0SS through Java™ Initiative

Design of the OSS Common API Reference
Implementation (JSR 144)

OSS through Java™ Initiative

Vincent Perrot, Sun Microsystems Inc.

COM-API-Ri_Design.1.3.1.doc

Copyright © 2002-2006 The Members of the OSS through Java™ Initiative. All Rights
Reserved. Use is subject to license terms.

Sun, Sun Microsystems, the Sun Logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

COM-API-Ri_Design.1.4.doc 1

0SS through Java™ Initiative

Executive Summary

The Common API offers interfaces and classes, which are common across all
OSS API defined under OSS J Initiative. This document describes how the
Reference Implementation (RI) was created and designed to implement the

Common API Specifications. The RI contains several parts that could be used
independently:

e the based interfaces implementation
e the CBE implementation

e examples of java, xml over JMS and Web services implementation.

COM-API-Ri_Design.1.4.doc 2

0SS through Java™ Initiative

Table of Contents

EXECULIVE SUMIMAIY ...ttt ettt et b et b ettt s e e e e b e bt eb e e bt bt e b e et et e nbeebenbeebe et e e e eneeee 2
TADIE OF CONTENTS......cueitiieeect ettt r e bt bbbtk s bbbt s bt ekt eb e et e e renrebesne e enea 3
PIEIACE ... et E e h R R bR R Rt r et n s 4
O JECEIVES ...ttt bbbttt n bbbt 4
AUGIBINCE ...ttt ettt b et e b s e s e e s b et e benbesbesbeebeaneeneeneas 4
Related INTOIMATION ..o 4
REVISION HISIOMY: ...ciiiiiceic ettt et e e e sre et e st e s baenteennenreas 4
L INEFOQUCTION ...t e bbb bbbt e bbb b et b et ne e n e 6
2 Design Overview of Reusable Part of Reference Implementation............cccccoovvveiviivcievnin s s 7
2.1 Application Context Implementer Classccouveriiiriienese e 7
2.2 ATLIIDULE ACCESS ClASSES ..ottt 8
2.3 Base Java Value Type and CBE implementationscccccovvviienininneenesieseenne 8
3 Design overview of Non Reusable Part of Reference Implementation............ccccoovoiiiiniiicncne 10
Appendix A: GloSSary and REFEIENCESoviiiiiiiie e 36
e =] =] Lo USSR PR 36

COM-API-Ri_Design.1.4.doc 3

0SS through Java™ Initiative

Preface

Objectives
Design description of the OSS/J Common Reference Implementation

Audience
The target audiences are

e Developers who seek information about how the Common API can be
implemented

e Developers of other OSS/J API Reference Implementers

e Developers who want to make use of these API and extend its
implementations

Related Information
Prerequisite

« Java EE Tools Bundle Beta », containing JSE 5, JEE, netbeans 5.5, and
OpenESB. You can download it at:

http://java.sun.com/javaee/downloads/index.jsp

Java EE 5 Tools Bundle Beta
Docs & Me &= | Lagal Hotices
+ MetBeans 5.5 Bala Downioad Tools Bundie
« MetBeans Enterprise Pack 5.5 Early
Accoss

+ Sun Java Systerm Application Server
Platform Edition @

« Project Open ESE Slarer Kif Beta

« Sun Java System Access Manager
|

+ Java EE 5 Samples

= Java BiugFrnis

+ APl dots (Javadoc)

Revision History:

Date Version Author State Comments
February 1.3 Vincent Perrot Maintenance
2006 Sun Microsystems release 3
Inc
September 1.4 Vincent Perrot Maintenance Change all the
Sun Microsystems content

COM-API-Ri_Design.1.4.doc 4

0SS through Java™ Initiative

2006

Inc

Release 4

according to the
new RI design

COM-API-Ri_Design.1.4.doc

0SS through Java™ Initiative

1 Introduction

This document describes the design and the creation phases of the OSS
through Java™ Initiative, Common APl Reference Implementation.

The Reference Implementation can be used either as a proof-of-concept for
the Common API specification, showing that it is possible to implement the
API or API’s can be directly used as a package. The Reference
Implementation consists of two parts. The first part, consists of abstract
classes and interfaces which can be reused by the target audiences of this API
directly and the second part consists of concrete implementation the Interfaces
of the API this part cant be reused and this only serves as proof or example
how to implement the API.

This document shows how the Reference Implementation is designed.
Reference Implementation provides the concrete interfaces and classes as
specified in the Common API Specifications. It also provides some abstract
classes for certain interfaces so that the developers classes can directly extend
these classes and implement only those none generic methods. Finally it
contains examples of the different profile implementations.

In general the concrete Reference Implementation is designed as a set of
Enterprise Java Beans. The entire RI is developed using netbeans and J2E
SDK.

COM-API-Ri_Design.1.4.doc 6

0SS through Java™ Initiative

2 Design Overview of Reusable Part of Reference
Implementation

The Reference Implementation has following set of classes apart from the
classes and interfaces specified by the specification. Each of these classes is
explained in detail in later part of the document.

e Application Context Implementer class
e Attribute Access classes

e Base Java Value Type and CBE implementations

All the reusable classes are archived in the jars with a name starting by
0ss_cbe for the CBE implementations and oss_common_ri for the
implementation of the based interfaces.

In the following chapter some interface implementations are detailed.

2.1 Application Context Implementer class

The ApplicationContext implementation class contains the URL and other
system properties required to set up an initial connection with the JNDI
provider into which the components in charge of that managed entity are
registered. This class implements the ApplicationContext Interface defined in
the specification apart from this it provides additional static method, which
provides the Application context based on the present server configuration.

The figure below shows the relationship between the interface and class
Green color indicates the Interface is part of the specification
Yellow class is additional class defined in Reference Implementation

<<Interface>>
ApplicationContext

/\
[\

A\
|

ApplicationContextImpl

$getApplicationContext()

COM-API-Ri_Design.1.4.doc

0SS through Java™ Initiative

2.2 Attribute Access Classes

Two classes namely AttributeManager and AttributeAccessimpl are the
classes, which help in accessing the attributes of value object as specified in
the specification. Attribute Manager manages the attributes of the value object
and provides easy methods to get the properties of attributes like attribute
names, settable attributes etc. AttributeAccessimpl is abstract class
implementing the AttributeAcess Interface, which all value objects must
implement according to the specification. This abstract class manages the
attributes using the AttributeManager class.

