

[1] Oracle® TimesTen In-Memory Database
Kubernetes Operator User's Guide

Release 18.1

F30658-04

May 2021

Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide, Release 18.1

F30658-04

Copyright © 1996, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S.
Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract
for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Audience... ix
Related documents.. x
Conventions ... x
Documentation Accessibility ... xi

What's New .. xiii

New features in Release 18.1.4.11.0 .. xiii
New features in Release 18.1.4.4.0 .. xiv

1 Overview of the Oracle TimesTen Kubernetes Operator

Overview of containers and Kubernetes ... 1-1
Custom Resource Definition... 1-2
Kubernetes Operator ... 1-2

Introducing the TimesTen Operator .. 1-2
The TimesTenClassic object type ... 1-3

Kubernetes objects: named and typed ... 1-4
The Operator... 1-4

Understanding how the Operator functions... 1-5
Objects created by the Operator... 1-5

StatefulSet... 1-6
Service... 1-6
Secret... 1-6
Pods... 1-6
Events.. 1-6

The TimesTen containers and the TimesTen agent... 1-7
Simple deployment of the TimesTen Operator ... 1-7

2 Setting up the Environment

Prerequisites .. 2-1
Downloading TimesTen and the TimesTen Operator.. 2-2
Configuring Kubernetes ... 2-4
Deploying the TimesTenClassic CRD ... 2-4
Building the Operator image ... 2-5
Deploying the Operator .. 2-6

iv

Customize the Operator .. 2-6
Verify that the Operator is running... 2-7

Building the TimesTen image ... 2-8

3 Using Configuration Metadata

Understanding the configuration metadata and the Kubernetes facilities 3-1
The supported metadata files .. 3-1

adminUser file .. 3-2
cachegroups.sql .. 3-2
cacheUser... 3-3
csWallet.. 3-4
db.ini file.. 3-4
epilog.sql.. 3-5
replicationWallet .. 3-5
schema.sql file... 3-5
sqlnet.ora file... 3-5
tnsnames.ora file... 3-6

Populating the /ttconfig directory ... 3-6
Using ConfigMaps and Secrets .. 3-6

Example using one ConfigMap .. 3-7
Example using one ConfigMap and one Secret.. 3-9

Using an init container ... 3-12
Additional configuration options .. 3-13

Persistent storage .. 3-13
Resources specification for the tt and the daemonlog containers.. 3-14
Pod location.. 3-15

4 Deploying TimesTen Databases

Understanding the deployment process .. 4-1
Defining and creating the TimesTenClassic object .. 4-2
Monitoring the progress of the active standby pair deployment ... 4-3

Monitor the state of TimesTenClassic ... 4-3
Verify the underlying objects exist .. 4-8
Verify connection to the active database .. 4-8

5 Using TimesTen Databases

Using direct mode applications ... 5-1
Using Client/Server drivers .. 5-3

6 Managing and Monitoring Your Active Standby Pairs

Monitoring the health of each pod in the active standby pair .. 6-1
CatchingUp ... 6-2
Down.. 6-2
Healthy .. 6-2
HealthyActive... 6-2
HealthyStandby.. 6-2

v

OtherDown ... 6-2
Terminal... 6-2
Unknown... 6-2
UpgradeFailed .. 6-3

Monitoring the health of the active standby pair of databases... 6-3
ActiveDown .. 6-3
ActiveTakeover... 6-3
BothDown ... 6-4
ConfiguringActive ... 6-4
Failed.. 6-4
Initializing ... 6-4
ManualInterventionRequired... 6-4
Normal... 6-4
Reexamine ... 6-4
StandbyCatchup ... 6-5
StandbyDown ... 6-5
StandbyStarting .. 6-5
WaitingForActive ... 6-5

Understanding the BothDown state ... 6-5
Understanding the ManualInterventionRequired state ... 6-7
Bringing up one database ... 6-8

Verify the conditions are met for the database .. 6-9
Set the reexamine value.. 6-11

Suspending the management of a TimesTenClassic object ... 6-15
Overview .. 6-16
Suspend management of the TimesTenClassic object ... 6-16

Locating the Operator ... 6-18
Managing the TimesTen databases ... 6-18

Manually invoke TimesTen utilities... 6-19
Modify TimesTen connection attributes.. 6-19

Manually edit the db.ini file ... 6-20
Modifying first connection attributes ... 6-22
Modifying general connection attributes ... 6-24

Revert to manual control.. 6-26
Delete an active standby pair of TimesTen databases ... 6-29

7 Working with TimesTen Cache

Overview .. 7-1
Creating the metadata files and the Kubernetes facility .. 7-3
Creating the TimesTenClassic object ... 7-6
Monitoring the deployment of the TimesTenClassic object ... 7-7
Cleaning up the cache metadata on the Oracle Database.. 7-10

8 Using Encryption for Data Transmission

Creating TLS certificates for replication and Client/Server .. 8-1
Configuring TLS for replication.. 8-3

vi

Create the metadata files and the Kubernetes facilities.. 8-3
Create the Kubernetes Secret... 8-4
Create the ConfigMap .. 8-5

Create the TimesTenClassic object .. 8-6
Monitor the deployment of the TimesTenClassic object .. 8-8
Verify that TLS is being used for replication ... 8-9

Configuring TLS for Client/Server .. 8-11
Configuration on the server... 8-11

Overview of the metadata files and the Kubernetes facilities... 8-11
Create the Kubernetes Secret for the csWallet metadata file... 8-12
Create the ConfigMap for the server-side attributes .. 8-13
Create the TimesTenClassic object .. 8-15
Monitor the deployment of the TimesTenClassic object.. 8-16

Configuration on the client .. 8-17
Copy the client wallet.. 8-18
Configure the client-side attributes... 8-18

9 Handling Failover and Recovery

Handling failover and recovery... 9-1
An example illustrating the failover and recovery process.. 9-1

10 Performing Upgrades

Overview of the upgrade process... 10-1
Upgrading the Operator ... 10-2

Download the new release of the TimesTen Operator .. 10-3
Replace the crd.yaml and the service_account.yaml files ... 10-4
Build the new Operator image .. 10-5
Review the current Operator... 10-6
Update the timestenclassic-operator Deployment ... 10-7

Upgrading TimesTen.. 10-10
Build the new TimesTen image... 10-10
Check the upgrade strategy for each TimesTenClassic object.. 10-12
Perform an automated upgrade.. 10-14

Modify the TimesTenClassic object: automated upgrade.. 10-14
Monitor the automated upgrade ... 10-17

Perform a manual upgrade.. 10-20
Modify the TimesTenClassic object: manual upgrade ... 10-21
Upgrade the standby database .. 10-23
Failover .. 10-27

Verify the active standby pair of databases are upgraded.. 10-31

11 The TimesTenClassic Object Type

Overview of the TimesTenClassic object type .. 11-1
The TimesTenClassic object type .. 11-1

TimesTenClassic .. 11-2
TimesTenClassicSpec.. 11-2

vii

TimesTenClassicSpecSpec ... 11-3
TimesTenClassicStatus ... 11-8

A Active Standby Pair Example

Set up the environment .. A-1
Download the TimesTen Operator... A-2
Configure Kubernetes... A-3
Deploy the TimesTenClassic CRD.. A-4
Build the Operator image... A-4
Deploy the Operator ... A-5
Build the TimesTen image ... A-7

Create the ConfigMap object .. A-9
Create the TimesTenClassic object .. A-10
Monitor deployment... A-12
Verify the existence of the underlying objects.. A-16
Verify the connection to the active TimesTen database .. A-17
Recover from failure ... A-18
Cleanup ... A-19

B TimesTen Cache Example

Setting up the Oracle Database to cache data .. B-1
Create the Oracle Database users ... B-1
Grant privileges to the cache administration user ... B-3
Create the Oracle Database tables to be cached.. B-4

Creating the metadata files and the Kubernetes facility ... B-6
Creating the TimesTenClassic object .. B-11
Monitoring the deployment of the TimesTenClassic object .. B-12
Verifying that TimesTen Cache is configured correctly.. B-15
Performing operations on the cache group tables .. B-16

Perform operations on the oratt.readtab table.. B-16
Perform operations on the oratt.writetab table... B-18

Cleaning up the cache metadata on the Oracle Database.. B-19

C Run Containers as Non-Root

Overview ... C-1
Set up the environment .. C-1

Download the TimesTen Operator... C-2
Configure Kubernetes... C-3
Deploy the TimesTenClassic CRD.. C-4
Build the Operator image... C-4
Deploy the Operator ... C-6
Build the TimesTen image ... C-7

Create the ConfigMap object .. C-9
Create the TimesTenClassic object .. C-11
Monitor deployment... C-12

viii

Verify the TimesTen container runs as non-root .. C-16

Index

ix

Preface

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation.
The Oracle TimesTen Kubernetes Operator (TimesTen Operator) provides the ability to
create and deploy highly available replicated pairs of TimesTen databases to a
Kubernetes cluster with minimal effort. In addition, the TimesTen Operator provides
the ability to automate failure detection and recovery.

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is
memory-optimized for fast response and throughput. The database resides entirely in
memory at runtime and is persisted to the file system.

■ Oracle TimesTen In-Memory Database in classic mode, or TimesTen Classic, refers
to single-instance and replicated databases (as in previous releases).

■ Oracle TimesTen In-Memory Database in grid mode, or TimesTen Scaleout, refers
to a multiple-instance distributed database. TimesTen Scaleout is a grid of
interconnected hosts running instances that work together to provide fast access,
fault tolerance, and high availability for in-memory data.

■ TimesTen alone refers to both classic and grid modes (such as in references to
TimesTen utilities, releases, distributions, installations, actions taken by the
database, and functionality within the database).

■ TimesTen Application-Tier Database Cache, or TimesTen Cache, is an Oracle
Database Enterprise Edition option. TimesTen Cache is ideal for caching
performance-critical subsets of an Oracle database into cache tables within a
TimesTen database for improved response time in the application tier. Cache tables
can be read-only or updatable. Applications read and update the cache tables
using standard Structured Query Language (SQL) while data synchronization
between the TimesTen database and the Oracle database is performed
automatically. TimesTen Cache offers all of the functionality and performance of
TimesTen Classic, plus the additional functionality for caching Oracle Database
tables.

■ TimesTen Replication features, available with TimesTen Classic or TimesTen
Cache, enable high availability.

TimesTen supports standard application interfaces JDBC, ODBC, and ODP.NET;
Oracle interfaces PL/SQL, OCI, and Pro*C/C++; and the TimesTen TTClasses library
for C++.

Audience
To work with this guide, you should understand how database systems work and
have some knowledge of Kubernetes.

x

Related documents
TimesTen documentation is available at:
https://docs.oracle.com/database/timesten-18.1.

Oracle Database documentation is also available on the Oracle documentation website.
This may be especially useful for Oracle Database features that TimesTen supports but
does not attempt to fully document.

Conventions
The TimesTen Operator is supported in TimesTen Classic on the Linux x86-64
platform.

TimesTen Classic is supported on multiple platforms. The term Windows refers to all
supported Windows platforms. The term UNIX applies to all supported UNIX
platforms. The term Linux is used separately.

TimesTen Scaleout is only supported on the Linux x86-64 platform. The information in
the Oracle TimesTen In-Memory Database Scaleout User's Guide applies only to this Linux
platform.

See the Oracle TimesTen In-Memory Database Release Notes (README.html) in your
installation directory for specific platform versions supported by TimesTen.

This document uses the following text conventions:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database.

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a
code example for which you specify or use a particular value. For
example:

LIBS = -Ltimesten_home/install/lib -ltten

Replace timesten_home with the path to the TimesTen instance
home directory.

[] Square brackets indicate that an item in a command line is
optional.

{ } Curly braces indicate that you must choose one of the items
separated by a vertical bar (|) in a command line.

| A vertical bar separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use
more than one argument on a single command line.

% or $ The percent sign or dollar sign indicates the UNIX shell prompt,
depending on the shell that is used.

xi

TimesTen documentation uses these variables to identify path, file and user names:

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

The number (or pound) sign indicates the prompt for the UNIX
root user.

Convention Meaning

installation_dir The path that represents the directory where the current release of
TimesTen is installed.

timesten_home The path that represents the home directory of a TimesTen
instance.

release or rr The first two parts in a release number, with or without dots. The
first two parts of a release number represent a major TimesTen
release. For example, 181 or 18.1 represents TimesTen Release 18.1.

DSN The data source name.

Note: TimesTen release numbers are reflected in items such as
TimesTen utility output, file names and directory names. The release
numbers for these items are subject to change with every minor or
patch release, and the documentation cannot always be up to date.
The documentation seeks primarily to show the basic form of output,
file names, directory names and other code that may include release
numbers. You can confirm the current release number by looking at
the Release Notes or executing the ttVersion utility.

Convention Meaning

xii

xiii

What's New

This section summarizes the new features of Oracle TimesTen In-Memory Database
Release 18.1 that are documented in this guide. It provides links to more information.

New features in Release 18.1.4.11.0
■ There is support for automated upgrades of TimesTen. See Chapter 10,

"Performing Upgrades" for more information.

■ In most cases, the Operator can recover TimesTen if both databases in an active
standby pair fail. See "Understanding the BothDown state" on page 6-5 for
information.

■ In some cases, when the Operator is unable to automatically fix problems with
TimesTen, it puts the associated TimesTenClassic object into the
ManualInterventionRequired state. The Operator takes no further action on the
object. This enables you to manually fix TimesTen. You can later request that the
Operator resume management of TimesTen. See:

– "Understanding the ManualInterventionRequired state" on page 6-7 for an
overview.

– "Bringing up one database" on page 6-8 for an example.

■ You can suspend the management of your TimesTenClassic object by the Operator.
See "Suspending the management of a TimesTenClassic object" on page 6-15 for
details.

■ You can run direct mode applications in their own containers inside of the Pods in
your TimesTenClassic deployment. See "Using direct mode applications" on
page 5-1 for more information.

■ There is support for these CRD syntax elements. See "TimesTenClassicSpecSpec"
on page 11-3 for more information.

– agentGetTimeout

– agentPostTimeout

– agentTCPTimeout

– agentTLSTimeout

– bothDownBehavior

– daemonLogSidecar

– imagePullPolicy

– imageUpgradeStrategy

xiv

– logStorageSelector

– reexamine

– repCreateStatement

– repPort

– repReturnServiceAttribute

– repStoreAttribute

– stopManaging

– storageSelector

– upgradeDownPodTimeout

– waitingForActiveTimeout

■ There is support for the awtBehindMb field in TimesTenClassicStatus of the
TimesTenClassic object type. See "TimesTenClassicStatus" on page 11-8 for
information.

■ It is possible to use the Operator in an environment where nothing is allowed to
run as root. See Appendix C, "Run Containers as Non-Root" for information.

New features in Release 18.1.4.4.0
■ You can configure and use TimesTen Cache. See Chapter 7, "Working with

TimesTen Cache" for details. In addition, there is a complete example of using
TimesTen Cache in your Kubernetes environment. See Appendix B, "TimesTen
Cache Example" for information.

■ You can configure Transport Layer Security (TLS) for replication and for
Client/Server. See Chapter 8, "Using Encryption for Data Transmission" for more
information.

■ You can upgrade the Operator and the TimesTen full distribution to a new release.
See Chapter 10, "Performing Upgrades" for details.

■ There is support for these metadata files:

– cachegroups.sql

– cacheUser

– csWallet

– epilog.sql

– replicationWallet

■ You can modify TimesTen connection attributes after you create your
TimesTenClassic object. See "Modify TimesTen connection attributes" on page 6-19
for details.

■ If you are using TimesTen Cache, you can specify whether the metadata in the
Oracle Database should be cleaned up when the TimesTenClassic object is deleted.
See the cacheCleanup entry in the Table , "TimesTenClassicSpecSpec" and see
"Cleaning up the cache metadata on the Oracle Database" on page 7-10 for
information.

■ You can specify resources requirements for the tt and the daemonlog containers.
See "Resources specification for the tt and the daemonlog containers" on page 3-14
for details.

xv

■ There is support for the pollingInterval and the unreachableTimeout CRD
syntax elements. See the pollingInterval and the unreachableTimeout entries in
Table 11–3, " TimesTenClassicSpecSpec" for information.

■ The Operator keeps tracks of the individual health of each Pod in the
TimesTenClassic active standby pair object. See "Monitoring the health of each pod
in the active standby pair" on page 6-1 for details.

xvi

1

Overview of the Oracle TimesTen Kubernetes Operator 1-1

1Overview of the Oracle TimesTen Kubernetes
Operator

This chapter provides an overview of containers and Kubernetes. It also discusses the
TimesTen Operator.

■ Overview of containers and Kubernetes

■ Introducing the TimesTen Operator

■ Understanding how the Operator functions

■ Simple deployment of the TimesTen Operator

Overview of containers and Kubernetes
A container is a lightweight virtual machine, running the Linux operating system. A
container usually runs one application that is started from an image. Files that are
created and modified are usually not persistent. However, persistent storage is
available. Containers are a key component of cloud computing environments.

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation.
Kubernetes has the ability to manage the resources of multiple hosts (called Nodes) in a
cluster, and to run containers as required across these nodes. It can automatically
spawn containers to react to various failures. Kubernetes also manages the networking
among the containers and to the outside world. Kubernetes is portable across many
cloud and on-premises environments.

Key Kubernetes concepts include:

■ Pod: One or more containers that share an IP address. For more information on
Pods, see:

https://kubernetes.io/docs/concepts/workloads/pods/pod/

■ Deployment: A named collection of n identical Pods (where n is the number of
Pods). Kubernetes ensures that n identical Pods are running. For more information
on Deployments, see:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

■ PersistentVolume: Storage that can be mounted to a Pod and is persistent beyond
the lifetime of Pod. For more information on Persistent Volumes, see:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

■ StatefulSet: Similar to a Deployment, but each Pod has an associated
PersistentVolume. For more information on StatefulSets, see:

Introducing the TimesTen Operator

1-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

■ Service: A network endpoint for a Deployment or StatefulSet. It defines the set of
addresses and ports that should be exposed to applications in the Kubernetes
cluster. For more information on a Service, see:

https://kubernetes.io/docs/concepts/services-networking/service/

Kubernetes provides the facilities for the provisioning of Pods and other Kubernetes
resources that are required to deploy applications. Once deployed, the objects must be
monitored and managed.

Kubernetes does some monitoring and managing of applications, but not all. It does
handle problems at the Pod level automatically. For example, if a container fails,
Kubernetes restarts it automatically. If an entire Node fails, Kubernetes starts
replacement Pods on the other Nodes. However, Kubernetes has no knowledge about
problems inside a container. This is not problematic for stateless applications, but for
databases (which are stateful), Kubernetes needs help managing what is inside the
containers.

This help comes in the form of:

■ Custom Resource Definition

■ Kubernetes Operator

Custom Resource Definition
A Custom Resource Definition (commonly known as a CRD) extends the Kubernetes'
object model. It adds a new object type to the Kubernetes cluster, similar to the Pod,
the StatefulSet, and the Service object types that it natively supports.

Kubernetes Operator
A Kubernetes Operator (also called Operator) is the brains behind a CRD. An Operator is
an application that performs the functions of a human computer operator. It starts,
stops, monitors, and manages other applications.

An Operator runs in one or more Pods, one active and the others idle. The active
Operator performs the work. The remaining Operators are idle and remain idle until
the active Operator fails. The active Operator manages all objects of a particular type
and when combined with a CRD enables you to add custom facilities to Kubernetes.

Introducing the TimesTen Operator
TimesTen Classic databases almost always run in active standby pairs. Figure 1–1,
"Active standby pair of TimesTen databases" illustrates an active standby pair
replication scheme. There are two databases. One database is the active, and the
second database is the standby. Applications update the active database. The standby
database is read-only and receives replicated updates from the active database. Only
one of the two databases function as the active database at any one time. If the active
database fails, the standby database is promoted to be the active. After the failed
(active) database is recovered, it becomes the standby database. See "Types of
replication schemes" in the Oracle TimesTen In-Memory Database Replication Guide for
more information on the active standby pair replication scheme.

Introducing the TimesTen Operator

Overview of the Oracle TimesTen Kubernetes Operator 1-3

Figure 1–1 Active standby pair of TimesTen databases

An active standby pair replication scheme is a good fit for Kubernetes. Specifically,
consider a pair of Pods, each with persistent storage, that are running an active
standby pair of TimesTen databases. If the Pod containing the active database fails,
Kubernetes automatically spawns another Pod to take its place, and attaches the
appropriate storage to it.

But, since Kubernetes doesn't know anything about TimesTen, it will not automatically
perform the necessary operations to cause the standby database on the surviving Pod
to become the active database. This is where the TimesTen Operator comes in.

TimesTen provides a CRD that adds the TimesTenClassic object type to Kubernetes as
well as an Operator for managing TimesTen databases. The Operator automates setup
and initial configuration, manages databases and replication, and automates failover
and recovery.

When you define a TimesTenClassic object, you can specify the configuration of your
TimesTen deployment using Kubernetes facilities. When you create a TimesTenClassic
object in a Kubernetes cluster, a pair of Pods are created, each running TimesTen. Each
Pod contains a TimesTen instance. Each instance provides one TimesTen database.
Database replication, through active standby pairs, is automatically configured. In
short, you can deploy highly available replicated pairs of TimesTen databases and
manage them by issuing a small number of commands.

A Kubernetes Operator manages objects of a particular type. TimesTen provides an
Operator that manages Kubernetes objects of type TimesTenClassic. In so doing,
TimesTen can be deployed, monitored, managed, and controlled in an automated
manner with no required human intervention.

These sections describe the TimesTenClassic object type and the Operator:

■ The TimesTenClassic object type

■ The Operator

The TimesTenClassic object type
The TimesTen Operator provides an implementation of the TimesTenClassic CRD,
which you install in your Kubernetes cluster. After installation, Kubernetes
understands the TimesTenClassic object type, just as it understands Pods, Secrets, and
Services.

Checkpoint and
Transaction Log Files

TimesTen IMDB

Standby

Application
Transactions

Application Reads on
Hot Standby

Checkpoint and
Transaction Log Files

TimesTen IMDB

Active

Introducing the TimesTen Operator

1-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

To create an active standby pair of TimesTen databases in your cluster, you use the
kubectl create command to create an object of type TimesTenClassic. You define the
desired attributes of your TimesTen configuration and your TimesTen database as
attributes of this TimesTenClassic object.

Kubernetes objects: named and typed
Objects in Kubernetes are named and typed, so you can define a TimesTenClassic
object named sample and another TimesTenClassic object named sample2. You can
have many such Kubernetes objects in a cluster, limited only by the available resources
in a Kubernetes cluster.

Objects of different types have different meanings. There can be an object of type a
called x and an object of type b called x simultaneously. For example, you can define
an object of type TimesTenClassic called sample and an object of type ConfigMap
called sample simultaneously. There is no relationship between these two objects.

Kubernetes supports namespaces. Namespaces split a cluster into multiple independent
ones. Each namespace has a completely independent set of names. There can be an
object of type a called x in namespace1 and a different object of type a called x in
namespace2. For example, you can define an object of type TimesTenClassic called
sample in the namespace1 namespace and a different object of type TimesTenClassic
called sample in the namespace2 namespace.

Kubernetes object definitions are expressed in JSON or YAML. The examples in this
book use YAML.

The Operator
The Operator automatically provisions and configures Pods, configures TimesTen in
them, and creates and configures a pair of databases. The Operator monitors the Pods,
the TimesTen instances, and the TimesTen databases and keeps them running. For
example, in an active standby pair configuration, if the Pod containing the active
database fails, the database in the standby Pod is automatically promoted to be the
active by the Operator.

This Operator is configured through a Deployment. The replicas attribute of the
Deployment specifies the number of replicas of the Operator that is desired. When
you create the Deployment, it causes Kubernetes to create one or more Pods
(depending on the number of replicas), each of which runs the Operator.

■ If you specify replicas: 1 in the Operator deployment, and the Operator fails,
Kubernetes automatically spawns another Operator. When that new Operator
starts up, it continues to manage the TimesTenClassic objects within the
Deployment's namespace.

■ If you specify more than one replica in the Operator deployment, multiple Pods
run the Operator. One of these is the active Operator and manages the
TimesTenClassic objects in the namespace. The remaining Pods monitor the health
of the active Operator. If this active Operator fails, one of the other replicas
becomes the active and manages the TimesTenClassic objects within the
Deployment's namespace.

Note: CRDs are cluster-scoped, not namespace-scoped. There can be
different Operators in each namespace, but there can be only one CRD
definition for the entire cluster.

Understanding how the Operator functions

Overview of the Oracle TimesTen Kubernetes Operator 1-5

Understanding how the Operator functions
When you create a TimesTenClassic object in the Kubernetes cluster, the process to
create and configure your active standby pair of databases begins. The Operator is
invoked and creates several Kubernetes objects that are required to run TimesTen.
After the objects are created and linked together, the TimesTen containers run a script
to configure and start the TimesTen agent. The Operator communicates with the
TimesTen agent that is running in each Pod in order to monitor and control TimesTen.
The Operator configures one database as the active database, copies the active
database to the standby, and then configures the active standby pair replication
scheme. The process is described in detail in these sections:

■ Objects created by the Operator

■ The TimesTen containers and the TimesTen agent

Objects created by the Operator
The Operator creates a number of Kubernetes objects that are required to run
TimesTen, including a StatefulSet, a Service, and a Secret. These objects in turn create
other objects. All of these objects are linked together by Kubernetes and are associated
with the TimesTenClassic object you created. Figure 1–2, "Creating the
TimesTenClassic object" shows the objects that are created and how they are linked
together.

Figure 1–2 Creating the TimesTenClassic object

The objects that are created are described in the following sections:

■ StatefulSet

■ Service

■ Secret

■ Pods

■ Events

TimesTenClassic

Secret StatefulSet Service

Persistent Volume Pod Pod Persistent Volume

TimesTen Container

Log Container

Direct Mode
App Containers

TimesTen Container

Log Container

Direct Mode
App Containers

Understanding how the Operator functions

1-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

StatefulSet
The Operator creates a StatefulSet consisting of two Pods to run TimesTen. Each Pod
has one or more PersistentVolumes (persistent storage), that are mounted in the
TimesTen containers. This is where your TimesTen databases are stored. Applications
running in the containers with PersistentVolumes mounted can create files that live
beyond the lifetime of the container. (By default, all files that containers create and
modify automatically vanish when the container exits. Containers are ephemeral.)

One attribute of a StatefulSet is the number of replicas that can be provisioned. Each
TimesTenClassic object has an associated StatefulSet with two replicas. If one Pod
fails, Kubernetes automatically creates a new one to replace it, and automatically
mounts the appropriate PersistentVolume(s) to it.

For example, for a TimesTenClassic object called sample, the Operator creates a
StatefulSet called sample, in the same Kubernetes namespace. The StatefulSet, in turn,
create two Pods in the namespace, called sample-0 and sample-1.

Service
A Kubernetes Service defines the set of network addresses and ports that should be
exposed to applications in the cluster.

The Operator automatically creates a headless Service when you create the
TimesTenClassic object. It automatically associates this Service with the StatefulSet.
This causes Kubernetes to define entries in the Kubernetes cluster's DNS for the Pods
in the StatefulSet, and to keep those DNS entries up to date.

A headless Service is used such that the DNS name/address entry for the active
database is different than the DNS name/address entry for the standby database. This
enables incoming client connections to be routed to the database that is active. For
more information on a headless Service, see:

https://kubernetes.io/docs/concepts/services-networking/service/#headless-
services/

For a TimesTenClassic object called sample, a headless Service called sample is also
created in the same Kubernetes namespace. This results in entries in the cluster's DNS
for sample-0.sample.namespace.svc.cluster.local and
sample-1.sample.namespace.svc.cluster.local.

Secret
The Operator creates a Secret to inject an SSL certificate into the TimesTen containers.
This secures the communication between the Operator and the TimesTen agent.

Pods
The Stateful set creates two pods. Each Pod contains two containers:

■ The tt container. This TimesTen container is always present in the Pods. It
executes the TimesTen agent and runs TimesTen.

■ The daemonlog container: This container copies the contents of the TimesTen
ttmesg.log file to stdout, resulting in Kubernetes logging the file. This enables
the daemon log of the TimesTen instances to be recorded by the Kubernetes
infrastructure.

Events
The Operator creates a Kubernetes event whenever important changes occur.

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Simple deployment of the TimesTen Operator

Overview of the Oracle TimesTen Kubernetes Operator 1-7

The TimesTen containers and the TimesTen agent
After the objects are created, the TimesTen containers run a script that configures and
starts the TimesTen agent. The Operator communicates with the TimesTen agent
running in each Pod, in order to configure, manage, and monitor TimesTen in that
Pod. The agent provides an HTTPS endpoint in the Pod that the Operator uses to
query and control the tt container in the Pod. If the TimesTen agent fails, the tt
container automatically terminates and is re-spawned by Kubernetes. Figure 1–3, "The
Operator and the TimesTen agent" illustrates the two way communication between the
Operator and the TimesTen agent.

Figure 1–3 The Operator and the TimesTen agent

The TimesTen agent starts TimesTen and thus runs as the instance administrator user.
It has full control over TimesTen.

Simple deployment of the TimesTen Operator
The TimesTen Operator is designed for simple deployment and automated failure
detection and recovery. For example,

■ You decide you want to deploy a new replicated pair of TimesTen databases.

■ You decide the attributes of those databases.

■ You create the configuration files for those attributes.

■ You use the kubectl create command to create a TimesTenClassic object to
represent the replicated pair.

■ You use the kubectl get and kubectl describe commands to observe the
provisioning of the active standby pair.

■ Applications that run in other Pods use TimesTen's standard client/server drivers
to access TimesTen databases.

You do not have to monitor the TimesTen databases continually, configure replication,
perform failover, or re-duplicate a database after failure. The TimesTen Operator
performs all these functions and works to keep the databases up and running with
minimal effort on your part.

Checkpoint and
Transaction Log Files

TimesTen IMDB

Standby

Checkpoint and
Transaction Log Files

TimesTen IMDB

Active

TimesTen Agent TimesTen Agent

TimesTen Operator

Simple deployment of the TimesTen Operator

1-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

2

Setting up the Environment 2-1

2Setting up the Environment

This chapter describes the process for setting up the TimesTen Operator.

Note that it is possible to use the Operator in an environment where nothing is
allowed to run as root. If this is your desired environment, see Appendix C, "Run
Containers as Non-Root" for the procedures to set up such an environment. You do not
need to perform the procedures in this chapter if you choose to do the procedures in
the Appendix.

Topics:

■ Prerequisites

■ Downloading TimesTen and the TimesTen Operator

■ Configuring Kubernetes

■ Deploying the TimesTenClassic CRD

■ Building the Operator image

■ Deploying the Operator

■ Building the TimesTen image

Prerequisites
Complete these prerequisites before installing the TimesTen Operator:

■ Ensure you have a working Kubernetes cluster.

– The Operator and the CRD are developed using the Oracle Cloud
Infrastructure Container Engine for Kubernetes (referred to as OKE) with
clusters provisioned using Quick Create. (OKE release 1.14 or later). See
"Introducing the TimesTen Operator" on page 1-2 for information on the
Operator and the CRD.)

– Your cluster must provide a StorageClass that can be used to request
PersistentVolumes. Each Pod that runs TimesTen uses a PersistentVolume to
store the TimesTen database that it manages. You must know the name of this
storage class. For example, in OKE, you can use the oci storage class. For more
information on Storage Classes, see:

https://kubernetes.io/docs/concepts/storage/storage-classes/

– The nodes in your cluster must have their clocks synchronized through NTP
or other means.

■ Ensure you have a Linux development host to access the Kubernetes cluster. This
development host must reside outside the Kubernetes cluster, and you must be

Downloading TimesTen and the TimesTen Operator

2-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

able to access and to control the Kubernetes cluster from this host. On it, you must
install:

– The kubectl command line tool: You use the kubectl command line tool to
control and mange the Kubernetes cluster.

– The docker command line tool: You use the docker command line tool to
create images and to push the images to the image registry.

■ Ensure you have access to an image registry.

– You need an image registry to run containers in a Kubernetes cluster. You use
this registry to store container images that will then be run by Kubernetes. For
example, when you use a Kubernetes cluster in OKE, you may consider using
the Oracle Container Image Registry (OCIR). You can use other image
registries, as well.

– The development host needs to be able to push images to the registry using
the docker push command.

– The Kubernetes cluster needs to be able to pull images from the registry using
an image pull secret.

– You must be able to pull base operating system images from image registries.

Downloading TimesTen and the TimesTen Operator
You must download the TimesTen full distribution on Linux-64 bit in order to use the
TimesTen Operator.

Perform these steps to download the full distribution of TimesTen and then unpack the
TimesTen Operator distribution that is embedded within it. Perform all steps from
your Linux development host.

1. From the directory of your choice:

■ Create one subdirectory into which you will download the TimesTen full
distribution. For example, create the installation_dir subdirectory. (The
installation_dir directory is used in the remainder of this book.)

■ Create a second subdirectory into which you will unpack the TimesTen
Operator distribution. For example, create the kube_files subdirectory. (This
kube_files directory is used in the remainder of this book.)

% mkdir -p installation_dir
% mkdir -p kube_files

You are now ready to download and unpack the TimesTen full distribution.

2. Navigate to installation_dir.

% cd installation_dir

Download the TimesTen full distribution into this directory. As an example,
download the timesten1814110.server.linux8664.zip file, (the 18.1.4.11.0 full
distribution for Linux 64-bit).

3. From the installation_dir, use the ZIP utility to unpack the TimesTen
distribution.

% unzip timesten1814110.server.linux8664.zip
Archive: /timesten/installation/timesten1814110.server.linux8664.zip
 creating: tt18.1.4.11.0/
 creating: tt18.1.4.11.0/ttoracle_home/

Downloading TimesTen and the TimesTen Operator

Setting up the Environment 2-3

...
 creating: tt18.1.4.11.0/kubernetes/
...

You successfully unpacked the TimesTen full distribution.

Note that the installation_dir/tt18.1.4.11.0/kubernetes directory is created.
The operator.zip file is located in this directory. For example, this is a sample
directory structure after unpacking the distribution:

% pwd
installation_dir/tt18.1.4.11.0
% dir
3rdparty include lib oraclescripts README.html ttoracle_home
bin info network PERL startup
grid kubernetes nls plsql support

4. Navigate to the kube_files directory and unpack the operator.zip file into it. In
this example, unpack the installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file.

% cd kube_files
% unzip installation_dir/tt18.1.4.11.0/kubernetes/operator.zip
[...UNZIP OUTPUT...]

You successfully unpacked the installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file into the kube_files directory.

5. Review the directory structure. Later in this chapter, you will modify some of the
files in these subdirectories. This example shows the most important
subdirectories and files, which can change from release to release.

README.md
deploy/crd.yaml
deploy/operator.yaml
deploy/service_account.yaml
operator/Dockerfile
operator/timestenclassic-operator
ttimage/agent2
ttimage/.bashrc
ttimage/create1.sql
ttimage/create2.sql
ttimage/Dockerfile
ttimage/get1.sql
ttimage/pausecq.sql
ttimage/repcreate.sql
ttimage/repduplicate.sql
ttimage/runsql,sql
ttimage/starthost.pl
ttimage/.ttdotversion
ttimage/.ttdrop

Configuring Kubernetes

2-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

You successfully downloaded and unpacked the TimesTen Operator distribution.

Configuring Kubernetes
The Operator runs by using a Kubernetes service account. This service account needs
permissions and privileges in your namespace. These permissions and privileges are
granted through a role. The service_account.yaml file adds the service account and
the role to your namespace, and grants the service account the privileges that are
specified in the role. The service_account.yaml file is provided in the operator.zip
file you previously unpacked.

Perform these steps:

1. Navigate to the kube_files/deploy directory.

% cd kube_files/deploy

2. Create the service account.

% kubectl create -f service_account.yaml
role.rbac.authorization.k8s.io/timestenclassic-operator created
serviceaccount/timestenclassic-operator created
rolebinding.rbac.authorization.k8s.io/timestenclassic-operator created

The service_account.yaml file created the timestenclassic-operator service
account and the timestenclassic-operator role in your namespace, and granted the
service account the privileges specified in the role.

Deploying the TimesTenClassic CRD
Kubernetes supports objects, such as Pods and StatefulSets. The Kubernetes API can
be extended to create customized object types. This step adds a new object type, called
TimesTenClassic, to your cluster.

Navigate to the kube_files/deploy directory, and then use the kubectl create
command to create the TimesTenClassic customized resource definition (CRD) in your
Kubernetes cluster.

% cd kube_files/deploy
% kubectl create -f crd.yaml
customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com created

Note: This directory tree must persist through the lifetime of the
TimesTen Operator.

In addition, do not delete the TimesTen full distribution file
(timesten1814110.server.linux8664.zip, in this example). You need
to copy this file into the:

■ /operator directory to build the Operator image and push the
image to the image registry. See "Building the Operator image" on
page 2-5 for details.

■ /ttimage directory to build the TimesTen image and push the
image to the image registry. See "Building the TimesTen image" on
page 2-8 for details.

Building the Operator image

Setting up the Environment 2-5

You successfully added the TimesTenClassic object type to your Kubernetes cluster.

Building the Operator image
Kubernetes Operators are Pods that run a customized image. Before you can run the
Operator, you must build this image and push it to your image registry.

The files needed to create the image are provided in the kube_files/operator
directory (part of the ZIP file you previously unpacked). In the kube_files/operator
directory are the Dockerfile and the binaries needed to create the Operator image.

To build the Operator image and push it to your registry, perform these steps:

1. Navigate to the kube_files/operator directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the installation_dir
directory. See "Downloading TimesTen and the TimesTen Operator" on page 2-2
for information. Then, verify the timesten1814110.server.linux8664.zip file is
in the kube_files/operator directory.

% cd kube_files/operator
% cp installation_dir/timesten1814110.server.linux8664.zip .
% ls -a
Dockerfile
timesten1814110.server.linux8664.zip
timestenclassic-operator

2. Navigate to the kube_files/operator directory (if not already in this directory)
and use the docker command to build the Operator image. You can choose any
name for ttclassic-operator:3 (represented in bold in this example). Note that
the output may change from release to release.

% cd kube_files/operator
% docker build -t ttclassic-operator:3 .
Sending build context to Docker daemon 478.6MB
Step 1/7 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/7 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/7 : RUN yum -y install openssl unzip && /usr/sbin/useradd -d
/tt-operator -m -u 1001 -s /bin/nologin -U tt-operator
 ---> Using cache
 ---> e3f1427246ab
Step 4/7 : COPY --chown=tt-operator:tt-operator timestenclassic-operator
/usr/local/bin/timestenclassic-operator
 ---> Using cache
 ---> 6ccad53230f0
Step 5/7 : COPY --chown=tt-operator:tt-operator $TT_DISTRO /tt-operator/
$TT_DISTRO
 ---> 5cd31705485a
Step 6/7 : USER tt-operator
 ---> Running in 6a773ddac5dd
Removing intermediate container 6a773ddac5dd
 ---> 875ee38ebc75
Step 7/7 : ENTRYPOINT ["/usr/local/bin/timestenclassic-operator"]
 ---> Running in fed0f6c94c2f
Removing intermediate container fed0f6c94c2f
 ---> 10dde79e1617
Successfully built 10dde79e1617

Deploying the Operator

2-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Successfully tagged ttclassic-operator:3

3. Use the docker command to tag the Operator image.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous step.
(ttclassic-operator:3 is represented in bold in this example.)

% docker tag ttclassic-operator:3 phx.ocir.io/youraccount/ttclassic-operator:3

4. Use the docker command to push the Operator image to your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps. (ttclassic-operator:3 is represented in bold in this example.)

% docker push phx.ocir.io/youraccount/ttclassic-operator:3
The push refers to repository [phx.ocir.io/youraccount/ttclassic-operator]
46458e9fc890: Pushed
471a399f0540: Pushed
9e51a2b82af3: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:9b941f12e3d52298b9b38f7766ddcdfb1d011857a990ff01a8adafd32f3d3e8d size:
1166

You successfully built the Operator image and pushed it to your image registry.

Deploying the Operator
This section covers the steps to customize, and then deploy the Operator. It also
provides the commands to verify that the Operator is running.

