Source Edition 3.1-3.1.1 Release Notes. For
configurations of supported and other drivers, see “Configuration Specifics for JDBC Drivers”
in GlassFish Server Open Source Edition 3.1 Administration Guide.

Automatic Schema Generation for CMP

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011178

TABLE 9–2 Mappings of JDBC Types to Database Vendor Specific Types for CMP

JDBC Type
Java DB, Derby,
CloudScape Oracle DB2 Sybase ASE 12.5 MS-SQL Server

BIT SMALLINT SMALLINT SMALLINT TINYINT BIT

TINYINT SMALLINT SMALLINT SMALLINT TINYINT TINYINT

SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER

BIGINT BIGINT NUMBER BIGINT NUMERIC NUMERIC

REAL REAL REAL FLOAT FLOAT REAL

DOUBLE DOUBLE PRECISION DOUBLE PRECISION DOUBLE DOUBLE PRECISION FLOAT

DECIMAL(p,s) DECIMAL(p,s) NUMBER(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

VARCHAR VARCHAR VARCHAR2 VARCHAR VARCHAR VARCHAR

DATE DATE DATE DATE DATETIME DATETIME

TIME TIME DATE TIME DATETIME DATETIME

TIMESTAMP TIMESTAMP TIMESTAMP(9) TIMESTAMP DATETIME DATETIME

BLOB BLOB BLOB BLOB IMAGE IMAGE

CLOB CLOB CLOB CLOB TEXT NTEXT

Generation Options for CMP
Deployment descriptor elements or asadmin command line options can control automatic
schema generation by the following:

■ Creating tables during deployment
■ Dropping tables during undeployment
■ Dropping and creating tables during redeployment
■ Specifying the database vendor
■ Specifying that table names are unique
■ Specifying type mappings for individual CMP fields

Automatic Schema Generation for CMP

Chapter 9 • Using Container-Managed Persistence 179

Note – Before using these options, make sure you have a properly configured CMP resource. See
“Configuring the CMP Resource” on page 184.

For a read-only bean, do not create the database schema during deployment. Instead, work with
your database administrator to populate the data into the tables. See “Using Read-Only Beans”
on page 163.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers. See “Version Column Consistency Checking” on page 184.

The following optional data subelements of the cmp-resource element in the
glassfish-ejb-jar.xml file control the automatic creation of database tables at deployment.
For more information about the cmp-resource element, see “cmp-resource” in GlassFish Server
Open Source Edition 3.1 Application Deployment Guide and “Configuring the CMP Resource”
on page 184.

TABLE 9–3 The glassfish-ejb-jar.xmlGeneration Elements

Element Default Description

create-tables-at-deploy false If true, causes database tables to be created for beans that are automatically
mapped by the EJB container. No unique constraints are created. If false, does
not create tables.

drop-tables-at-undeploy false If true, causes database tables that were automatically created when the bean(s)
were last deployed to be dropped when the bean(s) are undeployed. If false, does
not drop tables.

database-vendor-name none Specifies the name of the database vendor for which tables are created. Allowed
values are javadb, db2, mssql, mysql, oracle, postgresql, pointbase, derby
(also for CloudScape), and sybase, case-insensitive.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp-resource element in the
glassfish-ejb-jar.xml file, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized, SQL-92
compliance is presumed.

Automatic Schema Generation for CMP

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011180

TABLE 9–3 The glassfish-ejb-jar.xmlGeneration Elements (Continued)
Element Default Description

schema-generator-properties none Specifies field-specific column attributes in property subelements. Each property
name is of the following format:

bean-name.field-name.attribute

For example:

Employee.firstName.jdbc-type

Also allows you to set the use-unique-table-names property. If true, this
property specifies that generated table names are unique within each GlassFish
Server domain. The default is false.

For further information and an example, see “schema-generator-properties” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment.

TABLE 9–4 The asadmin deploy and asadmin deploydir Generation Options for CMP

Option Default Description

--createtables none If true, causes database tables to be created for beans that need them. No unique
constraints are created. If false, does not create tables. If not specified, the value of
the create-tables-at-deploy attribute in glassfish-ejb-jar.xml is used.

--dropandcreatetables none If true, and if tables were automatically created when this application was last
deployed, tables from the earlier deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the same names as
those that would have been automatically created are found, the deployment
proceeds, but a warning indicates that tables could not be created.

If false, settings of create-tables-at-deploy or drop-tables-at-undeploy in
the glassfish-ejb-jar.xml file are overridden.

--uniquetablenames none If true, specifies that table names are unique within each GlassFish Server domain.
If not specified, the value of the use-unique-table-names property in
glassfish-ejb-jar.xml is used.

Automatic Schema Generation for CMP

Chapter 9 • Using Container-Managed Persistence 181

TABLE 9–4 The asadmin deploy and asadmin deploydir Generation Options for CMP (Continued)
Option Default Description

--dbvendorname none Specifies the name of the database vendor for which tables are created. Allowed
values are javadb, db2, mssql, oracle, postgresql, pointbase, derby (also for
CloudScape), and sybase, case-insensitive.

If not specified, the value of the database-vendor-name attribute in
glassfish-ejb-jar.xml is used.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp-resource element in the
glassfish-ejb-jar.xml file, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized, SQL-92
compliance is presumed.

If one or more of the beans in the module are manually mapped and you use any of the asadmin
deploy or asadmin deploydir options, the deployment is not harmed in any way, but the
options have no effect, and a warning is written to the server log.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment.

TABLE 9–5 The asadmin undeploy Generation Options for CMP

Option Default Description

--droptables none If true, causes database tables that were automatically created when the bean(s) were last
deployed to be dropped when the bean(s) are undeployed. If false, does not drop tables.

If not specified, the value of the drop-tables-at-undeploy attribute in
glassfish-ejb-jar.xml is used.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy

commands, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

When command line and glassfish-ejb-jar.xml options are both specified, the asadmin
options take precedence.

Schema Capture
The following topics are addressed here:

■ “Automatic Database Schema Capture” on page 183
■ “Using the capture-schema Utility” on page 183

Schema Capture

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011182

Automatic Database Schema Capture
You can configure a CMP bean in GlassFish Server to automatically capture the database
metadata and save it in a .dbschema file during deployment. If the sun-cmp-mappings.xml file
contains an empty <schema/> entry, the cmp-resource entry in the glassfish-ejb-jar.xml
file is used to get a connection to the database, and automatic generation of the schema is
performed.

Note – Before capturing the database schema automatically, make sure you have a properly
configured CMP resource. See “Configuring the CMP Resource” on page 184.

Using the capture-schemaUtility
You can use the capture-schema command to manually generate the database metadata
(.dbschema) file. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to
provide the persistence engine with information about the structure of the database (the
schema).

Keep the following in mind when using the capture-schema command:

■ The name of a .dbschema file must be unique across all deployed modules in a domain.
■ If more than one schema is accessible for the schema user, more than one table with the

same name might be captured if the -schemaname option of capture-schema is not set.
■ The schema name must be upper case.
■ Table names in databases are case-sensitive. Make sure that the table name matches the

name in the database.
■ PostgreSQL databases internally convert all names to lower case. Before running the

capture-schema command on a PostgreSQL database, make sure table and column names
are lower case in the sun-cmp-mappings.xml file.

■ An Oracle database user running the capture-schema command needs ANALYZE ANY
TABLE privileges if that user does not own the schema. These privileges are granted to the
user by the database administrator.

Schema Capture

Chapter 9 • Using Container-Managed Persistence 183

Configuring the CMP Resource
An EJB module that contains CMP beans requires the JNDI name of a JDBC resource in the
jndi-name subelement of the cmp-resource element in the glassfish-ejb-jar.xml file. Set
PersistenceManagerFactory properties as properties of the cmp-resource element in the
glassfish-ejb-jar.xml file. See “cmp-resource” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

In the Administration Console, open the Resources component, then select JDBC. Click the
Help button in the Administration Console for information on creating a new JDBC resource.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the GlassFish
Server Open Source Edition 3.1-3.1.1 Release Notes. For configurations of supported and other
drivers, see “Configuration Specifics for JDBC Drivers” in GlassFish Server Open Source
Edition 3.1 Administration Guide.

For example, if the JDBC resource has the JNDI name jdbc/MyDatabase, set the CMP resource
in the glassfish-ejb-jar.xml file as follows:

<cmp-resource>

<jndi-name>jdbc/MyDatabase</jndi-name>

</cmp-resource>

Performance-Related Features
The GlassFish Server provides the following features to enhance performance or allow more
fine-grained data checking. These features are supported only for entity beans with container
managed persistence.

The following topics are addressed here:
■ “Version Column Consistency Checking” on page 184
■ “Relationship Prefetching” on page 185
■ “Read-Only Beans” on page 186
■ “Default Fetch Group Flags” on page 186

Note – Use of any of these features results in a non-portable application.

Version Column Consistency Checking
The version consistency feature saves the bean state at first transactional access and caches it
between transactions. The state is copied from the cache instead of being read from the
database. The bean state is verified by primary key and version column values at flush for
custom queries (for dirty instances only) and at commit (for clean and dirty instances).

Configuring the CMP Resource

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011184

▼ To Use Version Consistency

Create the version column in the primary table.

Give the version column a numeric data type.

Provide appropriate update triggers on the version column.
These triggers must increment the version column on each update of the specified row.

Specify the version column.
This is specified in the check-version-of-accessed-instances subelement of the
consistency element in the sun-cmp-mappings.xml file. See “consistency” in GlassFish Server
Open Source Edition 3.1 Application Deployment Guide.

Map the CMP bean to an existing schema.
Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers.

Relationship Prefetching
In many cases when an entity bean’s state is fetched from the database, its relationship fields are
always accessed in the same transaction. Relationship prefetching saves database round trips by
fetching data for an entity bean and those beans referenced by its CMR fields in a single
database round trip.

To enable relationship prefetching for a CMR field, use the default subelement of the
fetched-with element in the sun-cmp-mappings.xml file. By default, these CMR fields are
prefetched whenever findByPrimaryKey or a custom finder is executed for the entity, or when
the entity is navigated to from a relationship. (Recursive prefetching is not supported, because it
does not usually enhance performance.) See “fetched-with” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

To disable prefetching for specific custom finders, use the prefetch-disabled element in the
glassfish-ejb-jar.xml file. See “prefetch-disabled” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

Multilevel relationship prefetching is supported for CMP 2.1 entity beans. To enable multilevel
relationship prefetching, set the following property using the asadmin create-jvm-options
command:

asadmin create-jvm-options -Dcom.sun.jdo.spi.persistence.support.sqlstore.MULTILEVEL_PREFETCH=true

1

2

3

4

5

Performance-Related Features

Chapter 9 • Using Container-Managed Persistence 185

Read-Only Beans
Another feature that the GlassFish Server provides is the read-only bean, an entity bean that is
never modified by an EJB client. Read-only beans avoid database updates completely.

Note – Read-only beans are specific to the GlassFish Server and are not part of the Enterprise
JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean results in a non-portable
application.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The GlassFish Server provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds element in the glassfish-ejb-jar.xml
file and the trans-attribute element (or @TransactionAttribute annotation) in the
ejb-jar.xml file, it is easy to configure a read-only bean that is one of the following:

■ Always refreshed
■ Periodically refreshed
■ Never refreshed
■ Programmatically refreshed

Access to CMR fields of read-only beans is not supported. Deployment will succeed, but an
exception will be thrown at runtime if a get or set method is invoked.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 163.

Default Fetch Group Flags
Using the following flags can improve performance.

Setting -DAllowManagedFieldsInDefaultFetchGroup=true allows CMP fields that by default
cannot be placed into the default fetch group to be loaded along with all other fields that are
fetched when the CMP state is loaded into memory. These could be multiple fields mapped to
the same column in the database table, for example, an instance field and a CMR. By default this
flag is set to false.

For additional information, see “level” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide.

Default Fetch Group Flags

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011186

Setting -DAllowMediatedWriteInDefaultFetchGroup specifies how updated CMP fields are
written back to the database. If the flag is false, all fields in the CMP bean are written back to
the database if at least one field in the default fetch group has been changed in a transaction. If
the flag is true, only fields modified by the bean are written back to the database. Specifying
true can improve performance, particularly on database tables with many columns that have
not been updated. By default this flag is set to false.

To set one of these flags, use the asadmin create-jvm-options command. For example:

asadmin create-jvm-options -DAllowManagedFieldsInDefaultFetchGroup=true

Configuring Queries for 1.1 Finders
The following topics are addressed here:
■ “About JDOQL Queries” on page 187
■ “Query Filter Expression” on page 188
■ “Query Parameters” on page 189
■ “Query Variables” on page 189
■ “JDOQL Examples” on page 189

About JDOQL Queries
The Enterprise JavaBeans Specification, v1.1 does not specify the format of the finder method
description. The GlassFish Server uses an extension of Java Data Objects Query Language
(JDOQL) queries to implement finder and selector methods. You can specify the following
elements of the underlying JDOQL query:
■ Filter expression - A Java-like expression that specifies a condition that each object

returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.
■ Query parameter declaration - Specifies the name and the type of one or more query input

parameters. Follows the syntax for formal parameters in the Java language.
■ Query variable declaration - Specifies the name and type of one or more query variables.

Follows the syntax for local variables in the Java language. A query filter might use query
variables to implement joins.

■ Query ordering declaration - Specifies the ordering expression of the query. Corresponds
to the ORDER BY clause of EJB QL.

The GlassFish Server specific deployment descriptor (glassfish-ejb-jar.xml) provides the
following elements to store the EJB 1.1 finder method settings:

query-filter

query-params

query-variables

query-ordering

Configuring Queries for 1.1 Finders

Chapter 9 • Using Container-Managed Persistence 187

The bean developer uses these elements to construct a query. When the finder method that uses
these elements executes, the values of these elements are used to execute a query in the database.
The objects from the JDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ejbFind method.

The JDO specification, JSR 12 (http://jcp.org/en/jsr/detail?id=12), provides a
comprehensive description of JDOQL. The following information summarizes the elements
used to define EJB 1.1 finders.

Query Filter Expression
The filter expression is a String containing a Boolean expression evaluated for each instance of
the candidate class. If the filter is not specified, it defaults to true. Rules for constructing valid
expressions follow the Java language, with the following differences:

■ Equality and ordering comparisons between primitives and instances of wrapper classes are
valid.

■ Equality and ordering comparisons of Date fields and Date parameters are valid.
■ Equality and ordering comparisons of String fields and String parameters are valid.
■ White space (non-printing characters space, tab, carriage return, and line feed) is a

separator and is otherwise ignored.
■ The following assignment operators are not supported.

■ Comparison operators such as =, +=, and so on
■ Pre- and post-increment
■ Pre- and post-decrement

■ Methods, including object construction, are not supported, except for these methods.

Collection.contains(Object o)

Collection.isEmpty()

String.startsWith(String s)

String.endsWith(String e)

In addition, the GlassFish Server supports the following nonstandard JDOQL methods.

String.like(String pattern)

String.like(String pattern, char escape)

String.substring(int start, int length)

String.indexOf(String str)

String.indexOf(String str, int start)

String.length()

Math.abs(numeric n)

Math.sqrt(double d)

■ Navigation through a null-valued field, which throws a NullPointerException, is treated as
if the sub-expression returned false.

Configuring Queries for 1.1 Finders

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011188

http://jcp.org/en/jsr/detail?id=12

Note – Comparisons between floating point values are by nature inexact. Therefore, equality
comparisons (== and !=) with floating point values should be used with caution. Identifiers in
the expression are considered to be in the name space of the candidate class, with the addition of
declared parameters and variables. As in the Java language, this is a reserved word, and refers
to the current instance being evaluated.

The following expressions are supported.

■ Relational operators (==, !=, >, <, >=, <=)
■ Boolean operators (&, &&, |, ||, ~, !)
■ Arithmetic operators (+, -, *, /)
■ String concatenation, only for String + String
■ Parentheses to explicitly mark operator precedence
■ Cast operator
■ Promotion of numeric operands for comparisons and arithmetic operations

The rules for promotion follow the Java rules extended by BigDecimal, BigInteger, and numeric
wrapper classes. See the numeric promotions of the Java language specification.

Query Parameters
The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Query Variables
The type declarations follow the Java syntax for local variable declarations.

JDOQL Examples
This section provides a few query examples.

Example 1
The following query returns all players called Michael. It defines a filter that compares the name
field with a string literal:

name == "Michael"

The finder element of the glassfish-ejb-jar.xml file looks like this:

Configuring Queries for 1.1 Finders

Chapter 9 • Using Container-Managed Persistence 189

<finder>

<method-name>findPlayerByName</method-name>

<query-filter>name == "Michael"</query-filter>
</finder>

Example 2
This query returns all products in a specified price range. It defines two query parameters which
are the lower and upper bound for the price: double low, double high. The filter compares the
query parameters with the price field:

low < price && price < high

Query ordering is set to price ascending.

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>

<method-name>findInRange</method-name>

<query-params>double low, double high</query-params>

<query-filter>low < price && price < high</query-filter>

<query-ordering>price ascending</query-ordering>

</finder>

Example 3
This query returns all players having a higher salary than the player with the specified name. It
defines a query parameter for the name java.lang.String name. Furthermore, it defines a
variable to which the player’s salary is compared. It has the type of the persistence capable class
that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState player

The filter compares the salary of the current player denoted by the this keyword with the salary
of the player with the specified name:

(this.salary > player.salary) && (player.name == name)

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>

<method-name>findByHigherSalary</method-name>

<query-params>java.lang.String name</query-params>

<query-filter>

(this.salary > player.salary) && (player.name == name)

</query-filter>

<query-variables>

mypackage.PlayerEJB_170160966_JDOState player

</query-variables>

</finder>

Configuring Queries for 1.1 Finders

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011190

CMP Restrictions and Optimizations
This section discusses restrictions and performance optimizations that pertain to using CMP.

The following topics are addressed here:

■ “Disabling ORDER BY Validation” on page 191
■ “Setting the Heap Size on DB2” on page 191
■ “Eager Loading of Field State” on page 192
■ “Restrictions on Remote Interfaces” on page 192
■ “PostgreSQL Case Insensitivity” on page 192
■ “No Support for lock-when-loaded on Sybase” on page 192
■ “Sybase Finder Limitation” on page 193
■ “Date and Time Fields” on page 193
■ “Set RECURSIVE_TRIGGERS to false on MSSQL” on page 193
■ “MySQL Database Restrictions” on page 194

Disabling ORDER BY Validation
EJB QL as defined in the EJB 2.1 Specification defines certain restrictions for the SELECT clause
of an ORDER BY query (see section 11.2.8 ORDER BY Clause). This ensures that a query does
not order by a field that is not returned by the query. By default, the EJB QL compiler checks the
above restriction and throws an exception if the query does not conform.

However, some databases support SQL statements with an ORDER BY column that is not
included in the SELECT clause. To disable the validation of the ORDER BY clause against the
SELECT clause, set the DISABLE_ORDERBY_VALIDATION JVM option as follows:

asadmin create-jvm-options

-Dcom.sun.jdo.spi.persistence.support.ejb.ejbqlc.DISABLE_ORDERBY_VALIDATION=true

The DISABLE_ORDERBY_VALIDATION option is set to false by default. Setting it to true results in
a non-portable module or application.

Setting the Heap Size on DB2
On DB2, the database configuration parameter APPLHEAPSZ determines the heap size. If you are
using the Oracle or DataDirect database driver, set this parameter to at least 2048 for CMP. For
more information, see http://publib.boulder.ibm.com/
infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.htm.

CMP Restrictions and Optimizations

Chapter 9 • Using Container-Managed Persistence 191

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.htm

Eager Loading of Field State
By default, the EJB container loads the state for all persistent fields (excluding relationship,
BLOB, and CLOB fields) before invoking the ejbLoad method of the abstract bean. This
approach might not be optimal for entity objects with large state if most business methods
require access to only parts of the state.

Use the fetched-with element in sun-cmp-mappings.xml for fields that are used infrequently.
See “fetched-with” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Restrictions on Remote Interfaces
The following restrictions apply to the remote interface of an EJB 2.1 bean that uses CMP:
■ Do not expose the get and set methods for CMR fields or the persistence collection classes

that are used in container-managed relationships through the remote interface of the bean.
However, you are free to expose the get and set methods that correspond to the CMP fields
of the entity bean through the bean’s remote interface.

■ Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

■ Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface, and
can be included in the client EJB JAR file.

PostgreSQL Case Insensitivity
Case-sensitive behavior cannot be achieved for PostgreSQL databases. PostgreSQL databases
internally convert all names to lower case, which makes the following workarounds necessary:

■ In the CMP 2.1 runtime, PostgreSQL table and column names are not quoted, which makes
these names case insensitive.

■ Before running the capture-schema command on a PostgreSQL database, make sure table
and column names are lower case in the sun-cmp-mappings.xml file.

No Support for lock-when-loadedon Sybase
For EJB 2.1 beans, the lock-when-loaded consistency level is implemented by placing update
locks on the data corresponding to a bean when the data is loaded from the database. There is
no suitable mechanism available on Sybase databases to implement this feature. Therefore, the
lock-when-loaded consistency level is not supported on Sybase databases. See “consistency” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

CMP Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011192

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

To avoid this error, make sure the finder method input is less than 255 characters.

Date and Time Fields
If a field type is a Java date or time type (java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp), make sure that the field value exactly matches the value in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())

BeanA.create(myDate, ...);

For some databases, this code results in only the year, month, and date portion of the field value
being stored in the database. Later if the client tries to find this bean by primary key as follows,
the bean is not found in the database because the value does not match the one that is stored in
the database.

myBean = BeanA.findByPrimaryKey(myDate);

Similar problems can happen if the database truncates the timestamp value while storing it, or if
a custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date, java.sql.Date,
and java.sql.Time are mapped to Oracle’s DATE data type. Fields of type
java.sql.Timestamp are mapped to Oracle’s TIMESTAMP(9) data type.

Set RECURSIVE_TRIGGERS to falseon MSSQL
For version consistency triggers on MSSQL, the property RECURSIVE_TRIGGERS must be set to
false, which is the default. If set to true, triggers throw a java.sql.SQLException.

Set this property as follows:

EXEC sp_dboption ’database-name’, ’recursive triggers’, ’FALSE’

go

CMP Restrictions and Optimizations

Chapter 9 • Using Container-Managed Persistence 193

You can test this property as follows:

SELECT DATABASEPROPERTYEX(’database-name’, ’IsRecursiveTriggersEnabled’)

go

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the GlassFish Server for
persistence.

■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.

■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

■ The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

■ The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ Change the trigger create format from the following:

CMP Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011194

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

CREATE TRIGGER T_UNKNOWNPKVC1

BEFORE UPDATE ON UNKNOWNPKVC1

FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)

BEGIN

:NEW.VERSION := :OLD.VERSION + 1;

END;

/

To the following:

DELIMITER |

CREATE TRIGGER T_UNKNOWNPKVC1

BEFORE UPDATE ON UNKNOWNPKVC1

FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)

BEGIN

:NEW.VERSION := :OLD.VERSION + 1;

END

|

DELIMITER ;

For more information, see http://dev.mysql.com/doc/mysql/en/create-trigger.html.
■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an

example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

CMP Restrictions and Optimizations

Chapter 9 • Using Container-Managed Persistence 195

http://dev.mysql.com/doc/mysql/en/create-trigger.html
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

■ When an SQL script has foreign key constraints defined, capture-schema fails to capture
the table information correctly. To work around the problem, remove the constraints and
then run capture-schema. Here is an example that illustrates the issue.

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,

OWNER VARCHAR(256),

FK_FOR_ACCESSPRIVILEGES VARCHAR(256),

CONSTRAINT FK_ACCESSPRIVILEGE FOREIGN KEY (FK_FOR_ACCESSPRIVILEGES)

REFERENCES ACCESSPRIVILEGESBEANTABLE (ROOT)

) ENGINE=InnoDB;

To resolve this issue, change the table creation script to the following:

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,

OWNER VARCHAR(256),

FK_FOR_ACCESSPRIVILEGES VARCHAR(256)

) ENGINE=InnoDB;

CMP Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011196

Developing Java Clients

This chapter describes how to develop, assemble, and deploy Java clients.

