
GlassFish Server Open Source
Edition 3.1 Add-On Component
Development Guide

Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.

Part No: 821–2444–12
July 2011

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110722@25097

Contents

Preface ...9

1 Introduction to the Development Environment for GlassFish Server Add-On
Components ...17
GlassFish Server Modular Architecture and Add-On Components ... 17
OSGi Alliance Module Management Subsystem ... 18
Hundred-Kilobyte Kernel .. 18
Overview of the Development Process for an Add-On Component .. 19

Writing HK2 Components ... 19
Extending the Administration Console .. 19
Extending the asadmin Utility .. 20
Adding Monitoring Capabilities .. 20
Adding Configuration Data for a Component ... 20
Adding Container Capabilities .. 21
Creating a Session Persistence Module ... 21
Packaging and Delivering an Add-On Component .. 21

2 Writing HK2 Components ..23
HK2 Component Model ... 23
Services in the HK2 Component Model ... 24
HK2 Runtime ... 24

Scopes of Services ... 24
Instantiation of Components in HK2 .. 25
HK2 Lifecycle Interfaces ... 25

Inversion of Control .. 26
Injecting HK2 Components ... 26
Extraction .. 27
Instantiation Cascading in HK2 ... 27

3

Identifying a Class as an Add-On Component .. 28
Using the Apache Maven Build System to Develop HK2 Components 29

3 Extending the Administration Console ...31
Administration Console Architecture .. 32

Implementing a Console Provider ... 32
About Administration Console Templates .. 33
About Integration Points .. 33
Specifying the ID of an Add-On Component .. 34
Adding Functionality to the Administration Console .. 35

Adding a Node to the Navigation Tree .. 36
Adding Tabs to a Page ... 38
Adding a Task to the Common Tasks Page .. 40
Adding a Task Group to the Common Tasks Page .. 42
Adding Content to a Page ... 43
Adding a Page to the Administration Console ... 45

Adding Internationalization Support ... 46
Changing the Theme or Brand of the Administration Console .. 46
Creating an Integration Point Type .. 48

▼ To Create an Integration Point Type ... 48

4 Extending the asadminUtility ...51
About the Administrative Command Infrastructure of GlassFish Server 51
Adding an asadmin Subcommand .. 52

Representing an asadmin Subcommand as a Java Class .. 52
Specifying the Name of an asadmin Subcommand .. 52
Ensuring That an AdminCommand Implementation Is Stateless ... 53
Example of Adding an asadmin Subcommand .. 53

Adding Parameters to an asadmin Subcommand ... 54
Representing a Parameter of an asadmin Subcommand ... 54
Identifying a Parameter of an asadmin Subcommand ... 55
Specifying Whether a Parameter Is an Option or an Operand ... 55
Specifying the Name of an Option ... 55
Specifying the Acceptable Values of a Parameter ... 56
Specifying the Default Value of a Parameter .. 57

Contents

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 20114

Specifying Whether a Parameter Is Required or Optional .. 57
Example of Adding Parameters to an asadmin Subcommand ... 57

Making asadmin Subcommands Cluster-Aware ... 58
Specifying Allowed Targets .. 59
The Target Utility ... 60
Specifying asadmin Subcommand Execution .. 60
Subcommand Preprocessing and Postprocessing ... 61
Running a Command from Another Command ... 62

Adding Message Text Strings to an asadmin Subcommand .. 63
Enabling an asadmin Subcommand to Run ... 65
Setting the Context of an asadmin Subcommand ... 66
Changing the Brand in the GlassFish Server CLI .. 66
Examples of Extending the asadmin Utility ... 67
Implementing Create, Delete, and List Commands Using Annotations 71

Command Patterns .. 71
Resolvers ... 73
The @Create Annotation .. 73
The @Delete Annotation .. 74
The @Listing Annotation .. 75
Create Command Decorators .. 75
Delete Command Decorators .. 77
Specifying Command Execution ... 78
Using Multiple Command Annotations ... 79

5 Adding Monitoring Capabilities ...81
Defining Statistics That Are to Be Monitored .. 81

Defining an Event Provider .. 82
Sending an Event .. 87

Updating the Monitorable Object Tree .. 88
Creating Event Listeners ... 88
Representing a Component's Statistics in an Event Listener Class .. 89
Subscribing to Events From Event Provider Classes ... 91
Registering an Event Listener ... 92

Dotted Names and REST URLs for an Add-On Component's Statistics 93
Example of Adding Monitoring Capabilities ... 94

Contents

5

6 Adding Configuration Data for a Component .. 99
How GlassFish Server Stores Configuration Data ... 99
Defining an Element ... 100

▼ To Define an Element .. 100
Defining an Attribute of an Element ... 101

Representing an Attribute of an Element .. 101
Specifying the Data Type of an Attribute .. 101
Identifying an Attribute of an Element .. 101
Specifying the Name of an Attribute .. 102
Specifying the Default Value of an Attribute .. 102
Specifying Whether an Attribute Is Required or Optional ... 102
Example of Defining an Attribute of an Element ... 103

Defining a Subelement .. 103
▼ To Define a Subelement .. 103

Validating Configuration Data .. 104
Initializing a Component's Configuration Data .. 105

▼ To Define a Component's Initial Configuration Data ... 106
▼ To Write a Component's Initial Configuration Data to the domain.xml File 106

Creating a Transaction to Update Configuration Data .. 108
▼ To Create a Transaction to Update Configuration Data ... 109

Dotted Names and REST URLs of Configuration Attributes ... 110
Examples of Adding Configuration Data for a Component .. 111

7 Adding Container Capabilities ..115
Creating a Container Implementation .. 115

Marking the Class With the @Service Annotation ... 115
Implementing the Container Interface .. 116

Adding an Archive Type ... 118
Implementing the ArchiveHandler Interface .. 119

Creating Connector Modules .. 120
Associating File Types With Containers by Using the Sniffer Interface 120

Example of Adding Container Capabilities ... 122
Container Component Code .. 122
Web Client Code .. 128

Contents

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 20116

8 Creating a Session Persistence Module ... 131
Implementing the PersistenceStrategyBuilder Interface .. 131

9 Packaging, Integrating, and Delivering an Add-On Component .. 135
Packaging an Add-On Component ... 135
Integrating an Add-On Component With GlassFish Server .. 136
Delivering an Add-On Component Through Update Tool ... 136

A Integration Point Reference ..137
Integration Point Attributes ... 137
org.glassfish.admingui:navNode Integration Point ... 138
org.glassfish.admingui:rightPanel Integration Point ... 139
org.glassfish.admingui:rightPanelTitle Integration Point .. 140
org.glassfish.admingui:serverInstTab Integration Point ... 140
org.glassfish.admingui:commonTask Integration Point ... 141
org.glassfish.admingui:configuration Integration Point ... 141
org.glassfish.admingui:resources Integration Point ... 142
org.glassfish.admingui:customtheme Integration Point ... 142
org.glassfish.admingui:masthead Integration Point ... 143
org.glassfish.admingui:loginimage Integration Point ... 143
org.glassfish.admingui:loginform Integration Point ... 144
org.glassfish.admingui:versioninfo Integration Point ... 144

Index ... 147

Contents

7

8

Preface

This document explains how to use published interfaces of GlassFish Server Open Source
Edition to develop add-on components for GlassFish Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable for GlassFish Server.

This document is for software developers who are developing add-on components for
GlassFish Server. This document assumes that the developers are working with a distribution of
GlassFish Server. Access to the source code of the GlassFish project is not required to perform
the tasks in this document. This document also assumes the ability to program in the Java
language.

This preface contains information about and conventions for the entire GlassFish Server Open
Source Edition (GlassFish Server) documentation set.

GlassFish Server 3.1 is developed through the GlassFish project open-source community at
http://glassfish.java.net/. The GlassFish project provides a structured process for
developing the GlassFish Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the GlassFish Server source code and to contribute to the
development of the GlassFish Server. The GlassFish project is designed to encourage
communication between Oracle engineers and the community.

The following topics are addressed here:

■ “GlassFish Server Documentation Set” on page 10
■ “Related Documentation” on page 11
■ “Typographic Conventions” on page 12
■ “Symbol Conventions” on page 13
■ “Default Paths and File Names” on page 13
■ “Documentation, Support, and Training” on page 14
■ “Searching Oracle Product Documentation” on page 14
■ “Third-Party Web Site References” on page 15

9

http://glassfish.java.net/

GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. For an introduction to GlassFish Server, refer to the books in the order in which
they are listed in the following table.

TABLE P–1 Books in the GlassFish Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK), and
database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Deployment Planning Guide Explains how to build a production deployment of GlassFish Server that
meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Security Guide Provides instructions for configuring and administering GlassFish Server
security.

Application Deployment Guide Explains how to assemble and deploy applications to the GlassFish Server
and provides information about deployment descriptors.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the GlassFish
Server. These applications follow the open Java standards model for Java EE
components and application programmer interfaces (APIs). This guide
provides information about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to develop
add-on components for GlassFish Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for GlassFish Server.

Embedded Server Guide Explains how to run applications in embedded GlassFish Server and to
develop applications in which GlassFish Server is embedded.

Preface

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201110

TABLE P–1 Books in the GlassFish Server Documentation Set (Continued)
Book Title Description

High Availability
Administration Guide

Explains how to configure GlassFish Server to provide higher availability and
scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of GlassFish Server.

Troubleshooting Guide Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using GlassFish
Server.

Reference Manual Provides reference information in man page format for GlassFish Server
administration commands, utility commands, and related concepts.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for Open
Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue Administration
Guide

Explains how to set up and manage a Message Queue messaging system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue for
programmatically configuring and monitoring Message Queue resources in
conformance with the Java Management Extensions (JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing Java
messaging applications (Java clients) that work with GlassFish Server.

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers working
with Message Queue who want to use the C language binding to the Message
Queue messaging service to send, receive, and process Message Queue
messages.

Related Documentation
The following tutorials explain how to develop Java EE applications:

■ Your First Cup: An Introduction to the Java EE Platform (http://download.oracle.com/
javaee/6/firstcup/doc/). For beginning Java EE programmers, this short tutorial
explains the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on the Enterprise
JavaBeans specification, a JAX-RS web service, and a JavaServer Faces component for the
web front end.

■ The Java EE 6 Tutorial (http://download.oracle.com/javaee/6/tutorial/doc/). This
comprehensive tutorial explains how to use Java EE 6 platform technologies and APIs to
develop Java EE applications.

Preface

11

http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/tutorial/doc/

Javadoc tool reference documentation for packages that are provided with GlassFish Server is
available as follows.

■ The API specification for version 6 of Java EE is located at http://download.oracle.com/
javaee/6/api/.

■ The API specification for GlassFish Server 3.1, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications (http://www.oracle.com/technetwork/java/
javaee/tech/index.html) might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see the NetBeans Documentation, Training & Support page
(http://www.netbeans.org/kb/).

For information about the Java DB database for use with the GlassFish Server, see the Java DB
product page (http://www.oracle.com/technetwork/java/javadb/overview/index.html).

The Java EE Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The Java EE Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the Java EE Samples project page
(http://java.net/projects/glassfish-samples).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Preface

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201112

http://download.oracle.com/javaee/6/api/
http://download.oracle.com/javaee/6/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://java.net/projects/glassfish-samples
http://java.net/projects/glassfish-samples

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
GlassFish Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac OS operating system:

user’s-home-directory/glassfish3/glassfish

Windows, all installations:

SystemDrive:\glassfish3\glassfish

Preface

13

TABLE P–4 Default Paths and File Names (Continued)
Placeholder Description Default Value

as-install-parent Represents the parent of the base installation
directory for GlassFish Server.

Installations on the Oracle Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3

Windows, all installations:

SystemDrive:\glassfish3

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://www.oracle.com/technetwork/indexes/documentation/
index.html)

■ Support (http://www.oracle.com/us/support/index.html)
■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the Oracle Documentation
(http://www.oracle.com/technetwork/indexes/documentation/index.html) web site, you
can use a search engine by typing the following syntax in the search field:

search-term site:oracle.com

For example, to search for “broker,” type the following:

broker site:oracle.com

Preface

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201114

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/us/support/index.html
http://education.oracle.com/
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Preface

15

16

Introduction to the Development Environment
for GlassFish Server Add-On Components

GlassFish Server Open Source Edition enables an external vendor such as an independent
software vendor (ISV), original equipment manufacturer (OEM), or system integrator to
incorporate GlassFish Server into a new product with the vendor's own brand name. External
vendors can extend the functionality of GlassFish Server by developing add-on components for
GlassFish Server. GlassFish Server provides interfaces to enable add-on components to be
configured, managed, and monitored through existing GlassFish Server tools such as the
Administration Console and the asadmin utility.

The following topics are addressed here:
■ “GlassFish Server Modular Architecture and Add-On Components” on page 17
■ “OSGi Alliance Module Management Subsystem” on page 18
■ “Hundred-Kilobyte Kernel” on page 18
■ “Overview of the Development Process for an Add-On Component” on page 19

GlassFish Server Modular Architecture and Add-On
Components

GlassFish Server has a modular architecture in which the features of GlassFish Server are
provided by a consistent set of components that interact with each other. Each component
provides a small set of functionally related features.

The modular architecture of GlassFish Server enables users to download and install only the
components that are required for the applications that are being deployed. As a result, start-up
times, memory consumption, and disk space requirements are all minimized.

The modular architecture of GlassFish Server enables you to extend the basic functionality of
GlassFish Server by developing add-on components. An add-on component is an encapsulated
definition of reusable code that has the following characteristics:
■ The component provides a set of Java classes.

1C H A P T E R 1

17

■ The component offers services and public interfaces.
■ The component implements the public interfaces with a set of private classes.
■ The component depends on other components.

Add-on components that you develop interact with GlassFish Server in the same way as
components that are supplied in GlassFish Server distributions.

You can create and offer new or updated add-on components at any time. GlassFish Server
administrators can install add-on components and update or remove installed components
after GlassFish Server is installed. For more information, see Chapter 10, “Extending and
Updating GlassFish Server,” in GlassFish Server Open Source Edition 3.1 Administration Guide.

OSGi Alliance Module Management Subsystem
To enable components to be added when required, GlassFish Server provides a lightweight and
extensible kernel that uses the module management subsystem from the OSGi Alliance. Any
GlassFish Server component that plugs in to this kernel must be implemented as an OSGi
bundle. To enable an add-on component to plug in to the GlassFish Server kernel in the same
way as other components, package the component as an OSGi bundle. For more information,
see “Packaging an Add-On Component” on page 135.

The default OSGi module management subsystem in GlassFish Server is the Apache Felix OSGi
framework. However, the GlassFish Server kernel uses only the OSGi Service Platform Release 4
API. Therefore, GlassFish Server supports other OSGi module management subsystems that
are compatible with the OSGi Service Platform Release 4 API.

Hundred-Kilobyte Kernel
The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of GlassFish
Server. HK2 consists of the following technologies:

■ Module subsystem. The HK2 module subsystem provides isolation between components of
the GlassFish Server. The HK2 module subsystem is compatible with existing technologies
such as the OSGi framework.

■ Component model. The HK2 component model eases the development of components
that are also services. GlassFish Server discovers these components automatically and
dynamically. HK2 components use injection of dependencies to express dependencies on
other components. GlassFish Server provides two-way mappings between the services of an
HK2 component and OSGi services.

For more information, see Chapter 2, “Writing HK2 Components.”

OSGi Alliance Module Management Subsystem

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201118

http://www.osgi.org/
http://felix.apache.org
http://felix.apache.org
http://www.osgi.org/Release4/HomePage
https://hk2.dev.java.net/

Overview of the Development Process for an Add-On
Component

To ensure that an add-on component behaves identically to components that are supplied in
GlassFish Server distributions, the component must meet the following requirements:

■ If the component generates management data or monitoring data, it must provide that data
to other GlassFish Server components in the same way as other GlassFish Server
components.

■ If the component generates management data or monitoring data, it must provide that data
to users through GlassFish Server administrative interfaces such as Administration Console
and the asadmin utility.

■ The component must be packaged and delivered as an OSGi bundle.

To develop add-on components that meet these requirements, follow the development process
that is described in the following sections:

■ “Writing HK2 Components” on page 19
■ “Extending the Administration Console” on page 19
■ “Extending the asadmin Utility” on page 20
■ “Adding Monitoring Capabilities” on page 20
■ “Adding Configuration Data for a Component” on page 20
■ “Adding Container Capabilities” on page 21
■ “Creating a Session Persistence Module” on page 21
■ “Packaging and Delivering an Add-On Component” on page 21

Writing HK2 Components
The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of GlassFish
Server. To interact with GlassFish Server, add-on components plug in to this kernel. In the HK2
component model, the functions of an add-on component are declared through a
contract-service implementation paradigm. An HK2 contract identifies and describes the
building blocks or the extension points of an application. An HK2 service implements an HK2
contract.

For more information, see Chapter 2, “Writing HK2 Components.”

Extending the Administration Console
The Administration Console is a browser-based tool for administering GlassFish Server. It
features an easy-to-navigate interface and online help. Extending the Administration Console
enables you to provide a graphical user interface for administering your add-on component.

Overview of the Development Process for an Add-On Component

Chapter 1 • Introduction to the Development Environment for GlassFish Server Add-On Components 19

You can use any of the user interface features of the Administration Console, such as tree nodes,
links on the Common Tasks page, tabs and sub-tabs, property sheets, and JavaServer Faces
pages. Your add-on component implements a marker interface and provides a configuration
file that describes how your customizations integrate with the Administration Console.

For more information, see Chapter 3, “Extending the Administration Console.”

Extending the asadminUtility
The asadmin utility is a command-line tool for configuring and administering GlassFish Server.
Extending the asadmin utility enables you to provide administrative interfaces for an add-on
component that are consistent with the interfaces of other GlassFish Server components. A user
can run asadmin subcommands either from a command prompt or from a script. For more
information about the asadmin utility, see the asadmin(1M) man page.

For more information, see Chapter 4, “Extending the asadmin Utility.”

Adding Monitoring Capabilities
Monitoring is the process of reviewing the statistics of a system to improve performance or solve
problems. By monitoring the state of components and services that are deployed in the
GlassFish Server, system administrators can identify performance bottlenecks, predict failures,
perform root cause analysis, and ensure that everything is functioning as expected. Monitoring
data can also be useful in performance tuning and capacity planning.

An add-on component typically generates statistics that the GlassFish Server can gather at run
time. Adding monitoring capabilities enables an add-on component to provide statistics to
GlassFish Server in the same way as components that are supplied in GlassFish Server
distributions. As a result, system administrators can use the same administrative interfaces to
monitor statistics from any installed GlassFish Server component, regardless of the origin of the
component.

For more information, see Chapter 5, “Adding Monitoring Capabilities.”

Adding Configuration Data for a Component
The configuration data of a component determines the characteristics and runtime behavior of
a component. GlassFish Server provides interfaces to enable an add-on component to store its
configuration data in the same way as other GlassFish Server components. These interfaces are
similar to interfaces that are defined in Java Specification Request (JSR) 222: Java Architecture
for XML Binding (JAXB) 2.0. By using these interfaces to store configuration data, you ensure
that the add-on component is fully integrated with GlassFish Server. As a result, administrators
can configure an add-on component in the same way as they can configure other GlassFish
Server components.

Overview of the Development Process for an Add-On Component

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201120

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

For more information, see Chapter 6, “Adding Configuration Data for a Component.”

Adding Container Capabilities
Applications run on GlassFish Server in containers. GlassFish Server enables you to create
containers that extend or replace the existing containers of GlassFish Server. Adding container
capabilities enables you to run new types of applications and to deploy new archive types in
GlassFish Server.

For more information, see Chapter 7, “Adding Container Capabilities.”

Creating a Session Persistence Module
GlassFish Server enables you to create a session persistence module in the web container for
high availability-related functionality by implementing the PersistenceStrategyBuilder
interface . Using the PersistenceStrategyBuilder interface in an HK2 service makes the
session manager extensible because you can implement a new persistence type without having
to modify the web container code.

For information about other high-availability, session persistence solutions, see Chapter 9,
“Configuring High Availability Session Persistence and Failover,” in GlassFish Server Open
Source Edition 3.1 High Availability Administration Guide.

For more information, see Chapter 8, “Creating a Session Persistence Module.”

Packaging and Delivering an Add-On Component
Packaging an add-on component enables the component to interact with the GlassFish Server
kernel in the same way as other components. Integrating a component with GlassFish Server
enables GlassFish Server to discover the component at runtime. If an add-on component is an
extension or update to existing installations of GlassFish Server, deliver the component through
Update Tool.

For more information, see Chapter 9, “Packaging, Integrating, and Delivering an Add-On
Component.”

Overview of the Development Process for an Add-On Component

Chapter 1 • Introduction to the Development Environment for GlassFish Server Add-On Components 21

22

Writing HK2 Components

The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of GlassFish
Server. To interact with GlassFish Server, add-on components plug in to this kernel. In the HK2
component model, the functions of an add-on component are declared through a
contract-service implementation paradigm. An HK2 contract identifies and describes the
building blocks or the extension points of an application. An HK2 service implements an HK2
contract.

The following topics are addressed here:

■ “HK2 Component Model” on page 23
■ “Services in the HK2 Component Model” on page 24
■ “HK2 Runtime” on page 24
■ “Inversion of Control” on page 26
■ “Identifying a Class as an Add-On Component” on page 28
■ “Using the Apache Maven Build System to Develop HK2 Components” on page 29

HK2 Component Model
The Hundred-Kilobyte Kernel (HK2) provides a module system and component model for
building complex software systems. HK2 forms the core of GlassFish Server's architecture.

The module system is responsible for instantiating classes that constitute the application
functionality. The HK2 runtime complements the module system by creating objects. It
configures such objects by:

■ Injecting other objects that are needed by a newly instantiated object
■ Injecting configuration information needed for that object
■ Making newly created objects available, so that they can then be injected to other objects

that need it

2C H A P T E R 2

23

Services in the HK2 Component Model
An HK2 service identifies the building blocks or the extension points of an application. A
service is a plain-old Java object (POJO) with the following characteristics:
■ The object implements an interface.
■ The object is declared in a JAR file with the META-INF/services file.

To clearly separate the contract interface and its implementation, the HK2 runtime requires the
following information:
■ Which interfaces are contracts
■ Which implementations of such interfaces are services

Interfaces that define a contract are identified by the org.jvnet.hk2.annotation.Contract
annotation.

@Retention(RUNTIME)

@Target(TYPE)

public @interface Contract {

}

Implementations of such contracts should be identified with an
org.jvnet.hk2.annotations.Service annotation so that the HK2 runtime can recognize
them as @Contract implementations.

@Retention(RUNTIME)

@Target(TYPE)

public @interface Service {

...

}

For more information, see Service.

HK2 Runtime
Once Services are defined, the HK2 runtime can be used to instantiate or retrieve instances of
services. Each service instance has a scope, specified as singleton, per thread, per application, or
a custom scope.

Scopes of Services
You can specify the scope of a service by adding an org.jvnet.hk2.annotations.Scoped

annotation to the class-level of your @Service implementation class. Scopes are also services, so
they can be custom defined and added to the HK2 runtime before being used by other services.
Each scope is responsible for storing the service instances to which it is tied; therefore, the HK2
runtime does not rely on predefined scopes (although it comes with a few predefined ones).

Services in the HK2 Component Model

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201124

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Service.html

@Contract

public abstract class Scope {

public abstract ScopeInstance current();

}

The following code fragment shows how to set the scope for a service to the predefined
Singleton scope:

@Service

public Singleton implements Scope {

...

}

@Scope(Singleton.class)

@Service

public class SingletonService implements RandomContract {

...

}

You can define a new Scope implementation and use that scope on your @Service
implementations. You will see that the HK2 runtime uses the Scope instance to store and
retrieve service instances tied to that scope.

Instantiation of Components in HK2
Do not call the new method to instantiate components. Instead, retrieve components by using
the ComponentManager instance. The simplest way to use the ComponentManager instance is
through a getComponent(ClassT contract) call:

public <T> T getComponent(Class<T> clazz) throws ComponentException;

More APIs are available at ComponentManager.

HK2 Lifecycle Interfaces
Components can attach behaviors to their construction and destruction events by
implementing the org.jvnet.hk2.component.PostConstruct interface, the
org.jvnet.hk2.component.PreDestroy interface, or both. These are interfaces rather than
annotations for performance reasons.

The PostConstruct interface defines a single method, postConstruct, which is called after a
component has been initialized and all its dependencies have been injected.

The PreDestroy interface defines a single method, preDestroy, which is called just before a
component is removed from the system.

HK2 Runtime

Chapter 2 • Writing HK2 Components 25

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/component/ComponentManager.html
https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/component/PostContruct.html
https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/component/PreDestroy.html

EXAMPLE 2–1 Example Implementation of PostContruct and PreDestroy

@Service(name="com.example.container.MyContainer")
public class MyContainer implements Container, PostConstruct, PreDestroy {

@Inject

Logger logger;

...

public void postConstruct() {

logger.info("Starting up.");
}

public void preDestroy() {

logger.info("Shutting down.");
}

}

Inversion of Control
Inversion of control (IoC) refers to a style of software architecture where the behavior of a
system is determined by the runtime capabilities of the individual, discrete components that
make up the system. This architecture is different from traditional styles of software
architecture, where all the components of a system are specified at design-time. With IoC,
discrete components respond to high-level events to perform actions. While performing these
actions, the components typically rely on other components to provide other actions. In an IoC
system, components use injection to gain access to other components, and extraction to make
component variables available to the system.

Injecting HK2 Components
Services usually rely on other services to perform their tasks. The HK2 runtime identifies the
@Contract implementations required by a service by using the
org.jvnet.hk2.annotations.Inject annotation. Inject can be placed on fields or setter
methods of any service instantiated by the HK2 runtime. The target service is retrieved and
injected during the calling service's instantiation by the component manager.

The following example shows how to use @Inject at the field level:

@Inject

ConfigService config;

The following example shows how to use @Inject at the setter level:

@Inject

public void set(ConfigService svc) {...}

Injection can further qualify the intended injected service implementation by using a name and
scope from which the service should be available:

Inversion of Control

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201126

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Inject.html

@Inject(Scope=Singleton.class, name="deploy")

AdminCommand deployCommand;

Extraction
Although all services are automatically placed into a scope for later retrieval, a component may
need to extract more than itself. One practical way of doing so is to use a factory service. For
simplicity, however, the HK2 runtime extracts all fields or getter methods annotated with the
org.jvnet.hk2.annotations.Extract annotation.

