
GlassFish Server Open Source
Edition 3.1 Security Guide

Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

Part No: 821–2457–13
August 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110817@25097

Contents

Preface ...7

1 Administering System Security ...15
About System Security in GlassFish Server .. 15

Authentication ... 16
Authorization ... 20
Auditing .. 25
Firewalls .. 25
Certificates and SSL ... 26
Tools for Managing System Security ... 32

Administering Passwords ... 33
▼ To Change the Master Password .. 33

Additional Considerations for the start-instance and start-cluster

Subcommands .. 35
▼ Using start-instance and start-cluster With a Password File 36
▼ To Change an Administration Password .. 37
▼ To Set a Password From a File .. 38

Administering Password Aliases .. 39
Administering Audit Modules ... 42

▼ To Create an Audit Module .. 42
▼ To List Audit Modules ... 43
▼ To Delete an Audit Module ... 43

Administering JSSE Certificates .. 44
▼ To Generate a Certificate by Using keytool .. 44
▼ To Sign a Certificate by Using keytool ... 46
▼ To Delete a Certificate by Using keytool ... 49

Administering JACC Providers ... 49
▼ Administering JACC Providers From the Administration Console 50

3

▼ Administering JACC Providers from the Command Line ... 51

2 Administering User Security ..53
Administering Authentication Realms ... 53

Overview of Authentication Realms .. 54
▼ To Create an Authentication Realm .. 55
▼ To List Authentication Realms ... 56
▼ To Update an Authentication Realm ... 56
▼ To Delete an Authentication Realm .. 57
▼ To Configure a JDBC or Digest Authentication Realm ... 57
▼ To Configure LDAP Authentication with OID .. 59
▼ To configure LDAP Authentication with OVD ... 60
▼ To Enable LDAP Authentication on the GlassFish Server DAS ... 61

Administering File Users .. 62
▼ To Create a File User .. 63
▼ To List File Users .. 63
▼ To List File Groups ... 64
▼ To Update a File User .. 65
▼ To Delete a File User .. 65

3 Administering Message Security ..67
About Message Security in GlassFish Server .. 67

Security Tokens and Security Mechanisms .. 68
Authentication Providers .. 69
Message Protection Policies .. 70
Application-Specific Web Services Security ... 70
Message Security Administration .. 71
Sample Application for Web Services .. 72

Enabling Default Message Security Providers for Web Services ... 73
▼ To Enable a Default Server Provider .. 73
▼ To Enable a Default Client Provider .. 74

Configuring Message Protection Policies ... 74
Message Protection Policy Mapping .. 74

▼ To Configure the Message Protection Policies for a Provider .. 76
Setting the Request and Response Policy for the Application Client Configuration 76

Contents

GlassFish Server Open Source Edition 3.1 Security Guide • August 20114

Administering Non-default Message Security Providers ... 78
▼ To Create a Message Security Provider ... 78
▼ To List Message Security Providers ... 79
▼ To Update a Message Security Provider .. 79
▼ To Delete a Message Security Provider .. 79
▼ To Configure a Servlet Layer Server Authentication Module (SAM) 80

Enabling Message Security for Application Clients .. 81
Additional Information About Message Security .. 82

4 Administering Security in Cluster Mode ... 83
Configuring Certificates in Cluster Mode .. 83
Dynamic Reconfiguration .. 84

Enabling Dynamic Configuration ... 85
Understanding Synchronization ... 85

5 Managing Administrative Security ..87
Secure Administration Overview .. 87
How Secure Admin Works: The Big Picture .. 88

Functions Performed by Secure Admin .. 88
Which Administration Account is Used? ... 89
What Authentication Methods Are Used for Secure Administration? 90
Understanding How Certificate Authentication is Performed .. 91
What Certificates Are Used? ... 91
An Alternate Approach: Using Distinguished Names to Specify Certificates 95
Guarding Against Unwanted Connections .. 98

Considerations When Running GlassFish Server With Default Security 99
Running Secure Admin .. 99

Prerequisites for Running Secure Admin ... 99
An Alternate Approach: Using A User Name and Password for Internal Authentication and
Authorization ... 100
Example of Running enable-secure-admin .. 102

Additional Considerations When Creating Local Instances .. 102
Secure Admin Use Case .. 103
Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin 103

Contents

5

6 Running in a Secure Environment .. 105
Determining Your Security Needs .. 105

Understand Your Environment ... 106
Read Security Publications ... 106

Installing GlassFish Server in a Secure Environment .. 106
Enable the Secure Administration Feature ... 107

Remove Unused Components ... 107
Removing Installed Components .. 107
Remove Services You Are Not Using ... 109

Run on the Web Profile if Possible .. 110
Securing the GlassFish Server Host ... 110
Securing GlassFish Server ... 114
Securing Applications ... 117

Index ... 119

Contents

GlassFish Server Open Source Edition 3.1 Security Guide • August 20116

Preface

The GlassFish Server Open Source Edition Security Guide provides instructions for configuring
and administering GlassFish Server security.

This preface contains information about and conventions for the entire GlassFish Server Open
Source Edition (GlassFish Server) documentation set.

GlassFish Server 3.1 is developed through the GlassFish project open-source community at
http://glassfish.java.net/. The GlassFish project provides a structured process for
developing the GlassFish Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the GlassFish Server source code and to contribute to the
development of the GlassFish Server. The GlassFish project is designed to encourage
communication between Oracle engineers and the community.

The following topics are addressed here:

■ “GlassFish Server Documentation Set” on page 7
■ “Related Documentation” on page 9
■ “Typographic Conventions” on page 10
■ “Symbol Conventions” on page 11
■ “Default Paths and File Names” on page 11
■ “Documentation, Support, and Training” on page 12
■ “Searching Oracle Product Documentation” on page 12
■ “Third-Party Web Site References” on page 13

GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. For an introduction to GlassFish Server, refer to the books in the order in which
they are listed in the following table.

7

http://glassfish.java.net/

TABLE P–1 Books in the GlassFish Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK), and
database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Deployment Planning Guide Explains how to build a production deployment of GlassFish Server that
meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Security Guide Provides instructions for configuring and administering GlassFish Server
security.

Application Deployment Guide Explains how to assemble and deploy applications to the GlassFish Server
and provides information about deployment descriptors.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the GlassFish
Server. These applications follow the open Java standards model for Java EE
components and application programmer interfaces (APIs). This guide
provides information about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to develop
add-on components for GlassFish Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for GlassFish Server.

Embedded Server Guide Explains how to run applications in embedded GlassFish Server and to
develop applications in which GlassFish Server is embedded.

High Availability
Administration Guide

Explains how to configure GlassFish Server to provide higher availability and
scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of GlassFish Server.

Preface

GlassFish Server Open Source Edition 3.1 Security Guide • August 20118

TABLE P–1 Books in the GlassFish Server Documentation Set (Continued)
Book Title Description

Troubleshooting Guide Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using GlassFish
Server.

Reference Manual Provides reference information in man page format for GlassFish Server
administration commands, utility commands, and related concepts.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for Open
Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue Administration
Guide

Explains how to set up and manage a Message Queue messaging system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue for
programmatically configuring and monitoring Message Queue resources in
conformance with the Java Management Extensions (JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing Java
messaging applications (Java clients) that work with GlassFish Server.

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers working
with Message Queue who want to use the C language binding to the Message
Queue messaging service to send, receive, and process Message Queue
messages.

Related Documentation
The following tutorials explain how to develop Java EE applications:

■ Your First Cup: An Introduction to the Java EE Platform (http://download.oracle.com/
javaee/6/firstcup/doc/). For beginning Java EE programmers, this short tutorial
explains the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on the Enterprise
JavaBeans specification, a JAX-RS web service, and a JavaServer Faces component for the
web front end.

■ The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/). This
comprehensive tutorial explains how to use Java EE 6 platform technologies and APIs to
develop Java EE applications.

Preface

9

http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/tutorial/doc/

Javadoc tool reference documentation for packages that are provided with GlassFish Server is
available as follows.

■ The API specification for version 6 of Java EE is located at http://download.oracle.com/
javaee/6/api/.

■ The API specification for GlassFish Server 3.1, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications (http://www.oracle.com/technetwork/java/
javaee/tech/index.html) might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see the NetBeans Documentation, Training & Support page
(http://www.netbeans.org/kb/).

For information about the Java DB database for use with the GlassFish Server, see the Java DB
product page (http://www.oracle.com/technetwork/java/javadb/overview/index.html).

The Java EE Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The Java EE Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the Java EE Samples project page
(http://java.net/projects/glassfish-samples).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Preface

GlassFish Server Open Source Edition 3.1 Security Guide • August 201110

http://download.oracle.com/javaee/6/api/
http://download.oracle.com/javaee/6/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://java.net/projects/glassfish-samples
http://java.net/projects/glassfish-samples

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
GlassFish Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac OS operating system:

user’s-home-directory/glassfish3/glassfish

Windows, all installations:

SystemDrive:\glassfish3\glassfish

Preface

11

TABLE P–4 Default Paths and File Names (Continued)
Placeholder Description Default Value

as-install-parent Represents the parent of the base installation
directory for GlassFish Server.

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3

Windows, all installations:

SystemDrive:\glassfish3

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://www.oracle.com/technetwork/indexes/documentation/
index.html)

■ Support (http://www.oracle.com/us/support/index.html)
■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the Oracle Documentation
(http://www.oracle.com/technetwork/indexes/documentation/index.html) web site, you
can use a search engine by typing the following syntax in the search field:

search-term site:oracle.com

For example, to search for “broker,” type the following:

broker site:oracle.com

Preface

GlassFish Server Open Source Edition 3.1 Security Guide • August 201112

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/us/support/index.html
http://education.oracle.com/
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Preface

13

14

Administering System Security

This chapter describes general information about administering system security.

The following topics are addressed here:

■ “About System Security in GlassFish Server” on page 15
■ “Administering Passwords” on page 33
■ “Administering Audit Modules” on page 42
■ “Administering JSSE Certificates” on page 44
■ “Administering JACC Providers” on page 49

Instructions for accomplishing many of these tasks by using the Administration Console are
contained in the Administration Console online help.

Information on application security is contained in Chapter 4, “Securing Applications,” in
GlassFish Server Open Source Edition 3.1 Application Development Guide.

About System Security in GlassFish Server
Security is about protecting data, that is, how to prevent unauthorized access or damage to data
that is in storage or in transit. The GlassFish Server is built on the Java security model, which
uses a sandbox where applications can run safely, without potential risk to systems or users.
System security affects all the applications in the GlassFish Server environment.

System security features include the following:

■ “Authentication” on page 16
■ “Authorization” on page 20
■ “Auditing” on page 25
■ “Firewalls” on page 25
■ “Certificates and SSL” on page 26
■ “Tools for Managing System Security” on page 32

1C H A P T E R 1

15

Authentication
Authentication is the way in which an entity (a user, an application, or a component)
determines that another entity is who it claims to be. An entity uses security credentials to
authenticate itself. The credentials might be a user name and password, a digital certificate, or
something else. Usually, servers or applications require clients to authenticate themselves.
Additionally, clients might require servers to authenticate themselves. When authentication is
bidirectional, it is called mutual authentication.

When an entity tries to access a protected resource, GlassFish Server uses the authentication
mechanism configured for that resource to determine whether to grant access. For example, a
user can enter a user name and password in a web browser, and if the application verifies those
credentials, the user is authenticated. The user is associated with this authenticated security
identity for the remainder of the session.

Authentication Types
Within its deployment descriptors, an application specifies the type of authentication that it
uses. GlassFish Server supports the following types of authentication:

BASIC Uses the server's built-in login dialog box. The communication protocol is
HTTP (SSL optional). There is no user-credentialed encryption unless
using SSL. This type is not considered to be a secure method of user
authentication unless used in conjunction with some external secure
system such as SSL.

FORM The application provides its own custom login and error pages. The
communication protocol is HTTP (SSL optional). There is no
user-credentialed encryption unless using SSL.

CLIENT-CERT The server authenticates the client using a public key certificate. The
communication protocol is HTTPS (HTTP over SSL). User-credentialed
encryption is SSL.

DIGEST The server authenticates a user based on a user name and a password.
Unlike BASIC authentication, the password is never sent over the network.
The use of SSL with HTTP Digest is optional.

JSR 196 Server Authentication Modules
GlassFish Server implements the Servlet Container Profile of JSR 196 Java Authentication
Service Provider Interface for Containers (http://www.jcp.org/en/jsr/detail?id=196)
specification.

JSR 196 defines a standard service-provider interface (SPI) for integrating authentication
mechanism implementations in message processing runtimes. JSR 196 extends the concepts of
the Java Authentication and Authorization Service (JAAS) to enable pluggability of message

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201116

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196

authentication modules in message processing runtimes. The standard defines profiles that
establish contracts for the use of the SPI in specific contexts.

Passwords
Passwords are your first line of defense against unauthorized access to the components and data
of GlassFish Server. For Information about how to use passwords for GlassFish Server, see
“Administering Passwords” on page 33.

Master Password and Keystores

The master password is not tied to a user account and it is not used for authentication. Instead,
GlassFish Server uses the master password only to encrypt the keystore and truststore for the
DAS and instances.

When you create a new GlassFish Server domain, a new self-signed certificate is generated and
stored in the domain keystore and truststore. The DAS needs the master password to open these
stores at startup. Similarly, the associated server instances need the master password to open
their copy of these stores at startup.

If you use a utility such as keytool to modify the keystore or truststore, you must provide the
master password in that case as well.

The master password is a shared password and must be the same for the DAS and all instances
in the domain in order to manage the instances from the DAS. However, because GlassFish
Server never transmits the master password over the network, it is up to you to keep the master
password in sync between the DAS and instances.

If you change the master password, you can choose to enter the master password manually
when required, or save it in a file.

Understanding Master Password Synchronization

The master password is used encrypt the keystore and truststore for the DAS and instances. The
DAS needs the master password to open these stores at startup. Similarly, the associated server
instances need the master password to open their copy of these stores at startup.

GlassFish Server keeps the keystore and truststore for the DAS and instances in sync, which
guarantees that all copies of the stores are encrypted with the same master password at any
given time.

However, GlassFish Server does not synchronize the master password itself, and it is possible
that the DAS and instances might attempt to use different master passwords.

Consider the following potential scenario:

About System Security in GlassFish Server

Chapter 1 • Administering System Security 17

1. You create a domain and instances, using the default master password (changeit). As a
result, the DAS and instances have keystores and truststores encrypted using changeit.

2. You use the change-master-password subcommand on the DAS to change the master
password to ichangedit. As a result, the DAS and instance keystores and truststores are
encrypted using ichangedit.

3. Access to the keystore and truststore from an instance now requires the master password
ichangedit. You are responsible for changing the master password as needed.

If you do not use a master password file, you assume the responsibility for using the
change-master-password subcommand on the DAS and instances to keep the master
passwords in sync. Be aware that not using a master password file has additional considerations
for the start-instance and start-cluster subcommands, as described in “Additional
Considerations for the start-instance and start-cluster Subcommands” on page 35.

If you do use a master password file, you assume the responsibility for using the
change-master-password subcommand on the DAS and instances to keep the master
password file in sync.

Using the Default Master Password

GlassFish Server uses the known phrase "changeit" as the default master password. This master
password is not stored in a file. The default password is a convenience feature and provides no
additional security because it is assumed to be widely known.

All GlassFish Server subcommands work as expected with the default master password and
there are no synchronization issues.

Saving the Master Password to a File

The change-master-password --savemasterpassword option indicates whether the master
password should be written to the file system in the master-password file for the DAS or a
node. The default is false.

For a domain, the master password is kept in domains/domain-name/master-password.

For a node, the master-password file is kept in nodes/node-name/agent/master-password.
You can set a master password at the node level and all instances created on that node will use
that master-password file. To do this, use the --nodedir option and provide a node name.

You might want to save the master password to the file so that the start-domain subcommand
can start the server without having to prompt the user. There are additional considerations for
using a master password with the start-instance and start-cluster subcommands, as
described in “Additional Considerations for the start-instance and start-cluster

Subcommands” on page 35.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201118

The master-password file is encoded, not encrypted. You must use filesystem permissions to
protect the file.

Using the Master Password When Creating a Domain

The create-domain --usemasterpassword option specifies whether the keystore is encrypted
with a master password that is built into the system, or by a user-defined master password.

■ If false (default), the keystore is encrypted with a well-known password (changeit) that is
built into GlassFish Server.

■ If true, the subcommand obtains the master password from the AS_ADMIN_MASTERPASSWORD
entry in the password file you specified in the --passwordfile option of the asadmin utility.
Or, if none is defined, --usemasterpassword prompts the user for the master password.

Administration Password

An administration password, also known as the admin password, is used to invoke the
Administration Console and the asadmin utility. As with the default admin username, the
default admin password is usually set during installation but it can be changed. For instructions,
see “To Change an Administration Password” on page 37.

Encoded Passwords

Files that contain encoded passwords need to be protected using file system permissions. These
files include the following:

■ domain-dir/master-password
This file contains the encoded master password and should be protected with file system
permissions 600.

■ Any password file created to pass as an argument by using the --passwordfile argument to
the asadmin utility should be protected with file system permissions.

For instructions, see “To Set a Password From a File” on page 38.

Web Browsers and Password Storage

Most web browsers can save login credentials entered through HTML forms. This function can
be configured by the user and also by applications that employ user credentials. If the function
is enabled, then credentials entered by the user are stored on their local computer and retrieved
by the browser on future visits to the same application. This function is convenient for users,
but can also be a security risk. The stored credentials can be captured by an attacker who gains
access to the computer, either locally or through some remote compromise. Further, methods

About System Security in GlassFish Server

Chapter 1 • Administering System Security 19

have existed whereby a malicious web site can retrieve the stored credentials for other
applications, by exploiting browser vulnerabilities or through application-level cross-domain
attacks.

To prevent your web browser from saving login credentials for the GlassFish Server
Administration Console, choose “No” or “Never for this page” when prompted by the browser
during login.

Password Aliases
To avoid storing passwords in the domain configuration file in clear text, you can create an alias
for a password. This process is also known as encrypting a password. For more information, see
“Administering Password Aliases” on page 39.

Single Sign-on
With single sign-on, a user who logs in to one application becomes implicitly logged in to other
applications that require the same authentication information. Single sign-on is based on
groups. Single sign-on applies to web applications configured for the same realm and virtual
server. The realm is defined by the realm-name element in the web.xml file.

On GlassFish Server, single sign-on behavior can be inherited from the HTTP Service, enabled,
or disabled. By default, it is inherited from the HTTP Service. If enabled, single sign-on is
enabled for web applications on this virtual server that are configured for the same realm. If
disabled, single sign-on is disabled for this virtual server, and users must authenticate separately
to every application on the virtual server.

Authorization
Authorization, also known as access control, is the means by which users are granted
permission to access data or perform operations. After a user is authenticated, the user's level of
authorization determines what operations the owner can perform. A user's authorization is
based on the user's role.

Roles
A role defines which applications and what parts of each application users can access and what
those users or groups can do with the applications. For example, in a personnel application, all
employees might be able to see phone numbers and email addresses, but only managers have
access to salary information. This application would define at least two roles: employee and
manager. Only users in the manager role are allowed to view salary information.

A role is different from a group in that a role defines a function in an application, while a group
is a set of users who are related in some way. For example, the personnel application specify

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201120

groups such as full-time, part-time, and on-leave. Users in these groups are all employees
(the employee role). In addition, each user has its own designation that defines an additional
level of employment.

Roles are defined in the deployment descriptor for the application. The application developer or
deployer maps roles to one or more groups in the deployment descriptor for each application.
When the application is being packaged and deployed, the application specifies mappings
between users, groups, and roles, as illustrated in the following figure.

Java Authorization Contract for Containers
Java Authorization Contract for Containers (JACC) is the part of the Java EE specification that
defines an interface for pluggable authorization providers. This enables you to set up
third-party plug-in modules to perform authorization. By default, the GlassFish Server provides
a simple, file-based authorization engine that complies with the JACC specification.

FIGURE 1–1 Role Mapping

Role 1

Role 1

Role 1

Role 1

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

Application

Group 1

User 1

User 2

User 3

Group 1

User 1

User 2

User 3

User 1

User 2

User 3

User 1

User 2

User 3

Application

About System Security in GlassFish Server

Chapter 1 • Administering System Security 21

This release includes Administration Console support and CLI subcommands to create
(create-jacc-provider), delete (delete-jacc-provider), and list (list-jacc-providers)
JACC providers. “Administering JACC Providers” on page 49 for additional information.

You can also specify additional third-party JACC providers.

Working With the server.policy Policy File
Each GlassFish Server domain has its own global Java SE policy file, located in
domain-dir/config. The file is named server.policy.

This section covers the following topics:

■ “Contents of server.policy” on page 22
■ “Changing the Default Permissions” on page 24

Contents of server.policy

A sample server.policy file is as follows. Comments in the file describe why various permissions
are granted. These permissions are described in more detail in the next section.

Note – This server.policy file is presented for example purposes only and is subject to change.

// classes in lib get all permissions by default

grant codeBase "file:${com.sun.aas.installRoot}/lib/-" {

permission java.security.AllPermission;

};

// Core server classes get all permissions by default

grant codeBase "file:${com.sun.aas.installRoot}/modules/-" {

permission java.security.AllPermission;

};

// Felix classes get all permissions by default

grant codeBase "file:${com.sun.aas.installRoot}/osgi/felix/bin/-" {

permission java.security.AllPermission;

};

// iMQ classes get all permissions by default

grant codeBase "file:${com.sun.aas.imqLib}/-" {

permission java.security.AllPermission;

};

// Derby driver classes get all permissions by default

grant codeBase "file:${com.sun.aas.derbyRoot}/lib/-" {

permission java.security.AllPermission;

};

// permission for JDK’s tools.jar to enable webservice annotation processing

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201122

// at runtime by wsgen tool:

// permission java.lang.RuntimePermission "createClassLoader";
//

// permission for JDK’s tools.jar to sign JARs at runtime for

// Java Web Start support:

// permissions java.security.AllPermission;

// on the advice of the JDK tools folks. Should be refined later.

grant codeBase "file:${com.sun.aas.javaRoot}/lib/tools.jar" {

permission java.security.AllPermission;

};

//Loading MBeans from anywhere, to take care of side effects of 6235678.

grant {

permission javax.management.MBeanTrustPermission "register" ;

};

//Loading MBeans from anywhere, to take care of side effects of 6235678.

