Open Message Queue 4.5
Administration Guide

Oracle Corporation

500 Oracle Parkway
Redwood City, CA 94065
US.A.

Part No: 821-2478-12
July 2011

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110722@25097

Partl

Contents

PrEFACE ...t bbbttt bt 23
Introduction to Message Queue Administrationcccocooinnnnnncnncee e 33
Administrative Tasks aNA TOOIScccouiiiiiiinicir et

AdMINISTIAtIVE TASKS c.vivieievieiiieeieeceeeet ettt ettt sttt ae s s eae e stesessenessenenens

Administration in a Development Environment

Administration in a Production ENVIronmentcocvcuecevcueeeinininieneneescneneseeenseesenns
AdmiInistration TOOLSc.iuiciiiriciiriccee e 38
Built-in Administration TOOISc.ccviiiiiiiiiciii e 38
JMX-Based AdMINISTIAtiONccoeveueeveeiieeeeieeeteeeeeceee et resese e esessesesessesessssesennenes 40
QUICk-STart TULOKTalccooovii s 41
Starting the Administration CONSOIEcccuiiiriiieiiiniii s 42
Administration Console Online Helpcocccvienicirnieinicininicircieinecseneicneeseeeeceseesesseeesseneae 44
WOrking With BrOKEISc.vueveiiiciiiiccrtecteeeieen e eeenans 45
StArting @ BrOKETvucvueiiiiciciriciciricceeeceieiee st ssc st naen 45
Adding a Broker to the Administration COnsolecccvrecueureerneinieeererneeneernerneenserseeenne 45
Connecting to @ BIOKET ..o 47
Viewing CONNECction SEIVICES ..ot 48
Working With Physical Destinationsc..cececureureeeeneireeeereenerneeeinenneeesessesesessessesessessesessessesessesnes 50
Creating a Physical DesStinationccccveuiiinecmniiniiciicce s ssssssssesens 50
Viewing Physical Destination PrOPErtiescocureererreerernieeeenneineenensesenessesenensessesenne 51
Purging Messages From a Physical Destinationc.ccvereeeeeeneueeceneeneeceneeneeeneenesenennesnenens 54
Deleting a Physical Destinationcccceceecuiirieecenieeieiiieeireeneseeensesssssese e ssessssensens 54
Working With ODJECt STOTESccueuvcireiriecieirieeicireieeciretseeeeetseie st sese e ssesessessessesessesseacsne 55
Adding an ODJECt STOTEcuueueieieiiireieeicirtireieieiseie sttt 55

Contents

Partll

Connecting to an ODJECt STOTEc.cviueveuriuriciniiriieieireieertieeeeeeteeie et sas s saesesesaees 58
Working With Administered ODBJECtScvvuvverrerreeerreireieieererneeereieeeseseeeesessesensessesessesseseeaennes 58
Adding a Connection FACIOTY ..o 58
Adding @ DESHNATIONcuuvuevueeieiecieiriecieereieeiset et sese s es et sasa bbb es s sneen 60
Viewing Administered Object Properties . 62
Deleting an Administered ODJECTceuiuvieuiirieriiriecieeeeeeee e nseaeeenaens 63
Running the Sample APPHCATIONc.vuiuiviiiircieieieieieeeeiee e sse e ssenans 63
V¥ To Run the Sample APPLICAIONc.cueuevierieeiiiniieicineinieicireseieisese et ssessenenns 64
AdMINIStrative TASKSccccoiiiiiii i 67
Starting Brokersand Clients ... 69

Preparing System Resources

Synchronizing System Clocks

Setting the File Descriptor LIMIt ..o s 70
SEArtiNG BIOKETS ...cuvuivieiiiieieireieicirctrecictrcie ettt sttt et 70
Starting Brokers INteractivelyoeereercuniunreiiirieieineencieiessenesseee s ssesesensens 70
Starting Brokers Automatically w71
Deleting a BroKer INSTANCEc.ccvvuicuiirierieiiiiciseiiecieieeeeeeseseesesesseese s sese st ssesssssesesacnses 76
SEArting CHENTScuuivuiiiiiiiiiicri s 76
CoNfIGUIING @BIOKEToeieicte et ss st b bbb nse s e 79
BIOKET SEIVICES ouvvrivriieiciictiiict ettt s 79
Setting Broker Configuration PrOPEItiescocueuevuerereneueureiemenenserereesensasessessessessessensessensessnns 80
Modifying Configuration Files ... 80
Setting Configuration Properties from the Command Lineccccoveuvineinicinciniincienennn. 82
ManNaging @ BrOKEYc.oooiiiieeieiee ettt neseees 85
Command Utility Preliminariescocrcirircniniceeeereieee e ssesessessesessensenns 86
Using the Command UtIlILYccouiiiic s 86
Specifying the User Name and Password ..o 86
Specifying the Broker Name and Port . 87
Displaying the Product VEISIONccceiiuiiniiniineiciniiieneieseiee e ssessssssessesse e ssesasens 87
DiSPIAYING HELD .ceucvrieiiiiicirieicrcte ittt 88

Open Message Queue 4.5 Administration Guide « July 2011

Contents

EXAIMIPLES ..ottt 88
Managing BrOKETSc..cceuiurecurernieeicineeeieireteeeessesseeessessesessessessssessessesessessesesaesessesessessesessessesessesns 89

Shutting Down and Restarting @ BroKeTc.c.ouccuirecuninieeeiieeeceeneseeenceeseneeneseeaens 89

QUIESCING @ BIOKET ...t

Pausing and Resuming a Broker

Updating Broker PIOPEITIESc.cueuiuereeuiuriciiinieeieieieeeeeteseiensessesessesseessesssessesssssesessesnesensens
Viewing Broker INfOrmationcccveecuieeeeriureerneenieeneieieee e essesessesseseesesesessenesesenne 92
6 Configuring and Managing CONNECtion SEIVICESccccoovririieceinininiienee e 95

Configuring Connection Services ...

POTE IMIAPPET ..ottt
Thread POOl Managementc.cceeeuiereecuneineeeneeneseiseessesesessessesessessesessesssssssesssssesessessesessens 98
Managing Connection SEIVICES ... 99
Pausing and Resuming a Connection SEIVICEccowverrurieermernereremieneeenesnesensenesensessessesens 99
Updating Connection Service Propertiescccvecirceneericmnernienscrseeesesee e 100
Viewing Connection Service INformation ... 101

Managing Connections

7 Managing Message DeEliVEry ...ttt ssssses 107
Configuring and Managing Physical Destinationscccccveuiueineinincinnininisniecseinnns 107
Command Utility Subcommands for Physical Destination Managementcccoeenee. 108
Creating and Destroying Physical Destinationsc.ccovvicinicinincncnciciccinienes 109

Pausing and Resuming a Physical Destinationccecveeecuncereemnerneeeeerneseeennessesensesseseene 112

Purging a Physical DeStinationcccccveeeeuiureerimnienerneeneneeeee e sessesenne 113
Updating Physical Destination PrOPEeItiesc.ccceureeureureueeeireeeeerneeneessessesessessesessessessesenns 114
Viewing Physical Destination INformationecccveuveenerneeercinerneemncnneeereseneensenseeeesenne 114
Managing Physical Destination Disk UtiliZationccccocueieiniinineininiisiccneisiinns 118

Using the Dead Message QUEUEcvveurueeermeuneuermcrnieeesereanesensessesessesseeessessesesessessesessesseseens 120
Managing Broker System-Wide MEMOIYcccoeuviueueuniirieuniirieniereieeeeseieneseesesensessesessessesensens 121
Managing Durable SUDSCIIPLIONSccurueeeuierieeieirieeicineiseieeiseeeneeseeense e ssesesse s s sessesens 123
Managing TTanSactioNsccceieiiiciiiieiiicicie bbb sases 124

8 Configuring Persistence SErvices ... 127
Introduction to Persistence SErViCes ... 127

Contents

File-Based PEISISTEIICE «.....cuvuemiieeriecieiriecireteeeictsete ettt seee st sese et st sese st seae et sesesncanes 128
File-Based Persistenice PrOPErtiescoveuureueeeuiuriuereirieieisesesessessesesessese s ssessssenns 128
Configuring a File-Based Data StOTecveeueucverereeeineireiesenesseneneeseneesessesesessessessessns

Securing a File-Based Data StOTeccvueeueurieeeemniiereneineeneieieneieisesenessese s ssessesenns
Optimizing File-Based Transaction PersiStencCecccocvecuneureeunerneeeeerneseeennenneensesseseene
JTDBC-BASEA PEISISLENICE ...uvevvvevererieiereeereteteteseeeeet et eteae et ese s st sess s s st esesesesessasas s esesesesessasasans
JDBC-Based Persistence Properties
Configuring a JDBC-Based Data StOTec..cvueueuieremerieneeneineeeneineeseenessesesessesessesessesenne
Securing a JDBC-Based Data SLOTec.oceucueereecunieneeeieireieieineiseieeeeseseseisesessessessesesssnesessees

Data STOTE FOTINALS ..ottt ettt eaeeaaeea e ess e teebeenseeseenssssesnsenseeseensesseens

Configuring and Managing Security SErVICesccooeririninininiereeeesee e
Introduction to Security Services
Authentication
Authorization
ENCIYPLHON it
USer AURENTICATION w..vuvririeiieieiieiceeice st
Using a Flat-File User REPOSILOTYcciueeemirriieieiiieieneirieneieeeneseieesenessese e eesensenns
Using an LDAP User RePOSItOrYccociiiiiiiiiiiiiiiiiiciiii e
Using JAAS-Based AUthentiCationc.eccreeeieunieeieineerieicinese et ssesessenns
User AUthOTIZAtIONcvuviviciciic s
Access Control File Syntaxccecveevecunennennc.
Application of Authorization Rules
Authorization Rules for Connection SErviCesccoormiurerneeciemeemseeserseasenenesesssesens
Authorization Rules for Physical DeStNAtIONSc.cceevuieriuimeuneecreniereneeeiseesessensensensenans
Message ENCIYPLION ...c.cuviveiicieiccte ettt
Using Self-Signed Certiflcatesc.ceuerirenerreierererieeineineaessesessensessesessssessessesesessessessns
Using Signed CertifiCates ..o ssessesesesssesseseessesenns
PaSSWOTA FIlESsouvuiiiiiiiiiiccc s
SeCUTity CONCEIMS ..uviiiiiiiiic st
Password File Contents
Connecting Through a Firewall
V¥V To Enable Broker Connections Through a Firewall
Audit Logging with the Solaris BSM AUt LOGccccvvuriueuiuriieieiniernecieineieeeneeenseeessesesessesensees

Open Message Queue 4.5 Administration Guide « July 2011

Contents

10 Configuring and Managing Broker CIUSTErsc.ccooviiiieeieinerieeceeeeseseeese e veaesnes 175
Configuring BrokKer CIUSLETSccviuiiiiniiciciciciiiecicise e ssesesesse e sssssesssaens
The Cluster Configuration File ..o ssesseseene
Cluster Configuration Properties
Displaying a Cluster Configuration
Managing BroKer CIUSTELScovuvuereuriueeeriirieereaeeeneeeeensesesseee s esense s ssesssssssensessssessesnesessens

Managing Conventional CIUSLETSccurrueuiureueicuneerisereenesetessesesesseseesessessesesessesesesseseens

Managing Enhanced Clusters

Converting a Conventional Cluster to an Enhanced Cluster

11 Managing Administered Objects
ODBJECE STOTES ..ottt
LDAP Server ODJECt STOTEScuueuvueuiureeeriereiernieneaessceseseasesseasesessessesessessesessessesessessessesessesscsenne
File-System ObJECt STOTESc.veumiieeeeerieriereireeeieeense s esessesesens
Administered Object Attributes
Connection Factory AtIIDULEScveveuieeeemiirecirece e eseeseene

Destination AIDULES ..ot
Using the Object Manager ULc.oceueuiurieriireeneieieeeeeiseieesenseee e esensessesessessesensens
Connecting to a Secured LDAP Server (ldaps)
Adding Administered ODBJECLSccceuriurereurirrieereirieiereieeee e seseeseens
Deleting Administered ODJECESc.ovueveururiueuiiniieieirieeieineiseseeisese e ssesesesseseene
Listing Administered ODJECESc..cvuvveriericririeiceceeeee e e seseene
Viewing Administered Object INfOrmationc.ecvcereeenceneenencenerneeencineeeeneseeesesseseene
Modifying Administered Object AtIIDULESccueueeerrerrecicirerieereeeee e

Using CommAnd Filesc.cureiinieiinieicncireciciseiecseie et sesseseens

12 Configuring and Managing Bridge SErvicesccooovviiieeeenenieesee s 221
The Bridge Service Managerccccvceeeiueeemiirieneeseieeseaeseesesses s s ssesssssssesssssssesssssesessens 221
Bridge-Related Broker PrOPEItiescccvewcuiureeriunieemernieeiereenesesessesessessesessessessesesesseseens 222

Bridge Manager Ut ... eseeseesenns 222

Logging Of Brid@e SEIVICEScvveuiuriueemiirieeicieineieitiseee et ssese e sseseesesesseseens 223
Configuring and Managing JMS Bridge SErvicesoovmmmrnerererneereneerennenserenseneeesessneenens 223

JMS Bridge COMPONENLSuuevureemieivermeiieenseiseeseaesstesesessessesessesseseesesessesessessesessensessssessesnesesns 224

JMS BIid@e FEAULESouvveeeeriiiecinieicnceeeeese i nse s ese s e esenns 225

Message Processing Sequence Across a Link in a JMS Bridgeccccoueeevcuneureeunerncenncrnenene 229

Contents

13

14

Configuring a JMS Brid@ecceveueurecuiunieiiireieieintieneieiseeseisese et sstssese s ssessssenns 231
Starting and Stopping JIMS Brid@es ... sessaesens 239
Starting and Stopping Links in a JMS Bridgeccccceueueuriemernireemninecrcireeeeeeee e 240
Configuring and Managing STOMP Bridge Serviceseeeneureueencuneueicenerneeeenenneneneesesseennes 241
Configuring the STOMP BIid@ecccccveureueuniuneeieiriiricineireeieiseseseiseisee st ssesessenns 241
Starting and Stopping the STOMP Brid@eccccceuiveemirreererniceneeeeesee e 242
Message Processing Sequence Across the STOMP Bridgececeuveuveecenerneeincineenecrneenenenne 243
STOMP Protocol Features and the STOMP Bridgecocceueueereemeenecnncrneeerenneneeeneinenenne 244
Monitoring Broker OPerationscocooeeurieieiiiieenieee et seaees 249
MONItOring SEIVICEScciiiiiiiiiiiiiiiiccii s 249
Introduction to Monitoring TOOLS ...t esesaennes 250
Configuring and Using Broker LOZEINGccccvurrueineuriuerneireinicineineeeeeeneresessessesessessesessessessssesns 252

Logger Properties

Log Message Format

Default Logging CONfIGUIALIONc..cvuvueruiurimirererserienieeeeeseuessesessensessessssssessessesessessessessnes 254

Changing the Logging Configurationcueeercereeecuneeecrneeneesesnesesessesessessessesessesseseens 255
Using the Command Utility to Display Metrics Interactivelycccocveeneveernireernceneeennees 258

imqcmd metrics

Metrics Outputs: imqemd metrics

IMQCIMA QUETY ettt bbbt et
Using the JMX Administration API ..o essesensessesensenees
Using the Java ES Monitoring COnSOleeeueueeeunierieeeiineieieineeeneeeseesese s sessesessesessesessees
Using the Message-Based Monitoring API

Setting Up Message-Based MONITOTINGcveueueuiureeeieiriieieinieneieieeneseeeisesensesseseesessesnesessees 265

Security and Access CONSIAETAtIONSccueueeeeerieeeeriirieneieene e eseesenns 266

Metrics Outputs: Metrics MESSAZEScccueuiiririiuiuimiiiiiiiiiiiiceeessesesccsseseesssssssssssssesennen 267
Analyzing and Tuning a Message SErvice ... 269
ADOUL PEIfOIMANCE ...t 269

The Performance TUning PrOCESScocveeueureueeeuniurimereineeieinesesessessesesessesessessesessessessesenns 269

ASPECES Of PETTOTINANCE ...ttt st 270

Benchmarksc..........

Baseline Use Patterns
Factors Affecting Performanceoccvcreeencineurecincinieincineeeicinetsesessetseeesetsesessessessesessessesessesns 272

Open Message Queue 4.5 Administration Guide « July 2011

Contents

15

Partlil

16

Message DELIVETY SEEPScuvuuuieieeiniiriiciciriieicieiseie st ese s sese e ssesessesenns 273
Application Design Factors Affecting Performancecccocveeevernevevcrnernecernennenenersennenenne 274
Message Service Factors Affecting Performanceoveeececeerneeeneenernennenererensereneenens 278
Adjusting Configuration To Improve Performance ... 282
System Adjustments
Broker Memory Management AdjUStMENntSccveeevereuremcrerreemerneeemserseseesenessesessessesenne 285
Client Runtime Message FLOW AdJUStIMENLSceveurueeemiureeemerriieneeieeenessesenessesensenseseene 286
Adjusting Multiple-Consumer Queue Delivery ... 288
Troubleshooting
A Client Cannot Establish @ CONNECHONc.cuuvuiuriiiiriiiireieeieeeeeieeiese e 291
Connection Throughput Is TOO SIOW ...cccveurieceriireiricireiriereireeeicineieeesetseeessetseseeessessesessesseaesne 296
A Client Cannot Create a Message ProdUCETcoveereueecinieneeriiniecieneeenceeeseeensessesessessesensens 297
Message Production Is Delayed or SIOWedccvveueiniuerciniinienireeeneieeneeeeeenesseeessessesensens 298
Messages Are BaCKIOGZEA ..ot saes

Broker Throughput Is SPOradicccveueeiuiincicicieiiiecc e

Messages Are Not Reaching Consumers

Dead Message Queue Contains Messages

V To Inspect the Dead Message QUEUEcceeueeeicunevneecererneeeeetresneeesesseseesensessesessessesessessessens 312
REfEr@NCE ... e 315
Command LineReference ... e 317
Command Line SYNTaXcovuriiiniiiiicii s saes 317
BIOKET UHLILY «.ovuevieciceiecicereiectei ettt see sttt saen

Command Utility
General Command Utility Options
Broker Managementccceueeeermeueeemmemeeemseneseesessessssessessssessessssessessessesessessssessesssssssenessesenns
Connection Service Managementcccceeiiiiieiieinininiiieeeeessecseeessesssesseesesesenns
Connection Management ...
Physical Destination Management
Durable Subscription Management
Transaction Management ... sssssssas
JMX ManNagEmENLcciviiiiiiiiiiiiiiiicc s

Contents

10

17

18

19

ODbject Manager ULILILYc.ocecureureeincirieieineieiciretseeeectsese et sseesetsesessessesessessessesessessesessessesesscsnes 332
Database Manager ULILYcc.cccuiriinininccieieceiesecse s 334
User Manager UHLILY ... s sse s sse s ssasnsensees 336
Bridge Manager ULIIILYccccocveeeeireinicinciniecineieeeietseeesessesessessessesessessesessessesessessessesessessesessesnes 338
Service AdMiInistrator ULILYc.coceereeencireeeicireireeincineieet ettt sesesset et ssessessesessessesesseenes 340
Key TOOL UHIIILY ..o 341
Broker Properties RefErenCe ...ttt
CoNNECtioN PTOPEITIEscccciiuiiiiiiiiiiiciccc s
Routing and Delivery PrOperties ... sssnes
PersiStenCe PrOPEITIESccoueuiuiuiiiiicicicicicer ettt
File-Based Persistenice PrOPEItiescvewcurieeeecuiureeeeiireiereereieeaeetenesesscesesessesessssessessesessees

File-Based Persistence Properties for Transaction Logging ...

JDBC-Based Persistence Properties

Security PrOPerties ... s
Monitoring PrOPEITIEs ..o s
Cluster Configuration PrOPerties ... ssssssessessssees
Brid@e PIOPEITIESouvveeeeriiiecrreiiieicireteeiciet et sae s ese s naees
JMX PIOPEITIES ...ocoviiiiiiiiiiiii bbb
Alphabetical List Of BroKer PrOPEItiesccvuuevueueureueiniiniieieireirieieiseseeeesesessessesessesssssesesessesesaees
Physical Destination Property Refer@ncecccovvieeceeininisisesceeeesssssss e sesssssnns 389
Physical Destination PIOPEITIESc.evcueureeerneireeeicireieieiserseeetetseseeseesessesesessesessessesessessessesesesnes 389
Administered Object Attribute Referenceccoccoevieriieeiceiese s 395
Connection Factory Attributes
Connection HAnAINGcoereueieiiirieiiricicecieeeee et nne
Client Identificationcuuiuiicieiieiieiiciise it s s ssses
Reliability and FIOW CONLIOLc.iuvreuiuriereiiecreiieeneeisee et sesese e ssessssenns 400
Queue Browser and SEIVET SESSIONSccvvveiveeriveeeiieieeireeeereeeseeeeeeseeeees e sse s ssesessesessesessenes 402
Standard Message PTOPEITIESc.ovuiiimiiiiiiiiiiiniesiisiiecs s sasssaes 402
Message Header OVEITIAESccciuveuierieriirieeeiiieecie e e eessesenns 403
Destination AIIIDULESc.oveeviirieerciriiercineieeie et sese s sse s sese s esenaeseaensesaees 404

Open Message Queue 4.5 Administration Guide « July 2011

Contents

20

21

22

PartIV

JMS Resource Adapter Property Referencecoocevirieinincieinceenceeeceseeeesee e 405
About Shared Topic Subscriptions for Clustered CONtainersc.coveeveereeurereeeireereereeererenenes 406
Disabling Shared SUDSCIIPHONSvevueuiuereriirieieiieiereeeeeieese e sessesenne 406
Consumer Flow Control When Shared Subscriptions Are Usedcc.cccvuveeeenencuruncecunennnns 407
Resource Adapter JaVaBeancceeiiurecuiinieneiseieeseeie e nans 407
ManagedConnectionFactory JavaBean ... ssssssaans 410
ActivationSpec JavaBean ... e 412
Metrics Information Reference ... 419
JVIMIIMIEETICS .uveeteieneeeiteecteeeteeeee et et e e eeteeetteeeteeeaaeeseeeseeesseeessaesssessessseesseessesassenseaesseessessseenseenses
BIOKEIWIAE MELIICS .cvuvveeuirieieietnieeietreieisetset st sebe ettt sese bbbt sese st s et sesesaesnes

Connection Service Metrics

Physical Destination Metrics

JES Monitoring Framework Reference ... 429
COMIMON AETIDULES ...oeueieieeieicietricieicet sttt bbbttt seae 429
Message Queue Product INfOrmationcceeeereniinecinieenenieereneeseeesessesensessesessesessesens 430
BroKer INfOIMAtIONvveveeueieiriiieseieisssisesesssse et esssss s ssssssesessssssasssssssssssessssssssssssssesesesesssnssses 430
Port Mapper INfOrMAtIONc.eveeuiuieeieiriieieiseieieeieisiie ettt ese st sese s sesesaeen 431
Connection Service INFOTrMAatiONcoiccueuieieireiieirieieirtsiei ettt sessssssse e sssses st sssssessssssesssens 431

Destination Information

Persistent Store INfOrmMationevcreueecuerriecincineieicineieieret ettt sttt sese et sesesaesseseseesnes 433
User Repository INfOrmMationceccereeerceneeeeeciiinieeieineieescineieieeseesesessessesessessesessesssssesessesnesessees 434
APPENAIXES ...ttt ettt b sttt b b s s sttt senanaen 435
Distribution-Specific Locations of Message QueueDataccccccovvrrrrirrninirneeresnnnns 437
Installations from an IPS IMAZEeeeueuereierermerieeirieneireiese e rsessesesssesssase s ssessensssesssens 437
Installations of Previous Message Queue Versions from Solaris SVR4 Packagesc........ 439
Installations of Previous Message Queue Versions from Linux RPMSccccccvvivirivininninnnn. 440
Stability of Message Queue INterfacescooririenicinincer e 443
Classification SCHEIMIEc.ocuiueiiiriieicireieecictreie ettt ses ettt eb et ses et seb e 443
INtEIfaCe StADIILY c..vuvuierieeicirei et 444

Contents

€ HTTP/HTTPS SUPPOIT ...ttt ettt ettt es 447
HTTP/HTTPS SUPPOrt ArChiteCtureccocuiuiuceciciiciiiiiiciciscise e sseanes 447
Enabling HTTP/HTTPS SUPPOTL ..cevnviriiiicicieiecieirecieieeneeee e esesseasese s ssasese s 448

Step 1 (HTTPS Only): Generating a Self-Signed Certificate for the Tunnel Servlet 449
Step 2 (HTTPS Only): Specifying the Key Store Location and Passwordc..cccecuneunnce 451
Step 3 (HTTPS Only): Validating and Installing the Server’s Self-Signed Certificate 452
Step 4 (HTTP and HTTPS): Deploying the Tunnel Servletccocveuveveenerneeercrreenenenne 455
Step 5 (HTTP and HTTPS): Configuring the Connection Servicecoeeveureevecrreerenenne 457
Step 6 (HTTP and HTTPS): Configuring a CoONNectioncereeeeeereereeeeneerememseenesennens 458
TTOUDIESNOOTING ..o 461
Server or Broker FAiltre ..o e seseesenns 461
Client Failure to Connect Through the Tunnel Servletcocoveveneencrnenercnenecrrerneenne 461

D JMXSUPPOIT ...ttt ettt s e e s et e s e s sensebese et e sa s et e st et enesesensesanens

JTMX Connection INFraStITUCIUTEo.oeveviieeeeieeeceeeeceeeeete ettt es st tess s et se st esens s s snesensns
MBean Access MEChANISIN ...t
The JMX SEIVICE URLooveveeieieiiiieieieteieisiceeetete e sese s ese s ss et s sesessssssssssesesesasasanes
The Admin Connection FACLOIY ... sesesessessessesenns

JMX CONAGUIALION .ouvvereirieieiaeiiiereereeereeeseesreesseasese s aseae s sssasese s asese et sesse s sesesasasesesaesaesenssnces
RMI Registry CONfIGUIALION w..ceuvuuueeriecenierieeieieieeaeiessesesseesesessessese et sessesesessese e seesessenns
SSL-Based JMX CONNECHIONSccveveverereererirereseereseeseseseseeeseseesesesesessesesessessssesessssesssesenseseses

JMX Connections Through a Firewall

Broker and Cluster Management

Broker Configuration Properties (-0 option)
Service and Connection Managementccccueececuriueecererreeeerseseeeesenessessesessessessesessessesessennes
Durable Subscriber Managementccceeveueuneeereuneeerenieeneneesesersessesessesesessessessesessesesessens
Transaction Managementc.cceeeuicurinieiniiieiieienese et sssse s saesesssaesesasaees
Destination Managementcooiieieiiiiiiiiinicce et

Destination Configuration Properties (-o option)

IMEETICS cevvinriereeteete ettt ettt e e e e et e ettt e e be e b et e esse b eebsersesseessanseesserseessessebaessenseessensentsenserseessensenssens

12 Open Message Queue 4.5 Administration Guide « July 2011

Contents

14

Figures

FIGURE 1-1
FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 2-4
FIGURE 2-5
FIGURE 2-6
FIGURE 2-7
FIGURE 2-8
FIGURE 2-9
FIGURE 2-10
FIGURE 2-11
FIGURE 2-12
FIGURE 2-13
FIGURE 2-14
FIGURE 2-15
FIGURE 4-1
FIGURE 6-1
FIGURE 8-1
FIGURE 9-1
FIGURE 9-2
FIGURE 9-3
FIGURE 9-4
FIGURE 13-1
FIGURE 14-1
FIGURE 14-2
FIGURE C-1

FIGURE D-1

Local and Remote Administration Utlities ... 39
Administration Console Windowc..ccccrererneeencrenenennerneenerneenensesseenne 43
Administration Console Help Windowccooveeurcienccnnccinencnenecnincecenecnns 44
Add Broker DIialog BOXcocuiuiiicieiniiiiniincineieisceeie s sesssesses
Broker Displayed in Administration Console Window

Connect to Broker Dialog BOXc..cveueureeeicinieereriinieeineeeneseeeneseeseeeseasesensens
Viewing Connection SErvices ... 49
Service Properties Dialog BOX ..o cseeaesiees 49
Add Broker Destination Dialog BOXccceureerieenienieeineineeeieineeseeeneeseseseenesensens 51
Broker Destination Properties Dialog BOXccccccreureueueuneuercrneeneernieneercenenennens 53

Durable Subscriptions Panel
Add Object Store Dialog Box
Object Store Displayed in Administration Console Window

Add Connection Factory Object Dialog BOX ...c.oceveeeueecunieneecenieneieicineeeecineenenes 59
Add Destination Object Dialog BOXcoceueureureeernierieerenneeeresieneensesesessessesensens 61
Destination Object Displayed in Administration Console Window 62
Broker Configuration FIlesccucueeereeeunieniinemernereneneerssesesseesesensessessessessessns

Message Queue Connection Services
Persistent Data StOTeSccccuviiiiiiiiiiii s
SeCUTILY SUPPOTL ot
JAASEIEIMENES ...ttt ettt s st s st se s e saenin
How Message Queue Uses JAAS ..o
Setting Up JAAS SUPPOTT ...
Monitoring Services Support
Message Delivery Through a Message Queue Servicecocvueeevniuneieniunncs 273
Transport Protocol SPEEAScoceuriiueiriucuriieirieierceieeee e eeeaes 280
HTTP/HTTPS Support ArchiteCtureccocvecucuveeecmnireenneneieneneeeseneeeenenne 448
Basic IMX INFTAStITUCTULE ...ovvieieieieeeeceececeeeceee ettt sneneas 464

Figures

16

FIGURE D-2 Obtaining a Connector Stub from an RMI RegiStryccccveuueee.

FIGURE D-3 Obtaining a Connector Stub from an Admin Connection Factory

Open Message Queue 4.5 Administration Guide « July 2011

Tables

TABLE 6-1
TABLE 6-2
TABLE 7-1
TABLE 7-2
TABLE 9-1
TABLE 9-2
TABLE 9-3
TABLE 9-4
TABLE 9-5
TABLE 9-6
TABLE 9-7
TABLE 9-8
TABLE 10-1
TABLE 11-1
TABLE 11-2
TABLE 12-1
TABLE 12-2
TABLE 12-3
TABLE 12-4
TABLE 12-5
TABLE 12-6
TABLE 12-7
TABLE 12-8
TABLE 12-9
TABLE 12-10
TABLE 12-11
TABLE 13-1

TABLE 13-2

Message Queue Connection Service Characteristicseeeeurevererrevererneerenens 96
Connection Service Properties Updated by Command Utilitycccccnvuueee 100
Physical Destination Subcommands for the Command Utilitycccccoevuuceee. 108
Dead Message Queue Treatment of Physical Destination Properties 120
Initial Entries in Flat-File User REPOSItOIYc.cccviureeeriureueeceniireeeiniereneneinesenaees 143
User Manager SUDCOMMAINASc.cuvueuiureeemneureeereiieeneneeseenessesenesseseneneseesenne 143
General User Manager OPtioNScceueeeeeueureememneeenenesenenesenseneseesessesseseens 144
Broker Properties for JAAS SUPPOTItccvvuiuierercmereiieinieseieiseneseneeneeseeessenn 155
Authorization Rule EIeMentscc.cccueiiiiniincincincieiseenesesese e seeseseseeens

Commands That Use Passwords ...

Passwords in a PasswOrd File ..o

Broker Configuration Properties for Static Port Addressesccccoeviueiunnnnes 171
BIOKET STALESucouvueeieeiiiicieicie et ees 180
LDAP Object Store AttribULesc.vveeueereeeeeureerinciniereeineiseseeessese e sseseeesesseseens 202
File-system Object Store AtIIDULESvuvvreeevecureeeeciiereecireeeeisceene e nesseseene 203
DMQ Message Propeties ... 228
Broker Properties for a JMS Bridgecccovevereuerrcrerernerneineirenensensenseneessesens 231
JMSDIIAe AHIIDULEScoueierieriiriiiiciciciiiee e saenans 233
HNK AHIIDULES ..o

source Attributes

target Attributes

AMQ ALIIDULES ottt eeaen
connection-factory AttribULescocvvecererrccincintinienerecreeieee e 237
destination Attributes ... 238
Broker Properties for the STOMP Bridge Servicecccoeuvvunriccinciniinnceennns 241
STOMP Bridge Handling of Selected Command/Header Combinations......... 245
Benefits and Limitations of Metrics Monitoring ToolSccocuceevereineenennns 251
LOGEING LEVELS ...ocuiriieiicireieciretrcercie ettt et 254

Tables

18

TABLE 13-3
TABLE 13-4
TABLE 13-5
TABLE 13-6
TABLE 14-1
TABLE 16-1
TABLE 16-2
TABLE 16-3
TABLE 16-4
TABLE 16-5
TABLE 16-6
TABLE 16-7
TABLE 16-8
TABLE 16-9
TABLE 16-10
TABLE 16-11
TABLE 16-12
TABLE 16-13
TABLE 16-14
TABLE 16-15
TABLE 16-16
TABLE 16-17
TABLE 16-18
TABLE 16-19
TABLE 16-20
TABLE 16-21
TABLE 17-1
TABLE 17-2
TABLE 17-3
TABLE 17-4
TABLE 17-5
TABLE 17-6

TABLE 17-7

TABLE 17-8

TABLE 17-9

imgemd metrics Subcommand SYNTaXoccvcveeecuieeecrncineeneineeeeieeeeneaene
imgcmd metrics Subcommand OPHONS ...c.c.vvceeerecererecrricecireeietreecieeeeeseenennes
imgemd query Subcommand SYNTAXc.ceeeevcureeeecrnieneeieineeeiseeeee e
Metrics Topic DeStiNationsc.cecceeeueueieineniniiccieeiereeeereneeseseeeesenenenees
Comparison of High-Reliability and High-Performance Scenarios

Broker Utility OPtiONnScccueeeeeuieemeriereeieireeneieeenesseseesesese e ssessssensenns
Command Utility Subcommandsceecveurecunineeincneeeeneeeeneesensesenenne
General Command Utility OPtionscccuveemcunireennereennereeeneneeeeneseenenne
Command Utility Subcommands for Broker Managementc..coceevcureuennce
Command Utility Subcommands for Connection Service Management 328
Command Utility Subcommands for Connection Service Management 329
Command Utility Subcommands for Physical Destination Management 330
Command Utility Subcommands for Durable Subscription Management331
Command Utility Subcommands for Transaction Management 332
Command Utility Subcommand for JMX Managementcccveeveeevneereeennces 332
Object Manager SUDCOMMANAScocuiureeeriereeneiieeeeeeieee e 332
ODbject Manager OPLiONSc.c.veeeecereeeecererneeeerseeeeesseseeessessesesessesesessessesessessens 333
Database Manager Subcommandscccveueeeuineererneennerneeeeree e 334
Database Manager Options

User Manager Subcommands

General User Manager Options

Bridge Manager Subcommands for Bridge Managementcccccoeeeeeuneureecnnee 338
Bridge Manager Subcommands for Link Managementceccveeveeevnceneeennees 338
Bridge Manager OPtiONSceueereuiermereuresemeneeenenesensenessesesesesessessessssenne 339
Service Administrator SUbCOMMANSccevueiuiincincicicieirineecc e 340

Service Administrator Options

Broker Connection Properties

Broker Routing and Delivery Propertiesceeeevcrnenererneureernenseeenenn. 346
Broker Properties for Auto-Created Destinationsecceeveeeeerneereeerersceeeenne 348
Broker Properties for Admin-Created Destinationsceeeeuvevreeeenerncereenne 352
Global Broker Persistence PrOPEItYccoveecuniereerneunecrnerneseeennensesessensesenenne 352
Broker Properties for File-Based Persistencecoccovevcerveecunenceeenencereneecunencnnes 353
Broker Properties for File-Based Persistence Using the Transaction Logging

MeChaniSIm ... s 354
Broker Properties for JDBC-Based PersiStencecccoeeeeveererneererrenerenenanns 356
Broker Security PrOPErtiescoveuereeeeeuneuremernieniseseinesesessesessessessesessessesessenne 360

Open Message Queue 4.5 Administration Guide « July 2011

Tables

TABLE 17-10
TABLE 17-11
TABLE 17-12
TABLE 17-13
TABLE 17-14
TABLE 17-15
TABLE 17-16
TABLE 17-17
TABLE 17-18
TABLE 17-19
TABLE 18-1
TABLE 19-1
TABLE 19-2
TABLE 19-3
TABLE 19-4
TABLE 19-5
TABLE 19-6
TABLE 19-7
TABLE 19-8
TABLE 19-9
TABLE 20-1
TABLE 20-2
TABLE 20-3
TABLE 21-1
TABLE 21-2
TABLE 21-3
TABLE 21-4
TABLE 22-1
TABLE 22-2
TABLE 22-3
TABLE 22-4
TABLE 22-5
TABLE 22-6
TABLE 22-7
TABLE 22-8

TABLE A-1

Broker Security Properties for Flat-File Authenticationccccceevevevcureunnnces 363
Broker Security Properties for LDAP Authenticationcc.oeeeveereeevvcuneenences 363
Broker Security Properties for JAAS Authenticationcccoeveevveercereceneenenees 365

Broker Monitoring Properties

Broker Properties for Cluster Configuration ..., 371
Broker Properties for the Bridge Service Managerccccocvieceeneiniuncieniunnns 376
Broker Properties for a JMS Bridge SErvicecocueveuernienernierereererenenenenenns 376
Broker Properties for the STOMP Bridge Servicecocovveeeveunieevcrnenencnncrnennn. 377
Broker Properties for JMX SUPPOTT c..c.c.vucueuiecurereeeireneieieeiseresetsescieesesessesesessesenes 378
Alphabetical List of BroKer Propertiesc.ceoueeurincueureeuneneucenicreeneeeneneneesenenes 381

Physical Destination Properties

Connection Factory Attributes for Connection Handlingcccocoveeevvcuneuences 396
Message Broker Addressing SChemescocveeveueerecrniineernerneenenneeeeenneenenenne 398
Message Broker Address EXamplescoceucureerecunieneeineineeenenneeeenneesesenensesenne 399
Connection Factory Attributes for Client Identificationc.ccceevevevrcureuennee 400
Connection Factory Attributes for Reliability and Flow Controlcccc....... 400
Connection Factory Attributes for Queue Browser and Server Sessions.......... 402
Connection Factory Attributes for Standard Message Properties
Connection Factory Attributes for Message Header Overridescccneunce.
Destination Attributes ...
Resource Adapter PrOPEItiescocveerieueeneeeureneeeinecieieetsesesetseseieesesesseeseseesesees
Managed Connection Factory Propertiesccccvecunerecenerrcernerneeeenerneunenenne
ActivationSpec PIOPErties ...
JVIMIMELTICS .vveveeeieieciecreeteereere ettt e e eresseeaeesseetsessesseensessa e s esesssensessaessesesssensenses
Brokerwide Metrics
Connection Service MEtriCs ..o
Physical Destination MetriCsccceeememriereerniireenenneemenseseme e seseesensenns
JESMF Common Object AtriDULESc.vveeveureeecriirecieireeeereeeeeeeeenesnesenne
JESME-Accessible Message Queue Product Attributescocoeveveerecrncurennne
JESME-Accessible Message Queue Broker Attributesc.ccoevcuvevevcuncunennn.
JESME-Accessible Message Queue Port Mapper Attributesc.ceeeeuveueeee.
JESME- Accessible Message Queue Connection Service Attributes
JESMEF-Accessible Message Queue Destination Attributescccccceevcieniunces
JESME-Accessible Message Queue Persistent Store Attributesccccecuueeee.
JESME-Accessible Message Queue User Repository Attributesc.ceceeeee.