■ Customize the Operator

■ Verify that the Operator is running

Customize the Operator
To customize the Operator for your namespace, navigate to the kube_files/deploy
directory, and edit the operator.yaml file. This file is provided in the distribution that
you previously unpacked. See "Downloading TimesTen and the TimesTen Operator"
on page 2-2 for details.

1. Modify these fields represented in bold (in the operator.yaml file below):

■ replicas: 1

Replace 1 with the number of copies of the Operator that you would like to
run. 1 is acceptable for development and testing. However, you can run more
than one replica for high availability purposes.

■ Replace sekret with the name of the image pull secret that Kubernetes uses to
pull images from your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps.

Deploying the Operator

Setting up the Environment 2-7

% cd kube_files/deploy
% vi operator.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: timestenclassic-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 name: timestenclassic-operator
 template:
 metadata:
 labels:
 name: timestenclassic-operator
 spec:
 serviceAccountName: timestenclassic-operator
 imagePullSecrets:
 - name: sekret
 containers:
 - name: timestenclassic-operator
 image: phx.ocir.io/youraccount/ttclassic-operator:3
 command:
 - timestenclassic-operator
 imagePullPolicy: Always
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: OPERATOR_NAME
 value: "timestenclassic-operator"
 - name: GODEBUG
 value: "x509ignoreCN=0"

2. Use the kubectl create command to define the Operator to your namespace and
to start the Operator.

% kubectl create -f operator.yaml
deployment.apps/timestenclassic-operator created

You deployed the Operator. The Operator should now be running.

Verify that the Operator is running
Use the kubectl get pods command to verify the Operator is running. If the STATUS
field has a value of Running, the Operator is running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timestenclassic-operator-846cb5c97c-76zbx 1/1 Running 0 32s

Building the TimesTen image

2-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Building the TimesTen image
Before you can start TimesTen in your Kubernetes cluster, you must first package
TimesTen as a container image and then push the image to your image registry. The
files that you need to do this are provided in the kube_files directory tree. See
"Downloading TimesTen and the TimesTen Operator" on page 2-2 for information.

To build the TimesTen container image, perform these steps:

1. Navigate to the kube_files/ttimage directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the installation_dir
directory. See "Downloading TimesTen and the TimesTen Operator" on page 2-2
for information. Then, verify the timesten1814110.server.linux8664.zip file is
in the kube_files/ttimage directory.

% cd kube_files/ttimage
% cp installation_dir/timesten1814110.server.linux8664.zip .
% ls *.zip
timesten1814110.server.linux8664.zip

2. Navigate to the kube_files/ttimage directory (if not already in this directory).
Edit the Dockerfile, replacing timesten1814110.server.linux8664.zip with the
name of your TimesTen full distribution. If your TimesTen distribution is
timesten1814110.server.linux8664.zip, no modification is necessary. If not, the
modification you need to make is represented in bold. Note: The TimesTen full
distribution must be 18.1.4.11.0 or later.

% cd kube_files/ttimage
% vi Dockerfile

Copyright (c) 2019, 2021, Oracle and/or its affiliates.

FROM container-registry.oracle.com/os/oraclelinux:7

ARG TT_DISTRO=timesten1814110.server.linux8664.zip

RUN yum -y install tar gzip vim curl unzip libaio util-linux
RUN groupadd -g 333 oracle
RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle oracle
RUN install -d -m 0750 -o oracle -g oracle /home/oracle
COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop .ttdotversion agent2
create1.sql create2.sql get1.sql repcreate.sql repduplicate.sql runsql.sql
pausecg.sql /home/oracle/
Uncomment the following line if you are using the optional non-root
installation procedure.
USER 333
ENTRYPOINT "/home/oracle/starthost.pl"

3. Use the docker command to build the TimesTen container image. Replace
tt1814110:3 with a name of your choosing (represented in bold, in the docker
build command below). Note that the output may change from release to release.

% docker build -t tt1814110:3 .

Sending build context to Docker daemon 445.8MB
Step 1/9 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/9 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache

Building the TimesTen image

Setting up the Environment 2-9

 ---> a259a93fe906
Step 3/9 : RUN yum -y install tar gzip vim curl unzip libaio util-linux
 ---> Using cache
 ---> ac676b5376f3
Step 4/9 : RUN groupadd -g 333 oracle
 ---> Using cache
 ---> ce16920f085c
Step 5/9 : RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle
oracle
 ---> Using cache
 ---> 0319814aca1c
Step 6/9 : RUN install -d -m 0750 -o oracle -g oracle /home/oracle
 ---> Using cache
 ---> c8612b53398a
Step 7/9 : COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
 ---> 31cae98b71fd
Step 8/9 : COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop
.ttdotversion agent2 create1.sql create2.sql get1.sql repcreate.sql
repduplicate.sql runsql.sql pausecg.sql /home/oracle/
 ---> e50eb99c9b54
Step 9/9 : ENTRYPOINT "/home/oracle/starthost.pl"
 ---> Running in 0b41efd38837
Removing intermediate container 0b41efd38837
 ---> 171245e546d5
Successfully built 171245e546d5
Successfully tagged tt1814110:3

4. Use the docker command to tag the TimesTen container image. Replace the
following, represented in bold, in the docker tag command below.

■ tt1814110:3 with the name you chose in the previous step.

■ phx.ocir.io/youraccount with the location of your image registry.

% docker tag tt1814110:3 phx.ocir.io/youraccount/tt1814110:3

5. Use the docker command to push the TimesTen container image to your registry.
Replace the following, represented in bold, in the docker push command below.

■ phx.ocir.io/youraccount with the location of your image registry.

■ tt1814110:3 with the name you chose previously.

% docker push phx.ocir.io/youraccount/tt1814110:3

The push refers to repository [phx.ocir.io/youraccount/tt1814110]
97a0f250b2fe: Pushed
650b003a3ad4: Pushed
b8de51528854: Pushed
62192d26e325: Pushed
7dfe13e9b5a4: Pushed
d8570fce965c: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:a6ac313394229eb2256d4a56fbcd8e2eda50ea2cc21991fa76f11701f2299710
size: 1788

You successfully built the TimesTen container image. It is pushed to your image
registry.

Building the TimesTen image

2-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

3

Using Configuration Metadata 3-1

3Using Configuration Metadata

This chapter discusses the configuration metadata that you provide to define the
attributes of your TimesTen database. This configuration metadata is used by
TimesTen and the Operator when TimesTen runs in the Kubernetes cluster. The
chapter also discusses the Kubernetes facilities that you can use to get the
configuration metadata into your TimesTen containers. The chapter also includes
various examples that show you how to define the configuration metadata, and how
to use the Kubernetes facilities. It then discussed additional configuration options.

■ Understanding the configuration metadata and the Kubernetes facilities

■ The supported metadata files

■ Populating the /ttconfig directory

■ Additional configuration options

Understanding the configuration metadata and the Kubernetes facilities
Configuration metadata, in the form of metadata files, enables you to specify the
attributes of your TimesTen database, and how that database is to interact with other
applications and components. Each metadata file has a specific name. You create this
file and add specific metadata to it. For example, the TimesTen Operator provides
support for a file named db.ini for the TimesTen connection attributes. You create this
file, and in it you include your database's specific connection attributes. See "The
supported metadata files" on page 3-1 for details.

Kubernetes supports various facilities to enable you to get the metadata files into the
TimesTen containers. Specifically, when the Operator creates each Pod, that Pod has a
container that runs TimesTen. This container accesses the metadata files by looking for
their existence in the /ttconfig directory. By using a Kubernetes facility, the metadata
files are placed in the /ttconfig directory of the TimesTen containers. See "Populating
the /ttconfig directory" on page 3-6 for information on these facilities.

The supported metadata files
These are the supported metadata files. Use these files to specify the attributes and the
metadata for your database. After you create these files, and you choose a facility to
get these files in your TimesTen containers, TimesTen can then access them to
determine the attributes and the metadata that is specific to your database.

These metadata files apply to all databases:

■ adminUser file

■ db.ini file

The supported metadata files

3-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

■ schema.sql file

These metadata files are specific to TimesTen Cache:

■ cachegroups.sql

■ cacheUser

■ sqlnet.ora file

■ tnsnames.ora file

These metadata files are specific to TLS support:

■ csWallet

■ replicationWallet

The epilog.sql metadata file is used for operations that occur after the replication
scheme has been created.

adminUser file
The Operator can automatically create a named user with ADMIN privileges in your
database when it is created. Create the adminUser file for this purpose. This file should
contain one line of the form:

user/password

cachegroups.sql
If you are using TimesTen Cache, you must specify the cachegroups.sql file. This file
contains the create cache group and the load cache group definitions. Specifically, in
this file, you specify CREATE CACHE GROUP statements. In addition, if you want to load
data from the Oracle Database into your cache groups, you can specify one or more
LOAD CACHE GROUP statements. You can also specify the ttOptUpdateStats or the
ttOptEstimateStats TimesTen built-in procedures to update statistics on the cache
tables after the LOAD CACHE GROUP operation completes. Ensure these built-in
procedures follow the LOAD CACHE GROUP statements in the cachegroups.sql file.

This file is required as cache groups must be created before replication can be
configured.

For more information, see:

■ "CREATE CACHE GROUP" and "LOAD CACHE GROUP" in the Oracle TimesTen
In-Memory Database SQL Reference.

■ "ttOptUpdateStats" and "ttOptEstimateStats" in the Oracle TimesTen In-Memory
Database Reference.

■ "Cache group types" in the Oracle TimesTen Application-Tier Database Cache User's
Guide.

Here is an example of a cachegroups.sql file. The file defines two cache groups and
loads data into one cache group:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)
);

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH

The supported metadata files

Using Configuration Metadata 3-3

 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

cacheUser
If you are using TimesTen Cache, you must specify the cacheUser metadata file. This
file must contain one line of the form:

cacheUser/ttPassword/oraPassword

The cacheUser is the user you want to designate as the TimesTen cache manager user.
This user must have the same name as the user whom you designated as the cache
administration user in the Oracle Database. This user must already exist in the Oracle
database. Specify ttPassword as the TimesTen password for the TimesTen cacheUser
user (the TimesTen cache manager). The oraPassword is the Oracle Database password
you specified when you created the cacheUser user in the Oracle Database.

For example, assume you have created the cacheuser2 cache administration user in
the Oracle Database with password oraclepwd. Also assume you want to designate
this cacheuser2 user as the TimesTen cache manager user with a TimesTen password
of ttpwd. In this example, the cacheUser metadata file contains this one line:

cacheuser2/ttpwd/oraclepwd

In this example, the Operator creates the cacheuser2 user with the ttpwd in the
TimesTen database. This cacheuser2 user then serves as the cache manager user in
your TimesTen database. (Note that you do not need to create this TimesTen user. The
Operator does it for you.) See "Create the TimesTen users" in the Oracle TimesTen
Application-Tier Database Cache User's Guide for information on the TimesTen users.
Also see "Overview" on page 7-1 and "Creating the metadata files and the Kubernetes
facility" on page 7-3 in this book.

The Operator grants privileges to the TimesTen cacheUser user (cacheuser2, in this
example) that are appropriate for this user's role as the cache manager. These
privileges are:

■ CREATE SESSION

■ CACHE MANAGER

■ CREATE ANY TABLE

■ LOAD ANY CACHE GROUP

■ REFRESH ANY CACHE GROUP

■ FLUSH ANY CACHE GROUP

■ DROP ANY CACHE GROUP

■ ALTER ANY CACHE GROUP

■ UNLOAD ANY CACHE GROUP

■ SELECT ANY TABLE

■ INSERT ANY TABLE

■ UPDATE ANY TABLE

The supported metadata files

3-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

■ DELETE ANY TABLE

csWallet
By default, in a TimesTen Client/Server environment, data is transmitted between
your client applications and your TimesTen database unencrypted. However, you can
configure TLS for Client/Server to ensure secure network communication between
TimesTen clients and servers. To encrypt Client/Server traffic, specify the
/ttconfig/csWallet file. This file contains the Oracle wallet for the server, which
contains the credentials that are used for configuring TLS encryption between your
TimesTen database and your Client/Server applications. The file will be available in
the containers of your TimesTen databases in the directory
/tt/home/oracle/csWallet. You can reference this directory in your db.ini file (by
specifying the wallet connection attribute). See "Creating TLS certificates for
replication and Client/Server" on page 8-1 and "Configuring TLS for Client/Server" on
page 8-11 for details.

The client wallet must also be available to your client applications. See "Creating TLS
certificates for replication and Client/Server" on page 8-1 and "Configuring TLS for
Client/Server" on page 8-11 for details.

db.ini file
The db.ini file contains the TimesTen connection attributes for your TimesTen
database. The connection attributes you specify in the db.ini file will be included in
TimesTen's sys.odbc.ini file. You can specify data store attributes, first connection
attributes, and general connection attributes in the db.ini file, except do not specify
the DataStore or the LogDir connection attributes. These two attributes are set by the
Operator. The name of the DSN is the name of the TimesTenClassic object. (For
example, if your TimesTenClassic object is called sample, the name of your DSN is
sample.)

If you are using TimesTen Cache, you must specify this db.ini file. In it, you must
specify the OracleNetServiceName and the DatabaseCharacterSet connection
attributes. The DatabaseCharacterSet value must match the value of the database
character set in the Oracle Database.

See "List of attributes" in the Oracle TimesTen In-Memory Database Reference for
information on the TimesTen connection attributes.

This example shows a sample db.ini file, which contains the connection attributes for
your TimesTen database:

PermSize=500
LogFileSize=1024
LogBufMB=1024
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=OraCache

Note: If the /ttconfig/db.ini file is not present in a TimesTen
container, TimesTen creates a default sys.odbc.ini file. For this
default sys.odbc.ini, the connection attributes are:
Permsize=200
DatabaseCharacterSet=AL32UTF8

If you are using TimesTen Cache, ensure you specify the db.ini file.

The supported metadata files

Using Configuration Metadata 3-5

epilog.sql
Use this file for operations that occur after the replication scheme has been created and
the replication agent has been started. For example, if you want to create replicated
bookmarks in XLA, you can call the ttXlaBookmarkCreate built-in procedure in this
file.

Here is an example of an epilog.sql file. The example calls the ttXlaBookmarkCreate
built-in procedure to create XLA bookmarks. See the "ttXlaBookmarkCreate" built-in
procedure in the Oracle TimesTen In-Memory Database Reference for more information.

call ttXlaBookmarkCreate('mybookmark',0x01);

replicationWallet
By default, TimesTen replication transmits data between your TimesTen databases
unencrypted. However, you can configure TLS for replication to ensure secure
network communication between your replicated TimesTen databases. To do this, you
must specify the /ttconfig/replicationWallet file. This file contains an Oracle
wallet, which contains the credentials that are used by TimesTen replication for
configuring TLS encryption between your active standby pair of TimesTen databases.
See "Creating TLS certificates for replication and Client/Server" on page 8-1 and
"Configuring TLS for replication" on page 8-3 for details.

You must also include the replicationCipherSuite field and optionally include the
replicationSSLMandatory field in your TimesTenClassic object definition. See the
replicationCipherSuite entry and the replicationSSLMandatory entry in Table 11–3,
" TimesTenClassicSpecSpec" and see "Configuring TLS for replication" on page 8-3 for
details.

schema.sql file
The Operator can automatically initialize your database with schema objects, such as
users, tables, and sequences. To have the Operator do this, create the schema.sql file.

The instance administrator runs this file (by using the ttIsql utility) immediately after
the database is created. The file is run before the Operator configures replication or
cache in your TimesTen database.

In TimesTen Cache, one or more cache table users own the cache tables. If this cache
table user is not the cache manager user, then you must specify the schema.sql file
and in it you must include the schema user and assign the appropriate privileges to
this schema user. For example, if the oratt schema user was created in the Oracle
Database, and this user is not the TimesTen cache manager user, you must create the
TimesTen oratt user in this file. See "Create the Oracle Database users" on page B-1 for
more information on the schema users in the Oracle Database. Also see "Create the
TimesTen users" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

Do not include cache definitions in this file. Instead, use the cachegroups.sql
metadata file. See "cachegroups.sql" on page 3-2 for information.

sqlnet.ora file
The Oracle Database sqlnet.ora file defines options for how client applications
communicate with the Oracle Database. To use TimesTen Cache or to use tools like
ttLoadFromOracle, define a sqlnet.ora file. This file describes how applications,
including TimesTen, can connect to your Oracle database. Note: If you define a
sqlnet.ora file, you must define a tnsnames.ora file. See "tnsnames.ora file" on
page 3-6 for information on the tnsnames.ora file.

Populating the /ttconfig directory

3-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

This is an example of a sqlnet.ora file:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

tnsnames.ora file
The Oracle Database tnsnames.ora file defines Oracle Net Services to which
applications connect. You need to use tnsnames.ora (and perhaps a sqlnet.ora file,
described in sqlnet.ora file) if you are using:

■ TimesTen Cache

■ SQL APIs, such as Pro*C, OCI, or ODPI-C

■ The ttLoadFromOracle feature (See "ttLoadFromOracle" in the Oracle TimesTen
In-Memory Database Reference for more information).

This is an example of a tnsnames.ora file:

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.domain.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.domain.com)))

Populating the /ttconfig directory
To configure TimesTen with the supported metadata files, you must ensure the files are
placed in the /ttconfig directory of the TimesTen containers. (See "The supported
metadata files" on page 3-1 for details on the supported metadata files.)

There is no requirement as to how you get the files into the /ttconfig directory.
However, Kubernetes does provide these facilities for you to consider:

■ Using ConfigMaps and Secrets

■ Using an init container

Using ConfigMaps and Secrets
You can use one or more ConfigMaps and (or) one or more Secrets to incorporate the
metadata files into the TimesTen containers. This enables you to give different
deployments of TimesTen different metadata by using different objects for each
deployment. In addition, you can use Secrets for metadata that contains sensitive data,
like passwords and certificates.

The use of a ConfigMap to populate the metadata into Pods is a standard Kubernetes
technique. One benefit is that you can modify the ConfigMap after it is created, which
results in the immediate update of the files that are in the Pod.

Populating the /ttconfig directory

Using Configuration Metadata 3-7

To use ConfigMaps and Secrets, follow this process:

■ Decide what facilities will contain what metadata files. For example, you can use
one ConfigMap for all the metadata files. Or, as another example, you can use one
ConfigMap for the db.ini metadata file and one Secret for the adminUser and the
schema.sql metadata files. There is no specific requirement.

■ Create the directory (or directories) that will contain the metadata files.

■ Use the kubectl create command to create the ConfigMap and the Secrets in the
Kubernetes cluster.

■ Include the ConfigMaps and Secrets in your TimesTenClassic object definition. See
"Understanding the deployment process" on page 4-1 for a detailed explanation of
how to create your TimesTenClassic object. In the following sections, there are
examples that illustrate how and where to reference the ConfigMaps and Secrets
in your TimesTenClassic object definition (in your YAML file). But, see
"Understanding the deployment process" on page 4-1 for the details of how to
create the TimesTenClassic object.

When you use ConfigMaps and Secrets to hold your metadata and then reference
them in the TimesTenClassic object definition, the Operator creates a
ProjectedVolume called tt-config. This tt-config volume contains the contents of
all the ConfigMaps and all the Secrets specified in the dbConfigMap and the
dbSecret fields of your TimesTenClassic object. This volume is mounted as
/ttconfig in the TimesTen containers.

Here are two examples illustrating how to use ConfigMaps and Secrets:

■ Example using one ConfigMap

■ Example using one ConfigMap and one Secret

Example using one ConfigMap
This example uses one ConfigMap (called sample) for the db.ini, the adminUser, and
the schema.sql metadata files.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_sample subdirectory. (The cm_sample directory is
used in the remainder of this example to denote this directory.)

% mkdir -p cm_sample

2. Navigate to the ConfigMap directory.

% cd cm_sample

3. Create the db.ini file in this ConfigMap directory (cm_sample, in this example). In
this db.ini file, define the PermSize and DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

Note: TimesTen may not immediately notice and act on the changed
content of the files.

Populating the /ttconfig directory

3-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

4. Create the adminUser file in this ConfigMap directory (cm_sample in this example).
In this adminUser file, create the scott user with the tiger password.

vi adminUser

scott/tiger

5. Create the schema.sql file in this ConfigMap directory (cm_sample in this
example). In this schema.sql file, define the s sequence and the emp table for the
scott user. The Operator will automatically initialize your database with these
object definitions.

vi schema.sql

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_sample directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is sample. Replace sample with a name of your
choosing. (sample is represented in bold in this example.)

■ This example uses cm_sample as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_
sample with the name of your directory. (cm_sample is represented in bold in
this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap sample --from-file=cm_sample
configmap/sample created

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(sample, in this example.)

% kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

scott/tiger

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create sequence scott.s;

Populating the /ttconfig directory

Using Configuration Metadata 3-9

create table scott.emp (
 id number not null primary key,
 name char(32)
);

Events: <none>

You successfully created and deployed the sample ConfigMap.

8. Include the ConfigMap in the TimesTenClassic object definition. In the
dbConfigMap field, specify the name of the your ConfigMap (sample, in this
example, represented in bold).

Note this example uses a storageSize of 250G (suitable for a production
environment). For demonstration purposes, a storageSize of 50G is adequate. See
the storageSize and the logStorageSize entries in the Table 11–3,
" TimesTenClassicSpecSpec" for information.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youracount/tt1814110:3
 imagePullSecret: sekret
 dbConfigMap:
 - sample

The sample ConfigMap holds the metadata files. The tt-config volume contains
the contents of the sample ConfigMap.

See "TimesTenClassicSpecSpec" on page 11-3 for information on the dbConfigMap
attribute. See "Defining and creating the TimesTenClassic object" on page 4-2 for
information on creating the TimesTenClassic object.

Example using one ConfigMap and one Secret
This example uses one ConfigMap (called myconfig) for the db.ini metadata file and
one Secret (called mysecret) for the adminUser and the schema.sql metadata files.

On your Linux development host:

1. From the directory of your choice:

■ Create one empty subdirectory for the ConfigMap. This example creates the
cm_myconfig subdirectory. (The cm_myconfig directory is used in the
remainder of this example to denote this directory.) This directory will contain
the db.ini metadata file.

■ Create a second empty subdirectory for the Secret. This example creates the
secret_mysecret subdirectory. (The secret_mysecret directory is used in the
remainder of this example to denote this directory.) This directory will contain
the adminUser and the schema.sql metadata files.

% mkdir -p cm_myconfig
% mkdir -p secret_mysecret

2. Navigate to the ConfigMap directory.

Populating the /ttconfig directory

3-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

% cd cm_myconfig

3. Create the db.ini file in this ConfigMap directory (cm_myconf, in this example). In
this db.ini file, define the PermSize and DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Navigate to the Secret directory.

% cd secret_mysecret

5. Create the adminUser file in this Secret directory (secret_mysecret in this
example). In this adminUser file, create the scott user with the tiger password.

vi adminUser

scott/tiger

6. Create the schema.sql file in this Secret directory (secret_mysecret in this
example). In this schema.sql file, define the s sequence and the emp table for the
scott user. The Operator will automatically initialize your database with these
object definitions.

vi schema.sql

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

7. Create the ConfigMap. The files in the cm_myconfig directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is myconfig. Replace myconfig with a name of
your choosing. (myconfig is represented in bold in this example.)

■ This example uses cm_myconfig as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_
myconfig with the name of your directory. (cm_myconfig is represented in
bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap myconfig --from-file=cm_myconfig
configmap/myconfig created

You successfully created and deployed the myconfig ConfigMap.

8. Use the kubectl describe command to verify the contents of the ConfigMap.
(myconfig, in this example.)

% kubectl describe configmap myconf
Name: myconfig
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Populating the /ttconfig directory

Using Configuration Metadata 3-11

Data
====
db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

Events: <none>

9. Create the Secret. The files in the secret_mysecret directory are included in the
Secret and, later, will be available in the TimesTen containers.

In this example:

■ The name of the Secret is mysecret. Replace mysecret with a name of your
choosing. (mysecret is represented in bold in this example.)

■ This example uses secret_mysecret as the directory where the files that will
be copied into the Secret reside. If you use a different directory, replace
secret_mysecret with the name of your directory. (secret_mysecret is
represented in bold in this example.)

Use the kubectl create command to create the Secret:

% kubectl create secret generic mysecret --from-file=secret_mysecret
secret/mysecret created

You successfully created and deployed the mysecret Secret.

10. Use the kubectl describe command to view the Secret. (mysecret, in this
example.) Note the contents of the adminUser and the schema.sql files are not
displayed.

% kubectl describe secret mysecret
Name: mysecret
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
adminUser: 12 bytes
schema.sql: 98 bytes

11. Include the ConfigMap and the Secret in the TimesTenClassic object definition.

■ In the dbConfigMap field, specify the name of the your ConfigMap (myconfig,
in this example, represented in bold).

■ In the dbSecret field, specify the name of the your Secret (mysecret, in this
example, represented in bold).

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G

Populating the /ttconfig directory

3-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 image: phx.ocir.io/youracount/tt1814110:3
 imagePullSecret: sekret
 dbConfigMap:
 - myconfig
 dbSecret:
 - mysecret

The myconfig ConfigMap and the mysecret Secret holds the metadata files. The
tt-config volume contains the contents of the myconfig ConfigMap and the
mysecret Secret.

See "TimesTenClassicSpecSpec" on page 11-3 for information on the dbConfigMap
and the dbSecret attributes. See "Defining and creating the TimesTenClassic
object" on page 4-2 for information on creating the TimesTenClassic object.

Using an init container
You can use an init container to get your metadata files into the /ttconfig directory of
the TimesTen containers. An init container enables you to create your own scripts to
populate the /ttconfig directory with the metadata files. For more information on init
containers, see:

https://kubernetes.io/docs/concepts/workloads/pods/init-containers

This example illustrates how to use an init container. It shows you where to specify the
script that populates the /ttconfig directory (represented in bold). It also uses the
tt-config volume name in the volumes field of the TimesTenClassic object. If you
specify a volume with the tt-config name, it will be automatically mounted at
/ttconfig in your TimesTen containers. See volumes (represented in bold).

See "The TimesTenClassic object type" on page 11-1 and "Understanding the
deployment process" on page 4-1 for details on the creating the TimesTenClassic object.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: init1
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 template:
 spec:
 imagePullSecrets:
 - name: sekret
 initContainers:
 - name: init1a
 image: phx.ocir.io/youraccount/tt1814110:3
 command:
 - sh
 - "-c"
 - |
 /bin/bash <<'EOF'
 Your script to populate /ttconfig goes here
 EOF
 volumeMounts:
 - name: tt-config
 mountPath: /ttconfig
 volumes:

Additional configuration options

Using Configuration Metadata 3-13

 - name: tt-config
 emptyDir: {}

Additional configuration options
This section discusses advanced configuration options. These are optional
configurations for your environment.

■ Persistent storage

■ Resources specification for the tt and the daemonlog containers

■ Pod location

Persistent storage
The Operator creates a Kubernetes StatefulSet object with the same name as the
TimesTenClassic object. The StatefulSet associates one or more
PersistentVolumeClaims with each Pod that it creates. This causes the associated
volumes to be mounted in each Pod. These volumes persist across the instantiations of
the Pod. If a Pod fails, the files that the Pod created in these volumes remain when
Kubernetes creates a new Pod to replace the failed one.

When you create a TimesTenClassic object, you must specify storageClassName and
you may specify storageSize. These attributes determine the characteristics of the
PersistentVolumes.

The storageClassName must be one that is provided by the Kubernetes environment
in which you are using. For example, in Oracle Kubernetes Environment (OKE), you
may use oci.

In OKE, 50G of storage is requested by default. Use the storageSize attribute to
request a different size. The example in this section uses a storageSize and a
logStorageSize that is greater than 50G. 50G of storage may be adequate for
demonstration purposes, but in production environments, consider greater storage.
See the storageSize and the logStorageSize entries in the Table 11–3,
" TimesTenClassicSpecSpec" for information.

TimesTen places the TimesTen installation, the instance, and the database in this
storage. It is mounted in each container, in each Pod, as /tt. The TimesTen instance is
located at /tt/home/oracle/instances/instance1.

TimesTen best practices recommends that the transaction log files associated with a
TimesTen database be located on a different storage volume than the checkpoint files
for the database. This provides separate paths to storage for the checkpoint and the
transaction log operations. For example, you can store the transaction log files in a
high performance storage, while storing the checkpoint files in a slower storage. See
"Locate checkpoint and transaction log files on separate physical device" in the Oracle
TimesTen In-Memory Database Operations Guide for more information.

To locate the checkpoint files and the transaction log files on a separate path of storage,
provide a value for a second persistent storage, that is used for the transaction log files
only. Use the logStorageSize attribute for this and control its placement by using the
logStorageClassName attribute. This causes a second PersistentVolumeClaim to be
created for each Pod, which will then be available in each container at /ttlog. (This
second storage volume has a /ttlog mount point.)

See "The TimesTenClassic object type" on page 11-1 and "Understanding the
deployment process" on page 4-1 for details.

For example:

Additional configuration options

3-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: slower
 storageSize: 750G
 logStorageClassName: faster
 logStorageSize: 200G

Resources specification for the tt and the daemonlog containers
You can specify specific resources requirements for the tt and the daemonlog
containers. For example, you can tell Kubernetes that the tt container will require four
CPUs and 20GB of RAM.

To do this, specify the tt and/or the daemonlog containers in the containers element
in your TimesTenClassic object. In so doing, the Operator copies the resources datum
from those containers verbatim into the definition of the container in the StatefulSet in
which the Operator creates. Any other datum other than resources is ignored. If you
do not specify resources for the tt container, the resources item is empty. There is no
default.

The TimesTen memory and disk requirements are the same in Kubernetes as in any
other environment. See "Storage provisioning for TimesTen" in the Oracle TimesTen
In-Memory Database Operations Guide for information.

If you do not specify resources for the daemonlog container, there are defaults. (Note
that the values are case sensitive. For example, "20Mi" is valid, but "20mi" is invalid.)

The defaults are:

■ memory:"20Mi"

■ cpu:"100m"

This example illustrates how to specify the resources requirements (represented in
bold) for the tt and the daemonlog containers.

apiVersion:timesten.oracle.com/v1
kind:TimesTenClassic
metadata:
 name:sample
spec:
 ttspec:
 storageClassName:oci
 storageSize:250G
 image:...
 imagePullSecret:...
 template:
 spec:
 containers:
 - name:tt
 resources:
 requests:
 memory:"512Mi"
 cpu: "1000m"
 limits:
 memory:"768Mi"
 cpu: "2000m"
 - name:daemonlog

Additional configuration options

Using Configuration Metadata 3-15

 resources:
 requests:
 memory:"40Mi"
 cpu: "200m"

Pod location
The Operator configures a replicated pair of TimesTen databases that can be used to
provide high availability. However, in order to provide the appropriate level of high
availability, you can control the placement of the TimesTen Pods in your Kubernetes
cluster. For example, you may want to ensure that the TimesTen Pods are available in
different availability zones, or are on different Kubernetes nodes.

Given that the requirements of every environment are different, the Operator does not
attempt to control Pod placement. However, you can do this by specifying the
affinity option in your TimesTenClassic object's spec's template. The Operator will
pass the template to the StatefulSet that it creates.

See "The TimesTenClassic object type" on page 11-1 and "Understanding the
deployment process" on page 4-1 for details.

For example:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 …
 template:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: "app"
 operator: In
 values:
 - ds1
 topologyKey: "kubernetes.io/hostname"

Additional configuration options

3-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

4

Deploying TimesTen Databases 4-1

4Deploying TimesTen Databases

This chapter discusses the process for deploying active standby pairs of TimesTen
databases. It describes the process for creating TimesTenClassic objects in your
environment. It also provides examples that demonstrate how to monitor the
provisioning of the active standby pair of TimesTen databases. The chapter concludes
with examples that show you how to connect to the database and run operations in it.

Topics:

■ Understanding the deployment process

■ Defining and creating the TimesTenClassic object

■ Monitoring the progress of the active standby pair deployment

Understanding the deployment process
The TimesTen Operator extends the Kubernetes API to provide the TimesTenClassic
object type. This type provides the definitions you need to successfully deploy your
TimesTen databases to the Kubernetes cluster. You customize these definitions for your
particular environment. Specifically, you create a YAML file and, in it, you specify the
required TimesTenClassic definitions for the TimesTenClassic object. By assigning
values to the fields of these definitions, you customize and define your deployment
environment. For example, when you supply the oci value for the storageClassName
field, you are telling the Operator the name of the storage class you want to use. See
Chapter 11, "The TimesTenClassic Object Type" for the object definitions, and the fields
that you define in your YAML file.

Examples of the YAML file were introduced previously when discussing ConfigMaps
and Secrets, an init container, and other configuration options. (See "Using
ConfigMaps and Secrets" on page 3-6 for information on ConfigMaps and Secrets. Also
see "Using an init container" on page 3-12 and "Additional configuration options" on
page 3-13 for other configuration options.) However, "Defining and creating the
TimesTenClassic object" on page 4-2 shows you how to define the TimesTenClassic
object in detail.

After specifying your configuration in the YAML file, you use the kubectl create
command from your Linux development host to create the corresponding
TimesTenClassic object in your cluster. After you issue this command, the process for
deploying your active standby pair of TimesTen databases begins. You can view this
process by issuing kubectl get and kubectl describe commands, such as, kubectl
get pods and kubectl describe timestenclassic. Once your databases are deployed,
you can then connect to your active database, issue queries, and perform other
operations to verify your database is working as it should.

Defining and creating the TimesTenClassic object

4-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Defining and creating the TimesTenClassic object
Defining your environment involves creating TimesTenClassic objects with attributes
customized for your environment. The fields include the name of the image pull
secret, the name of your TimesTen image, and the other definitions required to
successfully deploy your TimesTen databases. See "The TimesTenClassic object type"
on page 11-1 for information on defining objects of type TimesTenClassic.

Perform these steps to define and create the TimesTenClassic object:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, sample.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" on page 11-3 for information on the fields
that you must specify in this YAML file as well as the fields that are optional.

In this example, replace the following. (The values you can replace are represented
in bold.)

■ name: Replace sample with the name of your TimesTenClassic object.

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. (This example assumes a production
environment and uses 250G for storage. For demonstration purposes, you can
use 50G of storage. See the storageSize and the logStorageSize entries in the
Table 11–3, " TimesTenClassicSpecSpec" for information.)

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3).

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

■ dbConfigMap: This example uses one ConfigMap (called sample) for the
db.ini, the adminUser, and the schema.sql metadata files. This ConfigMap
will be included in the ProjectedVolume. This volume is mounted as
/ttconfig in the TimesTen containers. See "Using ConfigMaps and Secrets" on
page 3-6 and "Example using one ConfigMap" on page 3-7 for information on
ConfigMaps.

% vi sample.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 dbConfigMap:
 - sample

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, sample.yaml). Doing so begins the

Monitoring the progress of the active standby pair deployment

Deploying TimesTen Databases 4-3

process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f sample.yaml
timestenclassic.timesten.oracle.com/sample created

You successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitoring the progress of the active standby pair deployment
You can use various kubectl commands to monitor the progress of the active standby
pair deployment. After the deployment is complete and successful, you can connect to
the database and run operations in it to verify it is working as it should.

■ Monitor the state of TimesTenClassic

■ Verify the underlying objects exist

■ Verify connection to the active database

Monitor the state of TimesTenClassic
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get timestenclassic sample
NAME STATE ACTIVE AGE
sample Initializing None 11s

2. Use the kubectl describe command to view the initial provisioning in detail.

% kubectl describe timestenclassic sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-05-31T15:35:12Z
 Generation: 1
 Resource Version: 20231755
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a

Note: For the kubectl get timestenclassic and kubectl describe
timestenclassic commands, you can alternatively specify kubectl
get ttc and kubectl describe ttc respectively. timestenclassic and
ttc are synonymous when used in these commands, and return the
same results. The first kubectl get and the first kubectl describe
examples in this chapter use timestenclassic. The remaining
examples in this book use ttc for simplicity.

Monitoring the progress of the active standby pair deployment

4-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Active Pods: None
 High Level State: Initializing
 Last Event: 3
 Pod Status:
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Down
 Intended State: Active
 Name: sample-0
 Schema File: false
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:

Monitoring the progress of the active standby pair deployment

Deploying TimesTen Databases 4-5

 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Unknown
 Intended State: Standby
 Name: sample-1
 Schema File: false
 Rep Create Statement: create active standby pair "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local", "sample" on
 "sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
 store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
 FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 50s ttclassic Secret tt517a8646-a354-11ea-a9fb-0a580aed5e4a
 created
 - Create 50s ttclassic Service sample created
 - Create 50s ttclassic StatefulSet sample created

3. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 3m5s

4. Use the kubectl describe command again to view the active standby pair
provisioning in detail.

Note: In this example, the now Normal line displays on its own line. In the actual
output, this line does not display as its own line, but at the end of the StateChange
previous line.

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-05-31T15:35:12Z
 Generation: 1
 Resource Version: 20232668
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a

Monitoring the progress of the active standby pair deployment

4-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Active Pods: sample-0
 High Level State: Normal
 Last Event: 35
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.1
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Active
 Name: sample-0
 Schema File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.2
 Pod Phase: Running
 Replication Status:

Monitoring the progress of the active standby pair deployment

Deploying TimesTen Databases 4-7

 Last Time Rep State Changed: 1590939496
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Standby
 Name: sample-1
 Schema File: true
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m43s ttclassic Secret
tt517a8646-a354-11ea-a9fb-0a580aed5e4a created
 - Create 4m43s ttclassic Service sample created
 - Create 4m43s ttclassic StatefulSet sample created
 - StateChange 3m47s ttclassic Pod sample-0 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-0 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-0 RepAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-1 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 RepAgent Unknown
 - StateChange 3m26s ttclassic Pod sample-0 Agent Up
 - StateChange 3m26s ttclassic Pod sample-0 Release 18.1.4.11.0
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-1 Agent Up
 - StateChange 3m26s ttclassic Pod sample-1 Release 18.1.4.11.0
 - StateChange 3m26s ttclassic Pod sample-1 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Up
 - StateChange 3m25s ttclassic Pod sample-1 Daemon Up
 - StateChange 2m13s ttclassic Pod sample-0 RepState IDLE
 - StateChange 2m13s ttclassic Pod sample-0 Database Updatable
 - StateChange 2m13s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepScheme None
 - StateChange 2m13s ttclassic Pod sample-0 Database Loaded
 - StateChange 2m11s ttclassic Pod sample-0 RepAgent Running
 - StateChange 2m10s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 2m10s ttclassic Pod sample-0 RepState ACTIVE
 - StateChange 113s ttclassic Pod sample-1 Database Loaded
 - StateChange 113s ttclassic Pod sample-1 Database Not Updatable
 - StateChange 113s ttclassic Pod sample-1 CacheAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepScheme Exists
 - StateChange 113s ttclassic Pod sample-1 RepState IDLE

Monitoring the progress of the active standby pair deployment

4-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 - StateChange 106s ttclassic Pod sample-1 RepAgent Running
 - StateChange 101s ttclassic Pod sample-1 RepState STANDBY
 - StateChange 101s ttclassic TimesTenClassic was Initializing,
now Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) There are two TimesTen databases, configured as an active
standby pair. One database is active. (In this example, sample-0 is the active database,
as indicated by Rep State ACTIVE). The other database is standby. (In this example,
sample-1 is the standby database as indicated by Rep State STANDBY). The active
database can be modified and queried. Changes made on the active database are
replicated to the standby database. If the active database fails, the Operator
automatically promotes the standby database to be the active. The formerly active
database will be repaired or replaced, and will then become the standby.

Verify the underlying objects exist
The Operator creates other underlying objects automatically. Verify that these objects
are created.