// Basic set of required permissions granted to all remaining code

// The permission FilePermission "<<ALL FILES>>", "read,write"
// allows all applications to read and write any file in the filesystem.

// It should be changed based on real deployment needs. If you know your

// applications just need to read/write a few directories consider removing

// this permission and adding grants indicating those specific directories.

// against the codebase of your application(s).

grant {

//Workaround for bugs #6484935, 6513799

permission java.lang.RuntimePermission "getProtectionDomain";
permission com.sun.corba.ee.impl.presentation.rmi.DynamicAccessPermission "access";
permission java.util.PropertyPermission "*", "read,write";

permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.io.FilePermission "<<ALL FILES>>", "read,write";

// work-around for pointbase bug 4864405

permission java.io.FilePermission

"${com.sun.aas.instanceRoot}${/}lib${/}databases${/}-",
"delete";

permission java.io.FilePermission "${java.io.tmpdir}${/}-", "delete";

permission java.util.PropertyPermission "*", "read";

permission java.lang.RuntimePermission "modifyThreadGroup";
permission java.lang.RuntimePermission "getClassLoader";
permission java.lang.RuntimePermission "setContextClassLoader";

permission javax.management.MBeanPermission

"[com.sun.messaging.jms.*:*]", "*";
};

// Following grant block is only required by Connectors. If Connectors

// are not in use the recommendation is to remove this grant.

grant {

permission javax.security.auth.PrivateCredentialPermission

"javax.resource.spi.security.PasswordCredential * \"*\"","read";
};

About System Security in GlassFish Server

Chapter 1 • Administering System Security 23

// Following grant block is only required for Reflection. If Reflection

// is not in use the recommendation is to remove this section.

grant {

permission java.lang.RuntimePermission "accessDeclaredMembers";
};

// Permissions to invoke CORBA objects in server

grant {

permission com.sun.enterprise.security.CORBAObjectPermission "*", "*";
};

Changing the Default Permissions

The GlassFish Server internal server code is granted all permissions. These grants are covered
by the AllPermission grant blocks to various parts of the server infrastructure code. Do not
modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously.

The last section, beginning with the comment “Basic set of required permissions...” provides the
basic set of permissions granted to all remaining code.

Depending on your GlassFish Server implementation, deleting or modifying these permissions
might be appropriate.

Specifically, the following permission allows all applications to read and write all properties and
read and write all files on the filesystem.

permission java.util.PropertyPermission "*", "read,write";
permission java.io.FilePermission "<<ALL FILES\>>", "read,write";

While this grant provides optimum flexibility, it is inherently unsecure. For enhanced security,
change this permission based on your real deployment needs.

For example, consider removing this permission and assign default read and write permissions
only to the application's install directory (context-root). (This example uses
com.sun.aas.instanceRoot, which specifies the top level directory for a server instance.)

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-"
{

permission java.io.FilePermission "file:${com.sun.aas.instanceRoot}
/applications/MyApp/-", "read,write";
}

For any application that needs to read and write additional directories, you would then have to
explicitly allow such permissions by adding specific grants. In general, you should add extra
permissions only to the applications or modules that require them, not to all applications
deployed to a domain.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201124

Additional permissions (see the embedded comments in server.policy) are granted
specifically for using connectors and reflection. If connectors or reflection are not used in a
particular domain, you should remove these permissions, because they are otherwise
unnecessary.

Auditing
Auditing is the means used to capture security-related events for the purpose of evaluating the
effectiveness of security measures. GlassFish Server uses audit modules to capture audit trails of
all authentication and authorization decisions. GlassFish Server provides a default audit
module, as well as the ability to plug in custom audit modules. The scope of the audit module is
the entire server, which means that all the applications on the server will use the same audit
module.

For administration instructions, see “Administering Audit Modules” on page 42.

Firewalls
A firewall controls the flow of data between two or more networks, and manages the links
between the networks. A firewall can consist of both hardware and software elements. The
following guidelines pertain primarily to GlassFish Server:

■ In general, firewalls should be configured so that clients can access the necessary TCP/IP
ports.
For example, if the HTTP listener is operating on port 8080, configure the firewall to allow
HTTP requests on port 8080 only. Likewise, if HTTPS requests are set up for port 8081, you
must configure the firewalls to allow HTTPS requests on port 8081.

■ If direct Remote Method Invocations over Internet Inter-ORB Protocol (RMI-IIOP) access
from the Internet to EJB modules is required, open the RMI-IIOP listener port as well.

Note – Opening the RMI-IIOP listener port is strongly discouraged because it creates
security risks.

■ In double firewall architecture, you must configure the outer firewall to allow for HTTP and
HTTPS transactions. You must configure the inner firewall to allow the HTTP server
plug-in to communicate with GlassFish Server behind the firewall.

About System Security in GlassFish Server

Chapter 1 • Administering System Security 25

Certificates and SSL
The following topics are addressed here:

■ “Certificates” on page 26
■ “Certificate Chains” on page 27
■ “Certificate Files” on page 27
■ “Secure Sockets Layer” on page 28
■ “Custom Authentication of Client Certificate in SSL Mutual Authentication” on page 29

For administration instructions, see “Administering JSSE Certificates” on page 44.

Certificates
Certificates, also called digital certificates, are electronic files that uniquely identify people and
resources on the Internet. Certificates also enable secure, confidential communication between
two entities. There are different kinds of certificates:

■ Personal certificates are used by individuals.
■ Server certificates are used to establish secure sessions between the server and clients

through secure sockets layer (SSL) technology.

Certificates are based on public key cryptography, which uses pairs of digital keys (very long
numbers) to encrypt, or encode, information so the information can be read only by its
intended recipient. The recipient then decrypts (decodes) the information to read it. A key pair
contains a public key and a private key. The owner distributes the public key and makes it
available to anyone. But the owner never distributes the private key, which is always kept secret.
Because the keys are mathematically related, data encrypted with one key can only be decrypted
with the other key in the pair.

Certificates are issued by a trusted third party called a Certification Authority (CA). The CA is
analogous to a passport office: it validates the certificate holder's identity and signs the
certificate so that it cannot be forged or tampered with. After a CA has signed a certificate, the
holder can present it as proof of identity and to establish encrypted, confidential
communications. Most importantly, a certificate binds the owner's public key to the owner's
identity.

In addition to the public key, a certificate typically includes information such as the following:

■ The name of the holder and other identification, such as the URL of the web server using the
certificate, or an individual's email address

■ The name of the CA that issued the certificate
■ An expiration date

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201126

Certificates are governed by the technical specifications of the X.509 format. To verify the
identity of a user in the certificate realm, the authentication service verifies an X.509
certificate, using the common name field of the X.509 certificate as the principal name.

Certificate Chains
A certificate chain is a series of certificates issued by successive CA certificates, eventually
ending in a root CA certificate.

Web browsers are preconfigured with a set of root CA certificates that the browser
automatically trusts. Any certificates from elsewhere must come with a certificate chain to
verify their validity.

When a certificate is first generated, it is a self-signed certificate. A self-signed certificate is one
for which the issuer (signer) is the same as the subject (the entity whose public key is being
authenticated by the certificate). When the owner sends a certificate signing request (CSR) to a
CA, then imports the response, the self-signed certificate is replaced by a chain of certificates. At
the bottom of the chain is the certificate (reply) issued by the CA authenticating the subject's
public key. The next certificate in the chain is one that authenticates the CA's public key.
Usually, this is a self-signed certificate (that is, a certificate from the CA authenticating its own
public key) and the last certificate in the chain.

In other cases, the CA can return a chain of certificates. In this situation, the bottom certificate
in the chain is the same (a certificate signed by the CA, authenticating the public key of the key
entry), but the second certificate in the chain is a certificate signed by a different CA,
authenticating the public key of the CA to which you sent the CSR. Then, the next certificate in
the chain is a certificate authenticating the second CA's key, and so on, until a self-signed root
certificate is reached. Each certificate in the chain (after the first) thus authenticates the public
key of the signer of the previous certificate in the chain.

Certificate Files
During GlassFish Server installation, a certificate is generated in Java Secure Socket Extension
(JSSE) format suitable for internal testing. (The certificate is self-signed.) By default, GlassFish
Server stores its certificate information in certificate databases in the domain-dir/config
directory:

Keystore file The keystore.jks file contains GlassFish Server certificate, including its
private key. The keystore file is protected with a password.

Each keystore entry has a unique alias. After installation, the GlassFish
Server keystore has a single entry with an alias of s1as.

Truststore file The cacerts.jks file contains the GlassFish Server trusted certificates,
including public keys for other entities. For a trusted certificate, the server
has confirmed that the public key in the certificate belongs to the certificate's

About System Security in GlassFish Server

Chapter 1 • Administering System Security 27

owner. Trusted certificates generally include those of CAs.

By default, GlassFish Server is configured with a keystore and truststore that will work with the
example applications and for development purposes.

Secure Sockets Layer
Secure Sockets Layer (SSL) is the most popular standard for securing Internet communications
and transactions. Secure web applications use HTTPS (HTTP over SSL). The HTTPS protocol
uses certificates to ensure confidential and secure communications between server and clients.
In an SSL connection, both the client and the server encrypt data before sending it. Data is
decrypted upon receipt.

When a Web browser (client) wants to connect to a secure site, an SSL handshake happens, like
this:

1. The browser sends a message over the network requesting a secure session (typically, by
requesting a URL that begins with https instead of http).

2. The server responds by sending its certificate (including its public key).
3. The browser verifies that the server's certificate is valid and is signed by a CA whose

certificate is in the browser's database (and who is trusted). It also verifies that the CA
certificate has not expired.

4. If the certificate is valid, the browser generates a one time, unique session key and encrypts it
with the server's public key. The browser then sends the encrypted session key to the server
so that they both have a copy.

5. The server decrypts the message using its private key and recovers the session key.

After the handshake, the client has verified the identity of the Web site, and only the client and
the Web server have a copy of the session key. From this point forward, the client and the server
use the session key to encrypt all their communications with each other. Thus, their
communications are ensured to be secure.

The newest version of the SSL standard is called Transport Layer Security (TLS). The GlassFish
Server supports the SSL 3.0 and the TLS 1.0 encryption protocols.

To use SSL, GlassFish Server must have a certificate for each external interface or IP address that
accepts secure connections. The HTTPS service of most web servers will not run unless a
certificate has been installed. For instructions on applying SSL to HTTP listeners, see “To
Configure an HTTP Listener for SSL” in GlassFish Server Open Source Edition 3.1
Administration Guide.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201128

Ciphers

A cipher is a cryptographic algorithm used for encryption or decryption. SSL and TLS protocols
support a variety of ciphers used to authenticate the server and client to each other, transmit
certificates, and establish session keys.

Some ciphers are stronger and more secure than others. Clients and servers can support
different cipher suites. During a secure connection, the client and the server agree to use the
strongest cipher that they both have enabled for communication, so it is usually sufficient to
enable all ciphers.

Name-based Virtual Hosts

Using name-based virtual hosts for a secure application can be problematic. This is a design
limitation of the SSL protocol itself. The SSL handshake, where the client browser accepts the
server certificate, must occur before the HTTP request is accessed. As a result, the request
information containing the virtual host name cannot be determined prior to authentication,
and it is therefore not possible to assign multiple certificates to a single IP address.

If all virtual hosts on a single IP address need to authenticate against the same certificate, the
addition of multiple virtual hosts probably will not interfere with normal SSL operations on the
server. Be aware, however, that most browsers will compare the server's domain name against
the domain name listed in the certificate, if any (applicable primarily to official, CA-signed
certificates). If the domain names do not match, these browsers display a warning. In general,
only address-based virtual hosts are commonly used with SSL in a production environment.

Custom Authentication of Client Certificate in SSL Mutual
Authentication
Release 3.1 of GlassFish Server extends the Certificate realm to allow custom authentication and
group assignment based on the client certificate received as part of SSL mutual (two-way)
authentication.

As in previous releases, you can create only one certificate realm. However, you can now use a
convenient abstract base class to configure a JAAS LoginModule for the Certificate realm.
Specifically, your LoginModule can now extend
com.sun.appserv.security.AppservCertificateLoginModule. When you do this, you need
to implement only the authenticateUser method and call the commitUserAuthentication
method to signify success.

This section describes the following topics:

■ “Understanding the AppservCertificateLoginModule Class” on page 30
■ “Example AppservCertificateLoginModule Code” on page 30
■ “Setting the JAAS Context” on page 31

About System Security in GlassFish Server

Chapter 1 • Administering System Security 29

Understanding the AppservCertificateLoginModule Class

The AppservCertificateLoginModule class provides some convenience methods for accessing
the certificates, the application name and so forth, and for adding the group principals to the
subject. The convenience methods include the following:

getAppName()

Returns the name of the application to be authenticated. This may be useful when a single
LoginModule has to handle multiple applications that use certificates.

getCerts()

Returns the certificate chain as an array of java.security.cert.X509Certificate
certificates.

getX500Principal()

Returns the Distinguished principal from the first certificate in the chain.

getSubject()

Returns the subject that is being authenticated.

commitUserAuthentication(final String[] groups)

This method sets the authentication status to success if the groups parameter is non-null.
Note that this method is called after the authentication has succeeded. If authentication
failed, do not call this method.

See the Javadoc at AppservCertificateLoginModule (http://javadoc.glassfish.org/
v3/apidoc/com/sun/appserv/security/AppservCertificateLoginModule.html) for
complete information.

Note – You do not have to extend the convenience base class, you can extend the JAAS
LoginModule javax.security.auth.spi.LoginModule instead if you so choose. (See
Implement the Abstract LoginModule Methods (http://download.oracle.com/
javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html#Step%203) for
additional information.)

Example AppservCertificateLoginModule Code

“Example AppservCertificateLoginModule Code” on page 30 shows a sample instance of the
AppservCertificateLoginModule class.

Note – This sample code is part of a sample AppservCertificateLoginModule project
(http://blogs.sun.com/nasradu8/resource/certRealm/certificateLM.zip). See the
complete sample project for information on how to build and run the sample.

Take note of the following points from the example:

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201130

http://javadoc.glassfish.org/v3/apidoc/com/sun/appserv/security/AppservCertificateLoginModule.html
http://javadoc.glassfish.org/v3/apidoc/com/sun/appserv/security/AppservCertificateLoginModule.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html#Step%203
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html#Step%203
http://blogs.sun.com/nasradu8/resource/certRealm/certificateLM.zip
http://blogs.sun.com/nasradu8/resource/certRealm/certificateLM.zip

■ The getX500Principal() method returns the subject (subject distinguished name) value
from the first certificate in the client certificate chain as an X500Principal.

■ From that X500Principal, the getName() method then returns a string representation of
the X.500 distinguished name using the format defined in RFC 2253.

■ The example uses the getAppName() method to determine the application name. It also
determines the organizational unit (OU) from the distinguished name.

■ The example concatenates the application name with the value of OU, and uses it as the group
name in the commitUserAuthentication method.

EXAMPLE 1–1 Sample AppservCertificateLoginModule Code

/**

*

* @author nasradu8

*/

public class CertificateLM extends AppservCertificateLoginModule {

@Override

protected void authenticateUser() throws LoginException {

// Get the distinguished name from the X500Principal.

String dname = getX500Principal().getName();

StringTokenizer st = new StringTokenizer(dname, "B \t\n\r\f,");
while (st.hasMoreTokens()) {

String next = st.nextToken();

// Set the appname:OU as the group.

// At this point, one has the application name and the DN of

// the certificate. A suitable login decision can be made here.

if (next.startsWith("OU=")) {

commitUserAuthentication(new String[]{getAppName()

+ ":" + next.substring(3)});

return;

}

}

throw new LoginException("No OU found.");
}

}

Setting the JAAS Context

After you create your LoginModule, you must plug it in to a jaas-context, which you then
specify as a parameter to the certificate realm in GlassFish Server.

To do this, perform the following steps:

1. Specify a new jaas-context for the Certificate realm in the file
<domain-dir>/config/login.conf. For example, using the CertificateLM class from
“Example AppservCertificateLoginModule Code” on page 30:

certRealm {

com.sun.blogs.certificate.login.CertificateLM required;

};

About System Security in GlassFish Server

Chapter 1 • Administering System Security 31

2. Specify this jaas-context as a parameter to the set subcommand in the
configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=<jaas-context-name> property. For example:
asadmin> set

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=certRealm

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=certRealm

Command set executed successfully.

3. Optionally, get the value you just set to make sure that it is correct.
asadmin> get

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=certRealm

Command get executed successfully.

Tools for Managing System Security
GlassFish Server provides the following tools for managing system security:

Administration Console The Administration Console is a browser-based utility used to
configure security for the entire server. Tasks include managing
certificates, users, groups, and realms, and performing other
system-wide security tasks. For a general introduction to the
Administration Console, see “Administration Console” in
GlassFish Server Open Source Edition 3.1 Administration Guide.

The asadmin utility The asadmin command-line utility performs many of the same
tasks as the Administration Console. You might be able to do
some things with the asadmin utility that you cannot do with the
Administration Console. For a general introduction to asadmin,
see “asadmin Utility” in GlassFish Server Open Source Edition 3.1
Administration Guide.

The keytool utility The keytool Java Platform, Standard Edition (Java SE)
command-line utility is used for managing digital certificates and
key pairs. For more information, see “Administering JSSE
Certificates” on page 44.

The policytool utility The policytool Java SE graphical utility is used for managing
system-wide Java security policies. As an administrator, you rarely
use policytool.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201132

For more information about using keytool, policytool, and other Java security tools, see
Summary of Tools for Java Platform Security (http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

SecurityToolsSummary.html).

Administering Passwords
There are multiple ways to administer passwords. You can rely on administrators to keep
passwords secret and change the passwords regularly. You can set up files for storing passwords
so that asadmin subcommands can access these files rather than having users type the
commands. You can encrypt passwords by setting up aliases so that sensitive passwords are not
visible in the domain.xml file.

The following topics are addressed here:

■ “To Change the Master Password” on page 33
■ “Additional Considerations for the start-instance and start-cluster Subcommands” on

page 35
■ “Using start-instance and start-cluster With a Password File” on page 36
■ “To Change an Administration Password” on page 37
■ “To Set a Password From a File” on page 38
■ “Administering Password Aliases” on page 39

▼ To Change the Master Password
The master password gives access to the keystore used with the domain. This password is not
tied to a UNIX user. You should treat this overall shared password as sensitive data. GlassFish
Server never uses it for authentication and never transmits it over the network.

You can choose to type the password manually when required, or to obscure the password in a
password file. If there is no password file, you are prompted for the master password. If there is a
password file, but you want to change access to require prompting, remove the file. The default
master password is changeit.

When changing the master password, it has to be changed on all nodes as well as on the DAS.
The master password on nodes is only stored once in the node, for all instances that are on that
node.

Use the change-master-password subcommand in local mode to modify the master password.

Administering Passwords

Chapter 1 • Administering System Security 33

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/SecurityToolsSummary.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/SecurityToolsSummary.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/SecurityToolsSummary.html

Note – If you change the master password and are not using a master password file, the
start-instance and start-cluster subcommands are not able to determine the master
password. In this case, you must start those instances locally by using start-local-instance.

When the master password is saved, it is saved in the master-password file.

This subcommand will not work unless the domain is stopped.

Stop the domain whose password you are changing.
See “To Stop a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Change the master password for the domain by using the change-master-password(1)
subcommand.
You are prompted for the old and new passwords. All dependent items are re-encrypted.

Start the domain.
See “To Start a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Changing the Master Password

The change-master-password subcommand is interactive in that you are prompted for the old
master password as well as the new master password. This example changes the master
password for domain44ps:

asadmin> change-master-password domain44ps

If you have already logged into the domain using the login login(1) subcommand, you are
prompted for the new master password:

Please enter the new master password>

Please enter the new master password again>

If you are not logged into the domain, you are prompted for both the old and the new master
passwords:

Please enter the master password>

Please enter the new master password>

Please enter the new master password again>

Information similar to the following is displayed:

Master password changed for domain44ps

Before You Begin

1

2

3

Example 1–2

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • August 201134

You can also view the full syntax and options of the subcommand by typing asadmin --help

change-master-password at the command line.

Additional Considerations for the start-instance
and start-cluster Subcommands
If you change the master password for DAS, the start-domain and start-local-instance

subcommands allow you to provide it during domain or instance startup in one of three ways:

■ Via the master-password file
■ By entering it interactively
■ Via the asadmin passwordfile

The start-instance and start-cluster subcommands are more problematic. If you create a
domain with a master password other than the default, an associated remote instance or cluster
must have access to the master password in order to start. However, for security reasons
GlassFish Server never transmits the master password or the master password file over the
network.

Consider the following scenario:

1. Change the master password on the DAS and save it with -–savemasterpassword.
2. Create an instance on another host using the subcommand create-instance. GlassFish

Server copies the keystore and truststore from the DAS to the instance, but it does not copy
the master password file.

3. Try to start the instance using the start-instance subcommand. An error results.

The start-instance command is looking for the file master-password in the node directory on
the instance machine, and it is not there by default. Therefore, the subcommand fails.

You can use the change-master-password subcommand to make sure the correct password is
used in this password file, as described in “Using start-instance and start-cluster With a
Password File” on page 36.

Note – The start-instance and start-cluster subcommands do not include any other way
for you to provide the password. If you change the master password and are not using a master
password file, the start-instance and start-cluster subcommands are not able to
determine the master password. In this case, you must start the instances locally by using
start-local-instance.

See Also

Administering Passwords

Chapter 1 • Administering System Security 35

▼ Using start-instance and start-clusterWith a
Password File
Assume that you have changed the master password on the DAS and you want to make the
same change for all instances.

The start-instance and start-cluster subcommands automatically use the master
password file if it exists in the instance filesystem. You can use the change-master-password
subcommand to make sure the password file exists and that the correct password is used.

From the DAS, create a domain and set the master password.
asadmin> create-domain --savemasterpassword true domain-name

Start the domain.
asadmin> start-domain domain-name

Create a node that is enabled for communication over secure shell (SSH).
asadmin> create-node-ssh --nodehost host-name --installdir /some-dir node-name

Create an instance on the node.
asadmin> create-instance --node node-name instance-name

Before you start the instance, on the instance machine run change-master-passwordwith the
---savemasterpassword option to create a file called master-password in the agents directory
to access the keystores. (The start-instance subcommand is looking for a file called
master-password in the agents directory to access the stores.)
asadmin> change-master-password --savemasterpassword true --nodedir /some-dir
node-name

You are prompted to enter the current and new master password:

Enter the current master password>

Enter the new master password>

Enter the new master password again>

Command change-master-password executed successfully.