Message Queue Data Locations for Installations from an IPS Image................. 437

Tables

20

TABLE A-2

TABLE A-3
TABLE B-1
TABLE B-2
TABLE C-1

TABLE C-2

TABLE D-1
TABLE E-1

TABLE E-2

Message Queue Data Locations for Installations from Solaris SVR4 Packages

.. 439
Message Queue Data Locations for Installations from Linux RPMs 440
Interface Stability Classification Schemecccccvvvcnereceneniccnenieeeceenne 443
Stability of Message Queue INterfacescveeveeneereeereeneeereeneeeeceneeneenneeseeenens 444

Distinguished Name Information Required for a Self-Signed Certificate 449

Broker Configuration Properties for the httpjms and httpsjms Connection
SEIVICES .vviveteiiteiieteteieteest et e st et te st et e se st b e s et ese st esesessesasseseseesesessesanansenensesan 457

Advantages and Disadvantages of Using an RMI Registry467

Broker Configuration Properties (-0 option)cccccceeee. ... 474
Destination Configuration Properties (-0 option) ...

Open Message Queue 4.5 Administration Guide « July 2011

Examples

EXAMPLE 2-1
EXAMPLE 3-1
EXAMPLE 5-1
EXAMPLE 5-2
EXAMPLE 6-1
EXAMPLE 6-2
EXAMPLE 6-3
EXAMPLE 6-4
EXAMPLE 6-5
EXAMPLE 7-1
EXAMPLE 7-2
EXAMPLE 7-3
EXAMPLE 7-4
EXAMPLE 7-5
EXAMPLE 7-6
EXAMPLE 7-7
EXAMPLE 7-8
EXAMPLE 8-1
EXAMPLE 9-1
EXAMPLE 9-2
EXAMPLE 9-3
EXAMPLE 9-4
EXAMPLE 9-5
EXAMPLE 9-6
EXAMPLE 10-1
EXAMPLE 10-2
EXAMPLE 11-1

EXAMPLE 11-2

Output from Sample APPLICALIONceveeeeereecuierieereireieicineeeeeeereieeeseeeseeneeeeeens 65
Displaying Broker Service Startup OPptionsccceveeecereeererneeeeereeseerseeseensens 75
Broker Information LiStNGc.ccuevevereeeenieneinemersenenensessneesesseesenessessessessessessns 93
Broker Metrics LISHINGcocuiucucuncuecieireiiiiiiseiciseeenaessesssssessssssessessesse s sesssenses 94
Connection Services LiSting ... 101
Connection Service Information LiStingcceeuvereernerrerernerneernerneeenernenneenne 102
Connection Service Metrics LiSting ... 103
Broker Connections LIStING ... 104
Connection Information LIStINGccveeeeeuneuremeiniireenierneineeiseisee e sesseseesenne 104
Wildcard Publisher

Wildcard SUBSCIIDET ... 111
Physical Destination Information LiStingccceccveeuveuveeererneeereneneennenneenenn. 116
Physical Destination Metrics LIStINGccceuvireueuneineucesereennineeesenenenensenens 118
Destination Disk Utilization LIStNGcceveureeeereineerierneineeineineenenneeesenseesesenne 119
Durable Subscription Information LiStingcccceeeeeuneurecrnerrecrnerneernerneeenenne 124
Broker Transactions LIStINGccveureureeurerneceernienienenneeeeenseseeenseseesessensesensenne 125
Transaction Information LiStINGc.ccceeerereuernernererenenneineneesessenenenseneeneees 125
Broker Properties for MySQL Database ..o 132
Viewing Information for a Single USerc.coeuveunivecrnenecrnenccnnenneeeenncenenenne 147

Viewing Information for All Users ...

EXAMPLE 1 oottt e 157
EXAMPLE 2 ottt 157
EXAMIPLE 3 oottt e 157
Connection Services LiSting ... 167
Configuration Listing for a Conventional ClUStercccoucuvivciniiniinccennnn. 181
Configuration Listing for an Enhanced CIUStercccooeeeeunevvcrnierecrnceneennees 182
Addinga Connection FACtOIY ..o 213
Adding a Destination to an LDAP ODbject SOreccveuvevererneeeecrncrneerncrreeene 214

Examples

22

EXAMPLE 11-3
EXAMPLE 11-4
EXAMPLE 11-5
EXAMPLE 11-6
EXAMPLE 11-7
EXAMPLE 11-8
EXAMPLE 11-9
EXAMPLE 11-10
EXAMPLE 11-11
EXAMPLE 11-12
EXAMPLE C-1
EXAMPLE D-1
EXAMPLE D-2
EXAMPLE D-3

EXAMPLE D-4

Adding a Destination to a File-System ODbject Storecccveveerncureeererncenenenne 214
Deleting an Administered ObJEctccocuiiiiiiieineiisisiceceiiees 215
Listing All Administered ObJECtSccocureureeemrerrieererrieerenrereenreeeeeeeesenenene 215
Listing Administered Objects of a Specific TYPecccvureeevcereerecenierererneererennes 216

Viewing Administered Object Information
Modifying an Administered Object’s Attributescccooeeeveunerrevcrnerreernerneeenenn.

Object Manager Command File Syntaxccceveeveeeneneeeenceneeeeceneenecineenenenens
Example Command File ..o secseeseseseeaeaes
Partial Command File ..o
Using a Partial Command Fileccocveiniricniniecnccenceenesee e

Tunnel Servlet Status Report

JMX Service URL When Using an RMI RegIStryccooeveeeueureeercurevreerneerenennns
JMX Service URL When Not Using an RMI Registry

JMX Configuration for Firewall When Not Using a RMI Registry 471
JMX Configuration for Firewall When Using an RMI Registryccocoveuenee. 471

Open Message Queue 4.5 Administration Guide « July 2011

Preface

This Open Message Queue 4.5 Administration Guide provides background and information
needed by system administrators to set up and manage an Open Message Queue messaging
system.

This preface consists of the following sections:

“Who Should Use This Book” on page 23

“Before You Read This Book” on page 23

“How This Book Is Organized” on page 24
“Documentation Conventions” on page 26

“Related Documentation” on page 28
“Documentation, Support, and Training” on page 31
“Third-Party Web Site References” on page 31

Who Should Use This Book

This guide is intended for administrators and application developers who need to perform
Message Queue administrative tasks. A Message Queue administrator is responsible for setting
up and managing a Message Queue messaging system, especially the message broker at the
heart of the system.

Before You Read This Book

Before reading this guide, you should read the Open Message Queue 4.5 Technical Overview to
become familiar with the Message Queue implementation of the Java Message Service
specification, with the components of the Message Queue service, and with the basic process of
developing, deploying, and administering a Message Queue application.

23

Preface

How This Book Is Organized

24

Table P-1 describes the contents of this manual.

TABLEP-1 Book Contents

Chapter/Appendix

Description

PartI, “Introduction to Message Queue Administration”

Chapter 1, “Administrative
Tasks and Tools”

Introduces Message Queue administrative tasks and tools.

Chapter 2, “Quick-Start
Tutorial”

Provides a hands-on tutorial to acquaint you with the Message Queue
Administration Console.

Part IT, “Administrative Tasks”

Chapter 3, “Starting Brokers and
Clients”

Describes how to start the Message Queue broker and clients.

Chapter 4, “Configuring a
Broker”

Describes how configuration properties are set and read, and gives an
introduction to the configurable aspects of the broker.

Chapter 5, “Managing a Broker

Describes broker management tasks.

Chapter 6, “Configuring and
Managing Connection Services”

Describes configuration and management tasks relating to the broker's
connection services.

Chapter 7, “Managing Message
Delivery”

Describes how to create and manage physical destinations and manage
other aspects of message delivery.

Chapter 8, “Configuring
Persistence Services”

Describes how to set up a file-based or JDBC-based data store to perform
persistence services.

Chapter 9, “Configuring and
Managing Security Services”

Describes security-related tasks, such as managing password files,
authentication, authorization, and encryption.

Chapter 10, “Configuring and
Managing Broker Clusters”

Describes how to set up and manage a cluster of Message Queue brokers.

Chapter 11, “Managing
Administered Objects”

Describes the object store and shows how to perform tasks related to
administered objects (connection factories and destinations).

Chapter 12, “Configuring and
Managing Bridge Services”

Describes how to set up and manage The JMS and STOMP bridge services.

Chapter 13, “Monitoring Broker
Operations”

Describes how to set up and use Message Queue monitoring facilities.

Chapter 14, “Analyzing and
Tuning a Message Service”

Describes techniques for analyzing and optimizing message service
performance.

Open Message Queue 4.5 Administration Guide « July 2011

Preface

TABLEP-1 Book Contents

(Continued)

Chapter/Appendix

Description

Chapter 15, “Troubleshooting”

Provides suggestions for determining the cause of common Message Queue
problems and the actions you can take to resolve them.

Part III, “Reference”

Chapter 16, “Command Line
Reference”

Provides syntax and descriptions for Message Queue command line utilities.

Chapter 17, “Broker Properties
Reference”

Describes the configuration properties of Message Queue message brokers.

Chapter 18, “Physical
Destination Property
Reference”

Describes the configuration properties of physical destinations.

Chapter 19, “Administered
Object Attribute Reference”

Describes the configuration properties of administered objects (connection
factories and destinations).

Chapter 20, “IJMS Resource
Adapter Property Reference”

Describes the configuration properties of the Message Queue Resource
Adapter for use with an application server.

Chapter 21, “Metrics
Information Reference”

Describes the metric information that a Message Queue message broker can
provide for monitoring, turning, and diagnostic purposes. .

Chapter 22, “JES Monitoring
Framework Reference”

Lists Message Queue attributes that are accessible by means of the Java
Enterprise System Monitoring Framework (JESMEF).

PartIV, “Appendixes”

Appendix A,
“Distribution-Specific Locations
of Message Queue Data”

Lists the locations of Message Queue files and provides information about
the location of Message Queue files in previous releases.

Appendix B, “Stability of
Message Queue Interfaces”

Describes the stability of various Message Queue interfaces.

Appendix C, “HTTP/HTTPS
Support”

Describes how to set up and use the Hypertext Transfer Protocol (HTTP)
for Message Queue communication.

Appendix D, “JMX Support”

Describes Message Queue’s administrative support for client programs
using the Java Management Extensions (JMX) application programming
interface

Appendix E, “Frequently Used
Command Utility Commands”

Lists some frequently used Message Queue Command utility (imgcmd)
commands.

25

Preface

Documentation Conventions

26

This section describes the following conventions used in Message Queue documentation:

“Typographic Conventions” on page 26
“Symbol Conventions” on page 26
“Shell Prompt Conventions” on page 27

u
u
u
= “Directory Variable Conventions” on page 27

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories, ~Edit your . login file.

and onscreen computer output
P P Use 1s -a to list all files.

machine name% you have mail.

AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output
Password:
aabbecl23 Placeholder: replace with a real name or value ~ The command to remove a file is rm
filename.
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.
emphasized

A cache s a copy that is stored locally.
Do not save the file.

Note: Some emphasized items appear bold
online.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-3 Symbol Conventions

Symbol Description Example Meaning
[1 Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

Open Message Queue 4.5 Administration Guide « July 2011

Preface

TABLEP-3 Symbol Conventions (Continued)

Symbol Description Example Meaning

{1} Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${ } Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun. javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

- Indicates menu item File - New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

Shell Prompt Conventions

The following table shows the conventions used in Message Queue documentation for the
default UNIX system prompt and superuser prompt for the C shell, Bourne shell, Korn shell,
and for the Windows operating system.

TABLEP-4 Shell Prompt Conventions

Shell Prompt

C shell on UNIX, Linux, or AIX machine-namess
C shell superuser on UNIX, Linux, or AIX machine-name#
Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Directory Variable Conventions

Message Queue documentation makes use of three directory variables; two of which represent
environment variables needed by Message Queue. (How you set the environment variables
varies from platform to platform.)

27

Preface

The following table describes the directory variables that might be found in this book and how
they are used. Some of these variables refer to the directory mqlnstallHome, which is the
directory where Message Queue is installed to when using the installer or unzipped to when
using a zip-based distribution.

Note - In this book, directory variables are shown without platform-specific environment
variable notation or syntax (such as $IMQ_HOME on UNIX). Non-platform-specific path names
use UNIX directory separator (/) notation.

TABLEP-5 Directory Variable Conventions

Variable

Description

IMQ_HOME

IMQ_VARHOME

IMQ_JAVAHOME

The Message Queue home directory:

® For installations of Message Queue bundled with GlassFish Server, IMQ_HOME is
as-install-parent/mq, where as-install-parent is the parent directory of the GlassFish
Server base installation directory, glassfish3 by default.

® For installations of Open Message Queue, IMQ_HOME is mqlnstallHome/mq.

The directory in which Message Queue temporary or dynamically created configuration and

data files are stored; IMQ_VARHOME can be explicitly set as an environment variable to point to

any directory or will default as described below:

® For installations of Message Queue bundled with GlassFish Server, IMQ_VARHOME
defaults to as-install-parent/glassfish/domains/domainl/imq.

® For installations of Open Message Queue, IMQ_HOME defaults to mglnstallHome/var/mq.

An environment variable that points to the location of the Java runtime environment (JRE)
required by Message Queue executable files. By default, Message Queue looks for and uses
the latest JDK, but you can optionally set the value of IMQ_JAVAHOME to wherever the
preferred JRE resides.

Related Documentation

28

The information resources listed in this section provide further information about Message
Queue in addition to that contained in this manual. The section covers the following resources:

= “Message Queue Documentation Set” on page 29

= “Java Message Service (JMS) Specification” on page 29
= “JavaDoc” on page 30

= “Example Client Applications” on page 30

= “Online Help” on page 30

Open Message Queue 4.5 Administration Guide « July 2011

Preface

Message Queue Documentation Set

The documents that constitute the Message Queue documentation set are listed in the following
table in the order in which you might normally use them. These documents are available

through the Open Server documentation web site at

http://www.oracle.com/technetwork/indexes/documentation/index.html

TABLEP-6 Message Queue Documentation Set

Document

Audience

Description

Open Message Queue 4.5 Technical
Overview

Open Message Queue 4.5 Release
Notes

Open Message Queue 4.5
Administration Guide

Open Message Queue 4.5
Developer’s Guide for Java Clients

Open Message Queue 4.5
Developer’s Guide for C Clients

Open Message Queue 4.5
Developer’s Guide for JMX Clients

Developers and
administrators

Developers and
administrators

Administrators, also
recommended for
developers

Developers

Developers

Administrators

Describes Message Queue concepts, features,
and components.

Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes.

Provides background and information needed
to perform administration tasks using Message
Queue administration tools.

Provides a quick-start tutorial and
programming information for developers of
Java client programs using the Message Queue
implementation of the JMS or SOAP/JAXM
APIs.

Provides programming and reference
documentation for developers of C client
programs using the Message Queue C
implementation of the JMS API (C-API).

Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Java Message Service (JMS) Specification

The Message Queue message service conforms to the Java Message Service (JMS) application
programming interface, described in the Java Message Service Specification. This document can

be found at the URL

http://www.oracle.com/technetwork/java/jms/index.html

29

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Preface

30

JavaDoc

JMS and Message Queue API documentation in JavaDoc format is included in Message Queue
installations at IMQ_HOME/javadoc/index.html. This documentation can be viewed in any
HTML browser. It includes standard JMS API documentation as well as Message
Queue-specific APIs.

Example Client Applications

Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications

Example Java client applications are included in Message Queue installations at
IMQ_HOME/examples. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example C Client Programs

Example C client applications are included in Message Queue installations at
IMQ_HOME/examples/C. See the README files located in this directory and its subdirectories for
descriptive information about the example applications.

Example JMX Client Programs

Example Java Management Extensions (JMX) client applications are included in Message
Queue installations at IMQ_HOME/examples/jmx. See the README files located in this directory
and its subdirectories for descriptive information about the example applications.

Online Help

Online help is available for the Message Queue command line utilities; for details, see
Chapter 16, “Command Line Reference” for details. The Message Queue graphical user
interface (GUI) administration tool, the Administration Console, also includes a
context-sensitive help facility; see the section “Administration Console Online Help” in
Chapter 2, “Quick-Start Tutorial”.

Open Message Queue 4.5 Administration Guide « July 2011

Preface

Documentation, Support, and Training

The Oracle web site provides information about the following additional resources:

» Documentation (http://www.oracle.com/technetwork/indexes/documentation/
index.html)

= Support (http://www.oracle.com/us/support/044752.html)

= Training (http://education.oracle.com/pls/web_prod-plg-dad/
db_pages.getpage?page id=315)

Third-Party Web Site References

Where relevant, this manual refers to third-party URLSs that provide additional, related
information.

Note - Oracle is not responsible for the availability of third-party Web sites mentioned in this
manual. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials available on or through such sites or resources. Oracle will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with the use of or reliance on any such content, goods, or services available on or
through such sites or resources.

31

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/us/support/044752.html
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315

32

PART |

Introduction to Message Queue
Administration

= Chapter 1, “Administrative Tasks and Tools”
= Chapter 2, “Quick-Start Tutorial”

33

34

L K R 4 CHAPTER 1

Administrative Tasks and Tools

This chapter provides an overview of Open Message Queue administrative tasks and the tools
for performing them, focusing on common features of the command line administration
utilities. It consists of the following sections:

= “Administrative Tasks” on page 35
= “Administration Tools” on page 38

Administrative Tasks

The typical administrative tasks to be performed depend on the nature of the environment in
which you are running Message Queue. The demands of a software development environment
in which Message Queue applications are being developed and tested are different from those of
a production environment in which such applications are deployed to accomplish useful work.
The following sections summarize the typical administrative requirements of these two
different types of environment.

Administration in a Development Environment

In a development environment, the emphasis is on flexibility. The Message Queue message
service is needed principally for testing applications under development. Administration is
generally minimal, with programmers often administering their own systems. Such
environments are typically distinguished by the following characteristics:

= Simple startup of brokers for use in testing

= Administered objects instantiated in client code rather than created administratively
= Auto-created destinations

= File-system object store

= File-based persistence

35

Administrative Tasks

36

= File-based user repository

= No master broker in multiple-broker clusters

Administration in a Production Environment

In a production environment in which applications must be reliably deployed and run,
administration is more important. Administrative tasks to be performed depend on the
complexity of the messaging system and of the applications it must support. Such tasks can be
classified into two general categories: setup operations and maintenance operations.

Setup Operations
Administrative setup operations in a production environment typically include some or all of

the following:

Administrator security

= Setting the password for the default administrative user (admin) (“Changing a User’s
Password” on page 145)

= Controlling individual or group access to the administrative connection service
(“Authorization Rules for Connection Services” on page 159) and the dead message queue
(“Authorization Rules for Physical Destinations” on page 160)

= Regulating administrative group access to a file-based or Lightweight Directory Access
Protocol (LDAP) user repository (“User Groups and Status” on page 142, “Using an LDAP
User Repository” on page 147)

General security

= Managing the contents of a file-based user repository (“Using the User Manager Utility” on
page 143) or configuring the broker to use an existing LDAP user repository (“Using an
LDAP User Repository” on page 147)

= Controlling the operations that individual users or groups are authorized to perform (“User
Authorization” on page 155)

= Setting up encryption services using the Secure Socket Layer (SSL) (“Message Encryption”
on page 161)
Administered objects

= Setting up and configuring an LDAP object store (“LDAP Server Object Stores” on
page 201)

= Creating connection factories and destinations (“Adding Administered Objects” on
page 213)

Broker clusters

Open Message Queue 4.5 Administration Guide « July 2011

Administrative Tasks

= Creating a cluster configuration file (“The Cluster Configuration File” on page 176)
= Designating a master broker (“Managing a Conventional Cluster's Configuration Change
Record” on page 191)

Persistence

= Configuring a broker to use a persistent store (Chapter 8, “Configuring Persistence
Services”).

Memory management

= Setting a destination’s configuration properties to optimize its memory usage (“Updating
Physical Destination Properties” on page 114, Chapter 18, “Physical Destination Property
Reference”)

Maintenance Operations

Because application performance, reliability, and security are at a premium in production
environments, message service resources must be tightly monitored and controlled through
ongoing administrative maintenance operations, including the following:

Broker administration and tuning

= Using broker metrics to tune and reconfigure a broker (Chapter 14, “Analyzing and Tuning
a Message Service”)

= Managing broker memory resources (“Managing Broker System-Wide Memory” on
page 121)

= Creating and managing broker clusters to balance message load (Chapter 10, “Configuring
and Managing Broker Clusters”)

= Recovering failed brokers (“Starting Brokers” on page 70).

Administered objects

= Adjusting connection factory attributes to ensure the correct behavior of client applications
(“Connection Factory Attributes” on page 204)

= Monitoring and managing physical destinations (“Configuring and Managing Physical
Destinations” on page 107)

= Controlling user access to destinations (“Authorization Rules for Physical Destinations” on
page 160)
Client management

= Monitoring and managing durable subscriptions (see “Managing Durable Subscriptions”
on page 123).
= Monitoring and managing transactions (see “Managing Transactions” on page 124).

Chapter 1 « Administrative Tasks and Tools 37

Administration Tools

Administration Tools

38

This section describes the tools you use to configure and manageMessage Queue broker
services. The tools fall into two categories:

= “Built-in Administration Tools” on page 38
= “IMX-Based Administration” on page 40

Built-in Administration Tools

Message Queue's built-in administration tools include both command line and GUI tools:

= “Command Line Utilities” on page 38
= “Administration Console” on page 39

Command Line Utilities

All Message Queue utilities are accessible via a command line interface. Utility commands share
common formats, syntax conventions, and options. These utilities allow you to perform various
administrative tasks, as noted below, and therefore can require different administrative
permissions:

= The Broker utility (imgbrokerd) starts up brokers and specifies their configuration
properties, including connecting them together into a cluster. Permissions: User account
that initially started the broker.

= The Command utility (imgcmd) controls brokers and their resources and manages physical
destinations. Permissions: Message Queue admin user account.

= The Object Manager utility (imqobjmgr) manages provider-independent administered
objects in an object store accessible via the Java Naming and Directory Interface (JNDI).
Permissions: Object store (flat-file or LDAP server) access account.

= The Database Manager utility (imqdbmgr) creates and manages databases for persistent
storage that conform to the Java Database Connectivity (JDBC) standard. Permissions:
JDBC database manager account.

= The User Manager utility (imqusermgr) populates a file-based user repository for user
authentication and authorization. Permissions: user account that initially started the broker.

= The Service Administrator utility (imgsvcadmin) installs and manages a broker asa
Windows service. Permissions: Administrator.

= The Key Tool utility (imgkeytool) generates self-signed certificates for Secure Socket Layer
(SSL) authentication. Permissions: root user (Solaris and Linux platforms) or Administrator
(Windows platform).

The executable files for the above command line utilities are in the IMQ_HOME/bin directory.

Open Message Queue 4.5 Administration Guide « July 2011

Administration Tools

See Chapter 16, “Command Line Reference,” for detailed information on the use of these
utilities.

Administration Console

The Message Queue Administration Console combines some of the capabilities of the
Command and Object Manager utilities. You can use it to perform the following tasks:

= Connect to and control a broker remotely
= Create and manage physical destinations
= Create and manage administered objects in a JNDI object store

However, you cannot use the Administration Console to perform such tasks as starting up a
broker, creating broker clusters, managing a JDBC database or a user repository, installing a
broker as a Windows service, or generating SSL certificates. For these, you need the other
command line utilities (Broker, Database Manager, User Manager, Service Administrator, and
Key Tool), which cannot operate remotely and must be run on the same host as the broker they
manage (see Figure 1-1).

FIGURE 1-1 Local and Remote Administration Utilities

Remote
Admin Host

Broker Host

Administration
Console

il

imgcmd

imgbrokerd imgkeytool

L

imgobjmgr

imqusermgr imgdbmgr

imgsvcadmin

(Windows only)

See Chapter 2, “Quick-Start Tutorial,” for a brief, hands-on introduction to the Administration
Console. More detailed information on its use is available through its own help facility.

Chapter 1 « Administrative Tasks and Tools 39

Administration Tools

40

JMX-Based Administration

To serve customers who need a standard programmatic means to monitor and access the
broker, Message Queue also supports the Java Management Extensions (JMX) architecture,
which allows a Java application to manage broker resources programmatically.

= Resources include everything that you can manipulate using the Command utility (imgcmd)
and the Message Queue Admin Console: the broker, connection services, connections,
destinations, durable subscribers, transactions, and so on.

= Management includes the ability to dynamically configure and monitor resources, and the
ability to obtain notifications about state changes and error conditions.

JMX is the Java standard for building management applications. Message Queue is based on the
JMX 1.2 specification, which is part of JDK 1.5.

For information on the broker's JMX infrastructure and how to configure the broker to support
JMX client applications,, see Appendix D, “JMX Support.”

To manage a Message Queue broker using the JMX architecture, see Open Message Queue 4.5
Developer’s Guide for JMX Clients.

Open Message Queue 4.5 Administration Guide « July 2011

CHAPTER 2

Quick-Start Tutorial

This quick-start tutorial provides a brief introduction to Message Queue administration by
guiding you through some basic administrative tasks using the Message Queue Administration
Console, a graphical interface for administering a message broker and object store. The chapter
consists of the following sections:

“Starting the Administration Console” on page 42
“Administration Console Online Help” on page 44
“Working With Brokers” on page 45

“Working With Physical Destinations” on page 50
= “Working With Object Stores” on page 55

= “Working With Administered Objects” on page 58
“Running the Sample Application” on page 63

The tutorial sets up the physical destinations and administered objects needed to run a simple
JMS-compliant application, HelloWorldMessageINDI. The application is available in the
helloworld subdirectory of the example applications directory, IMQ_HOME/examples. In the last
part of the tutorial, you will run this application.

Note - You must have the Message Queue product installed in order to follow the tutorial.

The tutorial is only a basic introduction; it is not a substitute for reading the documentation. By
following the steps described in the tutorial, you will learn how to

= Starta Message Queue broker

= Connect to a broker and use the Administration Console to manage it

= Create physical destinations on the broker

= Create an object store and use the Administration Console to connect to it
= Addadministered objects to the object store and view their properties

41

Starting the Administration Console

Note - The instructions given in this tutorial are specific to the Windows platform. Where
necessary, supplemental notes are added for users of other platforms.

Some administrative tasks cannot be accomplished using the Administration Console. You
must use command line utilities to perform such tasks as the following:

Start up a broker

Create a broker cluster

Configure certain physical destination properties
Manage a JDBC database for persistent storage
Manage a user repository

Install a broker as a Windows service

Generate SSL certificates

All of these tasks are covered in later chapters of this manual.

Starting the Administration Console

42

To start the Administration Console, enter the command:

IMQ HOME/bin/imgadmin

You may need to wait a few seconds before the Administration Console window is displayed
(see Figure 2-1).

Open Message Queue 4.5 Administration Guide « July 2011

Starting the Administration Console

FIGURE2-1 Administration Console Window
ESun Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help

@1 Object Stores :
(34 Brokers i
S
Java
5 va® Sy Viessage Q
Visit sun.com
T
Sun Javadtm) System Message Queue Administration Console

Take a few seconds to examine the Administration Console window. It has a menu bar at the
top, a tool bar just below it, a navigation pane to the left, a result pane to the right (now
displaying graphics identifying the Open Message Queue product), and a status pane at the
bottom.

Note — As you work with the Administration Console, you can use the Refresh command on the

View menu to update the visual display of any element or group of elements, such as a list of
brokers or object stores.

Chapter2 - Quick-Start Tutorial

43

Administration Console Online Help

Administration Console Online Help

The Administration Console provides a help facility containing complete information about
how to use the Console to perform administrative tasks. To use the help facility, pull down the
Help menu at the right end of the menu bar and choose Overview. The Administration
Console’s Help window (Figure 2-2) will be displayed.

FIGURE2-2 Administration Console Help Window

un Java{tm) System Message Queue Administration Console Help i |EI|1|

(3]

) .

Message Queue Administration §§ OverVIeW
[overview
Message Queue Object Store M You use the contrals in the administration consale to communicate with
D Add Object Store ane or mare Message Queue brokers and ohject stores..
[} object Stare Properties The administration console is divided into five panes, as shown below.
D ConnectiDisconnect Ohject 4|4
[} Add Destination Object i !
D Destination Object Propertie ooo oo 2
3 Add Connection Factory Obje |
3 connection Factory Ohject P 3 a
Message Queue Broker Manage | -
[add Broker :
D Broker Praperies
D ConnectiDisconnect Broker 5
[QuerdUpdate Broker
[y add Broker Destination ® 1-menu bar
[Destination Properties ® 2-tool bar
D Service Propetties # 3 - navigational pane

» 4-results pane

5- status pane
[[» 55 fou use menus in the menu bar oricons in the tool bar to act unon il

The Help window’s navigation pane, on the left, organizes topics into three areas: Message
Queue Administration Console, Message Queue Object Store Management, and Message
Queue Broker Management. Within each area are files and folders. The folders provide help for
dialog boxes containing multiple tabs, the files for simple dialog boxes or individual tabs. When
you select an item in the navigation pane, the result pane to the right shows the contents of that
item. With the Overview item chosen, the result pane displays a skeletal view of the
Administration Console window identifying each of the window’s panes, as shown in the figure.

Your first task with the Administration Console will be to create a reference to a broker. Before
you start, however, check the Help window for information. Click the Add Broker item in the
Help window’s navigation pane; the contents of the result pane will change to show text
explaining what it means to add a broker and describing the use of each field in the Add Broker
dialog box. Read through the help text, then close the Help window.

44 Open Message Queue 4.5 Administration Guide « July 2011

Working With Brokers

Working With Brokers

This section describes how to use the Administration Console to connect to and manage
message brokers.

Starting a Broker
You cannot start a broker using the Administration Console. Instead, enter the command:
IMQ HOME/bin/imgbrokerd

If you used the Windows Start menu, the command window will appear, indicating that the
broker is ready by displaying lines like the following:

Loading persistent data...
Broker “imgbroker@stan:7676 ready.

Reactivate the Administration Console window. You are now ready to add the broker to the
Console and connect to it. You do not have to start the broker before adding a reference to it in
the Administration Console, but you must start it before you can connect to it.

Adding a Broker to the Administration Console

Adding a broker creates a reference to that broker in the Administration Console. After adding
the broker, you can connect to it.

V¥ To Add a Broker to the Administration Console

1 Click on the Brokers item in the Administration Console window’s navigation pane and choose
Add Broker from the Actions menu.

Alternatively, you can right-click on Brokers and choose Add Broker from the pop-up context
menu. In either case, the Add Broker dialog box (Figure 2-3) will appear.

Chapter2 - Quick-Start Tutorial 45

Working With Brokers

FIGURE2-3 Add Broker Dialog Box

Broker Label: |Elr0 kerLahel |

Host: |localhost
Primary Port: ’T(ﬁ?ﬁi
Username: ’W
P @]
Warning: Authentication information you supply with

this dialog is not secure. You will be prompted for this
information later if you do not enter it now.

| ok || ResetToDefauts || cancel || Help |

2 Enteraname for the broker in the Broker Label field.
This provides a label that identifies the broker in the Administration Console.
Note the default host name (localhost) and primary port (7676) specified in the dialog box.

These are the values you must specify later, when you configure the connection factory that the
client will use to create connections to this broker.

For this exercise, type the name MyBroker into the Broker Label field. Leave the Password field
blank; your password will be more secure if you specify it at connection time.

3 Click OKto add the broker and dismiss the dialog box.

The new broker will appear under Brokers in the navigation pane, as shown in Figure 2-4. The
red X over the broker’s icon indicates that it is not currently connected to the Administration
Console.

46 Open Message Queue 4.5 Administration Guide « July 2011

Working With Brokers

FIGURE 2-4 Broker Displayed in Administration Console Window

ﬂSUn Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help

9 [Object Stores

Broker Label | Broker Host | Frimary Fort | Connection Status | =

>

¢ (3% MyObjectStare " |MtyBraker llacalhast |7676 |Disconnected
(@ Destinations ;
f@ Connection Factories §§
¢ [Brokers :
s ﬁ hyBroker
Services
0§ Destinations

Once you have added a broker, you can use the Properties command on the Actions menu (or
the pop-up context menu) to display a Broker Properties dialog box, similar to the Add Broker
dialog shown in “Adding a Broker to the Administration Console” on page 45, to view or
modify any of its properties.

Connecting to a Broker

Now that you have added a broker to the Administration Console, you can proceed to connect
toit.

To Connect to a Broker

Click on the broker’s name in the Administration Console window’s navigation pane and choose
Connect to Broker from the Actions menu.

Alternatively, you can right-click on the broker’s name and choose Connect to Broker from the
pop-up context menu. In either case, the Connect to Broker dialog box (Figure 2-5) will
appear.

Chapter2 - Quick-Start Tutorial 47

Working With Brokers

48

FIGURE2-5 Connect to Broker Dialog Box

44 Connect to Broker

Username: [admin |
p d: | |

Enter the user name and password with which to connect to the broker.

The dialog box initially displays the default user name, admin . In a real-world environment, you
should establish secure user names and passwords as soon as possible (see “User
Authentication” on page 141); for this exercise, simply use the default value.

The password associated with the default user name is also admin; type it into the Password field
in the dialog box. This will connect you to the broker with administrative privileges.

Click OK to connect to the broker and dismiss the dialog box.

Once you have connected to the broker, you can use the commands on the Actions menu (or
the context menu) to perform the following operations on a selected broker:

= Pause Broker temporarily suspends the operation of a running broker.