The following topics are addressed here:

■ “Introducing the Application Client Container” on page 197
■ “Developing Clients Using the ACC” on page 199
■ “Developing Clients Without the ACC” on page 217

Note – The Web Profile of the OracleGlassFish Server supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Accordingly, the Application Client Container is supported only in the full GlassFish Server,
not in the Web Profile.

JMS resources are supported only in the full GlassFish Server, not in the Web Profile. See
Chapter 17, “Using the Java Message Service.”

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and other files
that are required for and distributed with Java client programs that execute in their own Java
Virtual Machine (JVM). The ACC manages the execution of Java EE application client
components (application clients), which are used to access a variety of Java EE services (such as
JMS resources, EJB components, web services, security, and so on.) from a JVM outside the
Oracle GlassFish Server.

The ACC communicates with the GlassFish Server using RMI-IIOP protocol and manages the
details of RMI-IIOP communication using the client ORB that is bundled with it. Compared to
other Java EE containers, the ACC is lightweight.

10C H A P T E R 1 0

197

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

For information about debugging application clients, see “Application Client Debugging” on
page 39.

Note – Interoperability between application clients and GlassFish Servers running under
different major versions is not supported.

ACC Security
The ACC determines when authentication is needed. This typically occurs when the client
refers to an EJB component that requires authorization or when annotations in the client's main
class trigger injection which, in turn, requires contact with the GlassFish Server's naming
service. To authenticate the end user, the ACC prompts for any required information, such as a
username and password. The ACC itself provides a very simple dialog box to prompt for and
read these values.

The ACC integrates with the GlassFish Server’s authentication system. It also supports SSL
(Secure Socket Layer)/IIOP if configured and when necessary; see “Using RMI/IIOP Over SSL”
on page 214.

You can provide an alternate implementation to gather authentication information, tailored to
the needs of the application client. To do so, include the class to perform these duties in the
application client and identify the fully-qualified name of this class in the callback-handler
element of the application-client.xml descriptor for the client. The ACC uses this class
instead of its default class for asking for and reading the authentication information. The class
must implement the javax.security.auth.callback.CallbackHandler interface. See the Java EE
specification, section 9.2, Application Clients: Security, for more details.

Application clients can use “Programmatic Login” on page 72.

ACC Naming
The client container enables the application clients to use the Java Naming and Directory
Interface (JNDI) to look up Java EE services (such as JMS resources, EJB components, web
services, security, and so on.) and to reference configurable parameters set at the time of
deployment.

Application Client Annotation
Annotation is supported for the main class and the optional callback handler class in
application clients. For more information, see “Deployment Descriptors and Annotations” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Introducing the Application Client Container

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011198

Java Web Start
Java Web Start allows your application client to be easily launched and automatically
downloaded and updated. It is enabled for all application clients by default. For more
information, see “Using Java Web Start” on page 202.

Application Client JAR File
In GlassFish Server 3.1, the downloaded appclient JAR file is smaller than in previous releases,
with dependent classes in separate JAR files. When copying the downloaded appclient to
another location, make sure to include the JAR files containing the dependent classes as well.
You can also use the asadmin get-client-stubs command to retrieve the appclient and all
associated application JAR files and place them in another location.

Developing Clients Using the ACC
This section describes the procedure to develop, assemble, and deploy client applications using
the ACC.

The following topics are addressed here:

■ “To Access an EJB Component From an Application Client” on page 199
■ “To Access a JMS Resource From an Application Client” on page 201
■ “Using Java Web Start” on page 202
■ “Using the Embeddable ACC” on page 212
■ “Running an Application Client Using the appclient Script” on page 213
■ “Using the package-appclient Script” on page 214
■ “The client.policy File” on page 214
■ “Using RMI/IIOP Over SSL” on page 214
■ “Connecting to a Remote EJB Module Through a Firewall” on page 216
■ “Specifying a Splash Screen” on page 216
■ “Setting Login Retries” on page 217
■ “Using Libraries with Application Clients” on page 217

▼ To Access an EJB Component From an Application
Client

In your client code, reference the EJB component by using an @EJB annotation or by looking up
the JNDI name as defined in the ejb-jar.xml file.
For more information about naming and lookups, see “Accessing the Naming Context” on
page 273.

1

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 199

If load balancing is enabled as in Step 7 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:
corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

Define the @EJB annotations or the ejb-ref elements in the application-client.xml file.
Define the corresponding ejb-ref elements in the glassfish-application-client.xml file.
For more information on the glassfish-application-client.xml file, see “The
glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide. For a general explanation of how to map JNDI names using reference
elements, see “Mapping References” on page 280.

Deploy the application client and EJB component together in an application.
For more information on deployment, see the GlassFish Server Open Source Edition 3.1
Application Deployment Guide. To get the client JAR file, use the --retrieve option of the
asadmin deploy command.

To retrieve the stubs and ties generated during deployment, use the asadmin
get-client-stubs command. For details, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

Ensure that the client JAR file includes the following files:

■ A Java class to access the bean.
■ application-client.xml - (optional) Java EE application client deployment descriptor.
■ glassfish-application-client.xml - (optional) GlassFish Server specific client

deployment descriptor. For information on the glassfish-application-client.xml file,
see “The glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

■ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

Prepare the client machine.
This step is not needed for Java Web Start. This step is not needed if the client and server
machines are the same.

If you are using the appclient script, package the GlassFish Server system files required to
launch application clients on remote systems using the package-appclient script, then retrieve
the application client itself using the asadmin get-client-stubs command.

For more information, see “Using the package-appclient Script” on page 214 and the
GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

To access EJB components that are residing in a remote system, make the following changes to
the sun-acc.xml file or the appclient script. This step is not needed for Java Web Start.

2

3

4

5

6

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011200

■ Define the target-server element’s address and port attributes to reference the remote
server machine and its ORB port. See “target-server” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

■ Use the -targetserver option of the appclient script to reference the remote server
machine and its ORB port. For more information, see “Running an Application Client
Using the appclient Script” on page 213.

To determine the ORB port on the remote server, use the asadmin get command. For example:

asadmin --host rmtsrv get server-config.iiop-service.iiop-listener.iiop-listener1.port

For more information about the asadmin get command, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

To set up load balancing and failover of remote EJB references, define at least two
target-server elements in the sun-acc.xml file or the appclient script. This step is not
needed for Java Web Start.
If the GlassFish Server instance on which the application client is deployed participates in a
cluster, the ACC finds all currently active IIOP endpoints in the cluster automatically. However,
a client should have at least two endpoints specified for bootstrapping purposes, in case one of
the endpoints has failed.

The target-server elements in the sun-acc.xml file specify one or more IIOP endpoints used
for load balancing. The address attribute is an IPv4 address or host name, and the port
attribute specifies the port number. See “client-container” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

The --targetserver option of the appclient script specifies one or more IIOP endpoints used
for load balancing. For more information, see “Running an Application Client Using the
appclient Script” on page 213.

■ For instructions on running the application client, see “Using Java Web Start” on page 202 or
“Running an Application Client Using the appclient Script” on page 213.

■ For more information about RMI-IIOP load balancing and failover, see Chapter 11,
“RMI-IIOP Load Balancing and Failover,” in GlassFish Server Open Source Edition 3.1 High
Availability Administration Guide.

▼ To Access a JMS Resource From an Application Client
Create a JMS client.
For detailed instructions on developing a JMS client, see “Chapter 33: The Java Message Service
API” in the The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/
).

7

Next Steps

1

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 201

http://download.oracle.com/javaee/6/tutorial/doc/
http://download.oracle.com/javaee/6/tutorial/doc/

Next, configure a JMS resource on the GlassFish Server.
For information on configuring JMS resources, see “Administering JMS Connection Factories
and Destinations” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Define the @Resource or @Resources annotations or the resource-ref elements in the
application-client.xml file. Define the corresponding resource-ref elements in the
glassfish-application-client.xml file.
For more information on the glassfish-application-client.xml file, see “The
glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide. For a general explanation of how to map JNDI names using reference
elements, see “Mapping References” on page 280.

Ensure that the client JAR file includes the following files:

■ A Java class to access the resource.
■ application-client.xml - (optional) Java EE application client deployment descriptor.
■ glassfish-application-client.xml - (optional) GlassFish Server specific client

deployment descriptor. For information on the glassfish-application-client.xml file,
see “The glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

■ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

Prepare the client machine.
This step is not needed for Java Web Start. This step is not needed if the client and server
machines are the same.

If you are using the appclient script, package the GlassFish Server system files required to
launch application clients on remote systems using the package-appclient script, then retrieve
the application client itself using the asadmin get-client-stubs command.

For more information, see “Using the package-appclient Script” on page 214 and the
GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Run the application client.
See “Using Java Web Start” on page 202 or “Running an Application Client Using the appclient
Script” on page 213.

Using Java Web Start
Java Web Start allows your application client to be easily launched and automatically
downloaded and updated. General information about Java Web Start is available at
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html.

2

3

4

5

6

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011202

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

The following topics are addressed here:
■ “Enabling and Disabling Java Web Start” on page 203
■ “Downloading and Launching an Application Client” on page 203
■ “The Application Client URL” on page 204
■ “Signing JAR Files Used in Java Web Start” on page 205
■ “Error Handling” on page 207
■ “Vendor Icon, Splash Screen, and Text” on page 207
■ “Creating a Custom JNLP File” on page 208

Enabling and Disabling Java Web Start
Java Web Start is enabled for all application clients by default.

The application developer or deployer can specify that Java Web Start is always disabled for an
application client by setting the value of the eligible element to false in the
glassfish-application-client.xml file. See the GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

The GlassFish Server administrator can disable Java Web Start for a previously deployed eligible
application client using the asadmin set command.

To disable Java Web Start for all eligible application clients in an application, use the following
command:

asadmin set applications.application.app-name.property.java-web-start-enabled="false"

To disable Java Web Start for a stand-alone eligible application client, use the following
command:

asadmin set applications.application.module-name.property.java-web-start-enabled="false"

Setting java-web-start-enabled="true" re-enables Java Web Start for an eligible application
client. For more information about the asadmin set command, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

Downloading and Launching an Application Client
If Java Web Start is enabled for your deployed application client, you can launch it for testing.
Simply click on the Launch button next to the application client or application's listing on the
App Client Modules page in the Administration Console.

On other machines, you can download and launch the application client using Java Web Start in
the following ways:
■ Using a web browser, directly enter the URL for the application client. See “The Application

Client URL” on page 204.
■ Click on a link to the application client from a web page.

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 203

■ Use the Java Web Start command javaws, specifying the URL of the application client as a
command line argument.

■ If the application has previously been downloaded using Java Web Start, you have
additional alternatives.
■ Use the desktop icon that Java Web Start created for the application client. When Java

Web Start downloads an application client for the first time it asks you if such an icon
should be created.

■ Use the Java Web Start control panel to launch the application client.

When you launch an application client, Java Web Start contacts the server to see if a newer
client version is available. This means you can redeploy an application client without having to
worry about whether client machines have the latest version.

The Application Client URL
The default URL for an application or module generally is as follows:

http://host:port/context-root

The default URL for a stand-alone application client module is as follows:

http://host:port/appclient-module-id

The default URL for an application client module embedded within an application is as follows.
Note that the relative path to the application client JAR file is included.

http://host:port/application-id/appclient-path

If the context-root, appclient-module-id, or application-id is not specified during deployment,
the name of the JAR or EAR file without the extension is used. If the application client module
or application is not in JAR or EAR file format, an appclient-module-id or application-id is
generated.

Regardless of how the context-root or id is determined, it is written to the server log when you
deploy the application. For details about naming, see “Naming Standards” in GlassFish Server
Open Source Edition 3.1 Application Deployment Guide.

To set a different URL for an application client, use the context-root subelement of the
java-web-start-access element in the glassfish-application-client.xml file. This
overrides the appclient-module-id or application-id. See GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

You can also pass arguments to the ACC or to the application client's main method as query
parameters in the URL. If multiple application client arguments are specified, they are passed in
the order specified.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011204

A question mark separates the context root from the arguments. Ampersands (&) separate the
arguments and their values. Each argument and each value must begin with arg=. Here is an
example URL with a -color argument for a stand-alone application client. The -color
argument is passed to the application client's main method.

http://localhost:8080/testClient?arg=-color&arg=red

Note – If you are using the javaws URL command to launch Java Web Start with a URL that
contains arguments, enclose the URL in double quotes (") to avoid breaking the URL at the
ampersand (&) symbol.

Ideally, you should build your production application clients with user-friendly interfaces that
collect information which might otherwise be gathered as command-line arguments. This
minimizes the degree to which users must customize the URLs that launch application clients
using Java Web Start. Command-line argument support is useful in a development
environment and for existing application clients that depend on it.

Signing JAR Files Used in Java Web Start
Java Web Start enforces a security sandbox. By default it grants any application, including
application clients, only minimal privileges. Because Java Web Start applications can be so
easily downloaded, Java Web Start provides protection from potentially harmful programs that
might be accessible over the network. If an application requires a higher privilege level than the
sandbox permits, the code that needs privileges must be in a JAR file that was signed.

When Java Web Start downloads such a signed JAR file, it displays information about the
certificate that was used to sign the JAR if that certificate is not trusted. It then asks you whether
you want to trust that signed code. If you agree, the code receives elevated permissions and
runs. If you reject the signed code, Java Web Start does not start the downloaded application.

Your first Java Web Start launch of an application client is likely to involve this prompting
because by default GlassFish Server uses a self-signed certificate that is not linked to a trusted
authority.

The GlassFish Server serves two types of signed JAR files in response to Java Web Start requests.
One type is a JAR file installed as part of the GlassFish Server, which starts an application client
during a Java Web Start launch: as-install/lib/gf-client.jar.

The other type is a generated application client JAR file. As part of deployment, the GlassFish
Server generates a new application client JAR file that contains classes, resources, and
descriptors needed to run the application client on end-user systems. When you deploy an
application with the asadmin deploy command's --retrieve option, use the asadmin
get-client-stubs command, or select the Generate RMIStubs option from the EJB Modules
deployment page in the Administration Console, this is one of the JAR files retrieved to your
system. Because application clients need access beyond the minimal sandbox permissions to

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 205

work in the Java Web Start environment, the generated application client JAR file must be
signed before it can be downloaded to and executed on an end-user system.

A JAR file can be signed automatically or manually.

The following topics are addressed here:

■ “Automatically Signing JAR Files” on page 206
■ “Using the jar-signing-alias Deployment Property” on page 206

Automatically Signing JAR Files
The GlassFish Server automatically creates a signed version of the required JAR file if none
exists. When a Java Web Start request for the gf-client.jar file arrives, the GlassFish Server
looks for domain-dir/java-web-start/gf-client.jar. When a request for an application's
generated application client JAR file arrives, the GlassFish Server looks in the directory
domain-dir/java-web-start/app-name for a file with the same name as the generated JAR file
created during deployment.

In either case, if the requested signed JAR file is absent or older than its unsigned counterpart,
the GlassFish Server creates a signed version of the JAR file automatically and deposits it in the
relevant directory. Whether the GlassFish Server just signed the JAR file or not, it serves the file
from the domain-dir/java-web-start directory tree in response to the Java Web Start request.

To sign these JAR files, by default the GlassFish Server uses its self-signed certificate. When you
create a new domain, either by installing the GlassFish Server or by using the asadmin
create-domain command, the GlassFish Server creates a self-signed certificate and adds it to
the domain's key store.

A self-signed certificate is generally untrustworthy because no certification authority vouches
for its authenticity. The automatic signing feature uses the same certificate to create all required
signed JAR files.

Using the jar-signing-alias Deployment Property
The asadmin deploy command property jar-signing-alias specifies the alias for the security
certificate with which the application client container JAR file is signed.

Java Web Start won't execute code requiring elevated permissions unless it resides in a JAR file
signed with a certificate that the user's system trusts. For your convenience, GlassFish Server
signs the JAR file automatically using the self-signed certificate from the domain, s1as. Java
Web Start then asks the user whether to trust the code and displays the GlassFish Server
certificate information.

To sign this JAR file with a different certificate, first add the certificate to the domain keystore.
You can use a certificate from a trusted authority, which avoids the Java Web Start prompt. To
add a certificate to the domain keystore, see “Administering JSSE Certificates” in GlassFish
Server Open Source Edition 3.1 Security Guide.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011206

Next, deploy your application using the jar-signing-alias property. For example:

asadmin deploy --property jar-signing-alias=MyAlias MyApp.ear

For more information about the asadmin deploy command, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

Error Handling
When an application client is launched using Java Web Start, any error that the application
client logic does not catch and handle is written to System.err and displayed in a dialog box.
This display appears if an error occurs even before the application client logic receives control.
It also appears if the application client code does not catch and handle errors itself.

Vendor Icon, Splash Screen, and Text
To specify a vendor-specific icon, splash screen, text string, or a combination of these for Java
Web Start download and launch screens, use the vendor element in the
glassfish-application-client.xml file. The complete format of this element's data is as
follows:

<vendor>icon-image-URI::splash-screen-image-URI::vendor-text</vendor>

The following example vendor element contains an icon, a splash screen, and a text string:

<vendor>images/icon.jpg::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains an icon and a text string:

<vendor>images/icon.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains a splash screen and a text string; note the initial
double colon:

<vendor>::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains only a text string:

<vendor>MyCorp, Inc.</vendor>

The default value is the text string Application Client.

For more information about the glassfish-application-client.xml file, see the GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

You can also specify a vendor-specific icon, splash screen, text string, or a combination by using
a custom JNLP file; see “Creating a Custom JNLP File” on page 208.

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 207

Creating a Custom JNLP File
You can partially customize the Java Network Launching Protocol (JNLP) file that GlassFish
Server uses for Java Web Start.

The following topics are addressed here:

■ “Specifying the JNLP File in the Deployment Descriptor” on page 208
■ “Referring to JAR Files from the JNLP File” on page 208
■ “Referring to Other JNLP Files” on page 209
■ “Combining Custom and Automatically Generated Content” on page 209

For more information about JNLP, see the Java Web Start Architecture JNLP Specification and
API Documentation (http://java.sun.com/
javase/technologies/desktop/javawebstart/download-spec.html).

Specifying the JNLP File in the Deployment Descriptor

To specify a custom JNLP file for Java Web Start, use the jnlp-doc element in the
glassfish-application-client.xml file. If none is specified, a default JNLP file is generated.

The value of the jnlp-doc element is a relative path with the following format:

[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR

The default path-to-JAR-in-EAR is the current application client JAR file. For example, if the
JNLP file is in the application client JAR file at custom/myInfo.jnlp, the element value would
look like this:

<java-web-start-access>

<jnlp-doc>custom/myInfo.jnlp</jnlp-doc>

</java-web-start-access>

If the application client is inside an EAR file, you can place the custom JNLP file inside another
JAR file in the EAR. For example, if the JNLP file is in a JAR file at other/myLib.jar, the
element value would look like this, with an exclamation point (!) separating the path to the JAR
from the path in the JAR:

<java-web-start-access>

<jnlp-doc>other/myLib.jar!custom/myInfo.jnlp</jnlp-doc>

</java-web-start-access>

For more information about the glassfish-application-client.xml file, see the Oracle
GlassFish Server 3.0.1 Application Deployment Guide.

Referring to JAR Files from the JNLP File

As with any JNLP document, the custom JNLP file can refer to JAR files the application client
requires.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011208

http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html
http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html
http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html

Do not specify every JAR on which the client depends. GlassFish Server automatically handles
JAR files that the Java EE specification requires to be available to the application client. This
includes JAR files listed in the application client JAR file's manifest Class-Path and JAR files in
the EAR file's library directory (if any) and their transitive closures. The custom JNLP file
should specify only those JAR files the client needs that GlassFish Server would not otherwise
include.

Package these JAR files in the EAR file, as with any JAR file required by an application client.
Use relative URIs in the <jar href="..."> and <nativelib href="..."> elements to point to
the JAR files. The codebase that GlassFish Server assigns for the final client JNLP file
corresponds to the top level of the EAR file. Therefore, relative href references correspond
directly to the relative path to the JAR files within the EAR file.

Neither the Java EE specification nor GlassFish Server supports packaging JAR files inside the
application client JAR file itself. Nothing prevents this, but GlassFish Server does no special
processing of such JAR files. They do not appear in the runtime class path and they cannot be
referenced from the custom JNLP file.

Referring to Other JNLP Files

The JNLP file can also refer to other custom JNLP files using <extension href="..."/>
elements. To be consistent with relative href references to JAR files, the relative href references
to JNLP files are resolved within the EAR file. You can place these JNLP files directly in the EAR
file or inside JAR files that the EAR file contains. Use one of these formats for these href
references:

[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR

path-to-JNLP-in-EAR

Note that these formats are not equivalent to the format of the jnlp-doc element in the
glassfish-application-client.xml file.

These formats follow the standard entry-within-a-JAR URI syntax and semantics. Support for
this syntax comes from the automated Java Web Start support in GlassFish Server. This is not a
feature of Java Web Start or the JNLP standard.

Combining Custom and Automatically Generated Content

GlassFish Server recognizes these types of content in the JNLP file:

■ Owned — GlassFish Server owns the content and ignores any custom content
■ Merged — Automatically generated content and custom content are merged
■ Defaulted — Custom content is used if present, otherwise default content is provided

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 209

You can compose a complete JNLP file and package it with the application client. GlassFish
Server then combines it with its automatically generated JNLP file. You can also provide
content that only adds to or replaces what GlassFish Server generates. The custom content must
conform to the general structure of the JNLP format so that GlassFish Server can properly place
it in the final JNLP file.

For example, to specify a single native library to be included only for Windows systems, the new
element to add might be as follows:

<nativelib href="windows/myLib.jar"/>

However, you must indicate where in the overall document this element belongs. The actual
custom JNLP file should look like this:

<jnlp>

<resources os="Windows">
<nativelib href="windows/myLib.jar"/>

</resources>

</jnlp>

GlassFish Server provides default <information> and <resources> elements, without
specifying attributes such as os, arch, platform, or locale. GlassFish Server merges its own
content within those elements with custom content under those elements. Further, you can
provide your own <information> and <resources> elements (and fragments within them)
that specify at least one of these attributes.

In general, you can perform the following customizations:

■ Override the GlassFish Server defaults for the child elements of <information> elements
that have no attribute settings for os, arch, platform, and locale. Among these child
elements are <title>, <vendor>, <description>, <icon>, and so on.

■ Add <information> elements with os, arch, platform, or locale settings. You can also add
child elements.

■ Add child elements of <resources> elements that have no attribute settings for os, arch, or
locale. Among these child elements are <jar>, <property>, <nativelib>, and so on. You
can also customize attributes of the <java> child element.

■ Add <resources> elements that specify at least one of os, arch, or locale. You can also add
child elements.

This flexibility allows you to add JAR files to the application (including platform-specific native
libraries) and set properties to control the behavior of your application clients.

The following tables provide more detail about what parts of the JNLP file you can add to and
modify.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011210

TABLE 10–1 Owned JNLP File Content

JNLP File Fragment Description

<jnlp codebase="xxx" ...> GlassFish Server controls this content for application clients
packaged in EAR files. The developer controls this content for
application clients packaged in WAR files.

<jnlp href="xxx" ...> GlassFish Server controls this content for application clients
packaged in EAR files. The developer controls this content for
application clients packaged in WAR files.

<jnlp>

<security>

GlassFish Server must control the permissions requested for
each JNLP file. All permissions are needed for the main file,
which launches the ACC. The permissions requested for other
JNLP documents depend on whether the JAR files referenced in
those documents are signed.

<jnlp>

<application-desc>

<argument> ...

GlassFish Server sets the main-class and the arguments to be
passed to the client.

TABLE 10–2 Defaulted JNLP File Content

JNLP File Fragment Description

<jnlp spec="xxx" ...> Specifies the JNLP specification version.

<jnlp>

<information [no-attributes]>

Specifies the application title, vendor, home page, various
description text values, icon images, and whether offline
execution is allowed.

<jnlp>

<resources [no-attributes]>

<java version="xxx"
java-vm-args="yyy" ...>

Specifies the Java SE version or selected VM parameter settings.

TABLE 10–3 Merged JNLP File Content

JNLP File Fragment Description

<jnlp>

<information [attributes]>

You can specify one or more of the os, arch, platform, and
locale attributes for the <information> element. You can also
specify child elements; GlassFish Server provides no default
children.