1. StatefulSet:

% kubectl get statefulset sample
NAME READY AGE
sample 2/2 8m21s

2. Service:

% kubectl get service sample
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sample ClusterIP None <none> 6625/TCP 9m28s

3. Pods:

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 10m
sample-1 2/2 Running 0 10m
timestenclassic-operator-5d7dcc7948-8mnz4 1/1 Running 0 11h

4. PersistentVolumeClaims (PVCs):

% kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-sample-0 Bound
ocid1.volume.oc1.phx.abyhqljrbxcgzyixa4pmmcwiqxgqclc7gxvdnoty367w2qn26tij6kfpx
6qq
250Gi RWO oci 10m
tt-persistent-sample-1 Bound
ocid1.volume.oc1.phx.abyhqljtt4qxxoj5jqiskriskh66hakaw326rbza4uigmuaezdnu53qhh
oaa
250Gi RWO oci 10m

Verify connection to the active database
You can run the kubectl exec command to invoke shells in your Pods and control
TimesTen, which is running in those Pods. TimesTen runs in the Pods as the oracle
user. Once you have established a shell in the Pod, use the su - oracle command to

Monitoring the progress of the active standby pair deployment

Deploying TimesTen Databases 4-9

switch to the oracle user. After you switch to the oracle user, verify you can connect
to the sample database, and that the information from the metadata files is correct. You
can optionally run queries against the database or any other operations.

1. Establish a shell in the Pod and switch to the oracle user.

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle

2. Connect to the sample database. Verify the information in the metadata files is in
the database correctly. For example, attempt to connect to the database as the
scott user. Check that the PermSize value of 200 is correct. Check that the
scott.emp table exists.

 % ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Command> connect adding "uid=scott;pwd=tiger" as scott;
Connection successful:
DSN=sample;UID=scott;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
scott: Command> tables;
 SCOTT.EMP
1 table found.

Monitoring the progress of the active standby pair deployment

4-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

5

Using TimesTen Databases 5-1

5Using TimesTen Databases

This chapter explains how to use direct mode applications and Client/Server drivers
to access and to use your TimesTen databases that reside in your Kubernetes cluster.

Topics:

■ Using direct mode applications

■ Using Client/Server drivers

Using direct mode applications
You can run direct mode applications inside of the Pods in your TimesTenClassic
deployment. When configured, each Pod in your active standby pair runs two or more
containers. One container runs TimesTen and the TimesTen agent and the other
container(s) run whatever applications you choose. These applications that are
running in your containers can then use TimesTen in direct mode. For information on
direct mode applications, see "Managing TimesTen Databases" in the Oracle TimesTen
In-Memory Database Operations Guide.

TimesTen Pods are created with the Kubernetes shareProcessNamespace option. This
option allows direct mode applications running in other containers within the same
Pod to function.

The .spec.template.spec.containers attribute of your TimesTenClassic object can be
specified to cause one or more containers to be created within each Pod in your active
standby pair. These containers are created in addition to the tt container that runs
TimesTen. The containers run the specified command in the container image.

This example illustrates how to include the .spec.template.spec.containers
attribute in your TimesTenClassic object (represented in bold):

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: directmode
spec:
 ttspec:
 storageClassName: oci

Note: The standard security issues that surround direct mode apply
in this environment as in a non-Kubernetes environment. Segregating
your applications into separate containers from TimesTen is intended
for ease of management and ease of upgrade. It is not intended as a
security barrier and provides no additional security.

Using direct mode applications

5-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 dbConfigMap:
 - directmode
 template:
 spec:
 containers:
 - name: yourapp
 image: phx.ocir.io/youraccount/yourapplication:1
 command: ["/bin/yourapp"]
 - name: anotherapp
 image: phx.ocir.io/youraccount/anotherapplication:1
 command: ["/bin/anotherapp"]

You can specify any other Kubernetes configuration for these containers just as you
could in the .spec.template.spec.containers attribute of the Kubernetes StatefulSet
object. For example, you could use the resources attribute to set CPU and memory
limits for your containers. See "Resources specification for the tt and the daemonlog
containers" on page 3-14 for information on the resources attribute. The Operator
automatically adds appropriate mounts to the containers you specify. This enables
your containers to access TimesTen.

To use TimesTen in direct mode, your application containers must know how
TimesTen is configured in the tt container. You must configure your application
containers similarly. See "Understanding how the Operator functions" on page 1-5 for
information on TimesTen containers and specifically the tt container.

In particular:

■ The name of the TimesTen users group is oracle with a group ID (GID) of 333. For
more information on the TimesTen users group, see "Understanding the TimesTen
users group" in the Oracle TimesTen In-Memory Database Installation, Migration, and
Upgrade Guide.

■ TimesTen runs as the oracle operating system user (with UID of 333). This oracle
user is a member of the TimesTen group.

■ You must configure your application containers to run your applications as a
member of the TimesTen group with GID of 333. Only members of this group can
run TimesTen in direct mode.

■ You can run your direct mode applications as a user with UID of 333. However,
this grants the application instance administrator permissions on the TimesTen
instance. Alternatively, you can create a group with GID of 333 and then create a
user whose primary or secondary group is that group, but with a UID that is not
333. In the latter case, you can run your application as this user and you can use
TimesTen in direct mode. You can then grant such a user privileges up to and
including the ADMIN privilege. For more information on primary and secondary
groups, see "Creating an installation on Linux/UNIX" in the Oracle TimesTen
In-Memory Database Installation, Migration, and Upgrade Guide. For information on
TimesTen privileges, see "System privileges" and "Object privileges" in the Oracle
TimesTen In-Memory Database SQL Reference.

■ The direct mode application must use the TimesTen instance that is configured at
/tt/home/oracle/instances/instance1. The scripts to configure the TimesTen
environment variables are located at
/tt/home/oracle/instances/instance1/bin/ttenv.*.

Using Client/Server drivers

Using TimesTen Databases 5-3

■ You must not modify any file that is located in the TimesTen instance. In addition,
ensure you do not create any new files in the $TIMESTEN_HOME directory tree of the
instance.

■ There are two DSNs that have been configured. They are located in the
/tt/home/oracle/instances/instance1/conf/sys.odbc.ini file. One DSN has
the name of the TimesTenClassic object. The second is called tt. You can use either
one. They are equivalent.

■ You must not add entries to the
/tt/home/oracle/instances/instance1/conf/sys.odbc.ini file. These files can
be overwritten by the Operator. However, you can store your own DSN entries in
the $HOME/.odbc.ini file located in your application container.

■ You must not create additional TimesTen databases.

Kubernetes, not the Operator, is responsible for monitoring and managing the life
cycle of the direct mode containers. In particular:

■ Applications are started by Kubernetes regardless of the state of TimesTen (located
in its own container). Kubernetes manages the life cycle of containers individually.
It does not sequence. Your application must know how to wait for TimesTen to
become available.

■ A direct mode application runs in the Pod containing the active TimesTen database
and in the Pod containing the standby TimesTen database. The application may
need to use the ttRepStateGet built-in procedure to determine whether it is
running on the active or on the standby and perhaps quiesce itself on the standby.
For more information on the ttRepStateGet built-in procedure, see
"ttRepStateGet" in the Oracle TimesTen In-Memory Database Reference.

■ Kubernetes may start the application before the TimesTen database exists or before
it is loaded into memory and ready for use. It is the responsibility of the direct
mode application to verify the state of the TimesTen database in its Pod and to use
it appropriately.

■ If your application exits, the container terminates, and Kubernetes spawns another
container. This does not impact TimesTen that is running in the tt container.

Using Client/Server drivers
Applications that are running in other Pods in your Kubernetes cluster can use your
TimesTen database by using the standard TimesTen Client/Server drivers. You must
configure your application containers with a TimesTen client instance. That instance
must contain a configured $TIMESTEN_HOME/conf/sys.odbc.ini file, or your
application must use an appropriate Client/Server connection string.

For example, if you chose to configure a sys.odbc.ini file, the contents of
sys.odbc.ini would contain a client DSN definition that references the Pods that are
running your TimesTen databases.

This example creates the sample DSN and references the sample TimesTenClassic
object in the default namespace.

% vi $TIMESTEN_HOME/conf/sys.odbc.ini

[sample]
TTC_SERVER_DSN=sample
TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local
TTC_SERVER2=sample-1.sample.mynamespace.svc.cluster.local

Using Client/Server drivers

5-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Applications connect to the TimesTen database using this DSN. In the active standby
pair configuration, TimesTen automatically routes application connections to the active
database. (sample-0 and sample-1 are used for example purposes.)

Client/Server applications must connect to the database using a defined username
and password. The Operator can create such a user with ADMIN privileges. You can
then connect to the database, as that user, to create other users and grant these users
the CREATE SESSION privilege. See "Understanding the configuration metadata and the
Kubernetes facilities" on page 3-1 for information on how to have the Operator create
an initial user with ADMIN privileges.

In this example, use a connection string to connect to the sample database as the scott
user. (If you use a connection string that requires all the required connection attributes,
you do not need to define them in the sys.odbc.ini file.) The scott user was created
by the Operator and already exists in the sample database. After connecting, you can
verify that the scott.emp table exists. (The Operator also previously created this table.
See "schema.sql file" on page 3-5 for information on how the Operator created this
table.)

% ttIsqlCS -connstr "TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER2=sample-1.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;UID=scott;PWD=tiger";

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;uid=scott;pwd=********";
Connection successful:
DSN=;TTC_SERVER=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;UID=scott;DATASTORE=/tt/home/oracle/datastore/sample;
DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=US7ASCII;PERMSIZE=200;
DDLREPLICATIONLEVEL=3;
(Default setting AutoCommit=1)
Command> tables;
 SCOTT.EMP
1 table found.

6

Managing and Monitoring Your Active Standby Pairs 6-1

6Managing and Monitoring Your Active Standby
Pairs

This chapter discusses how to monitor the health of each Pod in your active standby
pair as well as the health of the active standby pairs themselves. It details the BothDown
and the ManualInterventionRequired states with an emphasis of how the Operator
behaves in each of these states. The chapter discusses how to suspend the
management of your TimesTenClassic object by the Operator. It concludes with
various manual operations you can perform on your TimesTen databases.

Topics:

■ Monitoring the health of each pod in the active standby pair

■ Monitoring the health of the active standby pair of databases

■ Understanding the BothDown state

■ Understanding the ManualInterventionRequired state

■ Bringing up one database

■ Suspending the management of a TimesTenClassic object

■ Locating the Operator

■ Managing the TimesTen databases

Monitoring the health of each pod in the active standby pair
The Operator keeps track of the individual health and state of each Pod in the active
standby pair. How often the Operator checks the health is defined by the value of the
pollingInterval. See Table 11–3, " TimesTenClassicSpecSpec" for information on
pollingInterval.

Each Pod is assigned a high level state based on the state of various components of
Kubernetes and the state of TimesTen. These states are:

■ CatchingUp

■ Down

■ Healthy

■ HealthyActive

■ HealthyStandby

■ OtherDown

■ Terminal

Monitoring the health of each pod in the active standby pair

6-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

■ Unknown

■ UpgradeFailed

CatchingUp
The standby has completed the process of duplicating the database from the active.
The newly created standby is catching up to any transactions that ran on the active
while the duplicate operation was running.

Down
Either the Pod or the TimesTen components within the Pod (or both) are not
functioning properly, given this Pod's role in the active standby pair.

Healthy
The Pod and the TimesTen components within the Pod are in a healthy state, given this
Pod's role in the active standby pair.

HealthyActive
When a TimesTenClassic object is in the Reexamine state, the Operator examines the
state of both TimesTen instances. The Operator does not know which instance (if any)
contains a properly configured active database (or a properly configured standby
database). The Operator must examine both instances to see. If a healthy instance is
found and that instance contains a properly configured active database, the state of the
Pod is reported as HealthyActive.

HealthyStandby
When a TimesTenClassic object is in the Reexamine state, the Operator examines the
state of both TimesTen instances. The Operator does not know which instance (if any)
contains a properly configured standby database (or a properly configured active
database). The Operator must examine both instances to see. If a healthy instance is
found and that instance contains a properly configured standby database, the state of
the Pod is reported as HealthyStandby.

OtherDown
The Pod and the TimesTen components within the Pod are in a healthy state, but
TimesTen in this Pod believes that TimesTen in the other Pod has failed. In particular,
the OtherDown state indicates that this Pod contains an active database, and the
database's peer has reached the failThreshold. The database in this Pod is no longer
keeping transaction logs for its peer, as the peer is too far behind. Recovering the peer
requires re-duplicating the active database (which the Operator will perform
automatically).

Terminal
TimesTen in the Pod cannot be repaired by the Operator.

Unknown
The state of this Pod is unknown. Either the Pod is unreachable or the TimesTen agent
contained within the Pod has failed.

Monitoring the health of the active standby pair of databases

Managing and Monitoring Your Active Standby Pairs 6-3

UpgradeFailed
An automated upgrade was attempted on TimesTen in this Pod and the upgrade
failed. See "Overview of the upgrade process" on page 10-1 for information on the
upgrade process.

Monitoring the health of the active standby pair of databases
The Operator monitors and manages the health of each of your active standby pairs.
The Operator assigns high level states to the TimesTenClassic object, which you can
monitor and review. For example, you can use the kubectl get command to return the
high level state of your TimesTenClassic object. Specifically, in this example, the value
returned for the STATE field is Normal, indicating that the active and the standby
databases are up and running, and working as they should.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 15h

The states:

■ ActiveDown

■ ActiveTakeover

■ BothDown

■ ConfiguringActive

■ Failed

■ Initializing

■ ManualInterventionRequired

■ Normal

■ Reexamine

■ StandbyCatchup

■ StandbyDown

■ StandbyStarting

■ WaitingForActive

ActiveDown
If the Operator detects that TimesTen in the Pod containing the active database has
failed, then the TimesTenClassic object immediately enters the ActiveDown state.

The unreachableTimeout timeout value controls how long the state of the Pod
containing the active database can be Unknown before the TimesTenClassic object's state
becomes ActiveDown.

When the TimesTenClassic object's state becomes ActiveDown, the standby database
immediately becomes the active, and the state of the TimesTenClassic object becomes
StandbyDown.

ActiveTakeover
When the TimesTenClassic object is in the Normal state, and the standby database goes
down, the state briefly changes to ActiveTakeover.

Monitoring the health of the active standby pair of databases

6-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

When AWT cache groups are used, the standby is normally responsible for pushing
updates from TimesTen to Oracle Database. However, if the standby fails, the active
database takes over this responsibility. This occurs during the ActiveTakeover state.

BothDown
Neither the active nor the standby database is functioning properly. The Operator
attempts to bring up the pair of databases.

If both Pods in the active standby pair fail, the Operator uses the information in
TimesTenClassicStatus to minimize data loss. See "Understanding the BothDown state"
on page 6-5 for details.

ConfiguringActive
When the TimesTenClassic object is in the WaitingForActive state, and when the
database that should be the active database comes up, the TimesTenClassic object
enters the ConfiguringActive state. The Operator then configures this database to be
the active. Once the database is configured as the active, the TimesTenClassic object
enters the StandbyDown state. See "Understanding the BothDown state" on page 6-5 for
details.

Failed
If a problem occurs while Initializing a TimesTenClassic object, the object
transitions to the Failed state. Once in this state, the Operator does not attempt to
repair the object. You must delete it. Use the kubectl describe command to examine
the Operator logs to determine the cause of the problem and then recreate the object.

Initializing
This state is reported while the two Pods are starting up for the first time. In your
active standby pair configuration, the Pod whose name ends with -0 is initially
configured as the active database, and the Pod whose name ends with -1 is initially
configured as the standby database. Specifically, if you specified the name for
TimesTenClassic as sample, the sample-0 Pod is configured as the active database, and
the sample-1 Pod is configured as the standby database. Once the active/standby pair
is completely deployed, the TimesTenClassic object transitions to the Normal state.

ManualInterventionRequired
When a TimesTenClassic object enters the ManualInterventionRequired state, the
Operator takes no further action for the object. It does not query the TimesTen agents
associated with the object to determine the state of TimesTen and it does not command
TimesTen to do anything. See "Understanding the ManualInterventionRequired state"
on page 6-7 and "Bringing up one database" on page 6-8 for details.

Normal
Both databases are up and running, and operating as they should.

Reexamine
When the TimesTenClassic object is in the ManualInterventionRequired state, you can
specify the reexamine CRD syntax element to cause the Operator to take over the
management of the object again. The Operator moves the object to the Reexamine state.

Understanding the BothDown state

Managing and Monitoring Your Active Standby Pairs 6-5

The Operator then examines the state of TimesTen. If you correctly repaired TimesTen,
the TimesTenClassic object may then enter the Normal or the StandbyDown state,
depending on the nature of your repair. If you did not correctly repair TimesTen, the
TimesTenClassic object re-enters the ManualInterventionRequired state. See
"Understanding the ManualInterventionRequired state" on page 6-7 for details.

StandbyCatchup
This state is entered after the StandbyStarting state. During the StandbyStarting
state, the standby copies the active database to the standby Pod. When the duplicate
process is complete, the state changes from StandbyStarting to StandbyCatchup. See
"StandbyStarting" on page 6-5 for more information on the StandbyStarting state. In
the StandbyCatchup state, the duplicate process has completed. Transactions that ran
during this duplicate process must now be copied over to the standby. Thus the
StandbyCatchup state is the state when the newly created standby catches up to any
transactions that ran on the active while the duplicate operation was running.
Applications can continue to use the active without restriction.

StandbyDown
The active database is functioning properly, but the standby database is not. The
Operator automatically attempts to restart and reconfigure the standby database.
Applications can continue to use the active database without restriction.

StandbyStarting
The standby is duplicating the database from the active. The StandbyStarting state is
complete when the duplicate operation completes. The StandbyCatchup state is then
entered. See "StandbyCatchup" on page 6-5 for more information on the
StandbyCatchup state. Applications can continue to use the active without restriction.

WaitingForActive
When the TimesTenClassic object is in the BothDown state, if the Operator can
determine which database contains the most up-to-date data, the TimesTenClassic
object enters the WaitingForActive state. The object remains in this state until the Pod
that contains the database is running, and the TimesTen agent within the tt container
(within that Pod) is responding to the Operator. See "Understanding the BothDown
state" on page 6-5 for details.

Understanding the BothDown state
The Operator provisions, monitors, and manages active standby pairs of TimesTen
databases. It detects and reacts to the failure of the active or the standby database. For
example, when one database in the active standby pair is down, the Operator does the
following:

■ If the active database fails, the Operator promotes the standby to be the active.

■ If the standby database fails, the Operator keeps the active running and repairs the
standby.

However, if both databases fail at the same time, it is essential that the databases are
brought back up appropriately. TimesTen replication does not atomically commit
transactions in both database simultaneously. Transactions are committed in one
database and then later are committed in the other database. (The database on which
transactions are committed first is considered the database that is ahead.) Depending

Understanding the BothDown state

6-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

on how replication is configured, transactions on the active database may be ahead of
the standby or the standby may be ahead of the active. To avoid data loss, the database
that is ahead must become the active database after the failure is corrected.

In most cases, the Operator can determine which database was ahead at the time of the
failure. However, there are cases where the Operator cannot determine which database
was ahead. In particular, the Operator cannot determine which database is ahead if all
of the following conditions occur:

■ Both databases failed during the polling interval. Specifically, the Operator
examined both databases and the TimesTen Pods were in the Healthy state. The
Operator waited pollingInterval seconds, and when the Operator examined the
databases again (after this pollingInterval), both databases were down and

■ RETURN TWOSAFE replication was configured and

■ DISABLE RETURN or LOCAL COMMIT ACTION COMMIT (or both) were configured.

See "TimesTenClassicSpecSpec" on page 11-3 for more information on the
pollingInterval CRD syntax element and on the RETURN TWOSAFE and DISABLE RETURN
replication configurations options. Also, see "CREATE ACTIVE STANDBY PAIR" in
the Oracle TimesTen In-Memory Database SQL Reference and "Defining an active standby
pair replication scheme" in the Oracle TimesTen In-Memory Database Replication Guide for
information on defining an active standby pair replication scheme.

This combination of events indicates that some transactions may have committed on
the standby and not on the active and/or some transactions may have committed on
the active and not on the standby. The Operator takes no action in this case.

When both databases fail, the TimesTenClassic object enters the BothDown state. See
"BothDown" on page 6-4 for more information on the BothDown state. The Operator
must then determine the appropriate action to take. The Operator first examines the
value of the bothDownBehavior CRD syntax element to determine what to do. See
"TimesTenClassicSpecSpec" on page 11-3 for information.

If bothDownBehavior is set to Manual, the TimesTenClassic object immediately enters
the ManualInterventionRequired state. The Operator takes no further action even if
either TimesTen container subsequently becomes available. See "Understanding the
ManualInterventionRequired state" on page 6-7 for information on the
ManualInterventionRequired state.

If bothDownBehavior is set to Best (the default setting), the Operator attempts to
determine which database was ahead at the time of failure.

■ If the Operator cannot determine which database is ahead, the TimesTenClassic
object immediately enters the ManualInterventionRequired state. See
"Understanding the ManualInterventionRequired state" on page 6-7 for details.

■ If the Operator can determine which database is ahead:

– The TimesTenClassic object enters the WaitingForActive state. The object
remains in this state until the Pod containing that database is running and the
TimesTen agent located in the tt container within that Pod is responding to
the Operator. At this point, the TimesTenClassic object enters the
ConfiguringActive state.

– While the TimesTenClassic object is in the ConfiguringActive state, TimesTen
in this Pod is started, the database is loaded and is configured for use as the
new active database. If there are any problems with these steps, the
TimesTenClassic object enters the ManualInterventionRequired state. If the
database is successfully loaded and successfully configured as the new active,
the TimesTenClassic object enters the StandbyDown state. See "Monitoring the

Understanding the ManualInterventionRequired state

Managing and Monitoring Your Active Standby Pairs 6-7

health of the active standby pair of databases" on page 6-3 for information on
the states of your TimesTenClassic object.

– You can specify the maximum amount of time (expressed in seconds) that the
TimesTenClassic object remains in the WaitingForActive state by specifying a
value for the waitingForActiveTimeout CRD syntax element. After this
period of time, if the object is still in the WaitingForActive state, the object
automatically transitions to the ManualInterventionRequired state. The
default is 0, which indicates that there is no timeout, and the object will remain
in this state indefinitely. See "TimesTenClassicSpecSpec" on page 11-3 for more
information on the waitingForActiveTimeout CRD syntax element.

– The time to recover the database varies by the size of the database. You should
consider the size of your database when deciding the value for
waitingForActiveTimeout.

– If the database that is ahead cannot be loaded, the TimesTenClassic object
enters the ManualInterventionRequired state. See "Understanding the
ManualInterventionRequired state" on page 6-7 for details.

Understanding the ManualInterventionRequired state
When a TimesTenClassic object enters the ManualInterventionRequired state, the
Operator takes no further action for this object. It does not query the TimesTen agents
associated with the object to determine the state of TimesTen and does not command
TimesTen to do anything. It is important for you to address why the TimesTenClassic
object is in this state.

If your TimesTenClassic object is in the ManualInterventionRequired state and it is
not the result of it first being in the BothDown state, perform the operations necessary to
manually repair one of the databases. Then, perform the steps to bring up this
database. These steps are covered in "Bringing up one database" on page 6-8 later in
this chapter.

If, however, the TimesTenClassic object is in the ManualInterventionRequired state as
a result of it first being in the BothDown state:

■ It may be unclear which database, if either, is suitable to be the new active. There
may be transactions that have committed on the active database and not on the
standby database, and simultaneously there may be transactions that have
committed on the standby database and not on the active database.

■ You need to manually examine both databases and may need to reconcile the data
before you can choose which database should be the new active.

■ If you can reconcile the data, and can manually fix one of the databases, then you
can perform the steps to bring up one database. These steps are covered in
"Bringing up one database" on page 6-8 later in this chapter. If you cannot
reconcile the data, contact Oracle Support for further assistance.

In order for you to direct the Operator to move the TimesTenClassic object out of the
ManualInterventionRequired state, you must either:

■ Bring up exactly one database: The Operator treats this database as the active
database. All of these conditions must be met:

– The TimesTen agent in the container is running.

– The TimesTen the instance in the container is running.

– The TimesTen database is loaded.

Bringing up one database

6-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

– There is no replication scheme in the database.

– The replication agent is not running.

– The replication state is IDLE.

If these conditions are met, the Operator moves the TimesTenClassic object to the
StandbyDown state. If any of these conditions are not met, the TimesTenClassic
object remains in the ManualInterventionRequired state. Note that when no
replication scheme exists in the database, the Operator will still create the
appropriate replication scheme based on how it is defined in the TimesTenClassic
object definition. See "Bringing up one database" on page 6-8 for an example of
how you can direct the Operator to take action once one database is up and
running.

■ Bring up both databases: In this case, you must configure the active standby pair.
Specifically, each database must meet all of the following conditions:

– The TimesTen agent in the container is running.

– The TimesTen instance in the container is running.

– The database is loaded.

– The replication scheme is defined in both databases.

– The replication agents are started and are running.

– One database must be in the ACTIVE state and the other database must be in
the STANDBY state.

If these conditions are met, the Operator moves the TimesTenClassic object to the
Normal state. If any of these conditions are not met, the TimesTenClassic object
remains in the ManualInterventionRequired state.

If you cannot bring up either database, the TimesTenClassic object remains in the
ManualInterventionRequired state.

You direct the Operator to examine the databases by specifying the reexamine CRD
syntax element. Every pollingInterval, the Operator examines the value of
reexamine. If the reexamine value has changed since the last iteration for this
TimesTenClassic object, the Operator examines the state of the TimesTen containers for
this object. See "TimesTenClassicSpecSpec" on page 11-3 for more information on the
pollingInterval and the reexamine CRD syntax elements.

The examination of the databases is performed exactly one time after you change the
reexamine value. If the required conditions were not met, you may again attempt to
meet them. You must then modify the reexamine value again to cause the Operator to
reexamine the databases.

Note that whenever a TimesTenClassic object changes state, a Kubernetes Event is
created. You can monitor these events with the kubectl describe command to be
informed of such state transitions.

Bringing up one database
This section assumes you have manually repaired or have manually performed
maintenance on one of the databases associated with the TimesTenClassic object. The
TimesTenClassic object is currently in the ManualInterventionRequired state. You
now want to direct the Operator to treat the repaired database as the active, to perform
the necessary steps to duplicate this database to the standby, and to bring up both
databases, such that both are running and operating successfully.

Bringing up one database

Managing and Monitoring Your Active Standby Pairs 6-9

Recall that all of these conditions must be met for the database:

■ TimesTen agent in the container is running.

■ TimesTen daemon (the instance) in the container is running.

■ TimesTen database is loaded.

■ There is no replication scheme in the database.

■ The replication agent is not running.

■ The replication state is IDLE.

These sections show you how to verify the conditions are met for the database and
how to set the reexamine value:

■ Verify the conditions are met for the database

■ Set the reexamine value

Verify the conditions are met for the database
Perform these steps to ensure the conditions are met for the database (the database to
be the active). In this example, sample-1 will be the new active.

Note: These steps require you to use TimesTen utilities and TimesTen built-in
procedures. See "Utilities" and "Built-In Procedures" in the Oracle TimesTen In-Memory
Database Reference for details.

1. Confirm the TimesTenClassic object (sample, in this example) is in the
ManualInterventionRequired state (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample ManualInterventionRequired sample-0 12h

2. Use the kubectl exec -it command to invoke the shell within the sample-1 Pod
that contains the TimesTen database. (This database will be the new active.)

The remaining procedures take place within this shell.

% kubectl exec -it sample-1 -c tt -- /usr/bin/su - oracle

3. Use the ttDaemonAdmin utility to start TimesTen daemon (if not already started).
Then use the ttAdmin utility to load the TimesTen database into memory (if not
already loaded).

% ttDaemonAdmin -start
TimesTen Daemon (PID: 5948, port: 6624) startup OK.
% ttAdmin -ramLoad sample
RAM Residence Policy : manual
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Open

4. Use the ttIsql utility to connect to the sample database. Then, call the ttRepStop
built-in procedure to stop the replication agent.

% ttIsql sample

Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.

Bringing up one database

6-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStop;

5. From within ttIsql, use the SQL DROP ACTIVE STANDBY PAIR statement to drop the
active standby pair replication scheme. Then use the ttIsql repschemes command
to verify there are no replication schemes in the database. Exit from ttIsql.

Command> DROP ACTIVE STANDBY PAIR;
Command> repschemes;

0 replication schemes found.

6. Use the ttStatus utility to verify the TimesTen daemon is running and the
replication agent is not running.

% ttStatus
TimesTen status report as of Sat Apr 24 02:14:15 2021

Daemon pid 5948 port 6624 instance instance1
TimesTen server pid 5955 started on port 6625
--
--
Data store /tt/home/oracle/datastore/sample
Daemon pid 5948 port 6624 instance instance1
TimesTen server pid 5955 started on port 6625
There are 15 connections to the data store
Shared Memory KEY 0x0a100c60 ID 196609
PL/SQL Memory Key 0x0b100c60 ID 229378 Address 0x5000000000
Type PID Context Connection Name ConnID
Process 10418 0x000000000218a6e0 sample 2
Process 8338 0x0000000001cbb6e0 sample 1
Subdaemon 5953 0x00000000015075f0 Manager 2047
Subdaemon 5953 0x0000000001588540 Rollback 2046
Subdaemon 5953 0x0000000001607210 Checkpoint 2041
Subdaemon 5953 0x00007f132c0008c0 Flusher 2045
Subdaemon 5953 0x00007f132c080370 Log Marker 2040
Subdaemon 5953 0x00007f13340008c0 Monitor 2044
Subdaemon 5953 0x00007f133407f330 HistGC 2037
Subdaemon 5953 0x00007f13380008c0 Aging 2042
Subdaemon 5953 0x00007f133807f330 AsyncMV 2039
Subdaemon 5953 0x00007f133c0008c0 Deadlock Detector 2043
Subdaemon 5953 0x00007f133c07f330 IndexGC 2038
Subdaemon 5953 0x00007f135c0008c0 Garbage Collector 2035
Subdaemon 5953 0x00007f13600e8e20 XactId Rollback 2036
Open for user connections
RAM residence policy: Manual
Data store is manually loaded into RAM
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group oracle

Bringing up one database

Managing and Monitoring Your Active Standby Pairs 6-11

End of report

You have successfully verified the conditions for the database. The database is up and
running. The Operator will treat this database as the active. You are now ready to set
the value for the reexamine CRD syntax element.

Set the reexamine value
This example shows you how to set the reexamine value in the TimesTenClassic object
definition (sample, in this example). The example also illustrates the action the
Operator takes after the reexamine value has been changed.

1. Set the reexamine value. The value must be different than the current value for the
TimesTenClassic object. When the Operator examines this value and notices it has
changed since the last iteration, it will take appropriate action.

Use the kubectl edit command to edit the TimesTenClassic object.

■ If there is a line for reexamine in the file, then modify its value. It must be
different than the current value.

■ If there is no line for reexamine in the file, then add a line and specify a value.

In this example, there is no reexamine line. This example adds the reexamine line
and sets the value for reexamine to April22reexamine1 (represented in bold).

Note: Not all output is shown.

% kubectl edit timestenclassic sample
Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
file will be reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
...
 name: sample
 namespace: mynamespace
...
repCreateStatement: |
 create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
 RETURN TWOSAFE
 store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
 store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
spec:
 ttspec:
 bothDownBehavior: Best
 dbConfigMap:
 - sample
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullPolicy: Always
 imagePullSecret: sekret
 storageClassName: oci
 storageSize: 250G
 reexamine: April22reexamine1
...
timestenclassic.timesten.oracle.com/sample edited

Bringing up one database

6-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

2. Use the kubectl get command to assess the state of the sample TimesTenClassic
object. Observe how the state changes as you issue multiple kubectl get
commands. Also note that the Operator has successfully configured sample-1 to
be the active.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Reexamine None 68m
% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample ConfiguringActive None 68m
% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample StandbyDown sample-1 68m
% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-1 71m

3. Use the kubectl describe command to further review the actions of the Operator
(represented in bold).

Not all output is shown:

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
...
Kind: TimesTenClassic
...
Rep Create Statement: create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
RETURN TWOSAFE
store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999

Spec:
 Ttspec:
 Both Down Behavior: Best
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Reexamine: April22reexamine1
 Stop Managing: April21Stop1
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Classic Upgrade Status:
 Active Start Time: 0
 Active Status:
 Image Update Pending: false
 Last Upgrade State Switch: 0
 Prev Reset Upgrade State:
 Prev Upgrade State:
 Standby Start Time: 0
 Standby Status:

Bringing up one database

Managing and Monitoring Your Active Standby Pairs 6-13

 Upgrade Start Time: 0
 Upgrade State:
 Active Pods: sample-1
 High Level State: Normal
 Last Event: 54
 Last High Level State Switch: 1619230912
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 475
 Db Updatable: No
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1619231126
 Pod IP: 10.244.7.89
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image:
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: false
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Standby
 Local Commit: false
 Name: sample-0
 Schema File: false
 Using Twosafe: false
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 476
 Db Updatable: Yes
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1619231126
 Pod IP: 10.244.6.149
 Pod Phase: Running
 Prev High Level State: Healthy

Bringing up one database

6-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Prev Image:
 Replication Status:
 Last Time Rep State Changed: 1619228670
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: false
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Active
 Local Commit: false
 Name: sample-1
 Schema File: false
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine: April22reexamine1
 Prev Stop Managing: April21Stop1
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0 store
"sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 58m ttclassic TimesTenClassic was Normal, now
ManualInterventionRequired
 - StateChange 46m ttclassic Pod sample-0 Daemon Down
 - StateChange 41m ttclassic Pod sample-1 Daemon Down
 - StateChange 41m ttclassic Pod sample-1 Daemon Up
 - StateChange 41m ttclassic Pod sample-1 Database Unloaded
 - StateChange 40m ttclassic Pod sample-1 Database Loaded
 - StateChange 40m ttclassic Pod sample-1 RepState IDLE
 - StateChange 40m ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 17m ttclassic Pod sample-1 Database Updatable
 - StateChange 17m ttclassic Pod sample-1 RepScheme None
 - StateChange 4m21s ttclassic TimesTenClassic was
ManualInterventionRequired, now Reexamine
 - Error 4m16s ttclassic Active error: Daemon Down
 - StateChange 4m16s ttclassic TimesTenClassic was Reexamine, now
ConfiguringActive
 - StateChange 4m10s ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 4m10s ttclassic Pod sample-1 RepScheme Exists
 - StateChange 4m10s ttclassic Pod sample-1 RepAgent Running
 - StateChange 4m8s ttclassic TimesTenClassic was ConfiguringActive,
now StandbyDown
 - StateChange 4m3s ttclassic Pod sample-0 Daemon Up
 - StateChange 4m3s ttclassic Pod sample-0 Database Unloaded
 - StateChange 3m56s ttclassic Pod sample-0 Database None
 - StateChange 3m42s ttclassic Pod sample-0 Database Loaded

Suspending the management of a TimesTenClassic object

Managing and Monitoring Your Active Standby Pairs 6-15

 - StateChange 3m42s ttclassic Pod sample-0 Database Not Updatable
 - StateChange 3m42s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 3m42s ttclassic Pod sample-0 RepState IDLE
 - StateChange 3m36s ttclassic Pod sample-0 RepAgent Running
 - StateChange 3m36s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 3m36s ttclassic TimesTenClassic was StandbyDown, now
Normal

4. Use the kubectl exec -it command to invoke the shell within the sample-1 Pod
that contains the TimesTen database. Then, verify you can connect to the active
database.

% kubectl exec -it sample-1 -c tt -- /usr/bin/su - oracle
$ ttIsql sample

Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStateGet;
< ACTIVE >
1 row found.

5. Use the kubectl exec -it command to invoke the shell within the sample-0 Pod
that contains the TimesTen database. Then, verify you can connect to the standby
database.

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle
% ttIsql sample

Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStateGet;
< STANDBY >
1 row found.

The Operator is now managing and monitoring your TimesTenClassic object. The
TimesTenClassic object is in the Normal state. Both databases are up and running and
ready for use.

Suspending the management of a TimesTenClassic object
These sections discuss why you may want to suspend the management of your
TimesTenClassic object by the Operator and then how to do it:

Suspending the management of a TimesTenClassic object

6-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

■ Overview

■ Suspend management of the TimesTenClassic object

Overview
The Operator periodically examines the state of the TimesTen instances and the
databases associated with each TimesTenClassic object. It takes actions to repair
anything that is broken. You may have a situation in which you want to manually
perform maintenance operations. In such a situation, you do not want the Operator to
interfere and attempt to perform repair operations.

You could stop the Operator (by deleting the Deployment of the
timestenclassic-operator). This action prevents the Operator from interfering. See
"Revert to manual control" on page 6-26 for more information. However, if you have
more than one TimesTenClassic object and you delete the Operator, this interferes with
the management of all the TimesTenClassic objects, when perhaps only one of them
needs manual intervention.

Alternatively, you can direct the Operator to take no action for one TimesTenClassic
object by specifying the stopManaging CRD syntax element for this TimesTenClassic
object. See "TimesTenClassicSpecSpec" on page 11-3 for more information on this
element. The Operator examines the value of stopManaging and if it has changed since
the last time the Operator examined it, the Operator changes the state of the
TimesTenClassic object to ManualInterventionRequired. This causes the Operator to
no longer examine the status of the TimesTen Pods, the containers, the instances, and
the databases associated with the TimesTenClassic object. The Operator takes no action
on the object or its Pods.

When you want the Operator to manage the TimesTenClassic object again, you change
the value of the reexamine CRD syntax element. See "Understanding the
ManualInterventionRequired state" on page 6-7 for more information on the
ManualInterventionRequired state and the reexamine CRD syntax element.

In this way, you can perform manual operations on TimesTen without deleting the
Deployment of the timestenclassic-operator.

Suspend management of the TimesTenClassic object
This example illustrates how to use the stopManaging CRD syntax element to direct
the Operator to stop managing one of the TimesTenClassic objects running in your
Kubernetes cluster. In this example, there are two TimesTenClassic objects (sample and
sample2) that are running. There is a requirement for you to perform manual
maintenance operations on the TimesTen databases associated with one of the objects
(sample, in this example). You want the Operator to stop managing this sample
TimesTenClassic object. However, you want the Operator to continue managing the
other TimesTenClassic object (sample2, in this example).

Perform these steps:

1. Review the Pods that are running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 6m33s
sample-1 2/2 Running 0 6m32s
sample2-0 2/2 Running 0 6m32s
sample2-1 2/2 Running 0 6m32s
timestenclassic-operator-846cb5c97c-cxbl2 1/1 Running 0 4d20h

Suspending the management of a TimesTenClassic object

Managing and Monitoring Your Active Standby Pairs 6-17

2. Confirm the sample TimesTenClassic object is in the Normal state. Recall that you
want to perform maintenance on the TimesTen databases associated with this
object.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 13m

3. Set the stopManaging value. The value must be different than the current value for
the TimesTenClassic object. When the Operator examines this value and notices it
has changed since the last iteration, it will take appropriate action.

Use the kubectl edit command to edit the TimesTenClassic object.

■ If there is a line for stopManaging in the file, then modify its value. It must be
different than the current value.

■ If there is no line for stopManaging in the file, then add a line and specify a
value.

In this example, there is no stopManaging line. This example adds the
stopManaging line and sets the value for stopManaging to April21Stop1
(represented in bold).

Note: Not all output is shown:

% kubectl edit timestenclassic sample
Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
file will be reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
...
 name: sample
 namespace: mynamespace
...
repCreateStatement: |
 create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
 RETURN TWOSAFE
 store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
 store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
spec:
 ttspec:
 bothDownBehavior: Best
 dbConfigMap:
 - sample
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullPolicy: Always
 imagePullSecret: sekret
 storageClassName: oci
 storageSize: 250G
 stopManaging: April21Stop1
...
timestenclassic.timesten.oracle.com/sample edited

Locating the Operator

6-18 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

4. Use the kubectl get command to check the state of the sample TimesTenClassic
object. Note that the sample TimesTenClassic object has transitioned to the
ManualInterventionRequired state. This is the expected behavior after changing
the stopManaging value to a new value.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample ManualInterventionRequired sample-0 15m

The sample TimesTenClassic object is in the ManualInterventionRequired state. The
Operator has suspended the monitoring and the management of the sample
TimesTenClassic object. It will take no further action on this TimesTenClassic object or
its Pods. You can now perform manual operations on your TimesTen databases. When
you have completed such operations and are ready for the Operator to resume
management, proceed to "Bringing up one database" on page 6-8 to complete the
process.