= Resume Broker resumes the operation of a paused broker.

= Restart Broker reinitializes and restarts a broker.

= Shut Down Broker terminates the operation of a broker.

= Query/Update Broker displays or modifies a broker’s configuration properties.

= Disconnect from Broker terminates the connection between a broker and the
Administration Console.

Viewing Connection Services

A broker is distinguished by the connection services it provides and the physical destinations it
supports.

To View Available Connection Services

Select Services under the broker’s name in the Administration Console window’s navigation
pane.

A list of the available services will appear in the result pane (see Figure 2-6), showing the name,
port number, and current state of each service.

Open Message Queue 4.5 Administration Guide « July 2011

Working With Brokers

2

FIGURE2-6 Viewing Connection Services

E"’jSun Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help
B i > 2.2
@1 Object Stores 1 Semvice Name Port Mumber Service State |~
@ [Brokers ’ ims 1027 {dynarmic) RUMMIMNG
@ ﬁ MyBroker “Jadmin 1028 {dynamic) RUMMING
=) “|sslims dynamic UNKMNOWN
@' Destinations §§ hitpims - LIM MO
Ahttpsims - LIMEM O
ssladmin dynamic LIMKMOW =
Sun Javadtm) System Message Queue Administration Console H
Successfully connected to the braker yBraker', -

Select a service by clicking on its name in the result pane.

For this exercise, select the name jms.

Choose Properties from the Actions menu.

The Service Properties dialog box (Figure 2-7) will appear. You can use this dialog box to assign
the service a static port number and to change the minimum and maximum number of threads

allocated for it.

FIGURE2-7 Service Properties Dialog Box

EﬂSErvice Properties

Service Name: jms
Port Number: @ pynamic: 3043

) Static: |

Service State: RUNNING

Current Humber of Allocated Threads: 0
Current Humber of Connections: 0

Min Number of Threads: [10 |
Max Number of Threads: [1000 |

| 0K || Cancel || Help |

For this exercise, do not change any of the connection service’s properties.

Click OK to accept the new property values and dismiss the dialog box.

The Actions menu also contains commands for pausing and resuming a service. If you select the
admin service and pull down the Actions menu, however, you will see that the Pause Service
command is disabled. This is because the admin service is the Administration Console’s link to
the broker: if you paused it, you would no longer be able to access the broker.

Chapter2 - Quick-Start Tutorial

49

Working With Physical Destinations

Working With Physical Destinations

A physical destination is a location on a message broker where messages received from a
message producer are held for later delivery to one or more message consumers. Destinations
are of two kinds, depending on the messaging domain in use: queues (point-to-point domain)
and topics (publish/subscribe domain). See the Message Queue Technical Overview for further
discussion of messaging domains and the destinations associated with them.

Creating a Physical Destination

By default, message brokers are configured to create new physical destinations automatically
whenever a message producer or consumer attempts to access a nonexistent destination. Such
auto-created destinations are convenient to use while testing client code in a software
development environment. In a production setting, however, it is advisable to disable the
automatic creation of destinations and instead require all destinations to be created explicitly by
an administrator. The following procedure shows how to add such an admin-created
destination to a broker.

¥ To Add a Physical Destination to a Broker

1 Clickon the Destinations item under the broker’s name in the Administration Console window’s
navigation pane and choose Add Broker Destination from the Actions menu.
Alternatively, you can right-click on Destinations and choose Add Broker Destination from the
pop-up context menu. In either case, the Add Broker Destination dialog box (Figure 2-8) will
appear.

50 Open Message Queue 4.5 Administration Guide « July 2011

Working With Physical Destinations

2

FIGURE2-8 Add Broker Destination Dialog Box

E;‘]ndd Broker Destination x|

Destination Name:

Destination Type:

® Queue
2 Topic

Max Number of Messages:
(@ Unlimited

o}
Mazx Total Message Bytes:

(@ Unlimited

© fres -]
Mazx Bytes per Message:

(@ Unlimited

© res 1]

Mazx Humber of Producers:
2 Unlimited
w100

Mazx Humber of Active Consumers:
2 Unlimited

w1

Mazx Number of Backup Consumers:
2 Unlimited

(O8]

| ok || ResetToefauts || cancel || wew |

Enter a name for the physical destination in the Destination Name field.

Note the name that you assign to the destination; you will need it later when you create an

administered object corresponding to this physical destination.

For this exercise, type in the name MyQueueDest.

Select the Queue or Topic radio button to specify the type of destination to create.

For this exercise, select Queue if it is not already selected.

Click OK to add the physical destination and dismiss the dialog box.

The new destination will appear in the result pane.

Viewing Physical Destination Properties

You can use the Properties command on the Administration Console’s Actions menu to view or
modify the properties of a physical destination.

Chapter2 « Quick-Start Tutorial

51

Working With Physical Destinations

52

¥ ToView or Modify the Properties of a Physical Destination

1 Select Destinations under the broker’s name in the Administration Console window’s
navigation pane.

A list of the available physical destinations will appear in the result pane, showing the name,
type, and current state of each destination.

2 Selectaphysical destination by clicking on its name in the result pane.

3 Choose Properties from the Actions menu.

The Broker Destination Properties dialog box (Figure 2-9) will appear, showing current status
and configuration information about the selected physical destination. You can use this dialog
box to change various configuration properties, such as the maximum number of messages,
producers, and consumers that the destination can accommodate.

Open Message Queue 4.5 Administration Guide « July 2011

Working With Physical Destinations

FIGURE2-9 Broker Destination Properties Dialog Box

EﬂBroker Destination Properties

Basic | Durable Subscriptions |

Destination Name: MyQueueDest
Destination Type: Queue
Destination State: RUNNING

Current Number of Produc:
Current Number of Active C

Current Humber of Messages: 0
Current Total Message Bytes: 0 ytes

ers: 0
s: 0

Current Humber of Backup C:

s: 0

Mazx Number of Messages

Mazx Total Message Bytes:

Mazx Bytes per Message:

Mazx Number of Producers:

Max of Active C

Mazx Number of Backup Consumers:

: @ Unlimited

(=]
: @ Unlimited

=]
: @ Unlimited

=]
* (O Unlimited

®hoo |
* (O Unlimited

o]
* (2 Unlimited

|0

fores [+]
fores [+]

Limit Behavior: [REJECT_NEWEST

|v|

Use Dead Message Queue:

| 0K || Cancel || Help |

For this exercise, do not change any of the destination’s properties.

For topic destinations, the Broker Destination Properties dialog box contains an additional tab,
Durable Subscriptions. Clicking on this tab displays the Durable Subscriptions panel
(Figure 2-10), listing information about all durable subscriptions currently associated with the

given topic.

Chapter2 - Quick-Start Tutorial

53

Working With Physical Destinations

54

FIGURE2-10 Durable Subscriptions Panel

Basic rDurahIe Subscriptions |
Durable Sub. Mame | Client ID [Mumber of Messaged _Durable Sub. State |
| 0K || Cancel || Help |
E.

You can use the Durable Subscriptions panel’s Purge and Delete buttons to

= Purge all pending messages associated with a durable subscription
= Remove a durable subscription from the topic

The Durable Subscriptions tab is disabled for queue destinations.

Click OK to accept the new property values and dismiss the dialog box.

Purging Messages From a Physical Destination

Purging messages from a physical destination removes all pending messages associated with the
destination, leaving the destination empty.

To Purge Messages From a Physical Destination

Select Destinations under the broker’s name in the Administration Console window’s
navigation pane.

A list of the available physical destinations will appear in the result pane, showing the name,
type, and current state of each destination.

Select a destination by clicking on its name in the result pane.

Choose Purge Messages from the Actions menu.

A confirmation dialog box will appear, asking you to confirm that you wish to proceed with the
operation.

Click Yes to confirm the operation and dismiss the confirmation dialog.

Deleting a Physical Destination

Deleting a destination purges all of its messages and then destroys the destination itself,
removing it permanently from the broker to which it belongs.

Open Message Queue 4.5 Administration Guide « July 2011

Working With Object Stores

V¥ To Delete a Physical Destination

1 Select Destinations under the broker’s name in the Administration Console window’s
navigation pane.

A list of the available destinations will appear in the result pane, showing the name, type, and
current state of each destination.

2 Selectadestination by clicking on its name in the result pane.

3 Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to proceed with the
operation.

4 ClickYes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the destination MyQueueDest that you created earlier; instead,
click No to dismiss the confirmation dialog without performing the delete operation.

Working With Object Stores

An object store is used to store Message Queue administered objects, which encapsulate
implementation and configuration information specific to a particular Message Queue
provider. An object store can be either a Lightweight Directory Access Protocol (LDAP)
directory server or a directory in the local file system.

Although it is possible to instantiate and configure administered objects directly from within a
client application’s code, it is generally preferable to have an administrator create and configure
these objects and store them in an object store, where client applications can access them using
the Java Naming and Directory Interface (JNDI). This allows the client code itself to remain
provider-independent.

Adding an Object Store

Although the Administration Console allows you to manage an object store, you cannot use it
to create one; the LDAP server or file-system directory that will serve as the object store must
already exist ahead of time. You can then add this existing object store to the Administration
Console, creating a reference to it that you can use to operate on it from within the Console.

Chapter2 - Quick-Start Tutorial 55

Working With Object Stores

Note - The sample application used in this chapter assumes that the object store is held in a
directory named Temp on the C drive. If you do not already have a folder named Temp on your C
drive, create one before proceeding with the following exercise. (On non-Windows platforms,
you can use the /tmp directory, which should already exist.)

V¥ To Add an Object Store to the Administration Console

1 Click onthe Object Stores item in the Administration Console window’s navigation pane and
choose Add Object Store from the Actions menu.

Alternatively, you can right-click on Object Stores and choose Add Object Store from the
pop-up context menu. In either case, the Add Object Store dialog box (Figure 2-11) will appear.

FIGURE2-11 Add Object Store Dialog Box

P4 add Dbject Store X

Object Store Label: |

JNDI Haming Service Properties:

Hame: | java.naming.factory.initial - |

Value: | |

Marne | Walue I o

Warning: Authentication information you supply with this dialog is not secure. You will he
prompted for this information later if you do not enter it now.

| 0K || Clear || Cancel || Help |

2 Enter a name for the object store in the Object Store Label field.

This provides a label that identifies the object store in the Administration Console.

For this exercise, type in the name MyObjectStore.
3 Enterthe JNDI attribute values to be used for looking up administered objects:
a. Select the name of the attribute you wish to specify from the Name pull-down menu.

b. Type the value of the attribute into the Value field.

56 Open Message Queue 4.5 Administration Guide « July 2011

Working With Object Stores

¢. Clickthe Add button to add the specified attribute value.

The property and its value will appear in the property summary pane.

Repeat steps “Adding an Object Store” on page 55 to “Adding an Object Store” on page 55
for as many attributes as you need to set.

For this exercise, set the java.naming. factory.initial attribute to
com.sun.jndi.fscontext.RefFSContextFactory

and the java.naming.provider.url attribute to

file:///C:/Temp

(or file:///tmp on the Solaris or Linux platforms). These are the only attributes you need
to set for a file-system object store; see “LDAP Server Object Stores” on page 201 for
information on the attribute values needed for an LDAP store.

4 Click OK to add the object store and dismiss the dialog box.

The new object store will appear under Object Stores in the navigation pane, as shown in
Figure 2-12. The red X over the object store’s icon indicates that it is not currently connected to
the Administration Console.

FIGURE 2-12 Object Store Displayed in Administration Console Window

EﬂSUn Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help
R a0 |%e]lel (B 1]> [@]m| 2]
@ [Ohject Stores : Contents | Count
§ (5 MyObjectstore " |Destinations o
(@ Destinations 2|Connection Factories]

f@ Connection Factories §§
@[3 Erokers i
@ ﬁ MyBroker

fsh Services

(& Destinations

Successfully added the ohject stare MyOhjectStore’. }z‘

When you click on the object store in the navigation pane, its contents are listed in the result
pane. Since you have not yet added any administered objects to the object store, the Count
column shows 0 for both destinations and connection factories.

Once you have added an object store, you can use the Properties command on the Actions
menu (or the pop-up context menu) to display an Object Store Properties dialog box, similar to
the Add Object Store dialog shown in Figure 2-11, to view or modify any of its properties.

Chapter2 - Quick-Start Tutorial 57

Working With Administered Objects

Connecting to an Object Store

Now that you have added an object store to the Administration Console, you must connect to it
in order to add administered objects to it.

To Connect to an Object Store

Click on the object store’s name in the Administration Console window’s navigation pane and
choose Connect to Object Store from the Actions menu.

Alternatively, you can right-click on the object store’s name and choose Connect to Object Store
from the pop-up context menu. In either case, the red X will disappear from the object store’s
icon, indicating that it is now connected to the Administration Console.

Working With Administered Objects

58

Once you have connected an object store to the Administration Console, you can proceed to
add administered objects (connection factories and destinations) to it. This section describes
how.

Note - The Administration Console displays only Message Queue administered objects. If an
object store contains a non-Message Queue object with the same lookup name as an
administered object that you want to add, you will receive an error when you attempt the add
operation.

Adding a Connection Factory

Connection factories are used by client applications to create connections to a broker. By
configuring a connection factory, you can control the properties of the connections it creates.

To Add a Connection Factory to an Object Store

Make sure the object store is connected to the Administration Console (see “Connecting to an
Object Store” on page 58).

Click on the Connection Factories item under the object store’s name in the Administration
Console window’s navigation pane and choose Add Connection Factory Object from the Actions
menu.

Alternatively, you can right-click on Connection Factories and choose Add Connection Factory
Object from the pop-up context menu. In either case, the Add Connection Factory Object
dialog box (Figure 2-13) will appear.

Open Message Queue 4.5 Administration Guide « July 2011

Working With Administered Objects

FIGURE 2-13 Add Connection Factory Object Dialog Box

E"jndd Connection Factory Object |

Lookup Hame: |My@ueueConnecti0nFact0r\r

Factory Type: |ConnectionFactory | - |
Read-Onhs []
Message Header Overrides r 3.0 Connection Handling |
Reliability and Flow Control r QueueBrowsers and ServerSessions
Connection Handling | Client Identification | JMSX Properties

Message Server Address List: |

Address List Order:
Number of Address List lterations: ’17

Enable Auto-reconnect to Message Server: [|
Humber of Reconnect Attempts per Address: lﬂi
Reconnect Interval per Address (milliseconds): ’W
Connection Ping Interval (seconds): ’307

| oK || Reset To Defaults || Cancel || Help |

Enter a name for the connection factory in the Lookup Name field.
This is the name that client applications will use when looking up the connection factory with
JNDI.

For this exercise, type in the name MyQueueConnectionFactory .

Choose the type of connection factory you wish to create from the Factory Type pull-down
menu.

For this exercise, choose QueueConnectionFactory.

Click the Connection Handling tab.
The Connection Handling panel will appear, as shown in Figure 2-13.

Fillin the Message Server Address List field with the address(es) of the broker(s) to which this
connection factory will create connections.

The address list may consist of a single broker or (in the case of a broker cluster) multiple
brokers. For each broker, it specifies information such as the broker’s connection service, host
name, and port number. The exact nature and syntax of the information to be specified varies,
depending on the connection service to be used; see “Connection Handling” on page 395 for
specifics.

For this exercise, there is no need to type anything into the Message Server Address List field,
since the sample application HelloWorldMessageJNDI expects the connection factory to use the

Chapter2 - Quick-Start Tutorial 59

Working With Administered Objects

60

standard address list attributes to which it is automatically configured by default (connection
service jms , host name localhost, and port number 7676).

Configure any other attributes of the connection factory as needed.

The Add Connection Factory Object dialog box contains a number of other panels besides
Connection Handling, which can be used to configure various attributes for a connection
factory.

For this exercise, do not change any of the other attribute settings. You may find it instructive,
however, to click through the other tabs to get an idea of the kinds of configuration information
that can be specified. Use the Help button to learn more about the contents of these other
configuration panels.

If appropriate, click the Read-Only checkbox.

This locks the connection factory object’s configuration attributes to the values they were given
at creation time. A read-only administered object’s attributes cannot be overridden, whether
programmatically from client code or administratively from the command line.

For this exercise, do not check Read-Only.

Click OK to create the connection factory, add it to the object store, and dismiss the dialog box.

The new connection factory will appear in the result pane.

Adding a Destination

A destination administered object represents a physical destination on a broker, enabling clients
to send messages to that physical destination independently of provider-specific configurations
and naming syntax. When a client sends a message addressed via the administered object, the
broker will deliver the message to the corresponding physical destination, if it exists. If no such
physical destination exists, the broker will create one automatically if auto-creation is enabled,
as described under “Creating a Physical Destination” on page 50, and deliver the message to it;
otherwise, it will generate an error signaling that the message cannot be delivered.

The following procedure describes how to add a destination administered object to the object
store corresponding to an existing physical destination.

To Add a Destination to an Object Store

Make sure the object store is connected to the Administration Console (see “Connecting to an
Object Store” on page 58).

Open Message Queue 4.5 Administration Guide « July 2011

Working With Administered Objects

Click on the Destinations item under the object store’s name in the Administration Console
window’s navigation pane and choose Add Destination Object from the Actions menu.

Alternatively, you can right-click on Destinations and choose Add Destination Object from the
pop-up context menu. In either case, the Add Destination Object dialog box (Figure 2-14) will
appear.

FIGURE2-14 Add Destination Object Dialog Box

B add Destination Object x|

Lookup Name: | |
Destination Type: & Queus

2 Topic
Read-Only: [
Destination Name: |Untitled_Destination_Object |

Destination Description: |A Description for the Destination Object |

| ok || ResetToDefauts || cancel || Help |

Enter a name for the destination administered object in the Lookup Name field.

This is the name that client applications will use when looking up the destination with JNDL

For this exercise, type in the name MyQueue.

Select the Queue or Topic radio button to specify the type of destination object to create.

For this exercise, select Queue if it is not already selected.

Enter the name of the corresponding physical destination in the Destination Name field.

This is the name you specified when you added the physical destination to the broker (see
“Working With Physical Destinations” on page 50).

For this exercise, type in the name MyQueueDest.

Optionally, enter a brief description of the destination in the Destination Description field.

The contents of this field are intended strictly for human consumption and have no effect on
client operations.

For this exercise, you can either delete the contents of the Destination Description field or type
in some descriptive text such as

Example destination for MQ Admin Guide tutorial

Chapter2 - Quick-Start Tutorial 61

Working With Administered Objects

62

7

If appropriate, click the Read-Only checkbox.

This locks the destination object’s configuration attributes to the values they were given at
creation time. A read-only administered object’s attributes cannot be overridden, whether
programmatically from client code or administratively from the command line.

For this exercise, do not check Read-Only.

Click OK to create the destination object, add it to the object store, and dismiss the dialog box.

The new destination object will appear in the result pane, as shown in Figure 2-15.

FIGURE 2-15 Destination Object Displayed in Administration Console Window

E"SSUn Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help
BAR AN) il 2w @
Connectto Ohject Stare §
9 G Ohject Stores v Caokup Marme | Destination Tvpe | Destination Marng=

@ B myOhjectStore ’ MyQueus |Queue |MyQueueDest
(@ |Destinations :
@ Connection Factarie
@[3 Erokers
@ §§ MyBroker
fsh Services
(& Destinations

Viewing Administered Object Properties

You can use the Properties command on the Administration Console’s Actions menu to view or
modify the properties of an administered object.

To View or Modify the Properties of an Administered Object

Select Connection Factories or Destinations under the object store’s name in the Administration
Console window’s navigation pane.

A list of the available connection factory or destination administered objects will appear in the
result pane, showing the lookup name and type of each (as well as the destination name in the
case of destination administered objects).

Select an administered object by clicking on its name in the result pane.

Choose Properties from the Actions menu.

The Connection Factory Object Properties or Destination Object Properties dialog box will
appear, similar to the Add Connection Factory Object (Figure 2-13) or Add Destination Object

Open Message Queue 4.5 Administration Guide « July 2011

Running the Sample Application

(Figure 2-14) dialog. You can use this dialog box to change the selected object’s configuration
attributes. Note, however, that you cannot change the object’s lookup name; the only way to do
this is the delete the object and then add a new administered object with the desired lookup
name.

4 Click OKto accept the new attribute values and dismiss the dialog box.

Deleting an Administered Object

Deleting an administered object removes it permanently from the object store to which it
belongs.

¥ ToDelete an Administered Object

1 Select Connection Factories or Destinations under the object store’s name in the Administration
Console window’s navigation pane.

A list of the available connection factory or destination administered objects will appear in the
result pane, showing the lookup name and type of each (as well as the destination name in the
case of destination administered objects).

2 Select an administered object by clicking on its name in the result pane.

3 Choose Delete from the Edit menu.

A confirmation dialog box will appear, asking you to confirm that you wish to proceed with the
operation.

4 ClickYes to confirm the operation and dismiss the confirmation dialog.

For this exercise, do not delete the administered objects MyQueue or
MyQueueConnectionFactory that you created earlier; instead, click No to dismiss the
confirmation dialog without performing the delete operation.

Running the Sample Application

The sample application HelloWorldMessageJNDI is provided for use with this tutorial. It uses
the physical destination and administered objects that you created:

= A queue physical destination named MyQueueDest

= A queue connection factory administered object with JNDI lookup name
MyQueueConnectionFactory

= A queue administered object with JNDI lookup name MyQueue

Chapter2 - Quick-Start Tutorial 63

Running the Sample Application

64

The code creates a simple queue sender and receiver, and sends and receives a Hello World
message.

Before running the application, open the source file HelloWorldMessageINDI . java and read
through the code. The program is short and amply documented; you should have little trouble
understanding how it works.

To Run the Sample Application

Make the directory containing the HelloWorldmessageJNDI application your current directory:
cd IMQ HOME/examples/helloworld/helloworldmessagejndi

You should find the file HelloWorldMessageINDI. class present. (If you make changes to the
application, you must recompile it using the procedure for compiling a client application given
in the Message Queue Developer’s Guide for Java Clients.)

Set the CLASSPATH variable to include the current directory containing the file
HelloWorldMessageJNDI.class, as well as the following . jar files that are included in the
Message Queue product:

jms.jar
img.jar
jndi.jar
fscontext.jar

See the Message Queue Developer’s Guide for Java Clients for information on setting the
CLASSPATH variable.

Note - The file jndi. jar is bundled with JDK 1.4. You need not add this file to your CLASSPATH
unless you are using an earlier version of the JDK.

Run the HelloWorldMessageINDI application by executing one of the following commands
(depending on the platform you're using):

® On Solaris or Linux:

% java HelloWorldMessageJNDI file:///tmp
= On Windows:

java HelloWorldMessageJNDI

Open Message Queue 4.5 Administration Guide « July 2011

Running the Sample Application

Example 2-1

If the application runs successfully, you should see the output shown in Example 2-1.

Output from Sample Application

java HelloWorldMessageJNDI
Using file:///C:/Temp for Context.PROVIDER URL

Looking up Queue Connection Factory object with lookup name:
MyQueueConnectionFactory

Queue Connection Factory object found.

Looking up Queue object with lookup name: MyQueue

Queue object found.

Creating connection to broker.
Connection to broker created.

Publishing a message to Queue: MyQueueDest
Received the following message: Hello World

Chapter2 - Quick-Start Tutorial 65

66

PART 11

Administrative Tasks

Chapter 3, “Starting Brokers and Clients”

Chapter 4, “Configuring a Broker”

Chapter 5, “Managing a Broker ”

Chapter 6, “Configuring and Managing Connection Services”
Chapter 7, “Managing Message Delivery”

Chapter 8, “Configuring Persistence Services”

Chapter 9, “Configuring and Managing Security Services”
Chapter 10, “Configuring and Managing Broker Clusters”
Chapter 11, “Managing Administered Objects”

Chapter 12, “Configuring and Managing Bridge Services”
Chapter 13, “Monitoring Broker Operations”

Chapter 14, “Analyzing and Tuning a Message Service”
Chapter 15, “Troubleshooting”

67

68

L K R 4 CHAPTER 3

Starting Brokers and Clients

After installing Open Message Queue and performing some preparatory steps, you can begin
starting brokers and clients. A broker’s configuration is governed by a set of configuration files,
which can be overridden by command line options passed to the Broker utility (imgbrokerd);
see Chapter 4, “Configuring a Broker,” for more information.

This chapter contains the following sections:

“Preparing System Resources” on page 69
“Starting Brokers” on page 70

“Deleting a Broker Instance” on page 76
“Starting Clients” on page 76

Preparing System Resources

Before starting a broker, there are two preliminary system-level tasks to perform: synchronizing
system clocks and (on the Solaris or Linux platform) setting the file descriptor limit. The
following sections describe these tasks.

Synchronizing System Clocks

Before starting any brokers or clients, it is important to synchronize the clocks on all hosts that
will interact with the Message Queue system. Synchronization is particularly crucial if you are
using message expiration (time-to-live). Time stamps from clocks that are not synchronized
could prevent message expiration from working as expected and prevent the delivery of
messages. Synchronization is also crucial for broker clusters.

Configure your systems to run a time synchronization protocol, such as Simple Network Time
Protocol (SNTP). Time synchronization is generally supported by the xntpd daemon on Solaris

69

Starting Brokers

and Linux, and by the W32Time service on Windows. (See your operating system documentation
for information about configuring this service.) After the broker is running, avoid setting the
system clock backward.

Setting the File Descriptor Limit

On the Solaris and Linux platforms, the shell in which a client or broker is running places a soft
limit on the number of file descriptors that a process can use. In Message Queue, each
connection a client makes, or a broker accepts, uses one of these file descriptors. Each physical
destination that has persistent messages also uses a file descriptor.

As aresult, the file descriptor limit constrains the number of connections a broker or client can
have. By default, the maximum is 256 connections on Solaris or 1024 on Linux. (In practice, the
connection limit is actually lower than this because of the use of file descriptors for persistent
data storage.) If you need more connections than this, you must raise the file descriptor limit in
each shell in which a client or broker will be executing. For information on how to do this, see
the man page for the ulimit command.

Starting Brokers

70

You can start a broker either interactively, using the Message Queue command line utilities or
the Windows Start menu, or by arranging for it to start automatically at system startup. The
following sections describe how.

Starting Brokers Interactively

You can start a broker interactively from the command line, using the Broker utility
(imgbrokerd). (Alternatively, on Windows, you can start a broker from the Start menu.) You
cannot use the Administration Console (imgadmin) or the Command utility (imgcmd) to starta
broker; the broker must already be running before you can use these tools.

On the Solaris and Linux platforms, a broker instance must always be started by the same user
who initially started it. Each broker instance has its own set of configuration properties and
file-based persistent data store. When the broker instance first starts, Message Queue uses the
user’s file creation mode mask (umask) to set permissions on directories containing the
configuration information and persistent data for that broker instance.

A broker instance has the instance name imgbroker by default. To start a broker from the
command line with this name and the default configuration, simply use the command

imgbrokerd

This starts a broker instance named imgbroker on the local machine, with the Port Mapper at
the default port of 7676 (see “Port Mapper” on page 97).

Open Message Queue 4.5 Administration Guide « July 2011

Starting Brokers

To specify an instance name other than the default, use the-name option to the imgbrokerd
command. The following command starts a broker with the instance name myBroker:

imgbrokerd -name myBroker

Other options are available on the imgbrokerd command line to control various aspects of the
broker’s operation. See “Broker Utility” on page 318 for complete information on the syntax,
subcommands, and options of the imgbrokerd command. For a quick summary of this
information, enter the following command:

imgbrokerd -help

For example, the following command uses the-tty option to send errors and warnings to the
command window (standard output):

imgbrokerd -name myBroker -tty

You can also use the -D option on the command line to override the values of properties
specified in the broker’s instance configuration file (config.properties). The instance
configuration file is described under “Modifying Configuration Files” on page 80. The
following example sets a broker’s imq . jms .max_threads property, raising the maximum
number of threads available to the jms connection service to 2000:

imgbrokerd -name myBroker -Dimqg.jms.max threads=2000

Starting Brokers Automatically

Instead of starting a broker explicitly from the command line, you can set it up to start
automatically at system startup. How you do this depends on the platform (Solaris, Linux, or
Windows) on which you are running the broker:

= “Automatic Broker Startup on the Solaris Platforms” on page 71
= “Automatic Broker Startup on the Linux Platform” on page 73
= “Automatic Broker Startup on Windows” on page 73

Automatic Broker Startup on the Solaris Platforms

The method for enabling automatic startup on the Solaris 10 platforms is different from that for
Solaris 9. Both are described below.

Automatic Broker Startup on the Solaris 9 Platform

On Solaris 9 operating system, scripts that enable automatic startup are placed in the /etc/rc*
directory tree during Message Queue installation. To enable the use of these scripts, you must
edit the configuration file imgbrokerd. conf (located in the IMQ_HOME/etc/ directory) as
follows:

Chapter3 - Starting Brokers and Clients 71

Starting Brokers

72

= To start the broker automatically at system startup, set the AUTOSTART property to YES.

= To have the broker restart automatically after an abnormal exit, set the RESTART property to
YES.

= To set startup command line arguments for the broker, specify one or more values for the
ARGS property.

To disable automatic broker startup at system startup, edit the configuration file
/etc/img/imgbrokerd. conf and set the AUTOSTART property to NO.

Automatic Broker Startup on the Solaris 10 Platform

Rather than using an rc file to implement automatic broker startup when a computer reboots,
the following procedure makes use of the Solaris 10 Service Management Facility (SMF).

For more information on using the Service Management Facility, please refer to Solaris 10
documentation.

To Implement Automatic Broker Startup on Solaris 10 0S

Copy and change permissions on the mgbroker startup script.

cp /var/svc/manifest/application/sun/mg/mgbroker /1ib/svc/method

chmod 555 /1lib/svc/method/mgbroker

Import the mgbroker service into the SMF repository.

svccfg import /var/svc/manifest/application/sun/mg/mgbroker.xml

Verify that the import was successful by checking the state of the mqbroker service.
svcs mgbroker

Output resembles the following:

STATE STIME FMRI
disabled 16:22:50 svc:/application/sun/mg/mgbroker:default

The service is initially shown as disabled.

Eanable the mgbroker service.

svcadm enable svc:/application/sun/mg/mgbroker:default

Enabling the mqbroker service will start the imgbrokerd process. A reboot will subsequently
restart the broker.

Open Message Queue 4.5 Administration Guide « July 2011

Starting Brokers

Configure the mgbroker service to pass any desired arguments to the imgbrokerd command.

The options/broker_args property is used to pass arguments toimgbrokerd. For example to
add -loglevel DEBUGHIGH, do the following:

svccfg

svc:> select svc:/application/sun/mg/mgbroker

svc:/application/sun/mg/mgbroker> setprop options/broker args="-loglevel DEBUGHIGH"
svc:/application/sun/mg/mgbroker> exit

To Disable Automatic Broker Startup on Solaris 10 0S

Disable the mgbroker service.

svcadm disable svc:/application/sun/mg/mgbroker:default

A subsequent reboot will not restart the broker.

Automatic Broker Startup on the Linux Platform

On Linux systems, scripts that enable automatic startup are placed in the /etc/rc* directory
tree during Message Queue installation. To enable the use of these scripts, you must edit the
configuration file imgbrokerd. conf (located in the IMQ_HOME/etc/ directory) as follows:

= Tostart the broker automatically at system startup, set the AUTOSTART property to YES.

= To have the broker restart automatically after an abnormal exit, set the RESTART property to
YES.

= Tosetstartup command line arguments for the broker, specify one or more values for the
ARGS property.

To disable automatic broker startup at system startup, edit the configuration file
/etc/opt/sun/mg/imgbrokerd. conf and set the AUTOSTART property to NO.

Automatic Broker Startup on Windows

To start a broker automatically at Windows system startup, you must define the broker as a
Windows service. The broker will then start at system startup time and run in the background
until system shutdown. Consequently, you will not need to use the Message Queue Broker
utility (imgbrokerd) unless you want to start an additional broker.

A system can have no more than one broker running as a Windows service. The Windows Task
Manager lists such a broker as two executable processes:

= The native Windows service wrapper, imgbrokersvc.exe
= The Java runtime that is running the broker

You can install a broker as a service when you install Message Queue on a Windows system.
After installation, you can use the Service Administrator utility (imgsvcadmin) to perform the
following operations:

Chapter3 - Starting Brokers and Clients 73

Starting Brokers

74

= Addabroker asa Windows service
= Determine the startup options for the broker service
= Disable a broker from running as a Windows service

To pass startup options to the broker, use the -args option to the imgsvcadmin command. This
works the same way as the imgbrokerd command’s -D option, as described under “Starting
Brokers” on page 70. Use the Command utility (imgcmd) to control broker operations as usual.

See “Service Administrator Utility” on page 340 for complete information on the syntax,

subcommands, and options of the imgsvcadmin command.

Reconfiguring the Broker Service

The procedure for reconfiguring a broker installed as a Windows service is as follows:

To Reconfigure a Broker Running as a Windows Service

Stop the service:

a. From the Settings submenu of the Windows Start menu, choose Control Panel.
b. Open the Administrative Tools control panel.

¢. Run the Services tool by selecting its icon and choosing Open from the File menu or the
pop-up context menu, or simply by double-clicking the icon.

d. Under Services (Local), select the Message Queue Broker service and choose Properties from
the Action menu.

Alternatively, you can right-click on Message Queue Broker and choose Properties from the
pop-up context menu, or simply double-click on Message Queue Broker. In either case, the
Message Queue Broker Properties dialog box will appear.

e. Under the General tab in the Properties dialog, click Stop to stop the broker service.

Remove the service.
On the command line, enter the command

imgsvcadmin remove

Reinstall the service, specifying different broker startup options with the -args option or
different Java version arguments with the -vmargs option.

For example, to change the service’s host name and port number to brokerl and 7878, you
could use the command

imgsvcadmin install -args "-name brokerl -port 7878"

Open Message Queue 4.5 Administration Guide « July 2011

Starting Brokers

Using an Alternative Java Runtime

You can use either the imgsvcadmin command’s - javahome or - j rehome option to specify the
location of an alternative Java runtime. (You can also specify these options in the Start
Parameters field under the General tab in the service’s Properties dialog window.)

Note - The Start Parameters field treats the backslash character (\) as an escape character, so you
must type it twice when using it as a path delimiter: for example,

-javahome c:\\j2sdkl1.4.0

Displaying Broker Service Startup Options

To determine the startup options for the broker service, use the imqsvcadmin query command,
as shown in Example 3-1.

EXAMPLE3-1 Displaying Broker Service Startup Options

imgsvcadmin query

Service Message Queue Broker is installed.

Display Name: Message Queue Broker

Start Type: Automatic

Binary location: C:\Sun\MessageQueue\bin\imgbrokersvc.exe
JavaHome: c:\j2sdkl1l.4.0

Broker Args: -name brokerl -port 7878

Disabling a Broker From Running as a Windows Service

To disable a broker from running as a Windows service, use the command
imgcmd shutdown bkr

to shut down the broker, followed by
imgsvcadmin remove

to remove the service.

Alternatively, you can use the Windows Services tool, reached via the Administrative Tools
control panel, to stop and remove the broker service.

Restart your computer after disabling the broker service.

Chapter3 - Starting Brokers and Clients 75

Deleting a Broker Instance

Troubleshooting Service Startup Problems

If you get an error when you try to start a broker as a Windows service, you can view error
events that were logged:

V¥ ToSeelLogged Service Error Events
1 Openthe Windows Administrative Tools control panel.
2 Startthe EventViewer tool.
3 Select the Application event log.

4 Choose Refresh from the Action menu to display any error events.

Deleting a Broker Instance

To delete a broker instance, use the imgbrokerd command with the - remove option:
imgbrokerd [options..] -remove instance

For example, if the name of the broker is myBroker, the command would be
imgbrokerd -name myBroker -remove instance

The command deletes the entire instance directory for the specified broker.

See “Broker Utility” on page 318 for complete information on the syntax, subcommands, and
options of the imgbrokerd command. For a quick summary of this information, enter the
command

imgbrokerd -help

Starting Clients

Before starting a client application, obtain information from the application developer about
how to set up the system. If you are starting Java client applications, you must set the CLASSPATH
variable appropriately and make sure you have the correct . jar files installed. The Message
Queue Developer’s Guide for Java Clients contains information about generic steps for setting up
the system, but your developer may have additional information to provide.

To start a Java client application, use the following command line format:

java clientAppName

76 Open Message Queue 4.5 Administration Guide « July 2011

Starting Clients

To start a C client application, use the format supplied by the application developer (see
“Building and Running C Clients” in Open Message Queue 4.5 Developer’s Guide for C Clients).