Remember that when you created the domain you specified a new master password. This
master password was then used to encrypt the keystore and truststore for the DAS, and these
stores were copied to the instance as a result of the create-instance subcommand.

1

2

3

4

5

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • August 201136

Therefore, enter the master password you set when you created the domain as both the current
master password and again as the new master password. You enter it as the new master
password because you do not want to change the master password for the instance and make it
out of sync with the DAS.

Run start-instance from the DAS.
asadmin> start-instance instance-name

The master password file is associated with the node and not with an instance. After the master
password file exists in the node directory on the instance machine, additional instances can be
created, started and stopped from the DAS.

▼ To Change an Administration Password
Use the change-admin-password subcommand in remote mode to change an administration
password. The default administration password is admin. You are prompted for the old and new
admin passwords, with confirmation. The passwords are not echoed to the display.

Note – If you accepted the default admin user with no password during zip installation, you can
add a password to this user. If there is a single user called admin that does not have a password,
you are not prompted for login information. Any other situation requires login.

Encrypting the admin password is strongly encouraged.

If you want to change the admin password before creating an alias for the password
(encrypting), you can use the set subcommand with syntax similar to the following:

asadmin set --user admin server.jms-service.jms-host.default_JMS_host.admin-password=

new_pwd

Ensure that the server is running.
Remote subcommands require a running server.

Change the admin password by using the change-admin-password(1) subcommand.

Enter the old and new admin passwords when prompted.

Restart GlassFish Server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

6

Before You Begin

1

2

3

4

Administering Passwords

Chapter 1 • Administering System Security 37

Changing the Admin Password

This example changes the admin password for user anonymous from adminadmin to newadmin:

asadmin> change-admin-password --username anonymous

You are prompted to enter the old and the new admin passwords:

Enter admin password>adminadmin

Enter new admin password>newadmin

Enter new admin password again>newadmin

Information similar to the following is displayed:

Command change-admin-password executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

change-admin-password at the command line.

▼ To Set a Password From a File
Instead of typing the password at the command line, you can access the password for a
command from a file such as passwords.txt. The --passwordfile option of the asadmin
utility takes the name of the file that contains the passwords. The entry for a password in the file
must have the AS_ADMIN_ prefix followed by the password name in uppercase letters.

The following other types of passwords can be specified:

AS_ADMIN_MASTERPASSWORD

AS_ADMIN_USERPASSWORD

AS_ADMIN_ALIASPASSWORD

Edit the password file.
For example, to specify the password for the domain administration server (DAS), add an entry
similar to the following to the password file, where adminadmin is the administrator password:
AS_ADMIN_PASSWORD=adminadmin

Save the password file.
You can now specify the password file in an asadmin subcommand. In this example,
passwords.txt is the file that contains the password:
asadmin>delete-jdbc-resource --user admin --password passwords.txt jdbc/DerbyPool

Example 1–3

See Also

1

2

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • August 201138

If AS_ADMIN_PASSWORD has been exported to the global environment, specifying the
--passwordfile option will produce a warning about using the --passwordfile option. To
prevent this warning situation from happening, unset AS_ADMIN_PASSWORD.

Administering Password Aliases
A password alias is used to indirectly access a password so that the password itself does not
appear in cleartext in the domain's domain.xml configuration file.

Storing passwords in cleartext format in system configuration files is common in many open
source projects. In addition to GlassFish Server, Apache Tomcat, Maven, and Subversion,
among others, store and pass passwords in cleartext format. However, storing and passing
passwords in cleartext can be a security risk, and may violate some corporate security policies.
In such cases, you can use password aliases.

The following topics are addressed here:

■ “To Create a Password Alias” on page 39
■ “To List Password Aliases” on page 40
■ “To Delete a Password Alias” on page 41
■ “To Update a Password Alias” on page 41

▼ To Create a Password Alias
Use the create-password-alias subcommand in remote mode to create an alias for a
password in the domain's keystore. The password corresponding to the alias name is stored in
an encrypted form in the domain configuration file. The create-password-alias
subcommand takes both a secure interactive form, in which users are prompted for all
information, and a more script-friendly form, in which the password is propagated on the
command line.

You can also use the set(1) subcommand to remove and replace the password in the
configuration file. For example:

asadmin set --user admin server.jms-service.jms-host.default_JMS_host.

admin-password=’${ALIAS=jms-password}’

Ensure that the server is running.
Remote subcommands require a running server.

Go to the directory where the configuration file resides.
By default, the configuration file is located in domain-dir/config.

Create the password alias by using the create-password-alias(1) subcommand.

Troubleshooting

1

2

3

Administering Passwords

Chapter 1 • Administering System Security 39

Type the password for the alias when prompted.

Add the alias to a password file.
For example, assume the use of a password file such as passwords.txt. Assume further that you
want to add an alias for the AS_ADMIN_USERPASSWORD entry that is read by the
create-file-user(1) subcommand. You would add the following line to the password file:
AS_ADMIN_USERPASSWORD=${ALIAS=user-password-alias}, where user-password-alias is the new
password alias.

To continue the example of the previous step, you would then run the create-file-user(1)
subcommand.
You could use this method to create several users (user1, user2, and so forth), all with the same
password.

asadmin> --passwordfile passwords.txt create-file-user user1

Creating a Password Alias

This example creates the new jms-password alias for the admin user:

asadmin> create-password-alias --user admin jms-password

You are prompted to type the password for the alias:

Please enter the alias password>secret-password

Please enter the alias password again>secret-password

Command create-password-alias executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create-password-alias at the command line.

▼ To List Password Aliases
Use the list-password-aliases subcommand in remote mode to list existing the password
aliases.

Ensure that the server is running.
Remote subcommands require a running server.

List password aliases by using the list-password-aliases(1) subcommand.

Listing Password Aliases

This example lists the existing password aliases:

4

5

6

Example 1–4

See Also

1

2

Example 1–5

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • August 201140

asadmin> list-password aliases

jmspassword-alias

Command list-password-aliases executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

list-password-aliases at the command line.

▼ To Delete a Password Alias
Use the delete-password-alias subcommand in remote mode to delete an existing password
alias.

Ensure that the server is running.
Remote subcommands require a running server.

List all aliases by using the list-password-aliases(1) subcommand.

Delete a password alias by using the list-password-aliases(1) subcommand.

Deleting a Password Alias

This example deletes the password alias jmspassword-alias:

asadmin> delete-password-alias jmspassword-alias

Command list-password-aliases executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

delete-password-alias at the command line.

▼ To Update a Password Alias
Use the update-password-alias subcommand in remote mode to change the password for an
existing password alias. The update-password-alias subcommand takes both a secure
interactive form, in which the user is prompted for all information, and a more script-friendly
form, in which the password is propagated on the command line.

Ensure that the server is running.
Remote subcommands require a running server.

Update an alias by using the update-password-alias(1) subcommand.

Type the password when prompted.

See Also

1

2

3

Example 1–6

See Also

1

2

3

Administering Passwords

Chapter 1 • Administering System Security 41

Updating a Password Alias

This example updates the password for the jmspassword-alias alias:

asadmin> update-password-alias jsmpassword-alias

You are prompted to type the new password for the alias:

Please enter the alias password>new-secret-password

Please enter the alias password again>new-secret-password

Command update-password-alias executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

update-password-alias at the command line.

Administering Audit Modules
The following topics are addressed here:

■ “To Create an Audit Module” on page 42
■ “To List Audit Modules” on page 43
■ “To Delete an Audit Module” on page 43

▼ To Create an Audit Module
Use the create-audit-module subcommand in remote mode to create an audit module for the
add-on component that implements the audit capabilities.

Ensure that the server is running.
Remote subcommands require a running server.

Create an audit module by using the create-audit-module(1) subcommand.
Information about properties for this subcommand is included in this help page.

Creating an Audit Module

This example creates an audit module named sampleAuditModule:

asadmin> create-audit-module

--classname com.sun.appserv.auditmodule --property defaultuser=

admin:Password=admin sampleAuditModule

Command create-audit-module executed successfully.

Example 1–7

See Also

1

2

Example 1–8

Administering Audit Modules

GlassFish Server Open Source Edition 3.1 Security Guide • August 201142

You can also view the full syntax and options of the subcommand by typing asadmin help

create-audit-module at the command line.

▼ To List Audit Modules
Use the list-audit-modules subcommand in remote mode to list the audit modules on one of
the following targets:

■ Server instance, server (the default)
■ Specified server instance
■ Specified configuration

Ensure that the server is running.
Remote subcommands require a running server.

List the audit modules by using the list-audit-modules(1) subcommand.

Listing Audit Modules

This example lists the audit modules on localhost:

asadmin> list-audit-modules

audit-module : default

audit-module : sampleAuditModule

Command list-audit-modules executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list-audit-modules at the command line.

▼ To Delete an Audit Module
Use the delete-audit-module subcommand in remote mode to delete an existing audit
module.

Ensure that the server is running.
Remote subcommands require a running server.

List the audit modules by using the list-audit-modules(1) subcommand.

Delete an audit module by using the delete-audit-module(1) subcommand.

See Also

1

2

Example 1–9

See Also

1

2

3

Administering Audit Modules

Chapter 1 • Administering System Security 43

Deleting an Audit Module

This example deletes sampleAuditModule:

asadmin> delete-audit-module sampleAuditModule

Command delete-audit-module executed successfully.

Administering JSSE Certificates
In the developer profile, the GlassFish Server 3.1 uses the JSSE format on the server side to
manage certificates and key stores. In all profiles, the client side (appclient or stand-alone) uses
the JSSE format.

The Java SE SDK ships with the keytool utility, which enables you to set up and work with Java
Secure Socket Extension (JSSE) digital certificates. You can administer public/private key pairs
and associated certificates, and cache the public keys (in the form of certificates) of their
communicating peers.

The following topics are addressed here:

■ “To Generate a Certificate by Using keytool” on page 44
■ “To Sign a Certificate by Using keytool” on page 46
■ “To Delete a Certificate by Using keytool” on page 49

▼ To Generate a Certificate by Using keytool

By default, the keytool utility creates a keystore file in the directory where the utility is run.

To run the keytool utility, your shell environment must be configured so that the Java SE /bin

directory is in the path, otherwise the full path to the utility must be present on the command
line.

Change to the directory that contains the keystore and truststore files.
Always generate the certificate in the directory containing the keystore and truststore files. The
default is domain-dir/config.

Generate the certificate in the keystore file, keystore.jks, using the following command
format:
keytool -genkey -alias keyAlias-keyalg RSA

-keypass changeit

-storepass changeit

keystore keystore.jks

Example 1–10

Before You Begin

1

2

Administering JSSE Certificates

GlassFish Server Open Source Edition 3.1 Security Guide • August 201144

Use any unique name as your keyAlias. If you have changed the keystore or private key
password from the default (changeit), substitute the new password for changeit. The default
key password alias is s1as.

A prompt appears that asks for your name, organization, and other information.

Export the generated certificate to the server.cerfile (or client.cer if you prefer), using the
following command format:
keytool -export -alias keyAlias-storepass changeit

-file server.cer

-keystore keystore.jks

If a certificate signed by a certificate authority is required, see “To Sign a Certificate by Using
keytool”on page 46.

Create the cacerts.jks truststore file and add the certificate to the truststore, using the
following command format:
keytool -import -v -trustcacerts

-alias keyAlias
-file server.cer

-keystore cacerts.jks

-keypass changeit

If you have changed the keystore or private key password from the default (changeit),
substitute the new password.

Information about the certificate is displayed and a prompt appears asking if you want to trust
the certificate.

Type yes, then press Enter.
Information similar to the following is displayed:
Certificate was added to keystore

[Saving cacerts.jks]

To apply your changes, restart GlassFish Server. See“To Restart a Domain”in GlassFish Server
Open Source Edition 3.1 Administration Guide.

Creating a Self-Signed Certificate in a JKS Keystore by Using an RSA Key Algorithm

RSA is public-key encryption technology developed by RSA Data Security, Inc.

keytool -genkey -noprompt -trustcacerts -keyalg RSA -alias ${cert.alias}

-dname ${dn.name} -keypass ${key.pass} -keystore ${keystore.file}

-storepass ${keystore.pass}

3

4

5

6

7

Example 1–11

Administering JSSE Certificates

Chapter 1 • Administering System Security 45

Creating a Self-Signed Certificate in a JKS Keystore by Using a Default Key Algorithm

keytool -genkey -noprompt -trustcacerts -alias ${cert.alias} -dname

${dn.name} -keypass ${key.pass} -keystore ${keystore.file} -storepass

${keystore.pass}

Displaying Available Certificates From a JKS Keystore

keytool -list -v -keystore ${keystore.file} -storepass ${keystore.pass}

Displaying Certificate information From a JKS Keystore

keytool -list -v -alias ${cert.alias} -keystore ${keystore.file}

-storepass ${keystore.pass}

For more information about keytool, see the keytool reference page (http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html).

▼ To Sign a Certificate by Using keytool

After creating a certificate, the owner must sign the certificate to prevent forgery. E-commerce
sites, or those for which authentication of identity is important, can purchase a certificate from
a well-known Certificate Authority (CA).

Note – If authentication is not a concern, for example if private secure communications are all
that is required, you can save the time and expense involved in obtaining a CA certificate by
using a self-signed certificate.

Delete the default self-signed certificate:
keytool -delete -alias s1as -keystore keystore.jks -storepass <store_passwd>

where <store_passwd> is the password for the keystore. For example, "mypass". Note that s1as
is the default alias of the GlassFish Server keystore.

Generate a new key pair for the application server:
keytool -genkeypair -keyalg <key_alg> -keystore keystore.jks

-validity <val_days> -alias s1as

where <key_alg> is the algorithm to be used for generating the key pair, for example RSA, and
<val_days> is the number of days that the certificate should be considered valid. For example,
365.

Example 1–12

Example 1–13

Example 1–14

See Also

1

2

Administering JSSE Certificates

GlassFish Server Open Source Edition 3.1 Security Guide • August 201146

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html

In addition to generating a key pair, the command wraps the public key into a self-signed
certificate and stores the certificate and the private key in a new keystore entry identified by the
alias.

For HTTPS hostname verification, it is important to ensure that the name of the certificate
(CN) matches the fully-qualified hostname of your site (fully-qualified domain name). If the
names do not match, clients connecting to the server will see a security alert stating that the
name of the certificate does not match the name of the site.

Generate a Certificate Signing Request (CSR):
keytool -certreq -alias s1as -file <certreq_file> -keystore keystore.jks

-storepass <store_passwd>

where <certreq_file> is the file in which the CSR is stored (for example, s1as.csr) and
<store_passwd> is the password for the keystore. For example, changeit.

Submit the CSR to a Certificate Authority such as VeriSign http://www.verisign.com/ssl/
buy-ssl-certificates/index.html (http://www.verisign.com/ssl/buy-ssl-certificates/
index.html). In response, you should receive a signed server certificate. Make sure to import
into your browser the CA certificate of the CA (if not already present) and any intermediate
certificates indicated by the CA in the reply.

Store the signed server certificate from the CA, including the markers -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE-----, into a file such as s1as.cert. Download
the CA certificate and any intermediate CA certificates and store them in local files.

Import the CA certificate (if not already present) and any intermediate CA certificates (if not
already present) indicated by the CA into the truststore cacerts.jks:
keytool -import -v -trustcacerts -alias <CA-Name> -file ca.cert

-keystore cacerts.jks -storepass <store_passwd>

Replace the original self-signed certificate with the certificate you obtained from the CA, as
stored in a file such as s1as.cert:
keytool -import -v -trustcacerts -alias s1as -file s1as.cert

-keystore keystore.jks -storepass <store_passwd>

When you import the certificate using the same original alias s1as, keytool treats it as a
command to replace the original certificate with the certificate obtained as a reply to a CSR.

After running the command, you should see that the certificate s1as in the keystore is no longer
the original self-signed certificate, but is now the response certificate from the CA.

Consider the following example that compares an original s1as certificate with a new s1as

certificate obtained from VeriSign:

Original s1as (self-signed):

3

4

5

6

7

Administering JSSE Certificates

Chapter 1 • Administering System Security 47

http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html
http://www.verisign.com/ssl/buy-ssl-certificates/index.html

Owner: CN=FQDN, OU=Sun Java System Application Server, O=Sun

Microsystems, L=Santa Clara, ST=California, C=US

Issuer: CN=KUMAR, OU=Sun Java System Application Server, O=Su

n Microsystems, L=Santa Clara, ST=California, C=US

Serial number: 472acd34

Valid from: Fri Nov 02 12:39:40 GMT+05:30 2007 until: Mon Oct

30 12:39:40 GMT+05:30 2017

New s1as (contains signed cert from CA):

Owner: CN=FQDN, OU=Terms of use at www.verisign.com/cps/test

ca (c)05, OU=Sun Java System Application Server, O=Sun Micros

ystems, L=Santa Clara, ST=California, C=US

Issuer: CN=VeriSign Trial Secure Server Test CA, OU=Terms of

use at https://www.verisign.com/cps/testca (c)05, OU="For Test

Purposes Only. No assurances.", O="VeriSign, Inc.", C=US

Serial number: 1375de18b223508c2cb0123059d5c440

Valid from: Sun Nov 11 05:30:00 GMT+05:30 2007 until: Mon Nov

26 05:29:59 GMT+05:30 2007

To apply your changes, restart GlassFish Server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Importing an RFC/Text-Formatted Certificate Into a JKS Keystore

Certificates are often stored using the printable encoding format defined by the Internet
Request for Comments (RFC) 1421 standard instead of their binary encoding. This certificate
format, also known as Base 64 encoding, facilitates exporting certificates to other applications
by email or through some other mechanism.

keytool -import -noprompt -trustcacerts -alias ${cert.alias} -file

${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

Exporting a Certificate From a JKS Keystore in PKCS7 Format

The reply format defined by the Public Key Cryptography Standards #7, Cryptographic
Message Syntax Standard, includes the supporting certificate chain in addition to the issued
certificate.

keytool -export -noprompt -alias ${cert.alias} -file ${cert.file}

-keystore ${keystore.file} -storepass ${keystore.pass}

Exporting a Certificate From a JKS Keystore in RFC/Text Format

keytool -export -noprompt -rfc -alias ${cert.alias} -file

${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

8

Example 1–15

Example 1–16

Example 1–17

Administering JSSE Certificates

GlassFish Server Open Source Edition 3.1 Security Guide • August 201148

For more information about keytool, see the keytool reference page (http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html).

▼ To Delete a Certificate by Using keytool

Use the keytool -delete command to delete an existing certificate.

Delete a certificate using the following command format:
keytool -delete

-alias keyAlias
-keystore keystore-name
-storepass password

Deleting a Certificate From a JKS Keystore

keytool -delete -noprompt -alias ${cert.alias} -keystore ${keystore.file}

-storepass ${keystore.pass}

For more information about keytool, see the keytool reference page (http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html).

Administering JACC Providers
The Java Authorization Contract for Containers (JACC) is part of the J2EE 1.4 specification that
defines an interface for pluggable authorization providers. This enables the administrator to set
up third-party plug-in modules to perform authorization.

GlassFish Server includes Administration Console support and subcommands to support JACC
providers, as follows:

■ create create-jacc-provider
■ delete delete-jacc-provider
■ list list-jacc-providers

The default GlassFish Server installation includes two JACC providers, named default and
simple. You should not delete these default providers. Any JACC providers you create with the
create-jacc-provider subcommand are in addition to these two default providers.

See Also

●

Example 1–18

See Also

Administering JACC Providers

Chapter 1 • Administering System Security 49

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html

The GlassFish Server creates a JSR-115-compliant JACC provider that you can use with
third-party authorization modules for applications running in GlassFish Server. The JACC
provider is created as a jacc-provider element within the security-service element in the
domain's domain.xml file.

▼ Administering JACC Providers From the
Administration Console
To use the Administration Console to administer JACC providers, perform the following steps:

Select Configurations and expand the entry.

Select the server configuration for which you want to administer JACC providers and expand the
entry.

Select Security and expand the entry.

Select JACC Providers. The JACC Providers page is displayed. The existing JACC providers are
shown on this page.

1

2

3

4

Administering JACC Providers

GlassFish Server Open Source Edition 3.1 Security Guide • August 201150

To create a new provider, click New.
Enter the Name, Policy Configuration (the class that implements the policy configuration
factory) and the Policy Provider (the class that implements the policy factory) for the new JACC
provider. You can also enter optional properties (name/value) for the provider.

To delete an existing JACC provider, select that provider and click Delete.

▼ Administering JACC Providers from the Command
Line
To use the command line to administer JACC providers, perform the following steps:

To create a JACC provider, use the create-jacc-provider subcommand. The following
example shows how to create a JACC provider named testJACC on the default server target.
asadmin> create-jacc-provider

--policyproviderclass com.sun.enterprise.security.provider.PolicyWrapper

--policyconfigfactoryclass com.sun.enterprise.security.provider.PolicyCon

figurationFactoryImpl

testJACC

To delete a JACC provider, use the create-jacc-provider subcommand. The following
example shows how to delete a JACC provider named testJACC from the default domain:
asadmin> delete-jacc-provider testJACC

To list the available providers, use the list-jacc-providers subcommand. The following
example shows how to list JACC providers for the default domain:
asadmin> list-jacc-providers

default

simple

Command list-jacc-providers executed successfully.

5

6

1

2

3

Administering JACC Providers

Chapter 1 • Administering System Security 51

52

Administering User Security

This chapter provides instructions for administering user security in the Oracle GlassFish
Server environment by using the asadmin command-line utility. GlassFish Server enforces its
authentication and authorization policies upon realms, users, and groups. This chapter assumes
that you are familiar with security features such as authentication, authorization, and
certificates. If you are not, see Chapter 1, “Administering System Security.”

The following topics are addressed here:

■ “Administering Authentication Realms” on page 53
■ “Administering File Users” on page 62

Instructions for accomplishing these tasks by using the Administration Console are contained
in the Administration Console online help.