Locating the Operator
The Operator is configured in your Kubernetes cluster using a Deployment.
Kubernetes automatically monitors the Operator and restarts it if it fails. The Operator
runs in a Pod and the name of the Operator begins with timestenclassic-operator,
followed by arbitrary characters to make the name unique. If you specify multiple
replicas when you deploy the Operator, there are multiple Pods. Only one Pod is
active at a time. The remainder of the Pods wait for the active to fail, and if it does,
then one of the Pods becomes active. Active standby pairs of TimesTen databases,
provisioned by the Operator, continue to function if the Operator fails. When a new
Operator is started by Kubernetes, it automatically monitors and manages all existing
active standby pairs of databases.

Use the kubectl get pods command to display the Pods that are running the Operator.
In this example, there is one Pod for the Operator. When you deployed the Operator,
you specified the value of 1 for the replicas field. Therefore, Kubernetes created one
Pod. See "Deploying the Operator" on page 2-6 for information on the deployment of
the Operator.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timestenclassic-operator-5d7dcc7948-8mnz4 1/1 Running 0 3m21s

Managing the TimesTen databases
The Operator strives to keep your active standby pair of databases running once they
are deployed. Kubernetes manages the lifecycle of the Pods. It recreates the Pods if
they fail. It also recreates the Pods on available Kubernetes cluster nodes, if the nodes
on which the Pods are running fail. The Operator monitors TimesTen running in the
Pods, and initiates the appropriate operations to keep the pair of databases
operational. These operations are done automatically by the Operator, and should
require minimal human intervention.

These sections discuss the manual operations you can perform:

■ Manually invoke TimesTen utilities

■ Modify TimesTen connection attributes

■ Revert to manual control

■ Delete an active standby pair of TimesTen databases

Managing the TimesTen databases

Managing and Monitoring Your Active Standby Pairs 6-19

Manually invoke TimesTen utilities
You can use the kubectl exec -it command to manually invoke TimesTen utilities on
your TimesTen instances. This command invokes shells in the Pods and enables you to
control the running of TimesTen in the Pods.

TimesTen runs in the tt container, as the oracle user. Once you have established a
shell in a Pod, use the su - oracle command to switch to the oracle user. This
automatically configures your environment so you can run the TimesTen utilities.

This example shows how to use the kubectl exec -it command to invoke the shell
within the sample-0 Pod that contains the TimesTen database. Then, you can run the
ttIsql utility.

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle
% ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
Command>

Modify TimesTen connection attributes
TimesTen uses connection attributes to define the attributes of a database. There are
three types of connection attributes:

■ Data store attributes: Define the characteristics of a database that can only be
changed by destroying and recreating the database.

■ First connection attributes: Define the characteristics of a database that can be
changed by unloading and reloading the database into memory.

■ General connection attributes: Control how applications access the database. These
attributes persist for the duration of the connection.

For more information on TimesTen connection attributes, see "List of attributes" in the
Oracle TimesTen In-Memory Database Reference and "Connection attributes for Data
Manager DSNs or Server DSNs" in the Oracle TimesTen In-Memory Database Operations
Guide.

In a Kubernetes environment:

■ You can only modify data store attributes by deleting the TimesTenClassic object
and the PersistentVolumeClaims associated with the TimesTenClassic object.
Doing so results in the deletion of the TimesTen databases. See "Delete an active

Note: The Operator is still querying the status of the Pod, and the
status of TimesTen within the Pod. If you invoke a command that
disrupts the functioning of either the Pod or TimesTen, the Operator
may act to try to fix what you did.

Managing the TimesTen databases

6-20 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

standby pair of TimesTen databases" on page 6-29 and "Cleanup" on page A-19 for
information on the deletion process.

■ You can modify first connection and general connection attributes without
deleting the TimesTenClassic object (which deletes the databases) and the
PersistentVolumeClaims associated with the TimesTenClassic object. Note that
there are TimesTen restrictions when modifying some of the first connection
attributes. See "List of attributes" in the Oracle TimesTen In-Memory Database
Reference.

To modify first or general connection attributes:

■ You must first edit the db.ini file. Complete the procedure in the "Manually edit
the db.ini file" on page 6-20 section. This section must be completed first.

Then, take these steps:

■ If you are modifying first connection attributes, follow the procedure in the
"Modifying first connection attributes" on page 6-22 section.

■ If you are modifying general connection attributes, follow the procedure in the
"Modifying general connection attributes" on page 6-24 section.

Manually edit the db.ini file
Complete this section if you are modifying first or general connection attributes or
both. This section must be completed before proceeding to the "Modifying first
connection attributes" on page 6-22 or the "Modifying general connection attributes"
on page 6-24 sections.

To modify first or general connection attribute requires a change in the sys.odbc.ini
file.

If you have already created your active standby pair of TimesTen databases by creating
a TimesTenClassic object, and you now want to change one or more first or general
connection attributes in your sys.odbc.ini file, you must change the db.ini file.

The details as to how you should modify your db.ini file depends on the facility
originally used to contain the db.ini file. (Possible facilities include ConfigMaps,
Secrets, or init containers. See "Populating the /ttconfig directory" on page 3-6 for
details.)

In this example, the ConfigMap facility was originally used to contain the db.ini file
and to populate the /ttconfig directory of the TimesTen containers. The example
modifies the sample ConfigMap.

The steps are:

1. Use the kubectl describe command to review the contents of the db.ini file
(represented in bold) located in the original sample ConfigMap.

5 kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

scott/tiger

Managing the TimesTen databases

Managing and Monitoring Your Active Standby Pairs 6-21

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create sequence scott.s;
create table scott.emp (id number not null primary key, name char (32));

Events: <none>

2. Use the kubectl edit command to modify the db.ini file in the original sample
ConfigMap. Change the PermSize first connection attribute to 600 (represented in
bold). Add the TempSize first connection attribute and set its value to 300
(represented in bold). Add the ConnectionCharacterSet general connection
attribute and set its value to AL32UTF8 (represented in bold).

% kubectl edit configmap sample
Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
file will be reopened with the relevant failures.
#
apiVersion: v1
data:
 adminUser: |
 scott/tiger
 db.ini: |
 PermSize=600
 TempSize=300
 ConnectionCharacterSet=AL32UTF8
 DatabaseCharacterSet=AL32UTF8
 schema.sql: |
 create sequence scott.s;
 create table scott.emp (id number not null primary key, name char (32));
kind: ConfigMap
metadata:
 creationTimestamp: "2020-09-15T19:23:59Z"
 name: sample
 namespace: mynamespace
 resourceVersion: "71907255"
 selfLink: /api/v1/namespaces/mynamespace/configmaps/sample
 uid: 0171ff7f-f789-11ea-82ad-0a580aed0453
...
configmap/sample edited

3. Use the kubectl describe command to verify the changes to the sample
ConfigMap. (The changes are represented in bold.)

% kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
schema.sql:

create sequence scott.s;
create table scott.emp (id number not null primary key, name char (32));

Managing the TimesTen databases

6-22 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

adminUser:

scott/tiger

db.ini:

PermSize=600
TempSize=300
ConnectionCharacterSet=AL32UTF8
DatabaseCharacterSet=AL32UTF8

Events: <none>

You have successfully changed the sample ConfigMap. If you are modifying first
connection attributes, proceed to the "Modifying first connection attributes" on
page 6-22 section. If you are modifying only general connection attributes, proceed to
the "Modifying general connection attributes" on page 6-24 section.

Modifying first connection attributes
If you have not modified the db.ini file, proceed to the "Manually edit the db.ini file"
on page 6-20 section. You must now delete the standby Pod and then delete the active
Pod. When you delete a Pod that contains a container running TimesTen, the Operator
creates a new Pod to replace the deleted Pod. This new Pod contains a new
sys.odbc.ini file which is created from the contents of the db.ini file located in the
/ttconfig directory.

Perform these steps to delete the standby Pod.

1. Use the kubectl get command to determine which Pod is the standby Pod for the
sample TimesTenClassic object. The active Pod is the Pod represented in the
ACTIVE column. The standby Pod is the other Pod (not represented in the ACTIVE
column). Therefore, for the sample TimesTenClassic object, the active Pod is
sample-0, (represented in bold) and the standby Pod is sample-1.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 47h

2. Delete the standby Pod (sample-1, in this example). This results in the Operator
creating a new standby Pod to replace the deleted Pod. When the new standby
Pod is created, it will use the newly modified sample ConfigMap. (You modified
this ConfigMap in the "Manually edit the db.ini file" on page 6-20 section.)

% kubectl delete pod sample-1
pod "sample-1" deleted

3. Use the kubectl get command to verify the standby Pod is up and running and
the state is Normal.

Note that the state is StandbyDown (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample StandbyDown sample-0 47h

Wait a few minutes, then run the command again. Note that the state has changed
to Normal (represented in bold).

% kubectl get ttc sample

Managing the TimesTen databases

Managing and Monitoring Your Active Standby Pairs 6-23

NAME STATE ACTIVE AGE
sample Normal sample-0 47h

4. Use the kubectl exec -it command to invoke the shell in the standby Pod
(sample-1, in this example). Then, run the ttIsql utility to connect to the sample
database. Note the new PermSize value of 600 and the new TempSize value of 300
in the connection output (represented in bold).

% kubectl exec -it sample-1 -c tt -- /usr/bin/su - oracle
% ttIsql sample
Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

5. Fail over from the active Pod to the standby Pod. See "Failover" on page 10-27 for
details of the fail over process. Before you begin this step, ensure you quiesce your
applications and you use the ttRepAdmin -wait command to wait until replication
is caught up, such that all transactions that were executed on the active database
have been replicated to the standby database. Once the standby is caught up, fail
over from the active database to the standby by deleting the active Pod. When you
delete the active Pod, the Operator automatically detects the failure and promotes
the standby database to be the active.

Delete the active Pod (sample-0, in this example).

% kubectl delete pod sample-0
pod "sample-0" deleted

6. Wait a few minutes, then use the kubectl get command to verify the active Pod is
now sample-1 for the sample TimesTenClassic object and the state is Normal
(represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-1 47h

7. Use the kubectl exec -it command to invoke the shell in the active Pod
(sample-1, in this example). Then, run the ttIsql utility to connect to the sample
database. Note the new PermSize value of 600 and the new TempSize value of 300
in the connection output (represented in bold).

% kubectl exec -it sample-1 -c tt -- /usr/bin/su - oracle
Last login: Sun Oct 11 15:50:29 UTC 2020 on pts/0
[oracle@sample-1 ~]$ ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;

Managing the TimesTen databases

6-24 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

8. Use the kubectl exec -it command to invoke the shell in the standby Pod
(sample-0, in this example). Then, run the ttIsql utility to connect to the sample
database. Note the new PermSize value of 600 and the new TempSize value of 300
in the connection output (represented in bold).

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle
% ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the PermSize and the TempSize first connection
attributes.

Modifying general connection attributes
If you have not modified the db.ini file, proceed to the "Manually edit the db.ini file"
on page 6-20 section. You can either directly modify the sys.odbc.ini file for the
active TimesTen database and the sys.odbc.ini file for the standby TimesTen
database or you can follow the steps in the "Modifying first connection attributes" on
page 6-22 section. The first approach (modifying the sys.odbc.ini file directly) is less
disruptive.

This section discusses the procedure for directly modifying the sys.odbc.ini files.

The sys.odbc.ini file is located in the TimesTen container of the Pod containing the
active TimesTen database and in the TimesTen container of the Pod containing the
standby TimesTen database. After you complete the modifications to the sys.odbc.ini
files, subsequent applications can connect to the database using these general
connection attributes.

This example illustrates how to edit the sys.odbc.ini files.

1. Use the kubectl exec -it command to invoke a shell in the active Pod. (In this
example, sample-0 is the active Pod.)

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle
Last login: Sat Oct 10 22:43:26 UTC 2020 on pts/8

2. Verify the current directory (/tt/home/oracle).

% pwd
/tt/home/oracle

3. Navigate to the directory where the sys.odbc.ini file is located. The
sys.odbc.ini file is located in the /tt/home/oracle/instances/instance1/conf
directory. Therefore, navigate to the instances/instance1/conf directory.

% cd instances/instance1/conf

Managing the TimesTen databases

Managing and Monitoring Your Active Standby Pairs 6-25

4. Edit the sys.odbc.ini file, adding, modifying, or deleting the general connection
attributes for your DSN. (sample, in this example.) For a list of the general
connection attributes, see "List of attributes" in the Oracle TimesTen In-Memory
Database Reference.

This example modifies the sample DSN, adding the ConnectionCharacterSet
general connection attribute and setting its value equal to AL32UTF8 (represented
in bold).

vi sys.odbc.ini

[ODBC Data Sources]
sample=TimesTen 18.1 Driver
tt=TimesTen 18.1 Driver

[sample]
Datastore=/tt/home/oracle/datastore/sample
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
...

5. Use the ttIsql utility to connect to the sample database and verify the value of the
ConnectionCharacterSet attribute is AL32UTF8 (represented in bold).

% ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the sys.odbc.ini file located in the TimesTen
container of the active Pod (in this example, sample-0). Use the same procedure to
modify the sys.odbc.ini file located in the TimesTen container of the standby Pod (in
this example, sample-1).

For example:

1. Use the kubectl exec -it command to invoke a shell in the standby Pod
(sample-1, in this example).

% kubectl exec -it sample-1 -c tt -- /usr/bin/su - oracle

Note: Ensure that you only make modifications to the TimesTen
general connection attributes. Data store attributes and first
connection attributes cannot be modified by directly editing the
sys.odbc.ini file.

Managing the TimesTen databases

6-26 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Last login: Sat Oct 10 23:08:08 UTC 2020 on pts/0

2. Verify the current directory (/tt/home/oracle).

% pwd
/tt/home/oracle

3. Navigate to the directory where the sys.odbc.ini file is located. The
sys.odbc.ini file is located in the /tt/home/oracle/instances/instance1/conf
directory. Therefore, navigate to the instances/instance1/conf directory.

% cd instances/instance1/conf

4. Edit the sys.odbc.ini file, adding, modifying, or deleting the same general
connection attributes that you modified for the active database. Therefore, this
example modifies the sample DSN, adding the ConnectionCharacterSet general
connection attribute and setting its value equal to AL32UTF8 (represented in bold).

vi sys.odbc.ini

[ODBC Data Sources]
sample=TimesTen 18.1 Driver
tt=TimesTen 18.1 Driver

[sample]
Datastore=/tt/home/oracle/datastore/sample
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
...

5. Use the ttIsql utility to connect to the sample database and verify the value of the
ConnectionCharacterSet attribute is AL32UTF8 (represented in bold).

% ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the sys.odbc.ini file located in the TimesTen
container of the active Pod (sample-0) and the sys.odbc.ini file located in the
TimesTen container of the standby Pod (sample-1). The ConnectionCharacterSet
general connection attribute has also been modified.

Revert to manual control
If you want to manually operate your active standby pair, you can delete the
timestenclassic-operator Deployment. The Operator stops, and does not restart.

Managing the TimesTen databases

Managing and Monitoring Your Active Standby Pairs 6-27

This affects all of the TimesTenClassic objects that are running in your Kubernetes
cluster. If you do not want the Operator to stop managing all of the TimesTenClassic
objects, you can suspend the management of individual TimesTenClassic objects. See
"Suspending the management of a TimesTenClassic object" on page 6-15 for
information.

The TimesTenClassic object, representing the active standby pair of TimesTen
databases, remains in Kubernetes, as do the other Kubernetes objects associated with
them. You can use the kubectl exec -it command to invoke shells in the Pods, and
then you can control Timesten that is running in those Pods.

If one or both Pods in your active standby pair fails, Kubernetes creates new ones to
replace them. This is due to the StatefulSet object that the Operator had previously
created in Kubernetes. However, since the Operator is not running the new Pods, it
cannot automatically start TimesTen. In this case, your active standby pair cannot be
configured or started. You are responsible for the operation of TimesTen in the Pods.

If you want the Operator to take control again, you must redeploy the Operator. Once
the Operator is redeployed, the Operator automatically identifies the TimesTenClassic
objects in your Kubernetes cluster, and will attempt to manage them again.

This example shows you how to manually control TimesTen.

1. Verify the Operator and the TimesTen databases are running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 18h
sample-1 2/2 Running 0 18h
timestenclassic-operator-5d7dcc7948-pzj58 1/1 Running 0 18h

2. Navigate to the /deploy directory where the operator.yaml resides. (kube_
files/deploy, in this example.)

% cd kube_files/deploy

3. Use the kubectl delete command to delete the Operator. The Operator is stopped
and no longer deployed.

% kubectl delete -f operator.yaml
deployment.apps "timestenclassic-operator" deleted

4. Verify the Operator is no longer running, but the TimesTen databases are.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 19h
sample-1 2/2 Running 0 19h

5. Use the kubectl exec -it command to invoke the shell in the Pod that runs
TimesTen.

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle
Last login: Wed Apr 8 14:30:45 UTC 2020 on pts/0

6. Run the ttStatus utility.

% ttStatus
TimesTen status report as of Wed Apr 8 14:36:31 2020

Daemon pid 183 port 6624 instance instance1
TimesTen server pid 190 started on port 6625
--

Managing the TimesTen databases

6-28 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

--
Data store /tt/home/oracle/datastore/sample
Daemon pid 183 port 6624 instance instance1
TimesTen server pid 190 started on port 6625
There are 20 connections to the data store
Shared Memory KEY 0x02200bbc ID 32769
PL/SQL Memory Key 0x03200bbc ID 65538 Address 0x5000000000
Type PID Context Connection Name ConnID
Replication 263 0x00007f99fc0008c0 LOGFORCE:140299698493184 2029
Replication 263 0x00007f9a040008c0 XLA_PARENT:140300350273280 2031
Replication 263 0x00007f9a080008c0 REPLISTENER:140300347123456 2030
Replication 263 0x00007f9a080acd60 RECEIVER:140299429472000 2028
Replication 263 0x00007f9a0c0008c0 FAILOVER:140300353423104 2032
Replication 263 0x00007f9a2c0009b0 TRANSMITTER(M):140299695343360 2034
Replication 263 0x00007f9a300008c0 REPHOLD:140300356572928 2033
Subdaemon 187 0x00000000023365b0 Manager 2047
Subdaemon 187 0x00000000023b57f0 Rollback 2046
Subdaemon 187 0x0000000002432cf0 Log Marker 2041
Subdaemon 187 0x000000000244fc00 Garbage Collector 2035
Subdaemon 187 0x00007f90c80008c0 Aging 2038
Subdaemon 187 0x00007f90d00008c0 Deadlock Detector 2044
Subdaemon 187 0x00007f90d001d7d0 HistGC 2039
Subdaemon 187 0x00007f90d40008c0 Checkpoint 2042
Subdaemon 187 0x00007f90d401d7d0 AsyncMV 2036
Subdaemon 187 0x00007f90d80008c0 Monitor 2043
Subdaemon 187 0x00007f90f808b360 IndexGC 2037
Subdaemon 187 0x00007f90fc0008c0 Flusher 2045
Subdaemon 187 0x00007f910004efd0 XactId Rollback 2040
Open for user connections
RAM residence policy: Always
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group oracle
End of report

7. Run the ttIsql utility to connect to the sample database and perform various
operations.

% ttIsql sample

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
Command> describe scott.emp;

Table SCOTT.EMP:
 Columns:
 *ID NUMBER NOT NULL
 NAME CHAR (32)

Managing the TimesTen databases

Managing and Monitoring Your Active Standby Pairs 6-29

1 table found.
(primary key columns are indicated with *)

Command> INSERT INTO scott.emp VALUES (1,'This is a test.');
1 row inserted.
Command> SELECT * FROM scott.emp;
< 1, This is a test. >
1 row found.

Delete an active standby pair of TimesTen databases
If you delete the TimesTenClassic object that represents the active standby pair of
TimesTen databases, Kubernetes automatically deletes all the Kubernetes objects and
the resources it is using. The StatefulSet, the Service, and the Pods, that are associated
with the pair are all deleted from Kubernetes. However, the PersistentVolumeClaims
(that contain the TimesTen databases) are not deleted. You must manually delete the
PersistentVolumeClaims (PVCs) after you delete the TimesTenClassic object. After you
manually delete the PVCs, the PersistentVolumes, holding the databases, are recycled
by Kubernetes. (You may be able to control this using the Kubernetes volume retention
policy, but this is not controlled by the Operator.)

As an example, use the kubectl delete command to delete the PVCs for the sample
databases.

% kubectl delete pvc tt-persistent-sample-0
persistentvolumeclaim "tt-persistent-sample-0" deleted
% kubectl delete pvc tt-persistent-sample-1
persistentvolumeclaim "tt-persistent-sample-1" deleted

Managing the TimesTen databases

6-30 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

7

Working with TimesTen Cache 7-1

7Working with TimesTen Cache

This chapter describes how to use TimesTen Cache in your Kubernetes environment.

Topics include:

■ Overview

■ Creating the metadata files and the Kubernetes facility

■ Creating the TimesTenClassic object

■ Monitoring the deployment of the TimesTenClassic object

■ Cleaning up the cache metadata on the Oracle Database

See Appendix B, "TimesTen Cache Example" for a complete example of configuring
and using TimesTen Cache in your Kubernetes environment. The example also
includes details on setting up the Oracle Database.

Overview
You can configure and then use TimesTen Cache in your Kubernetes environment. The
TimesTen Operator provides these metadata files for this purpose:

■ cacheUser: The cacheUser file is required. This file contains one line of the form:

cacheUser/ttPassword/oraPassword

where cacheUser is the user you want to designate as the TimesTen cache manager
user. This user must have the same name as the user whom you designated as the
cache administration user in the Oracle Database. The cache administration user
must already exist in the Oracle Database. Specify ttPassword as the TimesTen
password for the TimesTen cacheUser user (the TimesTen cache manager). The
oraPassword is the Oracle Database password you specified when you created the
cacheUser user in the Oracle Database.

The Operator creates the cacheUser user with the ttpassword in the TimesTen
database. This cacheUser user then serves as the cache manager user in your
TimesTen database. (Note that you do not need to create this TimesTen user. The
Operator does it for you.)

See "Create the Oracle database users" in the Oracle TimesTen Application-Tier
Database Cache User's Guide for information on the Oracle Database users. Also see
"cacheUser" on page 3-3 for more information on the cacheUser metadata file.

■ cachegroups.sql: The cachegroups.sql file is required. The contents of this file
contain the CREATE CACHE GROUP definitions. The file can also contain the LOAD
CACHE GROUP statement and the built-in procedures to update statistics on the cache

Overview

7-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

group tables (such as, ttOptEstimateStats and ttOptUpdateStats). See
"cachegroups.sql" on page 3-2 for more information on this file.

■ tnsnames.ora: The tnsnames.ora file is required. This file defines Oracle Net
Services to which applications connect. For TimesTen Cache, this file configures
the connectivity between the TimesTen and the Oracle Database (from which data
is being cached). In this context, TimesTen is the application that is the connection
to the Oracle Database. See "tnsnames.ora file" on page 3-6 for more information
on this file.

■ sqlnet.ora: The sqlnet.ora file is not required. It may be necessary depending
on your Oracle Database configuration. The file defines options for how client
applications communicate with the Oracle Database. In this context, TimesTen is
the application. The tnsnames.ora and sqlnet.ora files together define how an
application communicates with the Oracle Database. See "sqlnet.ora file" on
page 3-5 for information on this file.

■ db.ini: The db.ini file is required. The contents of this file contain TimesTen
connection attributes for your TimesTen databases, which will be included in
TimesTen's sys.odbc.ini file. You must specify the OracleNetServiceName and
the DatabaseCharacterSet connection attributes in this file. The
DatabaseCharacterSet value must match the value of the Oracle database
character set value. See "db.ini file" on page 3-4 for more information on this file.

■ schema.sql: The schema.sql file may be required. In TimesTen Cache, one or more
cache table users own the cache tables. If this cache table user is not the cache
manager user, then you must specify the schema.sql file and in it you must
include the schema user and assign the appropriate privileges to this schema user.
For example, if the oratt schema user was created in the Oracle Database, and this
user is not the TimesTen cache manager user, you must create the TimesTen oratt
user in this file. See "Create the Oracle Database users" on page B-1 for more
information on the schema users in the Oracle Database. Also see "schema.sql file"
on page 3-5 for more information on the schema.sql file.

The instance administrator uses the ttIsql utility to run this file immediately after
the database is created. This file is run before the Operator configures TimesTen
Cache or replication, so ensure there are no cache definitions in this file.

The Operator looks for the presence of the cacheUser and the cachegroups.sql files in
the /ttconfig directory of your TimesTen containers to determine if TimesTen Cache
should be configured. If these files are present, the Operator, creates the TimesTen
cache manager (from the contents of the cacheUser file) and starts the cache agent. The
cache manager then uses the ttIsql utility to run the cachegroups.sql file.

The contents of the cachegroups.sql file is run on the active database before it is
duplicated to the standby. If there are autorefresh cache groups specified in the
cachegroups.sql file, they are paused by the agent prior to duplicating the active
database to the standby. After the duplication process completes, these autorefresh
cache groups are re-enabled.

Once your active standby pair of TimesTen databases are created and rolled out, the
Operator does not monitor or manage TimesTen Cache. Specifically, the Operator does
not monitor the health of the cache agents, nor does it take further action to start or
stop them. In addition, the Operator does not verify that data is propagating correctly
between the TimesTen database and the Oracle Database.

If you delete your databases (by deleting the TimesTenClassic object), the Operator
automatically cleans up the Oracle Database metadata. If, however, you want to retain
the Oracle Database metadata, specify the cacheCleanUp field in your TimesTenClassic
object definition and set its value to false. See "Cleaning up the cache metadata on the

Creating the metadata files and the Kubernetes facility

Working with TimesTen Cache 7-3

Oracle Database" on page 7-10 and see the cacheCleanUp entry in Table 11–3,
" TimesTenClassicSpecSpec" for more information.

Creating the metadata files and the Kubernetes facility
You can include the cacheUser, cachegroups.sql, tnsnames.ora, sqlnet.ora, db.ini
and the schema.sql metadata files in one or more Kubernetes facilities (for example, in
a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this
/ttconfig directory. See "Populating the /ttconfig directory" on page 3-6 for more
information.

This example uses the ConfigMap facility to populate the /ttconfig directory in your
TimesTen containers.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_cachetest subdirectory. (The cm_cachetest
directory is used in the remainder of this example to denote this directory.)

% mkdir -p cm_cachetest

2. Navigate to the ConfigMap directory.

% cd cm_cachetest

3. Create the cacheUser metadata file in this ConfigMap directory (cm_cachetest, in
this example). The cacheUser file must contain one line of the form
cacheuser/ttpassword/orapassword, where cacheuser is the user you wish to
designate as the cache manager user in the TimesTen database, ttpassword is the
TimesTen password you wish to assign to this user, and orapassword is the Oracle
Database password that has already been assigned to the Oracle Database cache
administration user. Note that the cacheUser name in this file must match the
Oracle Database cache administration user.

In this example, the cacheuser2 user with password of oraclepwd was already
created in the Oracle Database. Therefore, supply cacheuser2 as the TimesTen
cache manager user. You can assign any TimesTen password to this TimesTen
cache manager user. This example assigns ttpwd.

vi cacheuser

cacheuser2/ttpwd/oraclepwd

4. Create the cachegroups.sql metadata file in this ConfigMap directory (cm_
cachetest, in this example). The cachegroups.sql file contains the cache group
definitions. In this example, a dynamic AWT cache group and a read-only cache
group are created. In addition, the LOAD CACHE GROUP statement is included to load
rows from the oratt.readtab cached table in the Oracle Database into the
oratt.readtab cache table in the TimesTen database.

vi cachegroups.sql

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)
);

Creating the metadata files and the Kubernetes facility

7-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

5. Create the tnsnames.ora metadata file in this ConfigMap directory (cm_cachetest,
in this example). See "tnsnames.ora file" on page 3-6 for more information on this
file.

vi tnsnames.ora

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.domain.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.domain.com)))

6. Create the sqlnet.ora metadata file in this ConfigMap directory (cm_cachetest,
in this example). See "sqlnet.ora file" on page 3-5 for more information on this file.

vi sqlnet.ora

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

7. Create the db.ini file in this ConfigMap directory (cm_cachetest, in this
example). In this db.ini file, define the PermSize, DatabaseCharacterSet, and the
OracleNetServiceName connection attributes. The DatabaseCharacterSet value
must match the database character set value in the Oracle Database. See "Create
the Oracle Database tables to be cached" on page B-4 for information on how to
query the nls_database_parameters system view to determine the Oracle
Database database character set. In this example, the value is AL32UTF8.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=Oracache

8. Create the schema.sql file in this ConfigMap directory (cm_cachetest, in this
example). In this example, create the oratt user. (In this example, also assume this
oratt user was previously created in the Oracle Database.) See "Create the Oracle
Database users" on page B-1 for information on the oratt user in the Oracle
Database.

Creating the metadata files and the Kubernetes facility

Working with TimesTen Cache 7-5

vi schema.sql

create user oratt identified by ttpwd;
grant admin to oratt;

9. Create the ConfigMap. The files in the cm_cachetest directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is cachetest. Replace cachetest with a name of
your choosing. (cachetest is represented in bold in this example.)

■ This example uses cm_cachetest as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_
cachetest with the name of your directory. (cm_cachetest is represented in
bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cachetest --from-file=cm_cachetest
configmap/cachetest created

10. Use the kubectl describe command to verify the contents of the ConfigMap.
(cachetest, in this example.) The metadata files are represented in bold.

% kubectl describe configmap cachetest;
Name: cachetest
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
tnsnames.ora:

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.domain.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.domain.com)))

cacheUser:

cacheuser2/ttpwd/oraclepwd

cachegroups.sql:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)

Creating the TimesTenClassic object

7-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

);

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

db.ini:

permSize=200
databaseCharacterSet=AL32UTF8
oracleNetServiceName=Oracache

schema.sql:

create user oratt identified by ttpwd;
grant admin to oratt;

sqlnet.ora:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

Events: <none>

You have successfully created and deployed the cachetest ConfigMap.

Creating the TimesTenClassic object
This section creates the TimesTenClassic object. See "Defining and creating the
TimesTenClassic object" on page 4-2 and "The TimesTenClassic object type" on
page 11-1 for detailed information on the TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, cachetest.) The YAML file contains the definitions for the
TimesTenClassic object. See "TimesTenClassicSpecSpec" on page 11-3 for
information on the fields that you must specify in this YAML file as well as the
fields that are optional.

In this example, note these fields:

■ name: Replace cachetest with the name of your TimesTenClassic object
(represented in bold).

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250G for storageSize. For
demonstration purposes, a value of 50G is adequate. See the storageSize and

Monitoring the deployment of the TimesTenClassic object

Working with TimesTen Cache 7-7

the logStorageSize entries in the Table 11–3, " TimesTenClassicSpecSpec" for
information.

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3).

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

■ dbConfigMap: This example uses one ConfigMap (called cachetest) for the
metadata files (represented in bold).

% vi cachetest.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: cachetest
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 imagePullPolicy: Always
 dbConfigMap:
 - cachetest

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, cachetest.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f cachetest.yaml
timestenclassic.timesten.oracle.com/cachetest created

You have successfully created the TimesTenClassic object in the Kubernetes cluster.
The process of deploying your TimesTen databases begins, but is not yet complete.

Monitoring the deployment of the TimesTenClassic object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get ttc cachetest
NAME STATE ACTIVE AGE
cachetest Initializing None 41s

2. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc cachetest
NAME STATE ACTIVE AGE
cachetest Normal cachetest-0 3m58s

Monitoring the deployment of the TimesTenClassic object

7-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

3. Use the kubectl describe command to view the active standby pair provisioning
in detail.

Note the following:

■ The cachetest Configmap has been correctly referenced in the dbConfigMap
field (represented in bold).

■ The cache agent is running in the active and the standby Pods (represented in
bold).

■ The cache administration user UID and password have been set in the active
and the standby Pods (represented in bold).

■ Two cache groups have been created in the active and the standby Pods
(represented in bold).

■ The replication agent is running in the active and the standby Pods
(represented in bold).

% kubectl describe ttc cachetest
Name: cachetest
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-10-24T03:29:48Z
 Generation: 1
 Resource Version: 78390500
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/cachetest
 UID: 2b18d81d-15a9-11eb-b999-be712d29a81e
Spec:
 Ttspec:
 Db Config Map:
 cachetest
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Active Pods: cachetest-0
 High Level State: Normal
 Last Event: 28
 Pod Status:
 Cache Status:
 Cache Agent: Running
 Cache UID Pwd Set: true
 N Cache Groups: 2
 Db Status:
 Db: Loaded
 Db Id: 30
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1603510527
 Pod IP: 10.244.7.92
 Pod Phase: Running

Monitoring the deployment of the TimesTenClassic object

Working with TimesTen Cache 7-9

 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: true
 Cg File: true
 High Level State: Healthy
 Intended State: Active
 Name: cachetest-0
 Schema File: true
 Cache Status:
 Cache Agent: Running
 Cache UID Pwd Set: true
 N Cache Groups: 2
 Db Status:
 Db: Loaded
 Db Id: 30
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1603510527
 Pod IP: 10.244.8.170
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 1603510411
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: true
 Cg File: true
 High Level State: Healthy
 Intended State: Standby
 Name: cachetest-1
 Schema File: true
 Rep Create Statement: create active standby pair "cachetest" on
 "cachetest-0.cachetest.mynamespace.svc.cluster.local", "cachetest" on
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" NO RETURN store
 "cachetest" on "cachetest-0.cachetest.mynamespace.svc.cluster.local"
 PORT 4444 FAILTHRESHOLD 0 store "cachetest" on
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" PORT 4444
 FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

Cleaning up the cache metadata on the Oracle Database

7-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 - Create 5m40s ttclassic Secret
tt2b18d81d-15a9-11eb-b999-be712d29a81e created
 - Create 5m40s ttclassic Service cachetest created
 - Create 5m40s ttclassic StatefulSet cachetest created
 - StateChange 4m28s ttclassic Pod cachetest-0 Agent Up
 - StateChange 4m28s ttclassic Pod cachetest-0 Release 18.1.4.11.0
 - StateChange 4m28s ttclassic Pod cachetest-0 Daemon Up
 - StateChange 3m18s ttclassic Pod cachetest-0 RepScheme None
 - StateChange 3m18s ttclassic Pod cachetest-0 RepAgent Not Running
 - StateChange 3m18s ttclassic Pod cachetest-0 RepState IDLE
 - StateChange 3m18s ttclassic Pod cachetest-0 Database Loaded
 - StateChange 3m18s ttclassic Pod cachetest-0 Database Updatable
 - StateChange 3m18s ttclassic Pod cachetest-0 CacheAgent Not Running
 - StateChange 2m57s ttclassic Pod cachetest-0 CacheAgent Running
 - StateChange 2m47s ttclassic Pod cachetest-1 Agent Up
 - StateChange 2m47s ttclassic Pod cachetest-1 Release 18.1.4.11.0
 - StateChange 2m46s ttclassic Pod cachetest-0 RepAgent Running
 - StateChange 2m46s ttclassic Pod cachetest-0 RepScheme Exists
 - StateChange 2m46s ttclassic Pod cachetest-0 RepState ACTIVE
 - StateChange 2m46s ttclassic Pod cachetest-1 Daemon Up
 - StateChange 2m9s ttclassic Pod cachetest-1 CacheAgent Running
 - StateChange 2m9s ttclassic Pod cachetest-1 Database Not Updatable
 - StateChange 2m9s ttclassic Pod cachetest-1 Database Loaded
 - StateChange 2m9s ttclassic Pod cachetest-1 RepAgent Not Running
 - StateChange 2m9s ttclassic Pod cachetest-1 RepScheme Exists
 - StateChange 2m9s ttclassic Pod cachetest-1 RepState IDLE
 - StateChange 2m3s ttclassic Pod cachetest-1 RepAgent Running
 - StateChange 118s ttclassic Pod cachetest-1 RepState STANDBY
 - StateChange 118s ttclassic TimesTenClassic was Initializing, now
Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) You are now ready to use TimesTen Cache in your Kubernetes
environment.

Cleaning up the cache metadata on the Oracle Database
When you create certain types of cache groups in a TimesTen database, TimesTen
stores metadata about that cache group in the Oracle Database. If you later delete that
TimesTen database, TimesTen does not automatically delete the metadata in the Oracle
Database. As a result, metadata can accumulate on the Oracle Database. See "Dropping
Oracle Database objects used by autorefresh cache groups" in the Oracle TimesTen
Application-Tier Database Cache User's Guide for more information.

However, in a Kubernetes environment, if you provide a cacheUser metadata file and
a cachegroups.sql metadata file when you initially create the TimesTenClassic object,
then, by default, the Operator automatically cleans up the Oracle Database metadata if
you delete that TimesTenClassic object.

 If you do not want the Operator to automatically clean up the Oracle Database, you
set the cacheCleanup field in the TimesTenClassic object definition to false. See the
cacheCleanup entry in Table 11–3, " TimesTenClassicSpecSpec" for more information.
Also see "The supported metadata files" on page 3-1 for information on the cacheUser
and the cachegroups.sql files.

8

Using Encryption for Data Transmission 8-1

8Using Encryption for Data Transmission

TimesTen replication and TimesTen Client/Server support the use of Transport Layer
Security (TLS) for communication between TimesTen instances.

This chapter details the process for configuring and using TLS in your Kubernetes
environment. This enables encrypted data transmission between your replicated
TimesTen databases and, if in a Client/Server environment, between your TimesTen
client applications and your TimesTen Server (your TimesTen database).

Topics include:

■ Creating TLS certificates for replication and Client/Server

■ Configuring TLS for replication

■ Configuring TLS for Client/Server

Creating TLS certificates for replication and Client/Server
By default, TimesTen replication transmits data between your TimesTen databases
unencrypted. In addition, in a TimesTen Client/Server environment, by default data is
transmitted unencrypted between your application and your TimesTen database.

You can choose to enable encryption for replication and for Client/Server through the
use of Transport Layer Security (TLS). TimesTen provides the ttCreateCerts utility to
generate self-signed certificates for TLS. For more information on TLS certificates and
wallets, see "About using certificates with TimesTen" in the Oracle TimesTen In-Memory
Database Security Guide.

The ttCreateCerts utility is located in the /bin directory of a TimesTen instance. The
utility creates three wallets: rootWallet, clientWallet, and serverWallet.

From your Linux development host, perform these steps to create the certificates.

1. Navigate to the bin directory of the installation and run the ttInstanceCreate
utility interactively to create an instance. Recall that the installation_dir
directory was created when you unpacked the TimesTen distribution. See
"Downloading TimesTen and the TimesTen Operator" on page 2-2 for information
on unpacking the TimesTen distribution.

Note: Java must be installed on your Linux development host in
order for you to use the ttCertsCreate utility. The utility searches for
Java according to the JRE_HOME, JAVA_HOME, and PATH settings.

Creating TLS certificates for replication and Client/Server

8-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

You have to create a TimesTen instance as the ttCreateCerts utility is run from a
TimesTen instance. For more information on the ttInstanceCreate utility, see
"ttInstanceCreate" in the Oracle TimesTen In-Memory Database Reference.

Create the instance directory (/scratch/ttuser/instance_dir, in this example),
then run the ttInstanceCreate utility, supplying the -name and the -location
parameters. This example uses instance1 as the name of the instance and uses
/scratch/ttuser/instance_dir as the location of the instance.

% mkdir /scratch/ttuser/instance_dir

% installation_dir/tt18.1.4.11.0/bin/ttInstanceCreate -name instance1
-location /scratch/ttuser/instance_dir
Creating instance in /scratch/ttuser/instance_dir/instance1 ...
INFO: Mapping files from the installation to /scratch/ttuser/
instance_dir/instance1/install

NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.

The startup script is located here :
 '/scratch/ttuser/instance_dir/instance1/startup/tt_instance1'

Run the 'setuproot' script :
 /scratch/ttuser/instance_dir/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate location.

The 18.1 Release Notes are located here :
 'installation_dir/tt18.1.4.11.0/README.html'

2. Set the TIMESTEN_HOME environment variable. This variable must be set before you
run the ttCertsCreate utility. From the bin directory of the instance, source the
ttenv.csh or the ttenv.sh script.