The figure below shows the relationship between the interface and classes
Green color indicates the Interface is part of the specification
Yellow classes are addition classes defined in Reference Implementation

<<|nterface>>
AttributeAccess

AttributeAccessimpl 1 1| AttributeManger

2.3 Base Java Value Type and CBE implementations

The Java Value Types are the objects, which are exchanged between the client
and JVTSessionBean.The following classes are defined in addition to those
specified in the specification

e ManagedEntityKeylmpl

e ManagedEntityKeyResultimpl

e ManagedEntityValuelmpl
The figure below shows the relationship between the interface and classes
Green color indicates the Interface is part of the specification
Yellow classes are addition classes defined in Reference Implementation

COM-API-Ri_Design.1.4.doc 8

0SS through Java™ Initiative

<<Interface>> <<Interface>>

<<Interface>> C C
ManagedEntityKeyResult | ManagedEntityKey < ManagedEntityValue
0

/T A

ManagedEntityKeyResultimpl ManagedEntityKeylmpl ManagedEntityValueimpl

[
[

=
[y
[N

T

/ 1
AttributeM anger

ManagedEntityKeylmpl is an abstract class, which implements the
ManagedEntityKey Interface. Since very managed Entity type must have a
ManagedEntityKey Interface implementation it can directly extend
ManagedEntityKey abstract class and define the methods to make the primary
key which will be specific to the entity type, functionalities like checking
equality of two key objects as specified in the specification is taken care by
the abstract class. ManagedEntityvaluelmpl implements the
ManagedEntityValue Interface as specified in the specification and it also
extends the AttributeAccessimpl class.

Then all the CBE implementation classes are derived from these based
definitions.

The CBE implementation classes have been generated for a large part using a
hand made java generator. The generation facilitates:

e the consistencies in names and formats

e the fastidious duplication of “common” code section (managing
inheritance and Attribute management, population etc)

e stable clone and equality methods generation

e etc.

COM-API-Ri_Design.1.4.doc

0SS through Java™ Initiative

3 Design overview of integration profile examples

This part of Reference Implementation consists of concrete example
Implementations of API for the three integration profiles with a special
attention for the web services one.

The example application (a minimalist vpn services) and its three integration
profiles are packaged and deployed within a unique enterprise archive (ear
file). It provides any client application all the possible interfaces to the
“common” features. And it demonstrates the extension capabilities of the
Common API design.

Netbeans and Java EE SDK have been largely used for this development.
Java EE 5 SDK supports the combination of J2EE 1.4 EJBs and latest Web
services from Java EE 5 into the same archive. This capability has been used
to build a simple and reusable OSSJ example.

For the implementation of the web services interfaces 2 different approaches
have been used:

e WSDL to java: generation of the WS implementation from the WSDL.
This technique have been used to produce the “common” features
based on the WSDL generated in the Specification bundle.

e Javato WSDL.: the code of the specification have been duplicated into
the RI and then instrumented using JSE5 annotation in order to code
the Webservices endpoint and then generate the WSDL. This
technique have use for the vpn example.

Common_ex.ear

Common_ex_EJB.jar:
Java and XML/JMS integration profiles

Common_ex_WS. jar:
WSDL to java web services integration profile

Common_ex_vpn_WS jar:
Java to WSDL web services integration profile

COM-API-Ri_Design.1.4.doc 10

0SS through Java™ Initiative

3.1 Common_ex EJB

This module contains all the code necessary to implement the applicaition
itself (vpn service) and the java and XML/JMS integration profiles example. It
uses JSE5 (including annotation that will be used later only for the WS
implementation). It includes :

e the specification interfaces (javax.oss package name),

e the class implementations of the used CBE (0ssj.common pacjage
name) as well as

e the EJBs and necessary message driven bean needed for the XML/JMS
profiles.

This module is not using any Java EE 5 specific feature and reference only
J2EE 1.4 specification.

E| Project Properties - common_ex EJB

Caktegories:

______ 3 Sources M Server: Sun Java Syskem Application Server L
...... 2 Libraries
S o Buid JZEE Version:
> 2 Compiling
, 2 Packaging
te @ Documenting
...... °
[=l- @ ‘Wyeb Services
L Weh Services bt

[K, H Cancel H Help

The EJB Module common_ex_EJB is created as a new project where the
necessary source files have been either newly created or copying form other
projects.

This module has no external dependencies (libraries or other projects) except
to Java SE and EE.

The deployment descriptor follows the OSSJ convention for JNDI names, etc.
It contains four EJBs implementing the Vpn applicaition:

e VpnServiceSB: this is the Session bean (java integration profile)
exposing the Remote interface of the application and extending the
Common interface.

COM-API-Ri_Design.1.4.doc 11

0SS through Java™ Initiative

e JmsSender and XV TMessageDrivenBean handling the XML resquests
and responses of the XML/JMS profile

e MplsvpnTbIEB, the Entity bean implementing the application core
business and persistency following the recommended OSSJ design
guidelines.

This application also needs the following external resources to deploy and run
correctly:

=56 Servers
+§§ Bundled Tomcat (5.5, 16)
= -5 p3un Java System Application Server
+|j Applications
S-bP Resources
=& J0BC
—ﬁ JDEC Resources
| = @ jdbemplsvpn
----- B idbc/__TimerPool
..... & idbe/__ CalFlowPool
- & jdbe/__default
—Ij Connection Pools
----- & DerbyPool
----- mplsyprpool

& _ TimerPool

__CallFlowPool

-5'3 TS Fesources
—ﬁ Connection Fackories

= ------ ﬁ Swstem/System 1 applicationTypeCommonfApplicationy 1-4; 1-4; Referencelmplementation CompQusuaConnectionFackory

------- ﬁ Syskem)SystermlapplicationType/CommoniApplication) 1-4; 1-4; Referencelmplementation/ Comp) Topic ConnectionFactary
-3 Destination Resources

------- &}? Syskem!System1 fapplicationTvpe CommonyApplication) 1 -4; 1-4; Referencelmplementation CompiMessagedueus

[&}? Syskem!System1 fapplicationTvpe CommonyApplication) 1 -4; 1-4; Referencelmplementation! Compf WTEvent Topic

#-[5] JavaMail Resources
D475 WnT

Once the started the database table need to be created using the following SQL
syntax (the src directory sql/create.sql file):

—-— CONNECT ®jdbc:derby://l1ocalhost:1527/mplsvpndb;user=dbuser ;password=dbpassword; " ;

CREATE TABLE MPLSVPN_TBL (
MplsKey varchar(128) not null,
State varchar(128),
Subscriberld varchar(256),
Mandatory int,
VrfName varchar(256),
StartMode int,
CONSTRAINT mplsvpntable _PK Primary Key (MplsKey));

-- EXIT;

COM-API-Ri_Design.1.4.doc 12

0SS through Java™ Initiative

3.2 Common_ex WS

This module contains the WS profile for the common services. It has been
generated using Netbeans capabilities from the WSDL files.