The following example shows how to use @Extract at the field level:

@Extract

ConfigService config;

The following example shows how to use @Extract at the getter level:

@Extract

public ConfigService getConfigService() {...}

Extraction, like injection, can also use the name and scope annotation fields to further qualify
the extracted Contract implementation.

Extracted fields and properties are made available to other service instances by exporting them
to the org.jvnet.hk2.component.Habitat instance. Habitat instances can be injected into
other components, and the components can then extract and use the data contained in the
Habitat instance.

@Inject

protected Habitat habitat;

...

public void doSomething(String name) {

...

ConfigService config = habitat.getComponent(ConfigService.class);

...

}

Instantiation Cascading in HK2
Injection of instances that have not been already instantiated triggers more instantiation. You
can see this as a component instantiation cascade where some code requests for a high-level
service will, by using the @Inject annotation, require more injection and instantiation of lower
level services. This cascading feature keeps the implementation as private as possible while
relying on interfaces and the separation of contracts and providers.

EXAMPLE 2–2 Example of Instantiation Cascading

The following example shows how the instantiation of DeploymentService as a Startup
contract implementation will trigger the instantiation of the ConfigService.

Inversion of Control

Chapter 2 • Writing HK2 Components 27

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Extract.html

EXAMPLE 2–2 Example of Instantiation Cascading (Continued)

@Contract

public interface Startup {...}

Iterable<Startup> startups;

startups = componentMgr.getComponents(Startup.class);

@Service

public class DeploymentService implements Startup {

@Inject

ConfigService config;

}

@Service

public Class ConfigService implements ... {...}

Identifying a Class as an Add-On Component
GlassFish Server discovers add-on components by identifying Java programming language
classes that are annotated with the org.jvnet.hk2.annotation.Service annotation.

To identify a class as an implementation of an GlassFish Server service, add the
org.jvnet.hk2.annotation.Service annotation at the class-definition level of your Java
programming language class.

@Service

public class SamplePlugin implements ConsoleProvider {

...

}

The @Service annotation has the following elements. All elements are optional.

name

The name of the service. The default value is an empty string.

scope

The scope to which this service implementation is tied. The default value is
org.jvnet.hk2.component.PerLookup.class.

factory

The factory class for the service implementation, if the service is created by a factory class
rather than by calling the default constructor. If this element is specified, the factory
component is activated, and Factory.getObject is used instead of the default constructor.
The default value of the factory element is org.jvnet.hk2.component.Factory.class.

EXAMPLE 2–3 Example of the Optional Elements of the @ServiceAnnotation

The following example shows how to use the optional elements of the @Service annotation:

Identifying a Class as an Add-On Component

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201128

EXAMPLE 2–3 Example of the Optional Elements of the @ServiceAnnotation (Continued)

@Service (name="MyService",
scope=com.example.PerRequest.class,

factory=com.example.MyCustomFactory)

public class SamplePlugin implements ConsoleProvider {

...

}

Using the Apache Maven Build System to Develop HK2
Components

If you are using Maven 2 to build HK2 components, invoke the auto-depends plug-in for
Maven so that the META-INF/services files are generated automatically during build time.

EXAMPLE 2–4 Example of the Maven Plug-In Configuration

<plugin>

<groupId>com.sun.enterprise</groupId>

<artifactId>hk2-maven-plugin</artifactId>

<configuration>

<includes>

<include>com/sun/enterprise/v3/**</include>

</includes>

</configuration>

</plugin>

EXAMPLE 2–5 Example of META-INF/services File Generation

This example shows how to use @Contract and @Service and the resulting
META-INF/services files.

The interfaces and classes in this example are as follows:

package com.sun.v3.annotations;

@Contract

public interface Startup {...}

package com.wombat;

@Contract

public interface RandomContract {...}

package com.sun.v3;

@Service

public class MyService implements Startup, RandomContract, PropertyChangeListener {

...

}

These interfaces and classes generate this META-INF/services file with the MyService content:

com.sun.v3.annotations.Startup

com.wombat.RandomContract

Using the Apache Maven Build System to Develop HK2 Components

Chapter 2 • Writing HK2 Components 29

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Contract.html
https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Service.html

30

Extending the Administration Console

The Administration Console is a browser-based tool for administering GlassFish Server. It
features an easy-to-navigate interface and online help. Extending the Administration Console
enables you to provide a graphical user interface for administering your add-on component.
You can use any of the user interface features of the Administration Console, such as tree nodes,
links on the Common Tasks page, tabs and sub-tabs, property sheets, and JavaServer Faces
pages. Your add-on component implements a marker interface and provides a configuration
file that describes how your customizations integrate with the Administration Console.

This chapter refers to a simple example called console-sample-ip that illustrates how to
provide Administration Console features for a hypothetical add-on component. Instructions
for obtaining and using this example are available at the example's project page
(http://wiki.glassfish.java.net/Wiki.jsp?page=V3SampleIpProject). When you check
out the code, it is placed in a directory named
glassfish-samples/v3/plugin/adminconsole/console-sample-ip/ in your current
directory. In this chapter, path names for the example files are relative to this directory.

The following topics are addressed here:

■ “Administration Console Architecture” on page 32
■ “About Administration Console Templates” on page 33
■ “About Integration Points” on page 33
■ “Specifying the ID of an Add-On Component” on page 34
■ “Adding Functionality to the Administration Console” on page 35
■ “Adding Internationalization Support” on page 46
■ “Changing the Theme or Brand of the Administration Console” on page 46
■ “Creating an Integration Point Type” on page 48

3C H A P T E R 3

31

http://wiki.glassfish.java.net/Wiki.jsp?page=V3SampleIpProject
http://wiki.glassfish.java.net/Wiki.jsp?page=V3SampleIpProject

Administration Console Architecture
The Administration Console is a web application that is composed of OSGi bundles. These
bundles provide all the features of the Administration Console, such as the Web Applications,
Update Center, and Security content. To provide support for your add-on component, create
your own OSGi bundle that implements the parts of the user interface that you need. Place your
bundle in the modules directory of your GlassFish Server installation, along with the other
Administration Console bundles.

To learn how to package the Administration Console features for an add-on component, go to
the modules directory of your GlassFish Server installation and examine the contents of the files
named console-componentname-plugin.jar. Place the console-sample-ip project bundle
in the same place to deploy it and examine the changes that it makes to the Administration
Console.

The Administration Console includes a Console Add-On Component Service. The Console
Add-On Component Service is an HK2 service that acts as a façade to all theAdministration
Console add-on components. The Console Add-On Component Service queries the various
console providers for integration points so that it can perform the actions needed for the
integration (adding a tree node or a new tab, for example). The interface name for this service is
org.glassfish.api.admingui.ConsolePluginService.

For details about the Hundred-Kilobyte Kernel (HK2) project, see “Hundred-Kilobyte Kernel”
on page 18 and “HK2 Component Model” on page 23.

Each add-on component must contain a console provider implementation. This is a Java class
that implements the org.glassfish.api.admingui.ConsoleProvider interface and uses the
HK2 @Service annotation. The console provider allows your add-on component to specify
where your integration point configuration file is located. This configuration file communicates
to the Console Add-On Component Service the customizations that your add-on component
makes to the Administration Console.

Implementing a Console Provider
The org.glassfish.api.admingui.ConsoleProvider interface has one required method,
getConfiguration. The getConfiguration method returns the location of the
console-config.xml file as a java.net.URL. If getConfiguration returns null, the default
location, META-INF/admingui/console-config.xml, is used. The console-config.xml file is
described in “About Integration Points” on page 33.

To implement the console provider for your add-on component, write a Java class that is similar
to the following example.

EXAMPLE 3–1 Example ConsoleProvider Implementation

This example shows a simple implementation of the ConsoleProvider interface:

Administration Console Architecture

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201132

EXAMPLE 3–1 Example ConsoleProvider Implementation (Continued)

package org.glassfish.admingui.plugin;

import org.glassfish.api.admingui.ConsoleProvider;

import org.jvnet.hk2.annotations.Service;

import java.net.URL;

@Service

public class SamplePlugin implements ConsoleProvider {

public URL getConfiguration() { return null; }

}

This implementation of getConfiguration returns null to specify that the configuration file is
in the default location. If you place the file in a nonstandard location or give it a name other than
console-config.xml, your implementation of getConfiguration must return the URL where
the file can be found.

You can find this example code in the file
project/src/main/java/org/glassfish/admingui/plugin/SamplePlugin.java.

About Administration Console Templates
GlassFish Server includes a set of templates that make it easier to create JavaServer Faces pages
for your add-on component. These templates use Templating for JavaServer Faces Technology
(https://jsftemplating.dev.java.net/), which is also known as JSFTemplating.

Examples of JSFTemplating technology can be found in the following sections of this chapter:

■ “Creating a JavaServer Faces Page for Your Node” on page 37
■ “Creating JavaServer Faces Pages for Your Tabs” on page 39
■ “Creating a JavaServer Faces Page for Your Task” on page 41
■ “Creating a JavaServer Faces Page for Your Task Group” on page 42
■ “Creating a JavaServer Faces Page for Your Page Content” on page 44
■ “Adding a Page to the Administration Console” on page 45

About Integration Points
The integration points for your add-on component are the individual Administration Console
user interface features that your add-on component will extend. You can implement the
following kinds of integration points:

■ Nodes in the navigation tree
■ Elements on the Common Tasks page of the Administration Console

About Integration Points

Chapter 3 • Extending the Administration Console 33

https://jsftemplating.dev.java.net/
https://jsftemplating.dev.java.net/

■ JavaServer Faces pages
■ Tabs and sub-tabs

Specify all the integration points in a file named console-config.xml. In the example, this file
is in the directory project/src/main/resources/META-INF/admingui/. The following
sections describe how to create this file.

In addition, create JavaServer Faces pages that contain JSF code fragments to implement the
integration points. In the example, these files are in the directory
project/src/main/resources/. The content of these files depends on the integration point
you are implementing. The following sections describe how to create these JavaServer Faces
pages.

For reference information on integration points, see Appendix A, “Integration Point
Reference.”

Specifying the ID of an Add-On Component
The console-config.xml file consists of a console-config element that encloses a series of
integration-point elements. The console-config element has one attribute, id, which
specifies a unique name or ID value for the add-on component.

In the example, the element is declared as follows:

<console-config id="sample">
...

</console-config>

You will also specify this ID value when you construct URLs to images, resources and pages in
your add-on component. See “Adding a Node to the Navigation Tree” on page 36 for an
example.

For example, a URL to an image named my.gif might look like this:

<sun:image url="/resource/sample/images/my.gif" />

The URL is constructed as follows:

■ /resource is required to locate any resource URL.
■ sample is the add-on component ID. You must choose a unique ID value.
■ images is a folder under the root of the add-on component JAR file.

Specifying the ID of an Add-On Component

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201134

Adding Functionality to the Administration Console
The integration-point elements in the console-config.xml file specify attributes for the
user interface features that you choose to implement. The example file provides examples of
most of the available kinds of integration points at this release. Your own add-on component
can use some or all of them.

For each integration-point element, specify the following attributes.

id

An identifier for the integration point.

parentId

The ID of the integration point's parent.

type

The type of the integration point.

priority

A numeric value that specifies the relative ordering of integration points for add-on
components that specify the same parentId. A lower number specifies a higher priority (for
example, 100 represents a higher priority than 400). The integration points for add-on
components are always placed after those in the basic Administration Console. You might
need to experiment to place the integration point where you want it. This attribute is
optional.

content

The content for the integration point, typically a JavaServer Faces page. In the example, you
can find the JavaServer Faces pages in the directory project/src/main/resources/.

Note – The order in which these attributes are specified does not matter, and in the example
console-config.xml file the order varies. To improve readability, this chapter uses the same
order throughout.

The following topics are addressed here:

■ “Adding a Node to the Navigation Tree” on page 36
■ “Adding Tabs to a Page” on page 38
■ “Adding a Task to the Common Tasks Page” on page 40
■ “Adding a Task Group to the Common Tasks Page” on page 42
■ “Adding Content to a Page” on page 43
■ “Adding a Page to the Administration Console” on page 45

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 35

Adding a Node to the Navigation Tree
You can add a node to the navigation tree, either at the top level or under another node. To add
a node, use an integration point of type org.glassfish.admingui:navNode. Use the parentId
attribute to specify where the new node should be placed. Any tree node, including those added
by other add-on components, can be specified. Examples include the following:

tree

At the top level

applicationServer

Under the GlassFish Server node

applications

Under the Applications node

resources

Under the Resources node

configuration

Under the Configuration node

webContainer

Under the Web Container node

httpService

Under the HTTP Service node

Note – The webContainer and httpService nodes are available only if you installed the web
container module for the Administration Console (the console-web-gui.jar OSGi bundle).

If you do not specify a parentId, the new content is added to the root of the integration point, in
this case the top level node, tree.

EXAMPLE 3–2 Example Tree Node Integration Point

For example, the following integration-point element uses a parentId of tree to place the
new node at the top level.

<integration-point

id="sampleNode"
parentId="tree"
type="org.glassfish.admingui:treeNode"
priority="200"
content="sampleNode.jsf"

/>

Adding Functionality to the Administration Console

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201136

This example specifies the following values in addition to the parentId:
■ The id value, sampleNode, specifies the integration point ID.
■ The type value, org.glassfish.admingui:treeNode, specifies the integration point type as

a tree node.
■ The priority value, 200, specifies the order of the node on the tree.
■ The content value, sampleNode.jsf, specifies the JavaServer Faces page that displays the

node.

The example console-config.xml file provides other examples of tree nodes under the
Resources and Configuration nodes.

Creating a JavaServer Faces Page for Your Node
A JavaServer Faces page for a tree node uses the tag sun:treeNode. This tag provides all the
capabilities of the Project Woodstock tag webuijsf:treeNode.

EXAMPLE 3–3 Example JavaServer Faces Page for a Tree Node

In the example, the sampleNode.jsf file has the following content:

<sun:treeNode

id="treeNode1"
text="SampleTop"
url="/sample/page/testPage.jsf?name=SampleTop"
imageURL="/resource/sample/images/sample.png"
>

<sun:treeNode

id="treeNodeBB"
text="SampleBB"
url="/sample/page/testPage.jsf?name=SampleBB"
imageURL="resource/sample/images/sample.png" />

</sun:treeNode>

This file uses the sun:treenode tag to specify both a top-level tree node and another node
nested beneath it. In your own JavaServer Faces pages, specify the attributes of this tag as
follows:

id

A unique identifier for the tree node.

text

The node name that appears in the tree.

url

The location of the JavaServer Faces page that appears when you click the node. In the
example, most of the integration points use a very simple JavaServer Faces page called
testPage.jsf, which is in the src/main/resources/page/ directory. Specify the
integration point id value as the root of the URL; in this case, it is sample (see “Specifying the

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 37

ID of an Add-On Component” on page 34). The rest of the URL is relative to the
src/main/resources/ directory, where sampleNode.jsf resides.

The url tag in this example passes a name parameter to the JavaServer Faces page.

imageURL

The location of a graphic to display next to the node name. In the example, the graphic is
always sample.png, which is in the src/main/resources/images/ directory. The URL for
this image is an absolute path, /resource/sample/images/sample.png, where sample in the
path is the integration point id value (see “Specifying the ID of an Add-On Component” on
page 34).

Adding Tabs to a Page
You can add a tab to an existing tab set, or you can create a tab set for your own page. One way
to add a tab or tab set is to use an integration point of type
org.glassfish.admingui:serverInstTab, which adds a tab to the tab set on the main
GlassFish Server page of the Administration Console. You can also create sub-tabs. Once again,
the parentId element specifies where to place the tab or tab set.

EXAMPLE 3–4 Example Tab Integration Point

In the example, the following integration-point element adds a new tab on the main
GlassFish Server page of the Administration Console:

<integration-point

id="sampleTab"
parentId="serverInstTabs"
type="org.glassfish.admingui:serverInstTab"
priority="500"
content="sampleTab.jsf"

/>

This example specifies the following values:

■ The id value, sampleTab, specifies the integration point ID.
■ The parentId value, serverInstTabs, specifies the tab set associated with the server

instance. The GlassFish Server page is the only one of the default Administration Console
pages that has a tab set.

■ The type value, org.glassfish.admingui:serverInstTab, specifies the integration point
type as a tab associated with the server instance.

■ The priority value, 500, specifies the order of the tab within the tab set. This value is
optional.

■ The content value, sampleTab.jsf, specifies the JavaServer Faces page that displays the tab.

Adding Functionality to the Administration Console

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201138

EXAMPLE 3–5 Example Tab Set Integration Points

The following integration-point elements add a new tab with two sub-tabs, also on the main
GlassFish Server page of the Administration Console:

<integration-point

id="sampleTabWithSubTab"
parentId="serverInstTabs"
type="org.glassfish.admingui:serverInstTab"
priority="300"
content="sampleTabWithSubTab.jsf"

/>

<integration-point

id="sampleSubTab1"
parentId="sampleTabWithSubTab"
type="org.glassfish.admingui:serverInstTab"
priority="300"
content="sampleSubTab1.jsf"

/>

<integration-point

id="sampleSubTab2"
parentId="sampleTabWithSubTab"
type="org.glassfish.admingui:serverInstTab"
priority="400"
content="sampleSubTab2.jsf"

/>

These examples specify the following values:

■ The id values, sampleTabWithSubTab, sampleSubTab1, and sampleSubTab2, specify the
integration point IDs for the tab and its sub-tabs.

■ The parentId of the new tab, serverInstTabs, specifies the tab set associated with the
server instance. The parentId of the two sub-tabs, sampleTabWithSubTab, is the id value of
this new tab.

■ The type value, org.glassfish.admingui:serverInstTab, specifies the integration point
type for all the tabs as a tab associated with the server instance.

■ The priority values specify the order of the tabs within the tab set. This value is optional. In
this case, the priority value for sampleTabWithSubTab is 300, which is higher than the value
for sampleTab. That means that sampleTabWithSubTab appears to the left of sampleTab in
the Administration Console. The priority values for sampleSubTab1 and sampleSubTab2 are
300 and 400 respectively, so sampleSubTab1 appears to the left of sampleSubTab2.

■ The content values, sampleTabWithSubTab.jsf, sampleSubTab1.jsf, and
sampleSubTab2.jsf, specify the JavaServer Faces pages that display the tabs.

Creating JavaServer Faces Pages for Your Tabs
A JavaServer Faces page for a tab uses the tag sun:tab. This tag provides all the capabilities of
the Project Woodstock tag webuijsf:tab.

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 39

EXAMPLE 3–6 Example JavaServer Faces Page for a Tab
In the example, the sampleTab.jsf file has the following content:

<sun:tab id="sampleTab" immediate="true" text="Sample First Tab">
<!command

setSessionAttribute(key="serverInstTabs" value="sampleTab");
gf.redirect(page="#{request.contextPath}/page/tabPage.jsf?name=Sample%20First%20Tab");

/>

</sun:tab>

Note – In the actual file there are no line breaks in the gf.redirect value.

In your own JavaServer Faces pages, specify the attributes of this tag as follows:

id

A unique identifier for the tab, in this case sampleTab.

immediate

If set to true, event handling for this component should be handled immediately (in the
Apply Request Values phase) rather than waiting until the Invoke Application phase.

text

The tab name that appears in the tab set.

The JSF page displays tab content differently from the way the page for a node displays node
content. It invokes two handlers for the command event: setSessionAttribute and
gf.redirect. The gf.redirect handler has the same effect for a tab that the url attribute has
for a node. It navigates to a simple JavaServer Faces page called tabPage.jsf, in the
src/main/resources/page/ directory, passing the text “Sample First Tab” to the page in a name
parameter.

The sampleSubTab1.jsf and sampleSubTab2.jsf files are almost identical to sampleTab.jsf.
The most important difference is that each sets the session attribute serverInstTabs to the base
name of the JavaServer Faces file that corresponds to that tab:

setSessionAttribute(key="serverInstTabs" value="sampleTab");

setSessionAttribute(key="serverInstTabs" value="sampleSubTab1");

setSessionAttribute(key="serverInstTabs" value="sampleSubTab2");

Adding a Task to the Common Tasks Page
You can add either a single task or a group of tasks to the Common Tasks page of the
Administration Console. To add a task or task group, use an integration point of type
org.glassfish.admingui:commonTask.

Adding Functionality to the Administration Console

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201140

See “Adding a Task Group to the Common Tasks Page” on page 42 for information on adding
a task group.

EXAMPLE 3–7 Example Task Integration Point

In the example console-config.xml file, the following integration-point element adds a
task to the Deployment task group:

<integration-point

id="sampleCommonTask"
parentId="deployment"
type="org.glassfish.admingui:commonTask"
priority="200"
content="sampleCommonTask.jsf"

/>

This example specifies the following values:

■ The id value, sampleCommonTask, specifies the integration point ID.
■ The parentId value, deployment, specifies that the task is to be placed in the Deployment

task group.
■ The type value, org.glassfish.admingui:commonTask, specifies the integration point type

as a common task.
■ The priority value, 200, specifies the order of the task within the task group.
■ The content value, sampleCommonTask.jsf, specifies the JavaServer Faces page that

displays the task.

Creating a JavaServer Faces Page for Your Task
A JavaServer Faces page for a task uses the tag sun:commonTask. This tag provides all the
capabilities of the Project Woodstock tag webuijsf:commonTask.

EXAMPLE 3–8 Example JavaServer Faces Page for a Task

In the example, the sampleCommonTask.jsf file has the following content:

<sun:commonTask

text="Sample Application Page"
toolTip="Sample Application Page"
onClick="return admingui.woodstock.commonTaskHandler(’treeForm:tree:applications:ejb’,

’#{request.contextPath}/sample/page/testPage.jsf?name=Sample%20Application%20Page’);">
</sun:commonTask>

Note – In the actual file, there is no line break in the onClick attribute value.

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 41

This file uses the sun:commonTask tag to specify the task. In your own JavaServer Faces pages,
specify the attributes of this tag as follows:

text The task name that appears on the Common Tasks page.

toolTip The text that appears when a user places the mouse cursor over the task name.

onClick Scripting code that is to be executed when a user clicks the task name.

Adding a Task Group to the Common Tasks Page
You can add a new group of tasks to the Common Tasks page to display the most important
tasks for your add-on component. To add a task group, use an integration point of type
org.glassfish.admingui:commonTask.

EXAMPLE 3–9 Example Task Group Integration Point

In the example console-config.xml file, the following integration-point element adds a
new task group to the Common Tasks page:

<integration-point

id="sampleGroup"
parentId="commonTasksSection"
type="org.glassfish.admingui:commonTask"
priority="500"
content="sampleTaskGroup.jsf"

/>

This example specifies the following values:

■ The id value, sampleGroup, specifies the integration point ID.
■ The parentId value, commonTasksSection, specifies that the task group is to be placed on

the Common Tasks page.
■ The type value, org.glassfish.admingui:commonTask, specifies the integration point type

as a common task.
■ The priority value, 500, specifies the order of the task group on the Common Tasks page.

The low value places it at the end of the page.
■ The content value, sampleTaskGroup.jsf, specifies the JavaServer Faces page that displays

the task.

Creating a JavaServer Faces Page for Your Task Group
A JavaServer Faces page for a task group uses the tag sun:commonTasksGroup. This tag provides
all the capabilities of the Project Woodstock tag webuijsf:commonTasksGroup.

Adding Functionality to the Administration Console

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201142

EXAMPLE 3–10 Example JavaServer Faces Page for a Task Group

In the example, the sampleTaskGroup.jsf file has the following content:

<sun:commonTasksGroup title="My Own Sample Group">
<sun:commonTask

text="Go To Sample Resource"
toolTip="Go To Sample Resource"
onClick="return admingui.woodstock.commonTaskHandler(’form:tree:resources:treeNode1’,

’#{request.contextPath}/sample/page/testPage.jsf?name=Sample%20Resource%20Page’);">
</sun:commonTask>

<sun:commonTask

text="Sample Configuration"
toolTip="Go To Sample Configuration"
onClick="return admingui.woodstock.commonTaskHandler(’form:tree:configuration:sampleConfigNode’,

’#{request.contextPath}/sample/page/testPage.jsf?name=Sample%20Configuration%20Page’);">
</sun:commonTask>

</sun:commonTasksGroup>

Note – In the actual file, there are no line breaks in the onClick attribute values.

This file uses the sun:commonTasksGroup tag to specify the task group, and two
sun:commonTask tags to specify the tasks in the task group. The sun:commonTasksGroup tag has
only one attribute, title, which specifies the name of the task group.

Adding Content to a Page
You can add content for your add-on component to an existing top-level page, such as the
Configuration page or the Resources page. To add content to one of these pages, use an
integration point of type org.glassfish.admingui:configuration or
org.glassfish.admingui:resources.

EXAMPLE 3–11 Example Resources Page Implementation Point

In the example console-config.xml file, the following integration-point element adds new
content to the top-level Resources page:

<integration-point

id="sampleResourceLink"
parentId="propSheetSection"
type="org.glassfish.admingui:resources"
priority="100"
content="sampleResourceLink.jsf"

/>

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 43

This example specifies the following values:

■ The id value, sampleResourceLink, specifies the integration point ID.
■ The parentId value, propSheetSection, specifies that the content is to be a section of a

property sheet on the page.
■ The type value, org.glassfish.admingui:resources, specifies the integration point type

as the Resources page.
To add content to the Configuration page, specify the type value as
org.glassfish.admingui:configuration.

■ The priority value, 100, specifies the order of the content on the Resources page. The high
value places it at the top of the page.

■ The content value, sampleResourceLink.jsf, specifies the JavaServer Faces page that
displays the new content on the Resources page.

Another integration-point element in the console-config.xml file places similar content
on the Configuration page.

Creating a JavaServer Faces Page for Your Page Content
A JavaServer Faces page for page content often uses the tag sun:property to specify a property
on a property sheet. This tag provides all the capabilities of the Project Woodstock tag
webuijsf:property.