This example uses the bash Bourne-type shell. (Not all output is shown.)

% . /scratch/ttuser/instance_dir/instance1/bin/ttenv.sh
LD_LIBRARY_PATH set to
...
PATH set to
...
CLASSPATH set to
TIMESTEN_HOME set to /scratch/ttuser/instance_dir/instance1

3. Run the ttCreateCerts utility from the bin directory of the instance. This example
uses the -verbose qualifier to show detailed output. See "Generation of certificates
for TimesTen" in the Oracle TimesTen In-Memory Database Security Guide for more
information on the ttCreateCerts utility.

The default wallet directory is timesten_home/conf, where timesten_home is the
TimesTen instance home directory. This example uses this default wallet directory.

% /scratch/ttuser/instance_dir/instance1/bin/ttCreateCerts -verbose
Requested Certificates:
User Certificates:
Subject: CN=server1,C=US
Trusted Certificates:
Subject: CN=ecRoot,C=US
Requested Certificates:
User Certificates:
Subject: CN=client1,C=US
Trusted Certificates:

Configuring TLS for replication

Using Encryption for Data Transmission 8-3

Subject: CN=ecRoot,C=US
ttCreateCerts : certificates created in /scratch/ttuser/instance_dir/
instance1/conf

4. Review the wallet locations and the certificates (represented in bold). The
cwallet.sso in the serverWallet directory is the file you will supply as the
replicationWallet metadata file for replication and for the server in a
Client/Server environment. The cwallet.sso in the clientWallet directory is the
file you will use for the client in a Client/Server environment. See "The supported
metadata files" on page 3-1 for information on the replicationWallet and the
clientWallet metadata files. Also see "Configuring TLS for replication" on
page 8-3 and "Configuring TLS for Client/Server" on page 8-11 for information on
using these metadata files.

(These cwallet.sso files are also represented in bold).

% ls $TIMESTEN_HOME/conf
client1.cert root.cert server1.cert snmp.ini sys.ttconnect.ini
clientWallet rootWallet serverWallet sys.odbc.ini timesten.conf

% ls $TIMESTEN_HOME/conf/*Wallet*
/scratch/ttuser/instance_dir/instance1/conf/clientWallet:
cwallet.sso cwallet.sso.lck

/scratch/ttuser/instance_dir/instance1/conf/rootWallet:
cwallet.sso cwallet.sso.lck

/scratch/ttuser/instance_dir/instance1/conf/serverWallet:
cwallet.sso cwallet.sso.lck

You have successfully created the certificates that can be used for TLS for both
replication and TimesTen Client/Server. You are now ready to configure and use TLS
for replication, for Client/Server, or for both replication and Client/Server.

Configuring TLS for replication
You can configure TLS for replication to ensure secure network communication
between your replicated TimesTen databases. See "Transport Layer Security for
TimesTen replication" in the Oracle TimesTen In-Memory Database Security Guide for
detailed information.

These sections describe how to configure and use TLS for replication:

■ Create the metadata files and the Kubernetes facilities

■ Create the TimesTenClassic object

■ Monitor the deployment of the TimesTenClassic object

■ Verify that TLS is being used for replication

Create the metadata files and the Kubernetes facilities
The /ttconfig/replicationWallet metadata file is required for TLS support for
replication. (The /ttconfig directory is located in the containers of your TimesTen
databases.) This file must contain the cwallet.sso file (the Oracle wallet) that was
generated when you created the TLS certificates. Recall that this file was located in the
/scratch/ttuser/instance_dir/instance1/conf/serverWallet directory. See
"Creating TLS certificates for replication and Client/Server" on page 8-1 for
information on creating these certificates. This wallet contains the credentials that are

Configuring TLS for replication

8-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

used by TimesTen replication for configuring TLS encryption between your active
standby pair of TimesTen databases.

In addition to the /ttconfig/replicationWallet metadata file, you may use the other
supported metadata files. See "The supported metadata files" on page 3-1 for
information on these supported metadata files.

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this
/ttconfig directory. See "Populating the /ttconfig directory" on page 3-6 for more
information.

The example in the following sections illustrates how to include the
replicationWallet metadata file in a Kubernetes Secret. It also creates the db.ini, the
adminUser, and the schema.sql metadata files and includes these metadata files in a
ConfigMap:

■ Create the Kubernetes Secret

■ Create the ConfigMap

Create the Kubernetes Secret
This section creates the repl-tls Kubernetes Secret. The repl-tls Secret will contain
the replicationWallet metadata file.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory. This example
creates the serverWallet subdirectory. (The serverWallet directory is used in the
remainder of this example to denote this directory.)

% mkdir -p serverWallet

2. Copy the /scratch/ttuser/instance_
dir/instance1/conf/serverWallet/cwallet.sso file into the serverWallet
directory that you just created. Recall that this file was generated when you used
the ttCreateCerts utility to create the TLS certificates. See "Creating TLS
certificates for replication and Client/Server" on page 8-1 for information.

% cp /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso
serverWallet/cwallet.sso

3. Create the Kubernetes Secret.

In this example:

■ The name of the Secret is repl-tls. Replace repl-tls with a name of your
choosing. (repl-tls is represented in bold.)

■ The name of the metadata file required for TLS replication is
replicationWallet (represented in bold).

■ The location of the wallet directory is serverWallet (in this example,
represented in bold). If you use a different directory, replace serverWallet
with the name of your directory.

■ The name of the Oracle wallet is cwallet.sso (represented in bold).

Use the kubectl create command to create the Secret:

% kubectl create secret generic repl-tls

Configuring TLS for replication

Using Encryption for Data Transmission 8-5

--from-file=replicationWallet=serverWallet/cwallet.sso
secret/repl-tls created

You have successfully created and deployed the repl-tls Kubernetes Secret. The
replicationWallet/cwallet.sso file will later be available in the /ttconfig directory
of the TimesTen containers. In addition, the file will be available in the
/tt/home/oracle/replicationWallet directory of the TimesTen containers.

Create the ConfigMap
This section creates the repl-tls ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files.

These metadata files are not required for TLS, but are included as additional attributes
for your TimesTen databases. See "Understanding the configuration metadata and the
Kubernetes facilities" on page 3-1 for information on the metadata files and the
ConfigMap facility.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_replTLS subdirectory. (The cm_replTLS directory
is used in the remainder of this example to denote this directory.)

% mkdir -p cm_replTLS

2. Navigate to the ConfigMap directory.

% cd cm_replTLS

3. Create the db.ini file in this ConfigMap directory (cm_replTLS, in this example).
In this db.ini file, define the PermSize and DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file in this ConfigMap directory (cm_replTLS, in this
example). In this adminUser file, create the scott user with the tiger password.

vi adminUser

scott/tiger

5. Create the schema.sql file in this ConfigMap directory (cm_replTLS, in this
example). In this schema.sql file, define the s sequence and the emp table for the
scott user. The Operator will automatically initialize your database with these
object definitions.

vi schema.sql

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_replTLS directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

Configuring TLS for replication

8-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

In this example:

■ The name of the ConfigMap is repl-tls. Replace repl-tls with a name of
your choosing. (repl-tls is represented in bold in this example.)

■ This example uses cm_replTLS as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_
replTLS with the name of your directory. (cm_replTLS is represented in bold
in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap repl-tls --from-file=cm_replTLS
configmap/repl-tls created

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(repl-tls, in this example.)

% kubectl describe configmap repl-tls
Name: repl-tls
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

scott/tiger

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create sequence scott.s;
create table scott.emp (id number not null primary key, name char (32));

Events: <none>

You have successfully created and deployed the repl-tls ConfigMap.

Create the TimesTenClassic object
This section creates the TimesTenClassic object. See "Defining and creating the
TimesTenClassic object" on page 4-2 and "The TimesTenClassic object type" on
page 11-1 for detailed information on the TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, repltls.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" on page 11-3 for information on the fields
that you must specify in this YAML file as well as the fields that are optional.

In this example, the fields of particular interest for TLS replication are:

■ dbSecret: This example uses one Kubernetes Secret (called repl-tls) for the
replicationWallet metadata file.

Configuring TLS for replication

Using Encryption for Data Transmission 8-7

■ replicationCipherSuite: This field is required for TLS for replication. In this
example, the value is SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256. See
"Configuration for TLS for replication" in the Oracle TimesTen In-Memory
Database Security Guide and see the replicationCipherSuite entry in the
Table 11–3, " TimesTenClassicSpecSpec" in this book for more information.

■ replicationSSLMandatory: This field is optional. In this example, set
replicationSSLMandatory equal to 1. See "Configuration for TLS for
replication" in the Oracle TimesTen In-Memory Database Security Guide and see
the replicationSSLMandatory entry in the Table 11–3,
" TimesTenClassicSpecSpec" in this book for more information.

In addition, this example includes:

■ name: Replace repltls with the name of your TimesTenClassic object.

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250G for storageSize. For
demonstration purposes, a value of 50G is adequate. See the storageSize and
the logStorageSize entries in the Table 11–3, " TimesTenClassicSpecSpec" for
information.

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3).

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

■ dbConfigMap: This example uses one ConfigMap (called repl-tls) for the
db.ini, the adminUser, and the schema.sql metadata files.

% vi repltls.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: repltls
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 imagePullPolicy: Always
 dbConfigMap:
 - repl-tls
 dbSecret:
 - repl-tls
 replicationCipherSuite: SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 replicationSSLMandatory: 1

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, repltls.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f repltls.yaml

Configuring TLS for replication

8-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

timestenclassic.timesten.oracle.com/repltls created

You have successfully created the TimesTenClassic object in the Kubernetes cluster.
The process of deploying your TimesTen databases begins, but is not yet complete.

Monitor the deployment of the TimesTenClassic object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get ttc repltls
NAME STATE ACTIVE AGE
repltls Initializing None 50s

2. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc repltls
NAME STATE ACTIVE AGE
repltls Normal repltls-0 3m45s

3. Use the kubectl describe command to view the active standby pair provisioning
in detail.

Note the following have been correctly set in the repltls TimesTenClassic object
definition:

■ The repl-tls Secret has been correctly referenced in the dbSecret field
(represented in bold).

■ The repl-tls Configmap has been correctly referenced in the dbConfigMap
field (represented in bold).

■ The replicationCipherSuite field has been correctly set to SSL_ECDHE_
ECDSA_WITH_AES_128_GCM_SHA256 (represented in bold).

■ The replicationSSLMandatory field has been correctly set to 1 (represented in
bold).

Note: Not all of the output is shown in this example.

% kubectl describe ttc repltls
Name: repltls
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-10-16T18:51:43Z
 Generation: 1
 Resource Version: 75029797
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/repltls
 UID: a2915ef3-0fe0-11eb-8b9a-aaa0151611fe
Spec:
 Ttspec:

Configuring TLS for replication

Using Encryption for Data Transmission 8-9

 Db Config Map:
 repl-tls
 Db Secret:
 repl-tls
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Replication Cipher Suite: SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 Replication SSL Mandatory: 1
 Storage Class Name: oci
 Storage Size: 250G
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m17s ttclassic Secret
 tta2915ef3-0fe0-11eb-8b9a-aaa0151611fe created
 - Create 4m17s ttclassic Service repltls created
 - Create 4m17s ttclassic StatefulSet repltls created
 - StateChange 3m10s ttclassic Pod repltls-1 Agent Up
 - StateChange 3m10s ttclassic Pod repltls-1 Release 18.1.4.11.0
 - StateChange 3m10s ttclassic Pod repltls-1 Daemon Up
 - StateChange 2m3s ttclassic Pod repltls-0 Agent Up
 - StateChange 2m3s ttclassic Pod repltls-0 Release 18.1.4.11.0
 - StateChange 2m1s ttclassic Pod repltls-0 Daemon Up
 - StateChange 68s ttclassic Pod repltls-0 Database Loaded
 - StateChange 68s ttclassic Pod repltls-0 Database Updatable
 - StateChange 68s ttclassic Pod repltls-0 CacheAgent Not Running
 - StateChange 68s ttclassic Pod repltls-0 RepAgent Not Running
 - StateChange 67s ttclassic Pod repltls-0 RepState IDLE
 - StateChange 67s ttclassic Pod repltls-0 RepScheme None
 - StateChange 66s ttclassic Pod repltls-0 RepAgent Running
 - StateChange 66s ttclassic Pod repltls-0 RepScheme Exists
 - StateChange 66s ttclassic Pod repltls-0 RepState ACTIVE
 - StateChange 47s ttclassic Pod repltls-1 Database Loaded
 - StateChange 47s ttclassic Pod repltls-1 Database Not Updatable
 - StateChange 47s ttclassic Pod repltls-1 CacheAgent Not Running
 - StateChange 47s ttclassic Pod repltls-1 RepAgent Not Running
 - StateChange 47s ttclassic Pod repltls-1 RepScheme Exists
 - StateChange 47s ttclassic Pod repltls-1 RepState IDLE
 - StateChange 41s ttclassic Pod repltls-1 RepAgent Running
 - StateChange 36s ttclassic Pod repltls-1 RepState STANDBY
 - StateChange 36s ttclassic TimesTenClassic was Initializing,
now Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) You are now ready to verify that TLS is being used for
replication.

Verify that TLS is being used for replication
To verify TLS is being used for replication, perform the following steps:

1. Review the active (repltls-0, in this example) pod and the standby pod
(repltls-1, in this example).

% kubectl get pods
NAME READY STATUS RESTARTS AGE
repltls-0 2/2 Running 0 6m35s
repltls-1 2/2 Running 0 6m34s

Configuring TLS for replication

8-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

timestenclassic-operator-f84766548-tch7s 1/1 Running 0 28d

2. Optional: Use the kubectl exec -it command to invoke the shell in the active Pod
(repltls-0, in this example).

% kubectl exec -it repltls-0 -c tt -- /usr/bin/su - oracle

3. Optional: From the shell in the active pod, verify the cwallet.sso file is located in
the /tt/home/oracle/replicationWallet directory.

% ls /tt/home/oracle/replicationWallet
cwallet.sso

4. Optional: From the shell in the active pod, verify that the TLS replication-specific
values are correct in the timesten.conf configuration file. (This file is located in
the /tt/home/oracle/instances/instance1/conf directory.)

In particular, note that:

■ replication_wallet is correctly set to /tt/home/oracle/replicationWallet
(represented in bold).

■ replication_cipher_suite is correctly set to SSL_ECDHE_ECDSA_WITH_AES_
128_GCM_SHA256 (represented in bold).

■ replication_ssl_mandatory is correctly set to 1 (represented in bold).

See "Configuration for TLS for replication" in the Oracle TimesTen In-Memory
Database Security Guide for more information on these timesten.conf attributes.

% cat /tt/home/oracle/instances/instance1/conf/timesten.conf
admin_uid=333
admin_user=oracle
daemon_port=6624
group_name=oracle
hostname=repltls-0
instance_guid=48AC5964-56A1-4C66-AB89-5646A2431EA3
instance_name=instance1
replication_cipher_suite=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
replication_ssl_mandatory=1
replication_wallet=/tt/home/oracle/replicationWallet
server_port=6625
show_date=1
timesten_release=18.1.4
tns_admin=/ttconfig
verbose=1

5. From the shell in the active pod, run the ttRepAdmin utility with the -showstatus
-detail options to verify the replication agent transmitters and receivers are using
TLS (as indicated by SSL, represented in bold). See "ttRepAdmin" in the Oracle
TimesTen In-Memory Database Reference for information on this utility.

Note: Not all output is shown in this example.

% ttRepAdmin -showstatus -detail repltls

Replication Agent Status as of: 2020-10-16 19:01:55

DSN : repltls
...
TRANSMITTER thread(s) (TRANSMITTER(M):139870727366400):
 For : REPLTLS (track 0) (SSL)
 Start/Restart count : 1

Configuring TLS for Client/Server

Using Encryption for Data Transmission 8-11

 Current state : STATE_META_PEER_INFO

RECEIVER thread(s) (RECEIVER:139870719887104):
 For : REPLTLS (track 0) (SSL)
 Start/Restart count : 1
 Current state : STATE_RCVR_READ_NETWORK_LOOP
...

You have successfully verified that TLS for replication is being used.

Configuring TLS for Client/Server
You can configure TLS for Client/Server to ensure secure network communication
between TimesTen clients and servers. See "Transport Layer Security for TimesTen
Client/Server" in the Oracle TimesTen In-Memory Database Security Guide for
detailed information.

There are both server-side and client-side configuration requirements for using TLS for
Client/Server. These requirements are detailed in these sections:

■ Configuration on the server

■ Configuration on the client

Configuration on the server
These sections discuss the configuration requirements for the server. The sections also
include an example of how to configure TLS for the server in your Kubernetes cluster.

■ Overview of the metadata files and the Kubernetes facilities

■ Create the Kubernetes Secret for the csWallet metadata file

■ Create the ConfigMap for the server-side attributes

■ Create the TimesTenClassic object

■ Monitor the deployment of the TimesTenClassic object

Overview of the metadata files and the Kubernetes facilities
The /ttconfig/csWallet metadata file is required for TLS support for Client/Server.
(The /ttconfig directory is located in the containers of your TimesTen databases.) This
file must contain the cwallet.sso file (the Oracle wallet) that was generated when you
created the TLS certificates. This file is the Oracle wallet required for the server. Recall
that this file was located in the /scratch/ttuser/instance_
dir/instance1/conf/serverWallet directory. See "Creating TLS certificates for
replication and Client/Server" on page 8-1 for information on creating these
certificates. This wallet contains the credentials that are used for configuring TLS
encryption between your TimesTen database and your Client/Server applications.

There are also server-side connection attributes that must be set. You can define these
attributes in the db.ini metadata file. After the db.ini file is placed in the /ttconfig
directory of the TimesTen containers, the Operator copies the contents of the db.ini
file to the timesten_home/conf/sys.odbc.ini file located in the TimesTen containers.
(Note that timesten_home is the TimesTen instance directory. This instance directory is
/tt/home/oracle/instances/instance1 in your TimesTen containers.)

These required server-side attributes are: Wallet, CipherSuites, and Encryption. See
Create the ConfigMap for the server-side attributes for information on these attributes.

Configuring TLS for Client/Server

8-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Also see "Configuration on the server" in the Oracle TimesTen In-Memory Database
Security Guide.

In addition to the csWallet and the db.ini metadata files, you may use other
supported metadata files. See "The supported metadata files" on page 3-1 for
information on these supported metadata files.

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this
/ttconfig directory. See "Populating the /ttconfig directory" on page 3-6 for more
information.

The following example includes the csWallet metadata file in a Kubernetes Secret. It
also creates the db.ini, the adminUser, and the schema.sql metadata files and includes
these metadata files in a ConfigMap.

Create the Kubernetes Secret for the csWallet metadata file
This section creates the cs-tls Kubernetes Secret. The cs-tls Secret will contain the
csWallet metadata file.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory. This example
creates the serverWallet subdirectory. (The serverWallet directory is used in the
remainder of this example to denote this directory.)

% mkdir -p serverWallet

2. Copy the cwallet.sso file into the serverWallet directory that you just created.
Recall that the cwallet.sso file was generated when you used the ttCreateCerts
utility to create the TLS certificates. Also recall that this file was located in the
/scratch/ttuser/instance_dir/instance1/conf/serverWallet directory. See
"Creating TLS certificates for replication and Client/Server" on page 8-1 for
information.

% cp /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso
serverWallet/cwallet.sso

3. Create the Kubernetes Secret.

In this example:

■ The name of the Secret is cs-tls. Replace cs-tls with a name of your
choosing. (cs-tls is represented in bold.)

■ The name of the metadata file required for TLS for Client/Server is csWallet
(represented in bold).

■ The location of the wallet directory is serverWallet (in this example,
represented in bold). If you use a different directory, replace serverWallet
with the name of your directory.

■ The name of the Oracle wallet: cwallet.sso (represented in bold).

Use the kubectl create command to create the Secret:

% kubectl create secret generic cs-tls
--from-file=csWallet=serverWallet/cwallet.sso
secret/cs-tls created

Configuring TLS for Client/Server

Using Encryption for Data Transmission 8-13

You have successfully created and deployed the cs-tls Kubernetes Secret. The
csWallet/cwallet.sso file will later be available in the /ttconfig directory of the
TimesTen containers. In addition, the file will be available in the
/tt/home/oracle/csWallet directory of the TimesTen containers.

Create the ConfigMap for the server-side attributes
This section creates the cs-tls ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_csTLS subdirectory. (The cm_csTLS directory is
used in the remainder of this example to denote this directory.)

% mkdir -p cm_csTLS

2. Navigate to the ConfigMap directory.

% cd cm_csTLS

3. Create the db.ini file in this ConfigMap directory (cm_csTLS, in this example). In
this db.ini file, define the server-side attributes for TLS for Client/Server. These
server-side attributes will later be included in the sys.odbc.ini file located in
the timesten_home/conf directory in your TimesTen containers. (Note that
timesten_home is the TimesTen instance directory. This instance directory is
tt/home/oracle/instances/instance1 in your TimesTen containers.)

These are the required server-side attributes for TLS for Client/Server:

■ wallet: This is the directory in your TimesTen containers that contains the
server wallet. Specify /tt/home/oracle/csWallet.

■ ciphersuites: This is the cipher suite setting. Valid values are SSL_ECDHE_
ECDSA_WITH_AES_128_GCM_256 or SSL_ECDHE_ECDSA_WITH_AES_256_GCM_384,
or both, comma separated and in order of preference. There is no default
setting. For TLS to be used, the server and the client settings must include at
least one common suite. This example specifies SSL_ECDHE_ECDSA_WITH_AES_
128_GCM_256. See "Configuration on the server" in the Oracle TimesTen
In-Memory Database Security Guide for information on the cipher suite settings.

■ encryption: This is the encryption setting for the server. This example
specifies the required setting. See "Configuration on the server" in the Oracle
TimesTen In-Memory Database Security Guide for information on the valid
encryption settings.

This example also specifies the PermSize and the DatabaseCharacterSet
connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
wallet=/tt/home/oracle/csWallet
ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
encryption=required

4. Create the adminUser file in this ConfigMap directory (cm_csTLS, in this example).
In this adminUser file, create the scott user with the tiger password.

vi adminUser

Configuring TLS for Client/Server

8-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

scott/tiger

5. Create the schema.sql file in this ConfigMap directory (cm_csTLS, in this
example). In this schema.sql file, define the s sequence and the emp table for the
scott user. The Operator will automatically initialize your database with these
object definitions.

vi schema.sql

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_csTLS directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is cs-tls. Replace cs-tls with a name of your
choosing. (cs-tls is represented in bold in this example.)

■ This example uses cm_csTLS as the directory where the files that will be copied
into the ConfigMap reside. If you use a different directory, replace cm_csTLS
with the name of your directory. (cm_csTLS is represented in bold in this
example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cs-tls --from-file=cm_csTLS
configmap/cs-tls created

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(cs-tls, in this example.)

% kubectl describe configmap cs-tls
Name: cs-tls
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8
wallet=/tt/home/oracle/csWallet
ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
encryption=required

schema.sql:

create sequence scott.s;
create table scott.emp (id number not null primary key, name char (32));

adminUser:

scott/tiger

Configuring TLS for Client/Server

Using Encryption for Data Transmission 8-15

Events: <none>

You have successfully created and deployed the cs-tls ConfigMap.

Create the TimesTenClassic object
This section creates the TimesTenClassic object. See "Defining and creating the
TimesTenClassic object" on page 4-2 and "The TimesTenClassic object type" on
page 11-1 for detailed information on the TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, cstls.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" on page 11-3 for information on the fields
that you must specify in this YAML file as well as the fields that are optional.

In this example, the fields of particular interest for TLS Client/Server are:

■ dbSecret: This example uses one Kubernetes Secret (called cs-tls) for the
csWallet metadata file.

■ dbConfigMap: This example uses one ConfigMap (called cs-tls). The db.ini
file is contained in the cs-tls ConfigMap. Recall that the db.ini file contains
the server-side attributes for TLS for Client/Server.

In addition, this example includes:

■ name: Replace cstls with the name of your TimesTenClassic object.

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250G for storageSize. For
demonstration purposes, a value of 50G is adequate. See the storageSize and
the logStorageSize entries in the Table 11–3, " TimesTenClassicSpecSpec" for
information.

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3).

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

% vi cstls.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: cstls
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 imagePullPolicy: Always
 dbConfigMap:

Configuring TLS for Client/Server

8-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 - cs-tls
 dbSecret:
 - cs-tls

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, cstls.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f cstls.yaml
timestenclassic.timesten.oracle.com/cstls created

You have successfully created the TimesTenClassic object in the Kubernetes cluster.
The process of deploying your TimesTen databases begins, but is not yet complete.

Monitor the deployment of the TimesTenClassic object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get ttc cstls
NAME STATE ACTIVE AGE
cstls Initializing None 15s

2. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc cstls
NAME STATE ACTIVE AGE
cstls Normal cstls-0 3m30s

3. Use the kubectl describe command to view the active standby pair provisioning
in detail.

Note the following have been correctly set in the cstls TimesTenClassic object
definition:

■ The cs-tls Secret has been correctly referenced in the dbSecret field
(represented in bold).

■ The cs-tls Configmap has been correctly referenced in the dbConfigMap field
(represented in bold).

Note: Note all of the output is shown in this example.

% kubectl describe ttc cstls
Name: cstls
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-10-17T19:08:03Z
 Generation: 1
 Resource Version: 75491472
 Self Link:

Configuring TLS for Client/Server

Using Encryption for Data Transmission 8-17

/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/cstls
 UID: 150128b3-10ac-11eb-b019-d681454a288b
Spec:
 Ttspec:
 Db Config Map:
 cs-tls
 Db Secret:
 cs-tls
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m21s ttclassic Service cstls created
 - Create 4m21s ttclassic StatefulSet cstls created
 - Create 4m21s ttclassic Secret
tt150128b3-10ac-11eb-b019-d681454a288b created
 - StateChange 3m5s ttclassic Pod cstls-1 Daemon Up
 - StateChange 3m5s ttclassic Pod cstls-0 Agent Up
 - StateChange 3m5s ttclassic Pod cstls-0 Release 18.1.4.11.0
 - StateChange 3m5s ttclassic Pod cstls-1 Agent Up
 - StateChange 3m5s ttclassic Pod cstls-1 Release 18.1.4.11.0
 - StateChange 3m5s ttclassic Pod cstls-0 Daemon Up
 - StateChange 116s ttclassic Pod cstls-0 Database Loaded
 - StateChange 116s ttclassic Pod cstls-0 Database Updatable
 - StateChange 116s ttclassic Pod cstls-0 CacheAgent Not Running
 - StateChange 116s ttclassic Pod cstls-0 RepAgent Not Running
 - StateChange 116s ttclassic Pod cstls-0 RepState IDLE
 - StateChange 116s ttclassic Pod cstls-0 RepScheme None
 - StateChange 115s ttclassic Pod cstls-0 RepAgent Running
 - StateChange 115s ttclassic Pod cstls-0 RepScheme Exists
 - StateChange 115s ttclassic Pod cstls-0 RepState ACTIVE
 - StateChange 96s ttclassic Pod cstls-1 Database Loaded
 - StateChange 96s ttclassic Pod cstls-1 Database Not Updatable
 - StateChange 96s ttclassic Pod cstls-1 CacheAgent Not Running
 - StateChange 96s ttclassic Pod cstls-1 RepAgent Not Running
 - StateChange 96s ttclassic Pod cstls-1 RepScheme Exists
 - StateChange 96s ttclassic Pod cstls-1 RepState IDLE
 - StateChange 90s ttclassic Pod cstls-1 RepAgent Running
 - StateChange 84s ttclassic Pod cstls-1 RepState STANDBY
 - StateChange 84s ttclassic TimesTenClassic was Initializing, now
Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.)

Configuration on the client
These sections cover the client requirements for TLS.

■ Copy the client wallet

■ Configure the client-side attributes

Configuring TLS for Client/Server

8-18 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Copy the client wallet
When you used the ttCreateCerts utility to create TLS certificates, the cwallet.sso
wallet file located in the /scratch/ttuser/instance_dir/instance1/conf/
clientWallet directory was generated. This file must be copied to the application
container that is running your TimesTen client instance. See "Creating TLS certificates
for replication and Client/Server" on page 8-1 for information on creating the TLS
certificates.

This example uses the kubectl cp command to copy the /scratch/ttuser/instance_
dir/instance1/conf/clientWallet/cwallet.sso file from your Linux development
host to the application container running your TimesTen client instance.

1. Use the kubectl exec -it command to invoke the shell in the application
container that contains your TimesTen client instance. (cstls-0, in this example).

% kubectl exec -it cstls-0 -c tt -- /usr/bin/su - oracle

2. From the shell just invoked, and from the directory of your choice, create an empty
subdirectory. This example creates the clientWallet subdirectory.

% mkdir -p clientWallet

3. From your Linux development host, use the kubectl cp command to copy the
cwallet.sso file from the /scratch/ttuser/instance_
dir/instance1/conf/clientWallet directory on your Linux development host to
the clientWallet directory that you just created. (This directory is located in the
application container that is running your TimesTen client instance.) Recall that
the cwallet.sso file was generated when you used the ttCreateCerts utility to
create the TLS certificates. See "Creating TLS certificates for replication and
Client/Server" on page 8-1 for information.

% kubectl cp /scratch/ttuser/instance_dir/instance1/conf/clientWallet/
cwallet.sso cstls-0:clientWallet/cwallet.sso -c tt

4. From your shell, verify the cwallet.sso file is located in the clientWallet
directory.

% ls clientWallet
cwallet.sso

You have successfully copied the cwallet.sso client wallet file to the application
container that is running your TimesTen client instance.

Configure the client-side attributes
You must set client-side attributes for TLS for Client/Server. The attributes can be set
in the client DSN definition in timesten_home/conf/sys.odbc.ini or in an
appropriate Client/Server connection string. See "Using Client/Server drivers" on
page 5-3 for additional information.

These are the required client-side attributes for TLS for Client/Server:

■ wallet: This is the directory that contains the cwallet.sso client wallet file. This
directory is located in your application container that is running the TimesTen
client instance. There is no default directory. In this example, recall that the
clientWallet directory was created to denote this directory. (See "Copy the client
wallet" on page 8-18 for information.) For purposes of this example, the full path
to the clientWallet directory is /tt/home/oracle/clientWallet. Therefore, in
this example, /tt/home/oracle/clientWallet is used to denote this directory.

Configuring TLS for Client/Server

Using Encryption for Data Transmission 8-19

■ ciphersuites: This is the cipher suite setting. Valid values are SSL_ECDHE_ECDSA_
WITH_AES_128_GCM_256 or SSL_ECDHE_ECDSA_WITH_AES_256_GCM_384, or both,
comma separated and in order of preference. There is no default setting. For TLS
to be used, the server and the client settings must include at least one common
suite. This example specifies SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256. See
"Configuration on the server" in the Oracle TimesTen In-Memory Database Security
Guide for information on the cipher suite settings.

■ encryption: This is the encryption setting for the client. This example specifies the
required setting. See "Configuration on the server" in the Oracle TimesTen
In-Memory Database Security Guide for information on the valid encryption settings.

This example uses a connection string to connect to the cstsl database as the scott
user. The scott user was created by the Operator and already exists in the cstsl
database. The example then uses the sqlgetconnectattr command from ttIsqlCS on
the client to verify TLS is configured correctly on the Server and on the Client and TLS
is being used.

1. Connect to the database.

% ttIsqlcs -connstr "TTC_SERVER1=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER2=cstls-1.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=scott;PWD=tiger;
WALLET=tt/home/oracle/clientWallet;
CIPHERSUITES=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
ENCRYPTION=required";

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "TTC_SERVER1=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER2=cstls-1.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=scott;PWD=********;
WALLET=tt/home/oracle/clientWallet;
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
ENCRYPTION=REQUIRED;";
Connection successful:
DSN=;TTC_SERVER=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=scott;
DATASTORE=/tt/home/oracle/datastore/cstls;DATABASECHARACTERSET=AL32UTF8;
CONNECTIONCHARACTERSET=US7ASCII;AUTOCREATE=0;PERMSIZE=200;
DDLREPLICATIONLEVEL=3;FORCEDISCONNECTENABLED=1;(SERVER)ENCRYPTION=Required;
(SERVER)WALLET=file:/tt/home/oracle/csWallet;(client)Encryption=Required;
(client)Wallet=/tt/home/oracle/clientWallet;
(client)CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
(Default setting AutoCommit=1)

2. Use the sqlgetconnectattr command in ttIsqlCS to verify TLS is being used. A
return value of 1 indicates TLS is being used.

Command> sqlgetconnectattr tt_tls_session;
TT_TLS_SESSION = 1 (SQL_TRUE)

You have successfully connected to the database and verified that TLS for
Client/Server is being used.

Configuring TLS for Client/Server

8-20 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

9

Handling Failover and Recovery 9-1

9Handling Failover and Recovery

This chapter illustrates how the Operator recovers from failure.

■ Handling failover and recovery

■ An example illustrating the failover and recovery process

Handling failover and recovery
The Operator automatically detects failures of the active TimesTen database and the
standby TimesTen database and works to fix any failures. When the Operator detects a
failure of the active database, it promotes the standby TimesTen database to be the
active. Client/server applications that are using the database are automatically
reconnected to the new active database. Transactions in flight are rolled back. Prepared
statements need to be re-prepared by the applications. The Operator will configure a
new standby database.

An example illustrating the failover and recovery process
This example simulates a failure of the active TimesTen database. This is for
demonstration purposes only. Do not do this in a production environment.

1. Use the kubectl delete pod command to delete the active database (sample-0 in
this case)

% kubectl delete pod sample-0

2. Use the kubectl describe command to observe how the Operator recovers from
the failure. The Operator promotes the standby database (sample-1) to be active.
Any applications that were connected to the sample-0 database are automatically
reconnected to the sample-1 database by TimesTen. After a brief outage, the
applications can continue to use the database. See "Monitoring the health of the
active standby pair of databases" on page 6-3 for information on the health and
states of the active standby pair.

Note: In this example, the text for the Message column displays on two lines for
three state changes. However, the actual output displays on one line for each of
these three state changes.

% kubectl describe ttc sample
Name: sample
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 2m1s ttclassic TimesTenClassic sample: was Normal,

An example illustrating the failover and recovery process

9-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

now ActiveDown
 - StateChange 115s ttclassic Pod sample-1 Database Updatable: Yes
 - StateChange 115s ttclassic TimesTenClassic sample:was ActiveDown,
now StandbyDown
 - StateChange 115s ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 110s ttclassic Pod sample-0 High Level State Unknown
 - StateChange 63s ttclassic Pod sample-0 Pod Phase Running
 - StateChange 63s ttclassic Pod sample-0 Agent Up
 - StateChange 63s ttclassic Pod sample-0 Instance Exists
 - StateChange 63s ttclassic Pod sample-0 Daemon Up
 - StateChange 63s ttclassic Pod sample-0 Database None
 - StateChange 42s ttclassic Pod sample-0 Database Loaded
 - StateChange 42s ttclassic Pod sample-0 Database Updatable: No
 - StateChange 42s ttclassic Pod sample-0 RepAgent Running
 - StateChange 42s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 42s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 42s ttclassic Pod sample-0 RepState IDLE
 - StateChange 36s ttclassic Pod sample-0 High Level State Healthy
 - StateChange 36s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 36s ttclassic TimesTenClassic sample:was StandbyDown,
now Normal

Kubernetes has automatically respawned a new sample-0 Pod to replace the Pod
you deleted. The Operator configured TimesTen within that Pod, bringing the
database in the Pod up as the new standby database. The replicated pair of
databases are once again functioning normally.

10

Performing Upgrades 10-1

10Performing Upgrades

This chapter describes the process for upgrading to a new patch (or patchset) of the
Operator and of TimesTen. It also applies to downgrading. See "Overview of release
numbers" in the Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade
Guide for information on TimesTen releases.

Topics include:

■ Overview of the upgrade process

■ Upgrading the Operator

■ Upgrading TimesTen

Overview of the upgrade process
The upgrade process involves first upgrading the Operator and then upgrading
TimesTen.

You must upgrade the Operator manually. This involves:

■ Updating the crd.yaml and the service_account.yaml files.

■ Building a new image that contains the new Operator.

■ Switching to the new Operator

See "Upgrading the Operator" on page 10-2 for information on upgrading the
Operator.

To upgrade TimesTen, you create a new container image that contains the new
TimesTen release. You then update the TimesTenClassic objects associated with the
active standby pairs by modifying the value of the TimesTenClassic objects' image
CRD syntax element. See "TimesTenClassicSpecSpec" on page 11-3 for more
information on the image CRD syntax element.

The Operator creates and associates a Kubernetes StatefulSet with each
TimesTenClassic object. The StatefulSet causes and controls the creation of the Pods
that run TimesTen.

When you modify the image CRD syntax element of a TimesTenClassic object, the
Operator notices the change and modifies the corresponding image attribute(s) in the
StatefulSet. This controls the future spawning of containers. If a running container
terminates, then StatefulSet spawns one to replace it. This replaced container runs the
newly specified image.

Similarly, for other containers you provided that are running in these Pods, the
Operator examines the value of the each TimesTenClassic object's image value. This
value controls which image your provided containers run. If you modify the image

Upgrading the Operator

10-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

value in the TimesTenClassic object, the corresponding attributes in the associated
StatefulSet are modified by the Operator.

After the Operator propagates changes from the TimesTenClassic object to the
associated StatefulSet, you must then determine if the Operator will perform the steps
to upgrade TimesTen or if you will manually perform the steps. This is determined by
the value you specified for the TimesTenClassic object's imageUpgradeStrategy CRD
syntax element. A value of auto indicates the Operator should perform the upgrade
whereas a value of manual indicates you will manually perform the upgrade. If you do
not specify a value for imageUpgradeStrategy, the default is auto. See
"TimesTenClassicSpecSpec" on page 11-3 for more information on the
imageUpgradeStrategy CRD syntax element. For automated upgrades, (value of
imageUpgradeStrategy is auto), you can also control the amount of time the Operator
waits for a Pod to come up (after it has been deleted) by setting the
upgradeDownPodTimeout value. See "TimesTenClassicSpecSpec" on page 11-3 for more
information.

You cannot use this automated upgrade process to upgrade direct mode applications
that are running in their own containers. The Operator does propagate the changes
from a TimesTenClassic object to the associated StatefulSet, but the changes do not
initiate the automated upgrade process. You must manually terminate the applications
that are running in their containers. In so doing, StatefulSet then spawns new
containers to replace the original containers. These new containers run the newly
specified TimesTen image. See "Using direct mode applications" on page 5-1 for more
information on direct mode applications.

If there are failures in any steps of the upgrade process, the TimesTenClassic object
enters the ManualInterventionRequired state. The remaining steps of the upgrade
process are cancelled. You must manually fix the active/standby pair to return the pair
to management by the Operator. Even when the pair is returned to automatic
management, the remaining steps in the upgrade process are not automatically
performed. See "Understanding the ManualInterventionRequired state" on page 6-7
and "Bringing up one database" on page 6-8 for more information.

Upgrading the Operator
You must manually upgrade the Operator for both automated and manual upgrades.
You can upgrade the current release of the TimesTen Operator to a new release while
there are one or more TimesTenClassic objects running in your Kubernetes cluster and
while the TimesTen databases that are associated with those TimesTenClassic objects
are up and running.

The process of upgrading the Operator involves:

■ Replacing the crd.yaml and the service_account.yaml files in the /deploy
directory

■ Building the new Operator image

■ Updating the timestenclassic-operator Deployment

The Operator restarts, and the upgrade to the new Operator becomes effective. During
the Operator upgrade, the TimesTen databases continue to run (even while there is no
Operator managing them). After the Operator upgrade process is completed, the new
Operator continues to manage the current TimesTenClassic objects in your cluster as
well as the TimesTen databases associated with those TimesTenClassic objects.

These sections cover the steps for upgrading the Operator:

■ Download the new release of the TimesTen Operator

Upgrading the Operator

Performing Upgrades 10-3

■ Replace the crd.yaml and the service_account.yaml files

■ Build the new Operator image

■ Review the current Operator

■ Update the timestenclassic-operator Deployment

Download the new release of the TimesTen Operator
The new release of the TimesTen Operator is included in the new release of the
TimesTen full distribution on Linux 64-bit. (In this example, the new release is
18.1.4.11.0.)