After the creation of the project (EJB Module) in netbeans,

£ New Project

Steps

Choose Project

1. Choose Project
2

Cateqgaories:
) General

) Enterprise

7)) Service Oriented Architecture
= {0 MetBeans PlugHin Modules
[#-03) Samples

Descripkion:

Projects:

,i\ Enterprise Application

& Enterprise Application with Existing Sources
e 36 Module

@ EIB Madule with Existing Sources

[# EIE Module with Existing &nk Script

Creates a new Enterprise JavaBean (EJB) module in 5 standard IDE project, Standard
projects use an IDE-generated Ant build script to build and run your project,

Cancel H Help

create the WS using the “new file” wizard:

COM-API-Ri_Design.1.4.doc

13

0SS through Java™ Initiative

& New File
Steps Choose File Type
é- Choose File Type Project: | @ common_ex_ WS ¥
Cateqgories: File Types:
) Enterprise A |[@ Logical Handler
A3 Java Classes [#] Message Handler
™ il H
|} JavaBeans Cbjects @ WSDL File
; = Web Service
A) ik : :
= ; @ web Service Client
-] Persistence @
|7 Service Oriented Architeckure
-3 weh Services 2
) Sun Resources

) e

Descripkion:
| Creates a skelston web service from WSOL file, Web services are reusable software components that |
semantically encapsulate discrete functionality, Web services are accessible over skandard protocols

such as SOAP, The web services created by this kemplate are deploved and run according ko the
J5R-109 and JZEE 1.4 standards,

Then follow instructions, and finally complete the code skeleton.

Cancel

The following lines needs to be added to interface the session bean
implementing the VPN service:

@EJB(name=""VpnServiceEJB")

VpnServiceRemoteHome vpnHome;

private VpnServiceRemote getSession() throws javax.ejb.CreateException,
Javax.naming.NamingException {

if (initCtx == null) initCtx = new InitialContext();

vpnHome =

(VpnServiceRemoteHome) initCtx. lookup(*'System/Systeml/ApplicationType/Common/Applicat
ion/1-4;1-4;Referencelmplementation/Comp/VpnServiceBean™);

nul1){

throw new javax.ejb.CreateException(*'Lookup of VpnServiceRemoteHome

if (vpnHome

failed);
¥
try {
return vpnHome.create();
} catch (Java.rmi.RemoteException rex) {
rex.printStackTrace();

throw new EJBException(*'RemoteException: " + rex.getMessage());

COM-API-Ri_Design.1.4.doc 14

0SS through Java™ Initiative

Once deployed, this service could be easily test using netbeans and JEE 5
SDK capabilities:

Go to the common_ex_WS project, open the “Web Services” section right —
click on the service and selection “Test Web Service”:

I_‘—j'a Common_ex_W5s
EI@ Web Services

Open

Zonfi kion Fil
nieSlsllnlili= Refresh Service

Server Resources
Source Packages

Test Packages
Libraries Edit Web Service Attribukes
Test Libraries Configure Handlers, .,

Cornmon (jar) Delete Delete
]

SOEE8D

Commaon Documentation (jal
Explare Fram Here
ommon Implementation {ja

Comman Web Site (pom) Propertics

Comman WS Inkearation Profile (iard

Your favorite web browser will pops up the web services page from where
you can exercise one of the OSS Common API feature:

) JvTSessionWebService Web Service Tester - Mozilla Firefox

Fle Edt Vew Go Bookmarks Tools Hslp

1 I = 2 T = i

& -5 - @ | @ Q? | [hitp:flocalhost:6080{ v TSessionWebService] T SessionwebService? Tester v ® o |[Cltest |
[055/3 | Divers || WameFinder (Mo argu... (] sun | travel (=) admin [perso | game | | Activits Bricolage || Whersls People Finder 8 Meteo Gre [world Time [€] Overview (Jsva 2 Pla... [12005 »
"6 | | WTSessionwebService Web Servi... 5] | B

JVTSessionWebService Web Service Tester

This form will allow you to test your web service implementation (ASDL File

To invoke an operation, fill the method parameter(s) input boxes and click on the button labeled with the method name
Methods :

public abstract org, ossi.zml common w1_4. QueryResponse org.ossiwsdlcommonv]l_4 JVTSession WSPort. query(org. oss). zml common.vl_4. QueryRequest) throws
org. ossywsdl commen wl_4. QueryException

query] { -

public abstract org, ossi.zml common w1_4. UpdateResponse org ossj wsdl common vl_4. VT SessionWSPort update(org ossy.xml common.wl_4. UpdateRecuest) throws
org.ossy.wsdl commen wl_4 UpdateException

[update]G

public abstract org. ossi.zml conmon w1_4. GetEventTypesResponse org ossywsdl commonwl_4.TWTSessionWSPort getEventTypes(org. oss). zml common w1_4. GetEventTypesRequest)
throws org oss.wsdl common. wl_4. GetEventTypesEzception
[getEvenTypes | i)]

public abstract org. ossi.zml cormon w1_4. GetSupportedOptional OperationsResponse

org.osswsdl commen wl_4.JWTSessionW SPert getSupp ertedOptional Operations{org. ossi.xml common w1_4. GetSupp ertedOptional OperationsRequest) throws
org ossj.wsdl common wl_4 GetSupportedOptionalOp erationsEzception

[getSupportedOptionalOperations] Q B

public abstract org, ossy.zml commen wl_4. Getldanage dEntityTypesResponse
#1T i Al rewnvnsn 1 4 TUT i Al S Pert aethlanane ARntit T el s rn| 14 GethlananedFatite T e oR e one et th, As
Done & 2453

For example, pushing the “getEventTypes” button will return:

COM-API-Ri_Design.1.4.doc 15

0SS through Java™ Initiative

) Method invocation trace - Mozilla Firefox

Fle Edt View Go Bookmarks Tools Help

Q:I - P - @ @ QT '|_1 hitp:fflocalhost: 6060/ YT SessionWeb Service] VT Sessionweb Service? Tester b ® :_@tESt

[055}3 [Divers || WameFinder (Mo argu...) sun [travel () admin () perso | game | | Activits Bricolage | | whersls Paople Findsr @ Meteo Grs [world Time (€] Overview (Jsva2Pla... [) 12005 »
@ | [| Method invocation trace 5] | B8

getEventTypes Method invocation

Method parameter(s)

‘ Type {Value
‘org. oss).zml common vl_4 GetEventTypesEequest

Method returned

org oss).zml common w1_4 GetEventTypesResponse : "org.ossj.xml.common.vl_4.GetEventTypesResponse@177¢533"

SOAP Request

<?xml version="1.0" encoding="UTF-8"2>

<soapenv: Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://wow.ws.org/ 2001/ EMLSchema” xmlns:nsi="http://
<soapenv: Body>

<nsl:getEventTypesRequest xmlns:xsi="http://www.v3.org/2001/XHLSchema-instance” xsi:nil="true"/>

</ soapenv:Body:>

</ soapenv:Envelope>

SOAP Response

<?xml wersion="1.0" encoding="UTF-8"7>

<soapenv: Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/” xmlns:xsd="http://wrw. wi.org/ 2001/ EMLSchema® xmlns:nsl="heep://
<soapenv: Bodys>

<nsl:getEventTypesResponse>

<nsl:strings>

<nsliitenross].common, ex. MplsVpnCreateEventInpla/nsl: itens

</n3l:stringss

</nsl:getEventTypesResponses

</s0apenv:Body>

</ soapenv:Envelope>

Done & 0.344s

3.3 Common_ex_vpn_WS

The module demonstrates how to expose a JEE enterprise application — the
java integration profile of module common_ex_EJB- as web service with
JAX-WS 2.0. Concretely, a new EJB3.0 implementing the web service have
been created. This EJB3.0 accesses the existing Session Bean to invoke the
corresponding methods providing the services. The obsolete JAX-RPC tools,
have been replaced by JAX-WS 2.0 tools to generate the artifacts exposing the
EJB3.0 as web service. In the following sections, the migration process is
detailed step by step, with comments to better understand constraints and
choices. This section comes with a netbeans project illustrating the work with
a concrete example.