EXAMPLE 3–12 Example JavaServer Faces Page for a Resource Page Item

In the example, the sampleResourceLink.jsf file has the following content:

<sun:property>

<sun:hyperlink

toolTip="Sample Resource"
url="/sample/page/testPage.jsf?name=Sample%20Resource%20Page" >

<sun:image url="/resource/sample/images/sample.png" />

<sun:staticText text="Sample Resource" />

</sun:hyperlink>

</sun:property>

<sun:property>

<sun:hyperlink

toolTip="Another"
url="/sample/page/testPage.jsf?name=Another" >

<sun:image url="/resource/sample/images/sample.png" />

<sun:staticText text="Another" />

</sun:hyperlink>

</sun:property>

Adding Functionality to the Administration Console

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201144

The file specifies two simple properties on the property sheet, one above the other. Each consists
of a sun:hyperlink element (a link to a URL). Within each sun:hyperlink element is nested a
sun:image element, specifying an image, and a sun:staticText element, specifying the text to
be placed next to the image.

Each sun:hyperlink element uses a toolTip attribute and a url attribute. Each url attribute
references the testPage.jsf file that is used elsewhere in the example, specifying different
content for the name parameter.

You can use many other kinds of user interface elements within a sun:property element.

Adding a Page to the Administration Console
Your add-on component may require new configuration tasks. In addition to implementing
commands that accomplish these tasks (see Chapter 4, “Extending the asadmin Utility”), you
can provide property sheets that enable users to configure your component or to perform tasks
such as creating and editing resources for it.

EXAMPLE 3–13 Example JavaServer Faces Page for a Property Sheet

Most of the user interface features used in the example reference the file testPage.jsf or (for
tabs) the file tabPage.jsf. Both files are in the src/main/resources/page/ directory. The
testPage.jsf file looks like this:

<!composition template="/templates/default.layout" guiTitle="TEST Sample Page Title">
<!define name="content">
<sun:form id="propertyForm">

<sun:propertySheet id="propertySheet">
<sun:propertySheetSection id="propertySection">

<sun:property id="prop1" labelAlign="left" noWrap="true"
overlapLabel="false" label="Test Page Name:" >

<sun:staticText text="$pageSession{pageName}" >

<!beforeCreate

getRequestValue(key="name" value=>$page{pageName});

/>

</sun:staticText>

</sun:property>

</sun:propertySheetSection>

</sun:propertySheet>

<sun:hidden id="helpKey" value="" />

</sun:form>

</define>

</composition>

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 45

The page uses the composition directive to specify that the page uses the default.layout
template and to specify a page title. The page uses additional directives, events, and tags to
specify its content.

Adding Internationalization Support
To add internationalization support for your add-on component to the Administration
Console, you can place an event and handler like the following at the top of your page:

<!initPage

setResourceBundle(key="yourI18NKey" bundle="bundle.package.BundleName")
/>

Replace the values yourI18NKey and bundle.package.BundleName with appropriate values for
your component.

Changing the Theme or Brand of the Administration Console
To change the theme or brand of the Administration Console for your add-on component, use
the integration point type org.glassfish.admingui:customtheme. This integration point
affects the Cascading Style Sheet (CSS) files and images that are used in the Administration
Console.

EXAMPLE 3–14 Example Custom Theme Integration Point

For example, the following integration point specifies a custom theme:

<integration-point

id="myOwnBrand"
type="org.glassfish.admingui:customtheme"
priority="2"
content="myOwnBrand.properties"

/>

The priority attribute works differently when you specify it in a branding integration point
from the way it works in other integration points. You can place multiple branding add-on
components in the modules directory, but only one theme can be applied to the Administration
Console. The priority attribute determines which theme is used. Specify a value from 1 to 100;
the lower the number, the higher the priority. The integration point with the highest priority
will be used.

Additional integration point types also affect the theme or brand of the Administration
Console:

Adding Internationalization Support

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201146

org.glassfish.admingui:masthead

Specifies the name and location of the include masthead file, which can be customized with a
branding image. This include file will be integrated on the masthead of the Administration
Console.

org.glassfish.admingui:loginimage

Specifies the name and location of the include file containing the branding login image code
that will be integrated with the login page of the Administration Console.

org.glassfish.admingui:loginform

Specifies the name and location of the include file containing the customized login form
code. This code also contains the login background image used for the login page for the
Administration Console.

org.glassfish.admingui:versioninfo

Specifies the name and location of the include file containing the branding image that will be
integrated with the content of the version popup window.

EXAMPLE 3–15 Example of Branding Integration Points

For example, you might specify the following integration points. The content for each
integration point is defined in an include file.

<integration-point

id="myOwnBrandMast"
type="org.glassfish.admingui:masthead"
priority="80"
content="branding/masthead.inc"

/>

<integration-point

id="myOwnBrandLogImg"
type="org.glassfish.admingui:loginimage"
priority="80"
content="branding/loginimage.inc"

/>

<integration-point

id="myOwnBrandLogFm"
type="org.glassfish.admingui:loginform"
priority="80"
content="branding/loginform.inc"

/>

<integration-point

id="myOwnBrandVersInf"
type="org.glassfish.admingui:versioninfo"
priority="80"
content="branding/versioninfo.inc"

/>

To provide your own CSS and images to modify the global look and feel of the entire
application (not just the Administration Console), use the theming feature of Project
Woodstock (https://woodstock.dev.java.net/docs/specs/ThemeFS.html). Create a theme
JAR file with all the CSS properties and image files that are required by your Woodstock

Changing the Theme or Brand of the Administration Console

Chapter 3 • Extending the Administration Console 47

https://woodstock.dev.java.net/docs/specs/ThemeFS.html
https://woodstock.dev.java.net/docs/specs/ThemeFS.html

component. Use a script provided by the Woodstock project to clone an existing theme, then
modify the files and properties as necessary. Once you have created the theme JAR file, place it
in the WEB-INF/lib directory of the Administration Console so that the Woodstock theme
component will load the theme. In addition, edit the properties file specified by your integration
point (MyOwnBrand.properties, for example) to specify the name and version of your theme.

Creating an Integration Point Type
If your add-on component provides new content that you would like other people to extend,
you may define your own integration point types. For example, if you add a new page that
provides tabs of monitoring information, you might want to allow others to add their own tabs
to complement your default tabs. This feature enables your page to behave like the existing
Administration Console pages that you or others can extend.

▼ To Create an Integration Point Type
Decide on the name of your integration point type.
The integration point type must be a unique identifier. You might use the package name of your
integration point, with a meaningful name appended to the end, as in the following example:
org.company.project:myMonitoringTabs

After you have an integration point ID, use handlers to insert the integration point
implementation(s).
Include code like the following below the place in your JavaServer Faces page where you would
like to enable others to add their integration point implementations:
<event>

<!afterCreate

getUIComponent(clientId="clientId:of:root"
component=>$attribute{rootComp});

includeIntegrations(type="org.company.project:myMonitoringTabs"
root="#{rootComp}");

/>

</event>

Change clientId:of:root to match the clientId of the outermost component in which you
want others to be able to add their content (in this example, the tab set is the most likely choice).
Also include your integration point ID in place of org.company.project:myMonitoringTabs.
If you omit the root argument to includeIntegrations, all components on the entire page can
be used for the parentId of the integration points.

To enable others to use this integration point, document it at the GlassFish Integration Point
wiki page (http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint).
Document the integration point only if your content is publicly available.

1

2

3

Creating an Integration Point Type

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201148

http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint
http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint

You or others can now provide an integration point that will be integrated into this page.

For more information, see the JSFTemplating API documentation (https://
jsftemplating.dev.java.net/nonav/javadoc/index.html).

See Also

Creating an Integration Point Type

Chapter 3 • Extending the Administration Console 49

https://jsftemplating.dev.java.net/nonav/javadoc/index.html
https://jsftemplating.dev.java.net/nonav/javadoc/index.html

50

Extending the asadminUtility

The asadmin utility is a command-line tool for configuring and administering GlassFish Server.
Extending the asadmin utility enables you to provide administrative interfaces for an add-on
component that are consistent with the interfaces of other GlassFish Server components. A user
can run asadmin subcommands either from a command prompt or from a script. For more
information about the asadmin utility, see the asadmin(1M) man page.

The following topics are addressed here:

■ “About the Administrative Command Infrastructure of GlassFish Server” on page 51
■ “Adding an asadmin Subcommand” on page 52
■ “Adding Parameters to an asadmin Subcommand” on page 54
■ “Making asadmin Subcommands Cluster-Aware” on page 58
■ “Adding Message Text Strings to an asadmin Subcommand” on page 63
■ “Enabling an asadmin Subcommand to Run” on page 65
■ “Setting the Context of an asadmin Subcommand” on page 66
■ “Changing the Brand in the GlassFish Server CLI” on page 66
■ “Examples of Extending the asadmin Utility” on page 67
■ “Implementing Create, Delete, and List Commands Using Annotations” on page 71

About the Administrative Command Infrastructure of
GlassFish Server

To enable multiple containers to be independently packaged and loaded, the administrative
command infrastructure of GlassFish Server provides the following features:

■ Location independence. Administration subcommands can be loaded from any add-on
component that is known to GlassFish Server.

■ Extensibility. Administrative subcommands that are available to GlassFish Server are
discovered on demand and not obtained from a preset list of subcommands.

4C H A P T E R 4

51

■ Support for the HK2 architecture. Subcommands can use injection to express their
dependencies, and extraction to provide results to a user. For more information, see
Chapter 2, “Writing HK2 Components.”

Adding an asadmin Subcommand
An asadmin subcommand identifies the operation or task that a user is to perform. Adding an
asadmin subcommand enables the user to perform these tasks and operations through the
asadmin utility.

The following topics are addressed here:

■ “Representing an asadmin Subcommand as a Java Class” on page 52
■ “Specifying the Name of an asadmin Subcommand” on page 52
■ “Ensuring That an AdminCommand Implementation Is Stateless” on page 53
■ “Example of Adding an asadmin Subcommand” on page 53

Representing an asadmin Subcommand as a Java Class
Each asadmin subcommand that you are adding must be represented as a Java class. To
represent an asadmin subcommand as a Java class, write a Java class that implements the
org.glassfish.api.admin.AdminCommand interface. Write one class for each subcommand
that you are adding. Do not represent multiple asadmin subcommands in a single class.

Annotate the declaration of your implementations of the AdminCommand interface with the
org.jvnet.hk2.annotations.Service annotation. The @Service annotation ensures that the
following requirements for your implementations are met:

■ The implementations are eligible for resource injection and resource extraction.
■ The implementations are location independent, provided that the component that contains

them is made known to the GlassFish Server runtime.
For information about how to make a component known to the GlassFish Server runtime,
see “Integrating an Add-On Component With GlassFish Server” on page 136.

Specifying the Name of an asadmin Subcommand
To specify the name of the subcommand, set the name element of the @Service annotation to
the name.

Note – Subcommand names are case-sensitive.

Adding an asadmin Subcommand

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201152

Subcommands that are supplied in GlassFish Server distributions typically create, delete, and
list objects of a particular type. For consistency with the names of subcommands that are
supplied in GlassFish Server distributions, follow these conventions when specifying the name
of a subcommand:
■ For subcommands that create an object of a particular type, use the name create-object.
■ For subcommands that delete an object of a particular type, use the name delete-object.
■ For subcommands that list all objects of a particular type, use the name list-objects.

For example, GlassFish Server provides the following subcommands for creating, deleting, and
listing HTTP listeners:

■ create-http-listener

■ delete-http-listener

■ list-http-listeners

You must also ensure that the name of your subcommand is unique. To obtain a complete list of
the names of all asadmin subcommands that are installed, use the list-commands(1)
subcommand. For a complete list of asadmin subcommands that are supplied in GlassFish
Server distributions, see GlassFish Server Open Source Edition 3.1-3.1.1 Reference Manual.

Ensuring That an AdminCommand Implementation Is
Stateless
To enable multiple clients to run a subcommand simultaneously, ensure that the
implementation of the AdminCommand interface for the subcommand is stateless. To ensure that
the implementation of the AdminCommand interface is stateless, annotate the declaration of your
implementation with the org.jvnet.hk2.annotations.Scoped annotation. In the @Scoped
annotation, set the scope as follows:

■ To instantiate the subcommand for each lookup, set the scope to PerLookup.class.
■ To instantiate the subcommand only once for each session, set the scope to Singleton.

Example of Adding an asadmin Subcommand

EXAMPLE 4–1 Adding an asadmin Subcommand

This example shows the declaration of the class CreateMycontainer that represents an asadmin

subcommand that is named create-mycontainer. The subcommand is instantiated for each
lookup.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;

Adding an asadmin Subcommand

Chapter 4 • Extending the asadminUtility 53

EXAMPLE 4–1 Adding an asadmin Subcommand (Continued)

...

import org.jvnet.hk2.annotations.Service;

...

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

/**

* Sample subcommand

*/

@Service(name="create-mycontainer")
@Scoped(PerLookup.class)

public Class CreateMycontainer implements AdminCommand {

...

}

Adding Parameters to an asadmin Subcommand
The parameters of an asadmin subcommand are the options and operands of the subcommand.

■ Options control how the asadmin utility performs a subcommand.
■ Operands are the objects on which a subcommand acts. For example, the operand of the

start-domain(1) subcommand is the domain that is to be started.

The following topics are addressed here:

■ “Representing a Parameter of an asadmin Subcommand” on page 54
■ “Identifying a Parameter of an asadmin Subcommand” on page 55
■ “Specifying Whether a Parameter Is an Option or an Operand” on page 55
■ “Specifying the Name of an Option” on page 55
■ “Specifying the Acceptable Values of a Parameter” on page 56
■ “Specifying the Default Value of a Parameter” on page 57
■ “Specifying Whether a Parameter Is Required or Optional” on page 57
■ “Example of Adding Parameters to an asadmin Subcommand” on page 57

Representing a Parameter of an asadmin

Subcommand
Represent each parameter of a subcommand in your implementation as a field or as the
property of a JavaBeans specification setter method. Use the property of a setter method for the
following reasons:

■ To provide data encapsulation for the parameter
■ To add code for validating the parameter before the property is set

Adding Parameters to an asadmin Subcommand

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201154

Identifying a Parameter of an asadmin Subcommand
Identifying a parameter of an asadmin subcommand enables GlassFish Server to perform the
following operations at runtime on the parameter:

■ Validation. The GlassFish Server determines whether all required parameters are specified
and returns an error if any required parameter is omitted.

■ Injection. Before the subcommand runs, the GlassFish Server injects each parameter into
the required field or method before the subcommand is run.

■ Usage message generation. The GlassFish Server uses reflection to obtain the list of
parameters for a subcommand and to generate the usage message from this list.

■ Localized string display. If the subcommand supports internationalization and if localized
strings are available, the GlassFish Server can automatically obtain the localized strings for a
subcommand and display them to the user.

To identify a parameter of a subcommand, annotate the declaration of the item that is
associated with the parameter with the org.glassfish.api.Param annotation. This item is
either the field or setter method that is associated with the parameter.

To specify the properties of the parameter, use the elements of the @Param annotation as
explained in the sections that follow.

Specifying Whether a Parameter Is an Option or an
Operand
Whether a parameter is an option or an operand determines how a user must specify the
parameter when running the subcommand:

■ If the parameter is an option, the user must specify the option with the parameter name.
■ If the parameter is an operand, the user may omit the parameter name.

To specify whether a parameter is an option or an operand, set the primary element of the
@Param annotation as follows:

■ If the parameter is an option, set the primary element to false. This value is the default.
■ If the parameter is an operand, set the primary element to true.

Specifying the Name of an Option
The name of an option is the name that a user must type on the command line to specify the
option when running the subcommand.

Adding Parameters to an asadmin Subcommand

Chapter 4 • Extending the asadminUtility 55

The name of each option that you add in your implementation of an asadmin subcommand can
have a long form and a short form. When running the subcommand, the user specifies the long
form and the short form as follows:

■ The short form of an option name has a single dash (-) followed by a single character.
■ The long form of an option name has two dashes (--) followed by an option word.

For example, the short form and the long form of the name of the option for specifying terse
output are as follows:

■ Short form: -m
■ Long form: --monitor

Note – Option names are case-sensitive.

Specifying the Long Form of an Option Name
To specify the long form of an option name, set the name element of the @Param annotation to a
string that specifies the name. If you do not set this element, the default name depends on how
you represent the option.

■ If you represent the option as a field, the default name is the field name.
■ If you represent the option as the property of a JavaBeans specification setter method, the

default name is the property name from the setter method name. For example, if the setter
method setPassword is associated with an option, the property name and the option name
are both password.

Specifying the Short Form of an Option Name
To specify the short form of an option name, set the shortName element of the @Param
annotation to a single character that specifies the short form of the parameter. The user can
specify this character instead of the full parameter name, for example -m instead of --monitor.
If you do not set this element, the option has no short form.

Specifying the Acceptable Values of a Parameter
When a user runs the subcommand, the GlassFish Server validates option arguments and
operands against the acceptable values that you specify in your implementation.

To specify the acceptable values of a parameter, set the acceptableValues element of the
@Param annotation to a string that contains a comma-separated list of acceptable values. If you
do not set this element, any string of characters is acceptable.

Adding Parameters to an asadmin Subcommand

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201156

Specifying the Default Value of a Parameter
The default value of a parameter is the value that is applied if a user omits the parameter when
running the subcommand.

To specify the default value of a parameter, set the defaultValue element of the @Param
annotation to a string that contains the default value. If you do not set this element, the
parameter has no default value.

Specifying Whether a Parameter Is Required or
Optional
Whether a parameter is required or optional determines how a subcommand responds if a user
omits the parameter when running the subcommand:
■ If the parameter is required, the subcommand returns an error.
■ If the parameter is optional, the subcommand runs successfully.

To specify whether a parameter is optional or required, set the optional element of the @Param
annotation as follows:
■ If the parameter is required, set the optional element to false. This value is the default.
■ If the parameter is optional, set the optional element to true.

Example of Adding Parameters to an asadmin

Subcommand
EXAMPLE 4–2 Adding Parameters to an asadmin Subcommand
This example shows the code for adding parameters to an asadmin subcommand with the
properties as shown in the table.

Name Represented As
Acceptable
Values

Default
Value

Optional or
Required

Short
Name

Option or
Operand

--originator A field that is named
originator

Any
character
string

None
defined

Required None Option

--description A field that is named
mycontainerDescription

Any
character
string

None
defined

Optional None Option

--enabled A field that is named
enabled

true or
false

false Optional None Option

Adding Parameters to an asadmin Subcommand

Chapter 4 • Extending the asadminUtility 57

EXAMPLE 4–2 Adding Parameters to an asadmin Subcommand (Continued)

Name Represented As
Acceptable
Values

Default
Value

Optional or
Required

Short
Name

Option or
Operand

--containername A field that is named
containername

Any
character
string

None
defined

Required None Operand

...

import org.glassfish.api.Param;

...

{

...

@Param

String originator;

@Param(name="description", optional=true)

...

String mycontainerDescription

@Param (acceptableValues="true,false", defaultValue="false", optional=true)

String enabled

@Param(primary=true)

String containername;

...

}

Making asadmin Subcommands Cluster-Aware
The GlassFish Server asadmin command framework provides support for making asadmin
subcommands work properly in a clustered environment or with standalone server instances. A
command that changes a configuration is first executed on the domain administration server
(DAS) and then executed on each of the server instances affected by the change. Annotations
provided by the framework determine the instances on which the command should be
replicated and executed. Commands that do not change a configuration need not be executed
on the DAS at all, but only on the necessary instances. The framework provides support for
collecting the output from the instances and sending a report back to the user.

Subcommands in a multi-instance environment can accept a --target option to specify the
cluster or instance on which the command acts. From within the command, the Target utility
allows the command to determine information about where it is running. For some commands,
it may be desirable to have a main command that runs on the DAS and supplemental
preprocessing or postprocessing commands that run on the instances.

Making asadmin Subcommands Cluster-Aware

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201158

The following topics are addressed here:

■ “Specifying Allowed Targets” on page 59
■ “The Target Utility” on page 60
■ “Specifying asadmin Subcommand Execution” on page 60
■ “Subcommand Preprocessing and Postprocessing” on page 61
■ “Running a Command from Another Command” on page 62

Specifying Allowed Targets
When you define a --target option by using the @Param annotation in the org.glassfish.api
package, possible targets are as follows:

■ domain — The entire domain
■ server — The domain administration server, or DAS
■ cluster — A homogeneous set of server instances that function as a unit
■ standalone instance — A server instance that isn't part of a cluster
■ clustered instance — A server instance that is part of a cluster
■ config — A configuration for a cluster or standalone server instance

These possible targets are represented by the following CommandTarget elements of the
@TargetType annotation in the org.glassfish.config.support package:

■ CommandTarget.DOMAIN

■ CommandTarget.DAS

■ CommandTarget.CLUSTER

■ CommandTarget.STANDALONE_SERVER

■ CommandTarget.CLUSTERED_INSTANCE

■ CommandTarget.CONFIG

By default, the allowed targets are server (the DAS), standalone server instances, clusters, and
configurations. Not specifying a @TargetType annotation is equivalent to specifying the
following @TargetType annotation:

@TargetType(CommandTarget.DAS,CommandTarget.STANDALONE_SERVER,CommandTarget.CLUSTER,CommandTarget.CONFIG)

Subcommands that support other combinations of targets must specify @TargetType
annotations. For example, the create-http-lb subcommand supports only standalone server
instance and cluster targets. Its @TargetType annotation is as follows:

@TargetType(CommandTarget.STANDALONE_SERVER,CommandTarget.CLUSTER)

Most subcommands do not act on server instances that are part of a cluster. This ensures that all
server instances in a cluster remain synchronized. Thus, the
CommandTarget.CLUSTERED_INSTANCE element of the @TargetType annotation is rarely used.

Making asadmin Subcommands Cluster-Aware

Chapter 4 • Extending the asadminUtility 59

An example exception is the enable subcommand. To perform a rolling upgrade of an
application deployed to a cluster, you must be able to enable the new application (which
automatically disables the old) on one clustered instance at a time. The @TargetType
annotation for the enable subcommand is as follows, all on one line:

@TargetType(CommandTarget.DAS,CommandTarget.STANDALONE_INSTANCE,CommandTarget.CLUSTER,

CommandTarget.CLUSTERED_INSTANCE)

Note that the CommandTarget.CLUSTERED_INSTANCE element is specified.

The target name specified in the command line is injected into the subcommand
implementation if the following annotation is present:

@Param(optional=true,defaultValue=SystemPropertyConstants.DEFAULT_SERVER_INSTANCE_NAME)

String target;

The TargetUtility
The Target utility is a service, present in the internal-api module,
org.glassfish.internal.api package, which a command implementation can obtain by
using the following annotation:

@Inject Target targetUtil;

You can use this utility to avoid writing boiler plate code for actions such as getting the list of
server instances for a cluster or checking if a server instance is part of a cluster. For example,
here is an example of using the utility to obtain the configuration for a target cluster or server
instance:

Config c = targetUtil.getConfig(target);

The Target utility is packaged in the as-install/modules/internal-api.jar file. Its methods
are documented with comments.

Specifying asadmin Subcommand Execution
By default, all asadmin subcommands are automatically replicated and run on the DAS and all
GlassFish Server instances specified in the --target option. To run a subcommand only on the
DAS, use the following @ExecuteOn annotation in the org.glassfish.api.admin package:

@ExecuteOn(RuntimeType.DAS)

The stop-domain subcommand and subcommands that list information are examples of
subcommands that execute only on the DAS.

To run a subcommand only on applicable server instances, use the following @ExecuteOn
annotation:

Making asadmin Subcommands Cluster-Aware

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201160

@ExecuteOn(RuntimeType.INSTANCE)

Not specifying an @ExecuteOn annotation is equivalent to specifying the following @ExecuteOn
annotation:

@ExecuteOn(RuntimeType.DAS,RuntimeType.INSTANCE)

In addition to RuntimeType, you can specify the following additional elements with the
@ExecuteOn annotation:
■ ifFailure — By default, if errors occur during execution of a subcommand on a server

instance, command execution is considered to have failed and further execution is stopped.
However, you can choose to ignore the failure or warn the user rather than stopping further
command execution. Specify the ifFailure element and set it to FailurePolicy.Ignore or
FailurePolicy.Warn. For example:

@ExecuteOn(value={RuntimeType.DAS}, ifFailure=FailurePolicy.Warn)

■ ifOffline — By default, if a server instance is found to be offline during the command
replication process, command execution is considered to have failed and further execution
is stopped. However, you can choose to ignore the failure or warn the user rather than
stopping further command execution. Specify the ifOffline element and set it to
FailurePolicy.Ignore or FailurePolicy.Warn. For example:

@ExecuteOn(value={RuntimeType.DAS}, ifOffline=FailurePolicy.Ignore)

Subcommand Preprocessing and Postprocessing
Some asadmin subcommands may require preprocessing or postprocessing. For example, after
an application is deployed to the DAS, references are created in all applicable server instances,
which synchronize with the DAS. As another example, Message Queue or load balancer settings
may have to be reconfigured whenever a server instance is added to a cluster.

For such cases, the command replication framework provides the @Supplemental annotation
(in the org.glassfish.api.admin package). An implementation must use the value element
of the @Supplemental annotation to express the supplemented command. This value is the
name of the command as defined by the supplemented command's @Service annotation (in the
org.jvnet.hk2.annotations package).

For example, the deploy subcommand requires postprocessing. The deployment command
implementation looks like this:

@Service(name="deploy")
@ExecuteOn(RuntimeType.DAS)

public DeployCommand implements AdminCommand {

//Do Actual Deployment

}

A supplemental command that is run after every successful deployment looks like this:

Making asadmin Subcommands Cluster-Aware

Chapter 4 • Extending the asadminUtility 61

@Service(name="DeploymentSupplementalCommand")
@Supplemental("deploy")
@ExecuteOn(RuntimeType.INSTANCE)

public DeploymentSupplementalCommand implements AdminCommand {

//Do logic that happens after deployment has been done

}

As another example, a subcommand to create a local server instance might look like this:

@Service(name = "create-local-instance")
@Scoped(PerLookup.class)

public final class CreateLocalInstanceCommand implements AdminCommand {

//Do local instance creation

}

A supplemental command to change Message Queue or load balancer settings after local
instance creation might look like this:

@Service(name="CreateLocalInstanceSupplementalCommand")
@Supplemental("create-local-instance")
public CreateLocalInstanceSupplementalCommand implements AdminCommand {

//Change MQ/LB properties here

}

A supplemental command implements AdminCommand, thus it can use the @Param
annotation and expect the corresponding asadmin command parameters to be injected at
runtime. The parameter values available for injection are the same ones provided for the
original command with which the supplemental command is associated. For example, the
DeploymentSupplementalCommand has access to the parameter values available to the
DeployCommand invocation.