Perform these steps to download the full distribution of TimesTen and then unpack the
TimesTen Operator distribution that is embedded within it. Perform all steps from
your Linux development host.

1. From the directory of your choice:

■ Create one subdirectory into which you will download the new TimesTen full
distribution. For example, create the new_installation_dir subdirectory.

■ Create a second subdirectory into which you will unpack the new TimesTen
Operator distribution. For example, create the new_kube_files subdirectory.

% mkdir -p new_installation_dir
% mkdir -p new_kube_files

2. Navigate to new_installation_dir.

% cd new_installation_dir

Download the TimesTen full distribution into this directory. In this example,
download the timesten1814110.server.linux8664.zip file (the 18.1.4.11.0 full
distribution for Linux 64-bit).

3. From the new_installation_dir, use the ZIP utility to unpack the TimesTen
distribution.

% unzip timesten1814110.server.linux8664.zip
Archive: /timesten/installation/timesten1814110.server.linux8664.zip
 creating: 18.1.4.11.0/
 creating: 18.1.4.11.0/ttoracle_home/
...
 creating: tt18.1.4.11.0/kubernetes/
...

Note that the new_installation_dir/tt18.1.4.11.0/kubernetes directory is
created. The operator.zip file is located in this directory. For example, this is a
sample directory structure after unpacking the distribution (which can change
from release to release):

% pwd
new_installation_dir/tt18.1.4.11.0
% dir
3rdparty include lib oraclescripts README.html ttoracle_home
bin info network PERL startup
grid kubernetes nls plsql support

4. Navigate to the new_kube_files directory and unpack the operator.zip file into
it. In this example, unpack the new_installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file.

Upgrading the Operator

10-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

% cd new_kube_files
% unzip new_installation_dir/tt18.1.4.11.0/kubernetes/operator.zip
[...UNZIP OUTPUT...]

5. Review the directory structure. This example shows the most important
subdirectories and files, which can change from release to release.

README.md
deploy/crd.yaml
deploy/operator.yaml
deploy/service_account.yaml
operator/Dockerfile
operator/timestenclassic-operator
ttimage/agent2
ttimage/.bashrc
ttimage/create1.sql
ttimage/create2.sql
ttimage/Dockerfile
ttimage/get1.sql
ttimage/pausecq.sql
ttimage/repcreate.sql
ttimage/repduplicate.sql
ttimage/runsql,sql
ttimage/starthost.pl
ttimage/.ttdotversion
ttimage/.ttdrop

Replace the crd.yaml and the service_account.yaml files
You must replace the crd.yaml and the service_account.yaml files that reside in the
new_kube_files/ttdeploy directory.

Perform these steps:

1. Navigate to the new_kube_files/deploy directory and recreate the crd.yaml file.

% cd new_kube_files/deploy
% kubectl replace -f crd.yaml

Note: This directory tree must persist through the lifetime of the
TimesTen Operator.

In addition, do not delete the TimesTen full distribution file
(timesten1814110.server.linux8664.zip, in this example). You need
to copy this file into the:

■ /operator directory to build the new Operator image and push
the image to the image registry. See "Build the new Operator
image" on page 10-5 for details.

■ /ttimage directory to build the new TimesTen image and push the
image to the image registry. See "Build the new TimesTen image"
on page 10-10 for details.

Note: Ensure you do not delete the crd.yaml file. Doing so deletes
the TimesTenClassic objects along with the TimesTen databases
associated with them.

Upgrading the Operator

Performing Upgrades 10-5

customresourcedefinition.apiextensions.k8s.io/timestenclassics.timesten.
oracle.com replaced

2. While in the new_kube_files/deploy directory, recreate the Kubernetes service
account in which the Operator runs. The Operator requires additional privileges to
perform the upgrade procedure.

% kubectl replace -f service_account.yaml
role.rbac.authorization.k8s.io/timestenclassic-operator replaced
serviceaccount/timestenclassic-operator replaced
rolebinding.rbac.authorization.k8s.io/timestenclassic-operator replaced

You have successfully replaced the crd.yaml and the service_account.yaml files. You
are now ready to build the Operator image.

Build the new Operator image
Before you can run the new Operator, you must build the new Operator image and
push it to your image registry.

The files needed to build the new Operator image are provided in the new_kube_
files/operator directory (part of the ZIP file you previously unpacked).

To build the new Operator image and push it to your registry, perform these steps:

1. Navigate to the new_kube_files/operator directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the new_
installation_dir directory. See "Download the new release of the TimesTen
Operator" on page 10-3 for information. Then, verify the
timesten1814110.server.linux8664.zip file is in the new_kube_files/operator
directory.

% cd new_kube_files/operator
% cp new_installation_dir/timesten1814110.server.linux8664.zip .
% ls -a
Dockerfile
timesten1814110.server.linux8664.zip
timestenclassic-operator

2. Navigate to the new_kube_files/operator directory (if not already in this
directory) and use the docker command to build and tag the new Operator image.
When you are tagging the new Operator image, it is recommended that you tag
the image with a release number. For example, you can use the naming
convention: ttclassic-operator:release (where release is the release you wish
to tag). In this example, ttclassic-operator:3 is used to name the new Operator
image (represented in bold).

% cd new_kube_files/operator
% docker build -t ttclassic-operator:3 .
Sending build context to Docker daemon 478.6MB
Step 1/7 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/7 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/7 : RUN yum -y install openssl unzip && /usr/sbin/useradd -d
/tt-operator -m -u 1001 -s /bin/nologin -U tt-operator
 ---> Using cache
 ---> e3f1427246ab
Step 4/7 : COPY --chown=tt-operator:tt-operator timestenclassic-operator

Upgrading the Operator

10-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

/usr/local/bin/timestenclassic-operator
 ---> Using cache
 ---> 6ccad53230f0
Step 5/7 : COPY --chown=tt-operator:tt-operator $TT_DISTRO /tt-operator/
$TT_DISTRO
 ---> 5cd31705485a
Step 6/7 : USER tt-operator
 ---> Running in 6a773ddac5dd
Removing intermediate container 6a773ddac5dd
 ---> 875ee38ebc75
Step 7/7 : ENTRYPOINT ["/usr/local/bin/timestenclassic-operator"]
 ---> Running in fed0f6c94c2f
Removing intermediate container fed0f6c94c2f
 ---> 10dde79e1617
Successfully built 10dde79e1617
Successfully tagged ttclassic-operator:3

3. Use the docker command to tag the new Operator image.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous step.
(ttclassic-operator:3 is represented in bold in this example.)

% docker tag ttclassic-operator:3 phx.ocir.io/youraccount/ttclassic-operator:3

4. Use the docker command to push the new Operator image to your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps. (ttclassic-operator:3 is represented in bold in this example.)

% docker push phx.ocir.io/youraccount/ttclassic-operator:3
The push refers to repository [phx.ocir.io/youraccount/ttclassic-operator]
46458e9fc890: Pushed
471a399f0540: Pushed
9e51a2b82af3: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:9b941f12e3d52298b9b38f7766ddcdfb1d011857a990ff01a8adafd32f3d3e8d size:
1166

You successfully built the new Operator image and pushed it to your image registry.

Review the current Operator
This section provides the steps to review the current (running) Operator. These steps
are not required.

1. Use the kubectl get command to ensure the current Operator is running
(timestenclassic-operator-66bd4bc88b-c8vf, in this example, represented in
bold).

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 168m
sample-1 2/2 Running 0 168m
sample2-0 2/2 Running 0 158m
sample2-1 2/2 Running 0 158m

Upgrading the Operator

Performing Upgrades 10-7

timestenclassic-operator-66bd4bc88b-c8vfq 1/1 Running 0 3h5m

2. Use the kubectl describe command to review the current
timestenclassic-operator Deployment. Note that the image for the Deployment is
the original image (phx.ocir.io/youraccount/ttclassic-operator:2, in this
example, represented in bold).

% kubectl describe deployment timestenclassic-operator
Name: timestenclassic-operator
Namespace: mynamespace
CreationTimestamp: Sun, 11 Apr 2021 13:40:36 +0000
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 1
Selector: name=timestenclassic-operator
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0
unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: name=timestenclassic-operator
 Service Account: timestenclassic-operator
 Containers:
 timestenclassic-operator:
 Image: phx.ocir.io/youraccount/ttclassic-operator:2
 Port: <none>
 Host Port: <none>
 Command:
 timestenclassic-operator
 Environment:
 WATCH_NAMESPACE: (v1:metadata.namespace)
 POD_NAME: (v1:metadata.name)
 OPERATOR_NAME: timestenclassic-operator
 GODEBUG: x509ignoreCN=0
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: timestenclassic-operator-66bd4bc88b (1/1 replicas created)
Events: <none>

3. Review the TimesTenClassic objects that are running in the Kubernetes cluster.
There are two TimesTenClassic objects running (sample and sample2, in this
example).

% kubectl get ttc
NAME STATE ACTIVE AGE
sample Normal sample-0 3h8m
sample2 Normal sample2-0 179m

Update the timestenclassic-operator Deployment
This section involves updating the current timestenclassic-operator Deployment to use
the new Operator container image. After completing the steps in this section, the
Operator is restarted and the upgrade to the new Operator becomes effective. If there
is more than one Operator running, each Operator is restarted one at a time. This new

Upgrading the Operator

10-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Operator will continue to manage the TimesTenClassic objects and the TimesTen
databases associated with the those TimesTenClassic objects.

Perform these steps:

1. Navigate to the new_kube_files/deploy directory, and edit the operator.yaml
file. This file is provided in the distribution that you previously unpacked. See
"Download the new release of the TimesTen Operator" on page 10-3 for details.

Update these fields represented in bold (in the operator.yaml file below):

■ replicas: 1

Replace 1 with the number of copies of the Operator that you would like to
run. 1 is acceptable for development and testing. However, you can run more
than one replica for high availability purposes.

■ Replace sekret with the name of the image pull secret that Kubernetes uses to
pull images from your registry.

■ Replace the image line to reference the Operator image you just created.
(phx.ocir.io/youraccount/ttclassic_operator:3, in this example).

% cd new_kube_files/deploy
% vi operator.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: timestenclassic-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 name: timestenclassic-operator
 template:
 metadata:
 labels:
 name: timestenclassic-operator
 spec:
 serviceAccountName: timestenclassic-operator
 imagePullSecrets:
 - name: sekret
 containers:
 - name: timestenclassic-operator
 image: phx.ocir.io/youraccount/ttclassic-operator:3
 command:
 - timestenclassic-operator
 imagePullPolicy: Always
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: OPERATOR_NAME
 value: "timestenclassic-operator"
 - name: GODEBUG
 value: "x509ignoreCN=0"

Upgrading the Operator

Performing Upgrades 10-9

2. From within the new_kube_files/deploy directory, use the kubectl replace
command to update the timestenclassic-operator Deployment.

% kubectl replace -f operator.yaml
deployment.apps/timestenclassic-operator replaced

3. Use the kubectl get pods command to verify the new Operator is running
(timestenclassic-operator-846cb5c97c-sbz22 in this example, represented in
bold).

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 3h37m
sample-1 2/2 Running 0 3h37m
sample2-0 2/2 Running 0 3h28m
sample2-1 2/2 Running 0 3h28m
timestenclassic-operator-846cb5c97c-sbz22 1/1 Running 0 80s

4. Use the kubectl describe deployment command to view the new
timetenclassic-operator Deployment. Note that the Operator is using the
phx.ocir.io/youraccount/ttclassic-operator:3 image (represented in bold).

% kubectl describe deployment timestenclassic-operator
Name: timestenclassic-operator
Namespace: mynamespace
CreationTimestamp: Sun, 11 Apr 2021 13:40:36 +0000
Labels: name=timestenclassic-operator
Annotations: deployment.kubernetes.io/revision: 2
Selector: name=timestenclassic-operator
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0
unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: name=timestenclassic-operator
 Service Account: timestenclassic-operator
 Containers:
 timestenclassic-operator:
 Image: phx.ocir.io/youraccount/ttclassic-operator:3
 Port: <none>
 Host Port: <none>
 Command:
 timestenclassic-operator
 Environment:
 WATCH_NAMESPACE: (v1:metadata.namespace)
 POD_NAME: (v1:metadata.name)
 OPERATOR_NAME: timestenclassic-operator
 GODEBUG: x509ignoreCN=0
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: timestenclassic-operator-846cb5c97c (1/1 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

Upgrading TimesTen

10-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Normal ScalingReplicaSet 4m19s deployment-controller Scaled up replica
set timestenclassic-operator-846cb5c97c to 1
 Normal ScalingReplicaSet 3m51s deployment-controller Scaled down replica
set timestenclassic-operator-66bd4bc88b to 0

You have successfully updated the timestenclassic-operator Deployment. The new
Operator automatically begins to manage any existing TimesTenClassic objects in your
Kubernetes cluster.

Upgrading TimesTen
After you upgrade the Operator, you must upgrade your active standby pairs of
TimesTen databases to a new patch of TimesTen. This involves building a new
container image that contains the new TimesTen release and then modifying the image
value of each of your TimesTenClassic objects to the name of this new container image.

When you modify the image value, the Operator notices the change and modifies the
corresponding image attributes(s) in the StatefulSet.

What happens next is dependent on the value of the TimesTenClassic object's
imageUpgradeStrategy element. See "TimesTenClassicSpecSpec" on page 11-3 for more
information on imageUpgradeStrategy. If the value is:

■ auto (or not specified): There are no additional steps you need to take. However,
you can monitor the progress of the upgrade and then verify the upgrade was
successful.

■ manual: There are additional steps you must complete. These steps include
upgrading the standby database and then performing the steps to fail over from
the active database to the standby database. You can also verify the upgrade was
successful.

These sections cover the steps necessary to upgrade each of your active standby pairs
of TimesTen databases. For example purposes, there are two TimesTenClassic objects
(sample and sample2) that require upgrading. The sample TimesTenClassic object
(with an imageUpgradeStrategy value of auto) is upgraded first. Then the sample2
TimesTenClassic object (with an imageUpgradeStrategy value of manual) is upgraded:

■ Build the new TimesTen image

■ Check the upgrade strategy for each TimesTenClassic object

■ Complete one of the following depending on the upgrade strategy for the
TimesTenClassic object. One of these procedures must be done for each
TimesTenClassic object you wish to upgrade.

– If auto (value of imageUpgradeStrategy is auto or not specified): Perform an
automated upgrade

– If manual (value of imageUpgradeStrategy is manual): Perform a manual
upgrade

■ Verify the active standby pair of databases are upgraded

Build the new TimesTen image
This section illustrates how to build TimesTen as a container image and then push the
image to your image registry. The files that you need to build the new TimesTen image
are provided in the new_kube_files directory tree. See "Download the new release of
the TimesTen Operator" on page 10-3 for information.

Upgrading TimesTen

Performing Upgrades 10-11

To build the new TimesTen container image, perform these steps:

1. Navigate to the new_kube_files/ttimage directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the new_
installation_dir directory. See "Download the new release of the TimesTen
Operator" on page 10-3 for information. Then, verify the
timesten1814110.server.linux8664.zip file is in the new_kube_files/ttimage
directory.

% cd new_kube_files/ttimage
% cp new_installation_dir/timesten1814110.server.linux8664.zip .
% ls *.zip
timesten1814110.server.linux8664.zip

2. Navigate to the new_kube_files/ttimage directory (if not already in this
directory). Edit the Dockerfile, replacing
timesten1814110.server.linux8664.zip with the name of your TimesTen full
distribution. If your TimesTen distribution is
timesten1814110.server.linux8664.zip, no modification is necessary. If not, the
modification you need to make is represented in bold.

% cd new_kube_files/ttimage
% vi Dockerfile

Copyright (c) 2019, 2021, Oracle and/or its affiliates.

FROM container-registry.oracle.com/os/oraclelinux:7

ARG TT_DISTRO=timesten1814110.server.linux8664.zip

RUN yum -y install tar gzip vim curl unzip libaio util-linux
RUN groupadd -g 333 oracle
RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle oracle
RUN install -d -m 0750 -o oracle -g oracle /home/oracle
COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop .ttdotversion agent2
create1.sql create2.sql get1.sql repcreate.sql repduplicate.sql runsql.sql
pausecg.sql /home/oracle/
Uncomment the following line if you are using the optional non-root
installation procedure.
USER 333
ENTRYPOINT "/home/oracle/starthost.pl"

3. Use the docker command to build the new TimesTen container image. Replace
tt1814110:3 with a name of your choosing (represented in bold, in the docker
build command below). Note that the output may change from release to release.

% docker build -t tt1814110:3 .

Sending build context to Docker daemon 445.8MB
Step 1/9 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/9 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/9 : RUN yum -y install tar gzip vim curl unzip libaio util-linux
 ---> Using cache
 ---> ac676b5376f3
Step 4/9 : RUN groupadd -g 333 oracle
 ---> Using cache

Upgrading TimesTen

10-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 ---> ce16920f085c
Step 5/9 : RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle
oracle
 ---> Using cache
 ---> 0319814aca1c
Step 6/9 : RUN install -d -m 0750 -o oracle -g oracle /home/oracle
 ---> Using cache
 ---> c8612b53398a
Step 7/9 : COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
 ---> 31cae98b71fd
Step 8/9 : COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop
.ttdotversion agent2 create1.sql create2.sql get1.sql repcreate.sql
repduplicate.sql runsql.sql pausecg.sql /home/oracle/
 ---> e50eb99c9b54
Step 9/9 : ENTRYPOINT "/home/oracle/starthost.pl"
 ---> Running in 0b41efd38837
Removing intermediate container 0b41efd38837
 ---> 171245e546d5
Successfully built 171245e546d5
Successfully tagged tt1814110:3

4. Use the docker command to tag the new TimesTen container image. Replace the
following, represented in bold, in the docker tag command below.

■ tt1814110:3 with the name you chose in the previous step.

■ phx.ocir.io/youraccount with the location of your image registry.

% docker tag tt1814110:3 phx.ocir.io/youraccount/tt1814110:3

5. Use the docker command to push the new TimesTen container image to your
registry. Replace the following, represented in bold, in the docker push command
below.

■ phx.ocir.io/youraccount with the location of your image registry.

■ tt1814110:3 with the name you chose previously.

% docker push phx.ocir.io/youraccount/tt1814110:3

The push refers to repository [phx.ocir.io/youraccount/tt1814110]
97a0f250b2fe: Pushed
650b003a3ad4: Pushed
b8de51528854: Pushed
62192d26e325: Pushed
7dfe13e9b5a4: Pushed
d8570fce965c: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:a6ac313394229eb2256d4a56fbcd8e2eda50ea2cc21991fa76f11701f2299710
size: 1788

You successfully built the new TimesTen container image. It is pushed to your image
registry. You are now ready to check the upgrade strategy for each TimesTenClassic
object that you wish to upgrade.

Check the upgrade strategy for each TimesTenClassic object
The value of each of the TimesTenClassic object's imageUpgradeStrategy element
determines the type of upgrade. If the value is auto (or not specified), the upgrade
strategy is automated and the Operator does the upgrade for this TimesTenClassic

Upgrading TimesTen

Performing Upgrades 10-13

object. If the value is manual, the upgrade strategy is manual and you must manually
perform the upgrade for the TimesTenClassic object.

This example shows you how to determine the imageUpgradeStrategy for the
TimesTenClassic objects deployed in your Kubernetes cluster.

1. Review the TimesTenClassic objects that are running in the Kubernetes cluster.
There are two TimesTenClassic objects running (sample and sample2, in this
example).

% kubectl get ttc
NAME STATE ACTIVE AGE
sample Normal sample-0 2d3h
sample2 Normal sample2-0 2d3h

2. Use the kubectl describe command to show the sample TimesTenClassic object.
Note that the sample TimesTenClassic object has imageUpdateStrategy set to auto
(represented in bold). This indicates an automated upgrade strategy. Note also
that upgradeDownPodTimeout is set to 900 (represented in bold).

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-04-11T13:58:09Z
 Generation: 1
 Resource Version: 150145728
 Self Link:
 /apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: f2a16dff-9acd-11eb-86a3-06b2b9dd76bc
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt181440:2
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: auto
 Storage Class Name: oci
 Storage Size: 250G
 Upgrade Down Pod Timeout: 900
...

3. Use the kubectl describe command to show the sample2 TimesTenClassic object.
Note that the sample2 TimesTenClassic object has imageUpdateStrategy set to
manual (represented in bold). This indicates a manual upgrade strategy.

% kubectl describe ttc sample2
Name: sample2
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-04-11T14:07:20Z
 Generation: 1

Upgrading TimesTen

10-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Resource Version: 150149654
 Self Link:
 /apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample2
 UID: 3af3e6fb-9acf-11eb-8286-6a1fd5dce8ff
Spec:
 Ttspec:
 Db Config Map:
 sample2
 Image: phx.ocir.io/youraccount/tt181440:2
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: manual
 Storage Class Name: oci
 Storage Size: 250G
...

You have successfully checked whether an automated or manual upgrade will be
performed for each of the TimesTenClassic objects in your Kubernetes cluster. You are
now ready to continue the upgrade process. This example upgrades the sample
TimesTenClassic object first. Since the upgrade strategy for the sample
TimesTenClassic object is auto, proceed to "Perform an automated upgrade" on
page 10-14 to continue the upgrade procedure. (Note: You could upgrade the sample2
TimesTenClassic object first. The order does not matter.)

Perform an automated upgrade
This section describes what you need to do for an automated upgrade. If you wish to
do a manual upgrade, see "Perform a manual upgrade" on page 10-20 for details.

The automated upgrade process requires you to modify the image value of the
TimesTenClassic object to reference the new TimesTen image (18.1.4.11.0, in this
example). After you modify the TimesTenClassic object to reference the new TimesTen
image, the Operator notices the change and modifies the StatefulSet that it created. The
Operator then starts the upgrade process. You can use the kubectl describe command
to monitor this upgrade process.

■ Modify the TimesTenClassic object: automated upgrade

■ Monitor the automated upgrade

Modify the TimesTenClassic object: automated upgrade
You must modify the TimesTenClassic object to reference the new TimesTen image.
You do this by modifying the value of the image CRD syntax element(s) for the
TimesTenClassic object. See "TimesTenClassicSpecSpec" on page 11-3 for more
information on the image element.

The value of imageUpgradeStrategy for the sample TimesTenClassic object is auto,
which indicates the Operator will perform the upgrade. After you edit the image value
of the sample TimesTenClassic object to reference the new TimesTen image, the
Operator notices the change, modifies the StatefulSet, and starts the automated
upgrade process.

Note: If you do an automated upgrade, your databases will be taken
down, restarted, and failed over immediately. Do not perform this
procedure at the busiest time of your production day. Applications
will see short outages as a result of the upgrade procedure.

Upgrading TimesTen

Performing Upgrades 10-15

1. Use the kubectl edit command to edit the sample TimesTenClassic object,
changing the .spec.ttspec.image attribute to reference the new TimesTen image
(phx.ocir.io/youraccount/tt1814110:3, in this example, represented in bold).

Note: Not all output is shown.

% kubectl edit timestenclassic sample

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
file will be
reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
...
 name: sample
...
spec:
 ttspec:
 dbConfigMap:
 - sample
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpgradeStrategy: manual
 storageClassName: oci
 storageSize: 250G
...
timestenclassic.timesten.oracle.com/sample edited

2. Use the kubectl describe statefulset command to verify that the Operator has
modified the sample StatefulSet and replaced the image with the new image
(phx.ocir.io/youraccount/tt1814110:3, in this example, represented in bold).

% kubectl describe statefulset sample
Name: sample
Namespace: mynamespace
CreationTimestamp: Sun, 11 Apr 2021 13:58:10 +0000
Selector: app=sample
Labels: app=sample
Annotations: <none>
Replicas: 2 desired | 2 total
Update Strategy: OnDelete
Pods Status: 1 Running / 1 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=sample
 Init Containers:
 ttinit:
 Image: phx.ocir.io/youraccount/tt1814110:3
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Command:
 perl
 /home/oracle/starthost.pl
 Environment:
 TIMESTEN_HOME: /tt/home/oracle/instances/instance1
 LD_LIBRARY_PATH:
/tt/home/oracle/instances/instance1/ttclasses/lib:/tt/home/oracle/instances/
instance1/install/lib:/tt/home/oracle/instances/instance1/install/
ttoracle_home/instantclient_11_2

Upgrading TimesTen

10-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 TT_INIT_CONTAINER: 1
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 Containers:
 tt:
 Image: phx.ocir.io/youraccount/tt1814110:3
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Command:
 perl
 /home/oracle/starthost.pl
 Environment:
 TIMESTEN_HOME: /tt/home/oracle/instances/instance1
 LD_LIBRARY_PATH:
/tt/home/oracle/instances/instance1/ttclasses/lib:/tt/home/oracle/instances/
instance1/install/lib:/tt/home/oracle/instances/instance1/install/
ttoracle_home/instantclient_11_2
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 daemonlog:
 Image: phx.ocir.io/youraccount/tt1814110:3
 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 /bin/bash <<'EOF'
 while [1] ; do tail --follow=name
/tt/home/oracle/instances/instance1/diag/ttmesg.log --max-unchanged-stats=5;
sleep 1; done
 exit 0
 EOF
 Requests:
 cpu: 100m
 memory: 20Mi
 Environment:
 TIMESTEN_HOME: /tt/home/oracle/instances/instance1
 LD_LIBRARY_PATH:
/tt/home/oracle/instances/instance1/ttclasses/lib:/tt/home/oracle/instances/
instance1/install/lib:/tt/home/oracle/instances/instance1/install/
ttoracle_home/instantclient_11_2
 Mounts:
 /tt from tt-persistent (rw)
 Volumes:
 tt-agent:
 Type: Secret (a volume populated by a Secret)
 SecretName: ttf2a16dff-9acd-11eb-86a3-06b2b9dd76bc
 Optional: false
 tt-config:
 Type: Projected (a volume that contains injected data from
multiple sources)
 ConfigMapName: sample
 ConfigMapOptional: <nil>
Volume Claims:

Upgrading TimesTen

Performing Upgrades 10-17

 Name: tt-persistent
 StorageClass: oci
 Labels: <none>
 Annotations: <none>
 Capacity: 250G
 Access Modes: [ReadWriteOnce]
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 7s statefulset-controller create Pod sample-1
in StatefulSet sample successful

You have successfully modified the sample TimesTenClassic object to use the new
TimesTen image. You are now ready to monitor the automated upgrade process
performed by the Operator. Proceed to "Monitor the automated upgrade" on
page 10-17 to continue.

Monitor the automated upgrade
You can monitor the automated upgrade process performed by the Operator.

1. Use the kubectl get command to assess the state of the sample TimesTenClassic
object.

Note that the state is StandbyDown (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample StandbyDown sample-1 2d5h

Wait a few minutes, then run the command again. Note that the state has changed
to Normal (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-1 2d5h

2. Use the kubectl describe command to observe how the Operator promoted the
standby database (sample-1) to be the active. Note also that both the standby and
the active databases have been upgraded to the new release of TimesTen
(18.1.4.11.0, in this example).

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-04-11T13:58:09Z
 Generation: 2
 Resource Version: 150178771
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: f2a16dff-9acd-11eb-86a3-06b2b9dd76bc
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3

Upgrading TimesTen

10-18 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: auto
 Storage Class Name: oci
 Storage Size: 250G
 Upgrade Down Pod Timeout: 900
Status:
 Classic Upgrade Status:
 Active Start Time: 0
 Active Status:
 Image Update Pending: false
 Last Upgrade State Switch: 0
 Prev Reset Upgrade State:
 Prev Upgrade State:
 Standby Start Time: 0
 Standby Status:
 Upgrade Start Time: 0
 Upgrade State:
 Active Pods: sample-1
 High Level State: Normal
 Last Event: 67
 Last High Level State Switch: 1618341354
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 35425
 Db Updatable: No
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618341923
 Pod IP: 10.244.7.46
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image: phx.ocir.io/youraccount/tt181440:2
 Replication Status:
 Last Time Rep State Changed: 1618341175
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Standby
 Local Commit: false
 Name: sample-0
 Schema File: true
 Using Twosafe: false

Upgrading TimesTen

Performing Upgrades 10-19

 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 35426
 Db Updatable: Yes
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618341923
 Pod IP: 10.244.6.25
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image: phx.ocir.io/youraccount/tt181440:2
 Replication Status:
 Last Time Rep State Changed: 1618340980
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Active
 Local Commit: false
 Name: sample-1
 Schema File: true
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine:
 Prev Stop Managing:
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 15m ttclassic Image updated, automatic upgrade
started
 - StateChange 15m ttclassic Deleted STANDBY pod sample-1 per
upgrade
 - StateChange 15m ttclassic TimesTenClassic was Normal, now
ActiveTakeover
 - StateChange 15m ttclassic TimesTenClassic was ActiveTakeover, now
StandbyDown
 - StateChange 13m ttclassic Pod sample-1 Agent Up

Upgrading TimesTen

10-20 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 - StateChange 13m ttclassic Pod sample-1 Release 18.1.4.11.0
 - StateChange 13m ttclassic Pod sample-1 Instance Exists
 - StateChange 13m ttclassic Pod sample-1 Daemon Up
 - StateChange 13m ttclassic Pod sample-1 Database None
 - StateChange 12m ttclassic Pod sample-1 RepState IDLE
 - StateChange 12m ttclassic Pod sample-1 Database Loaded
 - StateChange 12m ttclassic Pod sample-1 CacheAgent Not Running
 - StateChange 12m ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 12m ttclassic Pod sample-1 RepScheme Exists
 - StateChange 12m ttclassic Pod sample-1 Database Not Updatable
 - StateChange 12m ttclassic Pod sample-1 RepAgent Running
 - StateChange 12m ttclassic Pod sample-1 RepState STANDBY
 - StateChange 12m ttclassic TimesTenClassic was StandbyDown, now
Normal
 - StateChange 12m ttclassic Deleted ACTIVE pod sample-0 per upgrade
 - StateChange 12m ttclassic TimesTenClassic was Normal, now
ActiveDown
 - StateChange 12m ttclassic TimesTenClassic was ActiveDown, now
ActiveTakeover
 - StateChange 12m ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 12m ttclassic Pod sample-1 Database Updatable
 - StateChange 12m ttclassic TimesTenClassic was ActiveTakeover, now
StandbyDown
 - StateChange 10m ttclassic Pod sample-0 Agent Up
 - StateChange 10m ttclassic Pod sample-0 Instance Exists
 - StateChange 10m ttclassic Pod sample-0 Daemon Up
 - StateChange 10m ttclassic Pod sample-0 Database None
 - StateChange 10m ttclassic Pod sample-0 Release 18.1.4.11.0
 - StateChange 9m38s ttclassic Pod sample-0 RepState IDLE
 - StateChange 9m38s ttclassic Pod sample-0 Database Loaded
 - StateChange 9m38s ttclassic Pod sample-0 Database Not Updatable
 - StateChange 9m38s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 9m38s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 9m38s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 9m32s ttclassic Pod sample-0 RepAgent Running
 - StateChange 9m32s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 9m32s ttclassic Upgrade of ACTIVE complete
 - StateChange 9m32s ttclassic Upgrade completed in 385 secs
 - StateChange 9m32s ttclassic TimesTenClassic was StandbyDown, now
Normal

The automated upgrade is successful. The active and standby Pods are running the
new TimesTen image, which contains the new TimesTen release. If you need to
upgrade additional TimesTenClassic objects, see "Perform an automated upgrade" on
page 10-14 for an automated upgrade or "Perform a manual upgrade" on page 10-20
for a manual upgrade. If the upgrade process is complete for all TimesTenClassic
objects, see "Verify the active standby pair of databases are upgraded" on page 10-31 to
verify the upgrade of all TimesTenClassic objects that are running in your Kubernetes
cluster.

This example now upgrades the sample2 TimesTenClassic object. Recall that the value
of the imageUpgradePolicy is manual for this TimesTenClassic object. Therefore,
proceed to "Perform a manual upgrade" on page 10-20 to complete the upgrade for the
sample2 TimesTenClassic object.

Perform a manual upgrade
This section describes what you need to do for a manual upgrade. If you wish to do an
automated upgrade, see "Perform an automated upgrade" on page 10-14 for details.

Upgrading TimesTen

Performing Upgrades 10-21

■ Modify the TimesTenClassic object: manual upgrade

■ Upgrade the standby database

■ Failover

Modify the TimesTenClassic object: manual upgrade
You must modify the TimesTenClassic object to reference the new TimesTen image.
You do this by modifying the value of the image CRD syntax element(s) for the
TimesTenClassic object. See "TimesTenClassicSpecSpec" on page 11-3 for more
information on the image element.

The value of imageUpgradeStrategy for the sample2 TimesTenClassic object is manual,
which indicates that you will manually perform the upgrade. After you edit the image
value of the sample2 TimesTenClassic object to reference the new TimesTen image, the
Operator notices the change, and modifies the StatefulSet. The Operator does not
restart the Pods. Rather, it upgrades the image that the Pods should be running. (The
later sections entitled "Upgrade the standby database" on page 10-23 and "Failover" on
page 10-27 detail the steps for restarting the Pods.)

1. Review the original sample2.yaml file. Note that .spec.ttspec.image references
the phx.ocir.io/youraccount/tt181440:2 image (represented in bold). Note also
that the value of imageUpgradeStrategy is manual (represented in bold).

% cat sample2.yaml
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample2
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt181440:2
 imagePullSecret: sekret
 imagePullPolicy: Always
 dbConfigMap:
 - sample2
 imageUpgradeStrategy: manual

2. Use the kubectl edit command to edit the sample2 TimesTenClassic object,
changing the .spec.ttspec.image attribute to reference the new TimesTen image
(phx.ocir.io/youraccount/tt1814110:3, in this example, represented in bold).

Note: Not all output is shown.

% kubectl edit timestenclassic sample2

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
file will be
reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
...
spec:
 ttspec:
 dbConfigMap:
 - sample2
 image: phx.ocir.io/youraccount/tt1814110:3

Upgrading TimesTen

10-22 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpgradeStrategy: manual
 storageClassName: oci
 storageSize: 250G
...
timestenclassic.timesten.oracle.com/sample2 edited

3. Use the kubectl describe statefulset command to verify that the Operator has
modified the sample2 StatefulSet and replaced the image with the new image
(phx.ocir.io/youraccount/tt1814110:3, in this example, represented in bold).

% kubectl describe statefulset sample2
Name: sample2
Namespace: mynamespace
CreationTimestamp: Sun, 11 Apr 2021 14:07:21 +0000
Selector: app=sample2
Labels: app=sample2
Annotations: <none>
Replicas: 2 desired | 2 total
Update Strategy: OnDelete
Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=sample2
 Init Containers:
 ttinit:
 Image: phx.ocir.io/youraccount/tt1814110:3
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Command:
 perl
 /home/oracle/starthost.pl
 Environment:
 TIMESTEN_HOME: /tt/home/oracle/instances/instance1
 LD_LIBRARY_PATH:
/tt/home/oracle/instances/instance1/ttclasses/lib:/tt/home/oracle/instances/
instance1/install/lib:/tt/home/oracle/instances/instance1/install/
ttoracle_home/instantclient_11_2
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 TT_INIT_CONTAINER: 1
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 Containers:
 tt:
 Image: phx.ocir.io/youraccount/tt1814110:3
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Command:
 perl
 /home/oracle/starthost.pl
 Environment:
 TIMESTEN_HOME: /tt/home/oracle/instances/instance1
 LD_LIBRARY_PATH:
/tt/home/oracle/instances/instance1/ttclasses/lib:/tt/home/oracle/instances/
instance1/install/lib:/tt/home/oracle/instances/instance1/install/
ttoracle_home/instantclient_11_2
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 Mounts:

Upgrading TimesTen

Performing Upgrades 10-23

 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 daemonlog:
 Image: phx.ocir.io/youraccount/tt1814110:3
 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 /bin/bash <<'EOF'
 while [1] ; do tail --follow=name
/tt/home/oracle/instances/instance1/diag/ttmesg.log --max-unchanged-stats=5;
sleep 1; done
 exit 0
 EOF
 Requests:
 cpu: 100m
 memory: 20Mi
 Environment:
 TIMESTEN_HOME: /tt/home/oracle/instances/instance1
 LD_LIBRARY_PATH:
/tt/home/oracle/instances/instance1/ttclasses/lib:/tt/home/oracle/instances/
instance1/install/lib:/tt/home/oracle/instances/instance1/install/
ttoracle_home/instantclient_11_2
 Mounts:
 /tt from tt-persistent (rw)
 Volumes:
 tt-agent:
 Type: Secret (a volume populated by a Secret)
 SecretName: tt3af3e6fb-9acf-11eb-8286-6a1fd5dce8ff
 Optional: false
 tt-config:
 Type: Projected (a volume that contains injected data from
multiple sources)
 ConfigMapName: sample2
 ConfigMapOptional: <nil>
Volume Claims:
 Name: tt-persistent
 StorageClass: oci
 Labels: <none>
 Annotations: <none>
 Capacity: 250G
 Access Modes: [ReadWriteOnce]
Events: <none>

You have successfully modified the sample2 TimesTenClassic object to use the new
TimesTen image. You are now ready to continue the manual upgrade. Proceed to
"Upgrade the standby database" on page 10-23 to continue this manual upgrade.

Upgrade the standby database
Perform these steps to upgrade the standby database.

Note: Even though you are upgrading the standby database,
depending on your replication configuration, this may result in
disruption on your active database. This may impact your
applications. Perform the upgrade at the appropriate time.

Upgrading TimesTen

10-24 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

1. Use the kubectl get pods command to review the Pods. The sample2-0 and the
sample2-1 Pods are shown in this example.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample2-0 2/2 Running 0 2d6h
sample2-1 2/2 Running 0 2d6h

2. Use the kubectl get ttc command to:

■ Determine which Pod is the standby. The active Pod is the Pod represented in
the ACTIVE column. The standby Pod is the other Pod (not represented in the
ACTIVE column). Therefore, for the sample2 TimesTenClassic object, the active
Pod is sample2-0, (represented in bold) and the standby Pod is sample2-1.

■ Ensure the state for the TimesTenClassic object (sample2, in this example) is
Normal (represented in bold).

% kubectl get ttc sample2
NAME STATE ACTIVE AGE
sample2 Normal sample2-0 2d6h

3. To upgrade the standby to the new TimesTen image, delete the standby Pod
(sample2-1, in this example).

% kubectl delete pod sample2-1
pod "sample2-1" deleted

Kubernetes automatically creates a new sample2-1 Pod to replace the deleted Pod.
The Operator configures the new sample2-1 Pod as the standby Pod. This new
Pod will now run the newly created TimesTen image.

4. Use the kubectl get command to verify the standby is up and running and the
state is Normal.

Note that the state is StandbyDown (represented in bold).

% kubectl get ttc sample2
NAME STATE ACTIVE AGE
sample2 StandbyDown sample2-0 2d6h

Wait a few minutes, then run the command again. Note that the state has changed
to Normal (represented in bold).

% kubectl get ttc sample2
NAME STATE ACTIVE AGE
sample2 Normal sample2-0 2d6h

5. Use the kubectl describe command to further verify that the standby is up and
running again and that the active standby pair health is Normal. During the
upgrade of the standby, your applications are not disrupted. Your applications can
continue to use the active database.

In this example, note the following:

■ The image is upgraded to the new release
(phx.ocir.io/youraccount/tt1814110:3, represented in bold).

■ The active database (sample2-0) is not upgraded to the new release. (Release is
still 18.1.4.4.0, represented in bold.)

■ The standby database (sample2-1) is upgraded to the new release.
(18.1.4.11.0, represented in bold.)