Administering Authentication Realms
The following topics are addressed here:

■ “Overview of Authentication Realms” on page 54
■ “To Create an Authentication Realm” on page 55
■ “To List Authentication Realms” on page 56
■ “To Update an Authentication Realm” on page 56
■ “To Delete an Authentication Realm” on page 57
■ “To Configure a JDBC or Digest Authentication Realm” on page 57
■ “To Configure LDAP Authentication with OID” on page 59
■ “To configure LDAP Authentication with OVD” on page 60
■ “To Enable LDAP Authentication on the GlassFish Server DAS” on page 61

2C H A P T E R 2

53

Overview of Authentication Realms
An authentication realm, also called a security policy domain or security domain, is a scope over
which the GlassFish Server defines and enforces a common security policy. GlassFish Server is
preconfigured with the file, certificate, and administration realms. In addition, you can set up
LDAP, JDBC, digest, Oracle Solaris, or custom realms. An application can specify which realm
to use in its deployment descriptor. If the application does not specify a realm, GlassFish Server
uses its default realm (file).

File realm GlassFish Server stores user credentials locally in a file named
keyfile. The file realm is the initial default realm.

Administration realm The administration realm is also a file realm and stores administrator
user credentials locally in a file named admin-keyfile.

Certificate realm GlassFish Server stores user credentials in a certificate database.
When using the certificate realm, the server uses certificates with the
HTTPS protocol to authenticate web clients.

LDAP realm GlassFish Server can get user credentials from a Lightweight
Directory Access Protocol (LDAP) server such as Oracle Virtual
Directory (OVD), Oracle Internet Directory (OID), and Oracle
Directory Server Enterprise Edition. LDAP is a protocol for enabling
anyone to locate organizations, individuals, and other resources such
as files and devices in a network, whether on the public Internet or on
a corporate intranet.

See “To Configure LDAP Authentication with OID” on page 59 for
instructions on configuring GlassFish Server to work with an
OVD/OID LDAP provider.

JDBC realm GlassFish Server gets user credentials from a database. The server
uses the database information and the enabled JDBC realm option in
the configuration file.

Digest realm Digest Authentication authenticates a user based on a user name and
a password. However, the authentication is performed by
transmitting the password in an encrypted form.

Oracle Solaris realm GlassFish Server gets user credentials from the Oracle Solaris
operating system. This realm is supported on the Oracle Solaris 9 and
Oracle Solaris 10 operating systems. Consult your Oracle Solaris
documentation for information about managing users and groups in
the Oracle Solaris realm.

PAM realm A Pluggable Authentication Module (PAM) realm allows
applications deployed on GlassFish Server to authenticate users
against a native Unix (Solaris/Linux/Mac OS) users list. PAM realms

Administering Authentication Realms

GlassFish Server Open Source Edition 3.1 Security Guide • August 201154

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html
http://www.oracle.com/technetwork/indexes/products/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html
http://www.oracle.com/us/products/middleware/identity-management/oracle-directory-services/index.html

use the class name
com.sun.enterprise.security.auth.realm.pam.PamRealm and
the JAAS Context pamRealm.

This realm is supported on all Unix Operating Systems, including the
Oracle Solaris 9 and Oracle Solaris 10 operating systems

Custom realm You can create other repositories for user credentials, such as a
relational database or third-party components. For more
information about custom realms, see the Administration Console
online help. For instructions on creating a custom realm, see
“Creating a Custom Realm” in GlassFish Server Open Source
Edition 3.1 Application Development Guide.

The GlassFish Server authentication service can govern users in multiple realms.

▼ To Create an Authentication Realm
Use the create-auth-realm subcommand in remote mode to create an authentication realm.

Ensure that the server is running.
Remote subcommands require a running server.

Create a realm by using the create-auth-realm(1) subcommand.
Information about properties for this subcommand is included in this help page.

Creating a Realm

This example creates a realm named db.

asadmin> create-auth-realm --classname com.iplanet.ias.security.

auth.realm.DB.Database --property defaultuser=admin:Password=admin db

Command create-auth-realm executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create-auth-realm at the command line.

For information on creating a custom realm, see “Creating a Custom Realm” in GlassFish Server
Open Source Edition 3.1 Application Development Guide.

1

2

Example 2–1

See Also

Administering Authentication Realms

Chapter 2 • Administering User Security 55

▼ To List Authentication Realms
Use the list-auth-realms subcommand in remote mode to list the existing authentication
realms.

Ensure that the server is running.
Remote subcommands require a running server.

List realms by using the list-auth-realms(1) subcommand.

Listing Realms

This example lists the authentication realms on localhost.

asadmin> list-auth-realms

db

certificate

file

admin-realm

Command list-auth-realms executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list-auth-realms at the command line.

▼ To Update an Authentication Realm
Use the set subcommand to modify an existing authentication realm.

Note – A custom realm does not require server restart.

List realms by using the list-auth-realms(1) subcommand.

Modify the values for the specified thread pool by using the set(1) subcommand.
The thread pool is identified by its dotted name.

To apply your changes, restart GlassFish Server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

1

2

Example 2–2

See Also

1

2

3

Administering Authentication Realms

GlassFish Server Open Source Edition 3.1 Security Guide • August 201156

▼ To Delete an Authentication Realm
Use the delete-auth-realm subcommand in remote mode to delete an existing authentication
realm.

Ensure that the server is running.
Remote subcommands require a running server.

List realms by using the list-auth-realms(1) subcommand.

If necessary, notify users that the realm is being deleted.

Delete the realm by using the delete-auth-realm(1) subcommand.

To apply your changes, restart GlassFish Server. See“To Restart a Domain”in GlassFish Server
Open Source Edition 3.1 Administration Guide.

Deleting a Realm

This example deletes an authentication realm named db.

asadmin> delete-auth-realm db

Command delete-auth-realm executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

delete-auth-realm at the command line.

▼ To Configure a JDBC or Digest Authentication Realm
GlassFish Server enables you to specify a user's credentials (user name and password) in the
JDBC realm instead of in the connection pool. Using the jdbc type realm instead of the
connection pool prevents other applications from browsing the database tables for user
credentials.

Note – By default, storage of passwords as clear text is not supported in the JDBC realm. Under
normal circumstances, passwords should not be stored as clear text.

Create the database tables in which to store user credentials for the realm.
How you create the database tables depends on the database that you are using.

1

2

3

4

5

Example 2–3

See Also

1

Administering Authentication Realms

Chapter 2 • Administering User Security 57

Add user credentials to the database tables that you created.
How you add user credentials to the database tables depends on the database that you are using.

Create a JDBC connection pool for the database.
See “To Create a JDBC Connection Pool” in GlassFish Server Open Source Edition 3.1
Administration Guide.

Create a JDBC resource for the database.
“To Create a JDBC Resource” in GlassFish Server Open Source Edition 3.1 Administration
Guide.

Create a realm.
For instructions, see “To Create an Authentication Realm” on page 55.

Note – The JAAS context should be jdbcDigestRealm for digest authentication or jdbcRealm
for other authentication types.

Modify the deployment descriptor to specify the jdbc realm.
Modify the deployment descriptor that is associated with your application.

■ For an enterprise application in an Enterprise Archive (EAR) file, modify the
sun-application.xml file.

■ For a web application in a Web Application Archive (WAR) file, modify the web.xmlfile.

■ For an enterprise bean in an EJB JAR file, modify the sun-ejb-jar.xml file.

For more information about how to specify a realm, see “How to Configure a Realm” in
GlassFish Server Open Source Edition 3.1 Application Development Guide.

Assign security roles to users in the realm.
To assign a security role to a user, add a security-role-mapping element to the deployment
descriptor that you modified.

Verify that the database is running.
If needed, see “To Start the Database” in GlassFish Server Open Source Edition 3.1
Administration Guide.

To apply the authentication, restart the server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

2

3

4

5

6

7

8

9

Administering Authentication Realms

GlassFish Server Open Source Edition 3.1 Security Guide • August 201158

Assigning a Security Role

This example shows a security-role-mapping element that assigns the security role Employee
to user Calvin

<security-role-mapping>

<role-name>Employee</role-name>

<principal-name>Calvin</principal-name>

</security-role-mapping>

▼ To Configure LDAP Authentication with OID
This procedure explains how to configure GlassFish Server to use LDAP authentication with
Oracle Internet Directory.

Install Oracle Enterprise Manager 11g and the latest Enterprise Manager patches, if they are not
installed already.
Instructions for installing Oracle Enterprise Manager are provided in the Oracle Enterprise
Manager documentation set.

Install the Oracle Identity Management Suite (IDM) 11g and Patch Set 2 or later, if they are not
installed already.
Instructions for installing the Oracle Identity Management suite are provided in the Oracle
Fusion Middleware Installation Guide for Oracle Identity Management.

Configure SSL for Oracle Internet Directory (OID), if it is not configured already. Configure the
OID instance in the server authentication mode and with the protocol version set to SSLv3
Instructions for configuring SSL for OID are provided in the SSL chapter of the Oracle Internet
Directory Administrator's Guide.

Using Oracle Wallet Manager, export an SSL self-signed certificate you want to use with
GlassFish Server.
Instructions for using Oracle Wallet Manager to create and export SSL certificates are provided
in the Configure Oracle Internet Directory for SSL section of the SSL chapter in the Oracle
Internet Directory Administrator's Guide.

On the GlassFish Server side, use the keytool command import the certificate you exported
with Oracle Wallet Manager.
The keytool command is available in the $JAVA_HOME/bin directory. Use the following syntax:
keytool -importcert -alias "alias-name" -keystore domain-dir/config/cacerts.jks
-file cert-name

where the variables are defined as follows:

Example 2–4

1

2

3

4

5

Administering Authentication Realms

Chapter 2 • Administering User Security 59

http://download.oracle.com/docs/cd/E11857_01/index.htm
http://download.oracle.com/docs/cd/E11857_01/index.htm
http://download.oracle.com/docs/cd/E12839_01/install.1111/e12002/toc.htm
http://download.oracle.com/docs/cd/E12839_01/install.1111/e12002/toc.htm
http://download.oracle.com/docs/cd/B14099_19/idmanage.1012/b14082/ssl.htm
http://download.oracle.com/docs/cd/B14099_19/idmanage.1012/b14082/ssl.htm
http://download.oracle.com/docs/cd/B14099_19/idmanage.1012/b14082/ssl.htm#CHDCADIJ
http://download.oracle.com/docs/cd/B14099_19/idmanage.1012/b14082/ssl.htm
http://download.oracle.com/docs/cd/B14099_19/idmanage.1012/b14082/ssl.htm

alias-name Name of an alias to use for the certificate

domain-dir Name of the domain for which the certificate is used

cert-name Path to the certificate that you exported with Oracle Wallet Manager.

For example, to import a certificate named oi.cer for a GlassFish Server domain in
/glassfishv3/glassfish/domains/domain1, using an alias called “OID self-signed
certificate,” you would use the following command:

keytool -importcert -alias "OID self signed certificate" -keystore \

/glassfishv3/glassfish/domains/domain1/config/cacerts.jks -file oid.cer

Restart the GlassFish Server domain.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Use the Oracle Enterprise Manager ldapmodify command to enable Anonymous Bind for OID.
For example:
ldapmodify -D cn=orcladmin -q -p portNum -h hostname -f ldifFile

In this example, the LDIF file might contain the following:

dn: cn=oid1,cn=osdldapd,cn=subconfigsubentry

changetype: modify

replace: orclAnonymousBindsFlag

orclAnonymousBindsFlag: 1

To disable all anonymous binds, you would use a similar LDIF file with the last line changed to:

orclAnonymousBindsFlag: 0

See Managing Anonymous Binds in the Oracle Fusion Middleware Administrator's Guide for
Oracle Internet Directory for complete instructions on the ldapmodify command.

▼ To configure LDAP Authentication with OVD
This procedure explains how to configure GlassFish Server to use LDAP authentication with
Oracle Virtual Directory.

Create the OVD adapter, as described in the Creating and Configuring Oracle Virtual Directory
Adapters (http://download.oracle.com/
docs/cd/E12839_01/oid.1111/e10046/basic_adapters.htm#BABCBGJA) chapter of the
Administrator's Guide for Oracle Virtual Directory (http://download.oracle.com/docs/cd/
E12839_01/oid.1111/e10046/toc.htm).

Configure SSL for Oracle Virtual Directory (OVD), if it is not configured already. For instructions
on configuring SSL for OVD, see the section“Enable SSL for Oracle Virtual Directory Using Fusion

6

7

1

2

Administering Authentication Realms

GlassFish Server Open Source Edition 3.1 Security Guide • August 201160

http://download.oracle.com/docs/cd/E14571_01/oid.1111/e10029/authentication.htm#CACJEJDA
http://download.oracle.com/docs/cd/E14571_01/oid.1111/e10029/toc.htm
http://download.oracle.com/docs/cd/E14571_01/oid.1111/e10029/toc.htm
http://download.oracle.com/docs/cd/E12839_01/oid.1111/e10046/basic_adapters.htm#BABCBGJA
http://download.oracle.com/docs/cd/E12839_01/oid.1111/e10046/basic_adapters.htm#BABCBGJA
http://download.oracle.com/docs/cd/E12839_01/oid.1111/e10046/basic_adapters.htm#BABCBGJA
http://download.oracle.com/docs/cd/E12839_01/oid.1111/e10046/toc.htm
http://download.oracle.com/docs/cd/E12839_01/oid.1111/e10046/toc.htm

Middleware Control”in SSL Configuration in Oracle Fusion Middleware (http://
download.oracle.com/

docs/cd/E12839_01/core.1111/e10105/sslconfig.htm#ASADM1800).
Also, configure the SSL for the OVD listener in server authentication mode.

Export the certificate from JKS keystore you want to use with GlassFish Server. See Exporting a
Keystore Using Fusion Middleware Control (http://download.oracle.com/
docs/cd/E16764_01/core.1111/e10105/wallets.htm#CIHECAIB) for information.

On the GlassFish Server side, use the keytool command to import the certificate you exported
from the JKS keystore.
The keytool command is available in the $JAVA_HOME/bin directory. Use the following syntax:
keytool -importcert -alias "alias-name" -keystore domain-dir/config/cacerts.jks
-file cert-name

where the variables are defined as follows:

alias-name Name of an alias to use for the certificate

domain-dir Name of the domain for which the certificate is used

cert-name Path to the certificate that you exported from the keystore.

For example, to import a certificate named ovd.cer for a GlassFish Server domain in
/glassfishv3/glassfish/domains/domain1, using an alias called “OVD self-signed
certificate,” you would use the following command:

keytool -importcert -alias "OVD self signed certificate" -keystore \

/glassfishv3/glassfish/domains/domain1/config/cacerts.jks -file ovd.cer

Restart the GlassFish Server domain.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

▼ To Enable LDAP Authentication on the GlassFish
Server DAS
This procedure explains how to enable LDAP authentication for logins to the GlassFish Server
Domain Administration Server (DAS). Logging in to the DAS is typically only performed by
GlassFish Server administrators who want to use the GlassFish Server Administration Console
or asadmin command. See “To Configure LDAP Authentication with OID” on page 59 for
instructions on enabling general LDAP authentication for GlassFish Server.

Ensure that you have followed the configuration instructions in “To Configure LDAP
Authentication with OID” on page 59

3

4

5

Before You Begin

Administering Authentication Realms

Chapter 2 • Administering User Security 61

http://download.oracle.com/docs/cd/E12839_01/core.1111/e10105/sslconfig.htm#ASADM1800
http://download.oracle.com/docs/cd/E12839_01/core.1111/e10105/sslconfig.htm#ASADM1800
http://download.oracle.com/docs/cd/E12839_01/core.1111/e10105/sslconfig.htm#ASADM1800
http://download.oracle.com/docs/cd/E16764_01/core.1111/e10105/wallets.htm#CIHECAIB
http://download.oracle.com/docs/cd/E16764_01/core.1111/e10105/wallets.htm#CIHECAIB
http://download.oracle.com/docs/cd/E16764_01/core.1111/e10105/wallets.htm#CIHECAIB

Use the asadmin configure-ldap-for-admin subcommand to enable user authentication to
the GlassFish Server DAS.
Use the following syntax:
asadmin configure-ldap-for-admin --basedn "dn-list" --url [ldap|ldaps]://ldap-url
--ldap-group group-name

where the variables are defined as follows:

dn-list basedn parameters

ldap-url URL and port number for the LDAP server; can use standard (ldap) or secure
(ldaps) protocol

group-name LDAP group name for allowed users, as defined on the LDAP server.

For example:

asadmin configure-ldap-for-admin --basedn "dc=red,dc=iplanet,dc=com" \

--url ldap://interopoel54-1:3060 --ldap-group sqestaticgroup

asadmin configure-ldap-for-admin --basedn "dc=red,dc=iplanet,dc=com" \

--url ldaps://interopoel54-1:7501 --ldap-group sqestaticgroup

See configure-ldap-for-admin(1) for more information about the
configure-ldap-for-admin subcommand.

Administering File Users
A user is an individual (or application program) identity that is defined in GlassFish Server. A
user who has been authenticated is sometimes called a principal.

As the administrator, you are responsible for integrating users into the GlassFish Server
environment so that their credentials are securely established and they are provided with access
to the applications and services that they are entitled to use.

The following topics are addressed here:

■ “To Create a File User” on page 63
■ “To List File Users” on page 63
■ “To List File Groups” on page 64
■ “To Update a File User” on page 65
■ “To Delete a File User” on page 65

●

See Also

Administering File Users

GlassFish Server Open Source Edition 3.1 Security Guide • August 201162

▼ To Create a File User
Use the create-file-user subcommand in remote mode to create a new user by adding a new
entry to the keyfile. The entry includes the user name, password, and any groups for the user.
Multiple groups can be specified by separating the groups with colons (:).

Creating a new file realm user is a dynamic event and does not require server restart.

Ensure that the server is running.
Remote subcommands require a running server.

If the user will belong to a particular group, see the current groups by using the
list-file-groups(1) subcommand.

Create a file user by using the create-file-user(1) subcommand.

Creating a User

This example create user Jennifer on the default realm file (no groups are specified).

The asadmin --passwordfile option specifies the name of a file that contains the password
entries in a specific format. The entry for a password must have the AS_ADMIN_ prefix followed
by the password name in uppercase letters, an equals sign, and the password. See asadmin(1M)
for more information.

asadmin> create-file-user --user admin

--passwordfile=c:\tmp\asadminpassword.txt Jennifer

Command create-file-user executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create-file-user at the command line.

▼ To List File Users
Use the list-file-users subcommand in remote mode to list the users that are in the
keyfile.

Ensure that the server is running.
Remote subcommands require a running server.

List users by using the list-file-users(1) subcommand.

1

2

3

Example 2–5

See Also

1

2

Administering File Users

Chapter 2 • Administering User Security 63

Listing File Users

This example lists file users on the default file realm file.

asadmin> list-file-users

Jennifer

Command list-file-users executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list-file-users at the command line.

▼ To List File Groups
A group is a category of users classified by common traits, such as job title or customer profile.
For example, users of an e-commerce application might belong to the customer group, and the
big spenders might also belong to the preferred group. Categorizing users into groups makes it
easier to control the access of large numbers of users. A group is defined for an entire server and
realm. A user can be associated with multiple groups of users.

A group is different from a role in that a role defines a function in an application, while a group
is a set of users who are related in some way. For example, in the personnel application there
might be groups such as full-time, part-time, and on-leave. Users in these groups are all
employees (the employee role). In addition, each user has its own designation that defines an
additional level of employment.

Use the list-file-groups subcommand in remote mode to list groups for a file user, or all file
groups if the --name option is not specified.

Ensure that the server is running.
Remote subcommands require a running server.

List file groups by using the list-file-groups(1) subcommand.

Listing Groups for a User

This example lists the groups for user joesmith.

asadmin> list-file-groups --name joesmith

staff

manager

Command list-file-groups executed successfully

Example 2–6

See Also

1

2

Example 2–7

Administering File Users

GlassFish Server Open Source Edition 3.1 Security Guide • August 201164

▼ To Update a File User
Use the update-file-user subcommand in remote mode to modify the information in the
keyfile for a specified user.

Ensure that the server is running.
Remote subcommands require a running server.

Update the user information by using the update-file-user(1) subcommand.

To apply your changes, restart GlassFish Server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Updating a User

The following subcommand updates the groups for user Jennifer.

asadmin> update-file-user --passwordfile c:\tmp\asadminpassword.txt --groups

staff:manager:engineer Jennifer

Command update-file-user executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

update-file-user at the command line.

▼ To Delete a File User
Use the delete-file-user subcommand in remote mode to remove a user entry from the
keyfile by specifying the user name. You cannot delete yourself, that is, the user you are logged
in as cannot be deleted during your session.

Ensure that the server is running.
Remote subcommands require a running server.

List users by using the list-file-users(1) subcommand.

Delete the user by using the delete-file-user(1) subcommand.

Deleting a User

This example deletes user Jennifer from the default file realm.

1

2

3

Example 2–8

See Also

1

2

3

Example 2–9

Administering File Users

Chapter 2 • Administering User Security 65

asadmin> delete-file-user Jennifer

Command delete-file-user executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

delete-file-user at the command line.
See Also

Administering File Users

GlassFish Server Open Source Edition 3.1 Security Guide • August 201166

Administering Message Security

This chapter provides information and procedures on configuring the message layer security
for web services in the GlassFish Server environment.

Note – Message security (JSR 196) is supported only in the Full Platform Profile of GlassFish
Server, not in the Web Profile.

The following topics are addressed here:

■ “About Message Security in GlassFish Server” on page 67
■ “Enabling Default Message Security Providers for Web Services” on page 73
■ “Configuring Message Protection Policies” on page 74
■ “Administering Non-default Message Security Providers” on page 78
■ “Enabling Message Security for Application Clients” on page 81
■ “Additional Information About Message Security” on page 82

Some of the material in this chapter assumes a basic understanding of security and web services
concepts. For more information about security, see “About System Security in GlassFish Server”
on page 15.

Instructions for accomplishing the tasks in this chapter by using the Administration Console
are contained in the Administration Console online help.

About Message Security in GlassFish Server
Message security enables a server to perform end-to-end authentication of web service
invocations and responses at the message layer. Security information is inserted into messages
so that it travels through the networking layers and arrives with the intact message at the
message destination(s). Message security differs from transport layer security in that message
security can be used to decouple message protection from message transport so that messages
remain protected after transmission.

3C H A P T E R 3

67

Web services deployed on GlassFish Server are secured by binding SOAP layer message security
providers and message protection policies to the containers in which the applications are
deployed, or to web service endpoints served by the applications. SOAP layer message security
functionality is configured in the client-side containers of GlassFish Server by binding SOAP
layer message security providers and message protection policies to the client containers or to
the portable service references declared by client applications.