<jnlp>

<resources [attributes]>

You can specify one or more of the os, arch, platform, and
locale attributes for the <resources> element. You can also
specify child elements; GlassFish Server provides no default
children.

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 211

TABLE 10–3 Merged JNLP File Content (Continued)
JNLP File Fragment Description

<jnlp>

<resources [no-attributes]>

<jar ...>

Adds JAR files to be included in the application to the JAR files
provided by GlassFish Server.

<jnlp>

<resources [no-attributes]>

<nativelib ...>

Adds native libraries to be included in the application. Each
entry in a JAR listed in a <nativelib> element must be a native
library for the correct platform. The full syntax of the
<nativelib> element lets the developer specify the platform for
that native library.

<jnlp>

<resources [no-attributes]>

<property ...>

Adds system properties to be included in the application to the
system properties defined by GlassFish Server.

<jnlp>

<resources [no-attributes]>

<extension ...>

Specifies another custom JNLP file.

<jnlp>

<component-desc ...>

Includes another custom JNLP file that specifies a component
extension.

<jnlp>

<installer-desc ...>

Includes another custom JNLP file that specifies an installer
extension.

Using the Embeddable ACC
You can embed the ACC into your application client. If you place the
as-install/lib/gf-client.jar file in your runtime classpath, your application creates the ACC
after your application code has started, then requests that the ACC start the application client
portion. The basic model for coding is as follows:

1. Create a builder object.
2. Operate on the builder to configure the ACC.
3. Obtain a new ACC instance from the builder.
4. Present a client archive or class to the ACC instance.
5. Start the client running within the newly created ACC instance.

Your code should follow this general pattern:

// one TargetServer for each ORB endpoint for bootstrapping

TargetServer[] servers = ...;

// Get a builder to set up the ACC

AppClientContainer.Builder builder = AppClientContainer.newBuilder(servers);

// Fine-tune the ACC’s configuration. Note ability to "chain" invocations.

builder.callbackHandler("com.acme.MyHandler").authRealm("myRealm"); // Modify config

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011212

// Get a container for a client.

URI clientURI = ...; // URI to the client JAR

AppClientContainer acc = builder.newContainer(clientURI);

or

Class mainClass = ...;

AppClientContainer acc = builder.newContainer(mainClass);

// In either case, start the client running.

String[] appArgs = ...;

acc.startClient(appArgs); // Start the client

...

acc.close(); // close the ACC(optional)

The ACC loads the application client's main class, performs any required injection, and
transfers control to the static main method. The ACC's run method returns to the calling
application as soon as the client's main method returns to the ACC.

If the application client's main method starts any asynchronous activity, that work continues
after the ACC returns. The ACC has no knowledge of whether the client's main method triggers
asynchronous work. Therefore, if the client causes work on threads other than the calling
thread, and if the embedding application needs to know when the client's asynchronous work
completes, the embedding application and the client must agree on how this happens.

The ACC's shutdown handling is invoked from the ACC's close method. The calling
application can invoke acc.close() to close down any services started by the ACC. If the
application client code started any asynchronous activity that might still depend on ACC
services, invoking close before that asynchronous activity completes could cause unpredictable
and undesirable results. The shutdown handling is also run automatically at VM shutdown if
the code has not invoked close before then.

The ACC does not prevent the calling application from creating or running more than one ACC
instance during a single execution of the application either serially or concurrently. However,
other services used by the ACC (transaction manager, security, ORB, and so on) might or might
not support such serial or concurrent reuse.

Running an Application Client Using the appclient
Script
To run an application client, you can launch the ACC using the appclient script, whether or
not Java Web Start is enabled. This is optional. This script is located in the as-install/bin
directory. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 213

Using the package-appclient Script
You can package the GlassFish Server system files required to launch application clients on
remote systems into a single JAR file using the package-appclient script. This is optional. This
script is located in the as-install/bin directory. For details, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

The client.policy File
The client.policy file is the J2SE policy file used by the application client. Each application
client has a client.policy file. The default policy file limits the permissions of Java EE
deployed application clients to the minimal set of permissions required for these applications to
operate correctly. If an application client requires more than this default set of permissions, edit
the client.policy file to add the custom permissions that your application client needs. Use
the J2SE standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, see http://download.oracle.com/
javase/tutorial/security/tour2/index.html.

For more information about the permissions you can set in the client.policy file, see
http://download.oracle.com/

javase/6/docs/technotes/guides/security/permissions.html.

Using RMI/IIOP Over SSL
You can configure RMI/IIOP over SSL in two ways: using a username and password, or using a
client certificate.

To use a username and password, configure the ior-security-config element in the
glassfish-ejb-jar.xml file. The following configuration establishes SSL between an
application client and an EJB component using a username and password. The user has to login
to the ACC using either the sun-acc.xml mechanism or the “Programmatic Login” on page 72
mechanism.

<ior-security-config>

<transport-config>

<integrity>required</integrity>

<confidentiality>required</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>none</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>username_password</auth-method>

<realm>default</realm>

<required>true</required>

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011214

http://download.oracle.com/javase/tutorial/security/tour2/index.html
http://download.oracle.com/javase/tutorial/security/tour2/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html

</as-context>

<sas-context>

<caller-propagation>none</caller-propagation>

</sas-context>

</ior-security-config>

For more information about the glassfish-ejb-jar.xml and sun-acc.xml files, see the
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

To use a client certificate, configure the ior-security-config element in the
glassfish-ejb-jar.xml file. The following configuration establishes SSL between an
application client and an EJB component using a client certificate.

<ior-security-config>

<transport-config>

<integrity>required</integrity>

<confidentiality>required</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>required</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>none</auth-method>

<realm>default</realm>

<required>false</required>

</as-context>

<sas-context>

<caller-propagation>none</caller-propagation>

</sas-context>

</ior-security-config>

To use a client certificate, you must also specify the system properties for the keystore and
truststore to be used in establishing SSL. To use SSL with the Application Client Container
(ACC), you need to set these system properties in one of the following ways:
■ Use the new syntax of the appclient script and specify the system properties as JVM

options. See “Running an Application Client Using the appclient Script” on page 213.
■ Set the environment variable VMARGS in the shell. For example, in the ksh or bash shell, the

command to set this environment variable would be as follows:

export VMARGS="-Djavax.net.ssl.keyStore=${keystore.db.file}
-Djavax.net.ssl.trustStore=${truststore.db.file}

-Djavax.net.ssl.keyStorePass word=${ssl.password}

-Djavax.net.ssl.trustStorePassword=${ssl.password}"
■ Optionally, you can set the env element using Ant. For example:

<target name="runclient">
<exec executable="${S1AS_HOME}/bin/appclient">
<env key="VMARGS" value=" -Djavax.net.ssl.keyStore=${keystore.db.file}

-Djavax.net.ssl.trustStore=${truststore.db.file}

-Djavax.net.ssl.keyStorePasword=${ssl.password}

-Djavax.net.ssl.trustStorePassword=${ssl.password}"/>
<arg value="-client"/>
<arg value="${appClient.jar}"/>

</exec>

</target>

Developing Clients Using the ACC

Chapter 10 • Developing Java Clients 215

Connecting to a Remote EJB Module Through a
Firewall
To deploy and run an application client that connects to an EJB module on a GlassFish Server
instance that is behind a firewall, you must set ORB Virtual Address Agent Implementation
(ORBVAA) options. Use the asadmin create-jvm-options command as follows:

asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAHost=public-IP-adress
asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAPort=public-port
asadmin create-jvm-options

-Dcom.sun.corba.ee.ORBUserConfigurators.com.sun.corba.ee.impl.plugin.hwlb.VirtualAddressAgentImpl=x

Set the ORBVAAHost and ORBVAAPort options to the host and port of the public address. The
ORBUserConfigurators option tells the ORB to create an instance of the
VirtualAddressAgentImpl class and invoke the configure method on the resulting object,
which must implement the com.sun.corba.ee.spi.orb.ORBConfigurator interface. The
ORBUserConfigurators value doesn't matter. Together, these options create an ORB that in
turn creates Object references (the underlying implementation of remote EJB references)
containing the public address, while the ORB listens on the private address specified for the
IIOP port in the GlassFish Server configuration.

Specifying a Splash Screen
Java SE 6 offers splash screen support, either through a Java command-line option or a manifest
entry in the application's JAR file. To take advantage of this Java SE feature in your application
client, you can do one of the following:

■ Create the appclient JAR file so that its manifest contains a SplashScreen-Image entry that
specifies the path to the image in the client. The java command displays the splash screen
before starting the ACC or your client, just as with any Java application.

■ Use the new appclient ... -jar launch format, using the -splash command-line option
at runtime or the SplashScreen-Image manifest entry at development time. See “Running
an Application Client Using the appclient Script” on page 213.

■ In the environment that runs the appclient script, set the VMOPTS environment variable to
include the -splash option before invoking the appclient script to launch the client.

■ Build an application client that uses the embeddable ACC feature and specify the splash
screen image using one of the following:
■ The -splash option of the java command
■ SplashScreen-Image in the manifest for your program (not the manifest for the

application client)

See “Using the Embeddable ACC” on page 212.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011216

During application (EAR file) deployment, the GlassFish Server generates façade JAR files, one
for the application and one for each application client in the application. During application
client module deployment, the GlassFish Server generates a single facade JAR for the
application client. The appclient script supports splash screens inside the application client
JAR only if you launch an application client facade or appclient client JAR. If you launch the
facade for an application or the undeployed application itself, the appclient script cannot take
advantage of the Java SE 6 splash screen feature.

Setting Login Retries
You can set a JVM option using the appclient script that determines the number of login
retries allowed. This option is -Dorg.glassfish.appclient.acc.maxLoginRetries=n where
n is a positive integer. The default number of retries is 3.

This retry loop happens when the ACC attempts to perform injection if you annotated the
client's main class (for example, using @Resource). If instead of annotations your client uses the
InitialContext explicitly to look up remote resources, the retry loop does not apply. In this
case, you could write logic to catch an exception around the lookup and retry explicitly.

For details about the appclient script syntax, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

Using Libraries with Application Clients
The Libraries field in the Administration Console's deployment page and the --libraries
option of the asadmin deploy command do not apply to application clients. Neither do the
as-install/lib, domain-dir/lib, and domain-dir/lib/classes directories comprising the
Common Class Loader. These apply only to applications and modules deployed to the server.
For more information, see Chapter 2, “Class Loaders.”

To use libraries with an application client, package the application client in an application (EAR
file). Then, either place the libraries in the /lib directory of the EAR file or specify their location
in the application client JAR file's manifest Class-Path.

Developing Clients Without the ACC
This section describes the procedure to create, assemble, and deploy a Java-based client that is
not packaged using the Application Client Container (ACC).

Developing Clients Without the ACC

Chapter 10 • Developing Java Clients 217

The following topics are addressed here:
■ “To access an EJB component from a stand-alone client” on page 218
■ “To access an EJB component from a server-side module” on page 219
■ “To access a JMS resource from a stand-alone client” on page 221

For information about using the ACC, see “Developing Clients Using the ACC” on page 199.
For general information about EJB components and clients, see EJB FAQ
(http://glassfish.java.net/javaee5/ejb/EJB_FAQ.html).

▼ To access an EJB component from a stand-alone client
In your client code, instantiate the InitialContext:
InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

In the client code, look up the home object by specifying the JNDI name of the home object.
Here is an EJB 2.x example:
Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Here is an EJB 3.x example:

BeanRemoteBusiness bean =(BeanRemoteBusiness) ctx.lookup("com.acme.BeanRemoteBusiness");

If load balancing is enabled as in Step 6 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

For more information about naming and lookups, see “Accessing the Naming Context” on
page 273.

Deploy the EJB component to be accessed.
For more information on deployment, see “About Deployment Tools” in GlassFish Server Open
Source Edition 3.1 Application Deployment Guide.

Copy the as-install/lib/gf-client.jar file to the client machine and include it in the classpath
on the client side.
The gf-client.jar file references GlassFish Server JAR files in its MANIFEST.MF file. If there is
no GlassFish Server installation on the client machine, you must also copy the
as-install/modules directory to the client machine and maintain its directory structure relative
to the as-install/lib/gf-client.jar file. Or you can use the package-appclient script; see
“Using the package-appclient Script” on page 214.

1

2

3

4

Developing Clients Without the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011218

http://glassfish.java.net/javaee5/ejb/EJB_FAQ.html
http://glassfish.java.net/javaee5/ejb/EJB_FAQ.html

To access EJB components that are residing in a remote system, set the following system
properties for the Java Virtual Machine startup options:
-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700 for the default server instance, named server).

You can use the asadmin get command to get the IIOP port numbers. For example:

asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-1.*"

To set up load balancing and remote EJB reference failover, define the endpointsproperty as
follows:
-Dcom.sun.appserv.iiop.endpoints=host1:port1,host2:port2,...

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used
for load balancing. An IIOP endpoint is in the form host:port, where the host is an IPv4 address
or host name, and the port specifies the port number.

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

Run the stand-alone client.

As long as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

▼ To access an EJB component from a server-side
module
A server-side module can be a servlet, another EJB component, or another type of module.

In your module code, instantiate the InitialContext:
InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

To set up load balancing and remote EJB reference failover, define the endpoints property as
follows:

Hashtable env = new Hashtable();

env.put("com.sun.appserv.iiop.endpoints","host1:port1,host2:port2,...");
InitialContext ctx = new InitialConext(env);

5

6

7

1

Developing Clients Without the ACC

Chapter 10 • Developing Java Clients 219

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used
for load balancing. An IIOP endpoint is in the form host:port, where the host is an IPv4 address
or host name, and the port specifies the port number.

You can use the asadmin get command to get the IIOP port numbers. For example:

asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-1.*"

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

In the module code, look up the home object by specifying the JNDI name of the home object.

Here is an EJB 2.x example:
Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Here is an EJB 3.x example:

BeanRemoteBusiness bean =(BeanRemoteBusiness) ctx.lookup("com.acme.BeanRemoteBusiness");

If load balancing is enabled as in Step 1 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

For more information about naming and lookups, see “Accessing the Naming Context” on
page 273.

Deploy the EJB component to be accessed.

For more information on deployment, see “About Deployment Tools” in GlassFish Server Open
Source Edition 3.1 Application Deployment Guide.

To access EJB components that are residing in a remote system, set the following system
properties for the Java Virtual Machine startup options:
-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700 for the default server instance, named server).

Deploy the module.

For more information on deployment, see “About Deployment Tools” in GlassFish Server Open
Source Edition 3.1 Application Deployment Guide.

2

3

4

5

Developing Clients Without the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011220

▼ To access a JMS resource from a stand-alone client
Create a JMS client.
For detailed instructions on developing a JMS client, see Chapter 46, “Java Message Service
Examples,” in The Java EE 6 Tutorial.

Configure a JMS resource on GlassFish Server.
For information on configuring JMS resources, see “Administering JMS Connection Factories
and Destinations” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

■ gf-client.jar - available at as-install/lib
■ imqjmsra.jar - available at as-install/lib/install/aplications/jmsra

The gf-client.jar file references GlassFish Server JAR files in its MANIFEST.MF file. If there is
no GlassFish Server installation on the client machine, you must also copy the
as-install/modules directory to the client machine and maintain its directory structure relative
to the as-install/lib/gf-client.jar file. Or you can use the package-appclient script; see
“Using the package-appclient Script” on page 214.

To access EJB components that are residing in a remote system, set the following system
properties for the Java Virtual Machine startup options:
-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700 for the default server instance, named server).

You can use the asadmin get command to get the IIOP port numbers. For example:

asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-1.*"

Run the stand-alone client.
As long as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

1

2

3

4

5

Developing Clients Without the ACC

Chapter 10 • Developing Java Clients 221

222

Developing Connectors

This chapter describes Oracle GlassFish Server support for the Java EE 1.6 Connector
Architecture, also known as JSR 322 (http://jcp.org/en/jsr/detail?id=322).

The Java EE Connector Architecture provides a Java solution to the problem of connectivity
between multiple application servers and existing enterprise information systems (EISs). By
using the Java EE Connector architecture, EIS vendors no longer need to customize their
product for each application server. Application server vendors who conform to the Java EE
Connector architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms refer to
a resource adapter module that is developed in conformance with the Java EE Connector
Architecture Specification.

Note – If you installed the Web Profile, connector modules that use only outbound
communication features and work-management that does not involve inbound
communication features are supported. Other connector features are supported only in the full
GlassFish Server.

For more information about connectors, see Java EE Connector Architecture
(http://java.sun.com/j2ee/connector/) and “Chapter 37: Java EE Connector Architecture”
in the The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/).

For connector examples, see http://developers.sun.com/appserver/reference/techart/
as8_connectors.

For information about deploying a connector to the GlassFish Server, see the GlassFish Server
Open Source Edition 3.1 Application Deployment Guide.

11C H A P T E R 1 1

223

http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/
http://download.oracle.com/javaee/6/tutorial/doc/
http://developers.sun.com/appserver/reference/techart/as8_connectors
http://developers.sun.com/appserver/reference/techart/as8_connectors

The following topics are addressed here:

■ “Connector Support in the GlassFish Server” on page 224
■ “Advanced Connector Configuration Options” on page 225
■ “Inbound Communication Support” on page 231
■ “Outbound Communication Support” on page 232
■ “Configuring a Message Driven Bean to Use a Resource Adapter” on page 232

Connector Support in the GlassFish Server
The GlassFish Server supports the development and deployment of resource adapters that are
compatible with the Connector 1.6 specification (and, for backward compatibility, the
Connector 1.0 and 1.5 specifications).

The Connector 1.0 specification defines the outbound connectivity system contracts between
the resource adapter and the GlassFish Server. The Connector 1.5 specification introduces
major additions in defining system level contracts between the GlassFish Server and the
resource adapter with respect to inbound connectivity, life cycle management, and thread
management. The Connector 1.6 specification introduces further additions in defining system
level contracts between the GlassFish Server and the resource adapter with respect to the
following:

■ Generic work context contract — A generic contract that enables a resource adapter to
control the execution context of a Work instance that it has submitted to the GlassFish Server
for execution. The Generic work contract provides the mechanism for a resource adapter to
augment the runtime context of a Work instance with additional contextual information
flown-in from the EIS. This contract enables a resource adapter to control, in a more flexible
manner, the contexts in which the Work instances submitted by it are executed by the
application server's WorkManager.

■ Security work context — A standard contract that enables a resource adapter to establish
security information while submitting a Work instance for execution to a WorkManager and
while delivering messages-to-message endpoints residing in the GlassFish Server. This
contract provides a mechanism to support the execution of a Work instance in the context of
an established identity. It also supports the propagation of user information or Principal
information from an EIS to a MessageEndpoint during message inflow.

■ Transaction context — The transaction context contract between the resource adapter and
the application server leverages the Generic Work Context mechanism by describing a
standard WorkContext, the TransactionContext. It represents the standard interface a
resource adapter can use to propagate transaction context information from the EIS to the
application server.

Connector Support in the GlassFish Server

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011224

Connector Architecture for JMS and JDBC
In the Administration Console, connector, JMS, and JDBC resources are handled differently,
but they use the same underlying Connector architecture. In the GlassFish Server, all
communication to an EIS, whether to a message provider or an RDBMS, happens through the
Connector architecture. To provide JMS infrastructure to clients, the GlassFish Server uses the
Open Message Queue software. To provide JDBC infrastructure to clients, the GlassFish Server
uses its own JDBC system resource adapters. The GlassFish Server automatically makes these
system resource adapters available to any client that requires them.

For more information about JMS in the GlassFish Server, see Chapter 17, “Using the Java
Message Service.” For more information about JDBC in the GlassFish Server, see Chapter 14,
“Using the JDBC API for Database Access.”

Connector Configuration
The GlassFish Server does not need to use sun-ra.xml, which previous GlassFish Server
versions used, to store server-specific deployment information inside a Resource Adapter
Archive (RAR) file. (However, the sun-ra.xml file is still supported for backward
compatibility.) Instead, the information is stored in the server configuration. As a result, you
can create multiple connector connection pools for a connection definition in a functional
resource adapter instance, and you can create multiple user-accessible connector resources
(that is, registering a resource with a JNDI name) for a connector connection pool. In addition,
dynamic changes can be made to connector connection pools and the connector resource
properties without restarting the GlassFish Server.

Advanced Connector Configuration Options
The following topics are addressed here:

■ “Thread Associations” on page 226
■ “Security Maps” on page 226
■ “Work Security Maps” on page 227
■ “Overriding Configuration Properties” on page 227
■ “Testing a Connector Connection Pool” on page 228
■ “Flushing a Connector Connection Pool” on page 228
■ “Handling Invalid Connections” on page 229
■ “Setting the Shutdown Timeout” on page 229
■ “Specifying the Class Loading Policy” on page 230
■ “Using Last Agent Optimization of Transactions” on page 230
■ “Disabling Pooling for a Connection” on page 231
■ “Using Application-Scoped Connectors” on page 231

Advanced Connector Configuration Options

Chapter 11 • Developing Connectors 225

Thread Associations
Connectors can submit work instances to the GlassFish Server for execution. By default, the
GlassFish Server services work requests for all connectors from its default thread pool.
However, you can associate a specific user-created thread pool to service work requests from a
connector. A thread pool can service work requests from multiple resource adapters. To create
a thread pool:

■ In the Administration Console, select Thread Pools under the relevant configuration. For
details, click the Help button in the Administration Console.

■ Use the asadmin create-threadpool command. For details, see the GlassFish Server Open
Source Edition 3.1-3.1.1 Reference Manual.

To associate a connector with a thread pool:

■ In the Administration Console, open the Applications component and select Resource
Adapter Configs. Specify the name of the thread pool in the Thread Pool ID field. For details,
click the Help button in the Administration Console.

■ Use the ----threadpoolid option of the asadmin create-resource-adapter-config
command. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

If you create a resource adapter configuration for a connector module that is already deployed,
the connector module deployment is restarted with the new configuration properties.

Security Maps
Create a security map for a connector connection pool to map an application principal or a user
group to a back end EIS principal. The security map is usually used in situations where one or
more EIS back end principals are used to execute operations (on the EIS) initiated by various
principals or user groups in the application.

To create or update security maps for a connector connection pool:

■ In the Administration Console, open the Resources component, select Connectors, select
Connector Connection Pools, and select the Security Maps tab. For details, click the Help
button in the Administration Console.

■ Use the asadmin create-connector-security-map command. For details, see the
GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

If a security map already exists for a connector connection pool, the new security map is
appended to the previous one. The connector security map configuration supports the use of
the wildcard asterisk (*) to indicate all users or all user groups.

Advanced Connector Configuration Options

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011226

When an application principal initiates a request to an EIS, the GlassFish Server first checks for
an exact match to a mapped back end EIS principal using the security map defined for the
connector connection pool. If there is no exact match, the GlassFish Server uses the wild card
character specification, if any, to determined the mapped back end EIS principal.

Work Security Maps
A work security map for a resource adapter maps an EIS principal or group to a application
principal or group. A work security map is useful in situations where one or more application
principals execute operations initiated by principals or user groups in the EIS. A resource
adapter can have multiple work security maps. A work security map can map either principals
or groups, but not both.

To create a work security map, use the asadmin create-connector-work-security-map
command. For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The work security map configuration supports the wildcard asterisk (*) character to indicate all
users or all user groups. When an EIS principal sends a request to the GlassFish Server, the
GlassFish Server first checks for an exact match to a mapped application principal using the
work security map defined for the resource adapter. If there is no exact match, the GlassFish
Server uses the wild card character specification, if any, to determine the application principal.

Overriding Configuration Properties
You can override the properties (config-property elements) specified in the ra.xml file of a
resource adapter:
■ In the Administration Console, open the Resources component and select Resource

Adapter Configs. Create a new resource adapter configuration or select an existing one to
edit. Then enter property names and values in the Additional Properties table. For details,
click the Help button in the Administration Console.

■ Use the asadmin create-resource-adapter-config command to create a configuration
for a resource adapter. Use this command’s ----property option to specify a name-value
pair for a resource adapter property. For details, see the GlassFish Server Open Source
Edition 3.1-3.1.1 Reference Manual.

You can specify configuration properties either before or after resource adapter deployment. If
you specify properties after deploying the resource adapter, the existing resource adapter is
restarted with the new properties.