An asadmin subcommand can be supplemented with multiple supplemental commands. In this
case, all supplemental commands are run after completion of the main command but without
any guarantee of the order in which they run.

To specify that a supplemental command is run before the main command, set the on element
of the @Supplemental annotation to Supplemental.Timing.Before. For example:

@Supplemental(value="mycommand", on=Supplemental.Timing.Before)

Supplemental commands can use the @ExecuteOn annotation as described in “Specifying
asadmin Subcommand Execution” on page 60.

Running a Command from Another Command
An asadmin subcommand or supplemental command might need to run another
subcommand. For example, a subcommand running on the DAS might need to run a different
subcommand on one or more server instances. Such invocations might use the
ClusterExecutor class (in the org.glassfish.api.admin package), which accepts a
ParameterMap, to pass parameters and their values to the invoked command.

Making asadmin Subcommands Cluster-Aware

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201162

The ParameterMapExtractor utility is a service, present in the common-util module,
org.glassfish.common.util.admin package, which creates a new ParameterMap populated
using the parameters and values of another AdminCommand that has already been injected.

To list parameter names you want excluded from the ParameterMap, pass the following:

Set<String>

This is optional.

Adding Message Text Strings to an asadmin Subcommand
A message text string provides useful information to the user about an asadmin subcommand
or a parameter.

To provide internationalization support for the text string of a subcommand or parameter,
annotate the declaration of the subcommand or parameter with the org.glassfish.api.I18n
annotation. The @I18n annotation identifies the resource from the resource bundle that is
associated with your implementation.

To add message text strings to an asadmin subcommand, create a plain text file that is named
LocalStrings.properties to contain the strings. Define each string on a separate line of the
file as follows:

key=string

key
A key that maps the string to a subcommand or a parameter. The format to use for key
depends on the target to which the key applies and whether the target is annotated with the
@I18n annotation. See the following table.

Target Format

Subcommand or parameter with the
@I18n annotation

subcommand-name.command.resource-name

Subcommand without the @I18n
annotation

subcommand-name.command

Parameter without the @I18n
annotation

subcommand-name.command.param-name

The replaceable parts of these formats are as follows:

subcommand-name The name of the subcommand.

resource-name The name of the resource that is specified in the@I18n annotation.

Adding Message Text Strings to an asadmin Subcommand

Chapter 4 • Extending the asadminUtility 63

param-name The name of the parameter.

string
A string without quotes that contains the text of the message.

Note – To display the message strings to users, you must provide code in your implementation of
the execute method to display the text. For more information about implementing the execute
method, see “Enabling an asadmin Subcommand to Run” on page 65.

EXAMPLE 4–3 Adding Message Strings to an asadmin Subcommand

This example shows the code for adding message strings to the create-mycontainer
subcommand as follows:
■ The create-mycontainer subcommand is associated with the message Creates a custom

container. No internationalization support is provided for this message.
■ The --originator parameter is associated with the message The originator of the

container. No internationalization support is provided for this message.
■ The --description parameter is associated with the message that is contained in the

resource mydesc, for which internationalization is provided. This resource contains the
message text A description of the container.

■ The --enabled parameter is associated with the message Whether the container is

enabled or disabled. No internationalization support is provided for this message.
■ The --containername parameter is associated with the message The container name. No

internationalization support is provided for this message.

The addition of the parameters originator, description, enabled and containername to the
subcommand is shown in Example 4–2.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;

...

import org.glassfish.api.I18n;

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

...

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

/**

* Sample subcommand

*/

@Service(name="create-mycontainer")
@Scoped(PerLookup.class)

public Class CreateMycontainer implements AdminCommand {

...

Adding Message Text Strings to an asadmin Subcommand

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201164

EXAMPLE 4–3 Adding Message Strings to an asadmin Subcommand (Continued)

@Param

String originator;

@Param(name="description", optional=true)

@I18n("mydesc")
String mycontainerDescription

@Param (acceptableValues="true,false", defaultValue="false", optional=true)

String enabled

@Param(primary=true)

String containername;

...

}

The following message text strings are defined in the file LocalStrings.properties for use by
the subcommand:

create-mycontainer.command=Creates a custom container

create-mycontainer.command.originator=The originator of the container

create-mycontainer.command.mydesc=A description of the container

create-mycontainer.command.enabled=Whether the container is enabled or disabled

create-mycontainer.command.containername=The container name

Enabling an asadmin Subcommand to Run
To enable an asadmin subcommand to run, implement the execute method in your
implementation of the AdminCommand interface. The declaration of the execute method in your
implementation must be as follows.

public void execute(AdminCommandContext context);

Pass each parameter of the subcommand as a property to your implementation of the execute
method. Set the key of the property to the parameter name and set the value of the property to
the parameter's value.

In the body of the execute method, provide the code for performing the operation that the
command was designed to perform. For examples, see Example 4–6 and Example 4–7.

Enabling an asadmin Subcommand to Run

Chapter 4 • Extending the asadminUtility 65

Setting the Context of an asadmin Subcommand
The org.glassfish.api.admin.AdminCommandContext class provides the following services to
an asadmin subcommand:

■ Access to the parameters of the subcommand
■ Logging
■ Reporting

To set the context of an asadmin subcommand, pass an AdminCommandContext object to the
execute method of your implementation.

Changing the Brand in the GlassFish Server CLI
The brand in the GlassFish Server command-line interface (CLI) consists of the product name
and release information that are displayed in the following locations:

■ In the string that the version(1) subcommand displays
■ In each entry in the server.log file

If you are incorporating GlassFish Server into a new product with an external vendor's own
brand name, change the brand in the GlassFish Server CLI.

To change the brand in the GlassFish Server CLI, create an OSGi fragment bundle that contains
a plain text file that is named src/main/resources/BrandingVersion.properties.

In the BrandingVersion.properties file, define the following keyword-value pairs:

product_name=product-name
abbrev_product_name=abbrev-product-name
major_version=major-version
minor_version=minor-version
build_id=build-id
version_prefix=version-prefix
version_suffix=version-suffix

Define each keyword-value pair on a separate line of the file. Each value is a text string without
quotes.

The meaning of each keyword-value pair is as follows:

product_name=product-name
Specifies the full product name without any release information, for example, GlassFish
Server Open Source Edition.

abbrev_product_name=abbrev-product-name
Specifies an abbreviated form of the product name without any release information, for
example, GlassFish Server.

Setting the Context of an asadmin Subcommand

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201166

major_version=major-version
Returns the product major version, for example, 3

minor_version=minor-version
Specifies the product minor version, for example, 0.

build_id=build-id
Specifies the build version, for example, build 17.

version_prefix=version-prefix
Specifies a prefix for the product version, for example, v.

version_suffix=version-suffix
Specifies a suffix for the product version, for example, Beta.

EXAMPLE 4–4 BrandingVersion.properties File for Changing the Brand in the GlassFish Server CLI

This example shows the content of the BrandingVersion.properties for defining the product
name and release information of Oracle GlassFish Server 3.0.1, build 17. The abbreviated
product name is glassfish-server.

product_name=Oracle GlassFish Server

abbrev_product_name=glassfish-server

major_version=3

minor_version=0.1

build_id=build 17

Examples of Extending the asadminUtility
EXAMPLE 4–5 asadmin Subcommand With Empty executeMethod

This example shows a class that represents the asadmin subcommand create-mycontainer.

The usage statement for this subcommand is as follows:

asadmin create-mycontainer --originator any-character-string
[--description any-character-string]
[--enabled {true|false}] any-character-string

This subcommand uses injection to specify that a running domain is required.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;

import org.glassfish.api.admin.AdminCommandContext;

import org.glassfish.api.I18n;

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.annotations.Scoped;

Examples of Extending the asadminUtility

Chapter 4 • Extending the asadminUtility 67

EXAMPLE 4–5 asadmin Subcommand With Empty executeMethod (Continued)

import org.jvnet.hk2.component.PerLookup;

/**

* Sample subcommand

*/

@Service(name="create-mycontainer")
@Scoped(PerLookup.class)

public Class CreateMycontainer implements AdminCommand {

@Inject

Domain domain;

@Param

String originator;

@Param(name="description", optional=true)

@I18n("mydesc")
String mycontainerDescription

@Param (acceptableValues="true,false", defaultValue="false", optional=true)

String enabled

@Param(primary=true)

String containername;

/**

* Executes the subcommand with the subcommand parameters passed as Properties

* where the keys are the paramter names and the values the parameter values

* @param context information

*/

public void execute(AdminCommandContext context) {

// domain and originator are not null

// mycontainerDescription can be null.

}

}

The following message text strings are defined in the file LocalStrings.properties for use by
the subcommand:

create-mycontainer.command=Creates a custom container

create-mycontainer.command.originator=The originator of the container

create-mycontainer.command.mydesc=A description of the container

create-mycontainer.command.enabled=Whether the container is enabled or disabled

create-mycontainer.command.containername=The container name

EXAMPLE 4–6 asadmin Subcommand for Retrieving and Displaying Information

This example shows a class that represents the asadmin subcommand
list-runtime-environment. The subcommand determines the operating system or runtime
information for GlassFish Server.

The usage statement for this subcommand is as follows:

asadmin list-runtime-environment{runtime|os}

Examples of Extending the asadminUtility

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201168

EXAMPLE 4–6 asadmin Subcommand for Retrieving and Displaying Information (Continued)

package com.example.env.cli;

import org.glassfish.api.admin.AdminCommand;

import org.glassfish.api.admin.AdminCommandContext;

import org.glassfish.api.ActionReport;

import org.glassfish.api.I18n;

import org.glassfish.api.ActionReport.ExitCode;

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

import java.lang.management.ManagementFactory;

import java.lang.management.OperatingSystemMXBean;

import java.lang.management.RuntimeMXBean;

/**

* Demos asadmin CLI extension

*

*/

@Service(name="list-runtime-environment")
@Scoped(PerLookup.class)

public class ListRuntimeEnvironmentCommand implements AdminCommand {

// this value can be either runtime or os for our demo

@Param(primary=true)

String inParam;

public void execute(AdminCommandContext context) {

ActionReport report = context.getActionReport();

report.setActionExitCode(ExitCode.SUCCESS);

// If the inParam is ’os’ then this subcommand returns operating system

// info and if the inParam is ’runtime’ then it returns runtime info.

// Both of the above are based on mxbeans.

if ("os".equals(inParam)) {

OperatingSystemMXBean osmb = ManagementFactory.getOperatingSystemMXBean();

report.setMessage("Your machine operating system name = " + osmb.getName());

} else if ("runtime".equals(inParam)) {

RuntimeMXBean rtmb = ManagementFactory.getRuntimeMXBean();

report.setMessage("Your JVM name = " + rtmb.getVmName());

} else {

report.setActionExitCode(ExitCode.FAILURE);

report.setMessage("operand should be either ’os’ or ’runtime’");
}

}

}

EXAMPLE 4–7 asadmin Subcommand for Updating Configuration Data

This example shows a class that represents the asadmin subcommand
configure-greeter-container. The subcommand performs a transaction to update

Examples of Extending the asadminUtility

Chapter 4 • Extending the asadminUtility 69

EXAMPLE 4–7 asadmin Subcommand for Updating Configuration Data (Continued)

configuration data for a container component. For more information about such transactions,
see “Creating a Transaction to Update Configuration Data” on page 108.

The usage statement for this subcommand is as follows:

asadmin configure-greeter-container --instances instances [--language language] [--style style]

The acceptable values and default value of each option of the subcommand are shown in the
following table. The table also indicates whether each option is optional or required.

Option Acceptable Values Default value Optional or Required

--instances An integer in the range
1–10

5 Required

--language english, norsk, or
francais

norsk Optional

--style formal, casual, or
expansive

formal Optional

Code for the container component is shown in “Example of Adding Container Capabilities” on
page 122.

Code that defines the configuration data for the container component is shown in “Examples of
Adding Configuration Data for a Component” on page 111.

package org.glassfish.examples.extension.greeter.config;

import org.glassfish.api.admin.AdminCommand;

import org.glassfish.api.admin.AdminCommandContext;

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.config.Transactions;

import org.jvnet.hk2.config.ConfigSupport;

import org.jvnet.hk2.config.SingleConfigCode;

import org.jvnet.hk2.config.TransactionFailure;

import java.beans.PropertyVetoException;

@Service(name = "configure-greeter-container")
public class ConfigureGreeterContainerCommand implements AdminCommand {

@Param(acceptableValues = "1,2,3,4,5,6,7,8,9,10", defaultValue = "5")
String instances;

@Param(acceptableValues = "english,norsk,francais", defaultValue = "norsk",
optional = true)

String language;

Examples of Extending the asadminUtility

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201170

@Param(acceptableValues = "formal,casual,expansive", defaultValue = "formal",
optional = true)

String style;

@Inject

GreeterContainerConfig config;

public void execute(AdminCommandContext adminCommandContext) {

try {

ConfigSupport.apply(new SingleConfigCode<GreeterContainerConfig>() {

public Object run(GreeterContainerConfig greeterContainerConfig)

throws PropertyVetoException, TransactionFailure {

greeterContainerConfig.setNumberOfInstances(instances);

greeterContainerConfig.setLanguage(language);

greeterContainerConfig.setStyle(style);

return null;

}

}, config);

} catch (TransactionFailure e) {

}

}

}

Implementing Create, Delete, and List Commands Using
Annotations

Many asadmin subcommands simply create, delete, or list objects in the configuration. Such
code is repetitive to write and error prone. To simplify the writing of these asadmin commands,
GlassFish Server supports annotations that can create, delete, and list configuration objects
from a command invocation. Unless attributes or properties are set to non-default values or
extra actions are required, no writing of code is needed.

The following topics are addressed here:
■ “Command Patterns” on page 71
■ “Resolvers” on page 73
■ “The @Create Annotation” on page 73
■ “The @Delete Annotation” on page 74
■ “The @Listing Annotation” on page 75
■ “Create Command Decorators” on page 75
■ “Delete Command Decorators” on page 77
■ “Specifying Command Execution” on page 78
■ “Using Multiple Command Annotations” on page 79

Command Patterns
Create command pattern. The most basic create commands are implemented in the following
pattern:

Implementing Create, Delete, and List Commands Using Annotations

Chapter 4 • Extending the asadminUtility 71

1. Retrieve the parent configuration object instance to which the child will be added. For
example, the parent could be a Clusters object and the child a Cluster object.

2. Start a transaction on the parent instance.

3. Create the child configuration object instance.

4. Set the attributes and properties of the newly created child instance.

5. Add the child to the parent using one of the following accessor methods:

void setChild(ChildType child)

Used when there can be zero or one children of a single type associated with one parent
instance.

List<ChildType> getChildren()

Used when there can be zero or more children of a single type associated with one parent
instance.

You cannot retrieve a set of children of the same type from the same parent using two
different accessor methods.

6. Commit the transaction.

A generic create command implementation can do most of these tasks if the following
information is provided:

■ A way to resolve the identity of the parent instance.
■ The type of the child instance.
■ A mapping between command options and child attributes.
■ The accessor method for adding the child to the parent.

Delete command pattern. The most basic delete commands are implemented in the following
pattern:

1. Retrieve the configuration object instance to be deleted.
2. Start a transaction on the parent instance.
3. Delete the child by removing it from the list or calling setXXX(null).
4. Commit the transaction.

A generic delete command implementation can do most of these tasks if the following
information is provided:

■ A way to resolve the identity of the child instance.
■ The accessor method for deleting the child.

List command pattern. The most basic list commands simply retrieve all configuration object
instances of a given type.

Implementing Create, Delete, and List Commands Using Annotations

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201172

Resolvers
A resolver retrieves a configuration object instance of a particular type. For a create command,
it retrieves the parent of the object to be created. For a delete command, it retrieves the object to
be deleted. A resolver implements the CrudResolver interface:

package org.glassfish.config.support;

/**

* A config resolver is responsible for finding the target object of a specified

* type on which a creation command invocation will be processed.

*

* Implementation of these interfaces can be injected with the command invocation

* parameters in order to determine which object should be returned

*/

@Contract

public interface CrudResolver {

/**

* Retrieves the existing configuration object a command invocation is

* intented to mutate.

* @param context the command invocation context

* @param type the type of the expected instance

* @return the instance or null if not found

*/

<T extends ConfigBeanProxy> T resolve(AdminCommandContext context, Class<T> type);

}

Given an AdminCommandContext, plus injection with the asadmin command line parameters (or
any other HK2 services if necessary), the resolver should be able to determine the particular
configuration object on which to act.

The following resolvers are provided in the org.glassfish.config.support package:

■ TargetBasedResolver — Uses the --target option and the expected return type to retrieve
the configuration object instance.

■ TargetAndNameBasedResolver — Uses the --target option to look up a Config object and
a name to retrieve one of the Config object's children.

■ TypeAndNameResolver — Uses the requested type and asadmin command name operand to
find the configuration object instance. This is useful for a configuration that uses the @Index
annotation, which registers instances under names.

■ TypeResolver — Uses the requested type to find the configuration object instance. This is
the default resolver.

The @CreateAnnotation
By placing the org.glassfish.config.support.Create annotation on a method, you provide
the following information:

Implementing Create, Delete, and List Commands Using Annotations

Chapter 4 • Extending the asadminUtility 73

■ The value element of the @Create annotation is the name of the asadmin subcommand that
creates the configuration object.

■ The method's class is the type of the parent.
■ The method's return type or parameter type is the type of the child.
■ The method is the accessor method that adds a child of the specified type to the parent.

The only additional information needed is the resolver to use.

The following example specifies a create-cluster subcommand:

@Configured

public interface Clusters extends ConfigBeanProxy, Injectable {

/**

* Return the list of clusters currently configured

*

* @return list of {@link Cluster }

*/

@Element

@Create(value="create-cluster")
public List<Cluster> getCluster();

}

Because there is only one instance of the parent type, Clusters, in the configuration, this
example uses the default resolver to retrieve it. Therefore, no resolver needs to be specified.

The @DeleteAnnotation
By placing the org.glassfish.config.support.Delete annotation on a method, you provide
the following information:

■ The value element of the @Delete annotation is the name of the asadmin subcommand that
deletes the configuration object.

■ The method's class is the type of the parent.
■ The method's return type or parameter type is the type of the child.
■ The method is the accessor method that deletes a child of the specified type from the parent.

The only additional information needed is the resolver to use.

The following example specifies a delete-cluster subcommand:

@Configured

public interface Clusters extends ConfigBeanProxy, Injectable {

/**

* Return the list of clusters currently configured

*

Implementing Create, Delete, and List Commands Using Annotations

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201174

* @return list of {@link Cluster }

*/

@Element

@Delete(value="delete-cluster", resolver=TypeAndNameResolver.class)

public List<Cluster> getCluster();

}

The TypeAndNameResolver uses the child type and the name operand passed through the
command line to retrieve the specific cluster instance to be deleted.

The @ListingAnnotation
By placing the org.glassfish.config.support.Listing annotation on a method, you
provide the following information:

■ The value element of the @Listing annotation is the name of the asadmin subcommand
that lists the configuration objects.

■ The method's class is the type of the parent.
■ The method's return type is the type of the children to be listed.
■ The method is always the following accessor method:

List<ChildType> getChildren()

The default resolver retrieves all of the children of the specified type. Therefore, no resolver
needs to be specified for a list command.

The following example specifies a list-clusters subcommand:

@Configured

public interface Clusters extends ConfigBeanProxy, Injectable {

/**

* Return the list of clusters currently configured

*

* @return list of {@link Cluster }

*/

@Element

@Listing(value="list-clusters")
public List<Cluster> getCluster();

}

Create Command Decorators
Most create commands must do more than create a single configuration object instance with
default attribute values. For example, most create commands allow the user to specify
non-default attribute values through command options. For another example, the
create-cluster subcommand creates children of the Cluster object and copies a referenced
Config object. A creation decorator provides the code necessary to perform such additional
operations.

Implementing Create, Delete, and List Commands Using Annotations

Chapter 4 • Extending the asadminUtility 75

The interface that a creation decorator must implement is as follows:

@Scoped(PerLookup.class)

public interface CreationDecorator<T extends ConfigBeanProxy> {

/**

* The element instance has been created and added to the parent, it can be

* customized. This method is called within a

* {@link org.jvnet.hk2.config.Transaction}

* and instance is therefore a writeable view on the configuration component.

*

* @param context administration command context

* @param instance newly created configuration element

* @throws TransactionFailure if the transaction should be rollbacked

* @throws PropertyVetoException if one of the listener of <T> is throwing

* a veto exception

*/

public void decorate(AdminCommandContext context, T instance)

throws TransactionFailure, PropertyVetoException;

/**

* Default implementation of a decorator that does nothing.

*/

@Service

public class NoDecoration implements CreationDecorator<ConfigBeanProxy> {

@Override

public void decorate(AdminCommandContext context, ConfigBeanProxy instance)

throws TransactionFailure, PropertyVetoException {

// do nothing

}

}

}

The CreationDecorator interface is in the org.glassfish.config.support package.

A @Create annotation specifies a creation decorator using a decorator element. For example:

@Configured

public interface Clusters extends ConfigBeanProxy, Injectable {

/**

* Return the list of clusters currently configured

*

* @return list of {@link Cluster }

*/

@Element

@Create(value="create-cluster", decorator=Cluster.Decorator.class)

public List<Cluster> getCluster();

}

The @Create annotation is on a method of the parent class. However, the referenced creation
decorator class is associated with the child class. For example:

@Configured

public interface Cluster extends ConfigBeanProxy, ... {

Implementing Create, Delete, and List Commands Using Annotations

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201176

...

@Service

@Scoped(PerLookup.class)

class Decorator implements CreationDecorator<Cluster> {

@Param(name="config", optional=true)

String configRef=null;

@Inject

Domain domain;

@Override

public void decorate(AdminCommandContext context, final Cluster instance)

throws TransactionFailure, PropertyVetoException {

...

}

}

}

The decorator class can optionally be an inner class of the child class. You can inject command
options using the @Param annotation. You can also inject HK2 services or configuration
instances.

Delete Command Decorators
Some delete commands must do more than delete a single configuration object instance. For
example, the delete-cluster subcommand deletes the referenced Config object if no other
Cluster or Instance objects reference it. A deletion decorator provides the code necessary to
perform such additional operations.

The interface that a deletion decorator must implement is as follows:

/**

* A decorator for acting upon a configuration element deletion.

*

* @param <T> the deleted element parent type

* @param <U> the deleted element

*/

@Scoped(PerLookup.class)

public interface DeletionDecorator<T extends ConfigBeanProxy,

U extends ConfigBeanProxy> {

/**

* notification of a configuration element of type U deletion.

*

* Note that this notification is called within the boundaries of the

* configuration transaction, therefore the parent instance is a

* writable copy and further changes to the parent can be made without

* enrolling it inside a transaction.

*

Implementing Create, Delete, and List Commands Using Annotations

Chapter 4 • Extending the asadminUtility 77

* @param context the command context to lead to the element deletion

* @param parent the parent instance the element was removed from

* @param child the deleted instance

*/

public void decorate(AdminCommandContext context, T parent, U child);

}

The DeletionDecorator interface is in the org.glassfish.config.support package.

A @Delete annotation specifies a deletion decorator using a decorator element. For example:

@Configured

public interface Clusters extends ConfigBeanProxy, Injectable {

/**

* Return the list of clusters currently configured

*

* @return list of {@link Cluster }

*/

@Element

@Delete(value="delete-cluster", resolver= TypeAndNameResolver.class,

decorator=Cluster.DeleteDecorator.class)

public List<Cluster> getCluster();

}

The @Delete annotation is on a method of the parent class. However, the referenced deletion
decorator class is associated with the child class. For example:

@Configured

public interface Cluster extends ConfigBeanProxy, ... {

..

@Service

@Scoped(PerLookup.class)

class DeleteDecorator implements DeletionDecorator<Clusters, Cluster> {

....

}

}

The decorator class can optionally be an inner class of the child class. You can inject command
options using the @Param annotation. You can also inject HK2 services or configuration
instances.

Specifying Command Execution
Commands specified with the @Create, @Delete, and @Listing annotations can use the
@ExecuteOn annotation. The @ExecuteOn annotation specifies whether the command runs on
the DAS, on server instances, or both (the default). For more information, see “Specifying
asadmin Subcommand Execution” on page 60.

To add an @ExecuteOn annotation to a @Create or @Delete annotation, use the cluster
element. For example:

Implementing Create, Delete, and List Commands Using Annotations

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201178

@Create(value="create-instance", resolver=TypeResolver.class,

decorator=Server.CreateDecorator.class,

cluster=@org.glassfish.api.admin.ExecuteOn(value=RuntimeType.DAS))

Using Multiple Command Annotations
You can specify multiple command annotations on the same method. The following example
combines create, delete, and list commands for clusters:

@Configured

public interface Clusters extends ConfigBeanProxy, Injectable {

/**

* Return the list of clusters currently configured

*

* @return list of {@link Cluster }

*/

@Element

@Create(value="create-cluster", decorator=Cluster.Decorator.class)

@Delete(value="delete-cluster", resolver= TypeAndNameResolver.class,

decorator=Cluster.DeleteDecorator.class)

@Listing(value="list-clusters")
public List<Cluster> getCluster();

}

You can also specify multiple create or delete command annotations for the same configuration
object type using the @Creates or @Deletes annotation (both in the
org.glassfish.config.support package). For example:

@Element

@Creates(

@Create(value="create-something", decorator=CreateSomething.Decorator)

@Create(value="create-something-else", decorator=CreateSomethingElse.Decorator)

List<Something> getSomethings();

)

These commands create configuration object instances of the same type. Differences in the
decorators and resolvers can produce differences in the options each command takes. The
@Param annotated attributes of the created type define a superset of options for both commands.