Message-level security can be configured for the entire GlassFish Server or for specific
applications or methods. Configuring message security at the application level is discussed in
the GlassFish Server Open Source Edition 3.1 Application Development Guide.

The following topics are addressed here:
■ “Security Tokens and Security Mechanisms” on page 68
■ “Authentication Providers” on page 69
■ “Message Protection Policies” on page 70
■ “Application-Specific Web Services Security” on page 70
■ “Message Security Administration” on page 71
■ “Sample Application for Web Services” on page 72

Security Tokens and Security Mechanisms
WS-Security is a specification that provides a communications protocol for applying security to
web services. The security mechanisms implement the specification. Web Services
Interoperability Technologies (WSIT) implements WS-Security so as to provide interoperable
message content integrity and confidentiality, even when messages pass through intermediary
nodes before reaching their destination endpoint. WS-Security as provided by WSIT is in
addition to existing transport-level security, which can still be used.

The Simple Object Access Protocol (SOAP) layer message security providers installed with
GlassFish Server can be used to employ username/password and X.509 certificate security
tokens to authenticate and encrypt SOAP web services messages.
■ Username Tokens. GlassFish Server uses username tokens in SOAP messages to

authenticate the message sender. The recipient of a message containing a username token
(within embedded password) validates that the message sender is authorized to act as the
user (identified in the token) by confirming that the sender knows the password of the user.
When using a username token, a valid user database must be configured on GlassFish
Server.

■ Digital Signatures. GlassFish Server uses XML digital signatures to bind an authentication
identity to message content. Clients use digital signatures to establish their caller identity.
Digital signatures are verified by the message receiver to authenticate the source of the
message content (which might be different from the sender of the message.)
When using digital signatures, valid keystore and truststore files must be configured on
GlassFish Server.

About Message Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201168

■ Encryption. The purpose of encryption is to modify the data so that it can only be
understood by its intended audience. This is accomplished by substituting an encrypted
element for the original content. When based on public key cryptography, encryption can
be used to establish the identity of the parties who are authorized to read a message.
When using encryption, a Java Cryptography Extension (JCE) provider that supports
encryption must be installed.

Authentication Providers
The authentication layer is the message layer on which authentication processing must be
performed. GlassFish Server enforces web services message security at the SOAP layer. The
types of authentication that are supported include the following:

■ Sender authentication, including username-password authentication
■ Content authentication, including XML digital signatures

GlassFish Server invokes authentication providers to process SOAP message layer security. The
message security providers provide information such as the type of authentication that is
required for the request and response messages. The following message security providers are
included with GlassFish Server:

■ Client-side Provider. A client-side provider establishes (by signature or
username/password) the source identity of request messages and/or protects (by
encryption) request messages such that they can only be viewed by their intended recipients.
A client-side provider also establishes its container as an authorized recipient of a received
response (by successfully decrypting it) and validates passwords or signatures in the
response to authenticate the source identity associated with the response. Client-side
providers configured in GlassFish Server can be used to protect the request messages sent
and the response messages received by server-side components (servlets and EJB
components) acting as clients of other services.
The default client provider is used to identify the client—side provider to be invoked for any
application for which a specific client provider has not been bound.

■ Server-side Provider. A server-side provider establishes its container as an authorized
recipient of a received request (by successfully decrypting it), and validates passwords or
signatures in the request to authenticate the source identity associated with the request. A
server-side provider also establishes (by signature or username/password) the source
identity of response messages and/or protects (by encryption) response messages such that
they can only be viewed by their intended recipients. Server-side providers are only invoked
by server-side containers.

The default server provider is used to identify the server—side provider to be invoked for any
application for which a specific server provider has not been bound.

About Message Security in GlassFish Server

Chapter 3 • Administering Message Security 69

Message Protection Policies
A request policy defines the authentication policy requirements associated with request
processing performed by the authentication provider. Policies are expressed in message sender
order such that a requirement that encryption occur after content would mean that the message
receiver would expect to decrypt the message before validating the signature. The response
policy defines the authentication policy requirements associated with response processing
performed by the authentication provider.

Message protection policies are defined for request message processing and response message
processing. The policies are expressed in terms of requirements for source and/or recipient
authentication. The providers apply specific message security mechanisms to cause the message
protection policies to be realized in the context of SOAP web services messages.

■ Source Authentication Policy. A source authentication policy represents a requirement
that the identity of the entity that sent a message or that defined the content of a message be
established in the message such that it can be authenticated by the message receiver.

■ Recipient Authentication Policy. A recipient authentication policy represents a
requirement that the message be sent such that the identity of the entities that can receive
the message can be established by the message sender.

Request and response message protection policies are defined when a security provider is
configured into a container. Application-specific message protection policies (at the granularity
of the web service port or operation) can also be configured within the GlassFish Server
deployment descriptors of the application or application client. In any situation where message
protection policies are defined, the request and response message protection policies of the
client must be equivalent t) the request and response message protection policies of the server.
For more information about defining application-specific message protection policies, see
Chapter 4, “Securing Applications,” in GlassFish Server Open Source Edition 3.1 Application
Development Guide

Application-Specific Web Services Security
Application-specific web services security functionality is configured (at application assembly)
by defining the message-security-binding elements in the GlassFish Server deployment
descriptors of the application. These message-security-binding elements are used to
associate a specific security provider or message protection policy with a web service endpoint
or service reference, and might be qualified so that they apply to a specific port or method of the
corresponding endpoint or referenced service.

For information about defining application-specific message protection policies, see Chapter 4,
“Securing Applications,” in GlassFish Server Open Source Edition 3.1 Application Development
Guide.

About Message Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201170

Message Security Administration
When GlassFish Server is installed, SOAP layer message security providers are configured in the
client and server-side containers of GlassFish Server, where they are available for binding for
use by the containers, or by individual applications or clients deployed in the containers.
During installation, the default providers are configured with a simple message protection
policy that, if bound to a container, or to an application or client in a container, would cause the
source of the content in all request and response messages to be authenticated by XML digital
signature.

GlassFish Server administrative interfaces can be used as follows:

■ To modify the message protection policies enforced by the providers
■ To bind the existing providers for use by the server-side containers of GlassFish Server
■ To create new security provider configurations with alternative message protection policies

Analogous administrative operations can be performed on the SOAP message layer security
configuration of the application client container. If you want web services security to protect all
web services applications deployed on GlassFish Server. See “Enabling Message Security for
Application Clients” on page 81.

By default, message layer security is disabled on GlassFish Server. To configure message layer
security for the GlassFish Server see “Enabling Default Message Security Providers for Web
Services” on page 73.

In most cases, you must restart GlassFish Server after performing administrative tasks. This is
especially true if you want the effects of the administrative change to be applied to applications
that were already deployed on GlassFish Server at the time the operation was performed.

Message Security Tasks
The general implementation tasks for message security include some or all of the following:

1. If you are using a version of the Java SDK prior to version 1.5.0, and using encryption
technology, configuring a JCE provider

2. If you are using a username token, verifying that a user database is configured for an
appropriate realm
When using a username/password token, an appropriate realm must be configured and a
user database must be configured for the realm.

3. Managing certificates and private keys, if necessary
4. Enabling the GlassFish Server default providers
5. Configuring new message security providers

About Message Security in GlassFish Server

Chapter 3 • Administering Message Security 71

Message Security Roles
In GlassFish Server, the administrator and the application deployer are expected to take
primary responsibility for configuring message security. In some situations, the application
developer might also contribute.

System Administrator

The system administrator is responsible for the following message security tasks:
■ Administering server security settings and certificate databases
■ Administering keystore and truststore files
■ Configuring message security providers on GlassFish Server
■ Turning on message security
■ (If needed) Installing the samples server

Application Deployer

The application deployer is responsible for the following message security tasks:
■ Specifying (at application reassembly) any required application-specific message protection

policies if such policies have not already been specified by the developer/assembler.
■ Modifying GlassFish Server deployment descriptors to specify application-specific message

protection policies information (message-security-binding elements) to web service
endpoint and service references.

Application Developer/Assembler

The application developer/assembler is responsible for the following message security tasks:
■ Determining if an application-specific message protection policy is required by the

application
If so, the developer ensures that the required policy is specified at application assembly time.

■ Specifying how web services should be set up for message security
Message security can be set up by the administrator so that all web services are secured, or by
the application deployer when the security provider or protection policy bound to the
application must be different from that bound to the container.

■ Turning on message security if authorized to do so by the administrator

Sample Application for Web Services
GlassFish Server includes a sample application named xms. The xms application features a
simple web service that is implemented by both a Java EE EJB endpoint and a Java servlet
endpoint. Both endpoints share the same service endpoint interface. The service endpoint

About Message Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 201172

interface defines a single operation, sayHello, which takes a string argument, and returns a
String composed by pre-pending Hello to the invocation argument.

The xms sample application is provided to demonstrate the use of GlassFish Server WS-Security
functionality to secure an existing web services application. The instructions which accompany
the sample describe how to enable the WS-Security functionality of GlassFish Server such that it
is used to secure the xms application. The sample also demonstrates the binding of WS-Security
functionality directly to the application as described in “Application-Specific Web Services
Security” on page 70 application.

For information about compiling, packaging, and running the xms sample application, Chapter
4, “Securing Applications,” in GlassFish Server Open Source Edition 3.1 Application Development
Guide.

The xms sample application is installed in the following directory:
as-install/samples/webservices/security/ejb/apps/xms/

Enabling Default Message Security Providers for Web Services
By default, message security is disabled on GlassFish Server. Default message security providers
have been created, but are not active until you enable them. After the providers have been
enabled, message security is enabled.

The following topics are addressed here:

■ “To Enable a Default Server Provider” on page 73
■ “To Enable a Default Client Provider” on page 74

▼ To Enable a Default Server Provider
To enable message security for web services endpoints deployed in GlassFish Server, you must
specify a security provider to be used by default on the server side. If you enable a default
provider for message security, you also need to enable providers to be used by clients of the web
services deployed in GlassFish Server.

Specify the default server provider by using the set(1) subcommand.
Use the following syntax:
asadmin set --port admin-port
server-config.security-service.message-security-config.SOAP.

default_provider=ServerProvider

To apply your changes to applications that are already running, restart GlassFish Server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

1

2

Enabling Default Message Security Providers for Web Services

Chapter 3 • Administering Message Security 73

▼ To Enable a Default Client Provider
To enable message security for web service invocations originating from deployed endpoints,
you must specify a default client provider. If you enabled a default client provider for GlassFish
Server, you must ensure that any services invoked from endpoints deployed in GlassFish Server
are compatibly configured for message layer security.

Specify the default client provider by using the set(1) subcommand.
Use the following syntax:
asadmin set --port admin-port
server-config.security-service.message-security-config.SOAP.

default_client_provider=ClientProvider

To apply your changes to applications that are already running, restart GlassFish Server.
See “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Configuring Message Protection Policies
Message protection policies are defined for request message processing and response message
processing. The policies are expressed in terms of requirements for source and/or recipient
authentication. The providers apply specific message security mechanisms to cause the message
protection policies to be realized in the context of SOAP web services messages.

The following topics are addressed here:

■ “Message Protection Policy Mapping” on page 74
■ “To Configure the Message Protection Policies for a Provider” on page 76
■ “Setting the Request and Response Policy for the Application Client Configuration” on

page 76

Message Protection Policy Mapping
The following table shows message protection policy configurations and the resulting message
security operations performed by the WS-Security SOAP message security providers for that
configuration.

TABLE 3–1 Message Protection Policy Mapping to WS-Security SOAP Operations

Message Protection Policy Resulting WS-Security SOAP message protection operations

auth-source="sender" The message contains a wsse:Security header that
contains a wsse:UsernameToken (with password).

1

2

Configuring Message Protection Policies

GlassFish Server Open Source Edition 3.1 Security Guide • August 201174

TABLE 3–1 Message Protection Policy Mapping to WS-Security SOAP Operations (Continued)
Message Protection Policy Resulting WS-Security SOAP message protection operations

auth-source="content" The content of the SOAP message Body is signed. The
message contains a wsse:Security header that contains
the message Body signature represented as a
ds:Signature.

auth-source="sender"

auth-recipient="before-content"

OR

auth-recipient="after-content"

The content of the SOAP message Body is encrypted and
replaced with the resulting xend:EncryptedData. The
message contains a wsse:Security header that contains
a wsse:UsernameToken (with password) and an
xenc:EncryptedKey. The xenc:EncryptedKey contains
the key used to encrypt the SOAP message body. The key
is encrypted in the public key of the recipient.

auth-source="content"

auth-recipient="before-content"

The content of the SOAP message Body is encrypted and
replaced with the resulting xend:EncryptedData. The
xenc:EncryptedData is signed. The message contains a
wsse:Security header that contains an
xenc:EncryptedKey and a ds:Signature. The
xenc:EncryptedKey contains the key used to encrypt the
SOAP message body. The key is encrypted in the public
key of the recipient.

auth-source="content"

auth-recipient="after-content"

The content of the SOAP message Body is signed, then
encrypted, and then replaced with the resulting
xend:EncryptedData. The message contains a
wsse:Security header that contains an
xenc:EncryptedKey and a ds:Signature. The
xenc:EncryptedKey contains the key used to encrypt the
SOAP message body. The key is encrypted in the public
key of the recipient.

auth-recipient="before-content"

OR

auth-recipient="after-content"

The content of the SOAP message Body is encrypted and
replaced with the resulting xend:EncryptedData. The
message contains a wsse:Security header that contains
an xenc:EncryptedKey. The xenc:EncryptedKey
contains the key used to encrypt the SOAP message body.
The key is encrypted in the public key of the recipient.

No policy specified. No security operations are performed by the modules.

Configuring Message Protection Policies

Chapter 3 • Administering Message Security 75

▼ To Configure the Message Protection Policies for a
Provider
Typically, you would not reconfigure a provider. However, if needed for your situation, you can
modify a provider's message protection policies by changing provider type, implementation
class, and provider-specific configuration properties. To understand the results of different
combinations, see Table 3–1.

Use the set(1) subcommand to set the response policy, then replace the word request in the
following commands with the word response.

Add a request policy to the client and set the authentication source by using the set(1)
subcommand.
For example:
asadmin> set server-config.security-service.message-security-config.SOAP.

provider-config.ClientProvider.request-policy.auth_source=[sender | content]

Add a request policy to the server and set the authentication source by using the set
subcommand.
For example:
asadmin> set server-config.security-service.message-security-config.SOAP.

provider-config.ServerProvider.request-policy.auth_source=[sender | content]

Add a request policy to the client and set the authentication recipient by using the set
subcommand:
For example:

asadmin> set server-config.security-service.message-security-config.SOAP.

provider-config.ClientProvider.request-policy.auth_recipient=[before-content | after-content]

Add a request policy to the server and set the authentication recipient by using the set
subcommand:
For example:

asadmin> set server-config.security-service.message-security-config.SOAP.

provider-config.ServerProvider.request-policy.auth_recipient=[before-content | after-content]

Setting the Request and Response Policy for the
Application Client Configuration
The request and response policies define the authentication policy requirements associated
with request and response processing performed by the authentication provider. Policies are
expressed in message sender order such that a requirement that encryption occur after content
would mean that the message receiver would expect to decrypt the message before validating
the signature.

1

2

3

4

Configuring Message Protection Policies

GlassFish Server Open Source Edition 3.1 Security Guide • August 201176

To achieve message security, the request and response policies must be enabled on both the
server and client. When configuring the policies on the client and server, make sure that the
client policy matches the server policy for request/response protection at application-level
message binding.

To set the request policy for the application client configuration, modify the GlassFish
Server–specific configuration for the application client container as described in “Enabling
Message Security for Application Clients” on page 81.

EXAMPLE 3–1 Message Security Policy Setting for Application Clients

In the application client configuration file, the request-policy and response-policy

elements are used to set the request policy, as shown in the following code snippet. (Additional
code in the snippet is provided as illustration and might differ slightly in your installation. Do
not change the additional code.)

<client-container>

<target-server name="your-host" address="your-host"
port="your-port"/>

<log-service file="" level="WARNING"/>
<message-security-config auth-layer="SOAP"

default-client-provider="ClientProvider">
<provider-config

class-name="com.sun.enterprise.security.jauth.ClientAuthModule"
provider-id="ClientProvider" provider-type="client">

<request-policy auth-source="sender | content"
auth-recipient="after-content | before-content"/>

<response-policy auth-source="sender | content"
auth-recipient="after-content | before-content"/>
<property name="security.config"

value="as-install/lib/appclient/wss-client-config.xml"/>
</provider-config>

</message-security-config>

</client-container>

Valid values for auth-source include sender and content. Valid values for auth-recipient
include before-content and after-content. A table describing the results of various
combinations of these values can be found in “Configuring Message Protection Policies” on
page 74.

To not specify a request or response policy, leave the element blank, for example:

<response-policy/>

Configuring Message Protection Policies

Chapter 3 • Administering Message Security 77

Administering Non-default Message Security Providers
The following topics are addressed here:

■ “To Create a Message Security Provider” on page 78
■ “To List Message Security Providers” on page 79
■ “To Update a Message Security Provider” on page 79
■ “To Delete a Message Security Provider” on page 79
■ “To Configure a Servlet Layer Server Authentication Module (SAM)” on page 80

▼ To Create a Message Security Provider
Use the create–message–security–provider subcommand in remote mode to create a new
message provider for the security service. If the message layer does not exist, the message layer is
created, and the provider is created under it.

Ensure that the server is running.

Remote subcommands require a running server.

Create the message security provider by using the create-message-security-provider(1)
subcommand.

Information about properties for this subcommand is included in the help page.

(Optional) If needed, restart the server.

Some properties require server restart. See “Configuration Changes That Require Restart” in
GlassFish Server Open Source Edition 3.1 Administration Guide. If your server needs to be
restarted, see “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration
Guide.

Creating a Message Security Provider

This example creates the new message security provider mySecurityProvider.

asadmin> create-message-security-provider

--classname com.sun.enterprise.security.jauth.ClientAuthModule

--providertype client mySecurityProvider

Command create-message-security-provider executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create–message–security–provider at the command line.

1

2

3

Example 3–2

See Also

Administering Non-default Message Security Providers

GlassFish Server Open Source Edition 3.1 Security Guide • August 201178

▼ To List Message Security Providers
Use the list–message–security–providers subcommand in remote mode to list the message
providers for the security layer.

Ensure that the server is running.
Remote subcommands require a running server.

List the message security providers by using the list-message-security-providers(1)
subcommand.

Listing Message Security Providers
This example lists the message security providers for a message layer.

asadmin> list-message-security-providers --layer SOAP

XWS_ClientProvider

ClientProvider

XWS_ServerProvider

ServerProvider

Command list-message-security-providers executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list–message–security–providers at the command line.

▼ To Update a Message Security Provider
Ensure that the server is running.
Remote subcommands require a running server.

List the message security providers by using the list-message-security-providers(1)
subcommand.

Modify the values for the specified message security provider by using the set(1) subcommand.
The message security provider is identified by its dotted name.

▼ To Delete a Message Security Provider
Use the delete-message-security-provider subcommand in remote mode to remove a
message security provider.

Ensure that the server is running.
Remote subcommands require a running server.

1

2

Example 3–3

See Also

1

2

3

1

Administering Non-default Message Security Providers

Chapter 3 • Administering Message Security 79

List the message security providers by using the list-message-security-providers(1)
subcommand.

Delete the message security provider by using the delete-message-security-provider(1)
subcommand.

Deleting a Message Security Provider

This example deletes the myServerityProvider message security provider.

asadmin> delete-message-security-provider --layer SOAP myServerityProvider

Command delete-message-security-provider executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

delete–message–security–provider at the command line.

▼ To Configure a Servlet Layer Server Authentication
Module (SAM)
You configure a JSR 196 Server Authentication Module (SAM) as an HttpServlet-layer message
security provider, either through the Administration Console or with the
create-message-security-provider subcommand.

Ensure that the server is running.
Remote subcommands require a running server.

Create the message security provider by using the create-message-security-provider(1)
subcommand.
Information about properties for this subcommand is included in the help page.

Bind the message security provider for use with your application.
You do this by defining the httpservlet-security-provider attribute in the
glassfish-web.xml file corresponding to your application. Set the value of the attribute to the
provider name you assigned to the message security provider. For example, if you use MySAM
when you create the message security provider the entry would be
httpservlet-security-provider="MySAM".

(Optional) If needed, restart the server.
Some properties require server restart. See “Configuration Changes That Require Restart” in
GlassFish Server Open Source Edition 3.1 Administration Guide. If your server needs to be
restarted, see “To Restart a Domain” in GlassFish Server Open Source Edition 3.1 Administration
Guide.

2

3

Example 3–4

See Also

1

2

3

4

Administering Non-default Message Security Providers

GlassFish Server Open Source Edition 3.1 Security Guide • August 201180

Creating a Message Security Provider

This example creates the new message security provider mySAM.

asadmin> create-message-security-provider --layer=HttpServlet

--classname com.sun.glassfish.oamsam.OAMAuthenticatorSAM

--providertype server

--property oam.resource.hostid.variation="your-host-system.com" mySAM

Creation of message security provider named mySAM completed successfully

Command create-message-security-provider executed successfully.

The subcommand results in the following domain.xml entry:

<message-security-config auth-layer="HttpServlet">
<provider-config provider-type="server" provider-id="mySAM"
class-name="com.sun.glassfish.oamsam.OAMAuthenticatorSAM">

<property name="oam.resource.hostid.variation" value="your-host-system.com"></property>
<request-policy></request-policy>

<response-policy></response-policy>

</provider-config>

</message-security-config>

To list the HttpServlet message security providers, use the list-message-security-providers
subcommand:

asadmin> list-message-security-providers --layer HttpServlet

list-message-security-providers successful

GFConsoleAuthModule

mySAM

Command list-message-security-providers executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create–message–security–provider at the command line.

Enabling Message Security for Application Clients
The message protection policies of client providers must be configured such that they are
equivalent to the message protection policies of the server-side providers they will be
interacting with. This is already the situation for the providers configured (but not enabled)
when GlassFish Server is installed.

To enable message security for client applications, modify the GlassFish Server specific
configuration for the application client container. The process is analogous to the process in
“Configuring Message Protection Policies” on page 74.

Example 3–5

See Also

Enabling Message Security for Application Clients

Chapter 3 • Administering Message Security 81

Additional Information About Message Security
For additional information about message security, see the following documentation:

■ Chapter 39, “Introduction to Security in the Java EE Platform,” in The Java EE 6 Tutorial
■ Chapter 4, “Securing Applications,” in GlassFish Server Open Source Edition 3.1 Application

Development Guide

Additional Information About Message Security

GlassFish Server Open Source Edition 3.1 Security Guide • August 201182

Administering Security in Cluster Mode

This chapter describes important information about administering security in a cluster.