This section is divided into four parts:
¢ the work environment and project creation,

e the generation of the web service endpoint,

COM-API-Ri_Design.1.4.doc 16

0SS through Java™ Initiative

e the packaging of the project deployment file (the EAR),

e the test of the web services.

. XMLSOAP Message
Web Service over HTrp 2

g

Client artifacts
generated by JAX-WS

Web Service artifacts
generated by JAX-WS

Web Service Descritption
WSDL / XSD files

Web Service
plementation Class

)b o

e

O
oy
=
o
>

Enterprise Application

EJB Container

EBJ 2.0

EBJ 3.0

Web Service artifacts
generated by JAX-WS

4

Common_ex_EJB

Y001 &

3.3.1 work environment

« Java EE Tools Bundle Beta », containing JSE 5, JEE, netbeans 5.5, and
OpenESB. You can download it at:

http://java.sun.com/javaee/downloads/index.jsp

Java EE 5 Tools Bundle Beta
Cogs & Resources | Legal Hoklcas

-

MetBeans Enterprise Pack 5.5 Early

Apress

+ SUnJava Syztem Application Server
FPlatform Edition 9

« Projecl Open ESB Slarter Kit Beta

+ Sun.Java System Access Manager
T

« Java EE 5 Samples

= Java BiuerFninis

+ APl dots (Javadoc)

L

COM-API-Ri_Design.1.4.doc

0SS through Java™ Initiative

JAX-WS enables to generate the web service from a Java Bean. This
previous edition of Sun Application Server includes wsgen and wsimport, the
two JAX-WS tools used here.

3.3.2 generation of the web service endpoint

/*

It starts from the creation of a new EJB Module named common_ex_vpn_WS
and a new Web Service named VpnService (More details will be given later).

This new module is naturally included into the final ear as follow:
In case the enterprise application module have not yet been created:
® create a new enterprise application, choose JEE 5;

® do not create any related module : no EJB module, no web application
module, no client application module;

then link this EJB module to it; and finally clean and build your project (from
the EAR ant targets, more details are given later).

The module is now ready to use JAX WS tools. The Web services end point
will generated from the annotated EJB, interfaces and classes. This will show
how existing systems can expose web services integration profile. (Note: a
minimalist approach is applied. Many other customizations could be made to
make the final generated WSDL files aligned with OSSJ standard).

There are two possible implementation: either to interface the session bean or
the underlying entity bean (bean called by the session bean):

e first solution would be to create a new EJB 3.0 for the web service,
exposing the VPN service interface. This Ejb 3.0 will then
communicate with the Session Bean 2.0 of 'common_ex_EJB' module.

e Second solution would be to convert the existing Session Bean in the
web service implementation (in annotated EJB 3.0) so that the web
service implementation class access directly the entity bean.

To minimize the impact on the existing Session Bean, and to preserve the Java
integration profile, the first solution has preferred.

In this netbean project create a new EJB module where the desired methods
are created using the same names as the Java integration profile. Then it is
“connected” to the Session Bean exposing the java integration profile as
follow:

* VpnService. java

*

COM-API-Ri_Design.1.4.doc 18

0SS through Java™ Initiative

* Created on July 7, 2006, 3:40 PM

*

* To change this template, choose Tools | Template Manager
* and open the template in the editor.

*/

package ossj.common.ex;

import com.infomodel .MplIsVpnServiceKey;
import com.infomodel .MplsVpnServiceValue;
import java.rmi.RemoteException;

import javax.ejb_.EJB;

import javax.ejb_EJBException;

import javax.ejb.Stateless;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.naming.lnitialContext;

import ossj.common.AttributeAccessimpl;

/**
*
* @author vince

*/

@Stateless()
@WebService(wsdlLocation="META-INF/wsdl/VpnServiceService.wsdl')

public class VpnService {

@EJIB(name=""VpnServiceEJB")

VpnServiceRemoteHome vpnHome;

InitialContext initCtx = null;

@webMethod(operationName="createMplsVpnServiceByValue')

public MplsVpnServiceKey createMplsVpnServiceByValue(MplsVpnServiceValue
mplIsVpnServiceValue)

throws javax.oss.OsslllegalArgumentException,
Java.rmi_RemoteException,
javax.ejb.DuplicateKeyException,

Javax.ejb.CreateException{

try {

MplsVpnServiceKey retkey = null;

COM-API-Ri_Design.1.4.doc

0SS through Java™ Initiative

try {

retkey =
getSession() .createMplsVpnServiceByValue(mplsVpnServiceValue);

} catch (Java.rmi.RemoteException rex) {
rex.printStackTrace();

throw new EJBException(*'RemoteException’ + rex.getMessage());

return retKey;
} catch (Exception e) {
String msg = "Unable to createMplsVpnServiceByValue... Exception : ";

throw new RemoteException(msg+e);

@webMethod(operationName="getMplsVpnServiceByKey')

public MplsVpnServiceValue getMplsVpnServiceByKey(MplsVpnServiceKey
mplsVpnServiceKey, String[] attrNames)

throws javax.oss.OsslllegalArgumentException,
Java.rmi _RemoteException,
Javax.ejb._ObjectNotFoundException{
try {

MplIsVpnServiceValue retValue = null;
try {

retValue = getSession().getMplsVpnServiceByKey(mplsVpnServiceKey,
attrNames);

} catch (Java.rmi._RemoteException rex) {

rex.printStackTrace();

throw new EJBException(‘‘RemoteException™ + rex.getMessage());
3
//set all attribute populated for the XML encoding
((AttributeAccessimpl)retValue).setFullyPopulated();

return retValue;
} catch (Exception e) {
String msg = "Unable to getMplsVpnServiceByKey... Exception : ";

throw new RemoteException(msg+e);