The application’s documentation should provide information on attribute values that the
application sets; you may want to override some of these from the command line. You may also
want to specify attributes on the command line for any Java client that uses a Java Naming and
Directory Interface (JNDI) lookup to find its connection factory. If the lookup returns a
connection factory that is older than the application, the connection factory may lack support
for more recent attributes. In such cases, Message Queue sets those attributes to default values;
if necessary, you can use the command line to override these default values.

To specify attribute values from the command line for a Java application, use the following
syntax:

java [[-Dattribute=value] ...] clientAppName

The value for attribute must be a connection factory administered object attribute, as described
in Chapter 19, “Administered Object Attribute Reference”” If there is a space in the value, put
quotation marks around the

attribute=value
part of the command line.

The following example starts a client application named MyMQClient, connecting to a broker
on the host OtherHost at port 7677:

java -DimgAddressList=mq://OtherHost:7677/jms MyMQClient

The host name and port specified on the command line override any others set by the
application itself.

In some cases, you cannot use the command line to specify attribute values. An administrator
can set an administered object to allow read access only, or an application developer can code
the client application to do so. Communication with the application developer is necessary to
understand the best way to start the client program.

Chapter3 - Starting Brokers and Clients 77

78

L R 2 4 CHAPTER 4

Configuring a Broker

A broker’s configuration is governed by a set of configuration files and by the options passed to
the imgbrokerd command at startup. This chapter describes the available configuration
properties and how to use them to configure a broker.

The chapter contains the following sections:

“Broker Services” on page 79
“Setting Broker Configuration Properties” on page 80

For full reference information about broker configuration properties, see Chapter 17, “Broker
Properties Reference”

Broker Services

Broker configuration properties are logically divided into categories that depend on the services
or broker components they affect:

Connection services manage the physical connections between a broker and its clients that
provide transport for incoming and outgoing messages. For a discussion of properties
associated with connection services, see “Configuring Connection Services” on page 95

Message delivery services route and deliver JMS payload messages, as well as control
messages used by the message service to support reliable delivery. For a discussion of
properties associated with message delivery services, including physical destinations, see
Chapter 7, “Managing Message Delivery”

Persistence services manage the writing and retrieval of data, such as messages and state
information, to and from persistent storage. For a discussion of properties associated with
persistence services, see Chapter 8, “Configuring Persistence Services”

Security services authenticate users connecting to the broker and authorize their actions. For
a discussion of properties associated with authentication and authorization services, as well
as encryption configuration, see Chapter 9, “Configuring and Managing Security Services”

79

Setting Broker Configuration Properties

= Clustering services support the grouping of brokers into a cluster to achieve scalability and
availability. For a discussion of properties associated with broker clusters, see Chapter 10,
“Configuring and Managing Broker Clusters”

= Monitoring services generate metric and diagnostic information about the broker’s
performance. For a discussion of properties associated with monitoring and managing a
broker, see Chapter 13, “Monitoring Broker Operations”

Setting Broker Configuration Properties

80

You can specify a broker’s configuration properties in either of two ways:

= Edit the broker’s configuration file.
= Supply the property values directly from the command line.

The following sections describe these two methods of configuring a broker.

Modifying Configuration Files

Broker configuration files contain property settings for configuring a broker. Message Queue
maintains the following broker configuration files:

= A default configuration file (IMQ_HOME/1lib/props/broker/default.properties) thatis
loaded on startup. This file is not editable, but you can read it to determine default settings
and find the exact names of properties you want to change.

= Aninstallation configuration file (IMQ_HOME/lib/props/broker/install.properties)
containing any properties specified when Message Queue was installed. This file cannot be
edited after installation.

= A separate instance configuration file
(IMQ_VARHOME/instances/instanceName/props/config.properties) for each individual
broker instance.

In addition, if you connect broker instances in a cluster, you may need to use a cluster
configuration file (cluster.properties) to specify configuration information for the cluster;
see “Cluster Configuration Properties” on page 371 for more information.

Also, Message Queue makes use of en environment configuration file, imgenv . conf, which is
used to provide the locations of external files needed by Message Queue, such as the default Java
SE location and the locations of database drivers, JAAS login modules, and so forth.

At startup, the broker merges property values from the various configuration files. As shown in
Figure 4-1, the files form a hierarchy in which values specified in the instance configuration file
override those in the installation configuration file, which in turn override those in the default

Open Message Queue 4.5 Administration Guide « July 2011

Setting Broker Configuration Properties

configuration file. At the top of the hierarchy, you can manually override any property values
specified in the configuration files by using command line options to the imgbrokerd
command.

FIGURE4-1 Broker Configuration Files

imgbrokerd
-name MyBroker Overrides

-metrics 5

Startup
Command

config.properties

Overrides

Instance
Configuration File

install.properties |

Overrides

Install
Configuration File H

default.properties |

Default
Configuration File

The first time you run a broker, an instance configuration file is created containing
configuration properties for that particular broker instance. The instance configuration file is
named config.properties andislocated in a directory identified by the name of the broker
instance to which it belongs:

IMQ VARHOME/instances/instanceName/props/config.properties

If the file does not yet exist, you must use the - name option when starting the broker (see
“Broker Utility” on page 318) to specify an instance name that Message Queue can use to create
the file.

Chapter4 - Configuring a Broker 81

Setting Broker Configuration Properties

82

Note - The instances/instanceName directory and the instance configuration file are owned by
the user who initially started the corresponding broker instance by using the imgbrokerd —name
brokerName option. The broker instance must always be restarted by that same user.

The instance configuration file is maintained by the broker instance and is modified when you
make configuration changes using Message Queue administration utilities. You can also edit an
instance configuration file by hand. To do so, you must be the owner of the
instances/instanceName directory or log in as the root user to change the directory’s access
privileges.

The broker reads its instance configuration file only at startup. To effect any changes to the
broker’s configuration, you must shut down the broker and then restart it. Property definitions
in the config.properties file (or any configuration file) use the following syntax:

propertyName=value [[, valuel] ...]

For example, the following entry specifies that the broker will hold up to 50,000 messages in
memory and persistent storage before rejecting additional messages:

img.system.max count=50000

The following entry specifies that a new log file will be created once a day (every 86,400
seconds):

img.log.file.rolloversecs=86400

See “Broker Services” on page 79 and Chapter 17, “Broker Properties Reference,” for
information on the available broker configuration properties and their default values.

Setting Configuration Properties from the Command
Line

You can enter broker configuration properties from the command line when you start a broker,
or afterward.

At startup time, you use the Broker utility (imgbrokerd) to start a broker instance. Using the
command’s -D option, you can specify any broker configuration property and its value; see
“Starting Brokers” on page 70 and “Broker Utility” on page 318 for more information. If you
start the broker as a Windows service, using the Service Administrator utility (imgsvcadmin),
you use the -args option to specify startup configuration properties; see “Service Administrator
Utility” on page 340.

Open Message Queue 4.5 Administration Guide « July 2011

Setting Broker Configuration Properties

You can also change certain broker configuration properties while a broker is running. To
modify the configuration of a running broker, you use the Command utility’s imqcmd update

bkr command; see “Updating Broker Properties” on page 91 and “Broker Management” on
page 326.

Chapter4 - Configuring a Broker 83

84

CHAPTER 5

Managing a Broker

This chapter explains how to use the Message Queue Command utility (imqcmd) to manage a
broker. The chapter has the following sections:

“Command Utility Preliminaries” on page 86
“Using the Command Utility” on page 86
“Managing Brokers” on page 89

This chapter does not cover all topics related to managing a broker. Additional topics are
covered in the following separate chapters:

For information on configuring and managing connection services, see Chapter 6,
Configuring and Managing Connection Services.

For information on managing message delivery services, including how to create, display,
update, and destroy physical destinations, see Chapter 7, “Managing Message Delivery.”

For information on configuring and managing persistence services, for both flat-file and
JDBC-based data stores, see Chapter 8, “Configuring Persistence Services.”

For information about setting up security for the broker, such as user authentication, access
control, encryption, and password files, see Chapter 9, “Configuring and Managing Security
Services”

For information on configuring and managing clustering services, for both conventional
and enhanced broker clusters, see Chapter 10, “Configuring and Managing Broker
Clusters”

For information about monitoring a broker, see Chapter 13, “Monitoring Broker
Operations.”

85

Command Utility Preliminaries

Command Utility Preliminaries

Before using the Command utility to manage a broker, you must do the following:

= Start the broker using the imgbrokerd command. You cannot use the Command utility
subcommands 1 until a broker is running.

= Determine whether you want to set up a Message Queue administrative user or use the
default account. You must specify a user name and password to use all Command utility
subcommands (except to display command help and version information).

When you install Message Queue, a default flat-file user repository is installed. The
repository is shipped with two default entries: an administrative user and a guest user. If you
are testing Message Queue, you can use the default user name and password (admin/admin)
to run the Command utility.

If you are setting up a production system, you must set up authentication and authorization
for administrative users. See Chapter 9, “Configuring and Managing Security Services,” for
information on setting up a file-based user repository or configuring the use of an LDAP
directory server. In a production environment, it is a good security practice to use a
nondefault user name and password.

= Ifyou want to use a secure connection to the broker, set up and enable the ssladmin service
on the target broker instance, For more information, see “Message Encryption” on page 161.

Using the Command Utility

86

The Message Queue Command utility (imgcmd) enables you to manage the broker and its
services interactively from the command line. See “Command Utility” on page 322 for general
reference information about the syntax, subcommands, and options of the imgcmd command,
and Chapter 17, “Broker Properties Reference,” for specific information on the configuration
properties used to specify broker behavior.

Specifying the User Name and Password

Because each imgcmd subcommand is authenticated against the user repository, it requires a
user name and password. The only exceptions are commands that use the -h or -H option to
display help, and those that use the -v option to display the product version.

Use the -u option to specify an administrative user name. For example, the following command
displays information about the default broker:

imgcmd query bkr -u admin

If you omit the user name, the command will prompt you for it.

Open Message Queue 4.5 Administration Guide « July 2011

Using the Command Utility

Note - For simplicity, the examples in this chapter use the default user name admin as the
argument to the -u option. In a real-life production environment, you would use a custom user
name.

Specify the password using one of the following methods:

= Create a password file and enter the password into that file as the value of the
img.imgcmd . password property. On the command line, use the -passfile option to
provide the name of the password file.

= Let the imgemd command prompt you for the password.

Note - In previous versions of Message Queue, you could use the - p option to specify a password
on the imgecmd command line. As of Message Queue 4.0, this option is deprecated and is no
longer supported; you must instead use one of the methods listed above.

Specifying the Broker Name and Port

Most imqcmd subcommands use the -b option to specify the host name and port number of the
broker to which the command applies:

-b hostName: portNumber

If no broker is specified, the command applies by default to a broker running on the local host
(localhost) at port number 7676. To issue a command to a broker that is running on a remote
host, listening on a non-default port, or both, you must use the -b option to specify the host and
port explicitly.

Literal IP addresses as host names: You can use a literal IPv4 or IPv6 address as a host name. If
you use a literal IPv6 address, its format must conform to REC2732, Format for Literal IPv6
Addresses in URL's.

Displaying the Product Version
To display the Message Queue product version, use the -v option. For example:
imgcmd -v

If you enter an imgecmd command line containing the -v option in addition to a subcommand or
other options, the Command utility processes only the -v option. All other items on the
command line are ignored.

Chapter5 « Managing a Broker 87

http://www.ietf.org/rfc/rfc2732.txt

Using the Command Utility

88

Displaying Help

To display help on the imgcmd command, use the -h or -H option, and do not use a
subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imgcmd:
imgcmd -H

If you enter an imqemd command line containing the -h or -H option in addition to a
subcommand or other options, the Command utility processes only the -h or -H option. All
other items on the command line are ignored.

Examples
The examples in this section illustrate how to use the imgcmd command.

The following example lists the properties of the broker running on host localhost at port
7676, so the -b option is unnecessary:

imgcmd query bkr -u admin

The command uses the default administrative user name (admin) and omits the password, so
that the command will prompt for it.

The following example lists the properties of the broker running on the host myserver at port
1564. The user name is aladdin:

imgcmd query bkr -b myserver:1564 -u aladdin

(For this command to work, the user repository would need to be updated to add the user name
aladdin to the admin group.)

The following example lists the properties of the broker running on localhost at port 7676.
The initial timeout for the command is set to 20 seconds and the number of retries after timeout
is set to 7. The user’s password is in a password file called myPassfile, located in the current
directory at the time the command is invoked.

imgcmd query bkr -u admin -passfile myPassfile -rtm 20 -rtr 7

For a secure connection to the broker, these examples could include the -secure option. This
option causes the Command utility to use the ssladmin service if that service has been
configured and started.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Brokers

Managing Brokers

This section describes how to use Command utility subcommands to perform the following
broker management tasks:

“Shutting Down and Restarting a Broker” on page 89
“Quiescing a Broker” on page 90

“Pausing and Resuming a Broker” on page 91
“Updating Broker Properties” on page 91

“Viewing Broker Information” on page 92

In addition to using the subcommands described in the following sections, imgcmd allows you to
set system properties using the —-D option. This is useful for setting or overriding connection
factory properties or connection-related Java system properties.

For example, the following command changes the default value of imqSSLIsHostTrusted:

imgcmd list svc -secure -DimgSSLIsHostTrusted=true

The following command specifies the password file and the password used for the SSL trust
store that is used by the imgemd command:

imgcmd list svc -secure -DJavax.net.ssl.trustStore=/tmp/MyTruststore
-Djavax.net.ssl.trustStorePassword=MyTrustword

Shutting Down and Restarting a Broker

The subcommand imgcmd shutdown bkr shuts down a broker:

imgemd shutdown bkr [-b hostName: portNumber]
[-time nSeconds]
[-nofailover]

The broker stops accepting new connections and messages, completes delivery of existing
messages, and terminates the broker process.

The - time option, if present, specifies the interval, in seconds, to wait before shutting down the
broker. For example, the following command delays 90 seconds and then shuts down the
broker running on host wolfgang at port 1756:

imgcmd shutdown bkr -b wolfgang:1756 -time 90 -u admin

The broker will not block, but will return immediately from the delayed shutdown request.
During the shutdown interval, the broker will not accept any new jms connections; admin
connections will be accepted, and existing jms connections will continue to operate. If the
broker belongs to an enhanced broker cluster, it will not attempt to take over for any other
broker during the shutdown interval.

Chapter5 - Managing a Broker 89

Managing Brokers

90

If the broker is part of an enhanced broker cluster (see “Enhanced Clusters” in Open Message
Queue 4.5 Technical Overview), another broker in the cluster will ordinarily attempt to take
over its persistent data on shutdown; the -nofailover option to the imgemd shutdown bkr
subcommand suppresses this behavior. Conversely, you can use the imgcmd takeover bkr
subcommand to force such a takeover manually (for instance, if the takeover broker were to fail
before completing the takeover process); see “Preventing or Forcing Broker Failover” on

page 197 for more information.

Note - The imqcmd takeover bkr subcommand is intended only for use in failed-takeover
situations. You should use it only as a last resort, and not as a general way of forcibly taking over
arunning broker.

To shut down and restart a broker, use the subcommand imqcmd restart bkr:
imgcemd restart bkr [-b hostName: portNumber]

This shuts down the broker and then restarts it using the same options that were specified when
it was first started. To choose different options, shut down the broker with imqcmd shutdown
bkr and then start it again with the Broker utility (imgbrokerd), specifying the options you
want.

Quiescing a Broker

The subcommand imqcmd quiesce bkr quiesces a broker, causing it to refuse any new client
connections while continuing to service old ones:

imgcmd quiesce bkr [-b hostName: portNumber]

If the broker is part of an enhanced broker cluster, this allows its operations to wind down
normally without triggering a takeover by another broker, for instance in preparation for
shutting it down administratively for upgrade or similar purposes. For example, the following
command quiesces the broker running on host hastings at port 1066:

imgcmd quiesce bkr -b hastings:1066 -u admin

To reverse the process and return the broker to normal operation, use the imgemd unquiesce
bkr subcommand:

imgemd unquiesce bkr [-b hostName: portNumber]

For example, the following command unquiesces the broker that was quiesced in the preceding
example:

imgcmd unquiesce bkr -b hastings:1066 -u admin

Open Message Queue 4.5 Administration Guide « July 2011

Managing Brokers

Pausing and Resuming a Broker

The subcommand imgcmd pause bkr pauses a broker, suspending its connection service threads
and causing it to stop listening on the connection ports:

imgcmd pause bkr [-b hostName:portNumber]
For example, the following command pauses the broker running on host myhost at port 1588:
imgcmd pause bkr -b myhost:1588 -u admin

Because its connection service threads are suspended, a paused broker is unable to accept new
connections, receive messages, or dispatch messages. The admin connection service is not
suspended, allowing you to continue performing administrative tasks needed to regulate the
flow of messages to the broker. Pausing a broker also does not suspend the cluster connection
service; however, since message delivery within a cluster depends on the delivery functions
performed by the different brokers in the cluster, pausing a broker in a cluster may resultin a
slowing of some message traffic.

You can also pause individual connection services and physical destinations. For more
information, see “Pausing and Resuming a Connection Service” on page 99 and “Pausing and
Resuming a Physical Destination” on page 112.

The subcommand imqcmd resume bkr reactivates a broker’s service threads, causing it to resume
listening on the ports:

imgcmd resume bkr [-b hostName: portNumber]

For example, the following command resumes the default broker (host localhost at port
7676):

imgcmd resume bkr -u admin

Updating Broker Properties

The subcommand imqcmd update bkr can be used to change the values of a subset of broker
properties for the default broker (or for the broker at a specified host and port):

imgcmd update bkr [-b hostName:portNumber]
-0 propertyl=valuel [[-o property2=value2] ...]

For example, the following command turns off the auto-creation of queue destinations for the
default broker:

imgcmd update bkr -o img.autocreate.queue=false -u admin

You can use imqcmd update bkr to update any of the following broker properties:

Chapter5 « Managing a Broker 91

Managing Brokers

92

img.
img.
.autocreate.queue.maxNumActiveConsumers
imq.
img.
.destination.DMQ.truncateBody
img.
img.
imq.
.log.file.rolloverbytes
img.
img.
img.
.portmapper.port

imq

imq

imq

imq

autocreate.queue
autocreate.topic

autocreate.queue.maxNumBackupConsumers
cluster.url

destination.logDeadMsgs
log.level
log.file.rolloversecs

system.max count
system.max_size
message.max_size

See Chapter 17, “Broker Properties Reference,” for detailed information about these properties.

Viewing Broker Information

To display information about a single broker, use the imgcmd query bkr subcommand:

imgemd query bkr -b hostName: portNumber

Open Message Queue 4.5 Administration Guide « July 2011

Managing Brokers

This lists the current settings of the broker’s properties, as shown in Example 5-1.

EXAMPLE5-1 Broker Information Listing

Querying the broker specified by:

localHost 7676

Version

Instance Name

Broker ID

Primary Port

Broker is Embedded

Instance Configuration/Data Root Directory

Current Number of Messages in System
Current Total Message Bytes in System

Current Number of Messages in Dead Message Queue
Current Total Message Bytes in Dead Message Queue
Log Dead Messages

Truncate Message Body in Dead Message Queue

Max Number of Messages in System
Max Total Message Bytes in System
Max Message Size

Auto Create Queues
Auto Create Topics
Auto Created Queue Max Number of Active Consumers
Auto Created Queue Max Number of Backup Consumers

Cluster ID

Cluster Is Highly Available
Cluster Broker List (active)
Cluster Broker List (configured)
Cluster Master Broker

Cluster URL

Log Level
Log Rollover Interval (seconds)
Log Rollover Size (bytes)

4.5
imgbroker
mybroker
7676
false
/var/imq

0

0
true
false

unlimited (-1)
unlimited (-1)
70m

true
true
1
0

myClusterID
true

INFO
604800
unlimited (-1)

The imgcmd metrics bkr subcommand displays detailed metric information about a broker’s

operation:

Chapter5 - Managing a Broker

93

Managing Brokers

imgcmd metrics bkr [-b hostName: portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

The -m option specifies the type of metric information to display:

= ttl (default): Messages and packets flowing into and out of the broker
= rts: Rate of flow of messages and packets into and out of the broker per second
= cxn: Connections, virtual memory heap, and threads

The -int and -msp options specify, respectively, the interval (in seconds) at which to display the
metrics and the number of samples to display in the output. The default values are 5 seconds
and an unlimited number of samples.

For example, the following command displays the rate of message flow into and out of the
default broker (host localhost at port 7676) at 10-second intervals:

imgcmd metrics bkr -m rts -int 10 -u admin

Example 5-2 shows an example of the resulting output.

EXAMPLE5-2 Broker Metrics Listing

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec

In Out In Out In Out In Out
0 0 27 56 0 0 38 66
10 0 7365 56 10 10 7457 1132
0 0 27 56 0 0 38 73
0 10 27 7402 10 20 1400 8459
0 0 27 56 0 0 38 73

For a more detailed description of the data gathered and reported by the broker, see
“Brokerwide Metrics” on page 420.

For brokers belonging to a broker cluster, the imgcmd 1ist bkr subcommand displays
information about the configuration of the cluster; see “Displaying a Cluster Configuration” on
page 180 for more information.

94 Open Message Queue 4.5 Administration Guide « July 2011

L K R 4 CHAPTER 6

Configuring and Managing Connection
Services

Message Queue offers various connection services using a variety of transport protocols for
connecting both application and administrative clients to a broker. This chapter describes how
to configure and manage these services and the connections they support:

= “Configuring Connection Services” on page 95
= “Managing Connection Services” on page 99
= “Managing Connections” on page 103

Configuring Connection Services

Broker configuration properties related to connection services are listed under “Connection
Properties” on page 343.

Figure 6-1 shows the connection services provided by the Message Queue broker.

95

Configuring Connection Services

FIGURE6-1 Message Queue Connection Services

Persisted

Configuration
Files and

User

Messages and

Broker State Logs Repository
httpjms _| HTTP/ Broker
(HTTP) | web [HTTPS i&ﬁ}
] httpsjms_|Server | Tunnel jms
Java Cﬁ\é?ﬂ (HTTPS) Servlet - (rcp)—{c client] c
Client| 2. ntime L(TCP) - Physical | sslims_| Runtime | Client
jms Destinations (TLS)
(TCP) ssljms
(TLS)
|
JNDI admin |
(TCP) (RMI)
ssladmin
(TLS)
|
MQ/JMX | JMX
Administered Runtime | Client
Objects

Legend

Message Queue
— Message Service

These connection services are distinguished by two characteristics, as shown in Table 6-1:

= The service type specifies whether the service provides JMS message delivery (NORMAL) or
Message Queue administration services (ADMIN).

= The protocol type specifies the underlying transport protocol.

TABLE6-1 Message Queue Connection Service Characteristics

Service Name Service Type Protocol Type
jms NORMAL TCP
ssljms NORMAL TLS (SSL-based security)

96 Open Message Queue 4.5 Administration Guide « July 2011

Configuring Connection Services

TABLE6-1 Message Queue Connection Service Characteristics (Continued)
Service Name Service Type Protocol Type
httpjms NORMAL HTTP
httpsjms NORMAL HTTPS (SSL-based security)
admin ADMIN TCP
ssladmin ADMIN TLS (SSL-based security)

By setting a broker’s imq. service.activelist property, you can configure it to run any or all
of these connection services. The value of this property is a list of connection services to be
activated when the broker is started up; if the property is not specified explicitly, the jms and
admin services will be activated by default.

Each connection service also supports specific authentication and authorization features; see
“Introduction to Security Services” on page 137 for more information.

Note - There is also a special cluster connection service, used internally by the brokers within a
broker cluster to exchange information about the cluster’s configuration and state. This service
is not intended for use by clients communicating with a broker. See Chapter 10, “Configuring
and Managing Broker Clusters,” for more information about broker clusters.

Also there are two JMX connectors, jmxrmi and ss1jmxrmi, that support JMX-based
administration. These JMX connectors are very similar to the connection services in Table 6-1,
above, and are used by JMX clients to establish a connection to the broker's MBean server. For
more information, see “JMX Connection Infrastructure” on page 463.

Port Mapper

Each connection service is available at a particular port, specified by host name (or IP address)
and port number. You can explicitly specify a static port number for a service or have the
broker’s Port Mapper assign one dynamically. The Port Mapper itself resides at the broker’s
primary port, which is normally located at the standard port number 7676. (If necessary, you
can use the broker configuration property imq.portmapper.port to override this with a
different port number.) By default, each connection service registers itself with the Port Mapper
when it starts up. When a client creates a connection to the broker, the Message Queue client
runtime first contacts the Port Mapper, requesting a port number for the desired connection
service.

Alternatively, you can override the Port Mapper and explicitly assign a static port number to a
connection service, using the imq.serviceName.protocolType. port configuration property
(where serviceName and protocolType identify the specific connection service, as shown in
Table 6-1). (Only the jms, ssljms, admin, and ssladmin connection services can be configured

Chapter6 - Configuring and Managing Connection Services 97

Configuring Connection Services

98

this way; the httpjms and httpsjms services use different configuration properties, described in
Appendix C, “HTTP/HTTPS Support”). Static ports are generally used only in special
situations, however, such as in making connections through a firewall (see “Connecting
Through a Firewall” on page 171), and are not recommended for general use.

Note - In cases where two or more hosts are available (such as when more than one network
interface card is installed in a computer), you can use broker properties to specify which host
the connection services should bind to. The imq. hostname property designates a single default
host for all connection services; this can then be overridden, if necessary, with img.serviceName.
protocolType.hostname (for the jms, ssljms, admin, or ssladmin service) or
imq.portmapper.hostname (for the Port Mapper itself).

When multiple Port Mapper requests are received concurrently, they are stored in an operating
system backlog while awaiting action. The imq. portmapper.backlog property specifies the
maximum number of such backlogged requests. When this limit is exceeded, any further
requests will be rejected until the backlog is reduced.

Thread Pool Management

Each connection service is multithreaded, supporting multiple connections. The threads
needed for these connections are maintained by the broker in a separate thread pool for each
service. As threads are needed by a connection, they are added to the thread pool for the service
supporting that connection.

The threading model you choose specifies whether threads are dedicated to a single connection
or shared by multiple connections:

= In the dedicated model, each connection to the broker requires two threads: one for
incoming and one for outgoing messages. This limits the number of connections that can be
supported, but provides higher performance.

= In the shared model, connections are processed by a shared thread when sending or
receiving messages. Because each connection does not require dedicated threads, this model
increases the number of possible connections, but at the cost of lower performance because
of the additional overhead needed for thread management.

The broker’s imq.serviceName. threadpool_model property specifies which of the two models
to use for a given connection service. This property takes either of two string values: dedicated
or shared. If you don’t set the property explicitly, dedicated is assumed by default.

You can also set the broker properties imq.serviceName. min_threads and imq.serviceName.
max_threads to specify a minimum and maximum number of threads in a service’s thread pool.
When the number of available threads exceeds the specified minimum threshold, Message
Queue will shut down threads as they become free until the minimum is reached again, thereby

Open Message Queue 4.5 Administration Guide « July 2011

Managing Connection Services

saving on memory resources. Under heavy loads, the number of threads might increase until
the pool’s maximum number is reached; at this point, new connections are rejected until a
thread becomes available.

The shared threading model uses distributor threads to assign threads to active connections.
The broker property imq.shared.connectionMonitor_limit specifies the maximum number
of connections that can be monitored by a single distributor thread. The smaller the value of
this property, the faster threads can be assigned to connections. The imq.ping.interval
property specifies the time interval, in seconds, at which the broker will periodically test
(“ping”) a connection to verify that it is still active, allowing connection failures to be detected
preemptively before an attempted message transmission fails.

Managing Connection Services

Message Queue brokers support connections from both application clients and administrative
clients. See “Configuring Connection Services” on page 95 for a description of the available
connection services. The Command utility provides subcommands that you can use for
managing both connection services as a whole and individual services; to apply a subcommand
to a particular service, use the -n option to specify one of the names listed in the “Service Name”
column of Table 6-1. Subcommands are available for the following connection service
management tasks:

= “Pausing and Resuming a Connection Service” on page 99
= “Updating Connection Service Properties” on page 100
= “Viewing Connection Service Information” on page 101

Pausing and Resuming a Connection Service

Pausing a connection service has the following effects:

= The broker stops accepting new client connections on the paused service. If a Message
Queue client attempts to open a new connection, it will get an exception.

= All existing connections on the paused service are kept alive, but the broker suspends all
message processing on such connections until the service is resumed. (For example, if a
client attempts to send a message, the send method will block until the service is resumed.)

= The message delivery state of any messages already received by the broker is maintained.
(For example, transactions are not disrupted and message delivery will resume when the
service is resumed.)

The admin connection service can never be paused; to pause and resume any other service, use
the subcommands imgcmd pause svc and imgemd resume svc. The syntax of the imgemd pause
svc subcommand is as follows:

Chapter6 - Configuring and Managing Connection Services 99

Managing Connection Services

100

imgcmd pause svc -n serviceName
[-b hostName: portNumber]

For example, the following command pauses the httpjms service running on the default broker
(host localhost at port 7676):

imgcmd pause svc -n httpjms -u admin

The imgcmd resume svc subcommand resumes operation of a connection service following a
pause:

imgcmd resume svc -n serviceName
[-b hostName: portNumber]

Updating Connection Service Properties

You can use the imgcmd update svc subcommand to change the value of one or more of the
service properties listed in Table 6-2. See “Connection Properties” on page 343 for a description
of these properties.

TABLE6-2 Connection Service Properties Updated by Command Utility

Property Description
port Port assigned to the service to be updated (does not apply to httpjms or
httpsjms)

A value of @ means the port is dynamically allocated by the Port Mapper.

minThreads Minimum number of threads assigned to the service

maxThreads Maximum number of threads assigned to the service

The imgcmd update svc subcommand has the following syntax:

imgcmd update svc -n serviceName
[-b hostName: portNumber]
-0 propertyl=valuel [[-o property2=value2]...]

For example, the following command changes the minimum number of threads assigned to the
jms connection service on the default broker (host localhost at port 7676) to 20:

imgcmd update svc -0 minThreads=20 -u admin

Open Message Queue 4.5 Administration Guide « July 2011

Managing Connection Services

Viewing Connection Service Information
To list the connection services available on a broker, use the imgcmd 1ist svec subcommand:
imgemd list sve [-b hostName:portNumber]

For example, the following command lists all services on the default broker (host localhost at
port 7676):

imgcmd list svc -u admin

Example 6-1 shows an example of the resulting output.

EXAMPLE6-1 Connection Services Listing

Service Name Port Number Service State
admin 41844 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN
jms 41843 (dynamic) RUNNING
ssladmin dynamic UNKNOWN
ssljms dynamic UNKNOWN

The imgcmd query svc subcommand displays information about a single connection service:

imgcmd query svc -n serviceName
[-b hostName: portNumber]

For example, the following command displays information about the jms connection service on
the default broker (host localhost at port 7676):

imgcmd query svc -n jms -u admin

Chapter6 - Configuring and Managing Connection Services 101

Managing Connection Services

102

Example 6-2 shows an example of the resulting output.

EXAMPLE6-2 Connection Service Information Listing

Service Name jms
Service State RUNNING
Port Number 60920 (dynamic)

Current Number of Allocated Threads 0

Current Number of Connections 0
Min Number of Threads 10
Max Number of Threads 1000

To display metrics information about a connection service, use the imgcmd metrics svc
subcommand:

imgcmd metrics svc -n serviceName
[-b hostName: portNumber]
[-m metricType]
[-int interval]
[-msp numSamples]

The -m option specifies the type of metric information to display:

m ttl (default): Messages and packets flowing into and out of the broker by way of the
specified connection service

= rts: Rate of flow of messages and packets into and out of the broker per second by way of the
specified connection service

= cxn: Connections, virtual memory heap, and threads

The -int and -msp options specify, respectively, the interval (in seconds) at which to display the
metrics and the number of samples to display in the output. The default values are 5 seconds
and an unlimited number of samples.

For example, the following command displays cumulative totals for messages and packets
handled by the default broker (host localhost at port 7676) by way of the jms connection
service:

imgcmd metrics svc -n jms -m ttl -u admin

Open Message Queue 4.5 Administration Guide « July 2011

Managing Connections

Example 6-3 shows an example of the resulting output.

EXAMPLE6-3 Connection Service Metrics Listing

Msgs Msg Bytes Pkts Pkt Bytes
In Out In Out In Out In Out
164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

For a more detailed description of the use of the Command utility to report connection service
metrics, see “Connection Service Metrics” on page 422.

Managing Connections

The Command utility’s 1ist cxn and query cxn subcommands display information about
individual connections. The subcommand imgcmd 1ist cxn lists all connections for a specified
connection service:

imgemd list cxn [-svn serviceName]
[-b hostName: portNumber]

If no service name is specified, all connections are listed. For example, the following command
lists all connections on the default broker (host localhost at port 7676):

imgcmd list cxn -u admin

Chapter6 - Configuring and Managing Connection Services 103

Managing Connections

Example 6-4 shows an example of the resulting output.

EXAMPLE6-4 Broker Connections Listing

Listing all the connections on the broker specified by:

Host Primary Port

localhost 7676

Connection ID User Service Producers Consumers Host
1964412264455443200 guest jms 0 1 127.0.0.1
1964412264493829311 admin admin 1 1 127.0.0.1

Successfully listed connections.

To display detailed information about a single connection, obtain the connection identifier
from imgcmd list cxn and pass it to the imgemd query cxn subcommand:

imgcmd query cxn -n connectionlD
[-b hostName: portNumber]

For example, the command
imgcmd query cxn -n 421085509902214374 -u admin

produces output like that shown in Example 6-5.

EXAMPLE6-5 Connection Information Listing

Connection ID 421085509902214374
User guest

Service jms

Producers 0

Consumers 1

Host 111.22.333.444
Port 60953

Client ID

Client Platform

The imgcmd destroy cxn subcommand destroys a connection:

104 Open Message Queue 4.5 Administration Guide « July 2011

Managing Connections

imgcmd destroy cxn -n connectionID
[-b hostName: portNumber]

For example, the command
imgcmd destroy cxn -n 421085509902214374 -u admin

destroys the connection shown in Example 6-5.

Chapter6 - Configuring and Managing Connection Services 105

106

L K R 4 CHAPTER 7

Managing Message Delivery

A Message Queue message is routed to its consumer clients by way of a physical destination on a
message broker. The broker manages the memory and persistent storage associated with the
physical destination and configures its behavior. The broker also manages memory ata
system-wide level, to assure that sufficient resources are available to support all destinations.

Message delivery also involves the maintenance of state information needed by the broker to
route messages to consumers and to track acknowledgements and transactions.

This chapter provides information needed to manage message delivery, and includes the

following topics:

= “Configuring and Managing Physical Destinations” on page 107
= “Managing Broker System-Wide Memory” on page 121

= “Managing Durable Subscriptions” on page 123

| |

“Managing Transactions” on page 124

Configuring and Managing Physical Destinations

This section describes how to use the Message Queue Command utility (imgcmd) to manage
physical destinations. It includes discussion of a specialized physical destination managed by
the broker, the dead message queue, whose properties differ somewhat from those of other
destinations.

Note - In a broker cluster, you create a physical destination on one broker and the cluster
propagates it to all the others. Because the brokers cooperate to route messages across the
cluster, client applications can consume messages from destinations on any broker in the
cluster. However the persistence and acknowledgment of a message is managed only by the
broker to which a message was originally produced.

This section covers the following topics regarding the management of physical destinations:

107

Configuring and Managing Physical Destinations

108

“Command Utility Subcommands for Physical Destination Management” on page 108
“Creating and Destroying Physical Destinations” on page 109

“Pausing and Resuming a Physical Destination” on page 112

“Purging a Physical Destination” on page 113

“Updating Physical Destination Properties” on page 114

“Viewing Physical Destination Information” on page 114

“Managing Physical Destination Disk Utilization” on page 118

“Using the Dead Message Queue” on page 120

Note - For provider independence and portability, client applications typically use destination
administered objects to interact with physical destinations. Chapter 11, “Managing
Administered Objects,” describes how to configure such administered objects for use by client
applications. For a general conceptual introduction to physical destinations, see the Message
Queue Technical Overview.

Command Utility Subcommands for Physical
Destination Management

The Message Queue Command utility (imqcmd) enables you to manage physical destinations
interactively from the command line. See Chapter 16, “Command Line Reference,” for general
reference information about the syntax, subcommands, and options of the imgcmd command,
and Chapter 18, “Physical Destination Property Reference,” for specific information on the
configuration properties used to specify physical destination behavior.

Table 7-1 lists the imgcmd subcommands for physical destination management. For full
reference information about these subcommands, see Table 16-7.