The following topics are described:

■ “Configuring Certificates in Cluster Mode” on page 83
■ “Dynamic Reconfiguration” on page 84
■ “Understanding Synchronization” on page 85

This chapter assumes that you are familiar with security features such as authentication,
authorization, and certificates. If you are not, see Chapter 1, “Administering System Security.”

Instructions for accomplishing the tasks specific to GlassFish Server by using the
Administration Console are contained in the Administration Console online help.

Configuring Certificates in Cluster Mode
The sections “Certificates and SSL” on page 26 and “Administering JSSE Certificates” on
page 44 describe the relevant concepts and use of certificates in GlassFish Server.

By default, GlassFish Server uses self-signed certificates. The self-signed certificates that
GlassFish Server uses might not be trusted by clients by default because a certificate authority
does not vouch for the authenticity of the certificate.

You can instead use your own certificates, as described in “Using Your Own Certificates” on
page 94.

4C H A P T E R 4

83

Dynamic Reconfiguration
Administrative commands that you execute on the domain administration server (DAS) must
either be replicated on the affected server instances, or on all server instances that are part of the
cluster. GlassFish Server replicates the commands by sending the same administration
command request that was sent to the DAS to the server instances. As a result of replicating the
commands on the DAS and the individual instances, the DAS and the instances make the same
changes to their respective copies of the domain's configuration.

Note – Oracle recommends that you enable secure admin as described in Chapter 5, “Managing
Administrative Security,” so that GlassFish Server securely transfers these files on the network.

Dynamic reconfiguration refers to using the --target operand to CLI subcommands to make a
change to a server instance (if the user-specified target is a server instance), or all server
instances that are part of the cluster (if the user-specified target is a cluster). For example:
asadmin create-jdbc-resource some-options --target some-target.

The --target operand allows the following values:
■ server – Performs the command on the default server instance. This is the default value.
■ configuration_name – Performs the command in the specified configuration.
■ cluster_name – Performs the command on all server instances in the specified cluster.
■ instance_name – Performs the command on a specified server instance.

If a command fails for a cluster, the status shows all server instances where dynamic
reconfiguration failed, and suggests corrective next steps.

The command status also shows when a restart is required for each server instance.

The --target operand is supported for the following security-related CLI subcommands:
■ create-jacc-provider
■ delete-jacc-provider
■ list-jacc-providers
■ create-audit-module
■ create-auth-realm
■ create-file-user
■ delete-audit-module
■ delete-auth-realm
■ delete-file-user
■ update-file-user
■ create-message-security-provider
■ delete-message-security-provider
■ list-audit-modules

Dynamic Reconfiguration

GlassFish Server Open Source Edition 3.1 Security Guide • August 201184

■ list-file-groups
■ list-file-users
■ login

Enabling Dynamic Configuration
Dynamic configuration is enabled by default and no additional action is required.

Use the following command to enable dynamic configuration from the command line:

asadmin --user user --passwordfile password-file set

cluster-name-config.dynamic-reconfiguration-enabled=true.

To enable dynamic configuration from the Administration Console, perform the following
steps:

1. Expand the Configurations node.
2. Click the name of the cluster's configuration.
3. On the Configuration System Properties page, check the Dynamic Reconfiguration Enabled

box.
4. Click Save

Understanding Synchronization
As described in “Resynchronizing GlassFish Server Instances and the DAS” in GlassFish Server
Open Source Edition 3.1 High Availability Administration Guide, configuration data for a
GlassFish Server instance is stored in the repository of the DAS and in a cache on the host that is
local to the instance. The configuration data in these locations must be synchronized. The cache
is synchronized only when a user uses the administration tools to start or restart an instance.

See “Resynchronizing GlassFish Server Instances and the DAS” in GlassFish Server Open Source
Edition 3.1 High Availability Administration Guide for information about default
synchronization for files and directories, for the steps required to resynchronize an instance and
the DAS, and for additional synchronization topics.

Understanding Synchronization

Chapter 4 • Administering Security in Cluster Mode 85

86

Managing Administrative Security

This chapter describes how to manage administrative security by using the secure
administration feature.

This chapter assumes that you are familiar with security features such as authentication,
authorization, and certificates. If you are not, first see Chapter 1, “Administering System
Security.”

Instructions for accomplishing the tasks specific to GlassFish Server by using the
Administration Console are contained in the Administration Console online help.

■ “Secure Administration Overview” on page 87
■ “How Secure Admin Works: The Big Picture” on page 88
■ “Considerations When Running GlassFish Server With Default Security” on page 99
■ “Running Secure Admin” on page 99
■ “Additional Considerations When Creating Local Instances” on page 102
■ “Secure Admin Use Case” on page 103
■ “Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin” on page 103

Secure Administration Overview
The secure administration feature allows an administrator to secure all administrative
communication between the domain administration server (DAS), any remote instances, and
administration clients such as the asadmin utility, the administration console, and REST clients.

In addition, secure administration helps to prevent DAS-to-DAS and instance-to-instance
traffic, and carefully restricts administration-client-to-instance traffic.

The secure administration feature, which is henceforth referred to as secure admin, provides a
secure environment, in which you can be confident that rogue users or processes cannot
intercept or corrupt administration traffic or impersonate legitimate GlassFish Server
components.

5C H A P T E R 5

87

When you install GlassFish Server or create a new domain, secure admin is disabled by default.
When secure admin is disabled, GlassFish Server does not encrypt administrative
communication among the system components and does not accept administrative
connections from remote hosts.

The following subcommands enable and disable secure admin:
■ enable-secure-admin–The enable-secure-admin subcommand turns on secure admin.

GlassFish Server uses SSL encryption to protect subsequent administrative traffic and will
accept remote administrative connections. Enabling secure admin affects the entire domain,
including the DAS and all instances. The DAS must be running, and not any instances, when
you run enable-secure-admin. You must restart the DAS immediately after enabling
secure admin, and then start any instances you want to run.

■ disable-secure-admin–disable-secure-admin subcommand turns off secure admin.
GlassFish Server no longer encrypts administrative messages and will no longer accept
remote administration connections. Disabling secure admin affects the entire domain,
including the DAS and all instances. The DAS must be running , and not any instances,
when you run disable-secure-admin. You must restart the DAS immediately after
disabling secure admin, and then start any instances you want to run.
If secure admin is not enabled, this subcommand has no effect.

This section describes how to use these commands to run secure admin, and the implications of
doing so.

How Secure Admin Works: The Big Picture
Secure admin is a domain-wide setting. It affects the DAS and all instances and all
administration clients. This section describes the following topics:
■ “Functions Performed by Secure Admin” on page 88
■ “Which Administration Account is Used?” on page 89
■ “What Authentication Methods Are Used for Secure Administration?” on page 90
■ “Understanding How Certificate Authentication is Performed” on page 91
■ “What Certificates Are Used?” on page 91
■ “An Alternate Approach: Using Distinguished Names to Specify Certificates” on page 95
■ “Guarding Against Unwanted Connections” on page 98

Functions Performed by Secure Admin
The enable-secure-admin subcommand performs the following functions. Subsequent
sections describe these functions in more detail.
■ Enables the secure admin behavior, optionally setting which aliases are to be used for

identifying the DAS and instance certificates.

How Secure Admin Works: The Big Picture

GlassFish Server Open Source Edition 3.1 Security Guide • August 201188

■ Adjusts all configurations in the domain, including default-config.
■ Adjusts Grizzly settings:

■ SSL/TLS is enabled in the DAS's admin listener and the instances' admin listeners.
■ Port unification (that is, HTTP and HTTPS are handled by the same port),

http—to—https redirection, and client authentication (client-auth=want) are enabled.
■ Configures SSL to use the administration truststore.
■ Configures SSL to use the administration keystore and the correct alias (for the

self-signed cert) for authenticating itself. (You can use your own certificate instead, as
described in “Using Your Own Certificates” on page 94.

The Grizzly configuration on the DAS and each instance is identical, with the exception
that the DAS uses the s1as alias for SSL/TLS authentication and the instances use the
glassfish-instance alias. (These alias names are the default, and you can change
them.)

A server restart is required to change the Grizzly adapter behavior.

The restart also synchronizes the restarted instances. When you start the instances, the DAS
delivers the updated configuration to the instances.

Which Administration Account is Used?
If only one administration account exists in the realm, GlassFish Server treats that account as
the current default administration account. In this case, when you run an asadmin command,
you do not need to specify the username. If a password for that username is required, you need
to specify it, typically by using the --passwordfile option or by letting asadmin prompt you for
it.

By default, GlassFish Server includes a single account for user "admin" and an empty password.
Therefore, if you make no other changes before you enable secure admin, "admin" is the initial
default username and no password is required. You need to decide whether enabling secure
admin without also requiring a password makes sense in your environment.

If multiple admin accounts exist, then GlassFish Server does not recognize any admin username
as the default. You must then specify a valid username via the -—user option when you use the
asadmin command (or by or defining the AS_ASDMIN_USER environment variable), and its
associated password (if the associated password is not empty).

The username and password used for a login attempt must match the username and password
(if required) for an account defined in the realm, and you must have set up the account as a
member of the admin group.

How Secure Admin Works: The Big Picture

Chapter 5 • Managing Administrative Security 89

What Authentication Methods Are Used for Secure
Administration?
The secure admin feature enforces security via the following authentication methods:

■ The DAS and instances authenticate to each other via mutual (two-way) SSL/TLS certificate
authentication. The DAS authenticates to clients via one-way SSL/TLS certificate
authentication.
The domain creation process creates a default keystore and truststore, plus a default private
key for the DAS. Secure admin uses this initial configuration to set up the truststore so that
the DAS and instances always trust each other.

■ Remote administration clients (asadmin, administration console, browsers, and IDEs) must
accept the public certificate presented by the DAS. If accepted, remote administration
clients then send a user name and password (HTTP Basic authentication) in the HTTP
Authorization header. The receiving DAS or instance makes sure those credentials are valid
in its realm, and authenticates and authorizes the user.

■ A locally-running asadmin (that is, connecting to an instance on the same host)
authenticates and authorizes to the co-located instance using a locally-provisioned
password.

■ Credentials or other sensitive information sent over the network are always encrypted if
secure admin is enabled. No credentials are sent in the clear if secure admin is enabled. (If
secure admin is disabled, credentials are sent in the clear.) Messages between administration
clients and the DAS, between the DAS and remote instances, and between local
administration clients and instances are encrypted using SSL/TLS. This is true even if you
explicitly set the asadmin -—secure option to false.

Table 5–1 shows which authentication methods are employed when secure admin is enabled or
disabled.

TABLE 5–1 Authentication Methods Employed

Access Method When Secure Admin is Disabled When Secure Admin is Enabled

Remote administration access
to the DAS

Rejected. Username/password authentication.
(Client must also accept server certificate.)

Communication between DAS
and instances

Cleartext messages. No mutual
authentication.

SSL-encrypted messages. SSL mutual
authentication using certificates.

Communication between
administration clients and DAS

Cleartext messages. No DAS
authentication.

SSL-encrypted messages. DAS uses SSL
certificate server authentication.

Local asadmin client to
instance on same node

Cleartext messages.
Locally-provisioned password
mechanism is used.

SSL-encrypted messages.
Locally-provisioned password mechanism
is used.

How Secure Admin Works: The Big Picture

GlassFish Server Open Source Edition 3.1 Security Guide • August 201190

Understanding How Certificate Authentication is
Performed
The domain creation process creates a primary (private) key and a self-signed certificate for the
DAS, and a separate private key and self-signed certificate for remote instances.

Then, when you enable secure admin, the following actions are performed:

■ Both private keys are stored in the domain-wide DAS keystore file, keystore.jks.
■ Both public certificates are stored in the domain-wide DAS truststore file, cacerts.jks.

When the DAS sends a message to an instance:

1. SSL on the instance asks the DAS to provide an SSL/TLS certificate.
2. The DAS sends the certificate with the alias you specified using the --adminalias option

when you ran the enable-secure-admin subcommand.
3. SSL on the instance makes sure the certificate is valid and GlassFish Server makes sure that

the security Principal associated with the incoming request (provided automatically by
Grizzly and the SSL/TLS Java implementation) matches the Principal associated with the
adminalias from the instance's truststore.

What Certificates Are Used?
When you enable secure admin, you can optionally set the --adminalias and
--instancealias options that tell secure admin which aliases to use for the DAS and instance
certificates.

The DAS uses the alias associated with the --instancealias option to check incoming requests
that use SSL/TLS cert authentication. Conversely, instances use the alias associated with the
--adminalias option to check incoming requests with certificate authentication.

By default, --adminalias of the enable-secure-admin subcommand uses the s1as alias, and
the --instancealias option uses the glassfish-instance alias, both of which identify the
default self-signed certificates.

You can use your tool of choice, such as keytool, to list the default self-signed certificates in the
keystore, similar to the following:

Note – You can list the contents of the keystore without supplying a password. However, for a
request that affects the private key, such as the keytool.exe --certreq option, the keystore
password is required. This is the master password and has a default value of changeit unless you
change it with the change-master-password subcommand.

keytool.exe -list -keystore keystore.jks

How Secure Admin Works: The Big Picture

Chapter 5 • Managing Administrative Security 91

Enter keystore password:

***************** WARNING WARNING WARNING *****************

* The integrity of the information stored in your keystore *

* has NOT been verified! In order to verify its integrity, *

* you must provide your keystore password. *

***************** WARNING WARNING WARNING *****************

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 2 entries

glassfish-instance, Jan 3, 2011, PrivateKeyEntry,

Certificate fingerprint (MD5): 06:A4:83:84:57:52:9C:2F:E1:FD:08:68:BB:2D:ED:E8

s1as, Jan 3, 2011, PrivateKeyEntry,

Certificate fingerprint (MD5): 8B:7D:5A:4A:32:36:1B:5D:6A:29:66:01:B0:A3:CB:85

The --adminalias and --instancealias values are maintained. Because of this design,
normal instance creation operations (create-instance over SSH and create-local-instance) apply
the up-to-date keystore, truststore, and configuration to each instance.

Self-Signed Certificates and Trust
The self-signed certificates that GlassFish Server uses might not be trusted by clients by default
because a certificate authority does not vouch for the authenticity of the certificate. If you enable
secure admin and then contact the DAS using an administration client, that client will detect
whether the certificate is automatically trusted.

Browsers will warn you, let you view the certificate, and ask you to reject the certificate, accept it
once, or accept it indefinitely, as shown in Figure 5–1.

How Secure Admin Works: The Big Picture

GlassFish Server Open Source Edition 3.1 Security Guide • August 201192

Similarly, the first time asadmin receives an untrusted certificate, it displays the certificate and
lets you accept it or reject it, as follows: (If you accept it, asadmin also accepts that certificate in
the future.)

D:\glassfish3\glassfish\bin>asadmin enable-secure-admin

Command enable-secure-admin executed successfully.

D:\glassfish3\glassfish\bin>asadmin stop-domain domain1

Waiting for the domain to stop

Command stop-domain executed successfully.

D:\glassfish3\glassfish\bin>asadmin start-domain domain1

Waiting for domain1 to start

Successfully started the domain : domain1

domain Location: D:\glassfish3\glassfish\domains\domain1

Log File: D:\glassfish3\glassfish\domains\domain1\logs\server.log

Admin Port: 4848

Command start-domain executed successfully.

D:\glassfish3\glassfish\bin>asadmin list-domains

[

[

Version: V3

Subject: CN=machine.oracle.com, OU=GlassFish, O=Oracle Corporation, L=San

ta Clara, ST=California, C=US

Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

Key: Sun RSA public key, 1024 bits

modulus: 916043595073784449632358756374297330881618062298549101072702252458856

74079656358328568800001548507219262910864311924824938195045822088563459253216383

21100660819657204757523896415606833471499564071226722478056407102318862796797465

6245090519956376357288295037519504394674686082145398885236913866246525691704749

public exponent: 65537

FIGURE 5–1 Sample Browser Response to Untrusted Certificate

How Secure Admin Works: The Big Picture

Chapter 5 • Managing Administrative Security 93

Validity: [From: Tue Jan 04 14:30:08 EST 2011,

To: Fri Jan 01 14:30:08 EST 2021]

Issuer: CN=machine.oracle.com, OU=GlassFish, O=Oracle Corporation, L=Sant

a Clara, ST=California, C=US

SerialNumber: [4d237540]

Certificate Extensions: 1

[1]: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: AF 8B 90 1E 51 9A 80 1B EB A4 D9 C6 01 8A A0 FDQ...........

0010: DE EC 83 8A

]

]

]

Algorithm: [SHA1withRSA]

Signature:

0000: 3F 2B 30 CE 97 0B 5E F3 72 0E 60 18 8D 3B 04 DC ?+0...^.r.‘..;..
0010: 26 E6 7A 6F D0 19 CC 26 1D 90 C0 DE 33 4E 53 FB &.zo...&....3NS.

0020: DC E7 AE 78 9E BA EF 14 86 57 36 D4 3E 9B C9 FB ...x.....W6.>...

0030: C0 B4 EF 72 27 D9 4F 79 1F 89 91 B8 96 26 33 64 ...r’.Oy.....&3d

0040: 9F 4B 04 4B 83 B9 BF 4D 54 B4 8F 75 17 1A 51 BD .K.K...MT..u..Q.

0050: F3 69 94 CE 90 95 08 55 2C 07 D2 23 AC AE EC 6D .i.....U,..#...m

0060: 84 B6 3D 00 FB FE 92 50 37 1A 2D 00 F1 21 5C E6 ..=....P7.-..!\.

0070: 1F 39 26 B2 5D C1 FD C8 B1 4F CC EE 26 84 B8 B5 .9&.]....O..&...

]

Do you trust the above certificate [y|N] -->

asadmin saves certificates you accept in the file .asadmintruststore in your log-in default
directory. You do not generally need to work with the file directly, but if you delete or move the
file, asadmin will prompt you again when it receives untrusted certificates.

Some asadmin commands such as run-script can contact an instance directly to retrieve
information (but not to make configuration changes). The instances do not use the same
certificate as the DAS, so in these cases asadmin then prompts you to accept or reject the
instance certificate.

Using Your Own Certificates
By default, --adminalias of the enable-secure-admin subcommand uses the s1as alias, and
the --instancealias option uses the glassfish-instance alias, both of which identify the
default self-signed certificates.

You can instead have GlassFish Server use your own certificates for this purpose by first adding
your certificates to the keystore and truststore, and then running enable-secure-admin and
specifying the aliases for your certificates.

It is also possible to use s1as and glassfish-instance as the alias names for your own
certificates. A benefit of doing so is that you would not have to specify alias names with the
enable-secure-admin subcommand.

How Secure Admin Works: The Big Picture

GlassFish Server Open Source Edition 3.1 Security Guide • August 201194

In addition, your own certificate identified by the s1as alias would be used in all other cases
within the domain where the s1as alias is used (by default), such as in the SSL configuration of
the IIOP and http-listener-2 listeners, and as the encryption.key.alias and
signature.key.alias used for provider configuration in the SOAP authentication layer for
Message Security configuration.

You may find the wide-reaching effect of using the s1as alias with your own certificate to be
either a useful feature or an unintended consequence. Therefore, you should understand the
implications of using the s1as alias before doing so.

If you decide to use the s1as and glassfish-instance aliases with your own certificates, you
will first need to disable secure admin (if enabled) and then change or delete the exiting s1as
alias from both the keystore.jks keystore and cacerts.jks truststore for the DAS. You can
use the --changealias or--delete option of keytool to accomplish this. Then, import your
own certificates.

When you enable secure admin, the DAS and the instances then have copies of the same
keystore and truststore

An Alternate Approach: Using Distinguished Names to
Specify Certificates
By default, the DAS uses the alias associated with the --instancealias option to check
incoming requests that use SSL/TLS cert authentication. Conversely, instances use the alias
associated with the --adminalias option to check incoming requests with certificate
authentication.

The enable-secure-admin-principal(1) subcommand provides an alternate approach.
enable-secure-admin-principal instructs GlassFish Server to accept admin requests when
accompanied by an SSL certificate with the specified distinguished name (DN).

Note – Any certificate you specify with enable-secure-admin-principal must either be issued
by a trusted certificate authority or, if it is self-signed, must already be in the GlassFish Server
truststore.

For example, assume that you write your own admin client that uses the REST interface. When
your client establishes the connection, it can choose which certificate to use for its client cert.
You would then specify the DN of this certificate to enable-secure-admin-principal.

You must specify either the DN or the --alias option of the
enable-secure-admin-principal subcommand.

How Secure Admin Works: The Big Picture

Chapter 5 • Managing Administrative Security 95

If you specify the DN, GlassFish Server records the value you specify as the DN. You specify the
DN as a comma-separated list in quotes. For example,
"CN=system.amer.oracle.com,OU=GlassFish,O=Oracle Corporation,L=Santa

Clara,ST=California,C=US".

Note – The enable-secure-admin-principal subcommand accepts the string you enter and
does not immediately validate it. However, secure admin must be able to match the DN you
specify in order to use it.

If you have sufficient privileges to view the content of the keystore, you can use keytool to
display the DN of a certificate:

keytool.exe -v -list -keystore keystore.jks

Enter keystore password:

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 2 entries

Alias name: glassfish-instance

Creation date: Jul 7, 2011

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=systemname.amer.oracle.com-instance, OU=GlassFish,

O=Oracle Corporation, L=Santa Clara, ST=California, C=US

Issuer: CN=systemname.amer.oracle.com-instance, OU=GlassFish, O=Oracle Corporation,

L=Santa Clara, ST=California, C=US

Serial number: 4e15d6e7

Valid from: Thu Jul 07 11:55:19 EDT 2011 until: Sun Jul 04 11:55:19 EDT 2021

Certificate fingerprints:

MD5: 05:6E:01:D6:CE:9D:29:DA:55:D9:10:5E:BE:CC:55:05

SHA1: 2A:6D:A2:52:A5:2B:ED:DE:CD:B4:76:4A:65:9D:B5:79:A6:EA:3C:10

Signature algorithm name: SHA1withRSA

Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: 96 99 36 B6 CF 60 1E 8A AE 25 75 4E C8 34 AA AB ..6..‘...%uN.4..
0010: E1 3B CF 03 .;..