@webMethod(operationName=""setMplsVpnServiceByValue')

public void setMplsVpnServiceByValue(MplsVpnServiceValue mplsVpnServiceValue,
boolean resyncRequired)

throws javax.oss.OsslllegalArgumentException, java.rmi.RemoteException,

COM-API-Ri_Design.1.4.doc 20

0SS through Java™ Initiative

Javax.ejb._ObjectNotFoundException, javax.oss.OssSetException,
Javax.oss.OssResyncRequiredException{
try {

try {

getSession() -setMplsVpnServiceByValue(mplsVpnServiceValue,
resyncRequired);

} catch (Java.rmi.RemoteException rex) {
rex.printStackTrace();
throw new EJBException(*'RemoteException’ + rex.getMessage());

}

} catch (Exception e) {
String msg = "Unable to setMplsVpnServiceByValue... Exception : ';

throw new RemoteException(msg+e);

private VpnServiceRemote getSession() throws javax.ejb.CreateException,
Javax.naming.NamingException {

if (initCtx == null) initCtx = new InitialContext();

vpnHome =

(VpnServiceRemoteHome) initCtx. lookup(*'System/Systeml/ApplicationType/Common/Applicat
ion/1-4;1-4;Referencelmplementation/Comp/VpnServiceBean™);

if (vpnHome == null){

throw new javax.ejb.CreateException(*'Lookup of VpnServiceRemoteHome
failed™);

}

try {
return vpnHome.create();

} catch (Java.rmi.RemoteException rex) {
rex.printStackTrace();

throw new EJBException(*'RemoteException: " + rex.getMessage());

COM-API-Ri_Design.1.4.doc 21

0SS through Java™ Initiative

The needed annotations are:
e (@Stateless: to specify this class is a Stateless Session Bean ;

e @WebService: to indicate JAX-WS this file is a web service, so that
artifacts have to be created ;

e @WebMethod: for JAX-WS too, indicating that this method can be
request by a web service client ;

Netbeans handles automatically the @WebService annotation by creating the
ant target 'wsgen-generate' for producing the endpoint of this web service. As
this point wsgen execution should be possible. But JAX-B will encounter
obstacle to compute interfaces definitions ; error message like "JAX'B can't
handle with interfaces...”" will be generated. Next part explains how to handle
the generation from interfaces definitions.

Note: when accessing an EJB 2.1 from an EJB 3.0, the object returned by the
lookup function can not be casted. The use of an
javax.rmi.PortableRemoteObject.narrow() method is mandatory, as explained
in the EJB 3.0 specification.

From this interface definition no specific annotation appears for return values
and argument of methods. The following section details the preliminary
development that have been done in the CBE definitions and implementations.

3.3.2.1 Handling with OSSJ Values and Keys

OSS/J APIs define only interfaces for parameter and return types. JAX-WS
tool generates artifacts (java classes) able to convert an xml data file to a java
object and vice versa. JAX-WS delegates to JAX-B the binding of xml types
to java types. JAX-B needs to instanciate classes (can't be done with
interfaces) to encode and decode XML from/to Java .

It may exist several solutions to solve this issue. JAX-B experts have already
considered it and propose three solutions. Their three solutions using different
annotations:

e @XmIRootElement: implies to annotate all the code, each time when
interface is used or implemented.

e @XmlJavaTypeAdapter: only applicable if interface definitions can be
modified (regarding JCP licensing model for example)

COM-API-Ri_Design.1.4.doc 22

0SS through Java™ Initiative

e @XmlElement: constraint to have a one to one relationship between
interfaces and implementations (not always the case for the clients)
and cross boundaries between modules can be not supported...

More details can be found in the JAX-B guide, currently written and step by
step improved:
https://jaxb.dev.java.net/guide/Mapping__interfaces.html

In our case, the second solution using @XmlJavaTypeAdapter is used for its
simplicity and minimal code impact. The @XmlJavaTypeAdapter annotation
allows JAX-B to link the XML type to a java encoder/decoder. Its usage
involves two constraints :

e annotation of the interface,

e creation of an adapter class with two methods for (un)marshalling
between the interface and the implementation class. This avoid the
modification of the existing CBE implementation.

Here is an example:
package com.infomodel;
J**
* Public interface definition for MplsVpnService
*/
import javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter;

import javax.xml_bind.annotation.XmlType;

@XmlType
@XmlJavaTypeAdapter (value=MplsVpnServiceValueAdapter.class)

public interface MplsVpnServiceValue
extends javax.oss.cbe.service.ServiceValue

{
public static final String VALUE_TYPE = *com.infomodel .MplsVpnServiceValue';
public static final String MPLS_VPN_SERVICE_KEY = "mplsVpnServiceKey";
public final static String VRF_NAME = "vrfName';

/** Deep copy of this object */
public Object clone();
/**
* Attribute getter for vrfName
* @return the value of the vrfName field.
* @throws java.lang.lllegalStateException - if the attribute is not populated.
*/
public java.lang.String getVrfName()

COM-API-Ri_Design.1.4.doc 23

0SS through Java™ Initiative

throws java.lang.lllegalStateException;

/**
* Attribute setter for vrfName
* @param value - the value to use to set the vrfName attribute.

* @throws java.lang.lllegalArgumentException - Is thrown to report that a bad
argument was provided to the method.

*/
public void setVrfName(java.lang.String value)

throws java.lang.lllegalArgumentException;

Ve
* Gets the key for this value object
* @return the key for this value object
* @throws java.lang.lllegalStateException if no key was populated in this
* value object.
*/

public com.infomodel _MplsVpnServiceKey getMplsVpnServiceKey()

throws java.lang.lllegalStateException;

Jx*
* Sets the key for this value object

* @param key - the key to set on this value object.

* @throws java.lang.lllegalArgumentException, if the key is not a valid
* key for this value object.

*/
public void setMplsVpnServiceKey(com.infomodel .MplsVpnServiceKey key)

throws java.lang.lllegalArgumentException;

/**
* Factory method for MplsVpnServiceKey

*

* @return a new instance of a blank MplsVpnServiceKey
*/
public com.infomodel _MplsVpnServiceKey makeMplsVpnServiceKey();

}

...and its Adapter:

package com.infomodel;

import javax.xml.bind.annotation.adapters.XmlAdapter;

COM-API-Ri_Design.1.4.doc

24

0SS through Java™ Initiative

public class MplsVpnServiceValueAdapter extends
XmlAdapter<MplsVpnServiceValuelmpl ,MplsVpnServiceValue>{

public MplsVpnServiceValue unmarshal (MplsVpnServiceValuelmpl p) throws Exception

{
try {
MplIsVpnServiceValue r = p;
return r;
¥
catch (Exception e)
{
e.printStackTrace();
String msg = "Unable to unmarshall MplsVpnServiceValue : "+p;
throw new Exception(msg+" due to "+e);
b
3
public MplsVpnServiceValuelmpl marshal (MplsVpnServiceValue p) throws Exception {
try {
MplsVpnServiceValuelmpl r = (MplsVpnServiceValuelmpl)p;
return r;
¥
catch (Exception e)
{
e.printStackTrace();
String msg = "Unable to marshall MplsVpnServiceValuelmpl : "+p;
throw new Exception(msg+" due to "+e);
3
3
T

Note: One concerns arrays of interfaces. Despite of the previous adaptation,

web service artifacts can not be generated. Same error as for a non annotated
interface appears: "...JAX-B can't hanlde with interface...". This bug has been
logged on issue tracker on java.net and should be fixed soon.