TABLE7-1 Physical Destination Subcommands for the Command Utility

Subcommand Description

create dst Create physical destination

destroy dst Destroy physical destination

pause dst Pause message delivery for physical destination
resume dst Resume message delivery for physical destination
purge dst Purge all messages from physical destination
compact dst Compact physical destination

update dst Set physical destination properties

list dst List physical destinations

Open Message Queue 4.5 Administration Guide « July 2011

Configuring and Managing Physical Destinations

TABLE7-1 Physical Destination Subcommands for the Command Utility (Continued)
Subcommand Description
query dst List physical destination property values
metrics dst Display physical destination metrics

Creating and Destroying Physical Destinations
The subcommand imgcmd create dst creates a new physical destination:

imgcmd create dst -t destType -n destName
[[-o property=value] ...]

You supply the destination type (q for a queue or t for a topic) and the name of the destination.

Naming Destinations

Destination names must conform to the rules described below for queue and topic destinations.

Supported Queue Destination Names
Queue destination names must conform to the following rules:

= It must contain only alphabetic characters (A-Z, a-z), digit characters (0—9), underscores
(_), and dollar signs ($).

= [t must not contain spaces.
= It must begin with an alphabetic character (A-Z, a-z), an underscore (_), or a dollar sign ($).

= Tt must not begin with the characters mq.
For example, the following command creates a queue destination named XQueue:

imgcmd create dst -t g -n XQueue

Supported Topic Destination Names

Topic destination names must conform to the same rules as queue destinations, as specified in
“Supported Queue Destination Names” on page 109, except that Message Queue also supports,
in addition, topic destination names that include wildcard characters, representing multiple
destinations. These symbolic names allow publishers to publish messages to multiple topics and
subscribers to consume messages from multiple topics. Using symbolic names, you can create
destinations, as needed, consistent with the wildcard naming scheme. Publishers and
subscribers automatically publish to and consume from any added destinations that match the
symbolic names. (Wildcard topic subscribers are more common than publishers.)

Chapter7 - Managing Message Delivery 109

Configuring and Managing Physical Destinations

The format of a symbolic topic destination name consists of multiple segments, in which
wildcard characters (*, **, >) can represent one or more segments of the name. For example,
suppose you have a topic destination naming scheme as follows:

size.color.shape

where the topic name segments can have the following values:

® size: large, medium, small, ...
® color: red, green, blue, ...
= shape: circle, triangle, square, ...

Message Queue supports the following wildcard characters:

= * matches a single segment
= <k matches one or more segments
= > matches any number of successive segments

You can therefore indicate multiple topic destinations as follows:

large.*.circle would represent:

large.red.circle
large.green.circle

** square would represent all names ending in . square, for example:

small.green.square
medium.blue.square

small.>would represent all destination names starting with small., for example:

small.blue.circle
small.red.square

To use this multiple destination feature, you create topic destinations using a naming scheme
similar to that described above. For example, the following command creates a topic destination
named large.green.circle:

imgcmd create dst -t t -n large.green.circle

Client applications can then create wildcard publishers or wildcard consumers using symbolic
destination names, as shown in the following examples:

EXAMPLE7-1 Wildcard Publisher

String DEST LOOKUP NAME = "large.*.circle"

110 Open Message Queue 4.5 Administration Guide « July 2011

Configuring and Managing Physical Destinations

EXAMPLE7-1 Wildcard Publisher (Continued)

Topic t = (Destination) ctx.lookup(DEST LOOKUP NAME);
TopicPublisher myPublisher = mySession.createPublisher(t)
myPublisher.send(myMessage);

In this example, the broker will place a copy of the message in any destination that matches the
symbolic name large.*.circle

EXAMPLE7-2 Wildcard Subscriber

String DEST LOOKUP NAME = "** square"

Topic t = (Destination) ctx.lookup(DEST_ LOOKUP_ NAME);
TopicSubscriber mySubscriber = mySession.createSubscriber(t);
Message m = mySubscriber.receive();

In this example, a subscriber will be created if there is at least one destination that matches the
symbolic name **. square and will receive messages from all destinations that match that
symbolic name. If there are no destinations matching the symbolic name, the subscriber will
not be registered with the broker until such a destination exists.

If you create additional destinations that match a symbolic name, then wildcard publishers
created using that symbolic name will subsequently publish to that destination and wildcard
subscribers created using that symbolic name will subsequently receive messages from that
destination.

In addition, Message Queue administration tools, in addition to reporting the total number of
publishers (producers) and subscribers (consumers) for a topic destination, will also report the
number of publishers that are wildcard publishers (including their corresponding symbolic
destination names) and the number of subscribers that are wildcard subscribers (including
their symbolic destination names), if any. See “Viewing Physical Destination Information” on
page 114.

Setting Property Values

The imgcmd create dst command may also optionally include any property values you wish to
set for the destination, specified with the -o option. For example, the following command
creates a topic destination named hotTopic with a maximum message length of 5000 bytes:

imgcmd create dst -t t -n hotTopic -0 maxBytesPerMsg=5000

See Chapter 18, “Physical Destination Property Reference,” for reference information about the
physical destination properties that can be set with this option. (For auto-created destinations,
you set default property values in the broker’s instance configuration file; see Table 17-3 for
information on these properties.)

Chapter7 - Managing Message Delivery m

Configuring and Managing Physical Destinations

112

Destroying Destinations

To destroy a physical destination, use the imqcmd destroy dst subcommand:
imgcmd destroy dest -t destType -n destName

This purges all messages at the specified destination and removes it from the broker; the
operation is not reversible.

For example, the following command destroys the queue destination named curlyQueue:

imgcmd destroy dest -t g -n curlyQueue -u admin

Note - You cannot destroy the dead message queue.

Pausing and Resuming a Physical Destination

Pausing a physical destination temporarily suspends the delivery of messages from producers to
the destination, from the destination to consumers, or both. This can be useful, for instance, to
prevent destinations from being overwhelmed when messages are being produced much faster
than they are consumed. You must also pause a physical destination before compacting it (see
“Managing Physical Destination Disk Utilization” on page 118).

To pause the delivery of messages to or from a physical destination, use the imgcmd pause dst
subcommand:

imgcmd pause dest [-t destType -n destName)]
[-pst pauseType]

If you omit the destination type and name (-t and -n options), all physical destinations will be
paused. The pause type (- pst) specifies what type of message delivery to pause:

PRODUCERS Pause delivery from message producers to the destination
CONSUMERS Pause delivery from the destination to message consumers

ALL Pause all message delivery (both producers and consumers)
If no pause type is specified, all message delivery will be paused.

For example, the following command pauses delivery from message producers to the queue
destination curlyQueue:

imgcmd pause dst -t q -n curlyQueue -pst PRODUCERS -u admin
The following command pauses delivery to message consumers from the topic destination

hotTopic:

Open Message Queue 4.5 Administration Guide « July 2011

Configuring and Managing Physical Destinations

imgcmd pause dst -t t -n hotTopic -pst CONSUMERS -u admin
This command pauses all message delivery to and from all physical destinations:

imgcmd pause dst -u admin

Note - In a broker cluster, since each broker in the cluster has its own instance of each physical
destination, you must pause each such instance individually.

The imgcmd resume dst subcommand resumes delivery to a paused destination:
imgcmd resume dest [-t destType -n destName]

For example, the following command resumes message delivery to the queue destination
curlyQueue:

imgcmd resume dst -t g -n curlyQueue -u admin

If no destination type and name are specified, all destinations are resumed. This command
resumes delivery to all physical destinations:

imgcmd resume dst -u admin

Purging a Physical Destination

Purging a physical destination deletes all messages it is currently holding. You might want to do
this when a destination’s accumulated messages are taking up too much of the system’s
resources, such as when a queue is receiving messages but has no registered consumers to which
to deliver them, or when a topic’s durable subscribers remain inactive for long periods of time.

To purge a physical destination, use the imgcmd purge dst subcommand:
imgemd purge dst -t destType -n destName

For example, the following command purges all accumulated messages from the topic
destination hotTopic:

imgcmd purge dst -t t -n hotTopic -u admin

Note - In a broker cluster, since each broker in the cluster has its own instance of each physical
destination, you must purge each such instance individually.

Chapter7 - Managing Message Delivery 113

Configuring and Managing Physical Destinations

114

Tip - When restarting a broker that has been shut down, you can use the Broker utility’s
-reset messages option to clear out its stale messages: for example,

imgbrokerd -reset messages -u admin

This saves you the trouble of purging physical destinations after restarting the broker.

Updating Physical Destination Properties

The subcommand imqcmd update dst changes the values of specified properties of a physical
destination:

imgcmd update dst -t destType -n destName
-0 propertyl=valuel [[-o property2=value2] ...]

The properties to be updated can include any of those listed in Table 18-1 (with the exception
of the isLocalOnly property, which cannot be changed once the destination has been created).
For example, the following command changes the maxBytesPerMsg property of the queue
destination curlyQueue to 1000 and the maxNumMsgs property to 2000:

imgcmd update dst -t g -n curlyQueue -u admin
-0 maxBytesPerMsg=1000
-0 maxNumMsgs=2000

Note - The type of a physical destination is not an updatable property; you cannot use the
imgcmd update dst subcommand to change a queue to a topic or a topic to a queue.

Viewing Physical Destination Information
To list the physical destinations on a broker, use the imgcmd 1ist dst subcommand:
imgemd list dst -b hostName:portNumber [-t destType] [-tmp]

This lists all physical destinations on the broker identified by hostName and portNumber of the
type (queue or topic) specified by destType. If the - t option is omitted, both queues and topics
are listed. For example, the following command lists all physical destinations on the broker
running on host myHost at port number 4545:

imgcmd list dst -b myHost:4545

Open Message Queue 4.5 Administration Guide « July 2011

Configuring and Managing Physical Destinations

Note - The list of queue destinations always includes the dead message queue (mq. sys.dmq) in
addition to any other queue destinations currently existing on the broker.

If you specify the - tmp option, temporary destinations are listed as well. These are destinations
created by clients, normally for the purpose of receiving replies to messages sent to other clients.

The imgcmd query dst subcommand displays information about a single physical destination:
imq query dst -t destType -n destName

For example, the following command displays information about the queue destination
curlyQueue:

imgcmd query dst -t q -n curlyQueue -u admin

Chapter7 - Managing Message Delivery 115

Configuring and Managing Physical Destinations

Example 7-3 shows an example of the resulting output. You can use the imqcmd update dst
subcommand (see “Updating Physical Destination Properties” on page 114) to change the value
of any of the properties listed.

EXAMPLE7-3 Physical Destination Information Listing

localhost 7676

Destination Name large.green.circle
Destination Type Topic

Destination State RUNNING

Created Administratively true

Current Number of Messages

Actual 0
Remote 0
Held in Transaction 0
Current Message Bytes
Actual 0
Remote 0
Held in Transaction 0
Current Number of Producers 0
Current Number of Producer Wildcards 0
Current Number of Consumers 1
Current Number of Consumer Wildcards 1
large.*.circle (1)
Max Number of Messages unlimited (-1)
Max Total Message Bytes unlimited (-1)
Max Bytes per Message unlimited (-1)
Max Number of Producers 100
Limit Behavior REJECT NEWEST
Consumer Flow Limit 1000
Is Local Destination false
Use Dead Message Queue true
XML schema validation enabled false
XML schema URI List -
Reload XML schema on failure false

116 Open Message Queue 4.5 Administration Guide « July 2011

Configuring and Managing Physical Destinations

For destinations in a broker cluster, it is often helpful to know how many messages in a
destination are local (produced to the local broker) and how many are remote (produced to a
remote broker). Hence, imqcmd query dst reports, in addition to the number and total message
bytes of messages in the destination, the number and total bytes of messages that are sent to the
destination from remote brokers in the cluster.

For topic destinations, imgcmd query dst reports the number of publishers that are wildcard
publishers (including their corresponding symbolic destination names) and the number of
subscribers that are wildcard subscribers (including their symbolic destination names), if any.

To display metrics information about a physical destination, use the imqcmd metrics dst
subcommand:

imgemd metrics dst -t destType -n destName
[-m metricType]
[-int interval]
[-msp numSamples]

The -m option specifies the type of metric information to display:

= tt1 (default): Messages and packets flowing into and out of the destination and residing in
memory

= rts: Rate of flow of messages and packets into and out of the destination per second, along
with other rate information

= con: Metrics related to message consumers

= dsk: Disk usage

The -int and -msp options specify, respectively, the interval (in seconds) at which to display the
metrics and the number of samples to display in the output. The default values are 5 seconds
and an unlimited number of samples.

For example, the following command displays cumulative totals for messages and packets
handled by the queue destination curlyQueue:

imgcmd metrics dst -t g -n curlyQueue -m ttl -u admin

Chapter7 - Managing Message Delivery 17

Configuring and Managing Physical Destinations

118

Example 7-4 shows an example of the resulting output.

EXAMPLE7-4 Physical Destination Metrics Listing

Msgs Msg Bytes Msg Count Total Msg Bytes (k) Largest

In Out In Out Current Peak Avg Current Peak Avg Msg (k)
3128 3066 1170102 1122340 128 409 29 46 145 10
4858 4225 1863159 1635458 144 201 33 53 181 42
2057 1763 820804 747200 84 377 16 71 122 79

For a more detailed description of the use of the Command utility to report physical destination
metrics, see “Physical Destination Metrics” on page 423.

Managing Physical Destination Disk Utilization

Because of the way message storage is structured in a file-based persistent data store (see
“File-Based Persistence Properties” on page 128), disk space can become fragmented over time,
resulting in inefficient utilization of the available resources. Message Queue’s Command utility
(imgcmd) provides subcommands for monitoring disk utilization by physical destinations and
for reclaiming unused disk space when utilization drops.

To monitor a physical destination’s disk utilization, use the imgcmd metrics dst subcommand:
imgcmd metrics dst -m dsk -t destType -n destMame

This displays the total number of bytes of disk space reserved for the destination’s use, the
number of bytes currently in use to hold active messages, and the percentage of available space
in use (the disk utilization ratio). For example, the following command displays disk utilization
information for the queue destination curlyQueue:

imgcmd metrics dst -m dsk -t g -n curlyQueue -u admin

Open Message Queue 4.5 Administration Guide « July 2011

Configuring and Managing Physical Destinations

Example 7-5 shows an example of the resulting output.

EXAMPLE7-5 Destination Disk Utilization Listing

804096 675533 84
1793024 1636222 91
2544640 2243808 88

The disk utilization pattern depends on the characteristics of the messaging application using a
particular physical destination. Depending on the flow of messages into and out of the
destination and their relative size, the amount of disk space reserved might grow over time. If
messages are produced at a higher rate than they are consumed, free records should generally be
reused and the utilization ratio should be on the high side. By contrast, if the rate of message
production is comparable to or lower than the consumption rate, the utilization ratio will likely
be low.

As arule, you want the reserved disk space to stabilize and the utilization ratio to remain high. If
the system reaches a steady state in which the amount of reserved disk space remains more or
less constant with utilization above 75%, there is generally no need to reclaim unused disk
space. If the reserved space stabilizes at a utilization rate below 50%, you can use the imqcmd
compact dst subcommand to reclaim the disk space occupied by free records:

compact dst [-t destType -n destName]

This compacts the file-based data store for the designated physical destination. If no destination
type and name are specified, all physical destinations are compacted.

You must pause a destination (with the imgcmd pause subcommand) before compacting it, and
resume it (with imgcmd resume) afterward (see “Pausing and Resuming a Physical Destination”
on page 112):

imgcmd pause dst -t g -n curlyQueue -u admin
imgcmd compact dst -t g -n curlyQueue -u admin
imgcmd resume dst -t g -n curlyQueue -u admin

Tip - If a destination’s reserved disk space continues to increase over time, try reconfiguring its
maxNumMsgs, maxBytesPerMsg, maxTotalMsgBytes, and limitBehavior properties (see
“Physical Destination Properties” on page 389).

Chapter7 - Managing Message Delivery 119

Configuring and Managing Physical Destinations

120

Using the Dead Message Queue

The dead message queue, mq. sys .dmg, is a system-created physical destination that holds the
dead messages of a broker's physical destinations. The dead message queue is a tool for
monitoring, tuning system efficiency, and troubleshooting. For a definition of the term dead
message and a more detailed introduction to the dead message queue, see the Message Queue
Technical Overview.

The broker automatically creates a dead message queue when it starts. The broker places
messages on the queue if it cannot process them or if their time-to-live has expired. In addition,
other physical destinations can use the dead message queue to hold discarded messages. This
can provide information that is useful for troubleshooting the system.

Managing the Dead Message Queue

The physical destination configuration property useDMQ controls a destination’s use of the dead
message queue. Physical destinations are configured to use the dead message queue by default;
to disable a destination from using it, set the destination’s useDMQ property to false:

imgcmd update dst -t g -n curlyQueue -o useDMQ=false

You can enable or disable the use of the dead message queue for all auto-created physical
destinations on a broker by setting the broker’s imq.autocreate.destination.useDMQ broker

property:
imgcmd update bkr -0 imqg.autocreate.destination.useDMQ=false

You can manage the dead message queue with the Message Queue Command utility (imgcmd)
just as you manage other queues, but with some differences. For example, because the dead
message queue is system-created, you cannot create, pause, or destroy it. Also, as shown in
Table 7-2, default values for the dead message queue’s configuration properties sometimes
differ from those of ordinary queues.

TABLE7-2 Dead Message Queue Treatment of Physical Destination Properties

Property Variant Treatment by Dead Message Queue

maxNumMsgs Default value is 1000, rather than —1 (unlimited) as for ordinary
queues.

maxTotalMsgBytes Default value is 16m (10 megabytes), rather than —1 (unlimited) as for
ordinary queues.

limitBehavior Default value is REMOVE _OLDEST, rather than REJECT NEWEST as for
ordinary queues.
FLOW_CONTROL is not supported for the dead message queue.

maxNumProducers Does not apply to the dead message queue.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker System-Wide Memory

TABLE7-2 Dead Message Queue Treatment of Physical Destination Properties (Continued)
Property Variant Treatment by Dead Message Queue
isLocalOnly Permanently set to false in broker clusters; the dead message queue

in a cluster is always a global physical destination.

localDeliveryPreferred Does not apply to the dead message queue.

Tip - By default, the dead message queue stores entire messages. If you do not plan to restore
dead messages, you can reduce the size of the dead message queue by setting the broker’s
img.destination.DMQ.truncateBody property to true:

imgcmd update bkr -o imqg.destination.DMQ.truncateBody=true

This will discard the body of all messages and retain only the headers and property data.

Enabling Dead Message Logging

The broker configuration property logDeadMsgs controls the logging of events related to the
dead message queue. When dead message logging is enabled, the broker will log the following
events:

= A message is moved to the dead message queue.

= A message is discarded from the dead message queue (or from any physical destination that
does not use the dead message queue).

= A physical destination reaches its limits.
Dead message logging is disabled by default. The following command enables it:

imgcmd update bkr -o img.destination.logDeadMsgs=true

Note - Dead message logging applies to all physical destinations that use the dead message
queue. You cannot enable or disable logging for an individual physical destination.

Managing Broker System-Wide Memory

Once clients are connected to the broker, the routing and delivery of messages can proceed. In
this phase, the broker is responsible for creating and managing different types of physical
destinations, ensuring a smooth flow of messages, and using resources efficiently. You can use
the broker configuration properties described under “Routing and Delivery Properties” on
page 346 to manage these tasks in a way that suits your application’s needs.

The performance and stability of a broker depend on the system resources (such as memory)
available and how efficiently they are utilized. You can set configuration properties to prevent

Chapter7 - Managing Message Delivery 121

Managing Broker System-Wide Memory

122

the broker from becoming overwhelmed by incoming messages or running out of memory.
These properties function at three different levels to keep the message service operating as
resources become scarce:

Systemwide message limits apply collectively to all physical destinations on the system.
These include the maximum number of messages held by a broker
(img.system.max_count) and the maximum total number of bytes occupied by such
messages (imq.system.max_size).If either of these limits is reached, the broker will reject
any new messages until the pending messages fall below the limit. There is also a limit on the
maximum size of an individual message (imq.message.max_size) and a time interval at
which expired messages are removed (imq.message.expiration.interval).

Individual destination limits regulate the flow of messages to a specific physical
destination. The configuration properties controlling these limits are described in

Chapter 18, “Physical Destination Property Reference” They include limits on the number
and size of messages the destination will hold, the number of message producers and
consumers that can be created for it, and the number of messages that can be batched
together for delivery to the destination.

The destination can be configured to respond to memory limits by slowing down the
delivery of message by message producers, by rejecting new incoming messages, or by
throwing out the oldest or lowest-priority existing messages. Messages deleted from the
destination in this way may optionally be moved to the dead message queue rather than
discarded outright; the broker property imq.destination.DMQ. truncateBody controls
whether the entire message body is saved in the dead message queue, or only the header and
property data.

Asa convenience during application development and testing, you can configure a message
broker to create new physical destinations automatically whenever a message producer or
consumer attempts to access a nonexistent destination. The broker properties summarized
in Table 17-3 parallel the ones just described, but apply to such auto-created destinations
instead of administratively created ones.

System memory thresholds define levels of memory usage at which the broker takes
increasingly serious action to prevent memory overload. Four such usage levels are defined:

= Green: Plenty of memory is available.

= Yellow: Broker memory is beginning to run low.
= Orange: The broker is low on memory.

= Red: The broker is out of memory.

The memory utilization percentages defining these levels are specified by the broker
properties imq.green.threshold, imq.yellow.threshold, img.orange.threshold,
and img. red.threshold, respectively; the default values are 0% for green, 80% for
yellow, 90% for orange, and 98% for red.

As memory usage advances from one level to the next, the broker responds
progressively, first by swapping messages out of active memory into persistent storage
and then by throttling back producers of nonpersistent messages, eventually stopping

Open Message Queue 4.5 Administration Guide « July 2011

Managing Durable Subscriptions

the flow of messages into the broker. (Both of these measures degrade broker
performance.) The throttling back of message production is done by limiting the size of
each batch delivered to the number of messages specified by the properties
imq.resourceState . count, where resourceState is green, yellow, orange, or red,
respectively.

The triggering of these system memory thresholds is a sign that systemwide and destination
message limits are set too high. Because the memory thresholds cannot always catch potential
memory overloads in time, you should not rely on them to control memory usage, but rather
reconfigure the system-wide and destination limits to optimize memory resources.

Managing Durable Subscriptions

Message Queue clients subscribing to a topic destination can register as durable subscribers. The
corresponding durable subscription has a unique, persistent identity and requires the broker to
retain messages addressed to it even when its message consumer (the durable subscriber)
becomes inactive. Ordinarily, the broker may delete a message held for a durable subscriber
only when the message expires.

The Message Queue Command utility provides subcommands for managing a broker’s durable
subscriptions in the following ways:

= Listing durable subscriptions
= Purging all messages for a durable subscription
= Destroying a durable subscription

To list durable subscriptions for a specified physical destination, use the imqcmd list dur
subcommand:

imgemd list dur -d topicName

For example, the following command lists all durable subscriptions to the topic SPQuotes on
the default broker (host localhost at port 7676):

imgcmd list dur -d SPQuotes

Chapter7 - Managing Message Delivery 123

Managing Transactions

The resulting output lists the name of each durable subscription to the topic, the client identifier
to which it belongs, its current state (active or inactive), and the number of messages currently
queued to it. Example 7-6 shows an example.

EXAMPLE7-6 Durable Subscription Information Listing

Name Client ID Number of Durable Sub
Messages State
myDurable myClientID 1 INACTIVE

The imgcmd purge dur subcommand purges all messages for a specified durable subscriber and
client identifier:

imgemd purge dur -n subscriberName
-c clientID

For example, the following command purges all messages for the durable subscription listed in
Example 7-6:

imgcmd purge dur -n myCurable -c myClientID

The imgcmd destroy dur subcommand destroys a durable subscription, specified by its
subscriber name and client identifier:

imgemd destroy dur -n subscriberName
-c clientID

For example, the following command destroys the durable subscription listed in Example 7-6:

imgcmd destroy dur -n myCurable -c myClientID

Managing Transactions

All transactions initiated by client applications are tracked by the broker. These can be local
Message Queue transactions or distributed transactions managed by a distributed transaction
manager.

Each transaction is identified by a unique 64-bit Message Queue transaction identifier.
Distributed transactions also have a distributed transaction identifier (XID), up to 128 bytes
long, assigned by the distributed transaction manager. Message Queue maintains the
association between its own transaction identifiers and the corresponding XIDs.

The imgemd 1ist txn subcommand lists the transactions being tracked by a broker:

124 Open Message Queue 4.5 Administration Guide « July 2011

Managing Transactions

imgcmd list txn

This lists all transactions on the broker, both local and distributed. For each transaction, it
shows the transaction ID, state, user name, number of messages and acknowledgments, and
creation time. Example 7-7 shows an example of the resulting output.

EXAMPLE7-7 Broker Transactions Listing

Transaction ID State User name # Msgs/ Creation time

Acks
64248349708800 PREPARED guest 4/0 1/30/02 10:08:31 AM
64248371287808 PREPARED guest 0/4 1/30/02 10:09:55 AM

To display detailed information about a single transaction, obtain the transaction identifier
from imgcmd ist txn and pass it to the imgemd query txn subcommand:

imgcmd query txn -n transactionlD

This displays the same information as imqcmd 1ist txn, along with the client identifier,
connection identification, and distributed transaction identifier (XID). For example, the
command

imgcmd query txn -n 64248349708800

produces output like that shown in Example 7-8.

EXAMPLE7-8 Transaction Information Listing

Client ID

Connection guest@192.18.116.219:62209->jms:62195

Creation time 1/30/02 10:08:31 AM

Number of acknowledgments 0

Number of messages 4

State PREPARED

Transaction ID 64248349708800

User name guest

XID 6469706F6C7369646577696E6465723130313234313431313030373230

If a broker fails, it is possible that a distributed transaction could be left in the PREPARED state
without ever having been committed. Until such a transaction is committed, its messages will
not be delivered and its acknowledgments will not be processed. Hence, as an administrator,

Chapter7 - Managing Message Delivery 125

Managing Transactions

126

you might need to monitor such transactions and commit them or roll them back manually. For
example, if the broker’s imq. transaction.autorollback property (see Table 17-2) is set to
false, you must manually commit or roll back non-distributed transactions and unrecoverable
distributed transactions found in the PREPARED state at broker startup, using the Command
utility’s commit txn or rollback txn subcommand:

imgemd commit txn -n tranmsactionlD
imgcmd rollback txn -n tranmsactionlD
For example, the following command commits the transaction listed in Example 7-8:

imgcmd commit txn -n64248349708800

Note - Only transactions in the PREPARED state can be committed . However, transaction in
the STARTED, FAILED, INCOMPLETE, COMPLETE, and PREPARED states can be rolled back. You
should do so only if you know that the transaction has been left in this state by a failure and is
not in the process of being committed by the distributed transaction manager.

Open Message Queue 4.5 Administration Guide « July 2011

L K R 4 CHAPTER 8

Configuring Persistence Services

For a broker to recover in case of failure, it needs to re-create the state of its message delivery
operations. To do this, the broker must save state information to a persistent data store. When
the broker restarts, it uses the saved data to re-create destinations and durable subscriptions,
recover persistent messages, roll back open transactions, and rebuild its routing table for
undelivered messages. It can then resume message delivery.

A persistent data store is thus a key aspect of providing for reliable message delivery. This
chapter describes the two different persistence implementations supported by the Message
Queue broker and how to set each of them up:

“Introduction to Persistence Services” on page 127
“File-Based Persistence” on page 128
“JDBC-Based Persistence” on page 131

“Data Store Formats” on page 135

Introduction to Persistence Services

A broker’s persistent data store holds information about physical destinations, durable
subscriptions, messages, transactions, and acknowledgments.

Message Queue supports both file-based and JDBC-based persistence modules, as shown in the
following figure. File-based persistence uses individual files to store persistent data;
JDBC-based persistence uses the Java Database Connectivity (JDBC) interface to connect the
broker to a JDBC-based data store. While file-based persistence is generally faster than
JDBC-based persistence, some users prefer the redundancy and administrative control
provided by a JDBC database. The broker configuration property imq.persist.store (see
Table 17-5) specifies which of the two persistence modules (file or jdbc) to use.

127

File-Based Persistence

FIGURE8-1 Persistent Data Stores

Broker
File-based
Data Store
Physical | | _____ JDBC-based
Destinations Data Store

Message Queue brokers are configured by default to use a file-based persistent store, but you
can reconfigure them to plug in any data store accessible through a JDBC-compliant driver. The
broker configuration property imq.persist.store (see Table 17-5) specifies which of the two
forms of persistence to use.

File-Based Persistence

128

By default, Message Queue uses a file-based data store, in which individual files store persistent
data (such as messages, destinations, durable subscriptions, transactions, and routing
information).

The file-based data store is located in a directory identified by the name of the broker instance
(instanceName) to which the data store belongs:

IMQ VARHOME/instances/instanceName/fs370

Each destination on the broker has its own subdirectory holding messages delivered to that
destination.

Note - Because the data store can contain messages of a sensitive or proprietary nature, you
should secure the IMQ_VARHOME/instances/instanceName/fs370 directory against
unauthorized access; see “Securing a File-Based Data Store” on page 130.

File-Based Persistence Properties

Broker configuration properties related to file-based persistence are listed under “File-Based
Persistence Properties” on page 352. These properties let you configure various aspects of how
the file-based data store behaves.

All persistent data other than messages is stored in separate files: one file each for destinations,
durable subscriptions, and transaction state information. Most messages are stored in a single
file consisting of variable-size records. You can compact this file to alleviate fragmentation as

Open Message Queue 4.5 Administration Guide « July 2011

File-Based Persistence

messages are added and removed (see “Managing Physical Destination Disk Utilization” on
page 118). In addition, messages above a certain threshold size are stored in their own
individual files rather than in the variable-sized record file. You can configure this threshold
size with the broker property imq.persist.file.message.max_record_size.

The broker maintains a file pool for these individual message files: instead of being deleted
when it is no longer needed, a file is returned to the pool of free files in its destination directory
so that it can later be reused for another message. The broker property
imq.persist.file.destination.message.filepool.limit specifies the maximum number
of files in the pool. When the number of individual message files for a destination exceeds this
limit, files will be deleted when no longer needed instead of being returned to the pool.

When returning a file to the file pool, the broker can save time at the expense of storage space by
simply tagging the file as available for reuse without deleting its previous contents. You can use
the imq.persist.file.message.filepool.cleanratio broker property to specify the
percentage of files in each destination’s file pool that should be maintained in a “clean” (empty)
state rather than simply marked for reuse. The higher you set this value, the less space will be
required for the file pool, but the more overhead will be needed to empty the contents of files
when they are returned to the pool. If the broker’s imq.persist.file.message.cleanup
property is true, all files in the pool will be emptied at broker shutdown, leaving them in a clean
state; this conserves storage space but slows down the shutdown process.

In writing data to the data store, the operating system has some leeway in whether to write the
data synchronously or “lazily” (asynchronously). Lazy storage can lead to data loss in the event
of a system crash, if the broker believes the data to have been written to the data store when it
has not. To ensure absolute reliability (at the expense of performance), you can require that all
data be written synchronously by setting the broker property
img.persist.file.sync.enabled to true.In this case, the data is guaranteed to be available
when the system comes back up after a crash, and the broker can reliably resume operation.

Configuring a File-Based Data Store

A file-based data store is automatically created when you create a broker instance. However,
you can configure the data store using the properties described in “File-Based Persistence
Properties” on page 128.

For example, by default, Message Queue performs asynchronous write operations to disk.
However, to attain the highest reliability, you can set the broker property
img.persist.file.sync to write data synchronously instead. See Table 17-6.

When you start a broker instance, you can use the imgbrokerd command’s - - reset option to
clear the file-based data store. For more information about this option and its suboptions, see
“Broker Utility” on page 318.

Chapter 8 - Configuring Persistence Services 129

File-Based Persistence

130

Securing a File-Based Data Store

The persistent data store can contain, among other information, message files that are being
temporarily stored. Since these messages may contain proprietary information, it is important
to secure the data store against unauthorized access. This section describes how to secure data
in a file-based data store.

A broker using file-based persistence writes persistent data to a flat-file data store:
IMQ_VARHOME/instances/instanceName/fs370

where instanceName is a name identifying the broker instance. This directory is created when
the broker instance is started for the first time. The procedure for securing this directory
depends on the operating system platform on which the broker is running:

= On Solaris and Linux, the directory’s permissions are determined by the file mode creation
mask (umask) of the user who started the broker instance. Hence, permission to starta
broker instance and to read its persistent files can be restricted by setting the mask
appropriately. Alternatively, an administrator (superuser) can secure persistent data by
setting the permissions on the instances directory to 700.

= On Windows, the directory’s permissions can be set using the mechanisms provided by the
Windows operating system. This generally involves opening a Properties dialog for the
directory.

Optimizing File-Based Transaction Persistence

Because many activities can occur during a transaction, persisting a transaction's state over the
complete life cycle of the transaction can adversely affect overall performance, especially when
the imq.persist.file.sync.enabled property is set to true to avoid data loss in case of a
system crash.

Message Queue provides a transaction logging mechanism that can improve performance of
transaction persistence. This transaction log offers tuning parameters that can improve
performance of file-based persistence for other objects, such as message payloads.

To enable this transaction logging mechanism, set the imq. persist.file.newTxnLogenabled
broker property to true.

After enabling the transaction log, essential changes to the state of a JMS transaction are written
to the transaction log. When the transaction is committed, all details regarding it are gathered
and written to the persistent store. Additionally, the logging mechanism periodically performs a
“checkpoint” operation to ensure that the persistent store and the transaction log are
synchronized and that the log size remains manageable.

As a further refinement, the operation of the logging mechanism is subject to the value of the
img.persist.file.sync.enabled broker property:

Open Message Queue 4.5 Administration Guide « July 2011

JDBC-Based Persistence

= When imqg.persist.file.sync.enabled is true, write operations to the transaction log are
written synchronously to disk. Non-transacted message and non-transacted message
acknowledgements are also written synchronously to the transaction log before being
written asynchronously to the persistent store.

= When img.persist.file.sync.enabled is false, write operations to the transaction log
are written asynchronously to disk. Non-transacted message and non-transacted message
acknowledgements are not written to the transaction log.

The tuning parameters supported by the transaction logging mechanism are:

® imq.persist.file.txnLog.groupCommit
® imq.persist.file.txnLog.logNonTransactedMsgSend
® imq.persist.file.txnLog.logNonTransactedMsgAck

Information about these parameters can be found in Table 17-7.

JDBC-Based Persistence

Instead of using a file-based data store, you can set up a broker to access any data store
accessible through a JDBC-compliant driver. This involves setting the appropriate
JDBC-related broker configuration properties and using the Database Manager utility
(imgdbmgr) to create the proper database schema. See “Configuring a JDBC-Based Data Store”
on page 132 for specifics.

JDBC-Based Persistence Properties

The full set of properties for configuring a broker to use a JDBC database are listed in

Table 17-8. You can specify these properties either in the instance configuration file
(config.properties) of each broker instance or by using the -D command line option to the
Broker utility (imgbrokerd) or the Database Manager utility (imgdbmgr).

In practice, however, JDBC properties are preconfigured by default, depending on the database
vendor being used for the data store. The property values are set in the default.properties
file, and only need to be explicitly set if you are overriding the default values. In general, you
only need to set the following properties:

® imq.persist.store

This property specifies that a JDBC-based data store (as opposed to the default file-based
data store) is used to store persistent data.

® imq.persist.jdbc.dbVendor

This property identifies the database vendor being used for the data store; all of the
remaining properties are qualified by this vendor name.

Chapter 8 - Configuring Persistence Services 131

JDBC-Based Persistence

132

® imq.persist.jdbcvendorName.user
This property specifies the user name to be used by the broker in accessing the database.
® imq.persist.jdbcvendorName.password

This property specifies the password for accessing the database, if required;
imq.persist.jdbc.vendorName.needpassword is a boolean flag specifying whether a
password is needed. For security reasons, the database access password should be specified
only in a password file referenced with the -passfile command line option; if no such
password file is specified, the imgbrokerd and imqdbmgr commands will prompt for the
password interactively.

® imq.persist.jdbc.vendorName.property.propName
This set of properties represents any additional, vendor-specific properties that are required.
® img.persist.jdbc.vendorName.tableoption

Specifies the vendor-specific options passed to the database when creating the table schema.