]

]

If you use the "--alias aliasname" form, then GlassFish Server looks in its truststore for a
certificate with the specified alias and uses the DN associated with that certificate. alias-name
must be an alias associated with a certificate currently in the truststore. Therefore, you may find
it most useful for self-signed certificates for which you know the alias.

How Secure Admin Works: The Big Picture

GlassFish Server Open Source Edition 3.1 Security Guide • August 201196

If you have sufficient privileges to view the contents of the truststore, you can use keytool to
display the alias of a certificate:

keytool.exe -v -list -keystore cacerts.jks

Enter keystore password:

:

:

Alias name: glassfish-instance

Creation date: Jul 7, 2011

Entry type: trustedCertEntry

Owner: CN=systemname.amer.oracle.com-instance, OU=GlassFish, O=Oracle Corporation,

L=Santa Clara, ST=California, C=US

Issuer: CN=systemname.amer.oracle.com-instance, OU=GlassFish, O=Oracle Corporation,

L=Santa Clara, ST=California, C=US

Serial number: 4e15d6e7

Valid from: Thu Jul 07 11:55:19 EDT 2011 until: Sun Jul 04 11:55:19 EDT 2021

Certificate fingerprints:

MD5: 05:6E:01:D6:CE:9D:29:DA:55:D9:10:5E:BE:CC:55:05

SHA1: 2A:6D:A2:52:A5:2B:ED:DE:CD:B4:76:4A:65:9D:B5:79:A6:EA:3C:10

Signature algorithm name: SHA1withRSA

Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: 96 99 36 B6 CF 60 1E 8A AE 25 75 4E C8 34 AA AB ..6..‘...%uN.4..
0010: E1 3B CF 03 .;..

]

]

When you run enable-secure-admin, GlassFish Server automatically records the DNs for the
admin alias and the instance alias, whether you specify those values or use the defaults. You do
not need to run enable-secure-admin-principal yourself for those certificates.

Other than these certificates, you must run enable-secure-admin-principal for any other
DN that GlassFish Server should authorize to send admin requests. This includes DNs
corresponding to trusted certificates (those with a certificate chain to a trusted authority.)

You can run enable-secure-admin-principal multiple times so that GlassFish Server accepts
admin requests from a client sending a certificate with any of the DNs you specify.

The following example shows how to specify a DN for authorizing access in secure
administration:

asadmin> enable-secure-admin-principal

"CN=system.amer.oracle.com,OU=GlassFish,

O=Oracle Corporation,L=Santa Clara,ST=California,C=US"

Command enable-secure-admin-principal executed successfully.

You can use the disable-secure-admin-principal(1) subcommand to disable a specific
certificate for authenticating and authorizing access in secure admin. You must specify either

How Secure Admin Works: The Big Picture

Chapter 5 • Managing Administrative Security 97

the DN or the --alias option of the disable-secure-admin-principal subcommand. To
disable multiple certificates for authenticating and authorizing access in secure admin, run the
disable-secure-admin-principal subcommand multiple times.

You can use the list-secure-admin-principals(1) subcommand to list the certificates for
which GlassFish Server accepts admin requests from clients.

Guarding Against Unwanted Connections
Secure admin guards against unwanted connections in several ways:

■ DAS-to-DAS, instance-to-instance:
■ The DAS and the instances have copies of the same truststore, which contains the public

certificate of the DAS and the separate public certificate that is used by all instances. In
addition, GlassFish Server includes a unique, generated "domain ID" that servers use to
ensure that admin requests from other GlassFish Servers originate from the correct
domain.

■ DAS-to-other-DAS communication is not authenticated because each different DAS will
have its own self-signed certificate that is not in the truststore of the other DAS.

■ DAS-to-itself communication is unlikely unless you were to misconfigure the admin
listener port for an instance on the same host so it is the same as for the DAS. Similarly,
instance-to-instance traffic is unlikely unless you were to misconfigure listener ports for
instances on the same host.
To prevent both of these situations, both cases are handled by making sure that the
connecting Principal (alias) is not the running Principal. secure admin ensures that if the
client has authenticated using SSL/TLS client authentication that the Principal
associated with the remote client is not the same as the current process. That is, the DAS
makes sure that the Principal is not itself. Similarly, each instance ensures that the client
is not an instance. (The instances share the same self-signed certificate and therefore are
mapped to the same Principal.)

■ Remote client-to-instance:
Remote asadmin clients are unable to connect directly to instances. If the user on host
"test1" runs a local command but specifies a remote instance on host "test2," asadmin on
test1 will read and send that locally-provisioned password. The instance on "test2" will have
a different locally-provisioned password and so the authentication attempt will fail.
Therefore, a user on "test1" will not be able to run a remote command targeting an instance
on "test2."

How Secure Admin Works: The Big Picture

GlassFish Server Open Source Edition 3.1 Security Guide • August 201198

Considerations When Running GlassFish Server With Default
Security

In GlassFish Server, the default admin account is username "admin" with an empty password.
Admin clients provide empty credentials or none at all, and all are authenticated and authorized
as that default admin user. None of the participants (clients, DAS, or instances) encrypts
network messages.

If this level of security is acceptable in your environment, no changes are needed and you do not
need to enable secure administration. Imposing a heightened level of security is optional.

However, consider Table 5–2, which shows which operations are accepted and rejected when
secure admin is disabled.

Note – When secure admin is disabled, GlassFish Server does allow remote monitoring
(read-only) access via the REST interface.

TABLE 5–2 Accepted and Rejected Operations if Secure Admin is Disabled

Operation Run From Same System as DAS Run From Remote System

start-local-instance Functions as expected Cannot sync with DAS. The
instance starts but cannot
communicate with the DAS. DAS
will not see the instance.

Any other asadmin subcommand Functions as expected Rejected. A user sees the
username/password prompt, but
even correct entries are rejected.

Commands that use SSH. For
example, create-instance.

Functions as expected; requires
prior SSH configuration.

Functions as expected; requires
prior SSH configuration.

Running Secure Admin
This section describes how to run secure admin. The section begins with prerequisites for
running secure admin.

Prerequisites for Running Secure Admin
Before running GlassFish Server with secure admin enabled, you must make sure that:

1. The DAS is installed, initialized, and running.
2. If one or more remote instances are installed and initialized, they must not be running.

Running Secure Admin

Chapter 5 • Managing Administrative Security 99

3. Any administration clients you require are installed.
4. The DAS communicates on the -—adminport you configure when you create the domain,

and defaults to 4848. An instance communicates on the ASADMIN_LISTENER_PORT system
property you specify for the instance.

5. The user name and password sent by remote administration clients (asadmin,
administration console, browsers, and IDEs) must exist in the realm and be in the admin
group.

6. The keystore and truststore for the domain exist. (They are created by default when you
create the domain or install GlassFish Server.)
If you are not using the default self-signed certificates, you must add your own valid
certificates and CA root in the keystore and truststore, respectively.

7. If you are not using the default self-signed certificates, create two aliases corresponding to
certificates in the keystore and truststore: one that the DAS will use for authenticating itself
in administration traffic, and one that the instances will use for authenticating itself in
administration traffic.

An Alternate Approach: Using A User Name and
Password for Internal Authentication and
Authorization
By default, secure admin uses the GlassFish Server self-signed certificates, via the aliases
corresponding to these certificates, to authenticate the DAS and instances with each other and
to authorize secure admin operations. Specifically, the DAS uses the (s1as) alias for
authenticating itself and authorizing access in administration traffic, and instances use the
(glassfish-instance) alias for authenticating themselves and authorizing access in secure
admin traffic.

As described in “Using Your Own Certificates” on page 94, you can instead use your own
certificates and their associated aliases for authenticating and authorizing the DAS and
instances in administration traffic.

As an alternative to this certificate-based authentication and authorization, you can instead use
the enable-secure-admin-internal-user(1) subcommand to instruct all servers in the
domain to authenticate to each other, and to authorize admin operations submitted to each
other, using an existing admin user name and password rather than SSL certificates.

Note – If secure admin is enabled, all GlassFish Server processes continue to use SSL encryption
to secure the content of the admin messages, regardless of how they authenticate to each other.

Running Secure Admin

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011100

You might want to use the enable-secure-admin-internal-user(1) subcommand if your use
case favors the use of a user name and password combination over the use of SSL certificates
and aliases.

This generally means that you must:

1. Create a valid admin user.

asadmin> create-file-user --authrealmname admin-realm --groups

asadmin newAdminUsername

2. Create a password alias for the just-created password.

asadmin> create-password-alias passwordAliasName
3. Use that user name and password for inter-process authentication and admin authorization.

asadmin> enable-secure-admin-internal-user

--passwordalias passwordAliasName
newAdminUsername

The following example allows secure admin to use a user name and password alias for
authentication and authorization between the DAS and instances, instead of certificates.

asadmin> enable-secure-admin-internal-user

--passwordalias passwordAliasName
newAdminUsername

If GlassFish Server finds at least one secure admin internal user, then if secure admin is enabled
GlassFish Server processes will not use SSL authentication and authorization with each other
and will instead use user name password pairs.

Most users who use this subcommand will need to set up only one secure admin internal user. If
you set up more than one secure admin internal user, you should not make any assumptions
about which user name and password pair GlassFish Server will choose to use for any given
admin request.

As a general practice, you should not use the same user name and password pair for internal
admin communication and for admin user login. That is, create at least one admin account
specifically for internal admin communication.

You can use the disable-secure-admin-internal-user(1) subcommand to disable secure
admin from using the user name (instead of SSL certificates) to authenticate the DAS and
instances with each other and to authorize admin operations. To disable multiple user names
for authenticating and authorizing access in secure admin, run the
disable-secure-admin-internal-user subcommand multiple times.

You can use the list-secure-admin-internal-users(1) subcommand to list the user names
for which GlassFish Server authenticate the DAS and instances with each other and authorizes
admin operations.

Running Secure Admin

Chapter 5 • Managing Administrative Security 101

Example of Running enable-secure-admin
The following example shows how to enable secure admin for a domain using the default admin
alias and the default instance alias. You must restart the DAS immediately after enabling secure
admin.

Note – The only indicator that secure admin is enabled is the successful status from the
enable-secure-admin subcommand. When secure admin is running, the DAS and instances
do not report the secure admin status.

asadmin> enable-secure-admin

Command enable-secure-admin executed successfully.

The following example shows how to enable secure admin for a domain using an admin alias
adtest and an instance alias intest. You can also use this command to modify an existing
secure admin configuration to use different aliases.

asadmin> enable-secure-admin --adminalias adtest --instancealias intest

The following example shows how to disable secure admin:

asadmin> disable-secure-admin

Command disable-secure-admin executed successfully.

You can use the following command to see the current state of secure admin in a domain:

asadmin> get secure-admin.enabled

secure-admin.enabled=false

Command get executed successfully.

Additional Considerations When Creating Local Instances
If you use xxx-local-instance commands to set up local instances, either leave secure admin
disabled, or enable it before you create or start the instances and leave it that way.

However, if you use xxx-instance commands over SSH to manage remote instances, you can
enable and disable secure admin, although this is not recommended because it can result in an
inconsistent security model.

Additional Considerations When Creating Local Instances

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011102

Secure Admin Use Case
This section describes a simple secure admin use case.

In the asadmin --secure=false --user me --passwordfile myFile.txt cmd ... use case,
the user submits a command with --secure set to false, and supplies password credentials.

The important concept to note is that asadmin uses HTTPS because of the DAS redirection,
even though the command sets --secure to false. asadmin sends the HTTP Authorization
header along with the redirected request.

In addition to the flow described here, certificate authentication is also performed as described
in Table 5–3. Also, the credentials that the user supplies are assumed to be valid administrator
credentials for the DAS.

TABLE 5–3 asadmin --secure=false, With Username and Password

asadmin Grizzly AdminAdapter

Sends HTTP request, no
authorization header (because the
transport is not secure).

Returns 3xx status and redirects
HTTP to HTTPS.

Follows redirection, this time
adding the Authorization header
(because transport is now HTTPS).

Authenticates admin user and
password from HTTP
Authorization header in the realm
Executes command, and responds
with success status.

Upgrading an SSL-Enabled Secure GlassFish Installation to
Secure Admin

If you enable secure admin on an SSL-enabled GlassFish Server installation, secure admin uses
the existing <ssl cert-nickname> value as the DAS adminalias for secure admin.

Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin

Chapter 5 • Managing Administrative Security 103

104

Running in a Secure Environment

This chapter describes important information about running GlassFish Server in a secure
environment.

This chapter assumes that you are familiar with security features such as authentication,
authorization, and certificates. If you are not, see Chapter 1, “Administering System Security.”

Instructions for accomplishing the tasks specific to GlassFish Server by using the
Administration Console are contained in the Administration Console online help.

The chapter describes the following topics:

■ “Determining Your Security Needs” on page 105
■ “Installing GlassFish Server in a Secure Environment” on page 106
■ “Remove Unused Components” on page 107
■ “Run on the Web Profile if Possible” on page 110
■ “Securing the GlassFish Server Host” on page 110
■ “Securing GlassFish Server” on page 114
■ “Securing Applications” on page 117

Determining Your Security Needs
Before you deploy GlassFish Server and your Java EE applications into a production
environment, determine your security needs and make sure that you take the appropriate
security measures, as described in the following sections:

■ “Understand Your Environment” on page 106
■ “Read Security Publications” on page 106

6C H A P T E R 6

105

Understand Your Environment
To better understand your security needs, ask yourself the following questions:

■ Which resources am I protecting?

Many resources in the production environment can be protected, including information in
databases accessed by GlassFish Server and the availability, performance, applications, and
the integrity of the Web site. Consider the resources you want to protect when deciding the
level of security you must provide.

■ From whom am I protecting the resources?

For most Web sites, resources must be protected from everyone on the Internet. But should
the Web site be protected from the employees on the intranet in your enterprise? Should
your employees have access to all resources within the GlassFish Server environment?
Should the system administrators have access to all GlassFish Server resources? Should the
system administrators be able to access all data? You might consider giving access to highly
confidential data or strategic resources to only a few well trusted system administrators.
Perhaps it would be best to allow no system administrators access to the data or resources.

■ What will happen if the protections on strategic resources fail?

In some cases, a fault in your security scheme is easily detected and considered nothing
more than an inconvenience. In other cases, a fault might cause great damage to companies
or individual clients that use the Web site. Understanding the security ramifications of each
resource will help you protect it properly.

Read Security Publications
Read about security issues:

■ For the latest information about securing Web servers, Oracle recommends the "Security
Practices & Evaluations" information available from the CERT Coordination Center
operated by Carnegie Mellon University at http://www.cert.org (http://www.cert.org/).

Installing GlassFish Server in a Secure Environment
This section describes recommendations for installing GlassFish Server in a secure
environment. The following topic is described:

■ “Enable the Secure Administration Feature” on page 107

Installing GlassFish Server in a Secure Environment

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011106

http://www.cert.org/

Enable the Secure Administration Feature
The secure administration feature allows an administrator to secure all administrative
communication between the domain administration server (DAS), any remote instances, and
administration clients such as the asadmin utility, the administration console, and REST
clients. In addition, secure administration helps to prevent DAS-to-DAS and
instance-to-instance traffic, and carefully restricts administration-client-to-instance traffic.

When you install GlassFish Server or create a new domain, secure admin is disabled by default.
GlassFish Server does not encrypt administrative communication among the system
components and does not accept administrative connections from remote hosts. Imposing a
heightened level of security is optional.

See Chapter 5, “Managing Administrative Security,” for information on enabling the secure
administration feature.

Remove Unused Components
Minimize the GlassFish Server installation by removing components that you are not using and
do not intend to use.

The Update Tool is a standalone graphical tool bundled withGlassFish Server that you can use
to find, install, and remove updates and add-ons on a deployed server instance.

The pkg command is the command-line equivalent to Update Tool. Most of the tasks that can
be performed with the graphical Update Tool can be performed from a command line using the
pkg tool.

To update or remove installed add-on components, use one of the following commands:

■ install-dir/bin/updatetool, which starts the Update Tool graphical utility.
■ install-dir/bin/pkg, a command-line version of the Update Tool.

Removing Installed Components
This section describes how to use the pkg utility to remove an installed component. You can
also use the Update Tool to perform this task.

▼ Procedure To Remove an Installed Component

Stop GlassFish Server.
See “To Stop a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

1

Remove Unused Components

Chapter 6 • Running in a Secure Environment 107

To ensure that the pkg command can locate the application image, change to the base
installation directory for GlassFish Server.
cd install-dir

Obtain a list of all your installed components. (The following list is for example purposes only
and might not match your installed components.)
install-dir/bin/pkg list

NAME (PUBLISHER) VERSION STATE UFIX

felix 3.0.7-0 installed ----

glassfish-appclient 3.1-39 installed ----

glassfish-bundled-jdk (release.release.sun.com) 1.6.0.23-5.1 installed ----

glassfish-cluster 3.1-39 installed ----

glassfish-cmp 3.1-39 installed ----

glassfish-common 3.1-39 installed ----

glassfish-common-full 3.1-39 installed ----

glassfish-corba 3.1.0-23 installed ----

glassfish-corba-base 3.1.0-23 installed ----

glassfish-ejb 3.1-39 installed ----

glassfish-ejb-lite 3.1-39 installed ----

glassfish-full-incorporation 3.1-39 installed ----

glassfish-full-profile 3.1-39 installed ----

glassfish-grizzly 1.9.28-1 installed ----

glassfish-grizzly-full 1.9.28-1 installed ----

glassfish-gui 3.1-39 installed ----

glassfish-ha 3.1-39 installed ----

glassfish-hk2 3.1-39 installed ----

glassfish-javahelp 2.0.2-1 installed ----

glassfish-jca 3.1-39 installed ----

glassfish-jcdi 3.1-39 installed ----

glassfish-jdbc 3.1-39 installed ----

glassfish-jms 3.1-39 installed ----

glassfish-jpa 3.1-39 installed ----

glassfish-jsf 2.1.0-10 installed ----

glassfish-jta 3.1-39 installed ----

glassfish-jts 3.1-39 installed ----

glassfish-management 3.1-39 installed ----

glassfish-nucleus 3.1-39 installed ----

glassfish-registration 3.1-39 installed ----

glassfish-upgrade 3.1-39 installed ----

glassfish-web 3.1-39 installed ----

glassfish-web-incorporation 3.1-39 installed ----

glassfish-web-profile 3.1-39 installed ----

javadb-client 10.6.2.1-1 installed ----

javadb-common 10.6.2.1-1 installed ----

javadb-core 10.6.2.1-1 installed ----

javaee-firstcup-tutorial 2.0.2-6 installed ----

javaee-javadocs 3.1-39 installed ----

javaee-samples-build 1.0-4 installed ----

javaee-samples-full 1.0-4 installed ----

javaee-samples-web 1.0-4 installed ----

javaee-sdk-full-profile 3.1-39 installed ----

javaee-tutorial 6.0.1-10 installed u---

jersey 1.5-1.0 installed ----

metro 2.1-25 installed ----

mq-bin-exe 4.5-26.1 installed ----

2

3

Remove Unused Components

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011108

mq-bin-sh 4.5-26.1 installed ----

mq-config-gf 4.5-26.1 installed ----

mq-core 4.5-26.1 installed ----

mq-locale 4.5-26.1 installed ----

mq-server 4.5-26.1 installed ----

pkg (dev.glassfish.org) 1.122.2-50.2809 installed ----

pkg-java 1.122-50.2809 installed ----

python2.4-minimal (dev.glassfish.org) 2.4.4.0-50.2809 installed ----

sdk-branding-full 3.1-39 installed ----

shoal 1.5.28-0 installed ----

updatetool (dev.glassfish.org) 2.3.3-50.2809 installed ----

wxpython2.8-minimal (dev.glassfish.org) 2.8.10.1-50.2809 installed ----

Uninstall the component that you want to remove from your system.
pkg uninstall package-name

For example:

pkg uninstall metro

Start GlassFish Server.
See “To Start a Domain” in GlassFish Server Open Source Edition 3.1 Administration Guide.

Remove Services You Are Not Using
Consider removing services that you are not using. For example, if applications are not using
messaging, then consider removing the JMS from the server. Also consider removing EJB
Container, JCA, and so forth.

Note – There is always a potential of making mistakes when deleting components from the
GlassFish Server installation. Therefore, Oracle recommends testing your changes in a secure
development environment before implementing them in a production environment.

The Updatetool and the Administration Console both provide descriptions of each installed
component. In addition, the Updatetool also describes dependencies. You can use this
information to decide whether you need to keep these components installed.

Before you remove a component, use the asadmin list-<component>-resources
subcommand or the Administration Console to make sure that resources of a given type, for
example JMS, are not in use. For example, you might use the asadmin list-jms-resources
subcommand to make sure that JMS resources are not currently in use:

D:\glassfish3\glassfish\bin>asadmin list-jms-resources

Nothing to list

Command list-jms-resources executed successfully.

4

5

Remove Unused Components

Chapter 6 • Running in a Secure Environment 109

Run on the Web Profile if Possible
If your applications can run on the Web Profile, use that instead of the Full Platform.

Java EE 6 introduced the concept of profiles. A profile is a collection of Java EE technologies and
APIs that address specific developer communities and application types.

The following profiles are implemented through the distributions of GlassFish Server:

■ Full Platform –The full Java EE platform is designed for developers who require the full set
of Java EE APIs for enterprise application development, and is installed when you install
GlassFish Server. This profile is also installed as part of the Java EE 6 SDK installation.

■ Web Profile –This profile contains Web technologies that are a subset of the full Java
platform, and is designed for developers who do not require the full set of Java EE APIs. This
profile is also installed with Java EE 6 Web Profile SDK.

For the list of APIs in each profile, see “Java EE 6 Standards Support” in GlassFish Server Open
Source Edition 3.1-3.1.1 Release Notes.

Securing the GlassFish Server Host
A GlassFish Server production environment is only as secure as the security of the machine on
which it is running. It is important that you secure the physical machine, the operating system,
and all other software that is installed on the host machine.

The following are recommendations for securing a GlassFish Server host in a production
environment. Also check with the manufacturer of the machine and operating system for
recommended security measures.

Note – The domain and server configuration files should be accessible only by the operating
system users who configure or execute GlassFish Server.

TABLE 6–1 Securing the GlassFish Server Host

Security Action Description

Physically secure the hardware. Keep your hardware in a secured area to prevent
unauthorized operating system users from tampering
with the deployment machine or its network
connections.

Log out of the Administration Console before
navigating to a non-secure site.