Implementing Create, Delete, and List Commands Using Annotations

Chapter 4 • Extending the asadminUtility 79

80

Adding Monitoring Capabilities

Monitoring is the process of reviewing the statistics of a system to improve performance or solve
problems. By monitoring the state of components and services that are deployed in the
GlassFish Server, system administrators can identify performance bottlenecks, predict failures,
perform root cause analysis, and ensure that everything is functioning as expected. Monitoring
data can also be useful in performance tuning and capacity planning.

An add-on component typically generates statistics that the GlassFish Server can gather at run
time. Adding monitoring capabilities enables an add-on component to provide statistics to
GlassFish Server in the same way as components that are supplied in GlassFish Server
distributions. As a result, system administrators can use the same administrative interfaces to
monitor statistics from any installed GlassFish Server component, regardless of the origin of the
component.

The following topics are addressed here:

■ “Defining Statistics That Are to Be Monitored” on page 81
■ “Updating the Monitorable Object Tree” on page 88
■ “Dotted Names and REST URLs for an Add-On Component's Statistics” on page 93
■ “Example of Adding Monitoring Capabilities” on page 94

Defining Statistics That Are to Be Monitored
At runtime, your add-on component might perform operations that affect the behavior and
performance of your system. For example, your component might start a thread of control,
receive a request from a service, or request a connection from a connection pool. Monitoring
the statistics that are related to these operations helps a system administrator maintain the
system.

To provide statistics to GlassFish Server, your component must define events for the operations
that generate these statistics. At runtime, your component must send these events when

5C H A P T E R 5

81

performing the operations for which the events are defined. For example, to enable the number
of received requests to be monitored, a component must send a “request received” event each
time that the component receives a request.

A statistic can correspond to single event or to multiple events.
■ Counter statistics typically correspond to a single event. For example, to calculate the

number of received requests, only one event is required, for example, a “request received”
event. Every time that a “request received” event is sent, the number of received requests is
increased by 1.

■ Timer statistics typically correspond to multiple events. For example, to calculate the time to
process a request, two requests, for example, a “request received” event and a “request
completed” event.

Defining statistics that are to be monitored involves the following tasks:
■ “Defining an Event Provider” on page 82
■ “Sending an Event” on page 87

Defining an Event Provider
An event provider defines the types of events for the operations that generate statistics for an
add-on component.

GlassFish Server enables you to define an event provider in the following ways:
■ By writing a Java Class. Define an event provider this way if you have access to the source

code of the component for which you are defining an event provider.
■ By writing an XML fragment. Define an event provider this way if you do not have access to

the source code of the component for which you are defining and event provider.

Defining an Event Provider by Writing a Java Class
To define an event provider, write a Java language class that defines the types of events for the
component. Your class is not required to extend any specific class or implement any interfaces.

To identify your class as an event provider, annotate the declaration of the class with the
org.glassfish.external.probe.provider.annotations.ProbeProvider annotation.

To create a name space for event providers and to uniquely identify an event provider to the
monitoring infrastructure of GlassFish Server, set the elements of the @ProbeProvider
annotation as follows:

moduleProviderName

Your choice of text to identify the application to which the event provider belongs. The value
of the moduleProviderName element is not required to be unique.

Defining Statistics That Are to Be Monitored

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201182

For example, for event providers from GlassFish Server Open Source Edition,
moduleProviderName is glassfish.

moduleName

Your choice of name for the module for which the event provider is defined. A module
provides significant functionality of an application. The value of the moduleName element is
not required to be unique.

In GlassFish Server, examples of module names are web-container, ejb-container,
transaction, and webservices.

probeProviderName

Your choice of name to identify the event provider. To uniquely identify the event provider,
ensure that probeProviderName is unique for all event providers in the same module.

In GlassFish Server, examples of event—provider names are jsp, servlet, and web-module.

Defining Event Types in an Event Provider Class

To define event types in an event provider class, write one method for each type of event that is
related to the component. The requirements for each method are as follows:

■ The return value of the callback methods must be void.
■ The method body must be empty. You instantiate the event provider class in the class that

invokes the method to send the event. For more information, see “Sending an Event” on
page 87.

■ To enable the event to be used as an Oracle Solaris DTrace probe, each parameter in the
method signature must be a Java language primitive, such as Integer, boolean, or String.

Annotate the declaration of each method with the
org.glassfish.external.probe.provider.annotations.Probe annotation.

By default, the type of the event is the method name. If you overload a method in your class, you
must uniquely identify the event type for each form of the method. To uniquely identify the
event type, set the name element of the @Probe annotation to the name of the event type.

Note – You are not required to uniquely identify the event type for methods that are not
overloaded.

Specifying Event Parameters

To enable methods in an event listener to select a subset of values, annotate each parameter in
the method signature with the
org.glassfish.external.probe.provider.annotations.ProbeParam annotation. Set the
value element of the @ProbeParam annotation to the name of the parameter.

Defining Statistics That Are to Be Monitored

Chapter 5 • Adding Monitoring Capabilities 83

Example of Defining an Event Provider by Writing a Java Class

EXAMPLE 5–1 Defining an Event Provider by Writing a Java Class

This example shows the definition of the TxManager class. This class defines events for the start
and end of transactions that are performed by a transaction manager.

The methods in this class are as follows:

onTxBegin

This method sends an event to indicate the start of a transaction. The name of the event type
that is associated with this method is begin. A parameter that is named txId is passed to the
method.

onCompletion

This method sends an event to indicate the end of a transaction. The name of the event type
that is associated with this method is end. A parameter that is named outcome is passed to the
method.

import org.glassfish.external.probe.provider.annotations.Probe;

import org.glassfish.external.probe.provider.annotations.ProbeParam;

import org.glassfish.external.probe.provider.annotations.ProbeProvider;

@ProbeProvider(moduleProviderName="examplecomponent",
moduleName="transaction", probeProviderName="manager")
public class TxManager {

@Probe("begin")
public void onTxBegin(

@ProbeParam("{txId}") String txId

){}

@Probe ("end")
public void onCompletion(

@ProbeParam("{outcome}") boolean outcome

){}

}

Defining an Event Provider by Writing an XML Fragment
To define an event provider, write an extensible markup language (XML) fragment that
contains a single probe-provider element.

To create a name space for event providers and to uniquely identify an event provider to the
monitoring infrastructure of GlassFish Server, set the attributes of the probe-provider element
as follows:

moduleProviderName

Your choice of text to identify the application to which the event provider belongs. The value
of the moduleProviderName attribute is not required to be unique.

For example, for event providers from GlassFish Server Open Source Edition,
moduleProviderName is glassfish.

Defining Statistics That Are to Be Monitored

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201184

moduleName

Your choice of name for the module for which the event provider is defined. A module
provides significant functionality of an application. The value of the moduleName attribute is
not required to be unique.

In GlassFish Server, examples of module names are web-container, ejb-container,
transaction, and webservices.

probeProviderName

Your choice of name to identify the event provider. To uniquely identify the event provider,
ensure that probeProviderName is unique for all event providers in the same module.

In GlassFish Server, examples of event—provider names are jsp, servlet, and web-module.

Within the probe-provider element, add one probe element for each event type that you are
defining. To identify the event type, set the name attribute of the probe element to the type.

To define the characteristics of each event type, add the following elements within the probe
element:

class

This element contains the fully qualified Java class name of the component that generates the
statistics for which you are defining events.

method

This element contains the name of the method that is invoked to generate the statistic.

signature

This element contains the following information about the signature if the method:

return-type (paramater-type-list)

return-type
The return type of the method.

paramater-type-list
A comma-separated- list of the types of the parameters in the method signature.

probe-param

The attributes of this element identify the type and the name of a parameter in the method
signature. One probe-param element is required for each parameter in the method
signature. The probe-param element does not contain any data.

The attributes of the probe-param element are as follows:

type

Specifies the type of the parameter.

name

Specifies the name of the parameter.

Defining Statistics That Are to Be Monitored

Chapter 5 • Adding Monitoring Capabilities 85

return-param

The type attribute of this element specifies the return type of the method. The return-param
element does not contain any data.

EXAMPLE 5–2 Defining an Event Provider by Writing an XML Fragment

This example defines an event provider for the glassfish:web:jsp component. The Java class
of this component is com.sun.enterprise.web.jsp.JspProbeEmitterImpl. The event
provider defines one event of type jspLoadedEvent. The signature of the method that is
associated with this event is as follows:

void jspLoaded (String jsp, String hostName)

<probe-provider moduleProviderName="glassfish" moduleName="web" probeProviderName="jsp" >

<probe name="jspLoadedEvent">
<class>com.sun.enterprise.web.jsp.JspProbeEmitterImpl</class>

<method>jspLoaded</method>

<signature>void (String,String)</signature>

<probe-param type="String" name="jsp"/>
<probe-param type="String" name="hostName"/>
<return-param type="void" />

</probe>

</probe-provider>

Packaging a Component's Event Providers
Packaging a component's event providers enables the monitoring infrastructure of GlassFish
Server to discover the event providers automatically.

To package a component's event providers, add an entry to the component's
META-INF/MANIFEST.MF file that identifies all of the component's event providers. The format of
the entry depends on how the event providers are defined:

■ If the event providers are defined as Java classes, the entry is a list of the event providers' class
names as follows:

probe-provider-class-names : class-list

class-list A comma-separated list of the fully qualified Java class names of the
component's event providers.

■ If the event providers are defined as XML fragments, the entry is a list of the paths to the files
that contain the XML fragments as follows:

probe-provider-xml-file-names : path-list

path-list A comma-separated list of the paths to the XML files relative to the root of the
archive in the JAR file.

Defining Statistics That Are to Be Monitored

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201186

EXAMPLE 5–3 Manifest Entry for Event Providers That Are Defined as Java Classes

This example shows the entry in the META-INF/MANIFEST.MF file of a component whose event
provider is the org.glassfish.pluggability.monitoring.ModuleProbeProvider class.

probe-provider-class-names : org.glassfish.pluggability.monitoring.ModuleProbeProvider

Sending an Event
At runtime, your add-on component might perform an operation that generates statistics. To
provide statistics about the operation to GlassFish Server, your component must send an event
of the correct type when performing the operation.

To send an event, instantiate your event provider class and invoke the method of the event
provider class for the type of the event. Instantiate the class and invoke the method in the class
that represents your add-on component. Ensure that the method is invoked when your
component performs the operation for which the event was defined. One way to meet this
requirement is to invoke the method for sending the event in the body of the method for
performing the operation.

EXAMPLE 5–4 Sending an Event

This example shows the code for instantiating the TxManager class and invoking the onTxBegin
method to send an event of type begin. This event indicates that a component is about to begin
a transaction.

The TxManager class is instantiated in the constructor of the TransactionManagerImpl class.
To ensure that the event is sent at the correct time, the onTxBegin method is invoked in the
body of the begin method, which starts a transaction.

The declaration of the onTxBegin method in the event provider interface is shown in
Example 5–1.

...

public class TransactionManagerImpl {

...

public TransactionManagerImpl() {

TxManager txProvider = new TxManager();

...

}

...

public void begin() {

String txId = createTransactionId();

....

txProvider.onTxBegin(txId); //emit

}

...

}

Defining Statistics That Are to Be Monitored

Chapter 5 • Adding Monitoring Capabilities 87

Updating the Monitorable Object Tree
A monitorable object is a component, subcomponent, or service that can be monitored.
GlassFish Server uses a tree structure to track monitorable objects.

Because the tree is dynamic, the tree changes as components of the GlassFish Server instance
are added, modified, or removed. Objects are also added to or removed from the tree in
response to configuration changes. For example, if monitoring for a component is turned off,
the component's monitorable object is removed from the tree.

To enable system administrators to access statistics for all components in the same way, you
must provide statistics for an add-on component by updating the monitorable object tree.
Statistics for the add-on component are then available through the GlassFish Server
administrative commands get(1), list(1), and set(1). These commands locate an object in the
tree through the object's dotted name.

For more information about the tree structure of monitorable objects, see “How the Monitoring
Tree Structure Works” in GlassFish Server Open Source Edition 3.1 Administration Guide.

To make an add-on component a monitorable object, you must add the add-on component to
the monitorable object tree.

To update the statistics for an add-on component, you must add the statistics to the
monitorable object tree, and create event listeners to gather statistics from events that represent
these statistics. At runtime, these listeners must update monitorable objects with statistics that
these events contain. The events are sent by event provider classes. For information about how
to create event provider classes and send events, see “Defining Statistics That Are to Be
Monitored” on page 81.

Updating the monitorable object tree involves the following tasks:

■ “Creating Event Listeners” on page 88
■ “Representing a Component's Statistics in an Event Listener Class” on page 89
■ “Subscribing to Events From Event Provider Classes” on page 91
■ “Registering an Event Listener” on page 92

Creating Event Listeners
An event listener gathers statistics from events that an event provider sends. To enable an
add-on component to gather statistics from events, create listeners to receive events from the
event provider. The listener can receive events from the add-on component in which the
listener is created and from other components.

Updating the Monitorable Object Tree

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201188

To create an event listener, write a Java class to represent the listener. The listener can be any
Java object.

An event listener also represents a component's statistics. To enable the Application Server
Management Extensions (AMX) to expose the statistics to client applications, annotate the
declaration of the class with the org.glassfish.gmbal.ManagedObject annotation.

Ensure that the class that you write meets these requirements:

■ The return value of all callback methods in the listener must be void.
■ Because the methods of your event provider class may be entered by multiple threads, the

listener must be thread safe.
■ The listener must have the same restrictions as a Java Platform, Enterprise Edition (Java EE)

application. For example, the listener cannot open server sockets, or create threads.

A listener is called in the same thread as the event method. As a result, the listener can use
thread locals. If the monitored system allows access to thread locals, the listener can access
thread locals of the monitored system.

Note – A listener that is not registered to listen for events is never called by the framework.
Therefore, unregistered listeners do not consume any computing resources, such as memory or
processor cycles.

Representing a Component's Statistics in an Event
Listener Class
Represent each statistic as the property of a JavaBeans specification getter method of your
listener class. Methods in the listener class for processing events can then access the property
through the getter method. For more information, see “Subscribing to Events From Event
Provider Classes” on page 91.

To enable AMX to expose the statistic to client applications, annotate the declaration of the
getter method with the org.glassfish.gmbal.ManagedAttribute annotation. Set the id
element of the @ManagedAttribute annotation to the property name all in lowercase.

The data type of the property that represents a statistic must be a class that provides methods for
computing the statistic from event data.

The org.glassfish.external.statistics.impl package provides the following classes to
gather and compute statistics data:

Updating the Monitorable Object Tree

Chapter 5 • Adding Monitoring Capabilities 89

AverageRangeStatisticImpl

Provides standard measurements of the lowest and highest values that an attribute has held
and the current value of the attribute.

BoundaryStatisticImpl

Provides standard measurements of the upper and lower limits of the value of an attribute.

BoundedRangeStatisticImpl

Aggregates the attributes of RangeStatisticImpl and BoundaryStatisticImpl and
provides standard measurements of a range that has fixed limits.

CountStatisticImpl

Provides standard count measurements.

RangeStatisticImpl

Provides standard measurements of the lowest and highest values that an attribute has held
and the current value of the attribute.

StatisticImpl

Provides performance data.

StringStatisticImpl

Provides a string equivalent of a counter statistic.

TimeStatisticImpl

Provides standard timing measurements.

EXAMPLE 5–5 Representing a Component's Statistics in an Event Listener Class

This example shows the code for representing the txcount statistic in the TxListener class.

...

import org.glassfish.external.statistics.CountStatistic;

import org.glassfish.external.statistics.impl.CountStatisticImpl;

...

import org.glassfish.gmbal.ManagedAttribute;

import org.glassfish.gmbal.ManagedObject;

...

@ManagedObject

public class TxListener {

private CountStatisticImpl txCount = new CountStatisticImpl("TxCount",
"count", "Number of completed transactions");

...

@ManagedAttribute(id="txcount")
public CountStatistic getTxCount(){

return txCount;

}

}

Updating the Monitorable Object Tree

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201190

Subscribing to Events From Event Provider Classes
To receive events from event provider classes, a listener must subscribe to the events.
Subscribing to events also specifies the provider and the type of events that the listener will
receive.

To subscribe to events from event provider classes, write one method in your listener class to
process each type of event. To specify the provider and the type of event, annotate the method
with the org.glassfish.external.probe.provider.annotations.ProbeListener
annotation. In the @ProbeListener annotation, specify the provider and the type as follows:

"module-providername:module-name:probe-provider-name:event-type"

module-providername
The application to which the event provider belongs. This parameter must be the value of the
moduleProviderName element or attribute in the definition of the event provider. See
“Defining an Event Provider by Writing a Java Class” on page 82 and “Defining an Event
Provider by Writing an XML Fragment” on page 84.

module-name
The module for which the event provider is defined. This parameter must match be the value
of the moduleName element or attribute in the definition of the event provider . See “Defining
an Event Provider by Writing a Java Class” on page 82 and “Defining an Event Provider by
Writing an XML Fragment” on page 84.

probe-provider-name
The name of the event provider. This parameter must match be the value of the
probeProviderName element or attribute in the definition of the event provider. See
“Defining an Event Provider by Writing a Java Class” on page 82 and “Defining an Event
Provider by Writing an XML Fragment” on page 84.

event-type
The type of the event. This type is defined in the event provider class. For more information,
see “Defining Event Types in an Event Provider Class” on page 83.

Annotate each parameter in the method signature with the @ProbeParam annotation. Set the
value element of the @ProbeParam annotation to the name of the parameter.

In the method body, provide the code to update monitoring statistics in response to the event.

EXAMPLE 5–6 Subscribing to Events From Event Provider Classes

This example shows the code for subscribing to events of type begin from the tx component.
The provider of the component is TxManager. The body of the begin method contains code to
increase the transaction count txcount by 1 each time that an event is received.

The definition of the begin event type is shown in Example 5–1.

The code for sending begin events is shown in Example 5–4.

Updating the Monitorable Object Tree

Chapter 5 • Adding Monitoring Capabilities 91

EXAMPLE 5–6 Subscribing to Events From Event Provider Classes (Continued)

The instantiation of the txCount object is shown in Example 5–5.

...

import org.glassfish.external.probe.provider.annotations.ProbeListener;

import org.glassfish.external.probe.provider.annotations.ProbeParam;

import org.glassfish.gmbal.ManagedObject;

...

@ManagedObject

public class TxListener {

...; @ProbeListner("examplecomponent:transaction:manager:begin")
public void begin(

@ProbeParam("{txId}")
String txId) {

txCount.increment();

}

}

Registering an Event Listener
Registering an event listener enables the listener to receive callbacks from the GlassFish Server
event infrastructure. The listener can then collect data from events and update monitorable
objects in the object tree. These monitorable objects form the basis for monitoring statistics.

Registering an event listener also makes a component and its statistics monitorable objects by
adding statistics for the component to the monitorable object tree.

At runtime, the GlassFish Server event infrastructure registers listeners for an event provider
when the event provider is started and unregisters them when the event provider is shut down.
As a result, listeners have no dependencies on other components.

To register a listener, invoke the static
org.glassfish.external.probe.provider.StatsProviderManager.register method in
the class that represents your add-on component. In the method invocation, pass the following
information as parameters:

■ The name of the configuration element with which all statistics in the event listener are to be
associated. System administrators use this element for enabling or disabling monitoring for
the event listener.

■ The node in the monitorable object tree under which the event listener is to be registered. To
specify the node, pass one of the following constants of the
org.glassfish.external.probe.provider.PluginPointPluginPoint enumeration:
■ To register the listener under the server/applications node, pass the APPLICATIONS

constant.
■ To register the listener under the server node, pass the SERVER constant.

Updating the Monitorable Object Tree

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201192

■ The path through the monitorable object tree from the node under which the event listener
is registered down to the statistics in the event listener. The nodes in this path are separated
by the slash (/) character.

■ The listener object that you are registering.

EXAMPLE 5–7 Registering an Event Listener

This example shows the code for registering the event listener TxListener for the add-on
component that is represented by the class TransactionManagerImpl. The statistics that are
defined in this listener are associated with the web-container configuration element. The
listener is registered under the server/applications node. The path from this node to the
statistics in the event listener is tx/txapp.

Code for the constructor of the TxListener class is beyond the scope of this example.

...

import org.glassfish.external.probe.provider.StatsProviderManager;

import org.glassfish.external.probe.provider.PluginPoint

...

public class TransactionManagerImpl {

...

StatsProviderManager.register("web-container", PluginPoint.APPLICATIONS,

"tx/txapp", new TxListener());

...

}

Dotted Names and REST URLs for an Add-On Component's
Statistics

The GlassFish Server administrative commands get(1), list(1), and set(1) locate a statistic
through the dotted name of the statistic. The dotted name of a statistic for an add-on
component is determined from the registration of the event listener that defines the statistic as
follows:

listener-parent-node.path-to-statistic.statistic-name

listener-parent-node
The node in the monitorable object tree under which the event listener that defines the
statistic is registered. This node is passed in the invocation of the register method that
registers the event listener. For more information, see “Registering an Event Listener” on
page 92.

path-to-statistic
The path through the monitorable object tree from the node under which the event listener
is registered down to the statistic in the event listener in which each slash is replaced with a
period. This path is passed in the invocation of the register method that registers the event
listener. For more information, see “Registering an Event Listener” on page 92.

Dotted Names and REST URLs for an Add-On Component's Statistics

Chapter 5 • Adding Monitoring Capabilities 93

statistic-name
The name of the statistic. This name is the value of the id element of the @ManagedAttribute
annotation on the property that represents the statistic. For more information, see
“Representing a Component's Statistics in an Event Listener Class” on page 89.

For example, the dotted name of the txcount statistic that is defined in Example 5–5 and
registered in Example 5–7 is as follows:

server.applications.tx.txapp.txcount

The formats of the URL to a REST resource that represents a statistic is as follows:

http://host:port/monitoring/domain/path

host
The host where the DAS is running.

port
The HTTP port or HTTPS port for administration.

path
The path to the statistic. The path is the dotted name of the attribute in which each dot (.) is
replaced with a slash (/).

For example, the URL the REST resource for the txcount statistic that is defined in
Example 5–5 and registered in Example 5–7 is as follows:

http://localhost:4848/monitoring/domain/server/applications/tx/txapp/txcount

In this example, the DAS is running on the local host and the HTTP port for administration is
4848.

Example of Adding Monitoring Capabilities
This example shows a component that monitors the number of requests that a container
receives. The following table provides a cross-reference to the listing of each class or interface in
the example.

Class or Interface Listing

ModuleProbeProvider Example 5–8

ModuleBootStrap Example 5–9

ModuleStatsTelemetry Example 5–10

Module Example 5–11

Example of Adding Monitoring Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201194

Class or Interface Listing

ModuleMBean Example 5–12

EXAMPLE 5–8 Event Provider Class

This example illustrates how to define an event provider as explained in “Defining an Event
Provider by Writing a Java Class” on page 82.

The example shows the definition of the ModuleProbeProvider class. The event provider sends
events when the request count is increased by 1 or decreased by 1.

This class defines the following methods:

■ moduleCountIncrementEvent

■ moduleCountDecrementEvent

The name of each method is also the name of the event type that is associated with the method.

A parameter that is named count is passed to each method.

package org.glassfish.pluggability.monitoring;

import org.glassfish.external.probe.provider.annotations.Probe;

import org.glassfish.external.probe.provider.annotations.ProbeParam;

import org.glassfish.external.probe.provider.annotations.ProbeProvider;

/**

* Monitoring count events

* Provider interface for module specific probe events.

*

*/

@ProbeProvider(moduleProviderName = "glassfish", moduleName = "mybeanmodule",
probeProviderName = "mybean")
public class ModuleProbeProvider {

/**

* Emits probe event whenever the count is incremented

*/

@Probe(name = "moduleCountIncrementEvent")
public void moduleCountIncrementEvent(

@ProbeParam("count") Integer count) {

}

/**

* Emits probe event whenever the count is decremented

*/

@Probe(name = "moduleCountDecrementEvent")
public void moduleCountDecrementEvent(

@ProbeParam("count") Integer count) {

}

}

Example of Adding Monitoring Capabilities

Chapter 5 • Adding Monitoring Capabilities 95

EXAMPLE 5–9 Bootstrap Class

This example illustrates how to register an event listener as explained in “Registering an Event
Listener” on page 92. The example shows the code for registering an instance of the listener
class ModuleStatsTelemetry. This instance is added as a child of the server/applications
node of the tree.

package org.glassfish.pluggability.monitoring;

import org.jvnet.hk2.component.PostConstruct;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.Singleton;

import org.glassfish.external.probe.provider.StatsProviderManager;

import org.glassfish.external.probe.provider.PluginPoint;

/**

* Monitoring Count Example

* Bootstrap object for registering probe provider and listener

*

*/

@Service

@Scoped(Singleton.class)

public class ModuleBootStrap implements PostConstruct {

@Override

public void postConstruct() {

try {

StatsProviderManager.register("web-container",
PluginPoint.APPLICATIONS, "myapp", new ModuleStatsTelemetry());

} catch (Exception e) {

System.out.println("Caught exception in postconstruct");
e.printStackTrace();

}

}

}

EXAMPLE 5–10 Listener Class

This example shows how to perform the following tasks:
■ “Creating Event Listeners” on page 88. The example shows the code of the

ModuleStatsTelemetry listener class.
■ “Representing a Component's Statistics in an Event Listener Class” on page 89. The example

shows the code for representing the countmbeancount statistic.
■ “Subscribing to Events From Event Provider Classes” on page 91. The example shows the

code for subscribing to the following types of events from the count component:
■ moduleCountIncrementEvent

■ moduleCountDecrementEvent

package org.glassfish.pluggability.monitoring;

import org.glassfish.external.statistics.CountStatistic;

Example of Adding Monitoring Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201196

EXAMPLE 5–10 Listener Class (Continued)

import org.glassfish.external.statistics.impl.CountStatisticImpl;

import org.glassfish.external.probe.provider.annotations.ProbeListener;

import org.glassfish.external.probe.provider.annotations.ProbeParam;

import org.glassfish.gmbal.ManagedAttribute;

import org.glassfish.gmbal.ManagedObject;

/**

* Monitoring counter example

* Telemtry object which listens to probe events and updates

* the monitoring stats

*

*/

@ManagedObject

public class ModuleStatsTelemetry {

private CountStatisticImpl countMBeanCount = new CountStatisticImpl(

"CountMBeanCount", "count", "Number of MBeans");

@ManagedAttribute(id = "countmbeancount")
public CountStatistic getCountMBeanCount() {

return countMBeanCount;

}

@ProbeListener("count:example:countapp:moduleCountIncrementEvent")
public void moduleCountIncrementEvent(

@ProbeParam("count") Integer count) {

countMBeanCount.increment();

}

@ProbeListener("count:example:countapp:moduleCountDecrementEvent")
public void moduleCountDecrementEvent(

@ProbeParam("count") Integer count) {

countMBeanCount.decrement();

}

}

EXAMPLE 5–11 MBean Interface

This example defines the interface for a simple standard MBean that has methods to increase
and decrease a counter by 1.

package com.example.count.monitoring;

/**

* Monitoring counter example

* ModuleMBean interface

*

*/

public interface ModuleMBean {

public Integer getCount() ;

public void incrementCount() ;

public void decrementCount() ;

}

Example of Adding Monitoring Capabilities

Chapter 5 • Adding Monitoring Capabilities 97

EXAMPLE 5–12 MBean Implementation

This example illustrates how to send an event as explained in “Sending an Event” on page 87.
The example shows code for sending events as follows:

■ The moduleCountIncrementEvent method is invoked in the body of the incrementCount
method.