You can also use token replacement for overriding resource adapter configuration properties in
individual server instances when the resource adapter is deployed to a cluster. For example, for
a property called inboundPort, you can assign the value ${inboundPort}. You can then assign a
different value to this property for each server instance. Changes to system properties take effect
upon server restart.

Advanced Connector Configuration Options

Chapter 11 • Developing Connectors 227

Testing a Connector Connection Pool
You can test a connector connection pool for usability in one of these ways:

■ In the Administration Console, open the Resources component, open the Connector
component, select Connection Pools, and select the connection pool you want to test. Then
select the Ping button in the top right corner of the page. For details, click the Help button in
the Administration Console.

■ Use the asadmin ping-connection-pool command. For details, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

You can also specify that a connection pool is automatically tested when created or
reconfigured by setting the Ping attribute to true (the default is false) in one of the following
ways:

■ Enter a Ping value in the Connector Connection Pools page in the Administration Console.
For more information, click the Help button in the Administration Console.

■ Specify the ----ping option in the asadmin create-connector-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

Flushing a Connector Connection Pool
Flushing a connector connection pool recreates all the connections in the pool and brings the
pool to the steady pool size without the need for reconfiguring the pool. Connection pool
reconfiguration can result in application redeployment, which is a time-consuming operation.
Flushing destroys existing connections, and any existing transactions are lost and must be
retired.

You can flush a connector connection pool in one of these ways:

■ In the Administration Console, open the Resources component, open the Connector
component, select Connection Pools, and select the connection pool you want to flush.
Then select the Flush button in the top right corner of the page. For details, click the Help
button in the Administration Console.

■ Use the asadmin flush-connection-pool command. For details, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

Advanced Connector Configuration Options

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011228

Handling Invalid Connections
If a resource adapter generates a ConnectionErrorOccured event, the GlassFish Server
considers the connection invalid and removes the connection from the connection pool.
Typically, a resource adapter generates a ConnectionErrorOccured event when it finds a
ManagedConnection object unusable. Reasons can be network failure with the EIS, EIS failure,
fatal problems with the resource adapter, and so on.

If the fail-all-connections setting in the connection pool configuration is set to true, and a
single connection fails, all connections are closed and recreated. If this setting is false,
individual connections are recreated only when they are used. The default is false.

The is-connection-validation-required setting specifies whether connections have to be
validated before being given to the application. If a resource’s validation fails, it is destroyed,
and a new resource is created and returned. The default is false.

The prefer-validate-over-recreate property specifies that validating idle connections is
preferable to closing them. This property has no effect on non-idle connections. If set to true,
idle connections are validated during pool resizing, and only those found to be invalid are
destroyed and recreated. If false, all idle connections are destroyed and recreated during pool
resizing. The default is false.

You can set the fail-all-connections, is-connection-validation-required, and
prefer-validate-over-recreate configuration settings during creation of a connector
connection pool. Or, you can use the asadmin set command to dynamically reconfigure a
setting. For example:

asadmin set server.resources.connector-connection-pool.CCP1.fail-all-connections="true"
asadmin set server.resources.connector-connection-pool.CCP1.is-connection-validation-required="true"
asadmin set server.resources.connector-connection-pool.CCP1.property.prefer-validate-over-recreate="true"

For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The GlassFish Server
checks if the resource adapter implements this interface, and if it does, invalid connections are
removed when the connection pool is resized.

Setting the Shutdown Timeout
According to the Connector specification, while an application server shuts down, all resource
adapters should be stopped. A resource adapter might hang during shutdown, since shutdown
is typically a resource intensive operation. To avoid such a situation, you can set a timeout that
aborts resource adapter shutdown if exceeded. The default timeout is 30 seconds per resource
adapter module. To configure this timeout:

Advanced Connector Configuration Options

Chapter 11 • Developing Connectors 229

■ In the Administration Console, select Connector Service under the relevant configuration
and edit the shutdown Timeout field. For details, click the Help button in the
Administration Console.

■ Use the following asadmin set command:

asadmin set server.connector-service.shutdown-timeout-in-seconds="num-secs"

For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The GlassFish Server deactivates all message-driven bean deployments before stopping a
resource adapter.

Specifying the Class Loading Policy
Use the class-loading-policy setting to determine which resource adapters accessible to
applications. Allowed values are:

■ derived — Applications access resource adapters based on references in their deployment
descriptors. These references can be resource-ref, resource-env-ref,
resource-adapter-mid, or equivalent annotations.

■ global — All stand-alone resource adapters are available to all applications.

To configure this setting, use the asadmin set command. For example:

asadmin set server.connector-service.class-loading-policy="global"

For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Using Last Agent Optimization of Transactions
Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resources must be XA. For more information about
transactions in the GlassFish Server, see Chapter 15, “Using the Transaction Service.”

The Connector specification requires that if a resource adapter supports XATransaction, the
ManagedConnection created from that resource adapter must support both distributed and
local transactions. Therefore, even if a resource adapter supports XATransaction, you can
configure its connector connection pools as non-XA or without transaction support for better
performance. A non-XA resource adapter becomes the last agent in the transactions in which it
participates.

The value of the connection pool configuration property transaction-support defaults to the
value of the transaction-support property in the ra.xml file. The connection pool

Advanced Connector Configuration Options

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011230

configuration property can override the ra.xml file property if the transaction level in the
connection pool configuration property is lower. If the value in the connection pool
configuration property is higher, it is ignored.

Disabling Pooling for a Connection
To disable connection pooling, set the Pooling attribute to false. The default is true. You can
enable or disable connection pooling in one of the following ways:
■ Enter a Pooling value in the Connector Connection Pools page in the Administration

Console. For more information, click the Help button in the Administration Console.
■ Specify the ----pooling option in the asadmin create-connector-connection-pool

command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

Using Application-Scoped Connectors
You can define an application-scoped connector or other resource for an enterprise application,
web module, EJB module, connector module, or application client module by supplying a
glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped
Resources” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Inbound Communication Support
The Connector specification defines the transaction and message inflow system contracts for
achieving inbound connectivity from an EIS. The message inflow contract also serves as a
standard message provider pluggability contract, thereby allowing various message providers to
seamlessly plug in their products with any application server that supports the message inflow
contract. In the inbound communication model, the EIS initiates all communication to an
application. An application can be composed of enterprise beans (session, entity, or
message-driven beans), which reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven bean.
This message-driven bean asynchronously consumes messages from a message provider. An
application can also synchronously send and receive messages directly using messaging style
APIs.

A resource adapter supporting inbound communication provides an instance of an
ActivationSpec JavaBean class for each supported message listener type. Each class contains a
set of configurable properties that specify endpoint activation configuration information
during message-driven bean deployment. The required config-property element in the
ra.xml file provides a list of configuration property names required for each activation

Inbound Communication Support

Chapter 11 • Developing Connectors 231

specification. An endpoint activation fails if the required property values are not specified.
Values for the properties that are overridden in the message-driven bean’s deployment
descriptor are applied to the ActivationSpec JavaBean when the message-driven bean is
deployed.

Administered objects can also be specified for a resource adapter, and these JavaBeans are
specific to a messaging style or message provider. For example, some messaging styles may need
applications to use special administered objects (such as Queue and Topic objects in JMS).
Applications use these objects to send and synchronously receive messages using connection
objects using messaging style APIs. For more information about administered objects, see
Chapter 17, “Using the Java Message Service.”

Outbound Communication Support
The Connector specification defines the system contracts for achieving outbound connectivity
from an EIS. A resource adapter supporting outbound communication provides an instance of
a ManagedConnectionFactory JavaBean class. A ManagedConnectionFactory JavaBean
represents outbound connectivity information to an EIS instance from an application.

The 1.6 Connector specification introduces a mechanism through which the transaction level of
a ManagedConnectionFactory can be detected at runtime. During the configuration of a
ManagedConnectionFactory in the Connector Connection Pools page in the Administration
Console, the Administration Console can instantiate the ManagedConnectionFactory and
show the level of transaction support. The three levels are no-tx, local-tx, xa-tx. If a
ManagedConnectionFactory returns local-tx as the level it can support, it is assumed that
xa-tx is not supported, and the Administration Console shows only no-tx and local-tx as the
available support levels.

For more information, click the Help button in the Administration Console.

Configuring a Message Driven Bean to Use a Resource Adapter
The Connectors specification’s message inflow contract provides a generic mechanism to plug
in a wide-range of message providers, including JMS, into a Java-EE-compatible application
server. Message providers use a resource adapter and dispatch messages to message endpoints,
which are implemented as message-driven beans.

The message-driven bean developer provides activation configuration information in the
message-driven bean’s ejb-jar.xml file. Configuration information includes
messaging-style-specific configuration details, and possibly message-provider-specific details as
well. The message-driven bean deployer uses this configuration information to set up the
activation specification JavaBean. The activation configuration properties specified in
ejb-jar.xml override configuration properties in the activation specification definition in the
ra.xml file.

Outbound Communication Support

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011232

According to the EJB specification, the messaging-style-specific descriptor elements contained
within the activation configuration element are not specified because they are specific to a
messaging provider. In the following sample message-driven bean ejb-jar.xml, a
message-driven bean has the following activation configuration property names:
destinationType, SubscriptionDurability, and MessageSelector.

<!-- A sample MDB that listens to a JMS Topic -->

<!-- message-driven bean deployment descriptor -->

...

<activation-config>

<activation-config-property>

<activation-config-property-name>

destinationType

</activation-config-property-name>

<activation-config-property-value>

javax.jms.Topic

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

SubscriptionDurability

</activation-config-property-name>

<activation-config-property-value>

Durable

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

MessageSelector

</activation-config-property-name>

<activation-config-property-value>

JMSType = ’car’ AND color = ’blue’

</activation-config-property-value>

</activation-config-property>

...

</activation-config>

...

When the message-driven bean is deployed, the value for the resource-adapter-mid element
in the glassfish-ejb-jar.xml file is set to the resource adapter module name that delivers
messages to the message endpoint (to the message-driven bean). In the following example, the
jmsra JMS resource adapter, which is the bundled resource adapter for the Message Queue
message provider, is specified as the resource adapter module identifier for the SampleMDB bean.

<glassfish-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>SampleMDB</ejb-name>

<jndi-name>SampleQueue</jndi-name>

<!-- JNDI name of the destination from which messages would be

delivered from MDB needs to listen to -->

...

<mdb-resource-adapter>

<resource-adapter-mid>jmsra</resource-adapter-mid>

Configuring a Message Driven Bean to Use a Resource Adapter

Chapter 11 • Developing Connectors 233

<!-- Resource Adapter Module Id that would deliver messages to

this message endpoint -->

</mdb-resource-adapter>

...

</ejb>

...

</enterprise-beans>

...

</glassfish-ejb-jar>

When the message-driven bean is deployed, the GlassFish Server uses the
resourceadapter-mid setting to associate the resource adapter with a message endpoint
through the message inflow contract. This message inflow contract with the GlassFish Server
gives the resource adapter a handle to the MessageEndpointFactory and the ActivationSpec
JavaBean, and the adapter uses this handle to deliver messages to the message endpoint
instances (which are created by the MessageEndpointFactory).

When a message-driven bean first created for use on the GlassFish Server 7 is deployed, the
Connector runtime transparently transforms the previous deployment style to the current
connector-based deployment style. If the deployer specifies neither a resource-adapter-mid
element nor the Message Queue resource adapter’s activation configuration properties, the
Connector runtime maps the message-driven bean to the jmsra system resource adapter and
converts the JMS-specific configuration to the Message Queue resource adapter’s activation
configuration properties.

Configuring a Message Driven Bean to Use a Resource Adapter

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011234

Developing Lifecycle Listeners

Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the Oracle GlassFish Server environment, such as instantiation of singletons or RMI
servers. These modules are automatically initiated at server startup and are notified at various
phases of the server life cycle.

Note – Lifecycle listener modules are deprecated. Support for them is included for backward
compatibility. Implementing the org.glassfish.api.Startup interface instead is recommended.

All lifecycle module classes and interfaces are in the as-install/modules/glassfish-api.jar
file.

For Javadoc tool pages relevant to lifecycle modules, go to http://glassfish.java.net/

nonav/docs/v3/api/ and click on the com.sun.appserv.server package.

The following topics are addressed here:

■ “Server Life Cycle Events” on page 236
■ “The LifecycleListener Interface” on page 236
■ “The LifecycleEvent Class” on page 236
■ “The Server Lifecycle Event Context” on page 237
■ “Deploying a Lifecycle Module” on page 237
■ “Considerations for Lifecycle Modules” on page 238

12C H A P T E R 1 2

235

http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/

Server Life Cycle Events
A lifecycle module listens for and performs its tasks in response to the following events in the
server life cycle:
■ After the INIT_EVENT, the server reads the configuration, initializes built-in subsystems

(such as security and logging services), and creates the containers.
■ After the STARTUP_EVENT, the server loads and initializes deployed applications.
■ After the READY_EVENT, the server is ready to service requests.
■ After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.
■ After the TERMINATION_EVENT, the server closes the containers, the built-in subsystems, and

the server runtime environment.

These events are defined in the LifecycleEvent class.

The lifecycle modules that listen for these events implement the LifecycleListener interface.

The LifecycleListener Interface
To create a lifecycle module is to configure a customized class that implements the
com.sun.appserv.server.LifecycleListener interface. You can create and simultaneously execute
multiple lifecycle modules.

The LifecycleListener interface defines this method:

public void handleEvent(com.sun.appserv.server.LifecycleEvent event)

throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the
LifecycleListenerImpl.java file, which you can use for testing lifecycle events.

The LifecycleEventClass
The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event. The
following methods are associated with the event:

■ public java.lang.Object.getData()

This method returns an instance of java.util.Properties that contains the properties
defined for the lifecycle module.

■ public int getEventType()

Server Life Cycle Events

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011236

This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT,
READY_EVENT, SHUTDOWN_EVENT, or TERMINATION_EVENT.

■ public

com.sun.appserv.server.LifecycleEventContext.getLifecycleEventContext()

This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

The Server Lifecycle Event Context
The com.sun.appserv.server.LifecycleEventContext interface exposes runtime information
about the server. The lifecycle event context is created when the LifecycleEvent class is
instantiated at server initialization. The LifecycleEventContext interface defines these methods:

■ public java.lang.String[].getCmdLineArgs()

This method returns the server startup command-line arguments.
■ public java.lang.String.getInstallRoot()

This method returns the server installation root directory.
■ public java.lang.String.getInstanceName()

This method returns the server instance name.
■ public javax.naming.InitialContext.getInitialContext()

This method returns the initial JNDI naming context. The naming environment for lifecycle
modules is installed after the STARTUP_EVENT. A lifecycle module can look up any resource
by its jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It can use
the getInitialContext method to get the initial context to which all the resources are bound.

Deploying a Lifecycle Module
For instructions on how to deploy a lifecycle module, see the GlassFish Server Open Source
Edition 3.1 Application Deployment Guide, or see the asadmin create-lifecycle-module
command in the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

You do not need to specify a classpath for the lifecycle module if you place it in the
domain-dir/lib or domain-dir/lib/classes directory for the Domain Administration Server.
Do not place it in the lib directory for a particular instance, or it will be deleted when that
instance synchronizes with the Domain Administration Server.

Deploying a Lifecycle Module

Chapter 12 • Developing Lifecycle Listeners 237

Considerations for Lifecycle Modules
The resources allocated at initialization or startup should be freed at shutdown or termination.
The lifecycle module classes are called synchronously from the main server thread, therefore it
is important to ensure that these classes don’t block the server. Lifecycle modules can create
threads if appropriate, but these threads must be stopped in the shutdown and termination
phases.

The LifeCycleModule class loader is the parent class loader for lifecycle modules. Each lifecycle
module’s classpath is used to construct its class loader. All the support classes needed by a
lifecycle module must be available to the LifeCycleModule class loader or its parent, the
Connector class loader.

You must ensure that the server.policy file is appropriately set up, or a lifecycle module
trying to perform a System.exec() might cause a security access violation. For details, see “The
server.policy File” on page 58.

The configured properties for a lifecycle module are passed as properties after the INIT_EVENT.
The JNDI naming context is not available before the STARTUP_EVENT. If a lifecycle module
requires the naming context, it can get this after the STARTUP_EVENT, READY_EVENT, or
SHUTDOWN_EVENT.

Considerations for Lifecycle Modules

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011238

Developing OSGi-enabled Java EE Applications

This chapter describes the features and interfaces that GlassFish Server provides to develop
OSGi-enabled enterprise applications. This chapter includes the following sections:

■ “Overview of OSGi Application and GlassFish Server” on page 239
■ “Developing OSGi Application Bundles for GlassFish Server” on page 240
■ “Deploying OSGi Bundles in GlassFish Server” on page 247

Note – Many of the features and interfaces presented in this chapter are demonstrated in samples
and video clips available from the OSGi section of the GlassFish Server wiki. See
http://wikis.sun.com/display/GlassFish/Osgi for more information.

Overview of OSGi Application and GlassFish Server
GlassFish Server is fully-compliant with Java EE 6, so it provides the latest Java EE APIs and
frameworks. It is built using OSGi technology, and includes as its OSGi module management
subsystem the Apache Felix OSGi framework, which is a fully-compliant implementation of the
OSGi Service Platform R4 Version 4.2 specification. GlassFish Server supports deployment of
OSGi-based applications using this framework. OSGi applications can make use of core as well
as enterprise OSGi features. GlassFish Server makes available many of its Java EE platform
services, such as the transaction service, HTTP service, JDBC Service and JMS, as OSGi services.
It also enables use of Java EE programming model in OSGi applications, so enterprise Java
application developers can continue to leverage their existing skills in OSGi-based applications.
See “Benefits of Using OSGi in Enterprise Java Applications” on page 240 for more information.

OSGi applications are deployed as one or more OSGi bundles, and the GlassFish Server
deployment and administration infrastructure enables you to deploy and manage your OSGi
bundles. This chapter classifies OSGi bundles into two categories based on the features they use:

■ Plain OSGi Application Bundles – bundles that do not contain any Java EE components.
See “Developing Plain OSGi Bundles” on page 241.

13C H A P T E R 1 3

239

http://wikis.sun.com/display/GlassFish/Osgi
http://felix.apache.org

■ Hybrid Application Bundles – bundles that are an OSGi bundle as wells as a Java EE
module. At runtime, such modules have both an OSGi bundle context and a Java EE context.
GlassFish Server supports the following hybrid application bundles:
■ Web Application Bundles (or WABs) , see “Developing Web Application Bundles” on

page 244.
■ EJB Application Bundles, see “Developing EJB Application Bundles” on page 246.

Benefits of Using OSGi in Enterprise Java Applications
Enterprise applications typically need transactional, secured access to data stores, messaging
systems and other such enterprise information systems, and have to cater to a wide variety of
clients such as web browsers and desktop applications, and so on. Java EE makes development
of such applications easier with a rich set of APIs and frameworks. It also provides a scalable,
reliable and easy to administer runtime to host such applications.

The OSGi platform complements these features with modularity. It enables applications to be
separated into smaller, reusable modules with a well defined and robust dependency
specification. A module explicitly specifies its capabilities and requirements. This explicit
dependency specification encourages developers to visualize dependencies among their
modules and help them make their modules highly cohesive and less coupled. The OSGi
module system is dynamic: it allows modules to be added and removed at runtime. OSGi has
very good support for versioning: it supports package versioning as well module versioning. In
fact, it allows multiple versions of the same package to coexist in the same runtime, thus
allowing greater flexibility to deployers. The service layer of the OSGi platform encourages a
more service-oriented approach to build a system. The service-oriented approach and dynamic
module system used together allow a system to be more agile during development as well as in
production. It makes them better suited to run in an Platform-as-a-Service (PaaS) environment.

With GlassFish Server, you do not have to chose one of the two platforms. A hybrid approach
like OSGi enabling your Java EE applications allows new capabilities to applications hitherto
unavailable to applications built using just one of the two platforms.

Developing OSGi Application Bundles for GlassFish Server
GlassFish Server enables interaction between OSGi components and Java EE components.
OSGi services managed by the OSGi framework can invoke Java EE components managed by
the Java EE container and vice versa. For example, developers can declaratively export EJBs as
OSGi services without having to write any OSGi code. This allows any plain OSGi component,
which is running without the Java EE context, to discover the EJB and invoke it. Similarly, Java
EE components can locate OSGi services provided by plain OSGi bundles and use them as well.
GlassFish Server extends the Java EE Context and Dependency Injection (CDI) framework to
make it easier for Java EE components to consume dynamic OSGi services in a type-safe
manner.

Developing OSGi Application Bundles for GlassFish Server

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011240

■ “Developing Plain OSGi Bundles” on page 241
■ “Developing Web Application Bundles” on page 244
■ “Developing EJB Application Bundles” on page 246

Developing Plain OSGi Bundles
Java EE components (like an EJB or Servlet) can look up Java EE platform services using JNDI
names in the associated Java EE naming context. Such code can rely on the Java EE container to
inject the required services as well. Unfortunately, neither of them works when the code runs
outside a Java EE context. An example of such code is the BundleActivator of an OSGi bundle.
For such code to access Java EE platform services, GlassFish Server makes key services and
resources of the underlying Java EE platform available as OSGi services. Thus, an OSGi bundle
deployed in GlassFish Server can access these services using OSGi Service look-up APIs or by
using a white board pattern. The following Java EE services are available as OSGi services:

■ “HTTP Service” on page 241
■ “Transaction Service” on page 242
■ “JDBC Data Source Service” on page 243
■ “JMS Resource Service” on page 243

HTTP Service
The GlassFish Server web container is made available as a service for OSGi users who do not use
OSGi Web Application Bundles (WABs). This service is made available using the standard
OSGi/HTTP service specification, which is a light API that predates the concept of a web
application as we know it today. This simple API allows users to register servlets and static
resources dynamically and draw a boundary around them in the form of a HttpContext. This
simple API can be used to build feature–rich web application, such as the Felix Web Console for
example.

The GlassFish Server web container has one or more virtual servers. A virtual server has one or
more web application deployed in it. Each web application has a distinct context path. Each
virtual server has a set of HTTP listeners. Each HTTP listener listens on a particular port. When
multiple virtual servers are present, one of them is treated as the default virtual server. Every
virtual server comes configured with a default web application. The default web application is
used to serve static content from the docroot of GlassFish Server. This default web application
uses / as the context path. A web application contains static and dynamic resources. Each
virtual server is mapped to an org.osgi.services.http.HttpService instance. When there
are multiple virtual servers present, there will be multiple occurrences of HttpService
registered in the service registry. In order to distinguish one service from another, each service
is registered with a service property named VirtualServer, whose value is the name of the
virtual server. The service corresponding to default virtual server has the highest ranking, so
when looking up a service of type HttpService without any additional criteria returns the

Developing OSGi Application Bundles for GlassFish Server

Chapter 13 • Developing OSGi-enabled Java EE Applications 241

HttpService corresponding to the default virtual server. In a typical GlassFish Server
installation, the default virtual server is configured to listen on port 8080 for the HTTP protocol
and port 8181 for the HTTPS protocol.

The context path / is reserved for the default web application. Every resource and servlet
registered using the registerResource() and registerServlet() methods of HttpService
are made available under a special context path named /osgi in the virtual server. The /osgi
context path can be changed to some other value by setting an appropriate value in the OSGi
configuration property or in a system property called org.glassfish.osgihttp.ContextPath.