Upgrading TimesTen

Performing Upgrades 10-25

% kubectl describe ttc sample2
Name: sample2
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-04-11T14:07:20Z
 Generation: 2
 Resource Version: 150206835
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample2
 UID: 3af3e6fb-9acf-11eb-8286-6a1fd5dce8ff
Spec:
 Ttspec:
 Db Config Map:
 sample2
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: manual
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Classic Upgrade Status:
 Active Start Time: 0
 Active Status:
 Image Update Pending: true
 Last Upgrade State Switch: 0
 Prev Reset Upgrade State:
 Prev Upgrade State:
 Standby Start Time: 0
 Standby Status:
 Upgrade Start Time: 0
 Upgrade State:
 Active Pods: sample2-0
 High Level State: Normal
 Last Event: 41
 Last High Level State Switch: 1618347326
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 36351
 Db Updatable: Yes
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618347435
 Pod IP: 10.244.8.199
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image: phx.ocir.io/youraccount/tt181440:2
 Replication Status:
 Last Time Rep State Changed: 0

Upgrading TimesTen

10-26 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.4.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Active
 Local Commit: false
 Name: sample2-0
 Schema File: true
 Using Twosafe: false
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 36351
 Db Updatable: No
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618347435
 Pod IP: 10.244.5.156
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image: phx.ocir.io/youraccount/tt181440:2
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Standby
 Local Commit: false
 Name: sample2-1
 Schema File: true
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine:
 Prev Stop Managing:
 Rep Create Statement: create active standby pair "sample2" on
"sample2-0.sample2.mynamespace.svc.cluster.local", "sample2" on

Upgrading TimesTen

Performing Upgrades 10-27

"sample2-1.sample2.mynamespace.svc.cluster.local" NO RETURN store "sample2"
on "sample2-0.sample2.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0 store "sample2" on
"sample2-1.sample2.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 29m ttclassic Image updated, automatic upgrade
 disabled
 - StateChange 4m35s ttclassic TimesTenClassic was Normal, now
 ActiveTakeover
 - StateChange 4m29s ttclassic TimesTenClassic was ActiveTakeover, now
 StandbyDown
 - StateChange 2m47s ttclassic Pod sample2-1 Agent Up
 - StateChange 2m47s ttclassic Pod sample2-1 Release 18.1.4.11.0
 - StateChange 2m47s ttclassic Pod sample2-1 Daemon Up
 - StateChange 2m47s ttclassic Pod sample2-1 Database None
 - StateChange 118s ttclassic Pod sample2-1 Database Loaded
 - StateChange 118s ttclassic Pod sample2-1 Database Not Updatable
 - StateChange 118s ttclassic Pod sample2-1 RepAgent Not Running
 - StateChange 118s ttclassic Pod sample2-1 RepState IDLE
 - StateChange 113s ttclassic Pod sample2-1 RepAgent Running
 - StateChange 113s ttclassic Pod sample2-1 RepState STANDBY
 - StateChange 113s ttclassic TimesTenClassic was StandbyDown, now
 Normal

You have successfully upgraded the standby database. You are now ready to fail over
from the active database to the standby. See "Failover" on page 10-27 for details.

Failover
You must now fail over from the active database to the standby.

Before failing over, quiesce your applications on the active database. (You can also use
the ttAdmin -close and the ttAdmin -disconnect commands. See "Opening and
closing the database for user connections" and "Disconnecting from a database" in the
Oracle TimesTen In-Memory Database Operations Guide for information.)

To avoid potential data loss, use the ttRepAdmin -wait command to wait until
replication is caught up, such that all transactions that were executed on the active
database have been replicated to the standby database. See "ttRepAdmin" in the Oracle
TimesTen In-Memory Database Reference for information.

Once the standby is caught up, fail over from the active database to the standby by
deleting the active Pod. When you delete the active Pod, the Operator automatically
detects the failure and promotes the standby database to be the active. Client/server
applications that are using the active database (sample2-0, in this example) are
automatically reconnected to the new active database (sample2-1, in this example).
Transactions in flight are rolled back. Prepared SQL statements will need to be
re-prepared by the applications. See "Handling failover and recovery" on page 9-1 for
more information of client/server failover.

Note: When you fail over, your active database will be taken down,
and failed over immediately. Do not perform this procedure at the
busiest time of your production day.

Upgrading TimesTen

10-28 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Kubernetes automatically creates a new sample2-0 Pod to replace the deleted Pod. The
Operator will configure the new Pod as the standby Pod. This new Pod will run the
newly created TimesTen image.

1. Use the kubectl delete command to delete the active Pod (sample2-0, in this
example).

% kubectl delete pod sample2-0
pod "sample2-0" deleted

2. Use the kubectl describe command to observe how the Operator recovers from
the failure. The Operator promotes the standby database (sample2-1) to be active.
Any applications that were connected to the sample2-0 database are automatically
reconnected to the sample2-1 database by TimesTen. After a brief outage, the
applications can continue to use the database. See "Monitoring the health of the
active standby pair of databases" on page 6-3 for information on the health and
states of the active standby pair.

% kubectl describe ttc sample2
Name: sample2
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-04-11T14:07:20Z
 Generation: 2
 Resource Version: 150214843
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample2
 UID: 3af3e6fb-9acf-11eb-8286-6a1fd5dce8ff
Spec:
 Ttspec:
 Db Config Map:
 sample2
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: manual
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Classic Upgrade Status:
 Active Start Time: 0
 Active Status:
 Image Update Pending: true
 Last Upgrade State Switch: 0
 Prev Reset Upgrade State:
 Prev Upgrade State:
 Standby Start Time: 0
 Standby Status:
 Upgrade Start Time: 0
 Upgrade State:
 Active Pods: sample2-1

Note: You may want to perform this operation during a scheduled
production outage.

Upgrading TimesTen

Performing Upgrades 10-29

 High Level State: Normal
 Last Event: 57
 Last High Level State Switch: 1618348960
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 36623
 Db Updatable: No
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618349003
 Pod IP: 10.244.6.26
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image: phx.ocir.io/youraccount/tt181440:2
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Standby
 Local Commit: false
 Name: sample2-0
 Schema File: true
 Using Twosafe: false
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 36624
 Db Updatable: Yes
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618349003
 Pod IP: 10.244.5.156
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image: phx.ocir.io/youraccount/tt181440:2
 Replication Status:
 Last Time Rep State Changed: 0

Upgrading TimesTen

10-30 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Active
 Local Commit: false
 Name: sample2-1
 Schema File: true
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine:
 Prev Stop Managing:
 Rep Create Statement: create active standby pair "sample2" on
"sample2-0.sample2.mynamespace.svc.cluster.local", "sample2" on
"sample2-1.sample2.mynamespace.svc.cluster.local" NO RETURN store "sample2"
on "sample2-0.sample2.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0 store "sample2" on
"sample2-1.sample2.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 55m ttclassic Image updated, automatic upgrade
disabled
 - StateChange 30m ttclassic TimesTenClassic was Normal, now
ActiveTakeover
 - StateChange 30m ttclassic TimesTenClassic was ActiveTakeover, now
StandbyDown
 - StateChange 28m ttclassic Pod sample2-1 Agent Up
 - StateChange 28m ttclassic Pod sample2-1 Release 18.1.4.11.0
 - StateChange 28m ttclassic Pod sample2-1 Daemon Up
 - StateChange 28m ttclassic Pod sample2-1 Database None
 - StateChange 28m ttclassic Pod sample2-1 Database Loaded
 - StateChange 28m ttclassic Pod sample2-1 Database Not Updatable
 - StateChange 28m ttclassic Pod sample2-1 RepAgent Not Running
 - StateChange 28m ttclassic Pod sample2-1 RepState IDLE
 - StateChange 27m ttclassic Pod sample2-1 RepAgent Running
 - StateChange 27m ttclassic Pod sample2-1 RepState STANDBY
 - StateChange 27m ttclassic TimesTenClassic was StandbyDown, now
Normal
 - StateChange 3m8s ttclassic TimesTenClassic was Normal, now
ActiveDown
 - StateChange 3m1s ttclassic TimesTenClassic was ActiveDown, now
ActiveTakeover
 - StateChange 3m1s ttclassic Pod sample2-1 RepState ACTIVE
 - StateChange 3m1s ttclassic Pod sample2-1 Database Updatable
 - StateChange 2m56s ttclassic TimesTenClassic was ActiveTakeover, now
StandbyDown
 - StateChange 113s ttclassic Pod sample2-0 Agent Up

Upgrading TimesTen

Performing Upgrades 10-31

 - StateChange 113s ttclassic Pod sample2-0 Release 18.1.4.11.0
 - StateChange 113s ttclassic Pod sample2-0 Daemon Up
 - StateChange 113s ttclassic Pod sample2-0 Database None
 - StateChange 50s ttclassic Pod sample2-0 Database Loaded
 - StateChange 50s ttclassic Pod sample2-0 Database Not Updatable
 - StateChange 50s ttclassic Pod sample2-0 RepAgent Not Running
 - StateChange 50s ttclassic Pod sample2-0 RepState IDLE
 - StateChange 44s ttclassic Pod sample2-0 RepAgent Running
 - StateChange 44s ttclassic Pod sample2-0 RepState STANDBY
 - StateChange 44s ttclassic TimesTenClassic was StandbyDown, now
Normal

You have successfully upgraded to a new release of TimesTen. The active and the
standby Pods are running the new TimesTen image, which contains the new TimesTen
release. If you need to upgrade additional TimesTenClassic objects, see "Perform an
automated upgrade" on page 10-14 for an automated upgrade or "Perform a manual
upgrade" on page 10-20 for a manual upgrade. If the upgrade process is complete for
all TimesTenClassic objects, see "Verify the active standby pair of databases are
upgraded" on page 10-31 to verify the upgrade of all TimesTenClassic objects that are
running in your Kubernetes cluster.

In this example, the sample and the sample2 TimesTenClassic objects are now
upgraded. The upgrade process is complete. Proceed to "Verify the active standby pair
of databases are upgraded" on page 10-31 to verify the TimesTenClassic objects are
running successfully and have been upgraded.

Verify the active standby pair of databases are upgraded
After the upgrade process is complete for your TimesTenClassic objects, you can verify
that each TimesTenClassic object is running successfully and that the active and the
standby databases are running the new release of TimesTen.

1. Use the kubectl get command to verify the Pods are running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 7h1m
sample-1 2/2 Running 0 7h4m
sample2-0 2/2 Running 0 4h54m
sample2-1 2/2 Running 0 5h22m
timestenclassic-operator-846cb5c97c-sbz22 1/1 Running 0 2d8h

2. Use the kubectl get command to verify the state of each TimesTenClassic object is
Normal (represented in bold, in this example).

% kubectl get ttc
NAME STATE ACTIVE AGE
sample Normal sample-1 2d12h
sample2 Normal sample2-1 2d12h

3. For the sample TimesTenClassic object, use the kubectl exec -it command to
invoke a shell in the active Pod (sample-1, in this example). Then, run the
ttVersion utility to verify the release is the new release. (18.1.4.11.0, in this
example, represented in bold).

% kubectl exec -it sample-1 -c tt -- /usr/bin/su - oracle
% ttVersion
TimesTen Release 18.1.4.11.0 (64 bit Linux/x86_64) (instance1:6624)
2021-04-06T07:34:18Z
 Instance admin: oracle

Upgrading TimesTen

10-32 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Instance home directory: /tt/home/oracle/instances/instance1
 Group owner: oracle
 Daemon home directory: /tt/home/oracle/instances/instance1/info
 PL/SQL enabled.

4. Now use the kubectl exec -it command to invoke a shell in the standby Pod
(sample-0, in this example). Then, run the ttVersion utility to verify the release is
the new release. (18.1.4.11.0, in this example, represented in bold).

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle
% ttVersion
TimesTen Release 18.1.4.11.0 (64 bit Linux/x86_64) (instance1:6624)
2021-04-06T07:34:18Z
 Instance admin: oracle
 Instance home directory: /tt/home/oracle/instances/instance1
 Group owner: oracle
 Daemon home directory: /tt/home/oracle/instances/instance1/info
 PL/SQL enabled.

5. For the sample2 TimesTenClassic object, use the kubectl exec -it command to
invoke a shell in the active Pod (sample2-1, in this example). Then, use the
ttVersion utility to verify the release is the new release (18.1.4.11.0, in this
example).

% kubectl exec -it sample2-1 -c tt -- /usr/bin/su - oracle
% ttVersion
TimesTen Release 18.1.4.11.0 (64 bit Linux/x86_64) (instance1:6624)
2021-04-06T07:34:18Z
 Instance admin: oracle
 Instance home directory: /tt/home/oracle/instances/instance1
 Group owner: oracle
 Daemon home directory: /tt/home/oracle/instances/instance1/info
 PL/SQL enabled.

6. Now use the kubectl exec -it command to invoke a shell in the standby Pod
(sample2-0, in this example). Then, use the ttVersion utility to verify the release
is the new release (18.1.4.11.0, in this example).

% kubectl exec -it sample2-0 -c tt -- /usr/bin/su - oracle
% ttVersion
TimesTen Release 18.1.4.11.0 (64 bit Linux/x86_64) (instance1:6624)
2021-04-06T07:34:18Z
 Instance admin: oracle
 Instance home directory: /tt/home/oracle/instances/instance1
 Group owner: oracle
 Daemon home directory: /tt/home/oracle/instances/instance1/info
 PL/SQL enabled.

The upgrade to a new release of TimesTen is successful for the sample and the sample2
TimesTenClassic objects. The active and the standby Pods for each TimesTenClassic
object are running the new TimesTen image, which contains the new TimesTen release.

11

The TimesTenClassic Object Type 11-1

11The TimesTenClassic Object Type

This chapter describes the TimesTenClassic object type. You create objects of this type
in order to create active standby pairs of TimesTen databases.

Topics:

■ Overview of the TimesTenClassic object type

■ The TimesTenClassic object type

Overview of the TimesTenClassic object type
The installation of the TimesTen Operator adds a new type of object to the Kubernetes
cluster. You can create as many TimesTenClassic objects as you like. Each such object
creates a pair of TimesTen databases, each running in a container, inside a Pod. Both
Pods operate under the control of a StatefulSet.

The definition of the TimesTenClassic object type uses the same basic format as the
formal Kubernetes documentation uses to define objects that are built-in to
Kubernetes. Note that the facilities available in any given Kubernetes cluster depend
on what release of Kubernetes the cluster is using. For information on the Kubernetes
API documentation, see:

https://kubernetes.io/docs/reference/kubernetes-api/

The Kuberenetes API reference documentation refers to a number of built-in
Kubernetes types used in the definition of the TimesTenClassic object type, in
particular the StatefulSet. In addition, since TimesTenClassic is basically a wrapper
around a StatefulSet, its definition is particularly relevant. In particular,
StatefulSetSpec is used as is. It describes the spec for the StatefulSet. It is how creators
of StatefulSets express what they want the StatefulSet to look like. For more
information, see:

https://kubernetes.io/docs/reference/kubernetes-api/

The TimesTenClassic object type
The TimesTenClassic object type is defined using the following object definitions.
These definitions are represented in table format. The first column includes the name
of the field and the type. The second column provides a description.

■ TimesTenClassic

Note: All metadata is passed from the TimesTenClassic object to the
StatefulSet.

The TimesTenClassic object type

11-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

■ TimesTenClassicSpec

■ TimesTenClassicSpecSpec

■ TimesTenClassicStatus

TimesTenClassic
You create an object of type TimesTenClassic in order to create your active standby
pair of TimesTen databases.

Table 11–1, " TimesTenClassic" shows the syntax for TimesTenClassic.

TimesTenClassicSpec
TimesTenClassicSpec appears in TimesTenClassic. See Table 11–1, " TimesTenClassic"
for information.

Table 11–2, " TimesTenClassicSpec" shows the syntax for TimesTenClassicSpec.

Table 11–1 TimesTenClassic

Field Description

apiVersion
string

apiVersion defines the versioned schema of this representation
of an object.

The value must be timesten.oracle.com/v1.

kind
string

kind indicates the type of object (in this example,
TimesTenClassic)

metadata
ObjectMeta

metadata indicates the metadata about the object, such as its
name. For information on ObjectMeta, see:

https://kubernetes.io/docs/reference/kubernetes-api/

spec
TimesTenClassicSpec

spec defines the desired configuration of TimesTen Pods and
databases.

status
TimesTenClassicStatus

status indicates the current status of the Pods in this
TimesTenClassic object as well as the status of various TimesTen
components within those Pods. This data may be out of date by
some window of time.

Table 11–2 TimesTenClassicSpec

Field Description

ttspec
TimesTenClassicSpecSpec

ttspec defines the TimesTen specific attributes.

template
PodTemplateSpec

template describes the Pod that is created if insufficient replicas
are detected. Each Pod that is provisioned fulfills this template,
but has a unique identity from the rest. There are two additional
containers, named tt and daemonlog, that are automatically
included in each Pod in addition to any specified here. TimesTen
runs in the tt container. For information on PodTemplateSpec,
see:

https://kubernetes.io/docs/reference/kubernetes-api/

volumeClaimTemplates
PersistentVolumeClaim

TimesTen automatically provisions PersistentVolumeClaims
(PVCs) for /tt (and for /ttlog, if specified). If you have
applications that are running in containers in the TimesTen Pods,
and those applications require additional PVCs, specify them in
this field. For information on PersistentVolumeClaim, see:

https://kubernetes.io/docs/reference/kubernetes-api/

The TimesTenClassic object type

The TimesTenClassic Object Type 11-3

TimesTenClassicSpecSpec
TimesTenClassicSpecSpec appears in TimesTenClassicSpec. See Table 11–2,
" TimesTenClassicSpec" for information.

Table 11–3, " TimesTenClassicSpecSpec" shows the syntax for
TimesTenClassicSpecSpec.

Table 11–3 TimesTenClassicSpecSpec

Field Description

agentGetTimeout
integer

agentGetTimeout specifies the time (in seconds) that the Operator waits
for an https GET request to be processed by the TimesTen agent. This
includes the TCP and the TLS times as well as the time it takes for the
TimesTen agent to implement the GET request.

The default is 60. A value of 0 indicates that there is no timeout. If the
timeout is exceeded, the Operator considers the agent to be down.

agentPostTimeout
integer

agentPostTimeout specifies the time (in seconds) that the Operator waits
for an https POST request to be processed by the TimesTen agent. This
includes the TCP and the TLS times as well as the time it takes for the
TimesTen agent to implement the POST request. Note that POST requests
may take a long time and the time may be proportional to the size of the
database. (An example is a POST request to duplicate a database from the
active to the standby.)

The default is 600. A value of 0 indicates that there is no timeout. If the
timeout is exceeded, the Operator considers the POST request to have
failed.

agentTCPTimeout
integer

agentTCPTimeout specifies the time (in seconds) that the Operator waits
for a TCP handshake when communicating with the TimesTen agent.

The default is 10. A value of 0 indicates that there is no timeout. If the
timeout is exceeded, the Operator considers the agent to be down.

agentTLSTimeout
integer

agentTLSTimeout specifies the time (in seconds) that the Operator waits
for a TLS (https) credential exchange when communicating with the
TimesTen agent.

The default is 10. A value of 0 indicates that there is no timeout. If the
timeout is exceeded, the Operator considers the agent to be down.

bothDownBehavior
string

If the TimesTenClassic object enters the BothDown state, the Operator
examines the bothDownBehavior setting to determine what to do.
Acceptable values are Best (default) or Manual. See "BothDown" on
page 6-4 for more information on the BothDown state.

cacheCleanup
boolean

cacheCleanup specifies if the metadata in the Oracle Database should be
cleaned up when this TimesTenClassic object is deleted. Use for
TimesTen Cache only.

Valid values:

■ true (or not specified): The metadata is cleaned up.

■ false: The metadata is not cleaned up.

See "Cleaning up the cache metadata on the Oracle Database" on
page 7-10 in this book for details. Also, see "Dropping Oracle Database
objects used by autorefresh cache groups" in the Oracle TimesTen
Application-Tier Database Cache User's Guide.

daemonLogSidecar
boolean

daemonLogSidecar specifies whether a daemon log container is created
in each TimesTen Pod. This container writes the TimesTen daemon logs
(from ttmesg.log) to stdout, thus causing Kubernetes to log them.

Valid values:

■ true (or not specified): A daemon log container is created.

■ false: A daemon log container is not created.

dbConfigMap
array of strings

dbConfigMap specifies the names of one or more ConfigMaps that will be
included in a ProjectedVolume. This ProjectedVolume is mounted as
/ttconfig in the TimesTen containers. If you do not specify dbConfigMap
or dbSecret (explained below), you must create the required files that
need to be located in /ttconfig using other means. See "Populating the
/ttconfig directory" on page 3-6 for details.

The TimesTenClassic object type

11-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

dbSecret
array of strings

dbSecret specifies the names of one or more Secrets that will be
included in a ProjectedVolume. This ProjectedVolume is mounted as
/ttconfig in the TimesTen containers. If you do not specify dbSecret or
dbConfigMap (explained above), you must create the required files that
need to be located in /ttconfig using other means. See "Populating the
/ttconfig directory" on page 3-6 for details.

image
string

image defines the image containing TimesTen.

There is no default. You must specify the name of the image.

imagePullPolicy
string

imagePullPolicy determines if and when Kubernetes pulls the
TimesTen image from the image repository.

Valid values:

■ Always

■ IfNotPresent (default)

■ Never

Note: Values are case sensitive.

imagePullSecret
string

imagePullSecret defines the image pull secret that Kerbernetes should
use to fetch the TimesTen image.

There is no default. You must specify the name of the image pull secret.

imageUpgradeStrategy
string

imageUpgradeStrategy specifies whether the Operator performs
automated upgrades.

Valid values:

■ auto (or not specified): The Operator performs automated
upgrades.

■ manual: The Operator does not perform an automated upgrade.

Values are case sensitive. See Chapter 10, "Performing Upgrades" for
information.

logStorageClassName
string

logStorageClassName indicates the name of the storage class that is used
to allocate PersistentVolumes to hold the TimesTen transaction logs. If
you do not specify this field, the transaction logs are located in the
PersistentVolumes defined by Kubernetes.

logStorageSelector
metav1.LabelSelector

When choosing to use a persistent volume to store the TimesTen
transaction logs, the primary determinant of what volumes to use is the
logStorageClassName element that you specify. You can optionally
specify a label selector by using the logStorageSelector element. This
label selector further filters the set of volumes. See:

https://kubernetes.io/docs/concepts/storage/persistent-volumes

/#selector

logStorageSize
string

logStorageSize is the amount of storage that should be requested for
each Pod to hold the TimesTen transaction logs. See "Storage
provisioning for TimesTen" in the Oracle TimesTen In-Memory Database
Operations Guide for information on determining the amount of storage
needed for the transaction log files.

The default is 50G. This default value may be suitable when you are
experimenting with the product or using it for demonstration purposes.
However, in a production environment, consider choosing a value
greater than 50G. The examples in this book assume a production
environment and use a value of 250G.

pollingInterval
integer

pollingInterval specifies how often (expressed in seconds) that the
Operator checks the status of the TimesTenClassic active standby pair
object. For example, if you set this value to 10, the Operator checks the
status of the TimesTenClassic object every ten seconds.

This value interacts with unreachableTimeout. The pollingInterval
value should be smaller than the unreachableTimeout value.

The value must be a positive integer (greater than 0). The default is 5.

Table 11–3 (Cont.) TimesTenClassicSpecSpec

Field Description

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

The TimesTenClassic object type

The TimesTenClassic Object Type 11-5

reexamine
string

When a TimesTenClassic object is in the ManualInterventionRequired
state, the Operator examines the reexamine value every
pollingInterval seconds. If the value has changed since the last
iteration for this object, the Operator examines the state of the TimesTen
containers for this object. See "Understanding the
ManualInterventionRequired state" on page 6-7 and "Bringing up one
database" on page 6-8 for more information.

Table 11–3 (Cont.) TimesTenClassicSpecSpec

Field Description

The TimesTenClassic object type

11-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

repCreateStatement
string

The repReturnServiceAttribute and the repStoreAttribute syntax
elements provide some control over the CREATE ACTIVE STANDBY
statement that you use to configure your active standby pair replication
scheme. However, these elements do not provide a mechanism to set all
the replication options.

The repCreateStatement syntax element provides more control over the
active standby pair replication configuration. If you choose to define a
replication scheme, you must choose either the repCreateStatement
approach or the repReturnServiceAttribute and the
repStoreAttribute approach. You cannot use both approaches
simultaneously in a single TimesTenClassic object definition. For
example, you cannot use the repCreateStatement element and the
repReturnServiceAttribute element in a single TimesTenClassic object
definition. However, you can use the repReturnServiceAttribute and
the repStoreAttribute elements in a single TimesTenClassic object
definition.

Example of using the repCreateStatement element:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 repCreateStatement: |
 create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
 RETURN TWOSAFE
 store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 10 TIMEOUT 5
 DISABLE RETURN ALL 10
 store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 10 TIMEOUT 5
 DISABLE RETURN ALL 10

The Operator does the substitutions for you.

■ {{tt-name}}: The name of the TimesTenClassic object. (For
example, sample.)

■ {{tt-node-0}}: The fully qualified DNS name of the -0 Pod for the
TimesTenClassic object. (For example,
sample-0.sample.mynamespace.svc.cluster.local.)

■ {{tt-node-1}}: The fully qualified DNS name of the -1 Pod for the
TimesTenClassic object. (For example,
sample-1.sample.mynamespace.svc.cluster.local.)

■ {{tt-rep-port}}: The TCP port either chosen by the Operator or
specified in the repPort CRD syntax element.

When you use the repCreateStatement element, you have nearly
complete control over the replication configuration. The Operator
executes the statement you define (after substituting a number of values
into it). Since the Operator is using the CREATE statement that you define,
ensure that the statement you specify is correct and appropriate. If the
creation of your active standby pair replication scheme fails, your
TimesTenClassic object transitions from the Initializing state to the
Failed state. You must then delete the TimesTenClassic object to clean
up the resources it holds. See "Monitoring the health of the active
standby pair of databases" on page 6-3 for information on these states.

Restrictions on the configuration:

■ You must configure an active standby pair.

■ You may not configure subscribers.

See "CREATE ACTIVE STANDBY PAIR" in the Oracle TimesTen
In-Memory Database SQL Reference and "Defining an active standby pair
replication scheme" in the Oracle TimesTen In-Memory Database Replication
Guide for information.

Table 11–3 (Cont.) TimesTenClassicSpecSpec

Field Description

The TimesTenClassic object type

The TimesTenClassic Object Type 11-7

replicationCipherSuite
string

replicationCipherSuite specifies the encryption algorithm to be used
by TimesTen replication. If not specified, replication traffic is not
encrypted.

You can specify either one of these values or both:

■ SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

■ SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

See "About using certificates with TimesTen" in the Oracle TimesTen
In-Memory Database Security Guide for more information.

replicationSSLMandatory
integer

replicationSSLMandatory specifies whether SSL encryption is
mandatory for replication.

Valid values:

■ 0 (or not specified): SSL encryption is not mandatory for
replication.

■ 1: SSL encryption is mandatory for replication.

This value is only examined if replicationCipherSuite is specified.

See "About using certificates with TimesTen" in the Oracle TimesTen
In-Memory Database Security Guide for more information.

repPort
integer

RepPort specifies the TCP port to be used for replication. The default is
4444.

repReturnServiceAttribute
string

You can use the repReturnServiceAttribute element to specify the
ReturnServiceAttribute clause. This clause is part of the syntax for the
CREATE ACTIVE STANDBY PAIR statement. The information you specify is
included in your active standby pair's CREATE ACTIVE STANDBY PAIR
statement by the Operator. Do not specify the
repReturnServiceAttribute element if you have specified the
repCreateStatement element.

If you do not specify the repReturnServiceAttribute element (or the
repCreateStatement element), the default is NO RETURN.

See "CREATE ACTIVE STANDBY PAIR" in the Oracle TimesTen
In-Memory Database SQL Reference and "Defining an active standby pair
replication scheme" in the Oracle TimesTen In-Memory Database Replication
Guide for information on the CREATE ACTIVE STANDBY PAIR statement and
the ReturnServiceAttribute clause.

repStoreAttribute
string

You can use the repStoreAttribute element to specify the
StoreAttribute clause. This clause is part of the CREATE ACTIVE STANDBY
PAIR statement. The information you specify is included in your active
standby pair's CREATE ACTIVE STANDBY PAIR statement by the Operator.
Do not specify the repStoreAttribute element if you have specified the
repCreateStatement element.

If you do not specify the repStoreAttribute element (or the
repCreateStatement element), the default is: PORT repPort
FAILTHRESHOLD 0.

If you specify the repStoreAttribute, you must specify the port. This
port is used by replication. The port must match the port provided in the
repPort element (or must match the default value if repPort is not
specified). If the ports do not match, the TimesTenClassic object enters
the Failed state.

See "CREATE ACTIVE STANDBY PAIR" in the Oracle TimesTen
In-Memory Database SQL Reference and "Defining an active standby pair
replication scheme" in the Oracle TimesTen In-Memory Database Replication
Guide for information on the CREATE ACTIVE STANDBY PAIR statement and
the StoreAttribute clause.

stopManaging
string

If you change the value of stopManaging for the TimesTenClassic object,
the Operator places the object in the ManualInterventionRequired state.
See "Understanding the ManualInterventionRequired state" on page 6-7
and "Bringing up one database" on page 6-8 for more information.

storageClassName
string

storageClassName indicates the name of the storage class that is used to
allocate PersistentVolumes defined by Kubernetes.

There is no default. You must specify the name of the storage class.

Table 11–3 (Cont.) TimesTenClassicSpecSpec

Field Description

The TimesTenClassic object type

11-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

TimesTenClassicStatus
TimesTenClassicStatus appears in TimesTenClassic. See "TimesTenClassic" on
page 11-2 for information. This object type is a standard part of any CRD. The
Operator stores various persistent information in TimesTenClassicStatus.

The status is displayed as part of the output of the kubectl get and kubectl describe
commands.

Information in TimesTenClassicStatus includes:

■ awtBehindMb: This field is only present if AWT (Asynchronous WriteThrough) is in
use. The field represents how many megabytes of log is present in TimesTen that
has not yet been pushed to Oracle Database. See "Overview of cache groups" in the

storageSelector
metav1.LabelSelector

When choosing to use a persistent volume to store a TimesTen database,
the primary determinant of what volumes to use is the
storageClassName element that you specify. You can optionally specify a
label selector by using the storageSelector element. This label selector
further filters the set of volumes. See:

https://kubernetes.io/docs/concepts/storage/persistent-volumes

/#selector

storageSize
string

storageSize is the amount of storage that should be requested for each
Pod to hold TimesTen. See "Storage provisioning for TimesTen" in the
Oracle TimesTen In-Memory Database Operations Guide for information on
determining the amount of storage needed for TimesTen.

The default is 50G. This default value may be suitable when you are
experimenting with the product or using it for demonstration purposes.
However, in a production environment, consider choosing a value
greater than 50G. The examples in this book assume a production
environment and use a value of 250G.

unreachableTimeout
integer

unreachableTimeout specifies the number of seconds that a TimesTen
instance or TimesTen database is unavailable before the Operator takes
action to fail over or otherwise recover from the issue.

This value interacts with pollingInterval. The pollingInterval value
should be smaller than the unreachableTimeout value.

The value must be a positive integer (greater than 0). The default is 30.

upgradeDownPodTimeout
integer

During an automated upgrade of TimesTen, the Operator deletes Pods.
After deleting a Pod, the Operator waits up to the value of
upgradeDownPodTimeout for the Pod to come back up. If the TimesTen
agent located in the tt container of the Pod cannot be reached before this
timeout, the TimesTenClassic object enter the
ManualInterventionRequired state.

The value is expressed in seconds. The default is 600.

A value of 0 indicates no timeout. The TimesTenClassic object waits
forever and does not enter the ManualInterventionRequired state.

See Chapter 10, "Performing Upgrades" for more information on the
upgrade process.

waitingForActiveTimeout
integerca

This setting specifies the maximum amount of seconds that the
TimesTenClassic object remains in the WaitingForActive state. After this
period of time, if the TimesTenClassic object is still in the
WaitingForActive state, it transitions to the
ManualInterventionRequired state.

The default is 0 (which means there is no timeout. The TimesTenClassic
object waits forever, if required).

See "Monitoring the health of the active standby pair of databases" on
page 6-3 for information on the WaitingForActive and the
ManualInterventionRequired states.

Table 11–3 (Cont.) TimesTenClassicSpecSpec

Field Description

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

The TimesTenClassic object type

The TimesTenClassic Object Type 11-9

Oracle TimesTen Application-Tier Database Cache User's Guide for more information
on AWT cache groups.

■ High Level State of the Active Standby Pair: This is a string that describes the high
level state of the active standby pair.

■ Detailed state of TimesTen in each Pod, including:

– Is the TimesTen agent running?

– Is the TimesTen main daemon running?

– Is the TimesTen replication agent running?

– Is the TimesTen cache agent running?

– Is there a database in the instance?

– Is the database loaded?

– Is the database updatable or read only?

– Is there a replication scheme in the database?

– What is the replication state of this database?

– What does this database think the replication state of its peer is?

– What is the role for TimesTen in this Pod (active or standby)?

– What is the high level state of the Pod?

Note: Unknown values can occur if, for example, the agent is not
running or a Pod is unavailable.

The TimesTenClassic object type

11-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

A

Active Standby Pair Example A-1

AActive Standby Pair Example

This appendix provides an example showing you the complete process for deploying
and running your active standby pair of TimesTen databases in the Kubernetes cluster.
After the databases are up and running, the example demonstrates how the Operator
controls and manages the databases. If the active database fails, the Operator performs
the necessary tasks to failover to the standby database, making that standby database
the active one. The example concludes with procedures to delete the TimesTen
databases and to stop the Operator.

■ Set up the environment

■ Create the ConfigMap object

■ Create the TimesTenClassic object

■ Monitor deployment

■ Verify the existence of the underlying objects

■ Verify the connection to the active TimesTen database

■ Recover from failure

■ Cleanup

Set up the environment
Before starting the example, ensure you have:

■ Completed the prerequisites. See "Prerequisites" on page 2-1 for information on
the required prerequisites.

To set up the environment, perform these steps from your Linux development host:

■ Download the TimesTen Operator

■ Configure Kubernetes

■ Deploy the TimesTenClassic CRD

■ Build the Operator image

■ Deploy the Operator

■ Build the TimesTen image

Set up the environment

A-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Download the TimesTen Operator
Perform these steps to download the full distribution of TimesTen and then unpack the
TimesTen Operator distribution that is embedded within it. Perform all steps from
your Linux development host.

1. From the directory of your choice:

■ Create one subdirectory into which you will download the TimesTen full
distribution. For example, create the installation_dir subdirectory. (The
installation_dir directory is used in the remainder of this chapter.)

■ Create a second subdirectory into which you will unpack the TimesTen
Operator distribution. For example, create the kube_files subdirectory. (This
kube_files directory is used in the remainder of this chapter.)

% mkdir -p installation_dir
% mkdir -p kube_files

You are now ready to download and unpack the TimesTen full distribution.

2. Navigate to installation_dir.

% cd installation_dir

Download the TimesTen full distribution into this directory. As an example,
download the timesten1814110.server.linux8664.zip file, (the 18.1.4.11.0 full
distribution for Linux 64-bit).

3. From the installation_dir, use the ZIP utility to unpack the TimesTen
distribution.

% unzip timesten1814110.server.linux8664.zip
Archive: /timesten/installation/timesten1814110.server.linux8664.zip
 creating: tt18.1.4.11.0/
 creating: tt18.1.4.11.0/ttoracle_home/
...
 creating: tt18.1.4.11.0/kubernetes/
...

You successfully unpacked the TimesTen full distribution.

Note that the installation_dir/tt18.1.4.11.0/kubernetes directory is created.
The operator.zip file is located in this directory. For example, this is a sample
directory structure after unpacking the distribution.

% pwd
installation_dir/tt18.1.4.11.0
% dir
3rdparty include lib oraclescripts README.html ttoracle_home
bin info network PERL startup
grid kubernetes nls plsql support

4. Navigate to the kube_files directory and unpack the operator.zip file into it. In
this example, unpack the installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file.

% cd kube_files
% unzip installation_dir/tt18.1.4.11.0/kubernetes/operator.zip
[...UNZIP OUTPUT...]

You successfully unpacked the installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file into the kube_files directory.

Set up the environment

Active Standby Pair Example A-3

5. Review the directory structure. Later in this chapter, you will modify some of the
files in these subdirectories. This example shows the most important
subdirectories and files, which can change from release to release.

README.md
deploy/crd.yaml
deploy/operator.yaml
deploy/service_account.yaml
operator/Dockerfile
operator/timestenclassic-operator
ttimage/agent2
ttimage/.bashrc
ttimage/create1.sql
ttimage/create2.sql
ttimage/Dockerfile
ttimage/get1.sql
ttimage/pausecq.sql
ttimage/repcreate.sql
ttimage/repduplicate.sql
ttimage/runsql,sql
ttimage/starthost.pl
ttimage/.ttdotversion
ttimage/.ttdrop

You successfully downloaded and unpacked the TimesTen Operator distribution.

Configure Kubernetes
The Operator runs by using a Kubernetes service account. This service account needs
permissions and privileges in your namespace. These permissions and privileges are
granted through a role. The service_account.yaml file adds the service account and
the role to your namespace, and grants the service account the privileges that are
specified in the role. The service_account.yaml file is provided in the operator.zip
file you previously unpacked.

Note: This directory tree must persist through the lifetime of the
TimesTen Operator.

In addition, do not delete the TimesTen full distribution file
(timesten1814110.server.linux8664.zip, in this example). You need
to copy this file into the:

■ /operator directory to build the Operator image and push the
image to the image registry. See "Build the Operator image" on
page A-4 for details.

■ /ttimage directory to build the TimesTen image and push the
image to the image registry. See "Build the TimesTen image" on
page A-7 for details.

Note: The provided role gives the timestenclassic-operator broad
permissions within your namespace. Examine the permissions
provided in the service_account.yaml file to see if the permissions
need to be modified. If so, modify the permissions before running the
commands in this example.

Set up the environment

A-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Perform these steps:

1. Navigate to the kube_files/deploy directory.

% cd kube_files/deploy

2. Create the service account.

% kubectl create -f service_account.yaml
role.rbac.authorization.k8s.io/timestenclassic-operator created
serviceaccount/timestenclassic-operator created
rolebinding.rbac.authorization.k8s.io/timestenclassic-operator created

The service_account.yaml file created the timestenclassic-operator service
account and the timestenclassic-operator role in your namespace, and granted the
service account the privileges specified in the role.

Deploy the TimesTenClassic CRD
Navigate to the kube_files/deploy directory, and then use the kubectl create
command to create the TimesTenClassic customized resource definition (CRD) in your
Kubernetes cluster.

% cd kube_files/deploy
% kubectl create -f crd.yaml
customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com created

You successfully added the TimesTenClassic object type to your Kubernetes cluster.

Build the Operator image
Kubernetes Operators are Pods that run a customized image. Before you can run the
Operator, you must build this image and push it to your image registry.

The files needed to create the image are provided in the kube_files/operator
directory (part of the ZIP file you previously unpacked). In the kube_files/operator
directory are the Dockerfile and the binaries needed to create the Operator image.

To build the Operator image and push it to your registry, perform these steps:

1. Navigate to the kube_files/operator directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the installation_dir
directory. See "Download the TimesTen Operator" on page A-2 for information.
Then, verify the timesten1814110.server.linux8664.zip file is in the kube_
files/operator directory.

% cd kube_files/operator
% cp installation_dir/timesten1814110.server.linux8664.zip .
% ls -a
Dockerfile
timesten1814110.server.linux8664.zip
timestenclassic-operator

2. Navigate to the kube_files/operator directory (if not already in this directory)
and use the docker command to build the Operator image. You can choose any
name for ttclassic-operator:3 (represented in bold in this example). Note that
the output may change from release to release.

% cd kube_files/operator
% docker build -t ttclassic-operator:3 .