Workaround : Replace first occurance (of the dependency graph) of each array
of interfaces with an array of the corresponding implementation class, and
each time this method is called, cast the type in an array of implementation
classes.

COM-API-Ri_Design.1.4.doc 25

0SS through Java™ Initiative

Note: The adpater classes have been put in the same package as the
corresponding implementations. Coding manually the adapters is a tedious
task, however they can be easliy generated.

Wsgen target can now be executed again to verify artifacts are well generated,
all the previous errors shall disappear. This step is not mandatory, it is just for
verification purpose.

At this point of the creation the service is ready to be deployed. Unfortunately,
the following error due to a bug need to be workarounded:

deployment started ;@ 0%

Deployving application in domain failed; Fatal Error from EJE Compiler --

Ech .. d2ee-apps i TroubleTicket 2N TTWEE_ jar \META-INF \w=dl JWVTTroubleTicketServant Service. . wsdl
{The system cannot find the file specified)

The automatically (by netbeans) generated ant rules in the project
management files needs to be updated in order to run wsgen and package the
generated WSDL into the archive.

Netbeans will detect that its internal project file have been modified, and will
pops up:

£ Edit Project Properties

'T The "build-impl.aml" file was modified externally.
L
The IDE automatically generates this file whenever vou edit project
properties, If vou proceed, “build-impl.xml* will be regenerated and

any changes you have made manually will be lost.

Do wou wank to regenerate "build-impl,cml*?

Regenerate] [Cancel]

Always select “Cancel” to preserve the following changes in build-impl.xml
of the project (follow the “VP” sections):

Clean section:

<target name="deps-clean' depends="init" if="no.dist.ear.dir” unless="no.deps">

<ant target="clean” inheritall="false"
antfile="${project.common_ex_EJB}/build.xml"/>

COM-API-Ri_Design.1.4.doc 26

0SS through Java™ Initiative

</target>

<target name='-do-clean" depends="init">
<delete dir="${build.dir}"/>
<delete dir="${dist.dir}"/>
<I-—— VP -—>
<delete dir="${src.dir}/../conf/wsdl"/>
<I-- end VP -->

</target>

Dist section:

DIST BUILDING SECTION

==

<target name="-pre-dist">

<I-- Empty placeholder for easier customization. -->
<I-- You can override this target in the ../build.xml file. -->
<l—— VP -—>

<ejbjarproject2:javac srcdir="${build.generated.dir}/wsgen/service"
destdir="${build.classes.dir}"/>

<ejbjarproject2:javac srcdir="${build.generated.dir}/wsgen/service"
destdir="${build.ear.classes.dir}"/>

<l-—- end VP --—>

<I-- VP add wsgen-generate after compile target in both following depends list
-—>

<target name="dist" depends="init,compile,wsgen-generate,-pre-dist,-do-dist, -
post-dist" description="Build distribution (JAR)."/>

<target name="'dist-ear" depends="init,compile,wsgen-generate,-pre-dist,-do-ear-
dist,-post-dist™ description="Build distribution (JAR) to be packaged into an
EAR."/>

<l-- end VP -->

Compilation section:

COMPILATION SECTION

——>

<target name='-deps-module-jar' depends="init" if="no.dist.ear.dir"
unless="no.deps">

<ant target="dist" inheritall="false"
antfile="${project.common_ex_EJB}/build.xml"/>

</target>
<target name='-deps-ear-jar" depends="init" if="dist.ear.dir"” unless="no.deps'">

<ant target="dist-ear" inheritall="false"
antfile="${project.common_ex_EJB}/build.xml">

COM-API-Ri_Design.1.4.doc 27

0SS through Java™ Initiative

<property name="dist.ear.dir" location="${build.dir}"/>
</ant>
</target>
<target name="deps-jar" depends="init, -deps-module-jar, -deps-ear-jar'/>
<target name="wsgen-init" depends="init">
<mkdir dir="${build.generated.dir}/wsgen/service'/>
<mkdir dir="${classes.dir}"/>
<taskdef name="wsgen'" classhame="'com.sun.tools.ws.ant.WsGen">
<classpath path="${j2ee.platform.wsgen.classpath}"/>
</taskdef>
<I-- VP --—>
<mkdir dir="${src.dir}/../conf/wsdl"/>
<l-- end VP --—>
</target>
<target name='‘wsgen-VpnService' depends="wsgen-init, compile'">

<wsgen sourcedestdir="${build.generated.dir}/wsgen/service"
resourcedestdir="${build.generated.dir}/wsgen/service" keep="true" genwsdl="true"
sei=""0ssj-common.ex.VpnService">

<classpath
path="${classes.dir}:${j2ee.platform.wsgen.classpath}:${javac.classpath}'/>

</wsgen>
<I-- VP copy the files where needed for jar packaging -->
<copy todir="${src.dir}/../conf/wsdl">

<fileset dir="${build.generated.dir}/wsgen/service" includes="*_wsdl
*.xsd"/>

</copy>

<l-- end VP -->

Now, the project shall be able to deploy successfully from the application
project using the “Run Project” item (right-click on the project.

The deployment could be easily verified by accessing the wsdl file of the web
browser using the following URL:

http://localhost:8080/VpnServiceService/\VpnService?WSDL

The web service interface could also being test using an integrated client
application using the same EJB module in netbeans.

A specific client example is provided with this project to show how to handle
complex types. This client application needs 2 inputs:

e the URL of the wsdl file of the service to test (see below). Service
description is used by wsimport ot generate the client WS artifacts;

COM-API-Ri_Design.1.4.doc 28

http://localhost:8080/VpnServiceService/VpnService?WSDL

0SS through Java™ Initiative

e class definitions of the specific types used.

The client retrieves service port information from wsdl file, then invokes the
exposed services.

The client code is cided in the “Test packages” section of the EJB module
project. This simplify the configuration effort.