■ The moduleCountDecrementEvent method is invoked in the body of the decrementCount
method.

The methods incrementCount and decrementCount are invoked by an entity that is beyond the
scope of this example, for example, JConsole.

package org.glassfish.pluggability.monitoring;

/**

* Monitoring counter example

* ModuleMBean implementation

*

*/

public class Module implements ModuleMBean {

private int k = 0;

private ModuleProbeProvider mpp = null;

@Override

public Integer getCount() {

return k;

}

@Override

public void incrementCount() {

k++;

if (mpp != null) {

mpp.moduleCountIncrementEvent(k);

}

}

@Override

public void decrementCount() {

k--;

if (mpp != null) {

mpp.moduleCountDecrementEvent(k);

}

}

void setProbeProvider(ModuleProbeProvider mpp) {

this.mpp = mpp;

}

}

Example of Adding Monitoring Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 201198

Adding Configuration Data for a Component

The configuration data of a component determines the characteristics and runtime behavior of
a component. GlassFish Server provides interfaces to enable an add-on component to store its
configuration data in the same way as other GlassFish Server components. These interfaces are
similar to interfaces that are defined in Java Specification Request (JSR) 222: Java Architecture
for XML Binding (JAXB) 2.0. By using these interfaces to store configuration data, you ensure
that the add-on component is fully integrated with GlassFish Server. As a result, administrators
can configure an add-on component in the same way as they can configure other GlassFish
Server components.

The following topics are addressed here:

■ “How GlassFish Server Stores Configuration Data” on page 99
■ “Defining an Element” on page 100
■ “Defining an Attribute of an Element” on page 101
■ “Defining a Subelement” on page 103
■ “Validating Configuration Data” on page 104
■ “Initializing a Component's Configuration Data” on page 105
■ “Creating a Transaction to Update Configuration Data” on page 108
■ “Dotted Names and REST URLs of Configuration Attributes” on page 110
■ “Examples of Adding Configuration Data for a Component” on page 111

How GlassFish Server Stores Configuration Data
GlassFish Server stores the configuration data for a domain in a single configuration file that is
named domain.xml. This file is an extensible markup language (XML) instance that contains a
hierarchy of elements to represent a domain's configuration. The content model of this XML
instance is not defined in a document type definition (DTD) or an XML schema. Instead, the
content model is derived from Java language interfaces with appropriate annotations. You use
these annotations to add configuration data for a component as explained in the sections that
follow.

6C H A P T E R 6

99

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

Defining an Element
An element represents an item of configuration data. For example, to represent the
configuration data for a network listener, GlassFish Server defines the network-listener
element.

Define an element for each item of configuration data that you are adding.

▼ To Define an Element
Define a Java language interface to represent the element.
Define one interface for each element. Do not represent multiple elements in a single interface.

The name that you give to the interface determines name of the element as follows:

■ A change from lowercase to uppercase in the interface name is transformed to the hyphen
(-) separator character.

■ The element name is all lowercase.

For example, to define an interface to represent the wombat-container-config element, give
the name WombatContainerConfig to the interface.

Specify the parent of the element.
To specify the parent, extend the interface that identifies the parent as shown in the following
table.

Parent Element Interface to Extend

config org.glassfish.api.admin.config.Container

applications org.glassfish.api.admin.config.ApplicationName

Another element that you are defining org.jvnet.hk2.config.ConfigBeanProxy

Annotate the declaration of the interface with the org.jvnet.hk2.config.Configured
annotation.

Declaration of an Interface That Defines an Element

This example shows the declaration of the WombatContainerConfig interface that represents
the wombat-container-config element. The parent of this element is the config element.

...

import org.jvnet.hk2.config.Configured;

...

1

2

3

Example 6–1

Defining an Element

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011100

import org.glassfish.api.admin.config.Container;

...

@Configured

public interface WombatContainerConfig extends Container {

...

}

How Interfaces That Are Annotated With @ConfiguredAre Implemented

You are not required to implement any interfaces that you annotate with the @Configured
annotation. GlassFish Server implements these interfaces by using the Dom class. GlassFish
Server creates a Java Platform, Standard Edition (Java SE) proxy for each Dom object to
implement the interface.

Defining an Attribute of an Element
The attributes of an element describe the characteristics of the element. For example, the port
attribute of the network-listener element identifies the port number on which the listener
listens.

Representing an Attribute of an Element
Represent each attribute of an element as the property of a pair of JavaBeans specification getter
and setter methods of the interface that defines the element. The component for which the
configuration data is being defined can then access the attribute through the getter method. The
setter method enables the attribute to be updated.

Specifying the Data Type of an Attribute
The data type of an attribute is the return type of the getter method that is associated with the
attribute. To enable the attribute take properties in the form ${property-name} as values,
specify the data type as String.

Identifying an Attribute of an Element
To identify an attribute of an element, annotate the declaration of the getter method that is
associated with the attribute with the org.jvnet.hk2.config.Attribute annotation.

To specify the properties of the attribute, use the elements of the @Attribute annotation as
explained in the sections that follow.

More Information

Defining an Attribute of an Element

Chapter 6 • Adding Configuration Data for a Component 101

Specifying the Name of an Attribute
To specify the name of an attribute, set the value element of the @Attribute annotation to a
string that specifies the name. If you do not set this element, the name is derived from the name
of the property as follows:

■ A change from lowercase to uppercase in the interface name is transformed to the hyphen
(-) separator character.

■ The element name is all lowercase.

For example, if the getter method getNumberOfInstances is defined for the property
NumberOfInstances to represent an attribute, the name of the attribute is
number-of-instances.

Specifying the Default Value of an Attribute
The default value of an attribute is the value that is applied if the attribute is omitted when the
element is written to the domain configuration file.

To specify the default value of an attribute, set the defaultValue element of the @Attribute
annotation to a string that contains the default value. If you do not set this element, the
parameter has no default value.

Specifying Whether an Attribute Is Required or
Optional
Whether an attribute is required or optional determines how GlassFish Server responds if the
parameter is omitted when the element is written to the domain configuration file:

■ If the attribute is required, an error occurs.
■ If the attribute is optional, the element is written successfully to the domain configuration

file.

To specify whether an attribute is required or optional, set the required element of the
@Attribute annotation as follows:

■ If the attribute is required, set the required element to true.
■ If the attribute is optional, set the required element to false. This value is the default.

Defining an Attribute of an Element

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011102

Example of Defining an Attribute of an Element
EXAMPLE 6–2 Defining an Attribute of an Element
This example defines the attribute number-of-instances. To enable the attribute take
properties in the form ${property-name} as values, the data type of this attribute is String.

import org.jvnet.hk2.config.Attribute;

...

@Attribute

public String getNumberOfInstances();

public void setNumberOfInstances(String instances) throws PropertyVetoException;

...

Defining a Subelement
A subelement represents a containment or ownership relationship. For example, GlassFish
Server defines the network-listeners element to contain the configuration data for individual
network listeners. The configuration data for an individual network listener is represented by
the network-listener element, which is a subelement of network-listeners element.

▼ To Define a Subelement
Define an interface to represent the subelement.
For more information, see “Defining an Element” on page 100.

The interface that represents the subelement must extend the
org.jvnet.hk2.config.ConfigBeanProxy interface.

In the interface that defines the parent element, identify the subelement to its parent element.

a. Represent the subelement as the property of a JavaBeans specification getter or setter
method.

b. Annotate the declaration of the getter or setter method that is associated with the
subelement with the org.jvnet.hk2.config.Element annotation.

Declaring an Interface to Represent a Subelement
This example shows the declaration of the WombatElement interface to represent the
wombat-element element.

...

import org.jvnet.hk2.config.ConfigBeanProxy;

import org.jvnet.hk2.config.Configured;

1

2

Example 6–3

Defining a Subelement

Chapter 6 • Adding Configuration Data for a Component 103

...

@Configured

public interface WombatElement extends ConfigBeanProxy {

...

}

...

Identifying a Subelement to its Parent Element

This example identifies the wombat-element element as a subelement.

...

import org.jvnet.hk2.config.Element;

...

import java.beans.PropertyVetoException;

...

@Element

public WombatElement getElement();

public void setElement(WombatElement element) throws PropertyVetoException;

...

Validating Configuration Data
Validating configuration data ensures that attribute values that are being set or updated do not
violate any constraints that you impose on the data. For example, you might require that an
attribute that represents a name is not null, or an integer that represents a port number is within
the range of available port numbers. Any attempt to set or update an attribute value that fails
validation fails. Any validations that you specify for an attribute are performed when the
attribute is initialized and every time the attribute is changed.

To standardize the validation of configuration data, GlassFish Server uses JSR 303: Bean
Validation for validating configuration data. JSR 303 defines a metadata model and API for the
validation of JavaBeans components.

To validate an attribute of an element, annotate the attribute's getter method with the
annotation in the javax.validation.constraints package that performs the validation that
you require. The following table lists commonly used annotations for validating GlassFish
Server configuration data. For the complete list of annotations, see the
javax.validation.constraints package summary.

TABLE 6–1 Commonly Used Annotations for Validating GlassFish Server Configuration Data

Validation Annotation

Not null javax.validation.constraints.NotNull

Null javax.validation.constraints.Null

Example 6–4

Validating Configuration Data

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011104

http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/javax/validation/constraints/package-summary.html

TABLE 6–1 Commonly Used Annotations for Validating GlassFish Server Configuration Data
(Continued)

Validation Annotation

Minimum value javax.validation.constraints.Min

Set the value element of this annotation to the minimum allowed
value.

Maximum value javax.validation.constraints.Max

Set the value element of this annotation to the maximum allowed
value.

Regular expression matching javax.validation.constraints.Pattern

Set the regexp element of this annotation to the regular expression
that is to be matched.

EXAMPLE 6–5 Specifying a Range of Valid Values for an Integer

This example specifies that the attribute rotation-interval-in-minutes must be a positive
integer.

...

import javax.validation.constraints.Max;

import javax.validation.constraints.Min;

...

@Min(value=1)

@Max(value=Integer.MAX_VALUE)

String getRotationIntervalInMinutes();

...

EXAMPLE 6–6 Specifying Regular Expression Matching

This example specifies that the attribute classname must contain only non-whitespace
characters.

import javax.validation.constraints.Pattern;

...

@Pattern(regexp="^[\\S]*$")
String getClassname();

...

Initializing a Component's Configuration Data
To ensure that a component's configuration data is added to the domain.xml file when the
component is first instantiated, you must initialize the component's configuration data.

Initializing a component's configuration data involves the following tasks:

■ “To Define a Component's Initial Configuration Data” on page 106

Initializing a Component's Configuration Data

Chapter 6 • Adding Configuration Data for a Component 105

■ “To Write a Component's Initial Configuration Data to the domain.xml File” on page 106

▼ To Define a Component's Initial Configuration Data
Create a plain-text file that contains an XML fragment to represent the configuration data.

■ Ensure that each XML element accurately represents the interface that is defined for the
element.

■ Ensure that any subelements that you are initializing are correctly nested.
■ Set attributes of the elements to their required initial values.

When you package the component, include the file that contains the XML fragment in the
component's JAR file.

XML Data Fragment

This example shows the XML data fragment for adding the wombat-container-config element
to the domain.xml file. The wombat-container-config element contains the subelement
wombat-element. The attributes of wombat-element are initialized as follows:

■ The foo attribute is set to something.
■ The bar attribute is set to anything.

<wombat-container-config>

<wombat-element foo="something" bar="anything"/>
</wombat-container-config>

▼ To Write a Component's Initial Configuration Data to
the domain.xml File
Add code to write the component's initial configuration data in the class that represents your
add-on component. If your add-on component is a container, add this code to the sniffer class.
For more information about adding a container, see Chapter 7, “Adding Container
Capabilities.”

Set an optional dependency on an instance of the class that represents the XML element that
you are adding.

a. Initialize the instance variable to null.
If the element is not present in the domain.xml file when the add-on component is
initialized, the instance variable remains null.

1

2

Example 6–7

1

Initializing a Component's Configuration Data

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011106

b. Annotate the declaration of the instance variable with the
org.jvnet.hk2.annotations.Inject annotation.

c. Set the optional element of the @Inject annotation to true.

Set a dependency on an instance of the following classes:

■ org.glassfish.api.admin.config.ConfigParser

The ConfigParser class provides methods to parse an XML fragment and to write the
fragment to the correct location in the domain.xml file.

■ org.jvnet.hk2.component.Habitat

Invoke the parseContainerConfigmethod of the ConfigParser object only if the instance is
null.
If your add-on component is a container, invoke this method within the implementation of the
setup method the sniffer class. When the container is first instantiated, GlassFish Server
invokes the setup method.

The test that the instance is null is required to ensure that the configuration data is added only
if the data is not already present in the domain.xml file.

In the invocation of the parseContainerConfig method, pass the following items as
parameters:
■ The Habitat object on which you set a dependency
■ The URL to the file that contains the XML fragment that represents the configuration data

Writing a Component's Initial Configuration Data to the domain.xml File

This example writes the XML fragment in the file init.xml to the domain.xml file. The
fragment is written only if the domain.xml file does not contain the
wombat-container-config-element.

The wombat-container-config element is represented by the WombatContainerConfig
interface. An optional dependency is set on an instance of a class that implements
WombatContainerConfig.

...

import org.glassfish.api.admin.config.ConfigParser;

import org.glassfish.examples.extension.config.WombatContainerConfig;

...

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.component.Habitat;

import com.sun.enterprise.module.Module;

import java.util.logging.Logger;

...

import java.io.IOException;

2

3

Example 6–8

Initializing a Component's Configuration Data

Chapter 6 • Adding Configuration Data for a Component 107

import java.lang.annotation.Annotation;

import java.lang.reflect.Array;

import java.net.URL;

...

@Inject(optional=true)

WombatContainerConfig config=null;

...

@Inject

ConfigParser configParser;

@Inject

Habitat habitat;

public Module[] setup(String containerHome, Logger logger) throws IOException {

if (config==null) {

URL url = this.getClass().getClassLoader().getResource("init.xml");
if (url!=null) {

configParser.parseContainerConfig(habitat, url,

WombatContainerConfig.class);

}

}

return null;

}

...

domain.xml File After Initialization

This example shows the domain.xml file after the setup method was invoked to add the
wombat-container-config element under the config element.

<domain...>

...

<configs>

<config name="server-config">
<wombat-container-config number-of-instances="5">
<wombat-element foo="something" bar="anything" />

</wombat-container-config>

<http-service>

...

</domain>

Creating a Transaction to Update Configuration Data
Creating a transaction to update configuration data enables the data to be updated without the
need to specify a dotted name in the set(1) subcommand. You can make the transaction
available to system administrators in the following ways:

■ By adding an asadmin(1M) subcommand. If you are adding an asadmin subcommand,
include the code for the transaction in the body of the subcommand's execute method. For
more information, see Chapter 4, “Extending the asadmin Utility.”

■ By extending the Administration Console. For more information, see Chapter 3, “Extending
the Administration Console.”

Example 6–9

Creating a Transaction to Update Configuration Data

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011108

▼ To Create a Transaction to Update Configuration Data
Any transaction that you create to modify configuration data must use a configuration change
transaction to ensure that the change is atomic, consistent, isolated, and durable (ACID).

Set a dependency on the configuration object to update.

Define a method to invoke to perform the transaction.

a. Use the generic SimpleConfigCode interface to define the method that is to be invoked on a
single configuration object, namely: SingleConfigCode<T extends ConfigBeanProxy>().

b. In the body of this method, implement the runmethod of the SingleConfigCode<T
extends ConfigBeanProxy> interface.

c. In the body of the runmethod, invoke the setter methods that are defined for the attributes
that you are setting.
These setter methods are defined in the interface that represents the element whose
elements you are setting.

Invoke the static method org.jvnet.hk2.config.ConfigSupport.ConfigSupport.apply.
In the invocation, pass the following information as parameters to the method:

■ The code of the method that you defined in Step 2
■ The configuration object to update, on which you set the dependency in Step 1

Creating a Transaction to Update Configuration Data

This example shows code in the execute method of an asadmin subcommand for updating the
number-of-instances element of wombat-container-config element.

...

import org.glassfish.api.Param;

...

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.config.Transactions;

import org.jvnet.hk2.config.ConfigSupport;

import org.jvnet.hk2.config.SingleConfigCode;

import org.jvnet.hk2.config.TransactionFailure;

...

@Param

String instances;

@Inject

WombatContainerConfig config;

public void execute(AdminCommandContext adminCommandContext) {

try {

1

2

3

Example 6–10

Creating a Transaction to Update Configuration Data

Chapter 6 • Adding Configuration Data for a Component 109

ConfigSupport.apply(new SingleConfigCode<WombatContainerConfig>() {

public Object run(WombatContainerConfig wombatContainerConfig)

throws PropertyVetoException, TransactionFailure {

wombatContainerConfig.setNumberOfInstances(instances);

return null;

}

}, config);

} catch(TransactionFailure e) {

}

}

...

Dotted Names and REST URLs of Configuration Attributes
The GlassFish Server administrative commands get(1), list(1), and set(1) locate a
configuration attribute through the dotted name of the attribute. The dotted name of an
attribute of a configuration element is as follows:

configs.config.server-config.element-name[.subelement-name...].attribute-name

element-name
The name of an element that contains a subelement or the attribute.

subelement-name
The name of a subelement, if any.

attribute-name
The name of the attribute.

For example, the dotted name of the foo attribute of the wombat-element element is as follows:

configs.config.server-config.wombat-container-config.wombat-element.foo

The formats of the URL to a REST resource that represent an attribute of a configuration
element is as follows:

http://host:port/management/domain/path

host
The host where the DAS is running.

port
The HTTP port or HTTPS port for administration.

path
The path to the attribute. The path is the dotted name of the attribute in which each dot (.) is
replaced with a slash (/).

For example, the URL to the REST resource for the foo attribute of the wombat-element
element is as follows:

Dotted Names and REST URLs of Configuration Attributes

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011110

http://localhost:4848/management/domain/configs/config/server-config/

wombat-container-config/wombat-element/foo

In this example, the DAS is running on the local host and the HTTP port for administration is
4848.

Examples of Adding Configuration Data for a Component
This example shows the interfaces that define the configuration data for the Greeter Container
component. The data is comprised of the following elements:

■ A parent element, which is shown in Example 6–11
■ A subelement that is contained by the parent element, which is shown in Example 6–12

This example also shows an XML data fragment for initializing an element. See Example 6–13.

Code for the Greeter Container component is shown in “Example of Adding Container
Capabilities” on page 122.

Code for an asadmin subcommand that updates the configuration data in this example is shown
in Example 4–7.

EXAMPLE 6–11 Parent Element Definition

This example shows the definition of the greeter-container-config element. The attributes
of the greeter-container-config element are as follows:

■ number-of-instances, which must be in the range 1–10.
■ language, which must contain only non-whitespace characters.
■ style, which must contain only non-whitespace characters.

The greeter-element element is identified as a subelement of the greeter-container-config
element. The definition of the greeter-element element is shown in Example 6–12.

package org.glassfish.examples.extension.greeter.config;

import org.jvnet.hk2.config.Configured;

import org.jvnet.hk2.config.Attribute;

import org.jvnet.hk2.config.Element;

import org.glassfish.api.admin.config.Container;

import javax.validation.constraints.Pattern;

import javax.validation.constraints.Min;

import javax.validation.constraints.Max;

import java.beans.PropertyVetoException;

@Configured

public interface GreeterContainerConfig extends Container {

Examples of Adding Configuration Data for a Component

Chapter 6 • Adding Configuration Data for a Component 111

EXAMPLE 6–11 Parent Element Definition (Continued)

@Attribute

@Min(value=1)

@Max (value=10)

public String getNumberOfInstances();

public void setNumberOfInstances(String instances) throws PropertyVetoException;

@Attribute

@Pattern(regexp = "^[\\S]*$")
public String getLanguage();

public void setLanguage(String language) throws PropertyVetoException;

@Attribute

@Pattern(regexp = "^[\\S]*$")
public String getStyle();

public void setStyle(String style) throws PropertyVetoException;

@Element

public GreeterElement getElement();

public void setElement(GreeterElement element) throws PropertyVetoException;

}

EXAMPLE 6–12 Subelement Definition

This example shows the definition of the greeter-element element, which is identified as a
subelement of the greeter-container-config element in Example 6–11. The only attribute of
the greeter-element element is greeter-port, which must be in the range 1030–1050.

package org.glassfish.examples.extension.greeter.config;

import org.jvnet.hk2.config.ConfigBeanProxy;

import org.jvnet.hk2.config.Configured;

import org.jvnet.hk2.config.Attribute;

import javax.validation.constraints.Min;

import javax.validation.constraints.Max;

import java.beans.PropertyVetoException;

@Configured

public interface GreeterElement extends ConfigBeanProxy {

@Attribute

@Min(value=1030)

@Max (value=1050)

public String getGreeterPort();

public void setGreeterPort(String greeterport) throws PropertyVetoException;

}

Examples of Adding Configuration Data for a Component

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011112

EXAMPLE 6–13 XML Data Fragment for Initializing the greeter-container-config Element

This example shows the XML data fragment for adding the greeter-container-config
element to the domain.xml file. The greeter-container-config element contains the
subelement greeter-element.

The attributes of greeter-container-config are initialized as follows:

■ The number-of-instances attribute is set to 5.
■ The language attribute is set to norsk.
■ The style element is set to formal.

The greeter-port attribute of the greeter-element element is set to 1040.

<greeter-container-config number-of-instances="5" language="norsk" style="formal">
<greeter-element greeter-port="1040"/>

</greeter-container-config>

The definition of the greeter-container-config element is shown in Example 6–11. The
definition of the greeter-element element is shown in Example 6–12.

Examples of Adding Configuration Data for a Component

Chapter 6 • Adding Configuration Data for a Component 113

114

Adding Container Capabilities

Applications run on GlassFish Server in containers. GlassFish Server enables you to create
containers that extend or replace the existing containers of GlassFish Server. Adding container
capabilities enables you to run new types of applications and to deploy new archive types in
GlassFish Server.

The following topics are addressed here:

■ “Creating a Container Implementation” on page 115
■ “Adding an Archive Type ” on page 118
■ “Creating Connector Modules” on page 120
■ “Example of Adding Container Capabilities” on page 122

Creating a Container Implementation
To implement a container that extends or replaces a service in GlassFish Server, you must create
a Java programming language class that includes the following characteristics:

■ It is annotated with the org.jvnet.hk2.annotations.Service annotation.
■ It implements the org.glassfish.api.container.Container interface.

Marking the Class With the @ServiceAnnotation
Add a com.jvnet.hk2.annotations.Service annotation at the class definition level to identify
your class as a service implementation.

@Service

public class MyContainer implements Container {

...

}

To avoid potential name collisions with other containers, use the fully qualified class name of
your container class in the @Service annotation's name element:

7C H A P T E R 7

115

package com.example.containers;

...

@Service(name="com.example.containers.MyContainer")
public class MyContainer implements Container {

...

}

Implementing the Container Interface
The org.glassfish.api.container.Container interface is the contract that defines a
container implementation. Classes that implement Container can extend or replace the
functionality in GlassFish Server by allowing applications to be deployed and run within the
GlassFish Server runtime.

The Container interface consists of two methods, getDeployer and getName. The
getDeployer method returns an implementation class of the
org.glassfish.api.deployment.Deployer interface capable of managing applications that
run within this container. The getName method returns a human-readable name for the
container, and is typically used to display messages belonging to the container.

The Deployer interface defines the contract for managing a particular application that runs in
the container. It consists of the following methods:

getMetaData

Retrieves the metadata used by the Deployer instance, and returns an
org.glassfish.api.deployment.MetaData object.

loadMetaData

Loads the metadata associated with an application.

prepare

Prepares the application to run in GlassFish Server.

load

Loads a previously prepared application to the container.

unload

Unloads or stops a previously loaded application.

clean

Removes any artifacts generated by an application during the prepare phase.

The DeploymentContext is the usual context object passed around deployer instances during
deployment.

EXAMPLE 7–1 Example Implementation of Container

This example shows a Java programming language class that implements the Container
interface and is capable of extending the functionality of GlassFish Server.

Creating a Container Implementation

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011116

EXAMPLE 7–1 Example Implementation of Container (Continued)

package com.example.containers;

contains

@Service(name="com.example.containers.MyContainer")
public class MyContainer implements Container {

public String getName() {

return "MyContainer";
}

public Class<? extends org.glassfish.api.deployment.Deployer> getDeployer() {

return MyDeployer.class;

}

}

EXAMPLE 7–2 Example Implementation of Deployer

package com.example.containers;

@Service

public class MyDeployer {

public MetaData getMetaData() {

return new MetaData(...);

}

public <V> v loadMetaData(Class<V> type, DeploymentContext dc) {

...