EXAMPLE8-1 Broker Properties for MySQL Database

img.persist.store=jdbc

imqg.persist.jdbc.dbVendor=mysql

img.persist.jdbc.mysql.user=userName

imq.persist.jdbc.mysql.password=password
imq.persist.jdbc.mysql.property.url=jdbc:mysql://hostName: port/dataBase

If you expect to have messages that are larger than 1 MB, configure MySQL's
max_allowed_packet variable accordingly when starting the database. For more information

see Appendix B of the MySQL 5.0 Reference Manual.

In addition, in an enhanced broker cluster, in which a JDBC database is shared by multiple
broker instances, each broker must be uniquely identified in the database (unnecessary for an
embedded database, which stores data for only one broker instance). The configuration
property imq.brokerid specifies a unique instance identifier to be appended to the names of
database tables for each broker. See “Enhanced Broker Cluster Properties” on page 179.

After setting all of the broker’s needed JDBC configuration properties, you must also install
your JDBC driver’s . jar file in IMQ_HOME/lib/ext and then create the database schema for the
JDBC-based data store (see “To Set Up a JDBC-Based Data Store” on page 133).

Configuring a JDBC-Based Data Store

To configure a broker to use a JDBC database, you set JDBC-related properties in the broker’s
instance configuration file and create the appropriate database schema. The Message Queue
Database Manager utility (imgdbmgr) uses your JDBC driver and the broker configuration
properties to create the schema and manage the database. You can also use the Database
Manager to delete corrupted tables from the database or if you want to use a different database
as a data store. See “Database Manager Utility” on page 334 for more information.

Open Message Queue 4.5 Administration Guide « July 2011

JDBC-Based Persistence

Note - If you use an embedded database, it is best to create it under the following directory:

.../instances/instanceName/dbstore/databaseName

If an embedded database is not protected by a user name and password, it is probably protected
by file system permissions. To ensure that the database is readable and writable by the broker,
the user who runs the broker should be the same user who created the embedded database using
the imgdbmgr command.

To Set Up a JDBC-Based Data Store

Set JDBC-related properties in the broker’s instance configuration file.

The relevant properties are discussed, with examples, in “JDBC-Based Persistence Properties”
on page 131 and listed in full in Table 17-8. In particular, you must specify a JDBC-based data
store by setting the broker’s imq. persist.store property to jdbc.

Place a copy of, or a symboliclink to, your JDBC driver’s . jar file in IMQ_HOME/1ib/ext, the
Message Queue external resource files directory.

Check the message table schema for your database in
IMQ_HOME/lib/props/broker/default.properties.

In the default.properties file, locate the message table schema for your database by searching
for “imq.persist.jdbc.vendor.table MQMSG”. Read any commentary notes about the schema
and check that the maximum message size is sufficient; if it is not, adjust the size of the
MESSAGE column as needed.

Create the database schema needed for Message Queue persistence.

Use the imgdbmgr create all command (for an embedded database) or the imqdbmgr create
thl command (for an external database); see “Database Manager Utility” on page 334.

a. Change to the directory where the Database Manager utility resides:
cd IMQ_HOME/bin

b. Enterthe imqgdbmgr command:

imqdbmgr create all

To Display Information About a JDBC-Based Data Store

You can display information about a JDBC-based data store using the Database Manager utility
(imgdbmgr) as follows:

Change to the directory where the Database Manager utility resides:
cd IMQ_HOME/bin

Chapter 8 - Configuring Persistence Services 133

JDBC-Based Persistence

134

Enter the imqgdbmgr command:
imqdbmgr query
The output should resemble the following

dbmgr query

[04/0ct/2005:15:30:20 PDT] Using plugged-in persistent store:
version=400
brokerid=Mozart1756
database connection url=jdbc:oracle:thin:@Xhome:1521:mqdb
database user=scott

Running in standalone mode.

Database tables have already been created.

Securing a JDBC-Based Data Store

The persistent data store can contain, among other information, message files that are being
temporarily stored. Since these messages may contain proprietary information, it is important
to secure the data store against unauthorized access. This section describes how to secure data
in a JDBC-based data store.

A broker using JDBC-based persistence writes persistent data to a JDBC-compliant database.
For a database managed by a database server (such as Oracle), it is recommended that you
create a user name and password to access the Message Queue database tables (tables whose
names start with MQ). If the database does not allow individual tables to be protected, create a
dedicated database to be used only by Message Queue brokers. See the documentation provided
by your database vendor for information on how to create user name/password access.

The user name and password required to open a database connection by a broker can be
provided as broker configuration properties. However it is more secure to provide them as
command line options when starting up the broker, using the imgbrokerd command’s
-dbuserand -dbpassword options (see “Broker Utility” on page 318).

For an embedded database that is accessed directly by the broker by means of the database’s
JDBC driver, security is usually provided by setting file permissions on the directory where the
persistent data will be stored, as described above under “Securing a File-Based Data Store” on
page 130 To ensure that the database is readable and writable by both the broker and the
Database Manager utility, however, both should be run by the same user.

Open Message Queue 4.5 Administration Guide « July 2011

Data Store Formats

Data Store Formats

Changes in the file formats for both file-based and JDBC-based persistent data stores were
introduced in Message Queue 3.7, with further JDBC changes in version 4.0 and 4.1. As a result
of these changes, the persistent data store version numbers have been updated to 370 for
file-based data stores and 410 for JDBC-based stores. You can use the imqdbmgr query
command to determine the version number of your existing data store.

On first startup, the Message Queue Broker utility (imgbrokerd) will check for the presence of
an older persistent data store and automatically migrate it to the latest format:

= File-based data store versions 200 and 350 are migrated to the version 370 format.

= JDBC-based data store versions 350, 370, and 400 are migrated to the version 410 format. (If
you need to upgrade a version 200 data store, you will need to step through an intermediate
Message Queue 3.5 or 3.6 release.)

The upgrade leaves the older copy of the persistent data store intact, allowing you to roll back
the upgrade if necessary. To do so, you can uninstall the current version of Message Queue and
reinstall the earlier version you were previously running. The older version’s message brokers
will locate and use the older copy of the data store.

Beginning in Message Queue 4.5, the imq. persist.file.newTxnLog property is true by
default. This setting can generate an error when starting a broker that is using an older
persistent data store. To resolve the error, set the property value to false and start the broker,
thus migrating the data store to the latest format. Then, you can stop the broker, set the
property value back to true, and start the broker without encountering an error.

Chapter 8 - Configuring Persistence Services 135

136

L K R 4 CHAPTER 9

Configuring and Managing Security Services

This chapter describes Message Queue’s facilities for security-related administration tasks, such
as configuring user authentication, defining access control, configuring a Secure Socket Layer
(SSL) connection service to encrypt client-broker communication, and setting up a password
file for administrator account passwords. In addition to Message Queue’s own built-in
authentication mechanisms, you can also plug in a preferred external service based on the Java
Authentication and Authorization Service (JAAS) API.

This chapter includes the following sections:

“Introduction to Security Services” on page 137

“User Authentication” on page 141

“User Authorization” on page 155

“Message Encryption” on page 161

“Password Files” on page 170

“Connecting Through a Firewall” on page 171

“Audit Logging with the Solaris BSM Audit Log” on page 172

Introduction to Security Services

Message Queue provides security services for user access control (authentication and
authorization) and for encryption:

= Authentication ensures that only verified users can establish a connection to a broker.

= Authorization specifies which users or groups have the right to access resources and to
perform specific operations.

= Encryption protects messages from being tampered with during delivery over a connection.

As a Message Queue administrator, you are responsible for setting up the information the
broker needs to authenticate users and authorize their actions. The broker properties pertaining
to security services are listed under “Security Properties” on page 359. The boolean property

137

Introduction to Security Services

138

imq.accesscontrol.enabled acts as a master switch that controls whether access control is
applied on a brokerwide basis; for finer control, you can override this setting for a particular
connection service by setting the imq. serviceName .accesscontrol.enabled property, where
serviceName is the name of the connection service, as shown in Table 6-1: for example,
img.httpjms.accesscontrol.enabled.

The following figure shows the components used by the broker to provide authentication and
authorization services. These services depend on a user repository containing information about
the users of the messaging system: their names, passwords, and group memberships. In
addition, to authorize specific operations for a user or group, the broker consults an access
control file that specifies which operations a user or group can perform. You can designate a
single access control file for the broker as a whole, using the configuration property
img.accesscontrol.file.filename, or for a single connection service with imq.serviceName.
accesscontrol.file.filename.

FIGURE9-1 Security Support

Broker

Flat File User

ﬁ Repository

JAAS
— Authentication ——»| Authentication
Service

LDAP
Server User
Repository

Physicall Access Control
Destinations | |— Authorization Properties File
accesscontrol.properties

As Figure 9-1 shows, you can store user data in a flat file user repository that is provided with
the Message Queue service, you can access an existing LDAP repository, or you can plugina
Java Authentication and Authorization Service (JAAS) module.

= Ifyou choose a flat-file repository, you must use the imqusermgr utility to manage the
repository. This option is easy to use and built-in.

Open Message Queue 4.5 Administration Guide « July 2011

Introduction to Security Services

= Ifyou want to use an existing LDAP server, you use the tools provided by the LDAP vendor
to populate and manage the user repository. You must also set properties in the broker
instance configuration file to enable the broker to query the LDAP server for information
about users and groups.

The LDAP option is better if scalability is important or if you need the repository to be
shared by different brokers. This might be the case if you are using broker clusters.

= Ifyouwant to plug-in an existing JAAS authentication service, you need to set the
corresponding properties in the broker instance configuration file.

The broker’s imq.authentication.basic.user_repository property specifies which type of
repository to use. In general, an LDAP repository or JAAS authentication service is preferable if
scalability is important or if you need the repository to be shared by different brokers (if you are
using broker clusters, for instance). See “User Authentication” on page 141 for more
information on setting up a flat-file user repository, LDAP access, or JAAS authentication
service.

Authentication

A client requesting a connection to a broker must supply a user name and password, which the
broker compares with those stored in the user repository. Passwords transmitted from client to
broker are encoded using either base-64 encoding (for flat-file repositories) or message digest
(MD5) hashing (for LDAP repositories). The choice is controlled by the
img.authentication.type property for the broker as a whole, or by imq.serviceName.
authentication. type for a specific connection service. The
img.authentication.client.response.timeout property setsa timeout interval for
authentication requests.

As described under “Password Files” on page 170, you can choose to put your passwords in a
password file instead of being prompted for them interactively. The boolean broker property
img.passfile.enabled controls this option. If this property is true, the imq.passfile.dirpath
and imq.passfile.name properties give the directory path and file name for the password file.
The imq.imgcmd. password property (which can be embedded in the password file) specifies the
password for authenticating an administrative user to use the Command utility (imgcmd) for
managing brokers, connection services, connections, physical destinations, durable
subscriptions, and transactions.

If you are using an LDAP-based user repository, there are a whole range of broker properties
available for configuring various aspects of the LDAP lookup. The address (host name and port
number) of the LDAP server itself is specified by imq.user_repository.ldap.server. The
img.user_repository.ldap.principal property gives the distinguished name for binding to
the LDAP repository, while imq.user_repository.ldap.password supplies the associated
password. Other properties specify the directory bases and optional JNDI filters for individual
user and group searches, the provider-specific attribute identifiers for user and group names,
and so forth; see “Security Properties” on page 359 for details.

Chapter9 - Configuring and Managing Security Services 139

Introduction to Security Services

140

Authorization

Once authenticated, a user can be authorized to perform various Message Queue-related
activities. As a Message Queue administrator, you can define user groups and assign individual
users membership in them. The default access control file explicitly refers to only one group,
admin (see “User Groups and Status” on page 142). A user in this group has connection
permission for the admin connection service, which allows the user to perform administrative
functions such as creating destinations and monitoring and controlling a broker. A user in any
other group that you define cannot, by default, get an admin service connection.

When a user attempts to perform an operation, the broker checks the user’s name and group
membership (from the user repository) against those specified for access to that operation (in
the access control file). The access control file specifies permissions to users or groups for the
following operations:

= Connecting to a broker

= Accessing destinations: creating a consumer, a producer, or a queue browser for any given
destination or for all destinations

= Auto-creating destinations

For information on configuring authorization, see “User Authorization” on page 155

Encryption

To encrypt messages sent between clients and broker, you need to use a connection service
based on the Secure Socket Layer (SSL) standard. SSL provides security at the connection level
by establishing an encrypted connection between an SSL-enabled broker and client.

To use an SSL-based Message Queue connection service, you generate a public/private key pair
using the Message Queue Key Tool utility (imgkeytool). This utility embeds the public key in a
self-signed certificate and places it in a Message Queue key store. The key store is itself
password-protected; to unlock it, you must provide a key store password at startup time,
specified by the imq. keystore.password property. Once the key store is unlocked, a broker can
pass the certificate to any client requesting a connection. The client then uses the certificate to
set up an encrypted connection to the broker.

For information on configuring encryption, see “Message Encryption” on page 161

Open Message Queue 4.5 Administration Guide « July 2011

User Authentication

User Authentication

Users attempting to connect to a Message Queue message broker must provide a user name and
password for authentication. The broker will grant the connection only if the name and
password match those in a broker-specific user repository listing the authorized users and their
passwords. Each broker instance can have its own user repository, which you as an
administrator are responsible for maintaining. This section tells how to create, populate, and
manage the user repository.

Message Queue can support any of three types of authentication mechanism:

= A flat-file repository that is shipped with Message Queue. This type of repository is very
easy to populate and manage, using the Message Queue User Manager utility (imqusermgr).
See “Using a Flat-File User Repository” on page 141.

= A Lightweight Directory Access Protocol (LDAP) server. This could be a new or existing
LDAP directory server using the LDAP v2 or v3 protocol. You use the tools provided by the
LDAP vendor to populate and manage the user repository. This type of repository is not as
easy to use as the flat-file repository, but it is more scalable and therefore better for
production environments. See “Using an LDAP User Repository” on page 147.

= An external authentication mechanism plugged into Message Queue by means of the Java
Authentication and Authorization Service (JAAS) API. See “Using JAAS-Based
Authentication” on page 150.

Using a Flat-File User Repository

Message Queue provides a built-in flat-file user repository and a command line tool, the User
Manager utility (imqusermgr), for populating and managing it. Each broker has its own flat-file
user repository, created automatically when you start the broker. By default, the user repository
resides in a file named passwd, in a directory identified by the name of the broker instance with
which the repository is associated:

IMQ VARHOME/instances/instanceName/etc/passwd

If you have changed these file name or directory defaults using the
img.user_repository.file.filename or imq.user_ repository.file.dirpath broker
properties, you must use the -D option to specify the non-default values when running
imqusermgr if you did not specify the values in the broker properties file. For example, if
img.user_repository.file.dirpath is specified in a cluster configuration file, start
imqusermgr using the form:

imqusermgr -Dimq.cluster.url=location-of-cluster-properties-file ...

As another example, if imq.user_repository.file.filename is specified on the imgbrokerd
command line to start the broker, start imqusermgr using the form:

Chapter9 - Configuring and Managing Security Services 141

User Authentication

142

imqusermgr -Dimq.user_repository.file.filename=filename-used-in-imgbrokerd-command ...

User Groups and Status

Each user in the repository can be assigned to a user group, which defines the default access
privileges granted to all of its members. You can then specify authorization rules to further
restrict these access privileges for specific users, as described in “User Authorization” on

page 155. A user’s group is assigned when the user entry is first created, and cannot be changed
thereafter. The only way to reassign a user to a different group is to delete the original user entry
and add another entry specifying the new group.

The flat-file user repository provides three predefined groups:

admin For broker administrators. By default, users in this group are granted the access
privileges needed to configure, administer, and manage message brokers.

user For normal (non-administrative) client users. Newly created user entries are
assigned to this group unless otherwise specified. By default, users in this group
can connect to all Message Queue connection services of type NORMAL, produce
messages to or consume messages from all physical destinations, and browse
messages in any queue.

anonymous For Message Queue clients that do not wish to use a user name known to the
broker (for instance, because they do not know of a real user name to use). This
group is analogous to the anonymous account provided by most FTPservers. No
more than one user at a time can be assigned to this group. You should restrict
the access privileges of this group in comparison to the user group, or remove
users from the group at deployment time.

You cannot rename or delete these predefined groups or create new ones.

In addition to its group, each user entry in the repository has a user status: either active or
inactive. New user entries added to the repository are marked active by default. Changing a
user’s status to inactive rescinds all of that user’s access privileges, making the user unable to
open new broker connections. Such inactive entries are retained in the user repository,
however, and can be reactivated at a later time. If you attempt to add a new user with the same
name as an inactive user already in the repository, the operation will fail; you must either delete
the inactive user entry or give the new user a different name.

To allow the broker to be used immediately after installation without further intervention by
the administrator, the flat-file user repository is created with two initial entries, summarized in
Table 9-1:

= The admin entry (user name and password admin/admin) enables you to administer the
broker with Command utility (imgcmd) commands. Immediately on installation, you should
update this initial entry to change its password (see “Changing a User’s Password” on
page 145).

Open Message Queue 4.5 Administration Guide « July 2011

User Authentication

= The guest entry allows clients to connect to the broker using a default user name and
password (guest/guest).

You can then proceed to add any additional user entries you need for individual users of your
message service.

TABLE9-1 Initial Entries in Flat-File User Repository

User Name Password Group Status
admin admin admin Active
guest guest anonymous Active

Using the User Manager Utility

The Message Queue User Manager utility (imqusermgr) enables you to populate or edit a
flat-file user repository. See“User Manager Utility” on page 336 for general reference
information about the syntax, subcommands, and options of the imqusermgr command.

User Manager Preliminaries
Before using the User Manager, keep the following things in mind:

= The imqusermgr command must be run on the host where the broker is installed.

= Ifabroker-specific user repository does not yet exist, you must start up the corresponding
broker instance to create it.

= You must have appropriate permissions to write to the repository; in particular, on Solaris
and Linux platforms, you must be logged in as the root user or the user who first created the
broker instance.

Subcommands and General Options

Table 9-2 lists the subcommands of the imqusermgr command. For full reference information

about these subcommands, see Table 16-15.

TABLE9-2 User Manager Subcommands

Subcommand Description

add Add user and password to repository
delete Delete user from repository

update Set user’s password or active status (or both)
list Display user information

The general options listed in Table 9-3 apply to all subcommands of the imqusermgr command.

Chapter9 - Configuring and Managing Security Services 143

User Authentication

TABLE9-3 General User Manager Options

Option Description

-DbrokerProperty=value Specify a broker property value when starting imqusermgr.
-f Perform action without user confirmation

-s Silent mode (no output displayed)

-v Display version information'

-h Display usage help'

! Any other options specified on the command line are ignored.

Displaying the Product Version
To display the Message Queue product version, use the -v option. For example:
imqusermgr -v

If you enter an imqusermgr command line containing the -v option in addition to a
subcommand or other options, the User Manager utility processes only the -v option. All other
items on the command line are ignored.

Displaying Help

To display help on the imqusermgr command, use the -h option, and do not use a
subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imqusermgr:
imqusermgr -h

If you enter an imqusermgr command line containing the - h option in addition to a
subcommand or other options, the Command utility processes only the -h option. All other
items on the command line are ignored.

Adding a User to the Repository

The subcommand imqusermgr add adds an entry to the user repository, consisting of a user
name and password:

imqusermgr add [-i brokerName)]
-u userName -p password

[-g group]

The -u and -p options specify the user name and password, respectively, for the new entry.
These must conform to the following conventions:

144 Open Message Queue 4.5 Administration Guide « July 2011

User Authentication

= All user names and passwords must be at least one character long. Their maximum length is
limited only by command shell restrictions on the maximum number of characters that can
be entered on a command line.

® A user name cannot contain an asterisk (*), a comma (,), a colon (:), or a new-line or
carriage-return character.

= [fauser name or password contains a space, the entire name or password must be enclosed
in quotation marks (" ").

The optional -g option specifies the group (admin, user, or anonymous) to which the new user
belongs; if no group is specified, the user is assigned to the user group by default. If the broker
name (-1 option) is omitted, the default broker imgbroker is assumed.

For example, the following command creates a user entry on broker imgbroker for a user
named AliBaba, with password Sesame, in the admin group:

imqusermgr add -u AliBaba -p Sesame -g admin

Deleting a User From the Repository

The subcommand imqusermgr delete deletes a user entry from the repository:

imqusermgr delete [-i brokerName]
-u userName

The -u option specifies the user name of the entry to be deleted. If the broker name (- i option)
is omitted, the default broker imgbroker is assumed.

For example, the following command deletes the user named AliBaba from the user repository
on broker imgbroker:

imqusermgr delete -u AliBaba

Changing a User’s Password

You can use the subcommand imqusermgr update to change a user’s password:

imqusermgr update [-i brokerName]
-u userName -p password

The -u identifies the user; - p specifies the new password. If the broker name (- i option) is
omitted, the default broker imgbroker is assumed.

For example, the following command changes the password for user AliBaba to Shazam on
broker imgbroker:

imqusermgr update -u AliBaba -p Shazam

Chapter9 - Configuring and Managing Security Services 145

User Authentication

Note - For the sake of security, you should change the password of the admin user from its initial
default value (admin) to one that is known only to you. The following command changes the
default administrator password for broker mybroker to veeblefetzer:

imqusermgr update -i mybroker -u admin -p veeblefetzer

You can quickly confirm that this change is in effect by running any of the command line tools
when the broker is running. For example, the following command will prompt you for a
password:

imgcmd list svc mybroker -u admin
Entering the new password (veeblefetzer) should work; the old password should fail.

After changing the password, you should supply the new password whenever you use any of the
Message Queue administration tools, including the Administration Console.

Activating or Deactivating a User

The imqusermgr update subcommand can also be used to change a user’s active status:

imqusermgr update [-i brokerName]
-u userName -a activeStatus

The -uidentifies the user; -a is a boolean value specifying the user’s new status as active (true)
or inactive (false). If the broker name (- i option) is omitted, the default broker imgbroker is
assumed.

For example, the following command sets user ALliBaba’s status to inactive on broker
imgbroker:

imqusermgr update -u AliBaba -a false
This renders AliBabe unable to open new broker connections.

You can combine the -p (password) and -a (active status) options in the same imqusermgr
update command. The options may appear in either order: for example, both of the following
commands activate the user entry for AliBaba and set the password to plugh:

imqusermgr update -u AliBaba -p plugh -a true
imqusermgr update -u AliBaba -a true -p plugh

Viewing User Information

The imqusermgr list command displays information about a user in the user repository:

imqusermgr list [-i brokerName]
[-u userName)]

146 Open Message Queue 4.5 Administration Guide « July 2011

User Authentication

The command
imqusermgr list -u AliBaba

displays information about user AliBabe, as shown in Example 9-1.

EXAMPLE9-1 Viewing Information for a Single User

User repository for broker instance: imgbroker

If you omit the -u option
imqusermgr list

the command lists information about all users in the repository, as in Example 9-2.

EXAMPLE9-2 Viewing Information for All Users

User repository for broker instance: imgbroker

User Name Group Active State
admin admin true

guest anonymous true

AliBaba admin true
testuserl user true
testuser2 user true
testuser3 user true
testuser4d user false
testuser5 user false

Using an LDAP User Repository

You configure a broker to use an LDAP directory server by setting the values for certain
configuration properties in the broker’s instance configuration file (config.properties).
These properties enable the broker instance to query the LDAP server for information about
users and groups when a user attempts to connect to the broker or perform messaging
operations.

Chapter9 - Configuring and Managing Security Services 147

User Authentication

148

The img.authentication.basic.user_repository property specifies the kind of user
authentication the broker is to use. By default, this property is set to file, for a flat-file user
repository. For LDAP authentication, set it to ldap instead:

img.authentication.basic.user repository=Lldap

The imq.authentication.type property controls the type of encoding used when passing a
password between client and broker. By default, this property is set to digest, denoting
MD?5 encoding, the form used by flat-file user repositories. For LDAP authentication, set it
to basic instead:

img.authentication.type=basic

This denotes base-64 encoding, the form used by LDAP user repositories.

The following properties control various aspects of LDAP access. See Table 17-11 for more
detailed information:

imqg.user repository.ldap.server
img.user repository.ldap.principal
imqg.user repository.ldap.password
imq.user_repository.ldap.propertyName
img.user repository.ldap.base
imqg.user repository.ldap.uidattr
imqg.user repository.ldap.usrfilter
imqg.user repository.ldap.grpsearch
imqg.user repository.ldap.grpbase
imqg.user repository.ldap.gidattr
imqg.user repository.ldap.memattr
imqg.user repository.ldap.grpfilter
img.user repository.ldap.timeout
img.user repository.ldap.ssl.enabled

The imq.user_repository.ldap.userformat property, if set to a value of dn, specifies that
the login username for authentication be in DN username format (for example:
uid=mquser,ou=People,dc=red,dc=sun,dc=com). In this case, the broker extracts the value
ofthe imq.user. repository.1lpdap.uidatr attribute from the DN username, and uses this
value as the user name in access control operations (see “User Authorization” on page 155).

If you want the broker to use a secure, encrypted SSL (Secure Socket Layer) connection for
communicating with the LDAP server, set the broker’s
imq.user_repository.ldap.ssl.enabled property to true

imqg.user repository.ldap.ssl.enabled=true

and the imq.user_repository.ldap.server property to the port used by the LDAP server
for SSL communication: for example,

imqg.user repository.ldap.server=myhost:7878

Open Message Queue 4.5 Administration Guide « July 2011

User Authentication

You will also need to activate SSL communication in the LDAP server.

In addition, you may need to edit the user and group names in the broker’s access control file to
match those defined in the LDAP user repository; see “User Authorization” on page 155 for
more information.

For example, to create administrative users, you use the access control file to specify those users
and groups in the LDAP directory that can create ADMIN connections.

Any user or group that can create an ADMIN connection can issue administrative commands.

To Set Up an Administrative User

The following procedure makes use of a broker's access control file, which is described in “User
Authorization” on page 155.

Enable the use of the access control file by setting the broker property
imq.accesscontrol.enabled to true, whichis the default value.

The imq.accesscontrol.enabled property enables use of the access control file.

Open the access control file,
IMQ_VARHOME/instances/instanceName/etc/accesscontrol.properties.

The file contains an entry such as the following:

service connection access control
B R
connection.NORMAL.allow.user=*
connection.ADMIN.allow.group=admin

The entries listed are examples. Note that the admin group exists by default in the file-based user

repository but does not exist by default in the LDAP directory.

To grant Message Queue administrator privileges to users, enter the user names as follows:

connection.ADMIN.allow.user= userName|[[, userName2] ...]

The users must be defined in the LDAP directory.

To grant Message Queue administrator privileges to groups, enter the group names as follows:
connection.ADMIN.allow.group=groupNamel[[,groupName2] ...]

The groups must be defined in the LDAP directory.

Chapter9 - Configuring and Managing Security Services 149

User Authentication

Using JAAS-Based Authentication

The Java Authentication and Authorization Service (JAAS) API allows you to plug an external
authentication mechanism into Message Queue. This section describes the information that the
Message Queue message broker makes available to a JAAS-compliant authentication service
and explains how to configure the broker to use such a service. The following sources provide
further information on JAAS:

= For complete information about the JAAS API, see the Java™ Authentication and
Authorization Service (JAAS) Reference Guide at the URL

http://download.oracle.com/
javase/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

= For information about writing a JAAS login module, see the Java™ Authentication and
Authorization Service (JAAS) LoginModule Developer’s Guide at

http://download.oracle.com/
javase/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

JAAS isa core APIin Java 2 Standard Edition (J2SE), and is therefore an integral part of
Message Queue’s runtime environment. It defines an abstraction layer between an application
and an authentication mechanism, allowing the desired mechanism to be plugged in with no
change to application code. In the case of the Message Queue service, the abstraction layer lies
between the broker (application) and an authentication provider. By setting a few broker
properties, it is possible to plug in any JAAS-compliant authentication service and to upgrade
this service with no disruption or change to broker code.

Note - You cannot use the Java Management Extensions (JMX) API to change JAAS-related
broker properties. However, once JAAS-based authentication is configured, JMX client
applications (like other clients) can be authenticated using this mechanism.

Elements of JAAS

Figure 9-2 shows the basic elements of JAAS: a JAAS client, a JAAS-compliant authentication
service, and a JAAS configuration file.

= The JAAS client is an application wishing to perform authentication using a
JAAS-compliant authentication service. The JAAS client communicates with the
authentication service using one or more login modules and is responsible for providing a
callback handler that the login module can call to obtain the user name, password, and other
information needed for authentication.

= The JAAS-compliant authentication service consists of one or more login modules along
with logic to perform the needed authentication. The login module (LoginModule) may
include the authentication logic itself, or it may use a private protocol or API to
communicate with an external security service that provides the logic.

150 Open Message Queue 4.5 Administration Guide « July 2011

http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html

User Authentication

= The JAAS configuration file is a text file that the JAAS client uses to locate the login
module(s) to be used.

FIGURE9-2 JAAS Elements

JAAS Client JAAS
LoginContext [~ Configuration
CallbackHandler File

LoginModule [{-----
Authentication
Service

Authentication
Logic

External Security
Infrastructure

JAAS and Message Queue

Figure 9-3 shows how JAAS is used by the Message Queue broker. It shows a more complex
implementation of the JAAS model shown in Figure 9-2.

Chapter9 - Configuring and Managing Security Services 151

User Authentication

FIGURE9-3 How Message Queue Uses JAAS

Message Queue

EE Broker
Message (JAAS Client)
Queue 4 VM
Ii
E|:Icl LoginContext

[|
— — —

LoginModule?2 LoginModule3
(Authentication (Authentication

I_I_I Logic) Elj Logic)

LoginModulel

1 1
1 1
1 1
1 1
1 1
1 1
1]
L]
1]
1]
1 1
1 1
: CallbackHandler 1
1 1
1 1
1 1
1 1
1]
1]
1]
1]
1 1
1 1
1 1
1 1
1 1

Authentication
Logic

<

Local
File System

LDAP
Server RDBMS

The authentication service layer, consisting of one or more login modules (if needed) and
corresponding authentication logic, is separate from the broker. The login modules run in the
same Java virtual machine as the broker. The broker is represented to the login module as a
login context, and communicates with the login module by means of a callback handler that is
part of the broker runtime code.

The authentication service also supplies a JAAS configuration file containing entries that
reference the login modules. The configuration file specifies the order in which the login
modules (if more than one) are to be used and any conditions for their use. When the broker
starts up, it locates the configuration file by consulting either the Java system property
java.security.auth.login.config or the Java security properties file. The broker then
selects an entry in the JAAS configuration file according to the value of the broker property
imq.user_repository.jaas.name. That entry specifies which login module(s) will be used for
authentication. The classes for the login modules are found in the Message Queue external
resource files directory, IMQ_HOMElib/ext.

The relation between the configuration file, the login module, and the broker is shown in the
following figure. Figure 9-4.

152 Open Message Queue 4.5 Administration Guide « July 2011

User Authentication

FIGURE9-4 Setting Up JAAS Support
MyJAASCFile.config

Configuration file location

is specified with the Java
system property
java.security.auth.login.confi
or in the Java security
properties file.

—@ MyEntryl{
com.some.module.LoginModulel required
debug=true
com.some.module.LoginModule2 optional
debug=true }

Entry point into the configuration file is
specified with the broker property
imq.user_repository.jaas.name=MyEntry1

LoginModule location is in Message
Queue external resource files directory.
LoginModule classes are dynamically
loaded by the broker.

LoginModulel.java

.

CallbackHandler

LoginModule communicates with the
broker using CallbackHandler.

Broker

The fact that the broker uses a JAAS plug-in authentication service remains completely
transparent to the Message Queue client. The client continues to connect to the broker as it did
before, passing a user name and password. In turn, the broker uses a callback handler to pass
login information to the authentication service, and the service uses the information to
authenticate the user and return the results. If authentication succeeds, the broker grants the
connection; if it fails, the client runtime returns a JMS security exception that the client must
handle.

After the Message Queue client is authenticated, if there is further authorization to be done, the
broker proceeds as it normally would, consulting the access control file to determine whether
the authenticated client is authorized to perform the actions it undertakes: accessing a
destination, consuming a message, browsing a queue, and so on.

Setting up JAAS-Compliant Authentication

Setting up JAAS-compliant authentication involves setting broker and system properties to
select this type of authentication, to specify the location of the configuration file, and to specify
the entries to the login modules that are going to be used.

To set up JAAS support for Message Queue, you perform the following general steps. (These
steps assume you are creating your own authentication service.)

1. Create one or more login module classes that implement the authentication service. The
JAAS callback types that the broker supports are listed below.

Chapter9 - Configuring and Managing Security Services 153

User Authentication

154

javax.security.auth.callback.LanguageCallback
The broker uses this callback to pass the authentication service the locale in which the
broker is running. This value can be used for localization.

javax.security.auth.callback.NameCallback
The broker uses this callback to pass to the authentication service the user name specified
by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextInputCallback
The broker uses this callback to pass the value of the following information to the login
module (authentication service) when requested through the
TextInputCallback.getPrompt() with the following strings:

= img.authentication.type: The broker authentication type in effect at runtime

m img.accesscontrol.type: The broker access control type in effect at runtime

® img.authentication.clientip: The client IP address (null if unavailable)

® imqg.servicename: The name of the connection service (jms, ss1jms, admin, or
ssladmin) being used by the client

= img.servicetype: The type of the connection service (NORMAL or ADMIN) being used
by the client

javax.security.auth.callback.PasswordCallback
The broker uses this callback to pass to the authentication service the password specified
by the Message Queue client when the connection was requested.

javax.security.auth.callback.TextOutputCallback
The broker handles this callback to provide logging service to the authentication service
by logging the text output to the broker's log file. The callback's MessageType ERROR,
INFORMATION, WARNING are mapped to the broker logging levels ERROR, INFO, WARNING
respectively.

Create a JAAS configuration file with entries that reference the login module classes created
in Step 1 and specify the location of this file.

. Note the name of the entry in the JAAS configuration file (that references the login module

implementation classes).

. Archive the classes that implement the login modules to a jar file, and place the jar file in the

Message Queue lib/ext directory.
Set the broker configuration properties that relate to JAAS support. These are described in

Table 9-4.

Set the following system property (to specify the location of the JAAS configuration file).
java.security.auth.login.config=JAAS_Config_File_Location
For example, you can specify the location when you start the broker.

imgbrokerd -Djava.security.auth.login.config=JAAS_Config File_Location

Open Message Queue 4.5 Administration Guide « July 2011

User Authorization

There are other ways to specify the location of the JAAS configuration file. For additional

information, please see

http://download.oracle.com/

javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html

The following table lists the broker properties that need to be set to set up JAAS support.

TABLE9-4 Broker Properties for JAAS Support

Property

Description

img.authentication.type

imqg.authentication.basic.user_repository

img.user repository.jaas.name

img.user repository.jaas.userPrincipalClass

img.user repository.jaas.groupPrincipalClass

Set to basic to indicate Base-64 password encoding.
This is the only permissible value for JAAS
authentication.

Set to jaas to specify JAAS authentication.

Set to the name of the desired entry (in the JAAS
configuration file) that references the login modules
you want to use as the authentication mechanism.
This is the name you noted in Step 3.

This property, used by Message Queue access control,
specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to represent
the user entity in the Message Queue access control
file. If, it is not specified, the user name passed from
the Message Queue client when a connection was
requested is used instead.

This property, used by Message Queue access control,
specifies the java.security.Principal
implementation class in the login module(s) that the
broker uses to extract the Principal name to represent
the group entity in the Message Queue access control
file. If, it is not specified, the group rules, if any, in the
Message Queue access control file are ignored.

User Authorization

An access control file contains rules that specify which users (or groups of users) are authorized
to perform certain operations on a message broker. These operations include the following:

Creating a connection

Browsing a queue destination
Auto-creating a physical destination

Chapter9 « Configuring and Managing Security Services

Creating a message producer for a physical destination
Creating a message consumer for a physical destination

155

http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html

User Authorization

If access control is enabled (that is, if the broker’s imq.accesscontrol.enabled configuration
property is set to true, the broker will consult its access control file whenever a client attempts
one of these operations, to verify whether the user generating the request (or a group to which
the user belongs) is authorized to perform the operation. By editing this file, you can restrict
access to these operations to particular users and groups. Changes take effect immediately; there
is no need to restart the broker after editing the file.

Access Control File Syntax

Each broker has it own access control file, created automatically when the broker is started. The
file is named accesscontrol.properties and is located at
IMQ VARHOME/instances/instanceName/etc.

The file is formatted as a Java properties file. It starts with a version property defining the
version of the file:

version=JMQFileAccessControlModel/100

This is followed by three sections specifying the access control for three categories of
operations:

= Creating connections
= Creating message producers or consumers, or browsing a queue destination
= Auto-creating physical destinations

Each of these sections consists of a sequence of authorization rules specifying which users or
groups are authorized to perform which specific operations. These rules have the following
syntax:

resourceType . resourceVariant . operation . access. principal Type=principals

Table 9-5 describes the various elements.