If you are logged on to the Administration Console, be
sure to log out completely before browsing to an
unknown or non-secure Web site.

Run on the Web Profile if Possible

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011110

TABLE 6–1 Securing the GlassFish Server Host (Continued)
Security Action Description

Secure networking services that the operating system
provides.

Have an expert review network services such as e-mail
programs or directory services to ensure that a
malicious attacker cannot access the operating system
or system-level commands. The way you do this
depends on the operating system you use.

Sharing a file system with other machines in the
enterprise network imposes risks of a remote attack on
the file system. Be certain that the remote machines
and the network are secure before sharing the file
systems from the machine.

Use a file system that can prevent unauthorized access. Make sure that the file system on each GlassFish
Serverhost can prevent unauthorized access to
protected resources. For example, on a Windows
computer, use only NTFS.

Set file access permissions for data stored on disk. Set operating system file access permissions to restrict
access to data stored on disk. This data includes, but is
not limited to, the following:

The database files. GlassFish Server includes an
implementation of Java DB (formerly known as
Derby), however, you can use any JDBC-compliant
database.

The directory and filename location of a private
keystore, such as keystore.jks

The directory and filename location of a Root
Certificate Authority (CA) keystore, such as
cacerts.jks.

For example, operating systems provide utilities such
as umask and chmod to set the file access permissions.
At a minimum, consider using "umask 066", which
denies read and write permission to Group and
Others.

Securing the GlassFish Server Host

Chapter 6 • Running in a Secure Environment 111

TABLE 6–1 Securing the GlassFish Server Host (Continued)
Security Action Description

Limit the number of user accounts on the host
machine.

Avoid creating more user accounts than you need on
host machines, and limit the file access privileges
granted to each account. On operating systems that
allow more than one system administrator user, the
host machine should have two user accounts with
system administrator privileges and one user with
sufficient privileges to run GlassFish Server. Having
two system administrator users provides a back up at
all times. The GlassFish Server user should be a
restricted user, not a system administrator user. One
of the system administrator users can always create a
new GlassFish Server user if needed.

Important: Domain and server configuration files
should be accessible only by the operating system
users who configure or execute GlassFish Server.

Review active user accounts regularly and when
personnel leave.

Background Information: Configuration data and
some URL (Web) resources, including Java Server
Pages (JSPs) and HTML pages, are stored in clear text
on the file system. A sophisticated user or intruder
with read access to files and directories might be able
to defeat any security mechanisms you establish with
authentication and authorization schemes.

For your system administrator user accounts, choose
names that are not obvious.

For additional security, avoid choosing an obvious
name such as "system," "admin," or "administrator"
for your system administrator user accounts.

Safeguard passwords. The passwords for user accounts on production
machines should be difficult to guess and should be
guarded carefully.

Set a policy to expire passwords periodically.

Never code passwords in client applications.

Do not deploy an application that can be accessed
with the default username admin and no password.

Securing the GlassFish Server Host

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011112

TABLE 6–1 Securing the GlassFish Server Host (Continued)
Security Action Description

Safeguard password files The -passwordfile option of the asadmin command
specifies the name of a file that contains password
entries in a specific format. These password entries are
stored in clear text in the password file, and rely on file
system mechanisms for protection.

To provide additional security, create a password
alias.

Use a password alias A password alias stores a password in encrypted form
in the domain keystore, providing a clear-text alias
name to use instead of the password.

To provide additional security, use the
create-password-alias subcommand to create an
alias for the password. The password for which the
alias is created is stored in an encrypted form.

Then, specify the alias in the entry for the password in
the password file as follows:

In password files and the domain configuration file,
use the form ${alias=alias-name} to refer to the
encrypted password.

Do not run GlassFish Server as root GlassFish Servershould run only as an unprivileged
user, never as root.

The directory structure in which GlassFish Server is
located, including all files, should be protected from
access by unprivileged users.

Taking these steps helps ensure that unprivileged
users cannot insert code that can potentially be
executed by GlassFish Server server.

Consider use PAM Realm The use of a PAM Realm requires GlassFish Server to
run as an account that has read-access to a shadow
password file or the equivalent, and therefore may not
be suitable in your environment.

Do not develop on a production machine. Develop first on a development machine and then
move code to the production machine when it is
completed and tested. This process prevents bugs in
the development environment from affecting the
security of the production environment.

Securing the GlassFish Server Host

Chapter 6 • Running in a Secure Environment 113

TABLE 6–1 Securing the GlassFish Server Host (Continued)
Security Action Description

Do not install development or sample software on a
production machine.

Do not install development tools on production
machines. Keeping development tools off the
production machine reduces the leverage intruders
have should they get partial access to a production
machine.

Enable security auditing. If the operating system on which GlassFish Server
runs supports security auditing of file and directory
access, Oracle recommends using audit logging to
track any denied directory or file access violations.
Administrators should ensure that sufficient disk
space is available for the audit log.

Consider using additional software to secure your
operating system.

Most operating systems can run additional software to
secure a production environment. For example, an
Intrusion Detection System (IDS) can detect attempts
to modify the production environment. Refer to the
vendor of your operating system for information
about available software.

Apply operating system patch sets and security
patches.

Refer to the vendor of your operating system for a list
of recommended patch sets and security-related
patches.

Apply the latest maintenance packs and critical patch
updates.

Refer to the vendor of your operating system for a list
of maintenance packs and critical patch updates.

Securing GlassFish Server
GlassFish Server provides a powerful and flexible set of software tools for securing the
subsystems and applications that run on a server instance. The following table provides a
checklist of essential features that Oracle recommends you use to secure your production
environment.

Securing GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011114

TABLE 6–2 Securing GlassFish Server

Security Action Description

Enable Secure Admin. The secure administration feature allows an
administrator to secure all administrative
communication between the domain administration
server (DAS), any remote instances, and
administration clients such as the asadmin utility, the
administration console, and REST clients.

In addition, secure administration helps to prevent
DAS-to-DAS and instance-to-instance traffic, and
carefully restricts administration-client-to-instance
traffic.

The secure administration feature provides a secure
environment, in which you can be confident that
rogue users or processes cannot intercept or corrupt
administration traffic or impersonate legitimate
GlassFish Server components.

See Chapter 5, “Managing Administrative Security”

Protect the .asadminpass file If you create a domain with the --savelogin option,
create-domain saves the administration user name
and password in the .asadminpass file in the user's
home directory.

Make sure that this file remains protected.
Information stored in this file will be used by asadmin
commands to manage this domain.

Deploy production-ready security providers to the
security realm.

Java Authorization Contract for Containers (JACC) is
the part of the Java EE specification that defines an
interface for pluggable authorization providers. This
enables you to set up third-party plug-in modules to
perform authorization.

By default, the GlassFish Server provides a simple,
file-based authorization engine that complies with the
JACC specification. You can also specify additional
third-party JACC providers.

If you have purchased or written your own security
providers, make sure that you have deployed and
configured them properly.

Securing GlassFish Server

Chapter 6 • Running in a Secure Environment 115

TABLE 6–2 Securing GlassFish Server (Continued)
Security Action Description

Use SSL, but do not use the self-signed certificates in a
production environment.

To prevent sensitive data from being compromised,
secure data transfers by using HTTPS.

By default, GlassFish Server uses self-signed
certificates. The self-signed certificates that GlassFish
Server uses might not be trusted by clients by default
because a certificate authority does not vouch for the
authenticity of the certificate.

You can instead use your own certificates, as described
in “Using Your Own Certificates” on page 94.

Restrict the size and the time limit of requests on
external channels to prevent Denial of Service attacks.

To prevent some Denial of Service (DoS) attacks,
restrict the size of a message as well as the maximum
time it takes a message to arrive.

The default setting for maximum post size is 2097152
bytes and 900 seconds for the request timeout.

Enable authentication and authorization auditing. Auditing is the process of recording key security
events in your GlassFish Server environment. You use
audit modules to develop an audit trail of all
authentication and authorization decisions. To enable
audit logging, two steps are required:

1. On the Security page, select the Audit Logging
Enabled checkbox to enable audit logging.

2. Set the auditOn property for the active audit
module to true.

Review the auditing records periodically to detect
security breaches and attempted breaches. Noting
repeated failed logon attempts or a surprising pattern
of security events can prevent serious problems.

Set logging for security and SSL messages. Consider setting module log levels for
table.javax.enterprise.system.ssl.security and
javax.enterprise.system.core.security. You can set a
level from Severe to Finest (the default is Info), but be
aware that the finer logging levels may produce a large
log file.

By default, GlassFish Server logging messages are
recorded in the server log, and you can set the file
rotation limit, as described in rotate-log(1)

Ensure that you have correctly assigned users to the
correct groups.

Make sure you have assigned the desired set of users to
the right groups. In particular, make sure that users
assigned to the asadmin group need to be members of
that group.

Securing GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011116

TABLE 6–2 Securing GlassFish Server (Continued)
Security Action Description

Create no fewer than two user accounts in the
asadmin group.

The user admin is created when you install GlassFish
Server. For production environments, create at least
one other account in the asadmin group in case one
account password is compromised. When creating
asadmin users give them unique names that cannot be
easily guessed.

Assign a password to the admin account. By default, GlassFish Server includes a single account
for user "admin" and an empty password. For
production environments this default is inherently
unsecure, and you should set a password for admin.

Securing Applications
Although much of the responsibility for securing the GlassFish Server resources in a domain fall
within the scope of the server, some security responsibilities lie within the scope of individual
applications. For some security options, GlassFish Server enables you to determine whether the
server or individual applications are responsible. For each application that you deploy in a
production environment, review the items in the following table to verify that you have secured
its resources.

TABLE 6–3 Securing Applications

Security Action Description

Use JSP comment tags instead of HTML comment
tags.

Comments in JSP files that might contain sensitive
data and or other comments that are not intended for
the end user should use the JSP syntax of <%/* xxx
*/%> instead of the HTML syntax <!-- xxx -->. The
JSP comments, unlike the HTML comments, are
deleted when the JSP is compiled and therefore cannot
be viewed in the browser.

Do not install uncompiled JSPs and other source code
on the production machine.

Always keep source code off of the production
machine. Getting access to your source code allows an
intruder to find security holes.

Consider precompiling JSPs and installing only the
compiled JSPs on the production machine. To do this,
set the deploy subcommand -precompilejsp option
to true for the component.

When set to true, the deploy and redeploy

subcommands -precompilejsp option compiles JSPs
during deploy time. If set to false (the default), JSPs are
compiled during runtime.

Securing Applications

Chapter 6 • Running in a Secure Environment 117

TABLE 6–3 Securing Applications (Continued)
Security Action Description

Configure your applications to use SSL. Set the transport-guarantee to CONFIDENTIAL in
the user-data-constraint element of the web.xml file
whenever appropriate.

Examine applications for security. There are instances where an application can lead to a
security vulnerability.

Of particular concern is code that uses Java native
interface (JNI) because Java positions native code
outside of the scope of Java security. If Java native code
behaves errantly, it is only constrained by the
operating system. That is, the Java native code can do
anything GlassFish Server itself can do. This potential
vulnerability is further complicated by the fact that
buffer overflow errors are common in native code and
can be used to run arbitrary code.

If your applications contain untrusted code, enable
the Java security manager.

The Java security manager defines and enforces
permissions for classes that run within a JVM. In
many cases, where the threat model does not include
malicious code being run in the JVM, the Java security
manager is unnecessary. However, when third parties
use GlassFish Server and untrusted classes are being
run, the Java security manager may be useful. See
“Enabling and Disabling the Security Manager” in
GlassFish Server Open Source Edition 3.1 Application
Development Guide.

Replace HTML special characters when servlets or
JSPs return user-supplied data.

The ability to return user-supplied data can present a
security vulnerability called cross-site scripting, which
can be exploited to steal a user's security
authorization. For a detailed description of cross-site
scripting, refer to "Understanding Malicious Content
Mitigation for Web Developers" (a CERT security
advisory) at http://www.cert.org/tech_tips/
malicious_code_mitigation.html
(http://www.cert.org/
tech_tips/malicious_code_mitigation.html).

To remove the security vulnerability, before you
return data that a user has supplied, scan the data for
HTML special characters. If you find any such
characters, replace them with their HTML entity or
character reference. Replacing the characters prevents
the browser from executing the user-supplied data as
HTML.

Securing Applications

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011118

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html

Index

A
additional information, on Message Security, 82
admin password, 19

resetting, 37–38
administration realm, 54
Administrative Security, Managing, 87–103
aliases

creating for passwords, 39–40
deleting for a password, 41
for passwords, 20, 39–42
listing for passwords, 40–41

application security, overview, 70
asadmin, configure-ldap-for-admin, 61–62
audit modules, 25

creating, 42–43
deleting, 43–44
listing, 43

authentication
methods, 16–20
overview, 16–20
overview of types, 16
realms, 53–62
single sign-on, 20

authorization
JACC providers, 21–22
overview, 20–25

C
certificate files, overview, 27–28
certificate realm, 54

certificates
administering with keytool, 44–49
deleting with keytool, 49
generating with keytool, 44–46
overview, 26–27
signing with keytool, 46–49

certificates, SSL, 59–60, 60–61, 61–62
change-admin-password command, 37–38
change-master-password subcommand, 34
changing

admin password, 37–38
master password, 34

clear text, 57–59
Cluster Mode, Administering Security, 83–85
configure-ldap-for-admin, 61–62
configuring, message protection policies, 74–77
create-audit-module subcommand, 42–43
create-auth-realm command, 55, 57–59
create-file-user command, 63
create-message-security-provider command, 78,

80–81
create-password-alias command, 39–40
creating

a custom realm, 55
audit modules, 42–43
message security provider, 78, 80–81
password alias, 39–40
realms, 55
users, 63

custom realm, creating, 55

119

D
DAS, LDAP authentication, 61–62
delete-audit-module subcommand, 43–44
delete-auth-realm command, 57
delete-file-user command, 65–66
delete-message-security-provider command, 79–80
delete-password-alias command, 41
deleting

audit modules, 43–44
message security provider, 79–80
password alias, 41
realms, 57
users, 65–66

digest realm, 54
configuring, 57–59

E
enabling

default client provider for messaging, 74
default message security provider, 73

encrypting a password, 39

F
file for passwords, 38–39
file groups, listing, 64
file realm, 54
file users

creating, 63
deleting, 65–66
listing, 63–64
listing groups, 64
updating, 65

firewall guidelines, 25

G
generating certificates, with keytool, 44–46

J
JACC, overview, 21–22
JACC providers, administering, 49–51
JDBC, configuring realm, 57–59
JDBC realm, 54
JSSE security

administering certificates, 44–49
deleting a certificate, 49
generating a certificate, 44–46
signing a certificate, 46–49

K
keystore file, overview, 27–28
keytool, 59–60, 60–61, 61–62
keytool utility

deleting a certificate, 49
generating a certificate, 44–46
signing a certificate, 46–49

L
LDAP

DAS, 61–62
OID, 59–60
OID/OVD, 61–62
OVD, 60–61

LDAP realm, OVD/OID, 54
list-audit-modules command, 43
list-auth-realm command, 56
list-file-groups command, 64
list-file-users command, 63–64
list-message-security-providers command, 79
list-password-aliases command, 40–41
listing

audit modules, 43
file groups, 64
message security provider, 79
password aliases, 40–41
realms, 56
users, 63–64

Index

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011120

M
master password, 17

changing, 33–35
saving to file, 18–19
understanding synchronization, 17–18
use with start-cluster, 35–36
use with start-instance, 35–36
using default, 18
using when creating domain, 19

message protection policies, 70
configuring, 74–77

message security, 67–82
overview, 67–73
roles, 72

message security providers
administering, 78–81
creating, 78, 80–81
deleting, 79–80
listing, 79
updating, 79

O
OID, LDAP, 59–60
OID/OVD, LDAP, 61–62
Oracle Solaris realm, 54
OVD, LDAP, 60–61
OVD/OID, LDAP realm, 54
overview

certificates and SSL, 26–32
message security, 67–73
passwords, 17–20
realms, 53–62
roles, 20–21
system security, 15–33
web services security, 68

P
PAM realm, 54
passwordfile option, 38–39
passwords

admin, 19

passwords (Continued)
administering, 33–42
aliases, 20, 39–42
changing admin password, 37–38
changing master, 34
encoded, 19
encrypting, 39
master, 17
overview, 17–20
setting from a file, 38–39

R
realms

certificate, 27
configuring digest realm, 57–59
configuring JDBC, 57–59
creating, 55
deleting, 57
listing, 56
overview, 53–62
updating, 56

roles, overview, 20–21

S
sample application, web services, 73
Secure Environment, Running In, 105–118
security

administering, 15–51
JSSE, 44–49
managing for users, 62–66
message, 67–82
overview, 15–33
tools for managing, 32–33

server authentication modules, JSR 196, 16–17
server policy file

changing default permissions, 24–25
working with, 22–25

set command, for updating an authentication
realm, 56

single sign-on, 20
SOAP, 68

Index

121

SSL, 59–60, 60–61, 61–62
overview, 28–29

SSL mutual authentication, custom authentication of
client certificate, 29–32

T
tools, for managing system security, 32–33
truststore file, overview, 27–28

U
update-file-user command, 65
update-message-security-provider command, 79
update-password-alias command, 41–42
updating

message security provider, 79
password alias, 41–42
realms, 56
users, 65

user security
administering, 53–66
creating users, 63
deleting users, 65–66
listing file groups, 64
listing users, 63–64
managing, 62–66
updating users, 65

V
viewing

audit modules, 43
authentication realms, 56
file users, 63–64

W
Wallet Manager, 59–60, 60–61, 61–62
web services

message security, 67–82

web services (Continued)
sample application, 73

WSIT, 68

Index

GlassFish Server Open Source Edition 3.1 Security Guide • August 2011122

	GlassFish Server Open Source Edition 3.1 Security Guide
	Preface
	GlassFish Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Administering System Security
	About System Security in GlassFish Server
	Authentication
	Authentication Types
	JSR 196 Server Authentication Modules
	Passwords
	Master Password and Keystores
	Understanding Master Password Synchronization
	Using the Default Master Password
	Saving the Master Password to a File
	Using the Master Password When Creating a Domain
	Administration Password
	Encoded Passwords
	Web Browsers and Password Storage

	Password Aliases
	Single Sign-on

	Authorization
	Roles
	Java Authorization Contract for Containers
	Working With the server.policy Policy File
	Contents of server.policy
	Changing the Default Permissions

	Auditing
	Firewalls
	Certificates and SSL
	Certificates
	Certificate Chains
	Certificate Files
	Secure Sockets Layer
	Ciphers
	Name-based Virtual Hosts

	Custom Authentication of Client Certificate in SSL Mutual Authentication
	Understanding the AppservCertificateLoginModule Class
	Example AppservCertificateLoginModule Code
	Setting the JAAS Context

	Tools for Managing System Security

	Administering Passwords
	To Change the Master Password
	Additional Considerations for the start-instance and start-cluster Subcommands
	Using start-instance and start-cluster With a Password File
	To Change an Administration Password
	To Set a Password From a File
	Administering Password Aliases
	To Create a Password Alias
	To List Password Aliases
	To Delete a Password Alias
	To Update a Password Alias

	Administering Audit Modules
	To Create an Audit Module
	To List Audit Modules
	To Delete an Audit Module

	Administering JSSE Certificates
	To Generate a Certificate by Using keytool
	To Sign a Certificate by Using keytool
	To Delete a Certificate by Using keytool

	Administering JACC Providers
	Administering JACC Providers From the Administration Console
	Administering JACC Providers from the Command Line

	Administering User Security
	Administering Authentication Realms
	Overview of Authentication Realms
	To Create an Authentication Realm
	To List Authentication Realms
	To Update an Authentication Realm
	To Delete an Authentication Realm
	To Configure a JDBC or Digest Authentication Realm
	To Configure LDAP Authentication with OID
	To configure LDAP Authentication with OVD
	To Enable LDAP Authentication on the GlassFish Server DAS

	Administering File Users
	To Create a File User
	To List File Users
	To List File Groups
	To Update a File User
	To Delete a File User

	Administering Message Security
	About Message Security in GlassFish Server
	Security Tokens and Security Mechanisms
	Authentication Providers
	Message Protection Policies
	Application-Specific Web Services Security
	Message Security Administration
	Message Security Tasks
	Message Security Roles
	System Administrator
	Application Deployer
	Application Developer/Assembler

	Sample Application for Web Services

	Enabling Default Message Security Providers for Web Services
	To Enable a Default Server Provider
	To Enable a Default Client Provider

	Configuring Message Protection Policies
	Message Protection Policy Mapping
	To Configure the Message Protection Policies for a Provider
	Setting the Request and Response Policy for the Application Client Configuration

	Administering Non-default Message Security Providers
	To Create a Message Security Provider
	To List Message Security Providers
	To Update a Message Security Provider
	To Delete a Message Security Provider
	To Configure a Servlet Layer Server Authentication Module (SAM)

	Enabling Message Security for Application Clients
	Additional Information About Message Security

	Administering Security in Cluster Mode
	Configuring Certificates in Cluster Mode
	Dynamic Reconfiguration
	Enabling Dynamic Configuration

	Understanding Synchronization

	Managing Administrative Security
	Secure Administration Overview
	How Secure Admin Works: The Big Picture
	Functions Performed by Secure Admin
	Which Administration Account is Used?
	What Authentication Methods Are Used for Secure Administration?
	Understanding How Certificate Authentication is Performed
	What Certificates Are Used?
	Self-Signed Certificates and Trust
	Using Your Own Certificates

	An Alternate Approach: Using Distinguished Names to Specify Certificates
	Guarding Against Unwanted Connections

	Considerations When Running GlassFish Server With Default Security
	Running Secure Admin
	Prerequisites for Running Secure Admin
	An Alternate Approach: Using A User Name and Password for Internal Authentication and Authorization
	Example of Running enable-secure-admin

	Additional Considerations When Creating Local Instances
	Secure Admin Use Case
	Upgrading an SSL-Enabled Secure GlassFish Installation to Secure Admin

	Running in a Secure Environment
	Determining Your Security Needs
	Understand Your Environment
	Read Security Publications

	Installing GlassFish Server in a Secure Environment
	Enable the Secure Administration Feature

	Remove Unused Components
	Removing Installed Components
	Procedure To Remove an Installed Component

	Remove Services You Are Not Using

	Run on the Web Profile if Possible
	Securing the GlassFish Server Host
	Securing GlassFish Server
	Securing Applications

	Index