For example, HelloWorldServlet will be available at
http://localhost:8080/osgi/helloworld when the following code is executed:

HttpService httpService = getHttpService(); // Obtain HttpService

httpService.registerServlet(httpService.registerServlet("/helloworld",
new HelloWorldServlet(), null, ctx);

Transaction Service
The Java Transaction API (JTA) defines three interfaces to interact with the transaction
management system: UserTransaction, TransactionManager, and
TransactionSynchronizationRegistry. They all belong to the javax.transaction package.
TransactionManagerand TransactionSynchronizationRegistry are intended for system
level code, such as a persistence provider. Whereas, UserTransaction is the entity that you
should use to control transactions. All the objects of the underlying JTA layer are made
available in the OSGi service registry using the following service interfaces:

■ javax.transaction.UserTransaction

■ javax.transaction.TransactionManager

■ javax.transaction.TransactionSynchronisationRegistry

There is no additional service property associated with them. Although UserTransaction

appears to be a singleton, in reality any call to it gets rerouted to the actual transaction
associated with the calling thread. Code that runs in the context of a Java EE component
typically gets a handle on UserTransaction by doing a JNDI lookup in the component naming
context or by using injection, as shown here:

(UserTransaction)(new InitialContext().lookup("java:comp/UserTransaction"));

or

@Resource UserTransaction utx;

When certain code (such as an OSGi Bundle Activator), which does not have a Java EE
component context, wants to get hold of UserTransaction, or any of the other JTA artifacts,
then they can look it up in the service registry. Here is an example of such code:

Developing OSGi Application Bundles for GlassFish Server

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011242

BundleContext context;

ServiceReference txRef =

context.getServiceReference(UserTransaction.class.getName());

UserTransaction utx = (UserTransaction);

context.getService(txRef);

JDBC Data Source Service
Any JDBC data source created in GlassFish Server is automatically made available as an OSGi
Service; therefore, OSGi bundles can track availability of JDBC data sources using the
ServiceTracking facility of the OSGi platform. The life of the OSGi service matches that of the
underlying data source created in GlassFish Server. For instructions on administering JDBC
resources in GlassFish Server, see the GlassFish Server Open Source Edition 3.1 Administration
Guide.

GlassFish Server registers each JDBC data source as an OSGi service with objectClass =

”javax.sql.DataSource” and a service property called jndi-name, which is set to the JNDI
name of the data source. Here is a code sample that looks up a data source service:

@Inject

@OSGiService(true,

"(jndi-name=jdbc/MyDS)")
private DataSource ds;

JMS Resource Service
Like JDBC data sources, JMS administered objects, such as destinations and connection
factories, are also automatically made available as OSGi services. Their service mappings are as
follows.

JMS Object Service Interface Service Properties Comments

JMS Queue destination javax.jms.Queue jndi-name jndi-name is set to the
JNDI name of the queue

JMS Topic destination javax.jms.Topic jndi-name jndi-name is set to the
JNDI name of the topic

JMS connection factory javax.jms.QueueConnectionFactory

or
javax.jms.TopicConnectionFactory

or
javax.jms.ConnectionFactory

jndi-name jndi-name is set to the
JNDI name of the topic.

The actual service
interface depends on
which type of connection
factory was created.

Developing OSGi Application Bundles for GlassFish Server

Chapter 13 • Developing OSGi-enabled Java EE Applications 243

Developing Web Application Bundles
When a web application is packaged and deployed as an OSGi bundle, it is called a Web
Application Bundle (WAB). WAB support is based on the OSGi Web Application specification ,
which is part of the OSGi Service Platform, Enterprise Specification, Release 4, Version 4.2. A
WAB is packaged as an OSGi bundle, so all the OSGi packaging rules apply to WAB packaging.
When a WAB is not packaged like a WAR, the OSGi Web Container of GlassFish Server maps
the WAB to the hierarchical structure of web application using the following rules:
■ The root of the WAB corresponds to the docroot of the web application.
■ Every JAR in the Bundle-ClassPath of the WAB is treated like a JAR in WEB-INF/lib/.

■ Every directory except ”.” in the Bundle-ClassPath of the WAB is treated like
WEB-INF/classes/.

■ Bundle-ClassPath entry of type ”.” is treated as if the entire WAB is a JAR in WEB-INF/lib/.

■ Bundle-ClassPath includes the Bundle-ClassPath entries of any attached fragment bundles.

The simplest way to avoid knowing these mapping rules is to avoid the problem in the first
place. Moreover, there are many packaging tools and development time tools that understand
WAR structure. Therefore, we strongly recommend that you package the WAB exactly like a
WAR, with only additional OSGi metadata.

Required WAB Metadata
In addition to the standard OSGi metadata, the main attributes of META-INF/MANIFEST.MF of
the WAB must have an additional attribute called Web-ContextPath. The Web-ContextPath
attribute specifies the value of the context path of the web application. Since the root of a WAB
is mapped to the docroot of the web application, it should not be used in the
Bundle-ClassPath. Moreover, WEB-INF/classes/ should be specified ahead of WEB-INF/lib/
in the Bundle-ClassPath in order to be compliant with the search order used for traditional
WAR files.

Assuming the WAB is structured as follows:

foo.war/

index.html

foo.jsp

WEB-INF/classes/

foo/BarServlet.class

WEB-INF/lib/lib1.jar

WEB-INF/lib/lib2.jar

Then the OSGi metadata for the WAB as specified in META-INF/MANIFEST.MF of the WAB
would appear as follows:

MANIFEST.MF:Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.acme.foo

Developing OSGi Application Bundles for GlassFish Server

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011244

Bundle-Version: 1.0

Bundle-Name: Foo Web Application Bundle Version 1.0

Import-Package: javax.servlet; javax.servlet.http, version=[3.0, 4.0)

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/lib1.jar, WEB-INF/lib/lib2.jar

Web-ContextPath: /foo

How WABs Consume OSGi Services
Since a WAB has a valid Bundle-Context, it can consume OSGi services. Although you are free
to use any OSGi API to locate OSGi services, GlassFish Server makes it easy for WAB users to
use OSGi services by virtue of extending the Context and Dependency Injection (CDI)
framework. Here's an example of the injection of an OSGi Service into a Servlet:

@WebServlet

public class MyServlet extends HttpServlet {

@Inject @OSGiService(dynamic=true)

FooService fooService;

}

To learn more about this feature, refer to “OSGi CDI Extension for WABs” on page 245.

OSGi CDI Extension for WABs
GlassFish Server includes a CDI extension that enables web applications, such as servlets, that
are part of WABs to express a type-safe dependency on an OSGi service using CDI APIs. An
OSGi service can be provided by any OSGi bundle without any knowledge of Java EE/CDI, and
they are allowed to be injected transparently in a type-safe manner into a web application.

A custom CDI Qualifier, @org.glassfish.osgicdi.OSGiService, is used by the component to
represent dependency on an OSGi service. The qualifier has additional metadata to customize
the service discovery and injection behavior. The following @OsgiService attributes are
currently available:

■ serviceCriteria — An LDAP filter query used for service selection in the OSGi service
registry.

■ waitTimeout — Waits the specified duration for a service that matches the criteria specified
to appear in the OSGi service registry.

■ dynamic — Dynamically obtain a service reference (true/false).

Since OSGi services are dynamic, they may not match the life cycle of the application
component that has injected a reference to the service. Through this attribute, you could
indicate that a service reference can be obtained dynamically or not. For stateless or
idempotent services, a dynamic reference to a service implementation would be useful. The
container then injects a proxy to the service and dynamically switches to an available
implementation when the current service reference is invalid.

Developing OSGi Application Bundles for GlassFish Server

Chapter 13 • Developing OSGi-enabled Java EE Applications 245

EXAMPLE 13–1 Example of a WAB Using CDI

In this example, Bundle B0 defines a service contract called com.acme.Foo and exports the
com.acme package for use by other bundles. Bundle B1 in turn provides a service
implementation, FooImpl, of the com.acme.Foo interface. It then registers the service FooImpl
service with the OSGi service registry with com.acme.Foo as the service interface.

Bundle B2 is a hybrid application bundle that imports the com.acme package. It has a
component called BarServlet that expresses a dependency to com.acme.Foo by adding a
field/setter method and qualifies that injection point with @OsgiService. For instance,
BarServlet could look like:

@Servlet

public void BarServlet extends HttpServlet{

@Inject @OSGiService(dynamic=true)

private com.acme.Foo f;

}

Developing EJB Application Bundles
Another type of hybrid application bundle is the EJB Application Bundle. When an EJB Jar is
packaged with additional OSGi metadata and deployed as an OSGi bundle it is called an EJB
Application Bundle. GlassFish Serversupports only packaging the OSGi bundle as a simple JAR
file with required OSGi metadata, just as you would package an ejb-jar file.

Required EJB Metadata
An EJB Application Bundle must have a manifest metadata called Export-EJB in order to be
considered as an EJB Bundle. For syntax of Export-EJB header, please refer to the Publishing
EJB as OSGi Service section. Here's an example of an EJB Application Bundle with its metadata:

myEjb.jar/

com/acme/Foo

com/acme/impl/FooEJB

META-INF/MANIFEST.MF

MANIFEST.MF:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.acme.foo EJB bundle

Bundle-Version: 1.0.0.BETA

Bundle-Name: com.acme.foo EJB bundle version 1.0.0.BETA

Export-EJB: ALL

Export-Package: com.acme; version=1.0

Import-Package: javax.ejb; version=[3.0, 4.0), com.acme; version=[1.0, 1.1)

How EJB Bundles Consume OSGi Services
Since an EJB has a valid Bundle-Context, it can consume OSGi services. Although you are free
to use any OSGi API to locate OSGi services, GlassFish Server makes it easy to use OSGi services

Developing OSGi Application Bundles for GlassFish Server

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011246

by virtue of extending the Context and Dependency Injection (CDI) framework. Here's an
example of injection of an OSGi Service into a servlet:

@Stateless

public class MyEJB {

@Inject @OSGiService(dynamic=true)

Foo foo;

...

}

To learn more about this feature, refer to “Using the OSGi CDI Extension With EJB Bundles”
on page 247.

Using the OSGi CDI Extension With EJB Bundles
GlassFish Server includes a CDI extension that enables EJB application bundles to express a
type-safe dependency on an OSGi Service using CDI APIs. An OSGi service can be provided by
any OSGi bundle without any knowledge of Java EE/CDI, and they are allowed to be injected
transparently in a type-safe manner into an EJB bundle.

A custom CDI Qualifier, @org.glassfish.osgicdi.OSGiService, is used by the component to
represent dependency on an OSGi service. The qualifier has additional metadata to customize
the service discovery and injection behavior. The following @OsgiService attributes are
currently available:

■ dynamic — Dynamically obtain a service reference (true/false).
■ waitTimeout — Waits for specified duration for a service to appear in the OSGi service

registry.
■ serviceCriteria — An LDAP filter query used for service selection.

Deploying OSGi Bundles in GlassFish Server
For instruction on deploying OSGi bundle, see “OSGi Bundle Deployment Guidelines” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Deploying OSGi Bundles in GlassFish Server

Chapter 13 • Developing OSGi-enabled Java EE Applications 247

248

Using Services and APIs

P A R T I I I

249

250

Using the JDBC API for Database Access

This chapter describes how to use the Java Database Connectivity (JDBC) API for database
access with the Oracle GlassFish Server. This chapter also provides high level JDBC
implementation instructions for servlets and EJB components using the GlassFish Server. If the
JDK version 1.6 is used, the GlassFish Server supports the JDBC 4.0 API.

The JDBC specifications are available at http://www.oracle.com/technetwork/java/
javase/jdbc/index.html.

A useful JDBC tutorial is located at http://download.oracle.com/javase/tutorial/jdbc/
index.html.

Note – The GlassFish Server does not support connection pooling or transactions for an
application’s database access if it does not use standard Java EE DataSource objects.

The following topics are addressed here:

■ “Statements” on page 252
■ “Connections” on page 255
■ “Connection Wrapping” on page 260
■ “Allowing Non-Component Callers” on page 262
■ “Using Application-Scoped Resources” on page 262
■ “Restrictions and Optimizations” on page 263

14C H A P T E R 1 4

251

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://download.oracle.com/javase/tutorial/jdbc/index.html
http://download.oracle.com/javase/tutorial/jdbc/index.html

Statements
The following topics are addressed here:
■ “Using an Initialization Statement” on page 252
■ “Setting a Statement Timeout” on page 252
■ “Statement Leak Detection and Leaked Statement Reclamation” on page 253
■ “Statement Caching” on page 253
■ “Statement Tracing” on page 254

Using an Initialization Statement
You can specify a statement that executes each time a physical connection to the database is
created (not reused) from a JDBC connection pool. This is useful for setting request or session
specific properties and is suited for homogeneous requests in a single application. Set the Init
SQL attribute of the JDBC connection pool to the SQL string to be executed in one of the
following ways:
■ Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the

Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --initsql option in the asadmin create-jdbc-connection-pool command.
For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

■ Specify the init-sql option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

Setting a Statement Timeout
An abnormally long running JDBC query executed by an application may leave it in a hanging
state unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees
that all queries automatically time out if not completed within the specified period. When
statements are created, the queryTimeout is set according to the statement timeout setting. This
works only when the underlying JDBC driver supports queryTimeout for Statement,
PreparedStatement, CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:
■ Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in

the Administration Console. For more information, click the Help button in the
Administration Console.

Statements

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011252

■ Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

Statement Leak Detection and Leaked Statement
Reclamation
If statements are not closed by an application after use, it is possible for the application to run
out of cursors. Enabling statement leak detection causes statements to be considered as leaked if
they are not closed within a specified period. Additionally, leaked statements can reclaimed
automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC
connection pool to a positive, nonzero value in one of the following ways:

■ Specify the --statementleaktimeout option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-leak-timeout-in-seconds option in the set subcommand. For
example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-seconds=300

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

■ It is less than the Connection Leak Timeout; otherwise, the connection could be closed
before the statement leak is recognized.

■ It is greater than the Statement Timeout; otherwise, a long running query could be mistaken
as a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting
Reclaim Leaked Statements for the JDBC connection pool to a true value in one of the
following ways:

■ Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Specify the statement-leak-reclaim option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true

Statement Caching
Statement caching stores statements, prepared statements, and callable statements that are
executed repeatedly by applications in a cache, thereby improving performance. Instead of the
statement being prepared each time, the cache is searched for a match. The overhead of parsing
and creating new statements each time is eliminated.

Statements

Chapter 14 • Using the JDBC API for Database Access 253

Statement caching is usually a feature of the JDBC driver. The GlassFish Server provides
caching for drivers that do not support caching. To enable this feature, set the Statement Cache
Size for the JDBC connection pool in one of the following ways:

■ Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page
in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

■ Specify the statement-cache-size option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-size=10

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

By default, this attribute is set to zero and the statement caching is turned off. To enable
statement caching, you can set any positive nonzero value. The built-in cache eviction strategy
is LRU-based (Least Recently Used). When a connection pool is flushed, the connections in the
statement cache are recreated.

Statement Tracing
You can trace the SQL statements executed by applications that use a JDBC connection pool.
Set the SQL Trace Listeners attribute to a comma-separated list of trace listener implementation
classes in one of the following ways:

■ Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page
in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

■ Specify the sql-trace-listeners option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-listeners=listeners

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

The GlassFish Server provides a public interface, org.glassfish.api.jdbc.SQLTraceListener, that
implements a means of recording SQLTraceRecord objects. To make custom implementations
of this interface available to the GlassFish Server, place the implementation classes in
as-install/lib.

Statements

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011254

The GlassFish Server provides an SQL tracing logger to log the SQL operations in the form of
SQLTraceRecord objects in the server.log file. The module name under which the SQL
operation is logged is javax.enterprise.resource.sqltrace. SQL traces are logged as FINE
messages along with the module name to enable easy filtering of the SQL logs. A sample SQL
trace record looks like this:

[#|2009-11-27T15:46:52.202+0530|FINE|glassfishv3.0|javax.enterprise.resource.sqltrace.com.sun.gjc.util

|_ThreadID=29;_ThreadName=Thread-1;ClassName=com.sun.gjc.util.SQLTraceLogger;MethodName=sqlTrace;

|ThreadID=77 | ThreadName=p: thread-pool-1; w: 6 | TimeStamp=1259317012202

| ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 | MethodName=executeUpdate

| arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | |#]

This trace shows that an executeUpdate(String sql, String columnNames) operation is
being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled,
GlassFish Server maintains a tracing cache of recent queries and their frequency of use. The
following JDBC connection pool properties can be configured to control this cache and the
monitoring statistics available from it:

time-to-keep-queries-in-minutes

Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of
use. The default value is 5 minutes.

number-of-top-queries-to-report

Specifies how many of the most used queries, in frequency order, are listed the monitoring
report. The default value is 10 queries.

Set these parameters in one of the following ways:

■ Add them as properties in the Edit JDBC Connection Pool Properties page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify them using the --property option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Set them using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.time-to-keep-queries-in-minutes=10

Connections
The following topics are addressed here:

■ “Transparent Pool Reconfiguration” on page 256
■ “Disabling Pooling” on page 256
■ “Associating Connections with Threads” on page 257
■ “Custom Connection Validation” on page 258

Connections

Chapter 14 • Using the JDBC API for Database Access 255

■ “Sharing Connections” on page 259
■ “Marking Bad Connections” on page 259
■ “Handling Invalid Connections” on page 259

Transparent Pool Reconfiguration
When the properties or attributes of a JDBC connection pool are changed, the connection pool
is destroyed and re-created. Normally, applications using the connection pool must be
redeployed as a consequence. This restriction can be avoided by enabling transparent JDBC
connection pool reconfiguration. When this feature is enabled, applications do not need to be
redeployed. Instead, requests for a new connections are blocked until the reconfiguration
operation completes. Connection requests from any in-flight transactions are served using the
old pool configuration so as to complete the transaction. Then, connections are created using
the pool's new configuration, and any blocked connection requests are served with connections
from the re-created pool..

To enable transparent JDBC connection pool reconfiguration, set the
dynamic-reconfiguration-wait-timeout-in-seconds property of the JDBC connection
pool to a positive, nonzero value in one of the following ways:

■ Add it as a property in the Edit JDBC Connection Pool Properties page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify it using the --property option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

■ Set it using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-reconfiguration-wait-timeout-in-seconds=15

This property specifies the time in seconds to wait for in-use connections to close and in-flight
transactions to complete. Any connections in use or transaction in flight past this time must be
retried.

Disabling Pooling
To disable connection pooling, set the Pooling attribute to false. The default is true. You can
enable or disable connection pooling in one of the following ways:

■ Enter a Pooling value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --pooling option in the asadmin create-jdbc-connection-pool command.
For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

Connections

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011256

■ Specify the pooling option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.pooling=false

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

The pooling option and the system property com.sun.enterprise.connectors.
SwitchoffACCConnectionPooling, which turns off connection pooling in the Application
Client Container, do not affect each other.

An exception is thrown if associate-with-thread is set to true and pooling is disabled. An
exception is thrown if you attempt to flush a connection pool when pooling is disabled. A
warning is logged if the following attributes are used, because they are useful only in a pooled
environment:

■ connection-validation

■ validate-atmost-once-period

■ match-connections

■ max-connection-usage

■ idle-timeout

Associating Connections with Threads
To associate connections with a thread, set the Associate With Thread attribute to true. The
default is false. A true setting allows connections to be saved as ThreadLocal in the calling
thread. Connections get reclaimed only when the calling thread dies or when the calling thread
is not in use and the pool has run out of connections. If the setting is false, the thread must
obtain a connection from the pool each time the thread requires a connection.

The Associate With Thread attribute associates connections with a thread such that when the
same thread is in need of connections, it can reuse the connections already associated with that
thread. In this case, the overhead of getting connections from the pool is avoided. However,
when this value is set to true, you should verify that the value of the Max Pool Size attribute is
comparable to the Max Thread Pool Size attribute of the thread pool. If the Max Thread Pool
Size value is much higher than the Max Pool Size value, a lot of time is spent associating
connections with a new thread after dissociating them from an older one. Use this attribute in
cases where the thread pool should reuse connections to avoid this overhead.

You can set the Associate With Thread attribute in the following ways:

■ Enter an Associate With Thread value in the Edit Connection Pool Advanced Attributes
page in the Administration Console. For more information, click the Help button in the
Administration Console.

■ Specify the --associatewiththread option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

Connections

Chapter 14 • Using the JDBC API for Database Access 257

■ Specify the associate-with-thread option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.associate-with-thread=true

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

Custom Connection Validation
You can specify a custom implementation for Connection Validation that is faster or optimized
for a specific database. Set the Validation Method attribute to the value custom-validation.
(Other validation methods available are table (the default), auto-commit, and meta-data.)
The GlassFish Server provides a public interface, org.glassfish.api.jdbc.ConnectionValidation,
which you can implement to plug in your implementation. A new attribute, Validation
Classname, specifies the fully qualified name of the class that implements the
ConnectionValidation interface. The Validation Classname attribute is required if Connection
Validation is enabled and Validation Method is set to Custom Validation.

To enable this feature, set Connection Validation, Validation Method, and Validation
Classname for the JDBC connection pool in one of the following ways:

■ Enter Connection Validation, Validation Method, and Validation Classname values in the
Edit Connection Pool Advanced Attributes page in the Administration Console. You can
select from among validation class names for common databases in the Validation
Classname field. For more information, click the Help button in the Administration
Console.

■ Specify the --isconnectionvalidatereq, --validationmethod, and
--validationclassname options in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

■ Specify the is-connection-validation-required, connection-validation-method, and
validation-classname options in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.MyPool.is-connection-validation-required=true

asadmin set domain1.resources.jdbc-connection-pool.MyPool.connection-validation-method=custom-validation

asadmin set domain1.resources.jdbc-connection-pool.MyPool.validation-classname=impl-class

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

By default, optimized validation mechanisms are provided for DB2, Java DB, MSSQL, MySQL,
Oracle, PostgreSQL and Sybase databases. Additionally, for JDBC 4.0 compliant database
drivers, a validation mechanism is provided that uses the Connection.isValid(0)
implementation.

Connections

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011258

Sharing Connections
When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by
the Java EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLs, see Chapter 11, “Administering
Database Connectivity,” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Marking Bad Connections
The DataSource implementation in the GlassFish Server provides a markConnectionAsBad
method. A marked bad connection is removed from its connection pool when it is closed. The
method signature is as follows:

public void markConnectionAsBad(java.sql.Connection con)

For example:

com.sun.appserv.jdbc.DataSource ds=

(com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();

Statement stmt = null;

try{

stmt = con.createStatement();

stmt.executeUpdate("Update");
}

catch (BadConnectionException e){

ds.markConnectionAsBad(con) //marking it as bad for removal

}

finally{

stmt.close();

con.close(); //Connection will be destroyed during close.

}

Handling Invalid Connections
If a ConnectionErrorOccured event occurs, the GlassFish Server considers the connection
invalid and removes the connection from the connection pool. Typically, a JDBC driver

Connections

Chapter 14 • Using the JDBC API for Database Access 259

generates a ConnectionErrorOccured event when it finds a ManagedConnection object
unusable. Reasons can be database failure, network failure with the database, fatal problems
with the connection pool, and so on.

If the fail-all-connections setting in the connection pool configuration is set to true, and a
single connection fails, all connections are closed and recreated. If this setting is false,
individual connections are recreated only when they are used. The default is false.

The is-connection-validation-required setting specifies whether connections have to be
validated before being given to the application. If a resource’s validation fails, it is destroyed,
and a new resource is created and returned. The default is false.

The prefer-validate-over-recreate property specifies that validating idle connections is
preferable to closing them. This property has no effect on non-idle connections. If set to true,
idle connections are validated during pool resizing, and only those found to be invalid are
destroyed and recreated. If false, all idle connections are destroyed and recreated during pool
resizing. The default is false.

You can set the fail-all-connections, is-connection-validation-required, and
prefer-validate-over-recreate configuration settings during creation of a JDBC
connection pool. Or, you can use the asadmin set command to dynamically reconfigure a
setting. For example:

asadmin set server.resources.jdbc-connection-pool.JCPool1.fail-all-connections="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.is-connection-validation-required="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.property.prefer-validate-over-recreate="true"

For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The GlassFish Server
checks if the JDBC driver implements this interface, and if it does, invalid connections are
removed when the connection pool is resized.

Connection Wrapping
The following topics are addressed here:

■ “Wrapping Connections” on page 260
■ “Obtaining a Physical Connection From a Wrapped Connection” on page 261
■ “Using the Connection.unwrap() Method” on page 261

Wrapping Connections
If the Wrap JDBC Objects option is true (the default), wrapped JDBC objects are returned for
Statement, PreparedStatement, CallableStatement, ResultSet, and DatabaseMetaData.

Connection Wrapping

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011260

This option ensures that Statement.getConnection() is the same as
DataSource.getConnection(). Therefore, this option should be true when both
Statement.getConnection() and DataSource.getConnection() are done.

You can specify the Wrap JDBC Objects option in the following ways:

■ Check or uncheck the Wrap JDBC Objects box on the Edit Connection Pool Advanced
Attributes page in the Administration Console. For more information, click the Help button
in the Administration Console.