TABLE9-5 Authorization Rule Elements

Element Description

resourceType Type of resource to which the rule applies:
connection: Connections

queue: Queue destinations

topic: Topic destinations

resourceVariant Specific resource (connection service type or destination) to which the rule
applies

An asterisk (*) may be used as a wild-card character to denote all resources of a
given type: for example, a rule beginning with queue. * applies to all queue
destinations.

156 Open Message Queue 4.5 Administration Guide « July 2011

User Authorization

TABLE9-5 Authorization Rule Elements (Continued)
Element Description
operation Operation to which the rule applies

This syntax element is not used for resourceType=connection.

access Level of access authorized:
allow: Authorize user to perform operation
deny: Prohibit user from performing operation

principalType Type of principal (user or group) to which the rule applies:
user: Individual user
group: User group

principals List of principals (users or groups) to whom the rule applies, separated by
commas

An asterisk (*) may be used as a wild-card character to denote all users or all
groups: for example, a rule ending with user=* applies to all users.

EXAMPLE9-3 Example 1

Rule: queue.ql.consume.allow.user=*

Description: allows all users to consume messages from the queue destination q1.
EXAMPLE9-4 Example2

Rule: queue. *. consume.allow.user=Snoopy

Description: allows user Snoopy to consume messages from all queue destinations.
EXAMPLE9-5 Example 3

Rule: topic.tl.produce.deny.user=Snoopy

Description: prevents Snoopy from producing messages to the topic destination t1

Note - You can use Unicode escape (\\uXXXX) notation to specify non-ASCII user, group, or
destination names. If you have edited and saved the access control file with these namesin a
non-ASCII encoding, you can use the Java native2ascii tool to convert the file to ASCIL See
the Java Internationalization FAQ at

http://java.sun.com/j2se/1.4/docs/guide/int1l/faq.html

for more information.

Chapter9 - Configuring and Managing Security Services 157

User Authorization

158

Application of Authorization Rules

Authorization rules in the access control file are applied according to the following principles:

= Any operation not explicitly authorized through an authorization rule is implicitly
prohibited. For example, if the access control file contains no authorization rules, all users
are denied access to all operations.

= Authorization rules for specific users override those applying generically to all users. For
example, the rules

queue.qgl.produce.allow.user=*
queue.qgl.produce.deny.user=Snoopy
authorize all users except Snoopy to send messages to queue destination q1.
= Authorization rules for a specific user override those for any group to which the user

belongs. For example, if user Snoopy is a member of group user, the rules

queue.qgl.consume.allow.group=user
queue.qgl.consume.deny.user=Snoopy

authorize all members of user except Snoopy to receive messages from queue destination
ql.

= Authorization rules applying generically to all users override those applying to all groups.
For example, the rules

topic.tl.produce.deny.group=*
topic.tl.produce.allow.user=*

authorize all users to publish messages to topic destination t1, overriding the rule denying
such access to all groups.
= Authorization rules for specific resources override those applying generically to all resources

of a given type. For example, the rules

topic.*.consume.allow.user=Snoopy
topic.tl.consume.deny.user=Snoopy

authorize Snoopy to subscribe to all topic destinations except t1.

= Authorization rules authorizing and denying access to the same resource and operation for
the same user or group cancel each other out, resulting in authorization being denied. For
example, the rules

queue.qgl.browse.deny.user=Snoopy
queue.qgl.browse.allow.user=Snoopy

prevent Snoopy from browsing queue g1. The rules

Open Message Queue 4.5 Administration Guide « July 2011

User Authorization

topic.tl.consume.deny.group=user
topic.tl.consume.allow.group=user

prevent all members of group user from subscribing to topic t1.

= When multiple authorization rules are specified for the same resource, operation, and
principal type, only the last rule applies. The rules

queue.qgl.browse.allow.user=Snoopy,Linus
queue.qgl.browse.allow.user=Snoopy

authorize user Snoopy, but not Linus, to browse queue destination q1.

Authorization Rules for Connection Services

Authorization rules with the resource type connection control access to the broker’s
connection services. The rule’s resourceVariant element specifies the service type of the
connection services to which the rule applies, as shown in Table 6-1; the only possible values
are NORMAL or ADMIN. There is no operation element.

The default access control file contains the rules

connection.NORMAL.allow.user=*
connection.ADMIN.allow.group=admin

giving all users access to NORMAL connection services (jms, ssljms, httpjms,and httpsjms) and
those in the admin group access to ADMIN connection services (admin and ssladmin). You can
then add additional authorization rules to restrict the connection access privileges of specific
users: for example, the rule

connection.NORMAL.deny.user=Snoopy
denies user Snoopy access privileges for connection services of type NORMAL.

If you are using a file-based user repository, the admin user group is created by the User
Manager utility. If access control is disabled (imq.accesscontrol.enabled = false), all users
in the admin group automatically have connection privileges for ADMIN connection services. If
access control is enabled, access to these services is controlled by the authorization rules in the
access control file.

If you are using an LDAP user repository, you must define your own user groups in the LDAP
directory, using the tools provided by your LDAP vendor. You can either define a group named
admin, which will then be governed by the default authorization rule shown above, or edit the
access control file to refer to one or more other groups that you have defined in the LDAP
directory. You must also explicitly enable access control by setting the broker’s
img.accesscontrol.enabled property to true.

Chapter9 - Configuring and Managing Security Services 159

User Authorization

160

Authorization Rules for Physical Destinations

Access to specific physical destinations on the broker is controlled by authorization rules with a
resource type of queue or topic, as the case may be. These rules regulate access to the following
operations:

Sending messages to a queue: produce operation

Receiving messages from a queue: consume operation

Publishing messages to a topic: produce operation

Subscribing to and consuming messages from a topic: consume operation
= Browsing a queue: browse operation

By default, all users and groups are authorized to perform all of these operations on any physical
destination. You can change this by editing the default authorization rules in the access control
properties file or overriding them with more specific rules of your own. For example, the rule

topic.Admissions.consume.deny.group=user

denies all members of the user group the ability to subscribe to the topic Admissions.

Authorization Rules for Auto—Created Physical Destinations

When a client creates a message producer or consumer for a physical destination that does not
already exist, the broker will auto-create the destination (provided that the broker’s
img.autocreate.queue or imq.autocreate.topic propertyissetto t rue).

The final section of the access control file controls the ability of users and groups to auto-create
destinations, and to access any auto-created destinations. This is governed by authorization
rules with a resourceType of queue or topic and an operation element of create. the
resourceVariant element is omitted, since these rules apply to all auto-created queues or all
auto-created topics, rather than any specific destination.

The default access control file contains the rules

queue.create.allow.user=*
topic.create.allow.user=*

authorizing all users to have physical destinations auto-created for them by the broker, and to
have access to any auto-created destinations. You can edit the file to restrict such authorization
for specific users. For example, the rule

topic.create.deny.user=Snoopy

denies user Snoopy the ability to auto-create topic destinations or to access any auto-created
topic destinations.

Open Message Queue 4.5 Administration Guide « July 2011

Message Encryption

Note - The effect of such auto-creation rules must be congruent with that of other physical
destination access rules. For example, if you change the destination authorization rule to
prohibit any user from sending a message to a queue, but enable the auto-creation of queue
destinations, the broker will create the physical destination if it does not exist, but will not
deliver a message to it.

Message Encryption

This section explains how to set up a connection service based on the Secure Socket Layer (SSL)
standard, which enables delivery of encrypted messages over the connection. Message Queue
supports the following SSL-based connection services:

= The ssljms service delivers secure, encrypted messages between a client and a broker, using
the TCP/IP transport protocol.

= Thehttpsjms service delivers secure, encrypted messages between a client and a broker,
using an HTTPS tunnel servlet with the HTTP transport protocol.

= The ssladmin service creates a secure, encrypted connection between the Message Queue
Command utility (imqcmd) and a broker, using the TCP/IP transport protocol. Encrypted
connections are not supported for the Administration Console (imgadmin).

= The cluster connection service is used internally to provide secure, encrypted
communication between brokers in a cluster, using the TCP/IP transport protocol.

= A JMX connector that supports secure, encrypted communication between a JMX client
and a broker's MBean server using the RMI transport protocol over TCP.

The remainder of this section describes how to set up secure connections over TCP/IP, using the
ssljms, ssladmin, and cluster connection services. For information on setting up secure
connections over HTTP with the httpsjms service, see Appendix C, “HTTP/HTTPS Support”

Using Self-Signed Certificates

To use an SSL-based connection service over TCP/IP, you generate a public/private key pair
using the Key Tool utility (imgkeytool). This utility embeds the public key in a self-signed
certificate that is passed to any client requesting a connection to the broker, and the client uses
the certificate to set up an encrypted connection. This section describes how to set up an
SSL-based service using such self-signed certificates.

For a stronger level of authentication, you can use signed certificates verified by a certification
authority. The use of signed certificates involves some additional steps beyond those needed for
self-signed certificates: you must first perform the procedures described in this section and then
perform the additional steps in “Using Signed Certificates” on page 167.

Chapter9 - Configuring and Managing Security Services 161

Message Encryption

162

Message Queue's support for SSL with self-signed certificates is oriented toward securing
on-the-wire data, on the assumption that the client is communicating with a known and trusted
server. Configuring SSL with self-signed certificates requires configuration on both the broker
and client:

= “Setting Up an SSL-Based Connection Service Using Self-Signed Certificates” on page 162
= “Configuring and Running an SSL-Based Client Using Self-Signed Certificates” on page 166

Setting Up an SSL-Based Connection Service Using Self-Signed
Certificates

The following sequence of procedures are needed to set up an SSL-based connection service for
using self-signed certificates:

Note - Starting with release 4.0, the default value for the client connection factory property
imqSSLIsHostTrusted is false. If your application depends on the prior default value of true,
you need to reconfigure and to set the property explicitly to true. In particular, old or new
clients using self-signed certificates should set this property to true; for example:

java -DimgConnectionType=TLS -DimqSSLIsHostTrusted=true MyApp

The administration tool imgcmd is also affected by this change. In addition to using the —secure
option to specify that it uses a SSL-based admin connection service, the imqSSLIsHostTrusted
should be set to true when connecting to a broker configured with a self-signed certificate. You
can do this as follows:

imgcmd list svc -secure -DimqSSLIsHostTrusted=true

Alternatively, you can import the broker's self-signed certificate into the client runtime trust
store. Use the procedure in “To Install a Signed Certificate” on page 168.

1. Generate a self-signed certificate.

2. Enable the desired SSL-based connection services in the broker. These can include the
ssljms, ssladmin, or cluster connection services.

3. Start the broker.

To Generate a Self-Signed Certificate

Run the Key Tool utility (imgkeytool) to generate a self-signed certificate for the broker. (On
Solaris and Linux operating systems, you may need to run the utility as the root user in order to
have permission to create the keystore file.) The same certificate can be used for all SSL-based
connection services (ss1jms, ssladmin, cluster connection services, and the ss1jmxrmi
connector).

Enter the following at the command prompt:
imgkeytool -broker

Open Message Queue 4.5 Administration Guide « July 2011

Message Encryption

The Key Tool utility prompts you for a key store password:

At the prompt type a keystore password.

The Keystore utility prompts you for identifying information from which to construct an X.500
distinguished name. The following table shows the prompts and the values to be provided for
each. Values are case-insensitive and can include spaces.

Prompt X.500 Attribute Description Example

What is your first and | commonName (CN) Fully qualified name of mgserver.sun.com
last name? server running the broker

What is the name of organizationalUnit Name of department or purchasing

your organizational (ou) division

unit?

What is the name of
your organization?

organizationName (ON)

Name of larger
organization, suchasa
company or government
entity

Acme Widgets, Inc.

What is the name of localityName (L) Name of city or locality San Francisco
your city or locality?

What is the name of stateName (ST) Full (unabbreviated) California
your state or name of state or province

province?

What is the two-letter | country (C) Standard two-letter us

country code for this
unit?

country code

The Key Tool utility displays the information you entered for confirmation. For example,

Is CN=mgserver.sun.com, OU=purchasing, ON=Acme Widgets, Inc.,
L=San Francisco, ST=California, C=US correct?

Accept the current values and proceed by typing yes.

To reenter values, accept the default or enter no. After you confirm, the utility pauses while it

generates a key pair.

The utility asks for a password to lock the key pair (key password).

Press return.

This will set the same password for both the key password and the keystore password.

Chapter9 « Configuring and Managing Security Services

163

Message Encryption

164

A\

Caution - Be sure to remember the password you specify. You must provide this password when
you start the broker, to allow the broker to open the keystore file. You can store the keystore
password in a password file (see “Password Files” on page 170).

The Key Tool utility generates a self-signed certificate and places it in Message Queue’s keystore
file. The keystore file is located in IMQ_HOME/etc by default.

The following are the configurable properties for the Message Queue keystore for SSL-based
connection services:

img.keystore.file.dirpath Path to directory containing keystore file
imq.keystore.file.name Name of key store file
imq.keystore.password Ke store password (to be used only in a password file)

In some circumstances, you may need to regenerate a key pair in order to solve certain
problems: for example, if you forget the key store password or if the SSL-based service fails to
initialize when you start a broker and you get the exception:

java.security.UnrecoverableKeyException: Cannot recover key

(This exception may result if you provided a key password different from the keystore password
when you generated the self-signed certificate.)

To Regenerate a Key Pair

Remove the broker’s keystore file.
The file is located in IMQ_HOME/etc by default.

Run imgkeytool again.

The command will generate a new key pair, as described above.

To Enable an SSL-Based Connection Service in the Broker

To enable an SSL-based connection service in the broker, you need to add the corresponding
service or services to the imq.service.activelist property.

Open the broker’s instance configuration file:
IMQ_VARHOME/instances/instanceName/props/config.properties

Open Message Queue 4.5 Administration Guide « July 2011

Message Encryption

Add an entry (if one does not already exist) for the imq.service.activelist property and
include the desired SSL-based service(s) in the list.

By default, the property includes the jms and admin connection services. Add the SSL-based
service or services you wish to activate (ss1jms, ssladmin, or both):

img.service.activelist=jms,admin,ssljms,ssladmin

Note - The SSL-based cluster connection service is enabled using the imq. cluster.transport
property rather than the imq. service.activelist property (see “Cluster Connection Service
Properties” on page 176). To enable SSL for RMI-based JMX connectors, see “SSL-Based JMX
Connections” on page 469.

Save and close the instance configuration file.

To Start the Broker
Start the broker, providing the key store password.

Note - When you start a broker or client with SSL, you may notice a sharp increase in CPU usage
for a few seconds. This is because the JSSE (Java Secure Socket Extension) method
java.security.SecureRandom, which Message Queue uses to generate random numbers, takes
a significant amount of time to create the initial random number seed. Once the seed is created,
the CPU usage level will drop to normal.

Start the broker, providing the keystore password.

Put the keystore password in a password file, as described in “Password Files” on page 170 and
set the imq. passfile.enabled property to true. You can now do one of the following:

m Passthelocation of the password file to the imgbrokerd command:
imgbrokerd -passfile /passfileDirectory/passfileName

= Startthe broker without the -passfile option, but specify the location of the password file
using the following two broker configuration properties:

imq.passfile.dirpath=/passfileDirectory

imq.passfile.name=/passfileName

If you are not using a password file, enter the keystore password at the prompt.

imgbrokerd

You are prompted for the keystore passwrd.

Chapter9 - Configuring and Managing Security Services 165

Message Encryption

166

Configuring and Running an SSL-Based Client Using Self-Signed
Certificates

The procedure for configuring a client to use an SSL-based connection service differs depending
on whether it is an application client (using the ss1jms connection service) or a Message Queue
administrative client such as imqcmd (using the ssladmin connection service.)

Application Clients

For application clients, you must make sure the client has the following . jar files specified in its
CLASSPATH variable:

img.jar
jms.jar

Once the CLASSPATH files are properly specified, one way to start the client and connect to the
broker’s ss1jms connection service is by entering a command like the following:

java -DimgConnectionType=TLS clientAppName

This tells the connection to use an SSL-based connection service.

Administrative Clients

For administrative clients, you can establish a secure connection by including the -secure
option when you invoke the imgcmd command: for example,

imgemd list sve -b hostName:portNumber -u userName -secure

where userName is a valid ADMIN entry in the Message Queue user repository. The command
will prompt you for the password.

Open Message Queue 4.5 Administration Guide « July 2011

Message Encryption

Listing the connection services is a way to verify that the ssladmin service is running and that
you can successfully make a secure administrative connection, as shown in Example 9-6.

EXAMPLE9-6 Connection Services Listing

Listing all the services on the broker specified by:

Host Primary Port

localhost 7676

Service Name Port Number Service State
admin 33984 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN

jms 33983 (dynamic) RUNNING
ssladmin 35988 (dynamic) RUNNING
ssljms dynamic UNKNOWN

Successfully listed services.

Using Signed Certificates

Signed certificates provide a stronger level of server authentication than self-signed certificates.
You can implement signed certificates only between a client and broker, and currently not
between multiple brokers in a cluster. This requires the following extra procedures in addition
to the ones described in “Using Self-Signed Certificates” on page 161. Using signed certificates
requires configuration on both the broker and client:

= “Obtaining and Installing a Signed Certificate” on page 167
= “Configuring the Client to Require Signed Certificates” on page 169

Obtaining and Installing a Signed Certificate

The following procedures explain how to obtain and install a signed certificate.

To Obtain a Signed Certificate

Use the J2SE keytool command to generate a certificate signing request (CSR) for the
self-signed certificate you generated in the preceding section.

Information about the keytool command can be found at
http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

Here is an example:

Chapter9 - Configuring and Managing Security Services 167

http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

Message Encryption

168

keytool -certreq -keyalg RSA -alias imq -file certreqg.csr
-keystore /etc/img/keystore -storepass myStorePassword

This generates a CSR encapsulating the certificate in the specified file (certreq. csrin the
example).

Use the CSR to generate or request a signed certificate.
You can do this by either of the following methods:

= Have the certificate signed by a well known certification authority (CA), such as Thawte or
Verisign. See your CAs documentation for more information on how to do this.

= Sign the certificate yourself, using an SSL signing software package.

The resulting signed certificate is a sequence of ASCII characters. If you receive the signed
certificate from a CA, it may arrive as an e-mail attachment or in the text of a message.

Save the signed certificate in afile.
The instructions below use the example name broker. cer to represent the broker certificate.

To Install a Signed Certificate

Check whether J2SE supports your certification authority by default.
The following command lists the root CAs in the system key store:
keytool -v -list -keystore $JAVA HOME/lib/security/cacerts

If your CA is listed, skip the next step.

If your certification authority is not supported in J2SE, import the CA’s root certificate into the
Message Queue key store.

Here is an example:

keytool -import -alias ca -file ca.cer -noprompt -trustcacerts
-keystore /etc/img/keystore -storepass myStorePassword

where ca. cer is the file containing the root certificate obtained from the CA.
If you are using a CA test certificate, you probably need to import the test CA root certificate.

Your CA should have instructions on how to obtain a copy.

Import the signed certificate into the key store to replace the original self-signed certificate.
Here is an example:

keytool -import -alias imq -file broker.cer -noprompt -trustcacerts
-keystore /etc/imqg/keystore -storepass myStorePassword

where broker. cer is the file containing the signed certificate that you received from the CA.

The Message Queue key store now contains a signed certificate to use for SSL connections.

Open Message Queue 4.5 Administration Guide « July 2011

Message Encryption

Configuring the Client to Require Signed Certificates

You must now configure the Message Queue client runtime to require signed certificates, and
ensure that it trusts the certification authority that signed the certificate.

Note - By default, starting with release 4.0, the connection factory object that the client will be
using to establish broker connections has its imgSSLIsHostTrusted attribute set to false,
meaning that the client runtime will attempt to validate all certificates. Validation will fail if the
signer of the certificate is not in the client's trust store.

To Configure the Client Runtime to Require Signed Certificates

Verify whether the signing authority is registered in the client's trust store.

To test whether the client will accept certificates signed by your certification authority, try to
establish an SSL connection, as described above under “Configuring and Running an SSL-Based
Client Using Self-Signed Certificates” on page 166. If the CA is in the client's trust store, the
connection will succeed and you can skip the next step. If the connection fails with a certificate
validation error, go on to the next step.

Install the signing CA’s root certificate in the client’s trust store.

The client searches the key store files cacerts and jssecacerts by default, so no further
configuration is necessary if you install the certificate in either of those files. The following
example installs a test root certificate from the Verisign certification authority from a file named
testrootca. cer into the default system certificate file, cacerts. The example assumes that
J2SE is installed in the directory $JAVA_HOME/usr/j2se:

keytool -import -keystore /usr/j2se/jre/lib/security/cacerts
-alias VerisignTestCA -file testrootca.cer -noprompt
-trustcacerts -storepass myStorePassword

An alternative (and recommended) option is to install the root certificate into the alternative
system certificate file, jssecacerts:

keytool -import -keystore /usr/j2se/jre/lib/security/jssecacerts
-alias VerisignTestCA -file testrootca.cer -noprompt
-trustcacerts -storepass myStorePassword

A third possibility is to install the root certificate into some other key store file and configure the
client to use that as its trust store. The following example installs into the file
/home/smith/.keystore:

keytool -import -keystore /home/smith/.keystore
-alias VerisignTestCA -file testrootca.cer -noprompt
-trustcacerts -storepass myStorePassword

Chapter9 - Configuring and Managing Security Services 169

Password Files

Since the client does not search this key store by default, you must explicitly provide its location
to the client to use as a trust store. You do this by setting the Java system property
javax.net.ssl.trustStore once the client is running:

javax.net.ssl.trustStore=/home/smith/.keystore

Password Files

Several types of command require passwords. In Table 9-6, the first column lists the commands
that require passwords and the second column lists the reason that passwords are needed.

TABLE9-6 Commands That Use Passwords

Command Description Purpose of Password

imgbrokerd Start broker Access a JDBC-based persistent data store, an
SSL certificate key store, or an LDAP user
repository

imgcmd Manage broker Authenticate an administrative user who is
authorized to use the command

imqdbmgr Manage JDBC-based data store Access the data store

You can specify these passwords in a password file and use the -passfile option to specify the
name of the file. This is the format for the -passfile option:

imgbrokerd -passfile filePath

Note - In previous versions of Message Queue, you could use the -p, -password, -dbpassword,
and - ldappassword options to specify passwords on the command line. As of Message Queue
4.0, these options are deprecated and are no longer supported; you must use a password file
instead.

Security Concerns

Typing a password interactively, in response to a prompt, is the most secure method of
specifying a password (provided that your monitor is not visible to other people). You can also
specify a password file on the command line. For non-interactive use of commands, however,
you must use a password file.

A password file is unencrypted, so you must set its permissions to protect it from unauthorized
access. Set the permissions so that they limit the users who can view the file, but provide read
access to the user who starts the broker.

170 Open Message Queue 4.5 Administration Guide « July 2011

Connecting Through a Firewall

Password File Contents

A password file is a simple text file containing a set of properties and values. Each value is a
password used by a command. Table 9-7 shows the types of passwords that a password file can
contain.

TABLE9-7 Passwords in a Password File

Password Affected Commands | Description

img.imqgcmd. password imgcmd Administrator password for Message Queue
Command utility (authenticated for each
command)

img.keystore.password imgbrokerd Key store password for SSL-based services

imq.persist.jdbc.password imgbrokerd Password for opening a database connection, if

imqdbmgr required

img.user repository.ldap.password |imgbrokerd Password associated with the distinguished
name assigned to a broker for binding to a
configured LDAP user repository

A sample password file, IMQ_HOME/etc/passfile.sample, is provided as part of your Message
Queue installation.

Connecting Through a Firewall

When a client application is separated from the broker by a firewall, special measures are
needed in order to establish a connection. One approach is to use the httpjms or httpsjms
connection service, which can “tunnel” through the firewall; see Appendix C, “HTTP/HTTPS
Support,” for details. HTTP connections are slower than other connection services, however; a
faster alternative is to bypass the Message Queue Port Mapper and explicitly assign a static port
address to the desired connection service, and then open that specific port in the firewall. This
approach can be used to connect through a firewall using the jms or ss1jms connection service
(or, in unusual cases, admin or ssladmin).

TABLE9-8 Broker Configuration Properties for Static Port Addresses

Connection Service Configuration Property

jms imqg.jms.tcp.port
ssljms img.ssljms.tls.port
admin img.admin.tcp.port
ssladmin img.ssladmin.tls.port

Chapter9 - Configuring and Managing Security Services 171

Audit Logging with the Solaris BSM Audit Log

v To Enable Broker Connections Through a Firewall

Assign a static port address to the connection service you wish to use.

To bypass the Port Mapper and assign a static port number directly to a connection service, set
the broker configuration property imq . serviceName. protocolType.port, where serviceName is
the name of the connection service and protocolType is its protocol type (see Table 9-8). As with
all broker configuration properties, you can specify this property either in the broker's instance
configuration file or from the command line when starting the broker. For example, to assign
port number 10234 to the jms connection service, either include the line

imqg.jms.tcp.port=10234

in the configuration file or start the broker with the command

imgbrokerd -name brokerName -Dimq.jms.tcp.port=10234

where brokerName is the name of the broker to be started.

Configure the firewall to allow connections to the port number you assigned to the connection
service.

You must also allow connections through the firewall to Message Queue's Port Mapper port
(normally 7676, unless you have reassigned it to some other port). In the example above, for
instance, you would need to open the firewall for ports 10234 and 7676.

Audit Logging with the Solaris BSM Audit Log

172

Message Queue supports audit logging. When audit logging is enabled, Message Queue
generates a record for the following types of events:

= Startup, shutdown, restart, and removal of a broker instance
m User authentication and authorization

= Reset of a persistent store

= Creation, purge, and destruction of a physical destination

= Administrative destruction of a durable subscriber

Message Queue supports logging audit records to the Message Queuebroker log file and to the
Solaris BSM audit log:

= Tologaudit records to the Message Queue broker log file, set the imqg.audit.enabled
broker property to true . All audit records in the broker log contain the keyword AUDIT.

= To logaudit records to the Solaris BSM audit log, set the imq.audit.bsm.disabled broker
property to false.

Open Message Queue 4.5 Administration Guide « July 2011

Audit Logging with the Solaris BSM Audit Log

Note - To log audit records to the Solaris BSM audit log, you must run the broker as root,
and /usr/lib/audit/Audit.jar must be in the broker classpath.

Chapter9 - Configuring and Managing Security Services 173

174

L K R 4 CHAPTER 10

Configuring and Managing Broker Clusters

Message Queue supports the use of broker clusters: groups of brokers working together to
loprovide message delivery services to clients. Clusters enable a message service to scale its
operations to meet an increasing volume of message traffic by distributing client connections
among multiple brokers.

In addition, clusters provide for message service availability. In the case of a conventional
cluster, if a broker fails, clients connected to that broker can reconnect to another broker in the
cluster and continue producing and consuming messages. In the case of an enhanced cluster, ifa
broker fails, clients connected to that broker reconnect to a failover broker that takes over the
pending work of the failed broker, delivering messages without interruption of service.

See the Chapter 4, “Broker Clusters,” in Open Message Queue 4.5 Technical Overview for a
description of conventional and enhanced broker clusters and how they operate.

This chapter describes how to configure and manage both conventional and enhanced broker
clusters:

= “Configuring Broker Clusters” on page 175
= “Managing Broker Clusters” on page 182

Configuring Broker Clusters

You create a broker cluster by specifying cluster configuration properties for each of its member
brokers. Except where noted in this chapter, cluster configuration properties must be set to the

same value for each broker in a cluster. This section introduces these properties and the use of a
cluster configuration file to specify them:

= “The Cluster Configuration File” on page 176
= “Cluster Configuration Properties” on page 176
= “Displaying a Cluster Configuration” on page 180

175

Configuring Broker Clusters

176

The Cluster Configuration File

Like all broker properties, cluster configuration properties can be set individually for each
broker in a cluster, either in its instance configuration file (config.properties) or by using the
-D option on the command line when you start the broker. However, except where noted in this
chapter, each cluster configuration property must be set to the same value for each broker in a
cluster.

For example, to specify the transport protocol for the cluster connection service, you can
include the following property in the instance configuration file for each broker in the cluster:
imq.cluster.transport=ssl.If you need to change the value of this property, you must
change its value in the instance configuration file for every broker in the cluster.

For consistency and ease of maintenance, it is generally more convenient to collect all of the
common cluster configuration properties into a central cluster configuration file that all of the
individual brokers in a cluster reference. Using a cluster configuration file prevents the settings
from getting out of synch and ensures that all brokers in a cluster use the same, consistent
cluster configuration information.

When using a cluster configuration file, each broker’s instance configuration file must point to
the location of the cluster configuration file by setting the imq. cluster.url property. For
example,

imqg.cluster.url=file:/home/cluster.properties

Note - A cluster configuration file can also include broker properties that are not used
specifically for cluster configuration. For example, you can place any broker property in the
cluster configuration file that has the same value for all brokers in a cluster. For more
information, see “Connecting Brokers into a Conventional Cluster” on page 183

Cluster Configuration Properties

This section reviews the most important cluster configuration properties, grouped into the
following categories:

= “Cluster Connection Service Properties” on page 176
= “Conventional Broker Cluster Properties” on page 177
= “Enhanced Broker Cluster Properties” on page 179

A complete list of cluster configuration properties can be found in Table 17-14

Cluster Connection Service Properties

The following properties are used to configure the cluster connection service used for internal
communication between brokers in the cluster. These properties are used by both conventional
and enhanced clusters.

Open Message Queue 4.5 Administration Guide « July 2011

Configuring Broker Clusters

imq.cluster.transport specifies the transport protocol used by the cluster connection
service, such as tcp or ssl.

imq.cluster.port specifies the port number for the cluster connection service. You might
need to set this property, for instance, to specify a static port number for connecting to the
broker through a firewall.

imgq.cluster.hostname specifies the host name or IP address for the cluster connection
service, used for internal communication between brokers in the cluster. The default setting
works fine, however, explicitly setting the property can be useful if there is more than one
network interface card installed in a computer. If you set the value of this property to
localhost, the value will be ignored and the default will be used.

Conventional Broker Cluster Properties

In addition to the properties listed in “Cluster Connection Service Properties” on page 176, all
conventional clusters use the following properties:

imq.cluster.brokerlist specifies a list of broker addresses defining the membership of the
cluster; all brokers in the cluster must have the same value for this property.

For example, to create a conventional cluster consisting of brokers at port 9876 on host1,
port 5000 on host2, and the default port (7676) on ctrlhost, use the following value:

imq.cluster.brokerlist=host1:9876,host2:5000,ctrlhost

imgq.cluster.nomasterbroker specifies whether the cluster is a conventional cluster of peer
brokers, which uses a shared JDBC data store for the cluster's configuration change record.
When true, the cluster is a conventional cluster of peer brokers. When false (or omitted, as
false is the default), the cluster is considered to be a conventional cluster with master
broker, even if no master broker is actually specified. All brokers in a given cluster must have
the same value for this property.

Each type of conventional cluster has additional properties to support its configuration, as
described in the following two sections.

Additional Properties for Conventional Clusters with Master Broker

The following additional properties are used to configure a conventional cluster with a master
broker:

imq.cluster.masterbroker specifies which broker in a conventional cluster is the master
broker that maintains the configuration change record that tracks the addition and deletion
of destinations and durable subscribers. For example:

img.cluster.masterbroker=host2:5000

While specifying a master broker using the imq. cluster.masterbroker is not mandatory
for a conventional cluster with master broker to function, it guarantees that persistent
information propagated across brokers (destinations and durable subscriptions) is always
synchronized. See “Conventional Clusters” in Open Message Queue 4.5 Technical Overview.

Chapter 10 - Configuring and Managing Broker Clusters 177

Configuring Broker Clusters

= imgq.cluster.dynamicChangeMasterBrokerEnabled specifies whether the master broker
can be changed to another broker in the cluster without stopping all the broker in the
cluster. All brokers in a given cluster must have the same value for this property.

Additional Properties for Conventional Clusters of Peer Brokers

The following additional properties are used to configure a conventional cluster of peer brokers.
All brokers in a given cluster must have the same values for these properties.

= imgq.cluster.clusterid specifies the cluster identifier, which will be appended to the name of
the configuration change record's database table in the JDBC data store. The value of this
property must be the same for all brokers in a given cluster, but must be unique for each
cluster: no two clusters may have the same cluster identifier.

= imgq.cluster.sharecc.persist.jdbc.dbVendor specifies the name of the database vendor of
the JDBC data store housing the configuration change record's table.

= jmgq.cluster.sharecc.persist.jdbc.<vendorName>.user specifies the user name, if required,
for connecting to the database from vendor <vendorName>.

= imq.cluster.sharecc.persist.jdbc.<vendorName>.needpassword specifies whether a
password is needed for connecting to the database from vendor <vendorName>.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.password specifies the password, if
required, for connecting to the database from vendor <vendorName>. This value should be
set only in password files, as described in “Password Files” on page 170.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.driver specifies the Java class name of the
JDBC driver, if required, for connecting to the database from vendor <vendorName>.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.opendburl specifies the URL for
connecting to an existing database from vendor <vendorName>. This applies when a
java.sql.Driver isused to connect to the database.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.createdburl optionally specifies the URL
for creating a new database from vendor <vendorName>. This applies only to embedded
databases, such as Java DB.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.closedburl optionally specifies the URL
for closing a connection to the database from vendor <vendorName>. This applies only to
some embedded databases, such as Java DB.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.tableoption optionally specifies
vendor-specific options to be passed to the database from vendor <vendorName> when
creating the table schema.

= imgq.cluster.sharecc.persist.jdbc.<vendorName>.property.<propName> specifies a
vendor-specific property <propName> for the database from vendor <vendorName>.

178 Open Message Queue 4.5 Administration Guide « July 2011

Configuring Broker Clusters

Enhanced Broker Cluster Properties

Enhanced broker clusters, which share a JDBC-based data store, require more configuration
than do conventional broker clusters. In addition to the properties listed in “Cluster
Connection Service Properties” on page 176, the following categories of properties are used to
configure an enhanced cluster:

= “Enhanced Clusters: General Configuration Properties” on page 179
= “Enhanced Clusters: JDBC Configuration Properties ” on page 179
= “Enhanced Clusters: Failure Detection Properties” on page 180

Enhanced Clusters: General Configuration Properties

= imgq.cluster.ha is a boolean value that specifies if the cluster is an enhanced cluster (true) or
a conventional broker (false). The default value is false.

If set to true, mechanisms for failure detection and takeover of a failed broker are enabled.
Enhanced clusters are self-configuring: any broker configured to use the cluster’s shared
data store is automatically registered as part of the cluster, without further action on your
part. If the conventional cluster property, imq. cluster.brokerlist, is specified for a
high-availability broker, the property is ignored and a warning message is logged at broker
startup.

= imgq.persist.store specifies the model for a broker's persistent data store. This property must
be set to the value jdbc for every broker in an enhanced cluster.

= imgq.cluster.clusterid specifies the cluster identifier, which will be appended to the names of
all database tables in the cluster’s shared persistent store. The value of this property must be
the same for all brokers in a given cluster, but must be unique for each cluster: no two
running clusters may have the same cluster identifier.

= imq.brokerid is a broker identifier that must be unique for each broker in the cluster. Hence,
this property must be set in each broker's instance configuration file rather than in a cluster
configuration file.

Enhanced Clusters: JDBC Configuration Properties

The persistent data store for an enhanced cluster is maintained on a highly-available JDBC
database.

The highly-availabile database may be MySQL Cluster Edition or Oracle Real Application
Clusters (RAC), or it may be an open-source or third-party product. As described in
“IDBC-Based Persistence Properties” on page 131, the imq.persist. jdbc.dbVendor broker
property specifies the name of the database vendor, and all of the remaining JDBC-related
properties are qualified with this vendor name.

The JDBC-related properties are discussed under “JDBC-Based Persistence Properties” on
page 131 and summarized in Table 17-8. See the example configuration for MySQL in
Example 8-1.

Chapter 10 - Configuring and Managing Broker Clusters 179

Configuring Broker Clusters

Note - In setting JDBC-related properties for an enhanced cluster when using MySQL Cluster
Edition as a highly-available database, you must specify the NDB Storage Engine rather than the
InnoDB Storage Engine set by Message Queue by default. To specify the NDB Storage Engine,
set the following broker property for all brokers in the cluster:

imq.persist.jdbc.mysql.tableoption=ENGINE=NDBCLUSTER

Enhanced Clusters: Failure Detection Properties

The following configuration properties (listed in Table 17-14) specity the parameters for the
exchange of heartbeat and status information within an enhanced cluster:

= imq.cluster.heartbeat.hostname specifies the host name (or IP address) for the heartbeat
connection service.