}

public boolean prepare(DeploymentContext dc) {

// performs any actions needed to allow the application to run,

// such as generating artifacts

...

}

public MyApplication load(MyContainer container, DeploymentContext dc) {

// creates a new instance of an application

MyApplication myApp = new MyApplication (...);

...

// returns the application instance

return myApp;

}

public void unload(MyApplication myApp, DeploymentContext dc) {

// stops and removes the application

...

}

public void clean (DeploymentContext dc) {

// cleans up any artifacts generated during prepare()

...

}

}

Creating a Container Implementation

Chapter 7 • Adding Container Capabilities 117

Adding an Archive Type
An archive type is an abstraction of the archive file format. An archive type can be implemented
as a plain JAR file, as a directory layout, or a custom type. By default, GlassFish Server
recognizes JAR based and directory based archive types. A new container might require a new
archive type.

There are two sub-interfaces of the org.glassfish.api.deployment.archive.Archive
interface, org.glassfish.api.deployment.archive.ReadableArchive and
org.glassfish.api.deployment.archive.WritableArchive. Typically developers of new
archive types will provide separate implementations of ReadableArchive and
WritableArchive, or a single implementation that implements both ReadableArchive and
WritableArchive.

Implementations of the ReadableArchive interface provide read access to an archive type.
ReadableArchive defines the following methods:

getEntry(String name)

Returns a java.io.InputStream for the specified entry name, or null if the entry doesn't
exist.

exists(String name)

Returns a boolean value indicating whether the specified entry name exists.

getEntrySize(String name)

Returns the size of the specified entry as a long value.

open(URI uri)

Returns an archive for the given java.net.URI.

getSubArchive(String name)

Returns an instance of ReadableArchive for the specified sub-archive contained within the
parent archive, or null if no such archive exists.

exists()

Returns a boolean value indicating whether this archive exists.

delete()

Deletes the archive, and returns a boolean value indicating whether the archive has been
successfully deleted.

renameTo(String name)

Renames the archive to the specified name, and returns a boolean value indicating whether
the archive has been successfully renamed.

Implementations of the WritableArchive interface provide write access to the archive type.
WritableArchive defines the following methods:

create(URI uri)

Creates a new archive with the given path, specified as a java.net.URI.

Adding an Archive Type

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011118

closeEntry(WritableArchive subArchive)

Closes the specified sub-archive contained within the parent archive.

closeEntry()

Closes the current entry.

createSubArchive(String name)

Creates a new sub-archive in the parent archive with the specified name, and returns it as a
WritableArchive instance.

putNextEntry(String name)

Creates a new entry in the archive with the specified name, and returns it as a
java.io.OutputStream.

Implementing the ArchiveHandler Interface
An archive handler is responsible for handling the particular layout of an archive. Java EE
defines a set of archives (WAR, JAR, and RAR, for example), and each of these archives has an
ArchiveHandler instance associated with the archive type.

Each layout should have one handler associated with it. There is no extension point support at
this level; the archive handler's responsibility is to give access to the classes and resources
packaged in the archive, and it should not contain any container-specific code. The
java.lang.ClassLoader returned by the handler is used by all the containers in which the
application will be deployed.

ArchiveHandler defines the following methods:

getArchiveType()

Returns the name of the archive type as a String. Typically, this is the archive extension,
such as jar or war.

getDefaultApplicationName(ReadableArchive archive)

Returns the default name of the specified archive as a String. Typically this default name is
the name part of the URI location of the archive.

handles(ReadableArchive archive)

Returns a boolean value indicating whether this implementation of ArchiveHandler can
work with the specified archive.

getClassLoader(DeploymentContext dc)

Returns a java.lang.ClassLoader capable of loading all classes from the archive passed in
by the DeploymentContext instance. Typically the ClassLoader will load classes in the
scratch directory area, returned by DeploymentContext.getScratchDir(), as stubs and
other artifacts are generated in the scratch directory.

Adding an Archive Type

Chapter 7 • Adding Container Capabilities 119

expand(ReadableArchive source, WritableArchive target)

Prepares the ReadableArchivesource archive for loading into the container in a format the
container accepts. Such preparation could be to expand a compressed archive, or possibly
nothing at all if the source archive format is already in a state that the container can handle.
This method returns the archive as an instance of WritableArchive.

Creating Connector Modules
Connector modules are small add-on modules that consist of application “sniffers” that
associate application types with containers that can run the application type. GlassFish Server
connector modules are separate from the associated add-on module that delivers the container
implementation to allow GlassFish Server to dynamically install and configure containers on
demand.

When a deployment request is received by the GlassFish Server runtime:

1. The current Sniffer implementations are used to determine the application type.
2. Once an application type is found, the runtime looks for a running container associated

with that application type. If no running container is found, the runtime attempts to install
and configure the container associated with the application type as defined by the Sniffer
implementation.

3. The Deployer interface is used to prepare and load the implementation.

Associating File Types With Containers by Using the
Sniffer Interface
Containers do not necessarily need to be installed on the local machine for GlassFish Server to
recognize the container's application type. GlassFish Server uses a “sniffer” concept to study the
artifacts in a deployment request and to choose the associated container that handles the
application type that the user is trying to deploy. To create this association, create a Java
programming language class that implements the org.glassfish.api.container.Sniffer
interface. This implementation can be as simple as looking for a specific file in the application's
archive (such as the presence of WEB-INF/web.xml), or as complicated as running an annotation
scanner to determine an XML-less archive (such as enterprise bean annotations in a JAR file). A
Sniffer implementation must be as small as possible and must not load any of the container's
runtime classes.

A simple version of a Sniffer implementation uses the handles method to check the existence
of a file in the archive that denotes the application type (as WEB-INF/web.xml denotes a web
application). Once a Sniffer implementation has detected that it can handle the deployment
request artifact, GlassFish Server calls the setUp method. The setUp method is responsible for
setting up the container, which can involve one or more of the following actions:

Creating Connector Modules

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011120

■ Downloading the container's runtime (the first time that a container is used)
■ Installing the container's runtime (the first time that a container is used)
■ Setting up one or more repositories to access the runtime's classes (these are

implementations of the HK2 com.sun.enterprise.module.Repository interface, such as
the com.sun.enterprise.module.impl.DirectoryBasedRepository class)

The setUp method returns an array of the com.sun.enterprise.module.Module objects
required by the container.

The Sniffer interface defines the following methods:

handles(ReadableArchive source, ClassLoader loader)

Returns a boolean value indicating whether this Sniffer implementation can handle the
specified archive.

getURLPatterns()

Returns a String array containing all URL patterns to apply against the request URL. If a
pattern matches, the service method of the associated container is invoked.

getAnnotationTypes()

Returns a list of annotation types recognized by this Sniffer implementation. If an
application archive contains one of the returned annotation types, the deployment process
invokes the container's deployers as if the handles method had returned true.

getModuleType()

Returns the module type associated with this Sniffer implementation as a String.

setup(String containerHome, Logger logger)

Sets up the container libraries so that any dependent bundles from the connector JAR file
will be made available to the HK2 runtime. The setup method returns an array of
com.sun.enterprise.module.Module classes, which are definitions of container
implementations. GlassFish Server can then load these modules so that it can create an
instance of the container's Deployer or Container implementations when it needs to. The
module is locked as long as at least one module is loaded in the associated container.

teardown()

Removes a container and all associated modules in the HK2 modules subsystem.

getContainerNames()

Returns a String array containing the Container implementations that this Sniffer
implementation enables.

isUserVisible()

Returns a boolean value indicating whether this Sniffer implementation should be visible
to end-users.

getDeploymentConfigurations(final ReadableArchive source)

Returns a Map<String, String> of deployment configuration names to configurations from
this Sniffer implementation for the specified application (the archive source). The names

Creating Connector Modules

Chapter 7 • Adding Container Capabilities 121

are created by GlassFish Server; the configurations are the names of the files that contain
configuration information (for example, WEB-INF/web.xml and possibly
WEB-INF/sun-web.xml for a web application). If the getDeploymentConfigurations
method encounters errors while searching or reading the specified archive source, it throws a
java.io.IOException.

Making Sniffer Implementations Available to the GlassFish Server
Package Sniffer implementation code into modules and install the modules in the
as-install/modules directory. GlassFish Server will automatically discover these modules. If an
administrator installs connector modules that containSniffer implementations while
GlassFish Server is running, GlassFish Server will pick them up at the next deployment request.

Example of Adding Container Capabilities
This example shows a custom container and a web client of the container. The example is
comprised of the following code:

■ Code for the container, which is shown in “Container Component Code” on page 122
■ Code for a web client of the container, which is shown in “Web Client Code” on page 128

Code that defines the configuration data for the container component is shown in “Examples of
Adding Configuration Data for a Component” on page 111.

Code for an asadmin subcommand that updates the configuration data in this example is shown
in Example 4–7.

Container Component Code
The container component code is comprised of the classes and interfaces that are listed in the
following table. The table also provides a cross-reference to the listing of each class or interface.

Class or Interface Listing

Greeter Example 7–3

GreeterContainer Example 7–4

GreeterContainer Example 7–5

GreeterDeployer Example 7–6

GreeterSniffer Example 7–7

EXAMPLE 7–3 Annotation to Denote a Container's Component

This example shows the code for defining a component of the Greeter container.

Example of Adding Container Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011122

EXAMPLE 7–3 Annotation to Denote a Container's Component (Continued)

package org.glassfish.examples.extension.greeter;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

/**

* Simple annotation to denote Greeter’s component

*/

@Retention(java.lang.annotation.RetentionPolicy.RUNTIME)

public @interface Greeter {

/**

* Name to uniquely identify different greeters

*

* @return a good greeter name

*/

public String name();

}

EXAMPLE 7–4 Application Container Class

This example shows the Java language class GreeterAppContainer, which implements the
ApplicationContainer interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.deployment.ApplicationContainer;

import org.glassfish.api.deployment.ApplicationContext;

import org.glassfish.api.deployment.archive.ReadableArchive;

import java.util.List;

import java.util.ArrayList;

public class GreeterAppContainer implements ApplicationContainer {

final GreeterContainer ctr;

final List<Class> componentClasses = new ArrayList<Class>();

public GreeterAppContainer(GreeterContainer ctr) {

this.ctr = ctr;

}

void addComponent(Class componentClass) {

componentClasses.add(componentClass);

}

public Object getDescriptor() {

return null;

}

public boolean start(ApplicationContext startupContext) throws Exception {

for (Class componentClass : componentClasses) {

try {

Object component = componentClass.newInstance();

Greeter greeter = (Greeter)

Example of Adding Container Capabilities

Chapter 7 • Adding Container Capabilities 123

EXAMPLE 7–4 Application Container Class (Continued)

componentClass.getAnnotation(Greeter.class);

ctr.habitat.addComponent(greeter.name(), component);

} catch(Exception e) {

throw new RuntimeException(e);

}

}

return true;

}

public boolean stop(ApplicationContext stopContext) {

for (Class componentClass : componentClasses) {

ctr.habitat.removeAllByType(componentClass);

}

return true;

}

public boolean suspend() {

return false;

}

public boolean resume() throws Exception {

return false;

}

public ClassLoader getClassLoader() {

return null;

}

}

EXAMPLE 7–5 Container Class

This example shows the Java language class GreeterContainer, which implements the
Container interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.container.Container;

import org.glassfish.api.deployment.Deployer;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.component.Habitat;

@Service(name="org.glassfish.examples.extension.GreeterContainer")
public class GreeterContainer implements Container {

@Inject

Habitat habitat;

public Class<? extends Deployer> getDeployer() {

return GreeterDeployer.class;

}

public String getName() {

return "greeter";
}

Example of Adding Container Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011124

EXAMPLE 7–5 Container Class (Continued)

}

EXAMPLE 7–6 Deployer Class

This example shows the Java language class GreeterDeployer, which implements the Deployer
interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.deployment.Deployer;

import org.glassfish.api.deployment.MetaData;

import org.glassfish.api.deployment.DeploymentContext;

import org.glassfish.api.deployment.ApplicationContainer;

import org.glassfish.api.deployment.archive.ReadableArchive;

import org.glassfish.api.container.Container;

import org.jvnet.hk2.annotations.Service;

import java.util.Enumeration;

@Service

public class GreeterDeployer

implements Deployer<GreeterContainer, GreeterAppContainer> {

public MetaData getMetaData() {

return null;

}

public <V> V loadMetaData(Class<V> type, DeploymentContext context) {

return null;

}

public boolean prepare(DeploymentContext context) {

return false;

}

public GreeterAppContainer load(

GreeterContainer container, DeploymentContext context) {

GreeterAppContainer appCtr = new GreeterAppContainer(container);

ClassLoader cl = context.getClassLoader();

ReadableArchive ra = context.getOriginalSource();

Enumeration<String> entries = ra.entries();

while (entries.hasMoreElements()) {

String entry = entries.nextElement();

if (entry.endsWith(".class")) {

String className = entryToClass(entry);

try {

Class componentClass = cl.loadClass(className);

// ensure it is one of our component

if (componentClass.isAnnotationPresent(Greeter.class)) {

appCtr.addComponent(componentClass);

}

} catch(Exception e) {

throw new RuntimeException(e);

Example of Adding Container Capabilities

Chapter 7 • Adding Container Capabilities 125

EXAMPLE 7–6 Deployer Class (Continued)

}

}

}

return appCtr;

}

public void unload(GreeterAppContainer appContainer, DeploymentContext context) {

}

public void clean(DeploymentContext context) {

}

private String entryToClass(String entry) {

String str = entry.substring("WEB-INF/classes/".length(), entry.length()-6);

return str.replaceAll("/", ".");
}

}

EXAMPLE 7–7 Sniffer Class

This example shows the Java language class GreeterSniffer, which implements the Sniffer
interface.

package org.glassfish.examples.extension.greeter;

import org.glassfish.api.container.Sniffer;

import org.glassfish.api.deployment.archive.ReadableArchive;

import org.glassfish.api.admin.config.ConfigParser;

import org.glassfish.examples.extension.greeter.config.GreeterContainerConfig;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.component.Habitat;

import com.sun.enterprise.module.Module;

import java.util.logging.Logger;

import java.util.Map;

import java.io.IOException;

import java.lang.annotation.Annotation;

import java.lang.reflect.Array;

import java.net.URL;

/**

* @author Jerome Dochez

*/

@Service(name="greeter")
public class GreeterSniffer implements Sniffer {

@Inject(optional=true)

GreeterContainerConfig config=null;

@Inject

ConfigParser configParser;

Example of Adding Container Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011126

EXAMPLE 7–7 Sniffer Class (Continued)

@Inject

Habitat habitat;

public boolean handles(ReadableArchive source, ClassLoader loader) {

return false;

}

public String[] getURLPatterns() {

return new String[0];

}

public Class<? extends Annotation>[] getAnnotationTypes() {

Class<? extends Annotation>[] a = (Class<? extends Annotation>[]) Array.newInstance(Class.class, 1);

a[0] = Greeter.class;

return a;

}

public String getModuleType() {

return "greeter";
}

public Module[] setup(String containerHome, Logger logger) throws IOException {

if (config==null) {

URL url = this.getClass().getClassLoader().getResource("init.xml");
if (url!=null) {

configParser.parseContainerConfig(

habitat, url, GreeterContainerConfig.class);

}

}

return null;

}

public void tearDown() {

}

public String[] getContainersNames() {

String[] c = { GreeterContainer.class.getName() };

return c;

}

public boolean isUserVisible() {

return true;

}

public Map<String, String> getDeploymentConfigurations

(ReadableArchive source) throws IOException {

return null;

}

public String[] getIncompatibleSnifferTypes() {

return new String[0];

}

}

Example of Adding Container Capabilities

Chapter 7 • Adding Container Capabilities 127

Web Client Code
The web client code is comprised of the classes and resources that are listed in the following
table. The table also provides a cross-reference to the listing of each class or resource.

Class or Resource Listing

HelloWorld Example 7–8

SimpleGreeter Example 7–9

Deployment descriptor Example 7–10

EXAMPLE 7–8 Container Client Class

import components.SimpleGreeter;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.annotation.WebServlet;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.annotation.Resource;

@WebServlet(urlPatterns={"/hello"})
public class HelloWorld extends HttpServlet {

@Resource(name="Simple")
SimpleGreeter greeter;

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws IOException, ServletException {

PrintWriter pw = res.getWriter();

try {

pw.println("Injected service is " + greeter);

if (greeter!=null) {

pw.println("SimpleService says " + greeter.saySomething());

pw.println("
");
}

} catch(Exception e) {

e.printStackTrace();

}

}

}

EXAMPLE 7–9 Component for Container Client

package components;

import org.glassfish.examples.extension.greeter.Greeter;

@Greeter(name="simple")

Example of Adding Container Capabilities

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011128

EXAMPLE 7–9 Component for Container Client (Continued)

public class SimpleGreeter {

public String saySomething() {

return "Bonjour";
}

}

EXAMPLE 7–10 Deployment Descriptor for Container Client

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/ Line break added for

readability
xml/ns/javaee/web-app_2_5.xsd">
</web-app>

Example of Adding Container Capabilities

Chapter 7 • Adding Container Capabilities 129

130

Creating a Session Persistence Module

GlassFish Server enables you to create a session persistence module in the web container for
high availability-related functionality by implementing the PersistenceStrategyBuilder
interface . Using the PersistenceStrategyBuilder interface in an HK2 service makes the
session manager extensible because you can implement a new persistence type without having
to modify the web container code.

For information about other high-availability, session persistence solutions, see Chapter 9,
“Configuring High Availability Session Persistence and Failover,” in GlassFish Server Open
Source Edition 3.1 High Availability Administration Guide.

The following topics are addressed here:

■ “Implementing the PersistenceStrategyBuilder Interface” on page 131

Implementing the PersistenceStrategyBuilder Interface
You can implement the PersistenceStrategyBuilder interface by creating a new web session
manager type.

package com.sun.enterprise.web;

import com.sun.enterprise.deployment.runtime.web.SessionManager;

import org.apache.catalina.Context;

import org.jvnet.hk2.annotations.Contract;

@Contract

public interface PersistenceStrategyBuilder {

public void initializePersistenceStrategy(

Context ctx,

SessionManager smBean,

ServerConfigLookup serverConfigLookup);

public void setPersistenceFrequency(String persistenceFrequency);

8C H A P T E R 8

131

public void setPersistenceScope(String persistenceScope);

public void setPassedInPersistenceType(String persistenceType);

}

Here is an example of how to implement the PersistenceStrategyBuilder interface by
creating a new web session manager and setting a store for it:

@Service(name="xyz")
public class XYZStrategyBuilder implements PersistenceStrategyBuilder {

private String persistenceFrequency = null;

private String persistenceScope = null;

private String persistenceType = null;

public void init(StandardContext ctx, SessionManager sessionManager,

ServerConfigLookup serverConfigLookup) {

// add listeners, valves, etc. to the ctx

// Set the manager and store

}

public void setPersistenceFrequency(String persistenceFrequency) {

this.persistenceFrequency = persistenceFrequency;

}

public void setPersistenceScope(String persistenceScope) {

this.persistenceScope = persistenceScope;

}

public void setPassedInPersistenceType(String persistenceType) {

this.passedInPersistenceType = persistenceType;

}

}

If a Manager is provided, then it will be used in GlassFish Server.

Note – If a backing store is required, it is the responsibility of the Manager to make sure that the
findSession method correctly uses the Store that the Manager provides.

EXAMPLE 8–1 Implementing PersistenceStrategyBuilder With a Custom Web Session Manager

This example defines a session manager type that is named MyHASolution.

@Service(name="MyHASolution")
public class MyHASolutionStrategyBuilder implements PersistenceStrategyBuilder {

private String persistenceFrequency = null;

private String persistenceScope = null;

private String persistenceType = null;

public void init(StandardContext ctx, SessionManager sessionManager,

ServerConfigLookup serverConfigLookup) {

// add listeners, valves, etc. to the ctx

// Set the manager and store

Implementing the PersistenceStrategyBuilder Interface

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011132

EXAMPLE 8–1 Implementing PersistenceStrategyBuilder With a Custom Web Session Manager
(Continued)

MyManager myManager = new MyManager(persistenceType, persistenceFrequency);

// (You could also make this a service and look it up in the habitat.

// For simplicity we are just doing a new implementation of the class here.)

MyStore store = new MyStore();

myManager.setStore(store);

ctx.setManager(myManager);

}

public void setPersistenceFrequency(String persistenceFrequency) {

this.persistenceFrequency = persistenceFrequency;

}

public void setPersistenceScope(String persistenceScope) {

this.persistenceScope = persistenceScope;

}

public void setPassedInPersistenceType(String persistenceType) {

this.passedInPersistenceType = persistenceType;

}

}

EXAMPLE 8–2 Session Manager Configuration in the glassfish-web.xml File

This example sets the persistence-type attribute of the session-manager element of
glassfish-web.xml to myHASolution

Based on the domain.xml and glassfish-web.xml settings, the web container looks up the
appropriate PersistenceStrategyBuilder interface in the Habitat and uses it.

<glassfish-web-app>

<session-config>

<session-manager persistence-type="myHASolution"/>
<session-config>

<glassfish-web-app>

Implementing the PersistenceStrategyBuilder Interface

Chapter 8 • Creating a Session Persistence Module 133

134

Packaging, Integrating, and Delivering an
Add-On Component

Packaging an add-on component enables the component to interact with the GlassFish Server
kernel in the same way as other components. Integrating a component with GlassFish Server
enables GlassFish Server to discover the component at runtime. If an add-on component is an
extension or update to existing installations of GlassFish Server, deliver the component through
Update Tool.

The following topics are addressed here:

■ “Packaging an Add-On Component” on page 135
■ “Integrating an Add-On Component With GlassFish Server” on page 136
■ “Delivering an Add-On Component Through Update Tool” on page 136

Packaging an Add-On Component
To enable an add-on component to plug in to the GlassFish Server kernel in the same way as
other components, package the component as an OSGi bundle.

A bundle is the unit of deployment in the OSGi module management subsystem. To package a
component as an OSGi bundle, package the component's constituent files in a Java archive
(JAR) file with appropriate manifest entries. The manifest entries provide information about
the component that is required to enable the component to be plugged into the GlassFish Server
kernel, such as:

■ Name
■ Version
■ Dependencies
■ Capabilities

9C H A P T E R 9

135

Integrating an Add-On Component With GlassFish Server
Integrating an add-on component with GlassFish Server enables GlassFish Server to discover
the component at runtime. To integrate an add-on component with GlassFish Server, ensure
that the JAR file that contains the component is copied to or installed in the as-install/modules/
directory.

Delivering an Add-On Component Through Update Tool
If an add-on component is an extension or update to existing installations of GlassFish Server,
deliver the component through Update Tool. To deliver an add-on component through Update
Tool, create an Image Packaging System (IPS) package to contain the component and add the
package to a suitable IPS package repository.

For information about how to create IPS packages, see the IPS best practices document
(http://wikis.sun.com/display/IpsBestPractices/).

Integrating an Add-On Component With GlassFish Server

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011136

http://wikis.sun.com/display/IpsBestPractices/
http://wikis.sun.com/display/IpsBestPractices/

Integration Point Reference

This appendix provides reference information about integration points, which are described in
Chapter 3, “Extending the Administration Console.” For complete information about
integration points, see http://wiki.glassfish.java.net/
Wiki.jsp?page=V3IntegrationPoint.

Define an integration point for each user interface feature in the console-config.xml file for
your add-on component.

The following topics are addressed here:
■ “Integration Point Attributes” on page 137
■ “org.glassfish.admingui:navNode Integration Point” on page 138
■ “org.glassfish.admingui:rightPanel Integration Point” on page 139
■ “org.glassfish.admingui:rightPanelTitle Integration Point” on page 140
■ “org.glassfish.admingui:serverInstTab Integration Point” on page 140
■ “org.glassfish.admingui:commonTask Integration Point” on page 141
■ “org.glassfish.admingui:configuration Integration Point” on page 141
■ “org.glassfish.admingui:resources Integration Point” on page 142
■ “org.glassfish.admingui:customtheme Integration Point” on page 142
■ “org.glassfish.admingui:masthead Integration Point” on page 143
■ “org.glassfish.admingui:loginimage Integration Point” on page 143
■ “org.glassfish.admingui:loginform Integration Point” on page 144
■ “org.glassfish.admingui:versioninfo Integration Point” on page 144

Integration Point Attributes
For each integration-point element, specify the following attributes. Each attribute takes a
string value.

id

An identifier for the integration point. The remaining sections of this appendix do not
provide details about specifying this attribute.

AA P P E N D I X A

137

http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint
http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint

parentId

The ID of the integration point's parent.

type

The type of the integration point.

priority

A numeric value that specifies the relative ordering of integration points with the same
parentId. A lower number specifies a higher priority (for example, 100 represents a higher
priority than 400). You may need to experiment in order to place the integration point where
you want it. This attribute is optional.

content

A relative path to the JavaServer Faces page that contains the content to be integrated.
Typically, the file contains a JavaServer Faces code fragment that is incorporated into a page.
The code fragment often specifies a link to another JavaServer Faces page that appears when
a user clicks the link.

org.glassfish.admingui:navNode Integration Point
Use an org.glassfish.admingui:navNode integration point to insert a node in the
Administration Console navigation tree. Specify the attributes and their content as follows.

type

org.glassfish.admingui:navNode, the left-hand navigation tree

parentId

The id value of the navNode that is the parent for this node. The parentId can be any of the
following:

tree

The root node of the entire navigation tree. Use this value to place your node at the top
level of the tree. You can then use the id of this node to create additional nodes beneath it.

registration

The Registration node

applicationServer

The GlassFish Server node

applications

The Applications node

resources

The Resources node

configuration

The Configuration node

org.glassfish.admingui:navNode Integration Point

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011138

webContainer

The Web Container node under the Configuration node

httpService

The HTTP Service node under the Configuration node

Note – The webContainer and httpService nodes are available only if you installed the web
container module for the Administration Console (the console-web-gui.jar OSGi
bundle).

priority

A numeric value that specifies the relative ordering of the node on the tree, whether at the
top level or under another node.

content

A relative path to the JavaServer Faces page that contains the content to be integrated, or a
URL to an external resource that returns the appropriate data structure for inclusion.