■ Specify the --wrapjdbcobjects option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

Obtaining a Physical Connection From a Wrapped
Connection
The DataSource implementation in the GlassFish Server provides a getConnection method
that retrieves the JDBC driver’s SQLConnection from the GlassFish Server’s Connection
wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)

throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con); //get physical connection from wrapper

// Do db operations.

// Do not close driver connection.

con.close(); // return wrapped connection to pool.

Using the Connection.unwrap()Method
If the JDK version 1.6 is used, the GlassFish Server supports JDBC 4.0 if the JDBC driver is
JDBC 4.0 compliant. Using the Connection.unwrap() method on a vendor-provided interface
returns an object or a wrapper object implementing the vendor-provided interface, which the
application can make use of to do vendor-specific database operations. Use the
Connection.isWrapperFor() method on a vendor-provided interface to check whether the
connection can provide an implementation of the vendor-provided interface. Check the JDBC
driver vendor's documentation for information on these interfaces.

Connection Wrapping

Chapter 14 • Using the JDBC API for Database Access 261

Allowing Non-Component Callers
You can allow non-Java-EE components, such as servlet filters, lifecycle modules, and third
party persistence managers, to use this JDBC connection pool. The returned connection is
automatically enlisted with the transaction context obtained from the transaction manager.
Standard Java EE components can also use such pools. Connections obtained by
non-component callers are not automatically closed at the end of a transaction by the container.
They must be explicitly closed by the caller.

You can enable non-component callers in the following ways:

■ Check the Allow Non Component Callers box on the Edit Connection Pool Advanced
Attributes page in the Administration Console. The default is false. For more information,
click the Help button in the Administration Console.

■ Specify the --allownoncomponentcallers option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

■ Specify the allow-non-component-callers option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.allow-non-component-callers=true

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

■ Create a JDBC resource with a __pm suffix.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires
setting Allow Non Component Callers to true. For more information about the Transaction
Synchronization Registry, see “The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction” on page 271.

Using Application-Scoped Resources
You can define an application-scoped database or other resource for an enterprise application,
web module, EJB module, connector module, or application client module by supplying a
glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped
Resources” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Allowing Non-Component Callers

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011262

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the JDBC
API.

Disabling Stored Procedure Creation on Sybase
By default, DataDirect and Oracle JDBC drivers for Sybase databases create a stored procedure
for each parameterized PreparedStatement. On the GlassFish Server, exceptions are thrown
when primary key identity generation is attempted. To disable the creation of these stored
procedures, set the property PrepareMethod=direct for the JDBC connection pool.

Restrictions and Optimizations

Chapter 14 • Using the JDBC API for Database Access 263

264

Using the Transaction Service

The Java EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses Java EE transactions and
transaction support in the Oracle GlassFish Server.

The following topics are addressed here:

■ “Handling Transactions with Databases” on page 265
■ “Handling Transactions with Enterprise Beans” on page 268
■ “Handling Transactions with the Java Message Service” on page 270
■ “The Transaction Manager, the Transaction Synchronization Registry, and

UserTransaction” on page 271

For more information about the Java Transaction API (JTA) and Java Transaction Service
(JTS), see Chapter 18, “Administering Transactions,” in GlassFish Server Open Source
Edition 3.1 Administration Guide and the following sites: http://www.oracle.com/
technetwork/java/javaee/jta/index.html and http://www.oracle.com/technetwork/

java/javaee/tech/index.html.

You might also want to read Chapter 43, “Transactions,” in The Java EE 6 Tutorial.

Handling Transactions with Databases
The following topics are addressed here:

■ “Using JDBC Transaction Isolation Levels” on page 266
■ “Using Non-Transactional Connections” on page 267

15C H A P T E R 1 5

265

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Using JDBC Transaction Isolation Levels
Not all database vendors support all transaction isolation levels available in the JDBC API. The
GlassFish Server permits specifying any isolation level your database supports. The following
table defines transaction isolation levels.

TABLE 15–1 Transaction Isolation Levels

Transaction Isolation Level getTransactionIsolation Return Value Description

read-uncommitted 1 Dirty reads, non-repeatable reads, and phantom reads can
occur.

read-committed 2 Dirty reads are prevented; non-repeatable reads and
phantom reads can occur.

repeatable-read 4 Dirty reads and non-repeatable reads are prevented;
phantom reads can occur.

serializable 8 Dirty reads, non-repeatable reads and phantom reads are
prevented.

By default, the transaction isolation level is undefined (empty), and the JDBC driver's default
isolation level is used. You can specify the transaction isolation level in the following ways:

■ Select the value from the Transaction Isolation drop-down list on the New JDBC
Connection Pool or Edit Connection Pool page in the Administration Console. For more
information, click the Help button in the Administration Console.

■ Specify the --isolationlevel option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1
Reference Manual.

■ Specify the transaction-isolation-level option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.transaction-isolation-level=serializable

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

Note that you cannot call setTransactionIsolation during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see
“To Create a JDBC Connection Pool” in GlassFish Server Open Source Edition 3.1
Administration Guide.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel method in
java.sql.DatabaseMetaData, as shown in the following example:

Handling Transactions with Databases

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011266

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

DatabaseMetaData dbmd = con.getMetaData();

if (dbmd.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC API
specification.

Setting or resetting the transaction isolation level for every getConnection call can degrade
performance. So by default the isolation level is not guaranteed.

Applications that change the transaction isolation level on a pooled connection
programmatically risk polluting the JDBC connection pool, which can lead to errors. If an
application changes the isolation level, enabling the is-isolation-level-guaranteed setting
in the pool can minimize such errors.

You can guarantee the transaction isolation level in the following ways:
■ Check the Isolation Level Guaranteed box on the New JDBC Connection Pool or Edit

Connection Pool page in the Administration Console. For more information, click the Help
button in the Administration Console.

■ Specify the --isisolationguaranteed option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

■ Specify the is-isolation-level-guaranteed option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.is-isolation-level-guaranteed=true

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

Using Non-Transactional Connections
You can specify a non-transactional database connection in any of these ways:
■ Check the Non-Transactional Connections box on the New JDBC Connection Pool or Edit

Connection Pool page in the Administration Console. The default is unchecked. For more
information, click the Help button in the Administration Console.

■ Specify the ----nontransactionalconnections option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1-3.1.1 Reference Manual.

■ Specify the non-transactional-connections option in the asadmin set command. For
example:

Handling Transactions with Databases

Chapter 15 • Using the Transaction Service 267

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.non-transactional-connections=true

For more information, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference
Manual.

■ Use the DataSource implementation in the GlassFish Server, which provides a
getNonTxConnection method. This method retrieves a JDBC connection that is not in the
scope of any transaction. There are two variants.

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)

throws java.sql.SQLException

■ Create a resource with the JNDI name ending in __nontx. This forces all connections looked
up using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Handling Transactions with Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans programming
model for the GlassFish Server.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors.

The following topics are addressed here:

■ “Flat Transactions” on page 269
■ “Global and Local Transactions” on page 269
■ “Commit Options” on page 269
■ “Bean-Level Container-Managed Transaction Timeouts” on page 270

Handling Transactions with Enterprise Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011268

Flat Transactions
The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions
Both local and global transactions are demarcated using the javax.transaction.UserTransaction
interface, which the client must use. Local transactions bypass the XA commit protocol and are
faster. For more information, see “The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction” on page 271.

Commit Options
The EJB protocol is designed to give the container the flexibility to select the disposition of the
instance state at the time a transaction is committed. This allows the container to best manage
caching an entity object’s state and associating an entity object identity with the EJB instances.

There are three commit-time options:

■ Option A – The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent storage.
In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

Note – Commit option A is not supported for this GlassFish Server release.

■ Option B – The container caches a ready instance between transactions, but the container
does not ensure that the instance has exclusive access to the state of the object in persistent
storage. This is the default.
In this case, the container must synchronize the instance’s state by invoking ejbLoad from
persistent storage at the beginning of the next transaction.

■ Option C – The container does not cache a ready instance between transactions, but instead
returns the instance to the pool of available instances after a transaction has completed.
The life cycle for every business method invocation under commit option C looks like this.

Handling Transactions with Enterprise Beans

Chapter 15 • Using the Transaction Service 269

ejbActivate ejbLoad business method ejbStore ejbPassivate

If there is more than one transactional client concurrently accessing the same entity, the first
client gets the ready instance and subsequent concurrent clients get new instances from the
pool.

The glassfish-ejb-jar.xml deployment descriptor has an element, commit-option, that
specifies the commit option to be used. Based on the specified commit option, the appropriate
handler is instantiated.

Bean-Level Container-Managed Transaction Timeouts
The transaction timeout for the domain is specified using the Transaction Timeout setting of
the Transaction Service. A transaction started by the container must commit (or rollback)
within this time, regardless of whether the transaction is suspended (and resumed), or the
transaction is marked for rollback. The default value, 0, specifies that the server waits
indefinitely for a transaction to complete.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds
element in glassfish-ejb-jar.xml. The default value, 0, specifies that the Transaction Service
timeout is used. The value of cmt-timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

Handling Transactions with the Java Message Service
The following topics are addressed here:
■ “Transactions and Non-Persistent Messages” on page 270
■ “Using the ConfigurableTransactionSupport Interface” on page 270

Transactions and Non-Persistent Messages
During transaction recovery, non-persistent messages might be lost. If the broker fails between
the transaction manager’s prepare and commit operations, any non-persistent message in the
transaction is lost and cannot be delivered. A message that is not saved to a persistent store is
not available for transaction recovery.

Using the ConfigurableTransactionSupport Interface
The Java EE Connector 1.6 specification allows a resource adapter to use the
transaction-support attribute to specify the level of transaction support that the resource

Handling Transactions with the Java Message Service

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011270

adapter handles. However, the resource adapter vendor does not have a mechanism to figure
out the current transactional context in which a ManagedConnectionFactory is used.

If a ManagedConnectionFactory implements an optional interface called com.sun.appserv.
connectors.spi.ConfigurableTransactionSupport, the GlassFish Server notifies the
ManagedConnectionFactory of the transaction-support configured for the connector
connection pool when the ManagedConnectionFactory instance is created for the pool.
Connections obtained from the pool can then be used with a transaction level at or lower than
the configured value. For example, a connection obtained from a pool that is set to
XA_TRANSACTION could be used as a LOCAL resource in a last-agent-optimized transaction or in
a non-transactional context.

The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction

To access a UserTransaction instance, you can either look it up using the java:comp/
UserTransaction JNDI name or inject it using the @Resource annotation.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires
setting Allow Non Component Callers to true. The default is false. For more information
about non-component callers, see “Allowing Non-Component Callers” on page 262.

If possible, you should use the javax.transaction.TransactionSynchronizationRegistry interface
instead of javax.transaction.TransactionManager, for portability. You can look up the
implementation of this interface by using the JNDI name java:comp/
TransactionSynchronizationRegistry. For details, see the Javadoc page for Interface
TransactionSynchronizationRegistry (http://download.oracle.com/
javaee/5/api/javax/transaction/TransactionSynchronizationRegistry.html) and Java
Specification Request (JSR) 907 (http://www.jcp.org/en/jsr/detail?id=907).

If accessing the javax.transaction.TransactionManager implementation is absolutely necessary,
you can look up the GlassFish Server implementation of this interface using the JNDI name
java:appserver/TransactionManager. This lookup should not be used by the application code.

The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

Chapter 15 • Using the Transaction Service 271

http://download.oracle.com/javaee/5/api/javax/transaction/TransactionSynchronizationRegistry.html
http://download.oracle.com/javaee/5/api/javax/transaction/TransactionSynchronizationRegistry.html
http://download.oracle.com/javaee/5/api/javax/transaction/TransactionSynchronizationRegistry.html
http://www.jcp.org/en/jsr/detail?id=907
http://www.jcp.org/en/jsr/detail?id=907

272

Using the Java Naming and Directory Interface

A naming service maintains a set of bindings, which relate names to objects. The Java EE
naming service is based on the Java Naming and Directory Interface (JNDI) API. The JNDI API
allows application components and clients to look up distributed resources, services, and EJB
components. For general information about the JNDI API, see http://www.oracle.com/
technetwork/java/jndi/index.html. You can also see the JNDI tutorial at
http://download.oracle.com/javase/jndi/tutorial/.

The following topics are addressed here:

■ “Accessing the Naming Context” on page 273
■ “Configuring Resources” on page 276
■ “Using a Custom jndi.properties File” on page 280
■ “Mapping References” on page 280

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Accessing the Naming Context
The Oracle GlassFish Server provides a naming environment, or context, which is compliant
with standard Java EE requirements. A Context object provides the methods for binding names
to objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the Java EE naming service that application components and
clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization

16C H A P T E R 1 6

273

http://www.oracle.com/technetwork/java/jndi/index.html
http://www.oracle.com/technetwork/java/jndi/index.html
http://download.oracle.com/javase/jndi/tutorial/
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

The following topics are addressed here:
■ “Global JNDI Names” on page 274
■ “Accessing EJB Components Using the CosNaming Naming Context” on page 275
■ “Accessing EJB Components in a Remote GlassFish Server” on page 275
■ “Naming Environment for Lifecycle Modules” on page 276

Note – Each resource within a server instance must have a unique name. However, two resources
in different server instances or different domains can have the same name.

Global JNDI Names
Global JNDI names are assigned according to the following precedence rules:

1. A global JNDI name assigned in the glassfish-ejb-jar.xml, glassfish-web.xml, or
glassfish-application-client.xml deployment descriptor file has the highest
precedence. See “Mapping References” on page 280.

2. A global JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml, or
application-client.xml deployment descriptor file has the second highest precedence.
The following elements have mapped-name subelements: resource-ref,
resource-env-ref, ejb-ref, message-destination, message-destination-ref,
session, message-driven, and entity.

3. A global JNDI name assigned in a mappedName attribute of an annotation has the third
highest precedence. The following annotations have mappedName attributes:
@javax.annotation.Resource, @javax.ejb.EJB, @javax.ejb.Stateless,
@javax.ejb.Singleton, @javax.ejb.Stateful, and @javax.ejb.MessageDriven.

4. A default global JNDI name is assigned in some cases if no name is assigned in deployment
descriptors or annotations.
■ For an EJB 2.x dependency or a session or entity bean with a remote interface, the default

is the fully qualified name of the home interface.
■ For an EJB 3.0 dependency or a session bean with a remote interface, the default is the

fully qualified name of the remote business interface.
■ If both EJB 2.x and EJB 3.0 remote interfaces are specified, or if more than one 3.0

remote interface is specified, there is no default, and the global JNDI name must be
specified.

■ For all other component dependencies that must be mapped to global JNDI names, the
default is the name of the dependency relative to java:comp/env. For example, in the
@Resource(name="jdbc/Foo") DataSource ds; annotation, the global JNDI name is
jdbc/Foo.

Accessing the Naming Context

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011274

Accessing EJB Components Using the CosNaming
Naming Context
The preferred way of accessing the naming service, even in code that runs outside of a Java EE
container, is to use the no-argument InitialContext constructor. However, if EJB client code
explicitly instantiates an InitialContext that points to the CosNaming naming service, it is
necessary to set the java.naming.factory.initial property to
com.sun.jndi.cosnaming.CNCtxFactory in the client JVM software when accessing EJB
components. You can set this property as a command-line argument, as follows:

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

Or you can set this property in the code, as follows:

Properties properties = null;

try {

properties = new Properties();

properties.put("java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

...

The java.naming.factory.initial property applies to only one instance. The property is not
cluster-aware.

Accessing EJB Components in a Remote GlassFish
Server
The recommended approach for looking up an EJB component in a remote GlassFish Server
from a client that is a servlet or EJB component is to use the Interoperable Naming Service
syntax. Host and port information is prepended to any global JNDI names and is automatically
resolved during the lookup. The syntax for an interoperable global name is as follows:

corbaname:iiop:host:port#a/b/name

This makes the programming model for accessing EJB components in another GlassFish Server
exactly the same as accessing them in the same server. The deployer can change the way the EJB
components are physically distributed without having to change the code.

For Java EE components, the code still performs a java:comp/env lookup on an EJB reference.
The only difference is that the deployer maps the ejb-reference element to an interoperable
name in a GlassFish Server deployment descriptor file instead of to a simple global JNDI name.

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo, and
the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in glassfish-web.xml looks like this:

Accessing the Naming Context

Chapter 16 • Using the Java Naming and Directory Interface 275

<ejb-ref>

<ejb-ref-name>ejb/Foo</ejb-ref-name>

<jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
<ejb-ref>

The code looks like this:

Context ic = new InitialContext();

Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a Java EE container, the code just uses the interoperable
global name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();

Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-specific (java:comp/env)
naming contexts are transient. On each server startup or application reloading, all relevant
objects are re-bound to the namespace.

Naming Environment for Lifecycle Modules
Lifecycle listener modules provide a means of running short or long duration tasks based on
Java technology within the GlassFish Server environment, such as instantiation of singletons or
RMI servers. These modules are automatically initiated at server startup and are notified at
various phases of the server life cycle. For details about lifecycle modules, see Chapter 12,
“Developing Lifecycle Listeners.”

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial JNDI naming context is not available until server
initialization is complete. A lifecycle module can get the InitialContext for lookups using the
method LifecycleEventContext.getInitialContext() during, and only during, the
STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Configuring Resources
The GlassFish Server exposes special resources in the naming environment.

■ “External JNDI Resources” on page 277
■ “Custom Resources” on page 277
■ “Built-in Factories for Custom Resources” on page 277
■ “Disabling GlassFish Server V2 Vendor-Specific JNDI Names” on page 279
■ “Using Application-Scoped Resources” on page 280

Configuring Resources

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011276

External JNDI Resources
An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI parent context for
external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:
■ To create an external JNDI resource using the Administration Console, open the Resources

component, open the JNDI component, and select External Resources. For details, click the
Help button in the Administration Console.

■ To create an external JNDI resource, use the asadmin create-jndi-resource command.
For details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Custom Resources
A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent context for external
JNDI resources, except for the standard java:comp/env/.

Create a custom resource in one of these ways:
■ To create a custom resource using the Administration Console, open the Resources

component, open the JNDI component, and select Custom Resources. For details, click the
Help button in the Administration Console.

■ To create a custom resource, use the asadmin create-custom-resource command. For
details, see the GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Built-in Factories for Custom Resources
The GlassFish Server provides built-in factories for the following types of custom resources:
■ “JavaBeanFactory” on page 277
■ “PropertiesFactory” on page 278
■ “PrimitivesAndStringFactory” on page 278
■ “URLFactory” on page 279

Template glassfish-resources.xml files for these built-in factories and a README file are
available at as-install/lib/install/templates/resources/custom/. For more information
about the glassfish-resources.xml file, see the GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

JavaBeanFactory
To create a custom resource that provides instances of a JavaBean class, follow these steps:

Configuring Resources

Chapter 16 • Using the Java Naming and Directory Interface 277

1. Set the custom resource's factory class to
org.glassfish.resources.custom.factory.JavaBeanFactory.

2. Create a property in the custom resource for each setter method in the JavaBean class.
For example, if the JavaBean class has a method named setAccount, specify a property
named account and give it a value.

3. Make sure the JavaBean class is accessible to the GlassFish Server.
For example, you can place the JavaBean class in the as-install/lib directory.

PropertiesFactory
To create a custom resource that provides properties to applications, set the custom resource's
factory class to org.glassfish.resources.custom.factory.PropertiesFactory, then
specify one or both of the following:

■ Create a property in the custom resource named org.glassfish.resources.

custom.factory.PropertiesFactory.fileName and specify as its value the path to a
properties file or an XML file.
The path can be absolute or relative to as-install. The file must be accessible to the GlassFish
Server.
If an XML file is specified, it must match the document type definition (DTD) specified in
the API definition of java.util.Properties (http://download.oracle.com/javase/6/docs/
api/java/util/Properties.html).

■ Create the desired properties directly as properties of the custom resource.
If both the fileName property and other properties are specified, the resulting property set is
the union. If the same property is defined in the file and directly in the custom resource, the
value of the latter takes precedence.

PrimitivesAndStringFactory
To create a custom resource that provides Java primitives to applications, follow these steps:

1. Set the custom resource's factory class to
org.glassfish.resources.custom.factory.PrimitivesAndStringFactory.

2. Set the custom resource's resource type to one of the following or its fully qualified wrapper
class name equivalent:
■ int

■ long

■ double

■ float

■ char

■ short

■ byte

Configuring Resources

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011278

http://download.oracle.com/javase/6/docs/api/java/util/Properties.html
http://download.oracle.com/javase/6/docs/api/java/util/Properties.html

■ boolean

■ String

3. Create a property in the custom resource named value and give it the value needed by the
application.
For example, If the application requires a double of value 22.1, create a property with the
name value and the value 22.1.

URLFactory
To create a custom resource that provides URL instances to applications, follow these steps:

1. Set the custom resource's factory class to
org.glassfish.resources.custom.factory.URLObjectFactory.

2. Choose which of the following constructors to use:
■ URL(protocol, host, port, file)

■ URL(protocol, host, file)

■ URL(spec)

3. Define properties according to the chosen constructor.
For example, for the first constructor, define properties named protocol, host, port, and
file. Example values might be http, localhost, 8085, and index.html, respectively.
For the third constructor, define a property named spec and assign it the value of the entire
URL.

Disabling GlassFish Server V2 Vendor-Specific JNDI
Names
The EJB 3.1 specification supported by GlassFish Server 3.1 defines portable EJB JNDI names.
Because of this, there is less need to continue to use older vendor-specific JNDI names.

By default, GlassFish Server V2–specific JNDI names are applied automatically by GlassFish
Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For
example, deploying two different applications containing a remote EJB component that exposes
the same remote interface causes a conflict between the default JNDI names.

The default handling of V2–specific JNDI names in GlassFish Server 3.1 can be managed by
using the asadmin command:

asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

disable-nonportable-jndi-names is a boolean property that can take the following values:

false

Enables the automatic use of GlassFish Server V2–specific JNDI names. This is the default
setting.

Configuring Resources

Chapter 16 • Using the Java Naming and Directory Interface 279

true

Disables the automatic use of V2–specific JNDI names. In all cases, 3.1-compatible JNDI
names are used.

Note that this setting applies to all EJB components deployed to the server.

Using Application-Scoped Resources
You can define an application-scoped JNDI or other resource for an enterprise application, web
module, EJB module, connector module, or application client module by supplying a
glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped
Resources” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Using a Custom jndi.properties File
To use a custom jndi.properties file, place the file in the domain-dir/lib/classes directory
or JAR it and place it in the domain-dir/lib directory. This adds the custom jndi.properties

file to the Common class loader. For more information about class loading, see Chapter 2,
“Class Loaders.”

For each property found in more than one jndi.properties file, the Java EE naming service
either uses the first value found or concatenates all of the values, whichever makes sense.

Mapping References
The following XML elements in the GlassFish Server deployment descriptors map resource
references in application client, EJB, and web application components to JNDI names
configured in the GlassFish Server:

■ resource-env-ref - Maps the @Resource or @Resources annotation (or the
resource-env-ref element in the corresponding Java EE XML file) to the absolute JNDI
name configured in the GlassFish Server.

■ resource-ref - Maps the @Resource or @Resources annotation (or the resource-ref
element in the corresponding Java EE XML file) to the absolute JNDI name configured in
the GlassFish Server.

■ ejb-ref - Maps the @EJB annotation (or the ejb-ref element in the corresponding Java EE
XML file) to the absolute JNDI name configured in the GlassFish Server.
JNDI names for EJB components must be unique. For example, appending the application
name and the module name to the EJB name is one way to guarantee unique names. In this
case, mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the
module pkgingEJB.jar, which is packaged in the pkging.ear application.

Using a Custom jndi.properties File

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011280

These elements are part of the glassfish-web.xml, glassfish-application-client.xml,
glassfish-ejb-jar.xml, and glassfish-application.xml deployment descriptor files. For
more information about how these elements behave in each of the deployment descriptor files,
see Appendix C, “Elements of the GlassFish Server Deployment Descriptors,” in GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories. The same principle is applicable to all resources (such as JMS destinations,
JavaMail sessions, and so on).

The @Resource annotation in the application code looks like this:

@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;

This references a resource with the JNDI name of java:jdbc/helloDbDs. If this is the JNDI
name of the JDBC resource configured in the GlassFish Server, the annotation alone is enough
to reference the resource.