Find below the code of this client application:
package client;
import javax.xml._soap.SOAPFault;
import javax.xml.ws._WebServiceRef;

import javax.xml.ws.soap.SOAPFaultException;

import ossj.common.ex.MplsVpnServiceKeylmpl;
import ossj.common.ex.MplsVpnServiceValuelmpl;
import ossj.common.ex.VpnService;

import ossj.common.ex.VpnServiceService;

public class VpnServiceClient {

public VpnServiceClient() {
}

@webServiceRef(wsdlLocation="http://localhost:8080/VpnServiceService/VpnService?WSDL
)

static VpnServiceService service;
public static void main(String[] args) {
try {
VpnServiceClient client = new VpnServiceClient();
client.doTest(args);
} catch(Exception e) {
e.printStackTrace();

¥

3

public void doTest(String[] args) {
try {

System.out.printIn(*" Retrieving port from the service " + service);

VpnService port = service.getVpnServicePort();

System.out._printin(*" Invoking "createMplsVpnService® operation on the
Servant port');

MplIsVpnServiceValuelmpl mplsVpn = new MplsVpnServiceValuelmpl();
//set the mandatory attributes

mplsVpn.setVrfName("'myVrfName') ;

mplsVpn.setSubGraphld(0);

mplsVpn.setState(**Active™);
mplsVpn.setSubscriberld(*'mySubscriberid™);

COM-API-Ri_Design.1.4.doc 29

0SS through Java™ Initiative

mplsVpn.setMandatory(false);
mplsVpn.setStartMode(0);

//invoke create method on the WS

MplIsVpnServiceKeylmpl mplsVpnKey =
(MplIsVpnServiceKeylmpl)port.createMplsVpnServiceByValue(mplsVpn);

System.out._printin(*" Result, MplsVpnServiceKey returned for the new
created:");

System.out.printin(” primaryKey: “+mplsVpnKey.getPrimarykKey());
System.out.printin(*" type : "+mplsVpnKey.getType());
System.out._printin(*" VrfName : "+mplsVpn.getVrfName());

// get the new created vpnservice

System.out.printin(* Invoking “"getMplsVpnService® with
"+mplsVpnKey.getPrimaryKey());

MplIsVpnServiceValuelmpl mplsValue =
(MplIsVpnServiceValuelmpl)port.getMplsVpnServiceByKey(mplsVpnKey,null);

System.out.printin(*" Result, MplsVpnServiceKey returned for the new
created:");

System.out._printin(" primaryKey :
“+mplsValue.getMplsVpnServiceKey() -getPrimaryKey());

System.out.printin(” Subsbcriverld : “+mplsValue.getSubscriberld());

System.out.printin(" VrfName : "+mplsValue.getVrfName());

// change some values
System.out.printin(*" Invoking "setMplsVpnServiceByValue®");
mplsValue.setSubscriberld(*'mySubscriberld™);

mplsValue.setVrfName(“'updated VrfName:
["+mplsVpnKey.getPrimaryKey(Q+"]1");

port.setMplsVpnServiceByValue(mplsValue, false);

// get the new created vpnservice

System.out.printin(* Invoking "getMplsVpnService® with
"+mplsVpnKey.getPrimaryKey());

mplsvValue =
(MplIsVpnServiceValuelmpl)port.getMplsVpnServiceByKey(mplsVpnKey,null);

System.out._printin(*" Result, MplsVpnServiceKey returned for the new
created:");

System.out.printin(” primaryKey :
“+mplsValue.getMplsVpnServiceKey() -getPrimaryKey());

System.out._printin(*" Subsbcriverld : "+mplsValue.getSubscriberld());

System.out.printin(* VrfName : "+mplsValue.getVrfName());

} catch(SOAPFaultException Se) {
SOAPFault fault = Se.getFault();

System.out.print(**'SOAPFaultException thrown while running the client :
“+fault.toString());

COM-API-Ri_Design.1.4.doc 30

0SS through Java™ Initiative

} catch(Exception e) {
e.printStackTrace();

The project build-impl.xml have been updated to support correctly the client
compilation and execution:

<l-— VP -—>

<1__

TEST WITH CLIENT SECTION

==

<property name="WSIMPORT" value="${com.sun.aas.installRoot}/bin/wsimport.bat"/>

<property name="APPCLIENT"
value="${com.sun.aas. instal IRoot}/bin/appclient._bat"/>

<property name="http.port"” value="8080"/>

<property name="http.host" value="localhost"/>

<target name='"compile-client" depends="init, generate-client-artifacts">

<javac srcdir="${test.src.dir}" destdir="${build.classes.dir}/client"”

classpath="${build.classes.dir}:${javac.classpath}:${j2ee.platform.classpath}"
includes=""client/**"/>

</target>

<target name=''generate-client-artifacts" depends="init">

<mkdir dir="${build.classes.dir}/client'/>

<echo message=""${WSIMPORT} -keep -d ${build.classes.dir}/client
http://${http.host}:${http.port}/VpnServiceService/VpnService?WSDL"/>

<exec executable="${WSIMPORT}" failonerror="true" >

<arg line="-keep -d ${build.classes.dir}/client

http://${http._host}:${http.port}/VpnServiceService/VpnService?WSDL"/>

</exec>

</target>

<target name="run-client"” depends="init">

<echo message="Executing appclient with client class as
client.VpnServiceClient'/>

<exec executable="${APPCLIENT}" dir="${build.classes.dir}/client">
<arg value="client._.VpnServiceClient"/>

</exec>

COM-API-Ri_Design.1.4.doc

31

0SS through Java™ Initiative

</target>

<I-- end VP --—>

In order to compile and execute the client, call the “compile-client” and
run-client target from the contextual menu of the project:

In netbeans, select the “Files” section, open the Project directory right-click on
the build.xml and select the “compile-client” then the “run-client targets.

clean-esar

| NetBeans 5.5 Beta - common_ex_vpn_WS compile-clent

File Edit Yiew Mavigate Source Refactor Build Ron CWS Toe

compile-sinale

comnpile-test -
|_“" 1 E: @ %-’5 &) | d compile-test-single QEI
debug-fix
. s ‘Fil 0
| Projects :Files it debug-fix-test |
e rY
= i_‘]ljf?mmun_ex_vpn_WS debug-test ;
. TLI deps-clean
£ o | .
g eps-jar
b)gnbpraject i]I: lient-arkifack
s generate-client-artifacts
H-) sro
okl init
3 -
2 B w javadoc-browse
B "
i, : Open javadoc-build [
: Navigator - buil SRR (a1 default library-inclusion-in-archive Lo
Ank Targets Debug Target b dean library-inclusion-in-manifest
b, dzan Cuk Zhrl+ debug run-deploy
: {Jea-.-'.-.-ear Copy Chel+C dist =
>, compil dist-gar .
§ piiank s Delete Delete run-undeploy
b compie-single | Rename.., javadoc test-report
b compile-best Save As Template. .. T werify
b comple-test-sii L y| test wsgen-generate
: Properties test-single wsgen-init
k. debug _ BGEREREE] ycgen-YpnService
P dehug-fix
b debug-fix-test Advanced. .
b

At the bottom section of netbeans window, you will see the execution output
as follow:

COM-API-Ri_Design.1.4.doc 32

0SS through Java™ Initiative

: Output
Java DB Database Process | build.xml {run-client) =

init:

run—client:

Executing appclient with client class as client. VpnfServiceClient
Betrieving port from the serwvice ossj.common. ex.VpniServicelService@lledTe
Invoking 'createMplsVpnSerwvice' operation on the Serwvant port
RBe=ult, MplsWpnServiceEey returned for the new created:

primaryEey: 1152151703343
type : ocom. infomodel MplsUpnServiceKevyInpl
Vr fName I mwyWr fName
Invoking 'getMplsWpnSerwice' with 1158151709343
Besult, MplsWpnServiceFEey returned for the new created:

primaryEey © 11521E5170533243
SubsheriwverId @ wySubscriberId
Vr fName : wyVr fHame

Invoking 'setMplsWpnlerwviceByialue'
Invoking 'getMplsWpnlerwice' with 1158151703343

Besult, MplsVnServiceEey returned for the new created:

primaryEey © 11521E5170533243
SubsheriwverId @ wySubscriberId
Vr fName : updated VrfMName: [1152151709343]

EBUILD STUCCESSFUL (total time: 3 seconds)

@ Cutput;

Finished building build. xml {run-client).