= imgq.cluster.heartbeat.port specifies the port number for the heartbeat connection service.

= imq.cluster.heartbeat.interval specifies the interval, in seconds, at which heartbeat packets
are transmitted.

= imq.cluster.heartbeat.threshold specifies the number of missed heartbeat intervals after
which a broker is considered suspect of failure.

= imgq.cluster.monitor.interval specifies the interval, in seconds, at which to monitor a
suspect broker’s state information to determine whether it has failed.

= imq.cluster.monitor.threshold specifies the number of elapsed monitor intervals after
which a suspect broker is considered to have failed.

Smaller values for these heartbeat and monitoring intervals will result in quicker reaction to
broker failure, but at the cost of reduced performance and increased likelihood of false
suspicions and erroneous failure detection.

Displaying a Cluster Configuration

To display information about a cluster’s configuration, use the Command utility’s list bkr
subcommand:

imgcmd list bkr

This lists the current state of all brokers included in the cluster to which a given broker belongs.
The broker states are described in the following table:

TABLE10-1 Broker States
Broker State Meaning
OPERATING Broker is operating
180 Open Message Queue 4.5 Administration Guide « July 2011

Configuring Broker Clusters

TABLE10-1 Broker States (Continued)

Broker State

Meaning

TAKEOVER_STARTED

For enhanced clusters, broker has begun taking over persistent data store from
another broker

TAKEOVER_COMPLETE

For enhanced clusters, broker has finished taking over persistent data store from
another broker

TAKEOVER_FAILED

For enhanced clusters, attempted takeover has failed

QUIESCE_STARTED

Broker has begun quiescing

QUIESCE_COMPLETE

Broker has finished quiescing

SHUTDOWN_STARTED

Broker has begun shutting down

BROKER _DOWN

Broker is down

UNKNOWN

Broker state unknown

The results of the imgemd list bkr command are shown in Example 10-1 (for a conventional
cluster) and Example 10-2 (for an enhanced cluster).

EXAMPLE 10-1 Configuration Listing for a Conventional Cluster

Listing all the brokers in the cluster that the following broker is a member of:

localHost 7676

Cluster Is Highly Available False

whippet:7676 OPERATING
greyhound:7676 OPERATING

Chapter 10 - Configuring and Managing Broker Clusters 181

Managing Broker Clusters

EXAMPLE10-2 Configuration Listing for an Enhanced Cluster

Listing all the brokers in the cluster that the following broker is a member of:

Host Primary Port Cluster Broker ID
localHost 7676 brokerA
Cluster ID myClusterID
Cluster Is Highly Available True
ID of broker
Broker ID Address State Msgs in store performing takeover
brokerA localhost:7676 OPERATING 121
brokerB greyhound:7676 TAKEOVER_STARTED 52 brokerA
brokerC jpgserv:7676 SHUTDOWN_STARTED 12346
brokerD icdev:7676 TAKEOVER_COMPLETE 0 brokerA
brokerE mrperf:7676 *unknown 12
brokerG iclabl:7676 QUIESCING 4
brokerH iclab2:7676 QUIESCE_COMPLETE 8

Time since last
status timestamp

Managing Broker Clusters

The following sections describe how to perform various administrative management tasks for

conventional and enhanced clusters, respectively.

= “Managing Conventional Clusters” on page 182
= “Managing Enhanced Clusters” on page 193

= “Convertinga Conventional Cluster to an Enhanced Cluster” on page 198

Managing Conventional Clusters

The procedures in this section show how to perform the following tasks for a conventional

cluster:

“Connecting Brokers into a Conventional Cluster” on page 183
“Adding Brokers to a Conventional Cluster” on page 186
“Removing Brokers From a Conventional Cluster” on page 187

“Converting Between Types of Conventional Clusters” on page 192

182 Open Message Queue 4.5 Administration Guide « July 2011

“Changing the Master Broker in a Conventional Cluster with Master Broker” on page 189
“Managing a Conventional Cluster's Configuration Change Record” on page 191

Managing Broker Clusters

Connecting Brokers into a Conventional Cluster

There are two general methods of connecting brokers into a conventional cluster: from the
command line (using the - cluster option) or by setting the imq. cluster.brokerlist
property in the cluster configuration file.

Whichever method you use, each broker that you start attempts to connect to the other brokers
in the cluster every five seconds until the connection succeeds.

For a cluster configured with master broker, the connection will succeed once the master broker
is started up (if one is configured). If a broker in the cluster starts before the master broker, it
will remain in a suspended state, rejecting client connections, until the master broker starts; the
suspended broker then will automatically become fully functional. It is therefore a good idea to
start the master broker first and then the others, after the master broker has completed its
startup.

When connecting brokers into a conventional cluster, you should be aware of the following
issues:

= Mixed broker versions. A conventional cluster can contain brokers of different versions if
all brokers have a version at least as great as that of the master broker. If the cluster is not
configured to use a master broker, then all brokers must be of the same version.

= Matching broker property values. In addition to cluster configuration properties, the
following broker properties also must have the same value for all brokers in a cluster:

= imq.service.activelist

® imgq.autocreate.queue

® imgq.autocreate.topic

= imgq.autocreate.queue.maxNumActiveConsumers
= img.autocreate.queue.maxNumBackupConsumers

This restriction is particularly important when a cluster contains mixed broker versions that
might contain properties with different default values. For example, If you are clustering a
Message Queue version 4.1 or later broker together with those from earlier versions than
Message Queue 4.1, you must set the value of the
img.autocreate.queue.maxNumActiveConsumers property, which has different default
values before and after version 4.1 (1 and - 1, respectively), to be the same. Otherwise the
brokers will not be able to establish a cluster connection.

= Multiple interface cards. On a multi-homed computer, in which there is more than one
network interface card, be sure to explicitly set the network interface to be used by the
broker for client connection services (imq. hostname) and for the cluster connection service
(img.cluster.hostname). Setting the imq.hostname value also effectively sets the value for
other properties that use imq. hostname as their default value, such as
img.portmapper.hostname, img.cluster.hostname, and so on. If imq.cluster.hostname
is not set, then connections between brokers might not succeed and as a result, the cluster
will not be established.

Chapter 10 - Configuring and Managing Broker Clusters 183

Managing Broker Clusters

184

= Networkloopback IP address. You must make sure that no broker in the cluster is given an
address that resolves to a loopback network (127.*.*. *) IP address. Any broker configured
with such an address will be unable to connect to other brokers in the cluster.

In particular, some Linux installers automatically set the local host to a loopback network
address, most commonly 127.0.0. 1. On such systems, you must do the following: For each
Linux system participating in the cluster, check the /etc/hosts file as part of cluster setup.
If the system uses a static IP address, edit the /etc/hosts file to specify the correct address
for the local host. If the address is registered with Domain Name Service (DNS), edit the file
/etc/nsswitch. conf so that DNS lookup is performed before consulting the local hosts
file.

To Connect Brokers Using a Cluster Configuration File

The method best suited for production systems is to use a cluster configuration file to specify
the configuration of the cluster:

If using a conventional cluster of peer brokers, configure the use of the shared JDBC data store
for the configuration change record:

m Use the imqdbmgr create sharecc_tbl command to create the database table for the
configuration change record.

= Place a copy of, or a symbolic link to, your JDBC driver’s . jar file in the Message Queue
external resource files directory, IMQ_HOME/lib/ext, on each host where a broker will run.

Create a cluster configuration file that uses the imq. cluster.brokerlist property to specify
the list of brokers to be connected.

If you are using a master broker, identify it with the imq. cluster.masterbroker property in
the configuration file.

If you are using a cluster of peer brokers, set the imq. cluster.nomasterbroker property to
true,and set imq.cluster.sharecc.persist.jdbc.* properties as appropriate in the
configuration file.

For each broker in the cluster, set the imq. cluster.url property in the broker’s instance
configuration file to point to the cluster configuration file.

Use the imgbrokerd command to start each broker.
If there is a master broker, start it first, then the others after it has completed its startup.

To Connect Brokers from the Command Line

Connecting brokers to a cluster from the command line involves starting each broker with the
imgbrokerd command using the - cluster option to specify the complete list of brokers to be
included in the cluster.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

Before You Begin

For example, the following command starts a broker as part of a cluster consisting of the
brokers running at the default port (7676) on host1, at port 5000 on host2, and at port 9876 on
the default host (Localhost):

imgbrokerd -cluster hostl,host2:5000, :9876

The value specified for the - cluster option must be the same for all brokers in the cluster.

Set any necessary broker properties, except imq. cluster.brokerlist, in each broker's
configuration file before performing the following procedure.

If using a conventional cluster of peer brokers:

a. Configure the use of the shared JDBC data store for the configuration change record:

m Use the imqdbmgr create sharecc_tbl command to create the database table for the
configuration change record.

= Place a copy of, or a symbolic link to, your JDBC driver’s . jar file in the Message Queue
external resource files directory, IMQ_HOME/lib/ext, on each host where a broker will
run.

b. Starteach broker in the cluster with the imgbrokerd command, specifying in the -cluster
option the same complete list of brokers.

If using a conventional cluster with master broker:

a. Startthe master broker with the imgbrokerd command, specifying in the - cluster option
the complete list of brokers.

b. Oncethe master broker is running, start each of the other brokers in the cluster with the
imgbrokerd command, specifying in the - cluster option the same complete list of brokers
as you used to start the master broker.

To Establish Secure Connections Between Brokers

If you want secure, encrypted message delivery between brokers in a cluster, configure the
cluster connection service to use an SSL-based transport protocol:

For each broker in the cluster, set up SSL-based connection services, as described in “Message
Encryption”on page 161.

Set each broker’s imq. cluster.transport property to ss1, either in the cluster configuration
file orindividually for each broker.

Chapter 10 - Configuring and Managing Broker Clusters 185

Managing Broker Clusters

186

Adding Brokers to a Conventional Cluster

The procedure for adding a new broker to a conventional cluster depends on whether the
cluster uses a cluster configuration file.

To Add a New Broker to a Conventional Cluster Using a Cluster
Configuration File

Add the new broker to the imq. cluster.brokerlist property in the cluster configuration file.

Issue the following command to any broker in the cluster:
imgcmd reload cls
This forces each broker to reload the imq. cluster.brokerlist property. It is not necessary to

issue this command to every broker in the cluster; executing it for any one broker will cause all
of them to reload the cluster configuration.

(Optional) Set the value of the imq. cluster.url property in the new broker’s instance
configuration file (config.properties) to point to the cluster configuration file.

Start the new broker.

If you did not perform step 3, use the -D option on the imgbrokerd command line to set the
value of imq. cluster.url to the location of the cluster configuration file.

To Add a New Broker to a Conventional Cluster Without a Cluster
Configuration File

(Optional) Set the values of the following properties in the new broker’s instance configuration
file (config.properties):

imqg.cluster.brokerlist
img.cluster.masterbroker (if necessary)
img.cluster.transport (if you are using a secure cluster connection service)

When the newly added broker starts, it connects and exchanges data with all the other brokers
in the imqg.cluster.brokerlist value.

Modify the imq. cluster.brokerlist property of other brokers in the cluster to include the
new broker.

This step is not strictly necessary to add a broker to a functioning cluster. However, should any
broker need to be restarted, its imq. cluster.brokerlist value must include all other brokers
in the cluster, including the newly added broker.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

3 Startthe new broker.

If you did not perform step 1, use the -D option on the imgbrokerd command line to set the
property values listed there.

Removing Brokers From a Conventional Cluster

The method you use to remove a broker from a conventional cluster depends on whether you
originally created the cluster using a cluster configuration file or by means of command line
options.

Note - Before you remove from a conventional cluster the broker instance serving as the cluster's
master broker, first change the master broker to another broker instance in the cluster, as
described in “Changing the Master Broker in a Conventional Cluster with Master Broker” on
page 189

¥ ToRemove a Broker From a Conventional Cluster Using a Cluster
Configuration File

If you originally created a cluster by specifying its member brokers with the
imqg.cluster.brokerlist property in a central cluster configuration file, it isn’t necessary to
stop the brokers in order to remove one of them. Instead, you can simply edit the configuration
file to exclude the broker you want to remove, force the remaining cluster members to reload
the cluster configuration, and reconfigure the excluded broker so that it no longer points to the
same cluster configuration file:

1 Ifyou are permanently removing the broker from the cluster, prepare it for removal:
a. Quiesce the broker by using the imgcmd quiesce bkr command.
b. Stop all producer clients connected to the broker.

c. Drain all messages by waiting for connected consumer clients to consume existing
messages.

Use the imgcmd query bkr command periodically to check the number of messages in the
broker.

d. Rollback or commit any prepared open transactions.

Use the imgcemd 1ist txn command to view prepared open transactions, and use the
imgemd rollback txn and imgemd commit txn to roll back and commit transactions.

2 Editthe cluster configuration file to remove the excluded broker from the list specified for the
imq.cluster.brokerlist property.

Chapter 10 - Configuring and Managing Broker Clusters 187

Managing Broker Clusters

3 Issuethefollowing command to each broker remaining in the cluster:

imgcmd reload cls

This forces the brokers to reload the cluster configuration.
4 Stopthe broker you're removing from the cluster.

5 Edit that broker’s instance configuration file (config.properties), removing or specifying a
different value for its imq. cluster.url property.

¥ To Remove a Broker From a Conventional Cluster Using the Command
Line

If you used the imgbrokerd command from the command line to connect the brokers into a
cluster, you must stop each of the brokers and then restart them, specifying the new set of
cluster members on the command line:

1 Ifyou are permanently removing the broker from the cluster, prepare it for removal:
a. Quiesce the broker by using the imgcmd quiesce bkr command.
b. Stop all producer clients connected to the broker.

c. Drain all messages by waiting for connected consumer clients to consume existing
messages.

Use the imgcmd query bkr command periodically to check the number of messages in the
broker.

d. Roll back or commit any prepared open transactions.

Use the imgemd list txn command to view prepared open transactions, and use the
imgemd rollback txn and imgemd commit txn to roll back and commit transactions.

2 Stop each broker in the cluster, using the imqcmd command.

3 Restart the brokers that will remain in the cluster, using the imgbrokerd command’s -cluster
option to specify only those remaining brokers.

For example, suppose you originally created a cluster consisting of brokers A, B, and C by
starting each of the three with the command

imgbrokerd -cluster A,B,C

To remove broker A from the cluster, restart brokers B and C with the command

imgbrokerd -cluster B,C

188 Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

Changing the Master Broker in a Conventional Cluster with Master
Broker

Message Queue provides two ways to change the broker instance serving as the master broker to
a different broker instance in the cluster:

= Dynamically while the cluster is running

= Manually by stopping the cluster and migrating the configuration change record from one
broker to another

To change the master broker dynamically, you must first configure the brokers in the cluster to
support dynamic changing of the master broker.

To Configure a Cluster to Support Dynamic Changing of the Master
Broker

In the properties file for each broker of the cluster, set the
imq.cluster.dynamicChangeMasterBrokerEnabled property to true.

If using a cluster configuration file, you can instead set the
img.cluster.dynamicChangeMasterBrokerEnabled property to true in the cluster
configuration file.

In the properties file for each broker of the cluster, set the imq. cluster.masterbroker
property to the initial master broker.

When the imq.cluster.dynamicChangeMasterBrokerEnabled property is set to true, the
imq.cluster.masterbroker property cannot be specified on the command line to starta
broker. Therefore, it must be set in the brokers' properties files, or in the cluster configuration
file if one is being used.

To Change the Master Broker Dynamically While the Cluster Is Running
To dynamically change the broker instance serving as the master broker to a different broker

instance in the cluster, use the imqcmd changemaster cls command.

Follow this procedure, for example, before you remove from a cluster the broker instance
serving as the master broker.

Caution - Do not use the imgcmd changemaster cls command to dynamically change the
master broker in a Message Queue cluster managed by GlassFish Server as an Embedded or
Local JMS host. Instead, use the asadmin change-master-broker command as described in
“To Change the Master Broker in an Embedded or Local Broker Cluster” in GlassFish Server
Open Source Edition 3.1 High Availability Administration Guide.

Chapter 10 - Configuring and Managing Broker Clusters 189

Managing Broker Clusters

Before You Begin

190

To ensure a successful dynamic changing of the master broker, verify that all brokers in the
cluster are running before issuing the imgcmd changemaster cls command.

On the current master broker, run the imqcmd changemaster cls command, using the -o to
specify the new master broker:

imgcmd changemaster cls -o imq.cluster.masterbroker=newMaster

The value newMaster has the form hostName: portNumber, where hostName and portNumber
are the Port Mapper host name and port number, respectively, of the new master broker's host.

The broker returns one of the following status values for the operation:

OK
The operation was successful. The new master broker is now the master broker for the
cluster, and the old master broker is now a normal broker in the cluster. If any other brokers
in the cluster were unreachable and so could not be notified of the change, they must be
restarted after manually updating their configurations to refer to the new master broker.

BAD_REQUEST, NOT_ALLOWED, UNAVAILABLE or PRECONDITION_FAILED
The operation failed, and the cluster's configuration was unchanged. The old master broker
is still the master broker for the cluster.

Any other value
The operation failed. Use the imqcmd query bkr command on the old master broker to
discover which broker is the master broker:

= Ifthe master broker listed is the old master broker, the failure occurred before the
cluster's configuration change record was transferred to the new master broker. In this
case, retry the command.

= Ifthe master broker listed is the new master broker, the cluster's configuration change
record was transferred successfully to the new master broker, but some other activity
failed later in the operation. In this case, stop all brokers in the cluster, manually update
their configurations to refer to the new master broker, and then restart them all.

To Change the Master Broker Manually

Stop all brokers in the cluster.

Save the configuration change record in the old master broker by using the -backup option of
the imgbrokerd command:

imgbrokerd -backup backupFile

Stop the old master broker after the configuration change record has been saved.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

Update the imq. cluster.masterbroker property to the new master broker in the
configurations for all brokers in the cluster.

Additionally, if necessary, update the imq. cluster.brokerlist property in the configurations
for all brokers in the cluster.

Start the new master broker, restoring the saved configuration change record by using the
-restore option:

imgbrokerd -restore backupFile

When using this command, specify as backupFile the file you saved in Step 2.

Start the other brokers in the cluster.

Managing a Conventional Cluster's Configuration Change Record

Asnoted earlier, a conventional cluster maintains a configuration change record to keep track
of any changes in the cluster’s persistent state. This configuration change record is maintained
either by the master broker or in a shared JDBC data store, depending on the type of the
conventional cluster.

Because of the important information that the configuration change record contains, it is
important to back it up regularly so that it can be restored in case of failure. Although restoring
from a backup will lose any changes in the cluster’s persistent state that have occurred since the
backup was made, frequent backups can minimize this potential loss of information. The
backup and restore operations also have the positive effect of compressing and optimizing the
change history contained in the configuration change record, which can grow significantly over
time.

To Back Up the Configuration Change Record in a Master Broker

Use the -backup option of the imgbrokerd command, specifying the name of the backup file.
For example:

imgbrokerd -backup mybackuplog

To Back Up the Configuration Change Record in a Shared JDBC Data
Store
Use the imqdbmgr backup sharecc_tbl command to back up the configuration change record:

imgdbmgr backup sharecc_tbl -file fileName -Dimq.cluster.url=clusterConfigUrl

Chapter 10 - Configuring and Managing Broker Clusters 191

Managing Broker Clusters

192

To Restore the Configuration Change Record to a Master Broker
Shut down all brokers in the cluster.

Restore the master broker’s configuration change record from the backup file.
The command is

imgbrokerd -restore mybackuplog

If you assign a new name or port number to the master broker, update the
imq.cluster.brokerlist and imq.cluster.masterbroker properties accordingly in the
cluster configuration file.

Restart all brokers in the cluster.

To Restore the Configuration Change Record to a Shared JDBC Data
Store

Shut down all brokers in the cluster.

Use the imqdbmgr recreate sharecc_tbl command to delete the existing configuration
change record and then re-create the table:

imgdbmgr recreate sharecc_tbl -Dimg.cluster.url=clusterConfigUrl

Use the imqdbmgr restore sharecc_tbhl command to restore the configuration change record:
imgdbmgr restore sharecc_tbl -file fileName -Dimq.cluster.url=clusterConfigUrl

Start all the brokers in the cluster.

Converting Between Types of Conventional Clusters

To convert between types of conventional clusters, you change where the configuration change
record is maintained: in a master broker or in a shared JDBC data store. The following topics
provide instructions to convert between types:

= “To Convert from Using a Master Broker to Using a Shared JDBC Data Store” on page 192
= “To Convert from Using a Shared JDBC Data Store to Using a Master Broker” on page 193

To Convert from Using a Master Broker to Using a Shared JDBC Data
Store

Shut down all brokers in the cluster.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

Back up the configuration change record in the master broker as described in “To Back Up the
Configuration Change Record in a Master Broker” on page 191.

Shut down the master broker.

Edit the cluster configuration file, configuring the cluster as a conventional cluster of peer
brokers:

= Setthe img.cluster.nomasterbroker propertyto true.
= Setadditional properties as described in “Additional Properties for Conventional Clusters
of Peer Brokers” on page 178.

Using the backup file saved in Step 2, restore the configuration change record to the shared
JDBC data store as described in “To Restore the Configuration Change Record to a Shared JDBC
Data Store” on page 192.

Start all the brokers in the cluster.

To Convert from Using a Shared JDBC Data Store to Using a Master
Broker

Shut down all brokers in the cluster.

Back up the configuration change record in the shared JDBC data store as described in “To Back
Up the Configuration Change Record in a Shared JDBC Data Store” on page 191.

Edit the cluster configuration file, configuring the cluster as a conventional cluster with master
broker:

= Setthe imqg.cluster.nomasterbroker propertyto false.
= Setadditional properties as described in “Additional Properties for Conventional Clusters
with Master Broker” on page 177.

Using the backup file saved in Step 2, restore the configuration change record to the master
broker as described in “To Restore the Configuration Change Record to a Master Broker” on

page 192.

Start all the brokers in the cluster.

Managing Enhanced Clusters

This section presents step-by-step procedures for performing a variety of administrative tasks
for an enhanced cluster:

Chapter 10 - Configuring and Managing Broker Clusters 193

Managing Broker Clusters

194

“Connecting Brokers into an Enhanced Cluster” on page 194
“Adding and Removing Brokers in an Enhanced Cluster” on page 196
“Restarting a Failed Broker” on page 196

“Preventing or Forcing Broker Failover” on page 197

“Backing up a Shared Data Store” on page 197

Connecting Brokers into an Enhanced Cluster

Because enhanced clusters are self-configuring, there is no need to explicitly specify the list of
brokers to be included in the cluster. Instead, all that is needed is to set each broker’s
configuration properties appropriately and then start the broker; as long as its properties are set
properly, it will automatically be incorporated into the cluster. “Enhanced Broker Cluster
Properties” on page 179 describes the required properties, which include vendor-specific JDBC
database properties.

Note - In addition to creating an enhanced cluster as described in this section, you must also
configure clients to successfully reconnect to a failover broker in the event of broker or
connection failure. You do this by setting the imgReconnectAttempts connection factory
attribute to a value of - 1.

The property values needed for brokers in an enhanced cluster can be set separately in each
broker’s instance configuration file, or they can be specified in a cluster configuration file that all
the brokers reference. The procedures are as follows:

To Connect Brokers Using a Cluster Configuration File

The method best suited for production systems is to use a cluster configuration file to specify
the configuration of the cluster.

Create a cluster configuration file specifying the cluster’s high-availability-related configuration
properties.

“Enhanced Broker Cluster Properties” on page 179 shows the required property values.
However, do not include the imqg. brokerid property in the cluster configuration file; this must
be specified separately for each individual broker in the cluster.

Specify any additional, vendor-specific JDBC configuration properties that might be needed.
The vendor-specific properties required for MySQL are shown in Example 8-1.

For each broker in the cluster:

a. Startthe broker at least once, using the imgbrokerd command.

The first time a broker instance is run, an instance configuration file (config. properties)
is automatically created.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

b. Shutdown the broker.

Use the imgcmd shutdown bkr command.

c. Edittheinstance configuration file to specify the location of the cluster configuration file.

In the broker’s instance configuration file, set the imq. cluster.url property to point to the
location of the cluster configuration file you created in step 1.

d. Specify the broker identifier.

Set the imq. brokerid property in the instance configuration file to the broker’s unique
broker identifier. This value must be different for each broker.

Place a copy of, or a symbolic link to, your JDBC driver’s . jar file in IMQ_HOME/1lib/ext, the
Message Queue external resource files directory.

Create the database tables needed for Message Queue persistence.
Use the imqdbmgr create tbl command; see “Database Manager Utility” on page 334.

Restart each broker with the imgbrokerd command.

The brokers will automatically register themselves into the cluster on startup.
To Connect Brokers Using Instance Configuration Files

For each broker in the cluster:

a. Startthe broker at least once, using the imgbrokerd command.

The first time a broker instance is run, an instance configuration file (config.properties)
is automatically created.

b. Shutdown the broker.

Use the imgcmd shutdown bkr command.

c. Edittheinstance configuration file to specify the broker’s high-availability-related
configuration properties.

“Enhanced Broker Cluster Properties” on page 179 shows the required property values. Be
sure to set the brokerid property uniquely for each broker.

d. Specify any additional, vendor-specific JDBC configuration properties that might be needed.
The vendor-specific properties required for MySQL are shown in Example 8-1.

Place a copy of, or a symbolic link to, your JDBC driver’s . jar file in IMQ_HOME/1lib/ext, the
Message Queue external resource files directory.

Chapter 10 - Configuring and Managing Broker Clusters 195

Managing Broker Clusters

196

3

Create the database tables needed for Message Queue persistence.
Use the imqdbmgr create tbl command; see “Database Manager Utility” on page 334.

Restart each broker with the imgbrokerd command.

The brokers will automatically register themselves into the cluster on startup.

Adding and Removing Brokers in an Enhanced Cluster

Because enhanced clusters are self-configuring, the procedures for adding and removing
brokers are simpler than for a conventional cluster.

To Add a New Broker to an Enhanced Cluster

Set the new broker’s high-availability-related properties, as described in the preceding section.

You can do this either by specifying the individual properties in the broker’s instance
configuration file (config.properties) or, if there is a cluster configuration file, by setting the
broker’s imq. cluster.url property to point to it.

Start the new broker with the imgbrokerd command.
The broker will automatically register itself into the cluster on startup.

To Remove a Broker from an Enhanced Cluster

Make sure the broker is not running.
If necessary, use the command

imgcmd shutdown bkr

to shut down the broker.

Remove the broker from the cluster with the command

imqdbmgr remove bkr

This command deletes all database tables for the corresponding broker.

Restarting a Failed Broker

After a broker has failed, you can restart it using the imgbrokerd command. Normally, the
broker will automatically be re-registered into the cluster on startup.

However, if the broker slated to take over the failed broker's persistent data failed as it was
taking over the persistent data, the running brokers in the cluster will not permit the failed
broker to rejoin the cluster for 60 seconds or twice the value of
imq.cluster.monitor.interval in seconds, whichever is greater.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

Preventing or Forcing Broker Failover

Although the takeover of a failed broker’s persistent data by a failover broker in an enhanced
cluster is normally automatic, there may be times when you want to prevent such failover from
occurring. To suppress automatic failover when shutting down a broker, use the -nofailover
option to the imgcmd shutdown bkr subcommand:

imgemd shutdown bkr -nofailover -b hostName:portNumber

where hostName and portNumber are the host name and port number of the broker to be shut
down.

Conversely, you may sometimes need to force a broker failover to occur manually. (This might
be necessary, for instance, if a failover broker were to itself fail before completing the takeover
process.) In such cases, you can initiate a failover manually from the command line: first shut
down the broker to be taken over with the -nofailover option, as shown above, then issue the
command

imgcmd takeover bkr -n brokerID

where brokerID is the broker identifier of the broker to be taken over. If the specified broker
appears to be running, the Command utility will display a confirmation message:

The broker associated with brokerID last accessed the database # seconds ago.
Do you want to take over for this broker?

You can suppress this message, and force the takeover to occur unconditionally, by using the - f
option to the imqcmd takeover bkr command:

imgemd takeover bkr -f -n brokerID

Note - The imqcmd takeover bkr subcommand is intended only for use in failed-takeover
situations. You should use it only as a last resort, and not as a general way of forcibly taking over
arunning broker.

Backing up a Shared Data Store

For durability and reliability, it is a good idea to back up an enhanced cluster’s shared data store
periodically to backup files. This creates a snapshot of the data store that you can then use to
restore the data in case of catastrophic failure. The command for backing up the data store is

imqdbmgr backup -dir backupDir

where backupDir is the path to the directory in which to place the backup files. To restore the
data store from these files, use the command

imqdbmgr restore -dir backupDir

Chapter 10 - Configuring and Managing Broker Clusters 197

Managing Broker Clusters

198

Before restoring the data store, you should shut down all brokers in the enhanced cluster.

Converting a Conventional Cluster to an Enhanced
Cluster

The best approach to converting a conventional broker cluster to an enhanced broker cluster is
to drain your messaging system of all persistent data before attempting the conversion. This lets
you create a new shared data store without worrying about loss of data. However, if you are
using individual JDBC-based data stores for your brokers, a utility is available for converting a
standalone datastore to a shared data store.

Cluster Conversion : File-Based Data Store

If the brokers in your conventional cluster are using file-based data stores, use the following
procedure to convert to an enhanced cluster.

Drain down your messaging system of all persistent data.

Stop all producer clients from producing messages, and wait for all messages in the system to be
consumed.

Shut down all client applications.
Shut down all brokers in the conventional cluster.

Reconfigure all brokers for an enhanced cluster.

See “Enhanced Broker Cluster Properties” on page 179. It is recommended that you use a
cluster configuration file to specify cluster configuration property values, such as the
img.cluster.clusterid, imq.persist.store, and additional shared JDBC database
properties.

Startall brokers in the enhanced cluster.

See “Connecting Brokers into an Enhanced Cluster” on page 194.

Configure client applications to re-connect to failover brokers.

Client re-connection behavior is specified by connection handling attributes of the connection
factory administered objects (see the “Connection Handling” on page 395). In the case of
enhanced broker clusters, the imgAddressList, imgAddressListBehavior, and
imgAddressListIterations attributes are ignored, however the imgReconnectAttempts
attribute should be set to a value of -1 (unlimited).

Startall client applications.

Open Message Queue 4.5 Administration Guide « July 2011

Managing Broker Clusters

Resume messaging operations

Cluster Conversion: JDBC-Based Data Store

If the brokers in your conventional cluster are using JDBC-based data stores, use the following
procedure to convert to an enhanced cluster. The procedure assumes that individual standalone
broker data stores reside on the same JDBC database server.

Back up all persistent data in the standalone JDBC-based data store of each broker.
Use proprietary JDBC database tools.

Shut down all client applications.
Shut down all brokers in the conventional cluster.

Convert each standalone data store to a shared data store.
Use the Message Queue Database Manager utility (imqdbmgr) subcommand

imgdbmgr upgrade hastore

to convert an existing standalone JDBC database to a shared JDBC database.

Reconfigure all brokers for an enhanced cluster.

See “Enhanced Broker Cluster Properties” on page 179. It is recommended that you use a
cluster configuration file to specify cluster configuration property values, such as the
imq.cluster.clusterid, imq.persist.store, and additional shared JDBC database
properties.

Start all brokers in the enhanced cluster.

See “Connecting Brokers into an Enhanced Cluster” on page 194.

Configure client applications to re-connect to failover brokers.

Client re-connection behavior is specified by connection handling attributes of the connection
factory administered objects (see the “Connection Handling” on page 395). In the case of
enhanced broker clusters, the imgAddressList, imgAddressListBehavior, and
imgAddressListIterations attributes are ignored, however the imqReconnectAttempts
attribute should be set to a value of -1 (unlimited).

Start all client applications.

Resume messaging operations.

Chapter 10 - Configuring and Managing Broker Clusters 199

200

L R 2 4 CHAPTER 11

Managing Administered Objects

Administered objects encapsulate provider-specific configuration and naming information,
enabling the development of client applications that are portable from one JMS provider to
another. A Message Queue administrator typically creates administered objects for client
applications to use in obtaining broker connections for sending and receiving messages.

This chapter tells how to use the Object Manager utility (imqobjmgr) to create and manage
administered objects. It contains the following sections:

= “Object Stores” on page 201
= “Administered Object Attributes” on page 204
= “Using the Object Manager Utility” on page 211

Object Stores

Administered objects are placed in a readily available object store where they can be accessed by
client applications by means of the Java Naming and Directory Interface (JNDI). There are two
types of object store you can use: a standard Lightweight Directory Access Protocol (LDAP)
directory server or a directory in the local file system.

LDAP Server Object Stores

An LDAP server is the recommended object store for production messaging systems. LDAP
servers are designed for use in distributed systems and provide security features that are useful
in production environments.

LDAP implementations are available from a number of vendors. To manage an object store on
an LDAP server with Message Queue administration tools, you may first need to configure the
server to store Java objects and perform JNDI lookups; see the documentation provided with
your LDAP implementation for details.

201

Object Stores

To use an LDAP server as your object store, you must specify the attributes shown in
Table 11-1. These attributes fall into the following categories:

= Initial context. The java.naming.factory.initial attribute specifies the initial context
for JNDI lookups on the server. The value of this attribute is fixed for a given LDAP object
store.

= Location. The java.naming.provider.url attribute specifies the URL and directory path
for the LDAP server. You must verify that the specified directory path exists.

= Security. The java.naming.security.principal, java.naming.security.credentials,
and java.naming.security.authentication attributes govern the authentication of
callers attempting to access the object store. The exact format and values of these attributes
depend on the LDAP service provider; see the documentation provided with your LDAP
implementation for details and to determine whether security information is required on all
operations or only on those that change the stored data.

TABLE11-1 LDAP Object Store Attributes

Attribute Description
java.naming.factory.initial Initial context for JNDI lookup
Example:

com.sun.jndi.ldap.LdapCtxFactory

java.naming.provider.url Server URL and directory path

Example:
ldap://myD.com:389/0ou=mql, o=App

where administered objects are stored in the directory /App/mq1.

java.naming.security.principal Identity of the principal for authenticating callers

The format of this attribute depends on the authentication scheme: for
example,
uid=homerSimpson, ou=People, o=mq

If this attribute is unspecified, the behavior is determined by the LDAP service
provider.

java.naming.security.credentials Credentials of the authentication principal

The value of this attribute depends on the authentication scheme: for example,
it might be a hashed password, a clear-text password, a key, or a certificate.

If this property is unspecified, the behavior is determined by the LDAP service
provider.

202 Open Message Queue 4.5 Administration Guide « July 2011

Object Stores

TABLE 11-1 LDAP Object Store Attributes (Continued)
Attribute Description
java.naming.security.authentication Security level for authentication:

none: No security
simple: Simple security
strong: Strong security
For example, if you specify simple, you will be prompted for any missing

principal or credential values. This will allow you a more secure way of
providing identifying information.

If this property is unspecified, the behavior is determined by the LDAP service
provider.

File-System Object Stores

Message Queue also supports the use of a directory in the local file system as an object store for
administered objects. While this approach is not recommended for production systems, it has
the advantage of being very easy to use in development environments. Note, however, that for a
directory to be used as a centralized object store for clients deployed across multiple computer
nodes, all of those clients must have access to the directory. In addition, any user with access to
the directory can use Message Queue administration tools to create and manage administered
objects.

To use a file-system directory as your object store, you must specify the attributes shown in
Table 11-2. These attributes have the same general meanings described above for LDAP object
stores; in particular, the java.naming.provider.url attribute specifies the directory path of
the directory holding the object store. This directory must exist and have the proper access
permissions for the user of Message Queue administration tools as well as the users of the client
applications that will access the store.

TABLE11-2 File-system Object Store Attributes

Attribute Description
java.naming.factory.initial Initial context for JNDI lookup
Example:

com.sun.jndi.fscontext.RefFSContextFactory

java.naming.provider.url Directorypath

Example:
file:///C:/myapp/mqobjs

Chapter 11 « Managing Administered Objects 203

Administered Object Attributes

Administered Object Attributes

Message Queue administered objects are of two basic kinds:

» Connection factories are used by client applications to create connections to brokers.

= Destinations represent locations on a broker with which client applications can exchange
(send and retrieve) messages.

Each type of administered object has certain attributes that determine the object’s properties
and behavior. This section describes how to use the Object Manager command line utility
(imgobjmgr) to set these attributes; you can also set them with the GUI Administration
Console, as described in “Worki