However, you can use a GlassFish Server specific deployment descriptor to override the
annotation. For example, the resource-ref element in the glassfish-web.xml file maps the
res-ref-name (the name specified in the annotation) to the JNDI name of another JDBC
resource configured in the GlassFish Server.

<resource-ref>

<res-ref-name>jdbc/helloDbDs</res-ref-name>

<jndi-name>jdbc/helloDbDataSource</jndi-name>

</resource-ref>

Mapping References

Chapter 16 • Using the Java Naming and Directory Interface 281

282

Using the Java Message Service

This chapter describes how to use the Java Message Service (JMS) API. The Oracle GlassFish
Server has a fully integrated JMS provider: the Open Message Queue software.

Note – JMS resources are supported only in the full GlassFish Server, not in the Web Profile.

For general information about the JMS API, see “Chapter 31: The Java Message Service API” in
the The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/).

For detailed information about JMS concepts and JMS support in the GlassFish Server, see
Chapter 16, “Administering the Java Message Service (JMS),” in GlassFish Server Open Source
Edition 3.1 Administration Guide.

For more information about Message Queue software, see the Open Message Queue 4.5
Administration Guide.

The following topics are addressed here:

■ “Using Application-Scoped JMS Resources” on page 283
■ “Load-Balanced Message Inflow” on page 284
■ “Authentication With ConnectionFactory” on page 284
■ “Delivering SOAP Messages Using the JMS API” on page 285

Using Application-Scoped JMS Resources
You can define an application-scoped JMS or other resource for an enterprise application, web
module, EJB module, connector module, or application client module by supplying a
glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped
Resources” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

17C H A P T E R 1 7

283

http://download.oracle.com/javaee/6/tutorial/doc/

Load-Balanced Message Inflow
You can configure ActivationSpec properties of the jmsra resource adapter in the
glassfish-ejb-jar.xml file for a message-driven bean using activation-config-property
elements. Whenever a message-driven bean (EndPointFactory) is deployed, the connector
runtime engine finds these properties and configures them accordingly in the resource adapter.
See “activation-config-property” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide.

The GlassFish Server transparently enables messages to be delivered in random fashion to
message-driven beans having same ClientID. The ClientID is required for durable
subscribers.

For nondurable subscribers in which the ClientID is not configured, all instances of a specific
message-driven bean that subscribe to same topic are considered equal. When a
message-driven bean is deployed to multiple instances of the GlassFish Server, only one of the
message-driven beans receives the message. If multiple distinct message-driven beans subscribe
to same topic, one instance of each message-driven bean receives a copy of the message.

To support multiple consumers using the same queue, set the maxNumActiveConsumers
property of the physical destination to a large value. If this property is set, the Oracle Message
Queue software allows multiple message-driven beans to consume messages from same queue.
The message is delivered randomly to the message-driven beans. If maxNumActiveConsumers is
set to -1, there is no limit to the number of consumers.

To ensure that local delivery is preferred, set addresslist-behavior to priority. This setting
specifies that the first broker in the AddressList is selected first. This first broker is the local
colocated Message Queue instance. If this broker is unavailable, connection attempts are made
to brokers in the order in which they are listed in the AddressList. This setting is the default for
GlassFish Server instances that belong to a cluster.

Authentication With ConnectionFactory

If your web, EJB, or client module has res-auth set to Container, but you use the
ConnectionFactory.createConnection("user","password") method to get a connection, the
GlassFish Server searches the container for authentication information before using the
supplied user and password. Version 7 of the GlassFish Server threw an exception in this
situation.

Load-Balanced Message Inflow

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011284

Delivering SOAP Messages Using the JMS API
Web service clients use the Simple Object Access Protocol (SOAP) to communicate with web
services. SOAP uses a combination of XML-based data structuring and Hyper Text Transfer
Protocol (HTTP) to define a standardized way of invoking methods in objects distributed in
diverse operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site at http://xml.apache.org/
soap/index.html.

You can take advantage of the JMS provider’s reliable messaging when delivering SOAP
messages. You can convert a SOAP message into a JMS message, send the JMS message, then
convert the JMS message back into a SOAP message.

The following topics are addressed here:
■ “To Send SOAP Messages Using the JMS API” on page 285
■ “To Receive SOAP Messages Using the JMS API” on page 286

▼ To Send SOAP Messages Using the JMS API
Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. You can then send a JMS message containing a SOAP payload as if it were a normal
JMS message.

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and publisher.
tcf = new TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

publisher = session.createPublisher(topic);

Construct a SOAP message using the SOAP with Attachments API for Java (SAAJ).
/*construct a default soap MessageFactory */

MessageFactory mf = MessageFactory.newInstance();

* Create a SOAP message object.*/

SOAPMessage soapMessage = mf.createMessage();

/** Get SOAP part.*/

SOAPPart soapPart = soapMessage.getSOAPPart();

/* Get SOAP envelope. */

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

/* Get SOAP body.*/

SOAPBody soapBody = soapEnvelope.getBody();

/* Create a name object. with name space */

/* http://www.sun.com/imq. */

1

2

3

Delivering SOAP Messages Using the JMS API

Chapter 17 • Using the Java Message Service 285

http://xml.apache.org/soap/index.html
http://xml.apache.org/soap/index.html

Name name = soapEnvelope.createName("HelloWorld", "hw",
"http://www.sun.com/imq");
* Add child element with the above name. */

SOAPElement element = soapBody.addChildElement(name)

/* Add another child element.*/

element.addTextNode("Welcome to GlassFish Web Services.");

/* Create an atachment with activation API.*/

URL url = new URL ("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler (url);

AttachmentPart ap = soapMessage.createAttachmentPart(dh);

/*set content type/ID. */

ap.setContentType("text/html");
ap.setContentId("cid-001");
/** add the attachment to the SOAP message.*/

soapMessage.addAttachmentPart(ap);

soapMessage.saveChanges();

Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage() method.
Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage,

session);

Publish the JMS message.
publisher.publish(m);

Close the JMS connection.
tc.close();

▼ To Receive SOAP Messages Using the JMS API
Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. The JMS message containing the SOAP payload is received as if it were a normal JMS
message.

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, TopicSubscriber,
and Topic.
messageFactory = MessageFactory.newInstance();

tcf = new com.sun.messaging.TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

tc.start();

4

5

6

1

2

Delivering SOAP Messages Using the JMS API

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011286

Use the OnMessagemethod to receive the message. Use the SOAPMessageFromJMSMessage
method to convert the JMS message to a SOAP message.
public void onMessage (Message message) {

SOAPMessage soapMessage =

MessageTransformer.SOAPMessageFromJMSMessage(message,

messageFactory); }

Retrieve the content of the SOAP message.

3

4

Delivering SOAP Messages Using the JMS API

Chapter 17 • Using the Java Message Service 287

288

Using the JavaMail API

This chapter describes how to use the JavaMail API, which provides a set of abstract classes
defining objects that comprise a mail system.

The following topics are addressed here:

■ “Introducing JavaMail” on page 289
■ “Creating a JavaMail Session” on page 290
■ “JavaMail Session Properties” on page 290
■ “Looking Up a JavaMail Session” on page 290
■ “Sending and Reading Messages Using JavaMail” on page 291
■ “Using Application-Scoped JavaMail Resources” on page 292

Note – JavaMail resources are supported only in the full OracleGlassFish Server, not in the Web
Profile.

Introducing JavaMail
The JavaMail API defines classes such as Message, Store, and Transport. The API can be
extended and can be subclassed to provide new protocols and to add functionality when
necessary. In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet mail
protocols and conform to the RFC822 and RFC2045 specifications. The JavaMail API includes
support for the IMAP4, POP3, and SMTP protocols.

The JavaMail architectural components are as follows:

■ The abstract layer declares classes, interfaces, and abstract methods intended to support
mail handling functions that all mail systems support.

■ The internet implementation layer implements part of the abstract layer using the RFC822
and MIME internet standards.

18C H A P T E R 1 8

289

■ JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message data and to
handle commands intended to interact with that data.

For more information, see Chapter 15, “Administering the JavaMail Service,” in GlassFish Server
Open Source Edition 3.1 Administration Guide and the JavaMail specification at
http://www.oracle.com/technetwork/java/javamail/index.html. A useful JavaMail
tutorial is located at http://java.sun.com/developer/onlineTraining/JavaMail/.

Creating a JavaMail Session
You can create a JavaMail session in the following ways:

■ In the Administration Console, open the Resources component and select JavaMail
Sessions. For details, click the Help button in the Administration Console.

■ Use the asadmin create-javamail-resource command. For details, see the GlassFish
Server Open Source Edition 3.1-3.1.1 Reference Manual.

JavaMail Session Properties
You can set properties for a JavaMail Session object. Every property name must start with a
mail- prefix. The GlassFish Server changes the dash (-) character to a period (.) in the name of
the property and saves the property to the MailConfiguration and JavaMail Session objects. If
the name of the property doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail.from in a JavaMail Session object, first
define the property as follows:

■ Name – mail-from

■ Value – john.doe@sun.com

Looking Up a JavaMail Session
The standard Java Naming and Directory Interface (JNDI) subcontext for JavaMail sessions is
java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace, or in one of
its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file system’s
directory structure, so it is easy to find and nest references. A JavaMail session is bound to a
logical JNDI name. The name identifies a subcontext, mail, of the root context, and a logical
name. To change the JavaMail session, you can change its entry in the JNDI namespace without
having to modify the application.

The resource lookup in the application code looks like this:

Creating a JavaMail Session

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011290

http://www.oracle.com/technetwork/java/javamail/index.html
http://java.sun.com/developer/onlineTraining/JavaMail/

InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information about the JNDI API, see Chapter 16, “Using the Java Naming and
Directory Interface.”

Sending and Reading Messages Using JavaMail
The following topics are addressed here:

■ “To Send a Message Using JavaMail” on page 291
■ “To Read a Message Using JavaMail” on page 292

▼ To Send a Message Using JavaMail
Import the packages that you need.
import java.util.*;

import javax.activation.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.naming.*;

Look up the JavaMail session.
InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 290.

Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();

props.put("mail.from", "user2@mailserver.com");

Create a MimeMessage.
The msgRecipient, msgSubject, and msgTxt variables in the following example contain input
from the user:
Message msg = new MimeMessage(session);

msg.setSubject(msgSubject);

msg.setSentDate(new Date());

msg.setFrom();

msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(msgRecipient, false));

msg.setText(msgTxt);

1

2

3

4

Sending and Reading Messages Using JavaMail

Chapter 18 • Using the JavaMail API 291

Send the message.
Transport.send(msg);

▼ To Read a Message Using JavaMail
Import the packages that you need.
import java.util.*;

import javax.activation.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.naming.*;

Look up the JavaMail session.
InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 290.

Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();

props.put("mail.from", "user2@mailserver.com");

Get a Store object from the Session, then connect to the mail server using the Store object’s
connectmethod.
You must supply a mail server name, a mail user name, and a password.
Store store = session.getStore();

store.connect("MailServer", "MailUser", "secret");

Get the INBOX folder.
Folder folder = store.getFolder("INBOX");

It is efficient to read the Message objects (which represent messages on the server) into an array.
Message[] messages = folder.getMessages();

Using Application-Scoped JavaMail Resources
You can define an application-scoped JavaMail or other resource for an enterprise application,
web module, EJB module, connector module, or application client module by supplying a
glassfish-resources.xml deployment descriptor file. For details, see “Application-Scoped
Resources” in GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

5

1

2

3

4

5

6

Using Application-Scoped JavaMail Resources

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011292

Index

Numbers and Symbols
@OrderBy and session cache sharing, 100

A
ACC, 197–199

naming, 198
security, 198, 214–215

ACC clients
appclient script, 213
failover, 201
invoking a JMS resource, 201–202
invoking an EJB component, 199–201
Java Web Start, 202–212
libraries, 217
load balancing, 201
making a remote call, 200
package-appclient script, 214
running, 202–212, 213
SSL, 198, 214–215

activation-config-property element, 284
ActivationSpec properties, 284
ActiveCache for GlassFish, 121
Admin Console, 27

App Client Modules page, 203
Audit Modules page, 57
CMP resource configuration, 184
Connector Connection Pools page

Flush button, 228
Ping button, 228
Ping field, 228

Admin Console, Connector Connection Pools page
(Continued)

Pooling field, 231
Connector Service page

Shutdown Timeout field, 230
connector thread pool assignment, 226
Debug Enabled field, 38
Edit Connection Pool Advanced Attributes page

Allow Non Component Callers field, 262
Associate With Thread field, 257
Connection Validation field, 258
Pooling field, 256
SQL Trace Listeners field, 254
Statement Cache Size field, 254
Statement Timeout field, 252
Validation Classname field, 258
Validation Method field, 258
Wrap JDBC Objects field, 261

Edit Connection Pool page
Init SQL field, 252
Isolation Level Guaranteed option, 267
Non-Transactional Connections field, 267
Transaction Isolation field, 266

Generate RMIStubs field, 205
HPROF configuration, 42
JACC Providers page, 56
JavaMail Sessions page, 290
JNDI page

Custom Resources page, 277
External Resources page, 277

JProbe configuration, 43
Libraries field, 32

293

Admin Console (Continued)
Locale field, 136
Logging tab, 41, 139
Message Security page, 82

creating providers, 64
enabling providers, 63

Monitor tab, 139
New JDBC Connection Pool page

Isolation Level Guaranteed option, 267
Non-Transactional Connections field, 267
Transaction Isolation field, 266

online help for, 27
Realms page, 52
Resource Adapter Configs, 227
role mapping configuration, 51
Security Manager Enabled field, 62
Security Maps tab, 226
Thread Pools page, 226
Web Services page

Test button, 87
allow-concurrent-access element, 166
AllowManagedFieldsInDefaultFetchGroup flag, 186
AllowMediatedWriteInDefaultFetchGroup flag, 187
alternate document roots, 140–142
annotation

application clients, 198
JNDI names, 274
message layer, 62
schema generation, 96
security, 49

appclient script, 213
Applib class loader, 30
Application Client Container, See ACC
application client JAR file, 199
application clients, annotation, 198
application-scoped

connectors, 231
resources, 262, 280, 283, 292

applications, examples, 28
AppservPasswordLoginModule class, 54
AppservRealm class, 54
Archive class loader, 30
asadmin command, 27

create-audit-module, 57

asadmin command (Continued)
create-auth-realm, 52
create-connector-connection-pool

--ping option, 228
--pooling option, 231

create-connector-security-map, 226
create-custom-resource, 277
create-domain, 206
create-javamail-resource, 290
create-jdbc-connection-pool

--allownoncomponentcallers option, 262
--associatewiththread option, 257
--initsql option, 252
--isconnectionvalidatereq option, 258
--isisolationguaranteed option, 267
--isolationlevel option, 266
--nontransactionalconnections option, 267
--pooling option, 256
--sqltracelisteners option, 254
--statementcachesize option, 254
--statementtimeout option, 253
--validationclassname option, 258
--validationmethod option, 258
--wrapjdbcobjects option, 261

create-jndi-resource, 277
create-jvm-options, 165, 187

java.security.debug option, 61
create-message-security-provider, 64, 83
create-resource-adapter-config, 226, 227
create-threadpool, 226
delete-jvm-options

java.security.manager option, 62
deploy

--availabilityenabled option, 161
--libraries option, 33
--precompilejsp option, 114
--retrieve option, 200, 205
schema generation, 97, 181

deploydir
--availabilityenabled option, 161
schema generation, 97, 181

flush-connection-pool, 228
generate-jvm-report, 39
get-client-stubs, 199, 200, 205

Index

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011294

asadmin command (Continued)
list-timers, 154
migrate-timers, 154
ping-connection-pool, 228
set

allow-non-component-callers option, 262
associate-with-thread option, 258
connection-validation-method option, 258
default message security provider, 63
default principal settings, 51
init-sql option, 252
is-connection-validation-required option, 258
is-isolation-level-guaranteed option, 267
java-web-start-enabled attribute, 203
non-transactional-connections option, 267
pooling option, 257
sql-trace-listeners option, 254
statement-cache-size option, 254
transaction-isolation-level option, 266
validation-classname option, 258

undeploy
schema generation, 97, 182

audit modules, 56–58
AuditModule class, 57–58
authentication

application clients, 198
audit modules, 57
JAAS, 53–56
JMS, 284
message-level, 70
programmatic login, 72
realms, 52
single sign-on, 74–76

authentication mechanisms for the Servlet
container, 76–83

authorization
audit modules, 57
JAAS, 53–56
JACC, 56
roles, 50–51

automatic schema generation
for CMP, 177–182
Java Persistence options, 96–97

availability
configuring HTTP session persistence, 120–121
feature summary, 26
for ACC clients, 201
for stateful session beans, 157–162
for web modules, 116–118
of message-driven beans, 284

B
Bayeux protocol, 133–135
BLOB support, 175–176
Bootstrap class loader, 30
build.xml file, 28

C
cache for servlets

default configuration, 107
example configuration, 108
helper class, 107, 109

cache sharing and @OrderBy, 100
cache tag, 112–113
CacheHelper interface, 109
cacheKeyGeneratorAttrName property, 109
caching

a bean's state using version consistency, 184
data using a non-transactional connection, 268
EJB components, 151
entities, 269
JSP files, 111–114
read-only beans, 164
servlet results, 106–109
stateful session beans, 157
using a read-only bean for, 150, 166, 186

capture-schema command, 183
Catalina listeners, defining custom, 140
certificate realm, 52
CGI, 145–147
checkpoint-at-end-of-method element, 161
checkpointing, 157

selecting methods for, 161
class-loader element, 31, 137

Index

295

class loaders, 29–36
application-specific, 32–34
circumventing isolation, 34–36
delegation hierarchy, 30–31
isolation, 32

client JAR file, 35, 199
client.policy file, 214
clients, non-ACC, 217–221
CLOB support, 176
CMP, See container-managed persistence
cmp-resource element, 184
cmt-max-runtime-exceptions property, 169
Coherence*Web, 121
Comet, 122–135
Cometd, 133–135
command-line server configuration, See asadmin

command
commit options, 269
Common class loader, 30

using to circumvent isolation, 34
common gateway interface, 145–147
compiling JSP files, 114
ConfigurableTransactionSupport interface, 270–271
connection factory, 167
Connector class loader, 30, 238
connectors, 223–234

and JDBC, 225
and JMS, 225
and message-driven beans, 232–234
application-scoped, 231
class loading policy, 230
configuration options, 225–231
configuring, 225
flushing connection pools, 228
inbound connectivity, 231–232
invalid connections, 229
last agent optimization, 230–231
Oracle GlassFish Server support, 224–225
outbound connectivity, 232
shutdown timeout, 229–230
testing connection pools, 228
thread associations, 226

container-managed persistence
configuring 1.1 finders, 187–188

container-managed persistence (Continued)
data types for mapping, 177–179
deployment descriptor, 173–174
mapping, 172–173
performance features, 184–186
prefetching, 185
resource manager, 184
restrictions, 191–196
support, 171–172
version consistency, 184–185

context, for JNDI naming, 273–276
context.xml file, 142–143
CosNaming naming service, 275
create-audit-module command, 57
create-auth-realm command, 52
create-connector-connection-pool command

--ping option, 228
--pooling option, 231

create-connector-security-map command, 226
create-custom-resource command, 277
create-domain command, 206
create-javamail-resource command, 290
create-jdbc-connection-pool command

--allownoncomponentcallers option, 262
--associatewiththread option, 257
--initsql option, 252
--isconnectionvalidatereq option, 258
--isisolationguaranteed option, 267
--isolationlevel option, 266
--nontransactionalconnections option, 267
--pooling option, 256
--sqltracelisteners option, 254
--statementcachesize option, 254
--statementtimeout option, 253
--validationclassname option, 258
--validationmethod option, 258
--wrapjdbcobjects option, 261

create-jndi-resource command, 277
create-jvm-options command, 165, 187

java.security.debug option, 61
create-message-security-provider command, 64, 83
create-resource-adapter-config command, 226, 227
create-threadpool command, 226
custom resource, 277

Index

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011296

custom resource (Continued)
factory for, 277–279

D
data types, for CMP mapping, 177–179
database properties, 94
databases

CMP resource manager, 184
properties, 94
schema capture, 183
specifying for Java Persistence, 92–93

debug property, 65
debugging, 37–44

application clients, 39–40
enabling, 37–38
generating a stack trace, 39
JPDA options, 38–39

DeclareRoles annotation, 50–51
default-web.xml file, 138
delegation, class loader, 31
delete-jvm-options command, java.security.manager

option, 62
deploy command

--availabilityenabled option, 161
--libraries option, 33
--precompilejsp option, 114
--retrieve option, 200, 205
schema generation, 97, 181

deploydir command
--availabilityenabled option, 161
schema generation, 97, 181

deployment
read-only beans, 166
signing JAR files, 206–207

deployment descriptor files, 281
destroy method, 109
development environment

creating, 25–28
tools for developers, 26–28

digest authentication, 52
directory listings, disabling, 138
distributable web application, 116
distributed HTTP sessions, 116–118

document roots, alternate, 140–142
doGet method, 110
doPost method, 110
dynamic.username.password property, 65

E
Eclipse IDE, 28
EclipseLink, 91
eclipselink.target-database property, 92
EJB, singletons, 163
EJB 3.0, Java Persistence, 91–103
EJB components

caching, 151–152
calling from a different application, 35
flushing, 152–153
pooling, 151–152, 156
remote bean invocations, 152
security, 50
thread pools, 152

EJB QL queries, 187–188
ejb-ref element, 280
ejb-ref mapping, using JNDI name instead, 35
EJB reference failover, 201
EJB Timer Service, 153–155
ejbPassivate, 164
encoding, of servlets, 136
encryption.key.alias property, 65
endorsed standards override mechanism, 32
events, server life cycle, 236
example applications, 28
Extension class loader, 30
external JNDI resource, 277

F
fail-all-connections setting, 229, 259–260
failover

for ACC clients, 201
object types supported for, 117–118, 158–159
of stateful session bean state, 157–162
of web module sessions, 116–118

fetch group, options for, 186–187

Index

297

file realm, 52
finder limitation for Sybase, 101–102, 193
finder methods, 187–188
flat transactions, 269
flush-connection-pool command, 228
flush tag, 113–114
flushing of EJB components, 152–153

G
generate-jvm-report command, 39
get-client-stubs command, 199, 200, 205
getCharacterEncoding method, 136
getCmdLineArgs method, 237
getConnection method, 261
getData method, 236
getEventType method, 236
getHeaders method, 140
getInitialContext method, 237, 276
getInstallRoot method, 237
getInstanceName method, 237
getLifecycleEventContext method, 237
gf-client.jar file, 205
glassfish-api.jar file, 235
glassfish-ejb-jar.xml file, 161
GlassFish Java EE Service Engine, 88–89
glassfish-web.xml file

and class loaders, 31, 137
Grizzly, Comet, 124–133

H
handling requests, 109
header management, 140
help for Admin Console tasks, 27
high availability, See availability
HPROF profiler, 42–43
HTTP sessions, 114–121

and redeployment, 115–116
cookies, 115
distributed, 116–118
logging attributes, 116
object types supported for failover, 117–118

HTTP sessions (Continued)
session managers, 118–121
URL rewriting, 115

HttpServletRequest, 107

I
idempotent requests, 139
IMAP4 protocol, 289–290
inbound connectivity, 231–232
Inet Oracle JDBC driver, 100, 175, 176
INIT_EVENT, 236
init method, 109
InitialContext naming service handle, 273–276
installation, 25–26
instantiating servlets, 109
internationalization, 136
Interoperable Naming Service, 275–276
is-connection-validation-required setting, 229,

259–260
is-read-only-bean element, 166
isolation of class loaders, 32, 34–36

J
J2SE policy file, 214
JACC, 56
JAR file, client for a deployed application, 35
jar-signing-alias property, 206–207
Java Authentication and Authorization Service

(JAAS), 53–56
Java Authorization Contract for Containers, See JACC
Java Business Integration (JBI), 88–89
Java Database Connectivity, See JDBC
Java DB database, 92–93
Java Debugger (jdb), 37
Java EE, security model, 48
Java EE Connector architecture, 223–234
Java EE Service Engine, 88–89
Java EE tutorial, 105
Java Message Service