3.4 Verify the Application

According to the OSS/J recommendation, the application have to be ferifed
using the Java EE verifier. This tool is integrated into the NetBeans and a
downloadable plugin.

Using the Update Center download and install the Sun Java System
Application Verification Kit (AVK).

And download the latest AVK for JavaEE 5 from
http://jJava.sun.com/javaee/downloads/index.jsp

(Note: point the installation wizard to the Application Server already installed)

3.4.1 Static verification
Select the common_ex project and select the “verify” item:

COM-API-Ri_Design.1.4.doc 33

http://java.sun.com/javaee/downloads/index.jsp

0SS through Java™ Initiative

| NetBeans 5.5 Beta 2 - common_ex |.'. “rl:l |F5_<|
File Edit “iew Mavigate Source Refactor Buld Run CWS Tools Window Help

L@l LraEn/leBod
: Projects 1 % | :Files : Runtime W =

% BT 12EE Mockie... Allcomec{ B |4 B[@ F|% L %[5 W |E =0 @
commyg ; -

t Build Project = -- CONNECT 'jdbec:derby://localhost:1527/nplavpndbuser=dbu#
@ commi v =

Clean and Build Project
‘Navigator Claan Project a % CREATE TABLE MPLSVEN TEL {

e - MnlsEew warchar (12731 not null. bt
el ojeck
] ¢ b
Run Project 1:1 |INS|
. Debug Project e
: Output :¥erifier: common_ex.ear X

Deploy Project

:oss_commg nmon_exdistcommon_ex, ear

Set Main Project
LU splay: () All Results () Failures Only () Failures and Warnings anly

Open Required Projects

Status Result

Close Project

Rename Project

Maowve Project

Copy Project

Delete Project Delete
Find... Chrl+F
i) 4

. —
Detail: Toals 4

Properties

Select first the Static verification:
The common_ex application contains no error.

Repeat this step and then select the Dynamic Verification:

& | Choose Verification Type

Choose the tyvpe of verification you want to perform.

(") Static Yerification (Werifier)

I1ze the Yerfier to perform static verfication of the application.

{®) Dynamic Yerification (AvK

Iz AWK to perfarm dynamic verification of the application. Application Server will be
ingtrumented to run in AYE mode.

IF pour project iz uzing Sun Java System Application Server 8.x az runtime ther :

1. The applization should already be deplaved on the server to perfarm dynamic verfication.
2. To wview the verification repart after executing the application: in the Buntime window,
right-click the Application Server node and choose Generate AVE. Report.

(4 H Cancel][Help

And follow instruction.

COM-API-Ri_Design.1.4.doc 34

0SS through Java™ Initiative

Execute the TCKSs, once terminated, to view the verification report after
executing the application: in the Runtime window, right-click the Application
Server node and choose Generate AVK Report.

The AVK reports for Common RI 96% coverage => successfully pass the test

E_\ NetBeans 5.5 Beta

Fle Edt Yiew Mavigate Source Refactor Buld Run CVS Tooks indow Help

REBH®R NCLRBOPD

‘Projects ‘Files 1 % |:Runtime || AvK Session x| (e
) common_s: ~
e ~
Summary T
=03 nbproject
! = application Kame : comman_ex
-0 private &
ant-deploy.xml Weh Component Coverage : N.A
build-impl. il
gerfles properties EJ6 Component Coverags © 96
[} project.propertiss
projct.zml v e —
e = Weh Components | EB Companents
:Navigator a % .
Methods Hot Called
Method Name Bean Name 14
public abstract com.infomodel MplsipnServiceValue ossj.common,es, ¥pns.. . YpnServiceE J6
Methods Called Successfully
Method Name Bean Name Invocations
public abstract void ossi. commen.ex. JmsSender . publish(javax.0ss.Event, .., ImsSender 3
public abstract woid javaz.jms.MessageListener.onessage(javax jms.Me. .. ImsSender 8
public abstract ossj.common.ex. MplsvpnThiLocal ossj.common. ex. Mplsvpn... JmsSender &
publc abstract javax.oss.MamedQueryRespanse javax,oss, WTSessionRe. .. ImsSender 1 v
< >
vk Reports |
: Dutput = x |:Yerifier: common_ex.ear
Java DB Database Process = | Sun Java System Application Server = | common_sx (verify) x\
TARNING: PLE007: Invalid Deployment Descriptors element message-destination value MessageQueue")
INFO: Verifving: [C:ioss_common_jZeesdk-l_é-sro-ritsrchexauplelcommon_ex)dist)common_sx.ear]
INFO: Verifying: [common ex US_jar |
Visiting non-standard Signature ohject
Visiting non-standard Signature object
Visiting non-standard Signature cbject
Visiting non-standard Signature object
Visiting non-standard Signature ohject
Visiting non-standard Signature objsct
Visiting non-standard Signature object|
Visiting non-standard Signature ohject
INFO: Werifying: [common_ex EJE_jar]
INFO: Verifving: [common_ex_wvpn _US_jar]
INFO:
of Failures - 0
of Uarnings : L
of Errors : 0
INFO: Lock in file "C:\oss_commen jZeesdk-l 4-sre-risrclexawplelccmmon exidist)commwon ex.ear.txt” for detailed results.
BUILD SUCCESSFUL (total time: 17 seconds) R'a
< >

Finished building comman_ex (werify).

COM-API-Ri_Design.1.4.doc 35

0SS through Java™ Initiative

Appendix A: Glossary and References

References

COM-API-Ri_Design.1.4.doc

36

	Executive Summary
	Table of Contents
	Preface
	Objectives
	Audience
	Related Information
	Revision History:

	Introduction
	Design Overview of Reusable Part of Reference Implementation
	Application Context Implementer class
	Attribute Access Classes
	Base Java Value Type and CBE implementations

	Design overview of integration profile examples
	Common_ex_EJB
	Common_ex_WS
	Common_ex_vpn_WS
	work environment
	generation of the web service endpoint
	Handling with OSSJ Values and Keys

	Verify the Application
	Static verification

	References