For an example, see Example 3–2.

org.glassfish.admingui:rightPanel Integration Point
Use an org.glassfish.admingui:rightPanel integration point to specify content for the
right frame of the Administration Console. Specify the attributes and their content as follows.

type

org.glassfish.admingui:rightPanel

parentId

None.

priority

A numeric value that specifies the relative ordering. If multiple plug-ins specify content for
the right frame, the one with greater priority will take precedence.

content

A path relative to the root of the plug-in JAR file to a file containing the content for the right
panel. Alternatively, it may contain a full URL which will deliver the content for the right
panel.

org.glassfish.admingui:rightPanel Integration Point

Appendix A • Integration Point Reference 139

org.glassfish.admingui:rightPanelTitle Integration
Point

Use an org.glassfish.admingui:rightPanel integration point to specify the title for the right
frame of the Administration Console. Specify the attributes and their content as follows.

type

org.glassfish.admingui:rightPanelTitle

parentId

None.

priority

A numeric value that specifies the relative ordering. If multiple plug-ins specify content for
the right frame, the one with greater priority will take precedence.

content

Specifies the title to display at the top of the right panel.

org.glassfish.admingui:serverInstTab Integration Point
Use an org.glassfish.admingui:serverInstTab integration point to place an additional tab
on the GlassFish Server page of the Administration Console. Specify the attributes and their
content as follows.

type

org.glassfish.admingui:serverInstTab

parentId

The id value of the tab set that is the parent for this tab. For a top-level tab on this page, this
value is serverInstTabs, the tab set that contains the general information property pages
for GlassFish Server.

For a sub-tab, the value is the id value for the parent tab.

priority

A numeric value that specifies the relative ordering of the tab on the page, whether at the top
level or under another tab.

content

A relative path to the JavaServer Faces page that contains the content to be integrated.

When you use this integration point, your JavaServer Faces page must call the
setSessionAttribute handler for the command event to set the session variable of the
serverInstTabs tab set to the id value of your tab. For example, the file may have the
following content:

org.glassfish.admingui:rightPanelTitle Integration Point

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011140

<sun:tab id="sampleTab" immediate="true" text="Sample First Tab">
<!command

setSessionAttribute(key="serverInstTabs" value="sampleTab");
gf.redirect(page="#{request.contextPath}/page/tabPage.jsf?name=Sample%20First%20Tab");

/>

</sun:tab>

The id of the sun:tab custom tag must be the same as the value argument of the
setSessionAttribute handler.

For examples, see Example 3–4 and Example 3–5.

org.glassfish.admingui:commonTask Integration Point
Use an org.glassfish.admingui:commonTask integration point to place a new task or task
group on the Common Tasks page of the Administration Console. Specify the attributes and
their content as follows.

type

org.glassfish.admingui:commonTask

parentId

If you are adding a task group, the id value of the Common Tasks page, which is
commonTasksSection.

If you are adding a single task, the id value of the task group that is the parent for this tab,
such as deployment (for the Deployment group).

priority

A numeric value that specifies the relative ordering of the tab on the page, whether at the top
level or under another tab.

content

A relative path to the JavaServer Faces page that contains the content to be integrated.

For examples, see Example 3–7 and Example 3–9.

org.glassfish.admingui:configuration Integration Point
Use an org.glassfish.admingui:configuration integration point to add a component to the
Configuration page of the Administration Console. Typically, you add a link to the property
sheet section of this page. Specify the attributes and their content as follows.

type

org.glassfish.admingui:configuration

org.glassfish.admingui:configuration Integration Point

Appendix A • Integration Point Reference 141

parentId

The id value of the property sheet for the Configuration page. This value is
propSheetSection, the section that contains the property definitions for the Configuration
page.

priority

A numeric value that specifies the relative ordering of the item on the Configuration page.

content

A relative path to the JavaServer Faces page that contains the content to be integrated.

org.glassfish.admingui:resources Integration Point
Use an org.glassfish.admingui:resources integration point to add a component to the
Resources page of the Administration Console. Typically, you add a link to the property sheet
section of this page. Specify the attributes and their content as follows.

type

org.glassfish.admingui:resources

parentId

The id value of the property sheet for the Resources page. This value is propSheetSection,
the section that contains the property definitions for the Resources page.

priority

A numeric value that specifies the relative ordering of the item on the Resources page.

content

A relative path to the JavaServer Faces page that contains the content to be integrated.

For an example, see Example 3–11.

org.glassfish.admingui:customtheme Integration Point
Use an org.glassfish.admingui:customtheme integration point to add your own branding to
the Administration Console. Specify the attributes and their content as follows. Do not specify a
parentId attribute for this integration point.

type

org.glassfish.admingui:customtheme

priority

A numeric value that specifies the relative ordering of the item in comparison to other
themes. This value must be between 1 and 100. The theme with the smallest number is used
first.

org.glassfish.admingui:resources Integration Point

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011142

content

The name of the properties file that contains the key/value pairs that will be used to access
your theme JAR file. You must specify the following keys:

com.sun.webui.theme.DEFAULT_THEME

Specifies the theme name for the theme that this application may depend on.

com.sun.webui.theme.DEFAULT_THEME_VERSION

Specifies the theme version this application may depend on.

For example, the properties file for the default Administration Console brand contains the
following:

com.sun.webui.theme.DEFAULT_THEME=suntheme

com.sun.webui.theme.DEFAULT_THEME_VERSION=4.3

For an example, see Example 3–14.

org.glassfish.admingui:masthead Integration Point
Use an org.glassfish.admingui:masthead integration point to specify the name and location
of the include masthead file, which can be customized with a branding image. This include file
will be integrated on the masthead of the Administration Console. Specify the attributes and
their content as follows. Do not specify a parentId attribute for this integration point.

type

org.glassfish.admingui:masthead

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JavaServer Faces page.

For an example, see Example 3–15.

org.glassfish.admingui:loginimage Integration Point
Use an org.glassfish.admingui:loginimage integration point to specify the name and
location of the include file containing the branding login image code that will be integrated with
the login page of the Administration Console. Specify the attributes and their content as
follows. Do not specify a parentId attribute for this integration point.

type

org.glassfish.admingui:loginimage

org.glassfish.admingui:loginimage Integration Point

Appendix A • Integration Point Reference 143

parentId

None; a login image does not have a parent ID.

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JavaServer Faces page.

For an example, see Example 3–15.

org.glassfish.admingui:loginform Integration Point
Use an org.glassfish.admingui:loginform integration point to specify the name and
location of the include file containing the customized login form code. This code also contains
the login background image used for the login page for the Administration Console. Specify the
attributes and their content as follows. Do not specify a parentId attribute for this integration
point.

type

org.glassfish.admingui:loginform

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JavaServer Faces page.

For an example, see Example 3–15.

org.glassfish.admingui:versioninfo Integration Point
Use an org.glassfish.admingui:versioninfo integration point to specify the name and
location of the include file containing the branding image that will be integrated with the
content of the version popup window. Specify the attributes and their content as follows. Do
not specify a parentId attribute for this integration point.

type

org.glassfish.admingui:versioninfo

org.glassfish.admingui:loginform Integration Point

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011144

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JavaServer Faces page.

For an example, see Example 3–15.

org.glassfish.admingui:versioninfo Integration Point

Appendix A • Integration Point Reference 145

146

Index

A
abbrev_product_name keyword, 66
acceptableValues element, @Param annotation, 56
add-on components

delivering, 136
integrating, 136
overview, 17–18
packaging, 135
specifying ID values, 34

AdminCommand interface, 52
execute method, 65

AdminCommandContext class, 66
Administration Console

adding content to pages, 43–45
adding functionality to, 35–46
adding internationalization support, 46
adding nodes to navigation tree, 36–38
adding pages to, 45–46
adding tabs and tab sets to pages, 38–40
adding task groups to Common Tasks page, 42–43
adding tasks to Common Tasks page, 40–42
architecture, 32–33
changing theme or brand of, 46–48
extending, 31–49

annotations
@Param, 55
@Attribute, 101
@Configured, 100
@Element, 103
@I18n, 63
@ManagedAttribute, 89
@ManagedObject, 89

annotations (Continued)
@Max, 105
@Min, 105
@Pattern, 105
@Probe, 83
@ProbeListener, 91–92
@ProbeParam, 83, 91
@ProbeProvider, 82–84
@Scoped, 53
@Service, 52

Apache Felix OSGi framework, 18
Apache Maven, See Maven
ApplicationName interface, 100
apply method, 109
Archive interface, 118–120
archive types, See containers: archive types
ArchiveHandler interface, 119–120
asadmin subcommand

branding, 66–67
context, 66

asadmin subcommands
adding, 52
default parameter values, 57
error messages, 63–65
internationalization, 63
naming, 52
operands, 54–58
options, 54–58
parameters, 54–58
running, 65
strings, 63–65
text, 63–65

147

asadmin subcommands (Continued)
validation of parameters, 56

@Attribute annotation, 101
attributes, defining, 101–103
AverageRangeStatisticImpl class, 90

B
BoundaryStatisticImpl class, 90
BoundedRangeStatisticImpl class, 90
brand of Administration Console, changing, 46–48
branding, asadmin subcommand, 66–67
BrandingVersion.properties file, 66–67
build_id keyword, 67

C
callbacks, 92–93
class element, 85
class loaders, 119–120
classes

AdminCommandContext, 66
AverageRangeStatisticImpl, 90
BoundaryStatisticImpl, 90
BoundedRangeStatisticImpl, 90
ConfigParser, 107
ConfigSupport, 109
CountStatisticImpl, 90
ProbeClientMediator, 92–93
RangeStatisticImpl, 90
stateless, 53
StatisticImpl, 90
StringStatisticImpl, 90
TimeStatisticImpl, 90

CLI (command-line interface), branding, 66–67
command-line interface (CLI), branding, 66–67
ComponentManager class, 25
components, instantiating, 25
ConfigBeanProxy interface, 100
ConfigParser class, 107
ConfigSupport class, 109
configuration data

attributes, 101–103

configuration data (Continued)
dotted names, 110–111
initializing, 105–108
REST URLs, 110–111
storage of, 99
updating, 108–110
validating, 104–105
XML elements, 100–101
XML representation, 99
XML subelements, 103–104

@Configured annotation, 100
connector modules, See containers: connector modules
Console Add-On Component Service, 32–33
console-config.xml file, 33–34, 137–145

console-config element, 34
integration-point element, 34

console providers, 32–33
implementing, 32–33

ConsoleProvider interface, 32–33
Container interface, 100, 115–117
containers

archive types, 118–120, 120–122, 122
connector modules, 120–122
developing, 115–129
examples, 116–117
implementing, 116–117
loading, 120–122, 122
naming, 115–116

containment relationships, representation as
subelements, 103

content attribute, integration-point
element, 137–138

context, asadmin subcommand, 66
@Contract annotation, 24, 29
conventions, asadmin subcommand names, 53
CountStatisticImpl class, 90

D
default values, asadmin subcommand parameters, 57
defaultValue element

@Attribute annotation, 102
@Param annotation, 57

delivering, add-on components, 136

Index

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011148

Deployer interface, 116–117, 117, 120–122
deployment, examples, 117
Dom class, 101
domain.xml file

description, 99
updating, 108–110
writing initial data to, 106–108

dotted names
comparison with REST URLs, 94, 110
configuration data, 110–111
statistics, 93–94

E
@Element annotation, 103
elements, XML, 84–86
elements, XML

attributes, 101–103
defining, 100–101

error messages, asadmin subcommands, 63–65
event listeners, creating, 88–89
event providers, defining, 82–87
events

defining, 82–87
listeners, 88–89, 92–93
receiving, 91–92
sending, 87
statistics monitoring, 81
subscribing, 91–92

examples
containers, 116–117
deployers, 117

execute method, AdminCommand interface, 65
extensible markup language (XML), 84–86

fragment for initializing configuration, 106
representation of configuration data as, 99

@Extract annotation, 27
extraction, 27

F
Felix OSGi framework, 18

fields, representation of subcommand parameters
as, 54

files, BrandingVersion.properties, 66–67

G
getConfiguration method, 32–33

H
Habitat, class, 27
HK2, scopes, 24–25
HK2 (Hundred-Kilobyte Kernel)

architecture, 23
overview, 18
services, 24

Hundred-Kilobyte Kernel (HK2)
architecture, 23, 26–28
extraction, 27
injection, 26–27
instantiating, 25
instantiation, 27–28
inversion of control, 26–28
lifecycle, 25–26
overview, 18
runtime, 24–26
services, 24

I
@I18n annotation, 63
id attribute, integration-point element, 137–138
id element, @ManagedAttribute annotation, 89
Image Packaging System (IPS), 136
initializing, configuration data, 105–108
@Inject annotation, 26–27, 27–28
injection, 26–27
instantiation, 27–28
integrating, add-on components, 136
integration-point element, 34

attributes, 35–46, 137–138
integration points, 32–33, 33–34

Index

149

integration points (Continued)
attributes, 137–138
creating types, 48–49
org.glassfish.admingui:commonTask, 40–42,

42–43, 141
org.glassfish.admingui:configuration, 43–45,

141–142
org.glassfish.admingui:customtheme, 46–48,

142–143
org.glassfish.admingui:loginform, 144
org.glassfish.admingui:loginimage, 143–144
org.glassfish.admingui:masthead, 143
org.glassfish.admingui:navNode, 138–139
org.glassfish.admingui:resources, 43–45, 142
org.glassfish.admingui:rightPanel, 139
org.glassfish.admingui:rightPanelTitle, 140
org.glassfish.admingui:serverInstTab, 38–40,

140–141
org.glassfish.admingui:treeNode, 36–38
org.glassfish.admingui:versioninfo, 144–145
reference, 137–145

interfaces
AdminCommand, 52, 65
ApplicationName, 100
ConfigBeanProxy, 100
Container, 100
SimpleConfigCode, 109

internationalization
asadmin subcommands, 63
providing for add-on components, 46

IPS (Image Packaging System), 136

J
JSFTemplating project, templates, 33
JSFTemplating tags

sun:commonTask, 41–42
sun:commonTasksGroup, 42–43
sun:property, 44–45
sun:tab, 39–40
sun:treeNode, 37–38

L
lifecycle interfaces, 25–26
listeners

creating, 88–89
registering, 92–93

long form, option names, 56

M
major_version keyword, 66
@ManagedAttribute annotation, 89
@ManagedObject annotation, 89
Maven, 29
@Max annotation, 105
method element, 85
methods

AdminCommand, 65
apply, 109
parseContainerConfig, 107
registerListener, 92–93
run, 109

@Min annotation, 105
minor_version keyword, 67
modular architecture, GlassFish Server, 17–18
moduleName element, @ProbeProvider

annotation, 82–84
moduleProviderName element, @ProbeProvider

annotation, 82–84
monitorable objects

adding to tree, 92–93
overview, 88–93

monitoring
adding to components, 81–98
dotted names, 93–94
REST URLs, 93–94

N
name element

@Param annotation, 56
@Probe annotation, 83
@Service annotation, 52

Index

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011150

names
asadmin subcommands, 52
attributes, 102

navigation nodes, adding to Administration
Console, 36–38

@NotNull annotation, 104
annotations

@NotNull, 104
@Null, 104

@Null annotation, 104

O
operands, asadmin subcommands, 54–58
optional element, @Param annotation, 57
options

asadmin subcommands, 54–58
long names, 56
short names, 56

org.glassfish.admingui:commonTask integration
point type, 40–42, 42–43, 141

org.glassfish.admingui:configuration integration
point type, 43–45, 141–142

org.glassfish.admingui:customtheme integration
point type, 46–48, 142–143

org.glassfish.admingui:loginform integration
point type, 144

org.glassfish.admingui:loginimage integration
point type, 143–144

org.glassfish.admingui:masthead integration point
type, 143

org.glassfish.admingui:navNode integration point
type, 138–139

org.glassfish.admingui:resources integration
point type, 43–45, 142

org.glassfish.admingui:rightPanel integration
point type, 139

org.glassfish.admingui:rightPanelTitle

integration point type, 140
org.glassfish.admingui:serverInstTab integration

point type, 38–40, 140–141
org.glassfish.admingui:treeNode integration point

type, 36–38

org.glassfish.admingui:versioninfo integration
point type, 144–145

OSGi Alliance, 18
overloaded methods, 83
overview

add-on components, 17–18
extensibility, 17–18

ownership relationships, representation as
subelements, 103

P
packaging

add-on components, 135
event providers, 86–87

pages, adding to Administration Console, 45–46
pages of Administration Console, adding content

to, 43–45
@Param annotation, 55
parameters

asadmin subcommands, 54–58
default values, 57
events, 83, 91
validation of, 56

parentId attribute, integration-point
element, 137–138

parseContainerConfig method, 107
@Pattern annotation, 105
plug-ins, See add-on components
PostConstruct interface, 25–26
PreDestroy interface, 25–26
primary element, @Param annotation, 55
priority attribute, integration-point

element, 137–138
@Probe annotation, 83
probe element, 85
probe-param element, 85
probe-provider element, 84, 85
ProbeClientMediator class, 92–93
@ProbeListener annotation, 91–92
@ProbeParam annotation, 83, 91
@ProbeProvider annotation, 82–84
probeProviderName element, @ProbeProvider

annotation, 82–84

Index

151

product name, defining, 66–67
product_name keyword, 66
properties, representation of subcommand parameters

as, 54
proxies, Java SE, 101

R
RangeStatisticImpl class, 90
ReadableArchive interface, 118–120
receiving, events, 91–92
regexp element, @Pattern annotation, 105
registering, event listeners, 92–93
registerListener method, 92–93
regular expressions, 105
release information, defining, 66–67
required element, @Attribute annotation, 102
REST interfaces

comparison of dotted names with URLs, 94, 110
REST URLs

configuration data, 110–111
statistics, 93–94

return-param element, 85
run method, 109
running, asadmin subcommands, 65

S
@Scoped annotation, 24–25
@Scoped annotation, 53
sending, events, 87
@Service annotation, 24, 29, 115–117, 116–117, 117
@Service annotation, 52
setter methods, subcommand parameters and, 54
short form, option names, 56
shortName element, @Param annotation, 56
signature element, 85
SimpleConfigCode interface, 109
singletons, 24–25
Sniffer interface, 120–122, 122
sniffers, 120–122, 122
stateless classes, 53
StatisticImpl class, 90

statistics
adding to components, 81–98
dotted names, 93–94
REST URLs, 93–94

strings, asadmin subcommands, 63–65
StringStatisticImpl class, 90
subelements, XML, defining, 103–104
subscribing, to events, 91–92
sun:commonTask tag, 41–42
sun:commonTasksGroup tag, 42–43
sun:property tag, 44–45
sun:tab tag, 39–40
sun:treeNode tag, 37–38

T
tabs and tab sets, adding to Administration

Console, 38–40
task groups, adding to Administration Console, 42–43
tasks, adding to Administration Console, 40–42
Templating for JavaServer Faces Technology, See

JSFTemplating project
text, asadmin subcommands, 63–65
theme of Administration Console, changing, 46–48
TimeStatisticImpl class, 90
transactions, updates to configuration data, 108–110
tree

adding objects to, 92–93
monitorable objects, 88–93

type attribute, integration-point element, 137–138

U
Update Tool, 136
updating, configuration data, 108–110

V
validating, configuration data, 104–105
validation, asadmin subcommand parameters, 56
value element

@Attribute annotation, 102

Index

GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide • July 2011152

value element (Continued)
@Max annotation, 105
@Min annotation, 105
@ProbeParam annotation, 83, 91

version_prefix keyword, 67
version_suffix keyword, 67

W
WritableArchive interface, 118–120

X
XML (extensible markup language), 84–86

fragment for initializing configuration, 106
representation of configuration data as, 99

Index

153

154

	GlassFish Server Open Source Edition 3.1 Add-On Component Development Guide
	Preface
	GlassFish Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Introduction to the Development Environment for GlassFish Server Add-On Components
	GlassFish Server Modular Architecture and Add-On Components
	OSGi Alliance Module Management Subsystem
	Hundred-Kilobyte Kernel
	Overview of the Development Process for an Add-On Component
	Writing HK2 Components
	Extending the Administration Console
	Extending the asadmin Utility
	Adding Monitoring Capabilities
	Adding Configuration Data for a Component
	Adding Container Capabilities
	Creating a Session Persistence Module
	Packaging and Delivering an Add-On Component

	Writing HK2 Components
	HK2 Component Model
	Services in the HK2 Component Model
	HK2 Runtime
	Scopes of Services
	Instantiation of Components in HK2
	HK2 Lifecycle Interfaces

	Inversion of Control
	Injecting HK2 Components
	Extraction
	Instantiation Cascading in HK2

	Identifying a Class as an Add-On Component
	Using the Apache Maven Build System to Develop HK2 Components

	Extending the Administration Console
	Administration Console Architecture
	Implementing a Console Provider

	About Administration Console Templates
	About Integration Points
	Specifying the ID of an Add-On Component
	Adding Functionality to the Administration Console
	Adding a Node to the Navigation Tree
	Creating a JavaServer Faces Page for Your Node

	Adding Tabs to a Page
	Creating JavaServer Faces Pages for Your Tabs

	Adding a Task to the Common Tasks Page
	Creating a JavaServer Faces Page for Your Task

	Adding a Task Group to the Common Tasks Page
	Creating a JavaServer Faces Page for Your Task Group

	Adding Content to a Page
	Creating a JavaServer Faces Page for Your Page Content

	Adding a Page to the Administration Console

	Adding Internationalization Support
	Changing the Theme or Brand of the Administration Console
	Creating an Integration Point Type
	To Create an Integration Point Type

	Extending the asadmin Utility
	About the Administrative Command Infrastructure of GlassFish Server
	Adding an asadmin Subcommand
	Representing an asadmin Subcommand as a Java Class
	Specifying the Name of an asadmin Subcommand
	Ensuring That an AdminCommand Implementation Is Stateless
	Example of Adding an asadmin Subcommand

	Adding Parameters to an asadmin Subcommand
	Representing a Parameter of an asadmin Subcommand
	Identifying a Parameter of an asadmin Subcommand
	Specifying Whether a Parameter Is an Option or an Operand
	Specifying the Name of an Option
	Specifying the Long Form of an Option Name
	Specifying the Short Form of an Option Name

	Specifying the Acceptable Values of a Parameter
	Specifying the Default Value of a Parameter
	Specifying Whether a Parameter Is Required or Optional
	Example of Adding Parameters to an asadmin Subcommand

	Making asadmin Subcommands Cluster-Aware
	Specifying Allowed Targets
	The Target Utility
	Specifying asadmin Subcommand Execution
	Subcommand Preprocessing and Postprocessing
	Running a Command from Another Command

	Adding Message Text Strings to an asadmin Subcommand
	Enabling an asadmin Subcommand to Run
	Setting the Context of an asadmin Subcommand
	Changing the Brand in the GlassFish Server CLI
	Examples of Extending the asadmin Utility
	Implementing Create, Delete, and List Commands Using Annotations
	Command Patterns
	Resolvers
	The @Create Annotation
	The @Delete Annotation
	The @Listing Annotation
	Create Command Decorators
	Delete Command Decorators
	Specifying Command Execution
	Using Multiple Command Annotations

	Adding Monitoring Capabilities
	Defining Statistics That Are to Be Monitored
	Defining an Event Provider
	Defining an Event Provider by Writing a Java Class
	Defining Event Types in an Event Provider Class
	Specifying Event Parameters
	Example of Defining an Event Provider by Writing a Java Class

	Defining an Event Provider by Writing an XML Fragment
	Packaging a Component's Event Providers

	Sending an Event

	Updating the Monitorable Object Tree
	Creating Event Listeners
	Representing a Component's Statistics in an Event Listener Class
	Subscribing to Events From Event Provider Classes
	Registering an Event Listener

	Dotted Names and REST URLs for an Add-On Component's Statistics
	Example of Adding Monitoring Capabilities

	Adding Configuration Data for a Component
	How GlassFish Server Stores Configuration Data
	Defining an Element
	To Define an Element

	Defining an Attribute of an Element
	Representing an Attribute of an Element
	Specifying the Data Type of an Attribute
	Identifying an Attribute of an Element
	Specifying the Name of an Attribute
	Specifying the Default Value of an Attribute
	Specifying Whether an Attribute Is Required or Optional
	Example of Defining an Attribute of an Element

	Defining a Subelement
	To Define a Subelement

	Validating Configuration Data
	Initializing a Component's Configuration Data
	To Define a Component's Initial Configuration Data
	To Write a Component's Initial Configuration Data to the domain.xml File

	Creating a Transaction to Update Configuration Data
	To Create a Transaction to Update Configuration Data

	Dotted Names and REST URLs of Configuration Attributes
	Examples of Adding Configuration Data for a Component

	Adding Container Capabilities
	Creating a Container Implementation
	Marking the Class With the @Service Annotation
	Implementing the Container Interface

	Adding an Archive Type
	Implementing the ArchiveHandler Interface

	Creating Connector Modules
	Associating File Types With Containers by Using the Sniffer Interface
	Making Sniffer Implementations Available to the GlassFish Server

	Example of Adding Container Capabilities
	Container Component Code
	Web Client Code

	Creating a Session Persistence Module
	Implementing the PersistenceStrategyBuilder Interface

	Packaging, Integrating, and Delivering an Add-On Component
	Packaging an Add-On Component
	Integrating an Add-On Component With GlassFish Server
	Delivering an Add-On Component Through Update Tool

	Integration Point Reference
	Integration Point Attributes
	org.glassfish.admingui:navNode Integration Point
	org.glassfish.admingui:rightPanel Integration Point
	org.glassfish.admingui:rightPanelTitle Integration Point
	org.glassfish.admingui:serverInstTab Integration Point
	org.glassfish.admingui:commonTask Integration Point
	org.glassfish.admingui:configuration Integration Point
	org.glassfish.admingui:resources Integration Point
	org.glassfish.admingui:customtheme Integration Point
	org.glassfish.admingui:masthead Integration Point
	org.glassfish.admingui:loginimage Integration Point
	org.glassfish.admingui:loginform Integration Point
	org.glassfish.admingui:versioninfo Integration Point

	Index