See JMS
Java Naming and Directory Interface, See JNDI

Index

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011298

Java optional package mechanism, 31
Java Persistence, 91–103

annotation for schema generation, 96
changing the provider, 98–99
database for, 92–93
deployment options for schema generation, 96–97
restrictions, 99–103

Java Platform Debugger Architecture, See JPDA
Java Servlet API, 105
Java Studio Enterprise, 27
Java Transaction API (JTA), 265–271
Java Transaction Service (JTS), 265–271
Java Web Start, 202–212

signing client JAR files, 205–207
JavaBeanFactory, 277–278
JavaBeans, 110
JavaMail

and JNDI lookups, 290–291
architecture, 289
creating sessions, 290
defined, 289–292
messages

reading, 292
sending, 291–292

session properties, 290
specification, 290

JDBC
and the Transaction Synchronization Registry, 262
Connection wrapper, 261
integrating driver JAR files, 34
invalid connections, 259–260
non-component callers, 262
non-transactional connections, 267–268
restrictions, 263
sharing connections, 259
specification, 251
transaction isolation levels, 266
tutorial, 251

jdbc realm, 52
JDOQL, 187–188
JMS, 167, 283–287

authentication, 284
ConfigurableTransactionSupport

interface, 270–271

JMS (Continued)
debugging, 40
load balancing, 284
SOAP messages, 285–287
transactions and non-persistent messages, 270

JNDI
and EJB components, 280
and JavaMail, 290–291
and lifecycle modules, 237, 238, 276
custom resource, 277
custom resource factories, 277–279
defined, 273–281
external JNDI resources, 277
for message-driven beans, 167
global names, 274
mapping references, 280–281
name for container-managed persistence, 184
tutorial, 273
using instead of ejb-ref mapping, 35
vendor-specific names, 279–280

join tables, 174
JPDA debugging options, 38–39
JProbe profiler, 43–44
JSP files

caching, 111–114
command-line compiler, 114
precompiling, 114
specification, 110
tag libraries, 110–111

jspc command, 114
jspcachtags.jar file, 111
jspcachtags.tld file, 111
JSR 109, 85
JSR 115, 48, 56, 57
JSR 12, 188
JSR 181, 86
JSR 196, 48, 63, 76–83
JSR 220, 91
JSR 224, 85
JSR 907, 271

Index

299

K
key attribute

of cache tag, 112
of flush tag, 114

L
last agent optimization, 230–231
ldap realm, 52
lib directory

and the Common class loader, 30
for a web application, 35

libraries, 32–34, 34
and application clients, 217

lifecycle modules, 235
allocating and freeing resources, 238
and class loaders, 238
and the server.policy file, 238
deployment, 237
naming environment, 276

LifecycleEvent class, 236
LifecycleEventContext interface, 237
LifecycleListener interface, 236
LifecycleListenerImpl.java file, 236
LifeCycleModule class loader, 30, 238
list-timers command, 154
listeners, Catalina, defining custom, 140
load balancing

and idempotent requests, 139
of ACC clients, 201
of message-driven beans, 284

locale, setting default, 136
lock-when-loaded consistency level, 192
logging, 41

in the web container, 139
login, programmatic, 72
login method, 73
login retries, 217
LoginModule, 54

M
main.xml file, 28

managed fields, 175
mapping for container-managed persistence

considerations, 174–176
data types, 177–179
features, 172

mapping resource references, 280–281
markConnectionAsBad method, 259
mdb-connection-factory element, 167, 169
message-driven beans, 167

administering, 168
connection factory, 167
debugging, 40
load balancing, 284
monitoring, 168
onMessage runtime exception, 169–170
pool monitoring, 169
pooling, 167
restrictions, 168–170
using with connectors, 232–234

message security, 62–72
application-specific, 66–69
responsibilities, 65
sample application, 69–72

migrate-timers command, 154
Migration Tool, 27
mime-mapping element, 138
modules, lifecycle, 235
monitoring in the web container, 139
MSSQL version consistency triggers, 193–194
MySQL database restrictions, 102–103, 194–196

N
naming service, 273–281
native library path

configuring for hprof, 42
configuring for JProbe, 43

nested transactions, 269
NetBeans

about, 27
profiler, 41

nocache attribute, of cache tag, 113
non-ACC clients, 217–221

Index

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011300

O
Oasis Web Services Security, See message security
object references supported for failover, 117–118,

158–159
online help, 27
onMessage method, 169, 287
Open Message Queue, debugging, 40
Oracle automatic mapping of date and time fields, 193
Oracle Inet JDBC driver, 100, 175, 176
Oracle TopLink, 99
ORDER BY validation, disabling, 191
outbound connectivity, 232

P
package-appclient script, 214
pass-by-reference element, 150
permissions

changing in server.policy, 59–61
default in server.policy, 58

persistence, Coherence*Web, 121
persistence store

for HTTP sessions, 116–118, 120–121
for stateful session bean state, 157–162

persistence.xml file, 92–93, 97
ping-connection-pool command, 228
pool monitoring for MDBs, 169
pooling, 164
POP3 protocol, 289–290
precompiling JSP files, 114
prefer-validate-over-recreate property, 229, 259–260
prefetching, 185
primary key, 172, 174, 175
PrimitivesAndStringFactory, 278–279
profilers, 41–44
programmatic login, 72
ProgrammaticLogin class, 73
ProgrammaticLoginPermission permission, 73
PropertiesFactory, 278
Public API class loader, 30

Q
query hints, 98

R
read-only beans, 150, 163–167, 186

deploying, 166
refreshing, 165–166

readonly.relative.refresh.mode flag, 165
ReadOnlyBeanNotifier, 166
READY_EVENT, 236
realms

application-specific, 53
configuring, 52
custom, 53–56
supported, 52

references supported for failover, 117–118, 158–159
refresh attribute, of cache tag, 113
refresh-period-in-seconds element, 164
removing servlets, 109
request object, 109
res-sharing-scope deployment descriptor setting, 259
resource-adapter-mid element, 233
resource adapters, See connectors
resource-env-ref element, 280
resource-ref element, 280
resource references, mapping, 280–281
resources

application-scoped, 262, 280, 283, 292
RMI/IIOP over SSL, 214–215
roles, 50–51

S
sample applications, 28
schema capture, 183
schema generation

automatic for CMP, 177–182
Java Persistence options for automatic, 96–97

scope attribute
of cache tag, 113
of flush tag, 114

secondary table, 173

Index

301

security, 47–83
ACC, 198, 214–215
annotations, 49
application level, 49
audit modules, 56–58
declarative, 49
disabling directory listings, 138
EJB components, 50
GlassFish Server features, 48
goals, 48
JACC, 56
Java EE model, 48
JMS, 284
message security, 62–72
of containers, 49–50
programmatic, 50
programmatic login, 72
roles, 50–51
server.policy file, 58–62
web applications, 50

security.config property, 65
security manager, enabling and disabling, 61–62
security map, 226–227
server

installation, 25–26
lib directory of, 30
life cycle events, 236
optimizing for development, 26
value-added features, 149–153

Server Authentication Module, 76–83
server.policy file, 58–62

and lifecycle modules, 238
changing permissions, 59–61
default permissions, 58
ProgrammaticLoginPermission, 73

server-side includes, 144–145
ServerLifecycleException, 236
service method, 110
Servlet container, authentication mechanisms, 76–83
servlets, 105–110

caching, 106–109
character encoding, 136
destroying, 109
engine, 109

servlets (Continued)
instantiating, 109
removing, 109
request handling, 109
specification, 105

class loading, 137
mime-mapping, 138
object unsupported for failover, 117

session beans, 156
container for, 156–157
EJB singletons, 163
optimizing performance, 163
restrictions, 162–163
transactions, 163

session cache sharing and @OrderBy, 100
session managers, 118–121
session persistence

Coherence*Web, 121
for stateful session beans, 157–162
for web modules, 116–118
object types supported, 117–118, 158–159

set command
allow-non-component-callers option, 262
associate-with-thread option, 258
connection-validation-method option, 258
default message security provider, 63
default principal settings, 51
init-sql option, 252
is-connection-validation-required option, 258
is-isolation-level-guaranteed option, 267
java-web-start-enabled attribute, 203
non-transactional-connections option, 267
pooling option, 257
sql-trace-listeners option, 254
statement-cache-size option, 254
transaction-isolation-level option, 266
validation-classname option, 258

setCharacterEncoding method, 136
setContentType method, 136
setLocale method, 136
setTransactionIsolation method, 266
SHUTDOWN_EVENT, 236
signature.key.alias property, 65
signing client JAR files, 205–207

Index

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011302

signing JAR files at deployment, 206–207
Simple Object Access Protocol, See SOAP messages
single sign-on, 74–76
singletons, EJB, 163
Sitraka web site, 43–44
SMTP protocol, 289–290
SOAP messages, 285–287
SOAP with Attachments API for Java (SAAJ), 285
solaris realm, 52
specification

application clients, 198
connectors, 223
EJB 2.1 and CMP, 171
EJB 2.1 and JDOQL queries, 187
JAAS, 53
Java Persistence, 91
JavaBeans, 110
JDBC, 251
JSP, 110
Liberty Alliance Project, 63
programmatic security, 50
security manager, 58
servlet, 105

class loading, 31
WSS, 63

splash screen, 216–217
SSI, 144–145
stack trace, generating, 39
STARTUP_EVENT, 236, 237
stateful session beans, 157

object references supported for failover, 158–159
session persistence, 157–162

stateless session beans, 156
sun-cmp-mappings.xml file, 173
sun-ra.xml file, 225
supportsTransactionIsolationLevel method, 266
Sybase

finder limitation, 101–102, 193
lock-when-loaded limitation, 192

T
tag libraries, 110–111
tags for JSP caching, 111–114

TERMINATION_EVENT, 236
thread associations, and connectors, 226
thread pools, for bean invocation scheduling, 152
timeout attribute, of cache tag, 113
tools, for developers, 26–28
transaction-support property, 230
transactions, 265–271

and EJB components, 268–270
and non-component callers, 271
and non-persistent JMS messages, 270
and session beans, 163
and session persistence, 158, 161
commit options, 269
ConfigurableTransactionSupport

interface, 270–271
flat, 269
global, 269
in the Java EE tutorial, 265
JDBC isolation levels, 266
local, 269
nested, 269
timeouts, 270
transaction manager, 271
transaction synchronization registry, 271
UserTransaction, 271

U
undeploy command

schema generation, 97, 182
unwrap method, 261
URL rewriting, 115
URLFactory, 279
use-thread-pool-id element, 152
use-unique-table-names property, 181
utility classes, 32–34, 34

V
valves, defining custom, 140
vendor-specific, JNDI names, 279–280
verbose mode, 40
version consistency, 184–185

Index

303

version consistency (Continued)
triggers, 193–194

virtual server properties, 137

W
web application class loader

changing delegation in, 31, 137
web applications, 105–147, 239–247

distributable, 116
security, 50

web container, logging and monitoring, 139
web services, 85–89

creating portable artifacts, 86
debugging, 86, 87
deployment, 86
in the Java EE tutorial, 85
JBI, 88–89
security

See message security
test page, 87
URL, 87
WSDL file, 87

WebDav, 143–144
work security map, 227
WSIT, 48
WSS, See message security

X
XML parser, specifying alternative, 33

Index

GlassFish Server Open Source Edition 3.1 Application Development Guide • July 2011304

	GlassFish Server Open Source Edition 3.1 Application Development Guide
	Preface
	GlassFish Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Development Tasks and Tools
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	High Availability Features
	Development Tools
	The asadmin Command
	The Administration Console
	The Migration Tool
	The NetBeans IDE
	The Eclipse IDE
	Debugging Tools
	Profiling Tools

	Sample Applications

	Class Loaders
	The Class Loader Hierarchy
	Delegation
	Using the Java Optional Package Mechanism
	Using the Endorsed Standards Override Mechanism
	Class Loader Universes
	Application-Specific Class Loading
	Circumventing Class Loader Isolation
	Using the Common Class Loader
	Sharing Libraries Across a Cluster
	Packaging the Client JAR for One Application in Another Application
	To Package the Client JAR for One Application in Another Application

	Debugging Applications
	Enabling Debugging
	To Set the Server to Automatically Start Up in Debug Mode

	JPDA Options
	Generating a Stack Trace for Debugging
	Application Client Debugging
	Open Message Queue Debugging
	Enabling Verbose Mode
	Class Loader Debugging
	GlassFish Server Logging
	Profiling Tools
	The NetBeans Profiler
	The HPROF Profiler
	To Use HPROF Profiling on UNIX

	The JProbe Profiler
	To Enable Remote Profiling With JProbe

	Developing Applications and Application Components
	Securing Applications
	Security Goals
	GlassFish Server Specific Security Features
	Container Security
	Declarative Security
	Application Level Security
	Component Level Security

	Programmatic Security

	Roles, Principals, and Principal to Role Mapping
	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for an Application or Module
	Creating a Custom Realm

	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	System Properties
	Changing Permissions for an Application
	Enabling and Disabling the Security Manager

	Configuring Message Security for Web Services
	Message Security Providers
	Message Security Responsibilities
	Application Developer Responsibilities
	Application Deployer Responsibilities
	System Administrator Responsibilities

	Application-Specific Message Protection
	Using a Signature to Enable Message Protection for All Methods
	To Enable Message Protection for All Methods Using Digital Signature

	Configuring Message Protection for a Specific Method Based on Digital Signatures
	To Enable Message Protection for a Particular Method or Set of Methods Using Digital Signature

	Understanding and Running the Sample Application
	To Set Up the Sample Application
	To Run the Sample Application

	Programmatic Login
	Programmatic Login Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on
	Adding Authentication Mechanisms to the Servlet Container
	The GlassFish Server and JSR 196
	Writing a Server Authentication Module
	Sample Server Authentication Module
	Compiling and Installing a Server Authentication Module
	Configuring a Server Authentication Module
	Binding a Server Authentication Module to Your Application

	Developing Web Services
	Creating Portable Web Service Artifacts
	Deploying a Web Service
	The Web Service URI, WSDL File, and Test Page
	GlassFish Java EE Service Engine
	Using the jbi.xml File

	Using the Java Persistence API
	Specifying the Database
	Additional Database Properties
	Configuring the Cache
	Setting the Logging Level
	Using Lazy Loading
	Primary Key Generation Defaults
	Automatic Schema Generation
	Annotations
	Generation Options

	Query Hints
	Changing the Persistence Provider
	Restrictions and Optimizations
	Oracle Database Enhancements
	Extended Persistence Context
	Using @OrderBy with a Shared Session Cache
	Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver
	Database Case Sensitivity
	Unique Constraints
	Foreign Key Mapping
	SQL Result Set Mapping
	Named Native Queries and JDBC Queries
	PostgreSQL Case Sensitivity

	Sybase Finder Limitation
	MySQL Database Restrictions

	Developing Web Applications
	Using Servlets
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	The CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	Enabling JSP Caching
	Caching Scope
	The cache Tag
	Attributes of cache
	Example of cache

	The flush Tag
	Attributes of flush
	Examples of flush

	Options for Compiling JSP Files

	Creating and Managing Sessions
	Configuring Sessions
	HTTP Sessions, Cookies, and URL Rewriting
	Coordinating Session Access
	Saving Sessions During Redeployment
	Logging Session Attributes
	Distributed Sessions and Persistence

	Session Managers
	The memory Persistence Type
	The file Persistence Type
	The replicated Persistence Type
	The coherence-web Persistence Type

	Using Comet
	Introduction to Comet
	The Grizzly Implementation of Comet
	Client Technologies to Use With Comet
	Types of Comet Connections
	HTTP Streaming
	Long Polling
	How to Choose the Type of Connection

	Grizzly Comet
	The Grizzly Comet API
	The Hidden Frame Example
	Creating a Comet-Enabled Application
	Developing the Web Component
	To Create a Web Component to Support Comet
	To Register the Servlet With the Comet Engine
	To Define a Comet Handler to Send Updates to the Client
	To Add the Comet Handler to the Comet Context
	To Notify the Comet Handler of an Event

	Creating the Client Pages
	To Create a HTML Welcome Page That Contains IFrames for Receiving and Sending Updates
	To Create a HTML Page That Updates and Displays the Content
	To Create the HTML Page That Allows Submitting Updates

	Creating the Deployment Descriptor
	To Create the Deployment Descriptor

	Deploying and Running a Comet-Enabled Application
	Enabling Comet in the GlassFish Server
	To Deploy the Example
	To Run the Example

	Bayeux Protocol
	Enabling Comet
	To Configure the web.xml File
	To Write, Deploy, and Run the Client

	Advanced Web Application Features
	Internationalization Issues
	The Server's Default Locale
	Servlet Character Encoding
	Servlet Request
	Servlet Response

	Virtual Server Properties
	Class Loader Delegation
	Using the default-web.xml File
	To Use the default-web.xml File

	Configuring Logging and Monitoring in the Web Container
	Configuring Idempotent URL Requests
	Specifying an Idempotent URL
	Characteristics of an Idempotent URL

	Header Management
	Configuring Valves and Catalina Listeners
	Alternate Document Roots
	Using a context.xml File
	Enabling WebDav
	Using SSI
	Using CGI

	Using Enterprise JavaBeans Technology
	Value Added Features
	Read-Only Beans
	The pass-by-reference Element
	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	Priority Based Scheduling of Remote Bean Invocations
	Immediate Flushing

	EJB Timer Service
	To Deploy an EJB Timer to a Cluster

	Using Session Beans
	About the Session Bean Containers
	Stateless Container
	Stateful Container

	Stateful Session Bean Failover
	Choosing a Persistence Store
	Using the --keepstate Option
	Using the --asyncreplication Option

	Enabling Checkpointing
	Server Instance and EJB Container Levels
	Application and EJB Module Levels
	SFSB Level

	Specifying Methods to Be Checkpointed

	Session Bean Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions
	EJB Singletons

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read-Only Beans

	Using Message-Driven Beans
	Message-Driven Bean Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Domain-Level Settings

	Message-Driven Bean Restrictions and Optimizations
	Pool Tuning and Monitoring
	The onMessage Runtime Exception

	Using Container-Managed Persistence
	GlassFish Server Support for CMP
	CMP Mapping
	Mapping Capabilities
	The Mapping Deployment Descriptor File
	Mapping Considerations
	Join Tables and Relationships
	Automatic Primary Key Generation
	Fixed Length CHAR Primary Keys
	Managed Fields
	BLOB Support
	CLOB Support

	Automatic Schema Generation for CMP
	Supported Data Types for CMP
	Generation Options for CMP

	Schema Capture
	Automatic Database Schema Capture
	Using the capture-schema Utility

	Configuring the CMP Resource
	Performance-Related Features
	Version Column Consistency Checking
	To Use Version Consistency

	Relationship Prefetching
	Read-Only Beans

	Default Fetch Group Flags
	Configuring Queries for 1.1 Finders
	About JDOQL Queries
	Query Filter Expression
	Query Parameters
	Query Variables
	JDOQL Examples
	Example 1
	Example 2
	Example 3

	CMP Restrictions and Optimizations
	Disabling ORDER BY Validation
	Setting the Heap Size on DB2
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	PostgreSQL Case Insensitivity
	No Support for lock-when-loaded on Sybase
	Sybase Finder Limitation
	Date and Time Fields
	Set RECURSIVE_TRIGGERS to false on MSSQL
	MySQL Database Restrictions

	Developing Java Clients
	Introducing the Application Client Container
	ACC Security
	ACC Naming
	Application Client Annotation
	Java Web Start
	Application Client JAR File

	Developing Clients Using the ACC
	To Access an EJB Component From an Application Client
	To Access a JMS Resource From an Application Client
	Using Java Web Start
	Enabling and Disabling Java Web Start
	Downloading and Launching an Application Client
	The Application Client URL
	Signing JAR Files Used in Java Web Start
	Automatically Signing JAR Files
	Using the jar-signing-alias Deployment Property

	Error Handling
	Vendor Icon, Splash Screen, and Text
	Creating a Custom JNLP File
	Specifying the JNLP File in the Deployment Descriptor
	Referring to JAR Files from the JNLP File
	Referring to Other JNLP Files
	Combining Custom and Automatically Generated Content

	Using the Embeddable ACC
	Running an Application Client Using the appclient Script
	Using the package-appclient Script
	The client.policy File
	Using RMI/IIOP Over SSL
	Connecting to a Remote EJB Module Through a Firewall
	Specifying a Splash Screen
	Setting Login Retries
	Using Libraries with Application Clients

	Developing Clients Without the ACC
	To access an EJB component from a stand-alone client
	To access an EJB component from a server-side module
	To access a JMS resource from a stand-alone client

	Developing Connectors
	Connector Support in the GlassFish Server
	Connector Architecture for JMS and JDBC
	Connector Configuration

	Advanced Connector Configuration Options
	Thread Associations
	Security Maps
	Work Security Maps
	Overriding Configuration Properties
	Testing a Connector Connection Pool
	Flushing a Connector Connection Pool
	Handling Invalid Connections
	Setting the Shutdown Timeout
	Specifying the Class Loading Policy
	Using Last Agent Optimization of Transactions
	Disabling Pooling for a Connection
	Using Application-Scoped Connectors

	Inbound Communication Support
	Outbound Communication Support
	Configuring a Message Driven Bean to Use a Resource Adapter

	Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Developing OSGi-enabled Java EE Applications
	Overview of OSGi Application and GlassFish Server
	Benefits of Using OSGi in Enterprise Java Applications

	Developing OSGi Application Bundles for GlassFish Server
	Developing Plain OSGi Bundles
	HTTP Service
	Transaction Service
	JDBC Data Source Service
	JMS Resource Service

	Developing Web Application Bundles
	Required WAB Metadata
	How WABs Consume OSGi Services
	OSGi CDI Extension for WABs

	Developing EJB Application Bundles
	Required EJB Metadata
	How EJB Bundles Consume OSGi Services
	Using the OSGi CDI Extension With EJB Bundles

	Deploying OSGi Bundles in GlassFish Server

	Using Services and APIs
	Using the JDBC API for Database Access
	Statements
	Using an Initialization Statement
	Setting a Statement Timeout
	Statement Leak Detection and Leaked Statement Reclamation
	Statement Caching
	Statement Tracing

	Connections
	Transparent Pool Reconfiguration
	Disabling Pooling
	Associating Connections with Threads
	Custom Connection Validation
	Sharing Connections
	Marking Bad Connections
	Handling Invalid Connections

	Connection Wrapping
	Wrapping Connections
	Obtaining a Physical Connection From a Wrapped Connection
	Using the Connection.unwrap() Method

	Allowing Non-Component Callers
	Using Application-Scoped Resources
	Restrictions and Optimizations
	Disabling Stored Procedure Creation on Sybase

	Using the Transaction Service
	Handling Transactions with Databases
	Using JDBC Transaction Isolation Levels
	Using Non-Transactional Connections

	Handling Transactions with Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Commit Options
	Bean-Level Container-Managed Transaction Timeouts

	Handling Transactions with the Java Message Service
	Transactions and Non-Persistent Messages
	Using the ConfigurableTransactionSupport Interface

	The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Global JNDI Names
	Accessing EJB Components Using the CosNaming Naming Context
	Accessing EJB Components in a Remote GlassFish Server
	Naming Environment for Lifecycle Modules

	Configuring Resources
	External JNDI Resources
	Custom Resources
	Built-in Factories for Custom Resources
	JavaBeanFactory
	PropertiesFactory
	PrimitivesAndStringFactory
	URLFactory

	Disabling GlassFish Server V2 Vendor-Specific JNDI Names
	Using Application-Scoped Resources

	Using a Custom jndi.properties File
	Mapping References

	Using the Java Message Service
	Using Application-Scoped JMS Resources
	Load-Balanced Message Inflow
	Authentication With ConnectionFactory
	Delivering SOAP Messages Using the JMS API
	To Send SOAP Messages Using the JMS API
	To Receive SOAP Messages Using the JMS API

	Using the JavaMail API
	Introducing JavaMail
	Creating a JavaMail Session
	JavaMail Session Properties
	Looking Up a JavaMail Session
	Sending and Reading Messages Using JavaMail
	To Send a Message Using JavaMail
	To Read a Message Using JavaMail

	Using Application-Scoped JavaMail Resources

	Index