Set up the environment

Active Standby Pair Example A-5

Sending build context to Docker daemon 478.6MB
Step 1/7 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/7 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/7 : RUN yum -y install openssl unzip && /usr/sbin/useradd -d
/tt-operator -m -u 1001 -s /bin/nologin -U tt-operator
 ---> Using cache
 ---> e3f1427246ab
Step 4/7 : COPY --chown=tt-operator:tt-operator timestenclassic-operator
/usr/local/bin/timestenclassic-operator
 ---> Using cache
 ---> 6ccad53230f0
Step 5/7 : COPY --chown=tt-operator:tt-operator $TT_DISTRO /tt-operator/
$TT_DISTRO
 ---> 5cd31705485a
Step 6/7 : USER tt-operator
 ---> Running in 6a773ddac5dd
Removing intermediate container 6a773ddac5dd
 ---> 875ee38ebc75
Step 7/7 : ENTRYPOINT ["/usr/local/bin/timestenclassic-operator"]
 ---> Running in fed0f6c94c2f
Removing intermediate container fed0f6c94c2f
 ---> 10dde79e1617
Successfully built 10dde79e1617
Successfully tagged ttclassic-operator:3

3. Use the docker command to tag the Operator image.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous step.
(ttclassic-operator is represented in bold in this example.)

% docker tag ttclassic-operator:3 phx.ocir.io/youraccount/ttclassic-operator:3

4. Use the docker command to push the Operator image to your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps. (ttclassic-operator:3 is represented in bold in this example.)

% docker push phx.ocir.io/youraccount/ttclassic-operator:3
The push refers to repository [phx.ocir.io/youraccount/ttclassic-operator]
46458e9fc890: Pushed
471a399f0540: Pushed
9e51a2b82af3: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:9b941f12e3d52298b9b38f7766ddcdfb1d011857a990ff01a8adafd32f3d3e8d size:
1166

You successfully built the Operator image and pushed it to your image registry.

Set up the environment

A-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Deploy the Operator
To deploy the Operator, you first customize it for your namespace and then deploy it.
As a final step, you can verify the Operator is running. See "Deploying the Operator"
on page 2-6 for information.

To customize the Operator for your namespace, navigate to the kube_files/deploy
directory, and edit the operator.yaml file. This file is provided in the distribution that
you previously unpacked. See "Downloading TimesTen and the TimesTen Operator"
on page 2-2 for details.

1. Modify these fields represented in bold (in the operator.yaml file below):

■ replicas: 1

Replace 1 with the number of copies of the Operator that you would like to
run. 1 is acceptable for development and testing. However, you can run more
than one replica for high availability purposes.

■ Replace sekret with the name of the image pull secret that Kubernetes uses to
pull images from your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps.

% cd kube_files/deploy
% vi operator.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: timestenclassic-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 name: timestenclassic-operator
 template:
 metadata:
 labels:
 name: timestenclassic-operator
 spec:
 serviceAccountName: timestenclassic-operator
 imagePullSecrets:
 - name: sekret
 containers:
 - name: timestenclassic-operator
 image: phx.ocir.io/youraccount/ttclassic-operator:3
 command:
 - timestenclassic-operator
 imagePullPolicy: Always
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: OPERATOR_NAME

Set up the environment

Active Standby Pair Example A-7

 value: "timestenclassic-operator"
 - name: GODEBUG
 value: "x509ignoreCN=0"

2. Use the kubectl create command to define the Operator to your namespace and
to start the Operator.

% kubectl create -f operator.yaml
deployment.apps/timestenclassic-operator created

You deployed the Operator. The Operator should now be running.

3. Use the kubectl get pods command to verify the Operator is running. If the
STATUS field has a value of Running, the Operator is running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timestenclassic-operator-f84766548-5bzch 1/1 Running 0 37s

You verified that the Operator is running.

Build the TimesTen image
Before you can start TimesTen in your Kubernetes cluster, you must first package
TimesTen as a container image and then push the image to your image registry. The
files that you need to do this are provided in the kube_files directory tree. See
"Building the TimesTen image" on page 2-8 for information.

To create the TimesTen container image, perform these steps:

1. Navigate to the kube_files/ttimage directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the installation_dir
directory. See "Download the TimesTen Operator" on page A-2 for information.
Then, verify the timesten1814110.server.linux8664.zip file is in the kube_
files/ttimage directory.

% cd kube_files/ttimage
% cp installation_dir/timesten1814110.server.linux8664.zip .
% ls *.zip
timesten1814110.server.linux8664.zip

2. Navigate to the kube_files/ttimage directory (if not already in this directory).
Edit the Dockerfile, replacing timesten1814110.server.linux8664.zip with the
name of your TimesTen full distribution. If your TimesTen distribution is
timesten1814110.server.linux8664.zip, no modification is necessary. If not, the
modification you need to make is represented in bold. Note: The TimesTen full
distribution must be 18.1.4.11.0 or later.

% cd kube_files/ttimage
% vi Dockerfile

Copyright (c) 2019, 2021, Oracle and/or its affiliates.

FROM container-registry.oracle.com/os/oraclelinux:7

ARG TT_DISTRO=timesten1814110.server.linux8664.zip

RUN yum -y install tar gzip vim curl unzip libaio util-linux
RUN groupadd -g 333 oracle
RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle oracle

Set up the environment

A-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

RUN install -d -m 0750 -o oracle -g oracle /home/oracle
COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop .ttdotversion agent2
create1.sql create2.sql get1.sql repcreate.sql repduplicate.sql runsql.sql
pausecg.sql /home/oracle/
Uncomment the following line if you are using the optional non-root
installation procedure.
USER 333
ENTRYPOINT "/home/oracle/starthost.pl"

3. Use the docker command to build the TimesTen container image. Replace
tt1814110 with a name of your choosing (represented in bold, in the docker build
command below). Note that the output may change from release to release.

% docker build -t tt1814110:3 .

Sending build context to Docker daemon 445.8MB
Step 1/9 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/9 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/9 : RUN yum -y install tar gzip vim curl unzip libaio util-linux
 ---> Using cache
 ---> ac676b5376f3
Step 4/9 : RUN groupadd -g 333 oracle
 ---> Using cache
 ---> ce16920f085c
Step 5/9 : RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle
oracle
 ---> Using cache
 ---> 0319814aca1c
Step 6/9 : RUN install -d -m 0750 -o oracle -g oracle /home/oracle
 ---> Using cache
 ---> c8612b53398a
Step 7/9 : COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
 ---> 31cae98b71fd
Step 8/9 : COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop
.ttdotversion agent2 create1.sql create2.sql get1.sql repcreate.sql
repduplicate.sql runsql.sql pausecg.sql /home/oracle/
 ---> e50eb99c9b54
Step 9/9 : ENTRYPOINT "/home/oracle/starthost.pl"
 ---> Running in 0b41efd38837
Removing intermediate container 0b41efd38837
 ---> 171245e546d5
Successfully built 171245e546d5
Successfully tagged tt1814110:3

4. Use the docker command to tag the TimesTen container image. Replace the
following, represented in bold, in the docker tag command below.

■ tt1814110:3 with the name you chose in the previous step.

■ phx.ocir.io/youraccount with the location of your image registry.

% docker tag tt1814110:3 phx.ocir.io/youraccount/tt1814110:3

5. Use the docker command to push the TimesTen container image to your registry.
Replace the following, represented in bold, in the docker push command below.

■ phx.ocir.io/youraccount with the location of your image registry.

Create the ConfigMap object

Active Standby Pair Example A-9

■ tt1814110:3 with the name you chose previously.

% docker push phx.ocir.io/youraccount/tt1814110:3

The push refers to repository [phx.ocir.io/youraccount/tt1814110]
97a0f250b2fe: Pushed
650b003a3ad4: Pushed
b8de51528854: Pushed
62192d26e325: Pushed
7dfe13e9b5a4: Pushed
d8570fce965c: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:a6ac313394229eb2256d4a56fbcd8e2eda50ea2cc21991fa76f11701f2299710
size: 1788

You successfully built the TimesTen container image. It is pushed to your image
registry.

Create the ConfigMap object
This section creates the sample ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files. This ConfigMap will be referenced
when you define the TimesTenClassic object. See "Understanding the configuration
metadata and the Kubernetes facilities" on page 3-1 for information on the
configuration files and the ConfigMap facility.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_sample subdirectory. (The cm_sample directory is
used in the remainder of this example to denote this directory.)

% mkdir -p cm_sample

2. Navigate to the ConfigMap directory.

% cd cm_sample

3. Create the db.ini file in this ConfigMap directory (cm_sample, in this example). In
this db.ini file, define the PermSize and DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file in this ConfigMap directory (cm_sample in this example).
In this adminUser file, create the scott user with the tiger password.

vi adminUser

scott/tiger

5. Create the schema.sql file in this ConfigMap directory (cm_sample in this
example). In this schema.sql file, define the s sequence and the emp table for the
scott user. The Operator will automatically initialize your database with these
object definitions.

vi schema.sql

Create the ConfigMap object

A-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_sample directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is sample. Replace sample with a name of your
choosing. (sample is represented in bold in this example.)

■ This example uses cm_sample as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_
sample with the name of your directory. (cm_sample is represented in bold in
this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap sample --from-file=cm_sample
configmap/sample created

You successfully created and deployed the sample ConfigMap.

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(sample, in this example.)

% kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

scott/tiger

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

Events: <none>

Create the TimesTenClassic object

Active Standby Pair Example A-11

Create the TimesTenClassic object
This section creates the TimesTenClassic object. See "Defining and creating the
TimesTenClassic object" on page 4-2 and "The TimesTenClassic object type" on
page 11-1 for detailed information on the TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, sample.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" on page 11-3 for information on the fields
that you must specify in this YAML file as well as the fields that are optional.

In this example, replace the following. (The values you can replace are represented
in bold.)

■ name: Replace sample with the name of your TimesTenClassic object.

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250G for storageSize. For
demonstration purposes, a value of 50G is adequate. See the storageSize and
the logStorageSize entries in the Table 11–3, " TimesTenClassicSpecSpec" for
information.

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3).

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

■ dbConfigMap: This example uses one ConfigMap (called sample) for the
db.ini, the adminUser, and the schema.sql metadata files. This ConfigMap
will be included in the ProjectedVolume. This volume is mounted as
/ttconfig in the TimesTen containers. See "Using ConfigMaps and Secrets" on
page 3-6 and "Example using one ConfigMap" on page 3-7 for information on
ConfigMaps.

% vi sample.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 dbConfigMap:
 - sample

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, sample.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

Monitor deployment

A-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

% kubectl create -f sample.yaml
configmap/sample created
timestenclassic.timesten.oracle.com/sample created

You successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitor deployment
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get timestenclassic sample
NAME STATE ACTIVE AGE
sample Initializing None 11s

2. Use the kubectl describe command to view the initial provisioning in detail.

% kubectl describe timestenclassic sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-05-31T15:35:12Z
 Generation: 1
 Resource Version: 20231755
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Active Pods: None
 High Level State: Initializing
 Last Event: 3
 Pod Status:

Note: For the kubectl get timestenclassic and kubectl describe
timestenclassic commands, you can alternatively specify kubectl
get ttc and kubectl describe ttc respectively. timestenclassic and
ttc are synonymous when used in these commands, and return the
same results. The first kubectl get and the first kubectl describe
examples in this appendix use timestenclassic. The remaining
examples in this appendix use ttc for simplicity.

Monitor deployment

Active Standby Pair Example A-13

 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Down
 Intended State: Active
 Name: sample-0
 Schema File: false
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Unknown
 Intended State: Standby

Monitor deployment

A-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Name: sample-1
 Schema File: false
 Rep Create Statement: create active standby pair "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local", "sample" on
 "sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
 store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
 FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 50s ttclassic Secret tt517a8646-a354-11ea-a9fb-0a580aed5e4a
 created
 - Create 50s ttclassic Service sample created
 - Create 50s ttclassic StatefulSet sample created

3. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 3m5s

4. Use the kubectl describe command again to view the active standby pair
provisioning in detail.

Note: In this example, the now Normal line displays on its own line. In the actual
output, this line does not display as its own line, but at the end of the StateChange
previous line.

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-05-31T15:35:12Z
 Generation: 1
 Resource Version: 20232668
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Active Pods: sample-0
 High Level State: Normal
 Last Event: 35
 Pod Status:

Monitor deployment

Active Standby Pair Example A-15

 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.1
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Active
 Name: sample-0
 Schema File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.2
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 1590939496
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Standby

Monitor deployment

A-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Name: sample-1
 Schema File: true
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m43s ttclassic Secret
tt517a8646-a354-11ea-a9fb-0a580aed5e4a created
 - Create 4m43s ttclassic Service sample created
 - Create 4m43s ttclassic StatefulSet sample created
 - StateChange 3m47s ttclassic Pod sample-0 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-0 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-0 RepAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-1 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 RepAgent Unknown
 - StateChange 3m26s ttclassic Pod sample-0 Agent Up
 - StateChange 3m26s ttclassic Pod sample-0 Release 18.1.4.11.0
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-1 Agent Up
 - StateChange 3m26s ttclassic Pod sample-1 Release 18.1.4.11.0
 - StateChange 3m26s ttclassic Pod sample-1 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Up
 - StateChange 3m25s ttclassic Pod sample-1 Daemon Up
 - StateChange 2m13s ttclassic Pod sample-0 RepState IDLE
 - StateChange 2m13s ttclassic Pod sample-0 Database Updatable
 - StateChange 2m13s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepScheme None
 - StateChange 2m13s ttclassic Pod sample-0 Database Loaded
 - StateChange 2m11s ttclassic Pod sample-0 RepAgent Running
 - StateChange 2m10s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 2m10s ttclassic Pod sample-0 RepState ACTIVE
 - StateChange 113s ttclassic Pod sample-1 Database Loaded
 - StateChange 113s ttclassic Pod sample-1 Database Not Updatable
 - StateChange 113s ttclassic Pod sample-1 CacheAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepScheme Exists
 - StateChange 113s ttclassic Pod sample-1 RepState IDLE
 - StateChange 106s ttclassic Pod sample-1 RepAgent Running
 - StateChange 101s ttclassic Pod sample-1 RepState STANDBY
 - StateChange 101s ttclassic TimesTenClassic was Initializing,
now Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) There are two TimesTen databases, configured as an active
standby pair. One database is active. (In this example, sample-0 is the active database,
as indicated by Rep State ACTIVE). The other database is standby. (In this example,
sample-1 is the standby database as indicated by Rep State STANDBY). The active
database can be modified and queried. Changes made on the active database are
replicated to the standby database. If the active database fails, the Operator

Verify the connection to the active TimesTen database

Active Standby Pair Example A-17

automatically promotes the standby database to be the active. The formerly active
database will be repaired or replaced, and will then become the standby.

Verify the existence of the underlying objects
Use the kubectl describe commands to verify the underlying objects.

1. StatefulSet:

% kubectl get statefulset sample
NAME READY AGE
sample 2/2 8m21s

2. Service:

% kubectl get service sample
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sample ClusterIP None <none> 6625/TCP 9m28s

3. Pods:

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 10m
sample-1 2/2 Running 0 10m
timestenclassic-operator-5d7dcc7948-8mnz4 1/1 Running 0 11h

4. PersistentVolumeClaims (PVCs):

% kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-sample-0 Bound
ocid1.volume.oc1.phx.abyhqljrbxcgzyixa4pmmcwiqxgqclc7gxvdnoty367w2qn26tij6kfpx
6qq
250Gi RWO oci 10m
tt-persistent-sample-1 Bound
ocid1.volume.oc1.phx.abyhqljtt4qxxoj5jqiskriskh66hakaw326rbza4uigmuaezdnu53qhh
oaa
250Gi RWO oci 10m

Verify the connection to the active TimesTen database
You can run the kubectl exec command to invoke shells in your Pods and control
TimesTen, which is running in those Pods. TimesTen runs in the Pods as the oracle
user. Once you have established a shell in the Pod, use the su - oracle command to
switch to the oracle user. After you switch to the oracle user, verify you can connect
to the sample database, and that the information from the metadata files is correct. You
can optionally run queries against the database or any other operations.

1. Establish a shell in the Pod and switch to the oracle user

% kubectl exec -it sample-0 -c tt -- /usr/bin/su - oracle

2. Connect to the sample database. Verify the information in the metadata files is in
the database correctly. For example, attempt to connect to the database as the
scott user. Check that the PermSize value of 200 is correct. Check that the
scott.emp table exists.

 % ttIsql sample

Recover from failure

A-18 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Command> connect adding "uid=scott;pwd=tiger" as scott;
Connection successful:
DSN=sample;UID=scott;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
scott: Command> tables;
 SCOTT.EMP
1 table found.

Recover from failure
This example simulates a failure of the active TimesTen database. This is for
demonstration purposes only. Do not do this in a production environment.

1. Use the kubectl delete pod command to delete the active database (sample-0 in
this case)

% kubectl delete pod sample-0

2. Use the kubectl describe command to observe how the Operator recovers from
the failure. The Operator promotes the standby database (sample-1) to be active.
Any applications that were connected to the sample-0 database are automatically
reconnected to the sample-1 database by TimesTen. After a brief outage, the
applications can continue to use the database. See "Monitoring the health of the
active standby pair of databases" on page 6-3 for information on the health and
states of the active standby pair.

Note: In this example, the text for the Message column displays on two lines for
three state changes. However, the actual output displays on one line for each of
these three state changes.

% kubectl describe ttc sample
Name: sample
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 2m1s ttclassic TimesTenClassic sample: was Normal,
now ActiveDown
 - StateChange 115s ttclassic Pod sample-1 Database Updatable: Yes
 - StateChange 115s ttclassic TimesTenClassic sample:was ActiveDown,
now StandbyDown
 - StateChange 115s ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 110s ttclassic Pod sample-0 High Level State Unknown
 - StateChange 63s ttclassic Pod sample-0 Pod Phase Running
 - StateChange 63s ttclassic Pod sample-0 Agent Up
 - StateChange 63s ttclassic Pod sample-0 Instance Exists

Cleanup

Active Standby Pair Example A-19

 - StateChange 63s ttclassic Pod sample-0 Daemon Up
 - StateChange 63s ttclassic Pod sample-0 Database None
 - StateChange 42s ttclassic Pod sample-0 Database Loaded
 - StateChange 42s ttclassic Pod sample-0 Database Updatable: No
 - StateChange 42s ttclassic Pod sample-0 RepAgent Running
 - StateChange 42s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 42s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 42s ttclassic Pod sample-0 RepState IDLE
 - StateChange 36s ttclassic Pod sample-0 High Level State Healthy
 - StateChange 36s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 36s ttclassic TimesTenClassic sample:was StandbyDown,
now Normal

Kubernetes has automatically respawned a new sample-0 Pod to replace the Pod
you deleted. The Operator configured TimesTen inside of that Pod, bringing the
database in the Pod up as the new standby database. The replicated pair of
databases are once again functionally normally.

Cleanup
This example concludes with deleting the databases and all objects associated with
TimesTenClassic. These steps are used for example purposes only. Doing these steps
results in the termination of the Pods that are running the TimesTen databases as well
as the deletion of the TimesTen databases themselves.

1. Delete the ConfigMap object. (sample, in this example.)

% kubectl delete configmap sample
configmap "sample" deleted

2. Delete the TimesTenClassic object and the underlying objects.

% kubectl delete -f sample.yaml
timestenclassic.timesten.oracle.com "sample" deleted

3. Verify the Pods that were running the TimesTen databases no longer exist.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timestenclassic-operator-5d7dcc7948-8mnz4 1/1 Running 0 5d23h

4. Delete the persistent storage used to hold your databases. You have to do this
manually.

% kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-sample-0 Bound
...

tt-persistent-sample-1 Bound
...
% kubectl delete pvc tt-persistent-sample-0
persistentvolumeclaim "tt-persistent-sample-0" deleted
% kubectl delete pvc tt-persistent-sample-1
persistentvolumeclaim "tt-persistent-sample-1" deleted

5. If you no longer want to run the Operator, you can stop it. Navigate to the /deploy
directory (kube_files/deploy, in this example) and use the kubectl delete
command to stop the operator.

Cleanup

A-20 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

% cd kube_files/deploy
% kubectl delete -f operator.yaml
deployment.apps "timestenclassic-operator" deleted

B

TimesTen Cache Example B-1

BTimesTen Cache Example

This appendix provides a working example for using TimesTen Cache in your
Kubernetes environment. This example should not be used for production purposes. It
assumes a test environment. Your Oracle Database should be customized with the
settings specific to your environment.

Topics:

■ Setting up the Oracle Database to cache data

■ Creating the metadata files and the Kubernetes facility

■ Creating the TimesTenClassic object

■ Monitoring the deployment of the TimesTenClassic object

■ Verifying that TimesTen Cache is configured correctly

■ Performing operations on the cache group tables

■ Cleaning up the cache metadata on the Oracle Database

Setting up the Oracle Database to cache data
The following sections describe the tasks that must be performed in the Oracle
Database:

■ Create the Oracle Database users

■ Grant privileges to the cache administration user

■ Create the Oracle Database tables to be cached

Create the Oracle Database users
Before you can use TimesTen Cache, you must create the following users in your
Oracle database:

■ A cache administration user. This user creates and maintains Oracle Database
objects that store information about the cache environment. This user also enforces
predefined behaviors of cache group types.

■ One or more schema users who owns Oracle Database tables that are cached in a
TimesTen database.

See "Create the Oracle database users" in the Oracle TimesTen Application-Tier Database
Cache User's Guide for information.

This example creates the cacheuser2 cache administration user and the oratt schema
user in the Oracle Database.

Setting up the Oracle Database to cache data

B-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

1. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle Database as the sys user. Then, create a default
tablespace to store the TimesTen Cache management objects. See "Create the
Oracle database users" in the Oracle TimesTen Application-Tier Database Cache User's
Guide for information.

This example creates the cachetablespace2 tablespace.

% sqlplus sys/syspwd@oracache as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Fri Oct 23 22:10:20 2020

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> CREATE TABLESPACE cachetablespace2 DATAFILE 'datatt2.dbf' SIZE 100M;

Tablespace created.

2. Use SQL*Plus to create the schema user. Grant this schema user the minimum
privileges required to create tables in the Oracle Database to be cached in your
TimesTen database.

This example creates the oratt schema user.

SQL> CREATE USER oratt IDENTIFIED BY oraclepwd;

User created.

SQL> GRANT CREATE SESSION, RESOURCE TO oratt;

Grant succeeded.

3. Use SQL*Plus to create the cache administration user. Assign the
cachetablespace2 tablespace to this user. You will later use the same name of this
Oracle cache administration user in the cacheUser metadata file. See "cacheUser"
on page 3-3 and see "Creating the metadata files and the Kubernetes facility" on
page 7-3 for details on the cacheUser metadata file.

This example creates the cacheuser2 user.

SQL> CREATE USER cacheuser2 IDENTIFIED BY oraclepwd
 DEFAULT TABLESPACE cachetablespace2
 QUOTA UNLIMITED ON cachetablespace2;

User created.

SQL> commit;

Commit complete.

SQL> exit

Setting up the Oracle Database to cache data

TimesTen Cache Example B-3

Grant privileges to the cache administration user
The cache administration user must be granted a specific set of privileges depending
on the cache group types that will be created in the TimesTen databases and the
operations performed on those cache groups. TimesTen provides the
grantCacheAdminPrivileges.sql SQL*Plus script that you can run in your Oracle
Database to grant the cache administration user the minimum set of privileges
required to perform cache operations. See "Grant privileges to the Oracle database
users" and see "Required privileges for the cache administration user and the cache
manager user" in the Oracle TimesTen Application-Tier Database Cache User's Guide for
more information on these privileges.

Perform these steps to run the grantCacheAdminPrivileges.sql script:

1. Create a shell from which you can access your Oracle Database, and then from the
directory of your choice, create an empty subdirectory. This example creates the
oraclescripts subdirectory.

% mkdir -p oraclescripts

2. From your Linux development host, use the kubectl cp command to copy the
grantCacheAdminPrivileges.sql script from the installation_
dir/oraclescripts directory on your Linux development host to the
oraclescripts directory that you just created. Recall that the installation_dir
directory was created when you unpacked the TimesTen distribution. See
"Downloading TimesTen and the TimesTen Operator" on page 2-2 for information
on unpacking the TimesTen distribution.

% cp /installation_dir/oraclescripts/grantCacheAdminPrivileges.sql
database-oracle:oraclescripts/grantCacheAdminPrivileges.sql

3. From your shell, verify the script is located in the oraclescripts directory.

% ls oraclescripts
grantCacheAdminPrivileges.sql

4. Use SQL*Plus to connect to the Oracle Database as the sys user. Then, run the
oraclescripts/grantCacheAdminPrivileges.sql script. This script grants the
cacheuser2 cache administration user the minimum set of privileges required to
perform cache group operations. See "Grant privileges to the Oracle database
users" in the Oracle TimesTen Application-Tier Database Cache User's Guide for more
information.

% sqlplus sys/syspwd@oracache as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Fri Oct 23 22:10:20 2020

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> @grantCacheAdminPrivileges "cacheuser2";

Please enter the administrator user id
The value chosen for administrator user id is cacheuser2

TT_CACHE_ADMIN_ROLE role already exists

Setting up the Oracle Database to cache data

B-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

***************** Initialization for cache admin begins ******************
0. Granting the CREATE SESSION privilege to CACHEUSER2
1. Granting the TT_CACHE_ADMIN_ROLE to CACHEUSER2
2. Granting the DBMS_LOCK package privilege to CACHEUSER2
3. Granting the DBMS_DDL package privilege to CACHEUSER2
4. Granting the DBMS_FLASHBACK package privilege to CACHEUSER2
5. Granting the CREATE SEQUENCE privilege to CACHEUSER2
6. Granting the CREATE CLUSTER privilege to CACHEUSER2
7. Granting the CREATE OPERATOR privilege to CACHEUSER2
8. Granting the CREATE INDEXTYPE privilege to CACHEUSER2
9. Granting the CREATE TABLE privilege to CACHEUSER2
10. Granting the CREATE PROCEDURE privilege to CACHEUSER2
11. Granting the CREATE ANY TRIGGER privilege to CACHEUSER2
12. Granting the GRANT UNLIMITED TABLESPACE privilege to CACHEUSER2
13. Granting the DBMS_LOB package privilege to CACHEUSER2
14. Granting the SELECT on SYS.ALL_OBJECTS privilege to CACHEUSER2
15. Granting the SELECT on SYS.ALL_SYNONYMS privilege to CACHEUSER2
16. Checking if the cache administrator user has permissions on the
 default tablespace
 Permission exists
18. Granting the CREATE TYPE privilege to CACHEUSER2
19. Granting the SELECT on SYS.GV$LOCK privilege to CACHEUSER2
20. Granting the SELECT on SYS.GV$SESSION privilege to CACHEUSER2
21. Granting the SELECT on SYS.DBA_DATA_FILES privilege to CACHEUSER2
22. Granting the SELECT on SYS.USER_USERS privilege to CACHEUSER2
23. Granting the SELECT on SYS.USER_FREE_SPACE privilege to CACHEUSER2
24. Granting the SELECT on SYS.USER_TS_QUOTAS privilege to CACHEUSER2
25. Granting the SELECT on SYS.USER_SYS_PRIVS privilege to CACHEUSER2
26. Granting the SELECT on SYS.V$DATABASE privilege to CACHEUSER2 (optional)
27. Granting the SELECT ANY TRANSACTION privilege to CACHEUSER2
********* Initialization for cache admin user done successfully *********

You have successfully run the grantCacheAdminPrivileges.sql script in the Oracle
Database.

Create the Oracle Database tables to be cached
This example creates two tables in the oratt user schema. See "Create the Oracle
Database users" on page B-1 for information on this user.

■ readtab: This table will later be cached in a read-only cache group.

■ writetab: This table will later be cached in an AWT cache group.

1. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle Database as the sys user. Then create the
oratt.readtab and the oratt.writetab tables.

% sqlplus sys/syspwd@oracache as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Fri Oct 23 22:10:20 2020

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> CREATE TABLE oratt.readtab (keyval NUMBER NOT NULL PRIMARY KEY,

Setting up the Oracle Database to cache data

TimesTen Cache Example B-5

 str VARCHAR2(32));

Table created.

SQL> CREATE TABLE oratt.writetab (pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40));

Table created.

2. Use SQL*Plus to insert rows into the oratt.readtab and the oratt.writetab
tables. Then verify the rows have been inserted.

SQL> INSERT INTO oratt.readtab VALUES (1,'Hello');

1 row created.

SQL> INSERT INTO oratt.readtab VALUES (2,'World');

1 row created.

SQL> INSERT INTO oratt.writetab VALUES (100, 'TimesTen');

1 row created.

SQL> INSERT INTO oratt.writetab VALUES (101, 'Cache');

1 row created.

SQL> commit;

Commit complete.

Verify the rows have been inserted into the tables.

SQL> SELECT * FROM oratt.readtab;

 KEYVAL STR
---------- --------------------------------
 1 Hello
 2 World

SQL> SELECT * FROM oratt.writetab;

 PK ATTR
---------- --
 100 TimesTen
 101 Cache

3. Use SQL*Plus to grant the SELECT privilege on the oratt.readtab table and the
SELECT, INSERT, UPDATE, and DELETE privileges on the oratt.writetab table to the
cache administration user (cacheuser2, in this example).

SQL> GRANT SELECT ON oratt.readtab TO cacheuser2;

Grant succeeded.

SQL> GRANT SELECT ON oratt.writetab TO cacheuser2;

Grant succeeded.

SQL> GRANT INSERT ON oratt.writetab TO cacheuser2;

Creating the metadata files and the Kubernetes facility

B-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Grant succeeded.

SQL> GRANT UPDATE ON oratt.writetab TO cacheuser2;

Grant succeeded.

SQL> GRANT DELETE ON oratt.writetab TO cacheuser2;

Grant succeeded.

4. Use SQL*Plus to query the nls_database_parameters system view to determine
the Oracle Database database character set. The Oracle Database database
character set must match the TimesTen database character set. (The TimesTen
database character set will be set later. See "Creating the metadata files and the
Kubernetes facility" on page B-6 for details.)

In this example, the query returns the AL32UTF8 database character set.

SQL> SELECT value FROM nls_database_parameters WHERE
 parameter='NLS_CHARACTERSET';

VALUE
--
AL32UTF8

You have successfully created the Oracle Database tables that will be cached in the
TimesTen cache group tables.

Creating the metadata files and the Kubernetes facility
There are metadata files that are specific to using TimesTen Cache:

■ cacheUser: This file is required. The user in this file is created in the TimesTen
databases and serves as the cache manager. The name of this user must match the
name of the cache administration user that you created in the Oracle Database. See
"Create the Oracle Database users" on page B-1 for information on the cache
administration user in the Oracle Database. Also see "cacheUser" on page 3-3 for
more information on the cacheUser metadata file.

■ cachegroups.sql: This file is required. The contents of this file contain the CREATE
CACHE GROUP definitions. The file can also contain the LOAD CACHE GROUP statement
and the built-in procedures to update statistics on the cache group tables (such as,
ttOptEstimateStats and ttOptUpdateStats). See "cachegroups.sql" on page 3-2
for more information on this file.

■ tnsnames.ora: This file is required. It defines Oracle Net Services to which
applications connect. For TimesTen Cache, this file configures the connectivity
between TimesTen and the Oracle Database (from which data is being cached). In
this context, TimesTen is the application that is the connection to the Oracle
Database. See "tnsnames.ora file" on page 3-6 for more information on this file.

■ sqlnet.ora: This file may be required. It may be necessary depending on your
Oracle Database configuration. The file defines options for how client applications
communicate with the Oracle Database. In this context, TimesTen is the
application. The tnsnames.ora and sqlnet.ora files together define how an
application communicates with the Oracle Database. See "sqlnet.ora file" on
page 3-5 for information on this file.

Creating the metadata files and the Kubernetes facility

TimesTen Cache Example B-7

■ db.ini: This file is required if you are using TimesTen Cache. The contents of this
file contain TimesTen connection attributes for your TimesTen databases, which
will be included in TimesTen's sys.odbc.ini file. For TimesTen Cache, you must
specify the OracleNetServiceName and the DatabaseCharacterSet connection
attributes. The DatabaseCharacterSet connection attribute must match the Oracle
database character set. See "db.ini file" on page 3-4 for more information on this
file.

■ schema.sql: The contents of this file contain database objects, such as tables,
sequences, and users. The instance administrator uses the ttIsql utility to run this
file immediately after the database is created. This file is run before the Operator
configures TimesTen Cache or replication, so ensure there are no cache definitions
in this file.

In TimesTen Cache, one or more cache table users own the cache tables. If this
cache table user is not the cache manager user, then you must specify the
schema.sql file and in it you must include the schema user and assign the
appropriate privileges to this schema user. For example, if the oratt schema user
was created in the Oracle Database, and this user is not the TimesTen cache
manager user, you must create the TimesTen oratt user in this file. See "Create the
Oracle Database users" on page B-1 for more information on the schema users in
the Oracle Database. Also see "schema.sql file" on page 3-5 for more information
on the schema.sql file.

In addition, you can use these other supported metadata files:

■ adminUser: The user in this file is created in the TimesTen databases and is granted
ADMIN privileges. See "adminUser file" on page 3-2 for more information on this
file.

■ epilog.sql: The contents of this file contain operations that must be performed
after the Operator configures replication. For example, if you are using XLA, you
could create replicated bookmarks for XLA in this file. This file is run after cache
and replication have been configured. See "epilog.sql" on page 3-5 for more
information on this file.

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this
/ttconfig directory. See "Populating the /ttconfig directory" on page 3-6 for more
information.

This example uses the ConfigMap facility to populate the /ttconfig directory in your
TimesTen containers. The adminUser, db.ini, schema.sql, cacheUser,
cachegroups.sql, tnsnames.ora, and sqlnet.ora metadata files are used in this
example.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_cachetest subdirectory. (The cm_cachetest
directory is used in the remainder of this example to denote this directory.)

% mkdir -p cm_cachetest

2. Navigate to the ConfigMap directory.

% cd cm_cachetest

Creating the metadata files and the Kubernetes facility

B-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

3. Create the adminUser file in this ConfigMap directory (cm_cachetest, in this
example). In this adminUser file, create the scott user with the tiger password.

vi adminUser

scott/tiger

4. Create the db.ini file in this ConfigMap directory (cm_cachetest, in this
example). In this db.ini file, define the PermSize, DatabaseCharacterSet, and the
OracleNetServiceName connection attributes. The DatabaseCharacterSet value
must match the database character set value in the Oracle Database. See "Create
the Oracle Database tables to be cached" on page B-4 for information on how to
query the nls_database_parameters system view to determine the Oracle
Database database character set. In this example, the value is AL32UTF8.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=Oracache

5. Create the schema.sql file in this ConfigMap directory (cm_cachetest, in this
example). In this example, create the oratt user. Recall that this user was
previously created in the Oracle Database. See "Create the Oracle Database users"
on page B-1 for information on the oratt user in the Oracle Database.

vi schema.sql

create user oratt identified by ttpwd;
grant admin to oratt;

6. Create the cacheUser metadata file in this ConfigMap directory (cm_cachetest, in
this example). The cacheUser file must contain one line of the form
cacheuser/ttpassword/orapassword, where cacheuser is the user you wish to
designate as the cache manager in the TimesTen database, ttpassword is the
TimesTen password you wish to assign to this user, and orapassword is the Oracle
Database password that has already been assigned to the Oracle Database cache
administration user. Note that the cacheUser name in this file must match the
Oracle Database cache administration user that you previously created. See
"Create the Oracle Database users" on page B-1 for more information on the Oracle
Database cache administration user.

In this example, the cacheuser2 user with password of oraclepwd was already
created in the Oracle Database. Therefore, supply cacheuser2 as the TimesTen
cache manager user. You can assign any TimesTen password to this TimesTen
cache manager user. This example assigns ttpwd.

vi cacheuser

cacheuser2/ttpwd/oraclepwd

7. Create the cachegroups.sql metadata file in this ConfigMap directory (cm_
cachetest, in this example). The cachegroups.sql file contains the cache group
definitions. In this example, a dynamic AWT cache group and a read-only cache
group are created. In addition, the LOAD CACHE GROUP statement is included to load
rows from the oratt.readtab cached table in the Oracle Database into the
oratt.readtab cache table in the TimesTen database.

vi cachegroups.sql

Creating the metadata files and the Kubernetes facility

TimesTen Cache Example B-9

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)
);

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

8. Create the tnsnames.ora metadata file in this ConfigMap directory (cm_cachetest,
in this example).

vi tnsnames.ora

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.domain.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.domain.com)))

9. Create the sqlnet.ora metadata file in this ConfigMap directory (cm_cachetest,
in this example).

vi sqlnet.ora

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

10. Use the Linux ls command to verify the metadata files are in the ConfigMap
directory (cm_cachetest, in this example).

% ls
adminUser cacheUser schema.sql tnsnames.ora
cachegroups.sql db.ini sqlnet.ora

11. Create the ConfigMap. The files in the cm_cachetest directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is cachetest. Replace cachetest with a name of
your choosing. (cachetest is represented in bold in this example.)

■ This example uses cm_cachetest as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_

Creating the metadata files and the Kubernetes facility

B-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

cachetest with the name of your directory. (cm_cachetest is represented in
bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cachetest --from-file=cm_cachetest
configmap/cachetest created

12. Use the kubectl describe command to verify the contents of the ConfigMap.
(cachetest, in this example.) The metadata files are represented in bold.

% kubectl describe configmap cachetest;
Name: cachetest
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
tnsnames.ora:

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.domain.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.domain.com)))

adminUser:

scott/tiger

cacheUser:

cacheuser2/ttpwd/oraclepwd

cachegroups.sql:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)
);

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

Creating the TimesTenClassic object

TimesTen Cache Example B-11

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

db.ini:

permSize=200
databaseCharacterSet=AL32UTF8
oracleNetServiceName=Oracache

schema.sql:

create user oratt identified by ttpwd;
grant admin to oratt;

sqlnet.ora:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

Events: <none>

You have successfully created and deployed the cachetest ConfigMap.

Creating the TimesTenClassic object
This section creates the TimesTenClassic object. See "Defining and creating the
TimesTenClassic object" on page 4-2 and "The TimesTenClassic object type" on
page 11-1 for detailed information on the TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, cachetest.) The YAML file contains the definitions for the
TimesTenClassic object. See "TimesTenClassicSpecSpec" on page 11-3 for
information on the fields that you must specify in this YAML file as well as the
fields that are optional.

In this example, note these fields:

■ name: Replace cachetest with the name of your TimesTenClassic object
(represented in bold).

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250G for storageSize. For
demonstration purposes, a value of 50G is adequate.

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3).

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

■ dbConfigMap: This example uses one ConfigMap (called cachetest) for the
metadata files (represented in bold).

Monitoring the deployment of the TimesTenClassic object

B-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

% vi cachetest.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: cachetest
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 imagePullSecret: sekret
 imagePullPolicy: Always
 dbConfigMap:
 - cachetest

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, cachetest.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f cachetest.yaml
timestenclassic.timesten.oracle.com/cachetest created

You have successfully created the TimesTenClassic object in the Kubernetes cluster.
The process of deploying your TimesTen databases begins, but is not yet complete.

Monitoring the deployment of the TimesTenClassic object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get ttc cachetest
NAME STATE ACTIVE AGE
cachetest Initializing None 41s

2. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc cachetest
NAME STATE ACTIVE AGE
cachetest Normal cachetest-0 3m58s

3. Use the kubectl describe command to view the active standby pair provisioning
in detail.

Note the following:

■ The cachetest Configmap has been correctly referenced in the dbConfigMap
field (represented in bold).

■ The cache agent is running in the active and the standby Pods (represented in
bold).

■ The cache administration user UID and password have been set in the active
and the standby Pods (represented in bold).

Monitoring the deployment of the TimesTenClassic object

TimesTen Cache Example B-13

■ Two cache groups have been created in the active and the standby Pods
(represented in bold).

■ The replication agent is running in the active and standby Pods (represented
in bold).

% kubectl describe ttc cachetest
Name: cachetest
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2020-10-24T03:29:48Z
 Generation: 1
 Resource Version: 78390500
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/cachetest
 UID: 2b18d81d-15a9-11eb-b999-be712d29a81e
Spec:
 Ttspec:
 Db Config Map:
 cachetest
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Active Pods: cachetest-0
 High Level State: Normal
 Last Event: 28
 Pod Status:
 Cache Status:
 Cache Agent: Running
 Cache UID Pwd Set: true
 N Cache Groups: 2
 Db Status:
 Db: Loaded
 Db Id: 30
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1603510527
 Pod IP: 10.244.7.92
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: true
 Cg File: true

Monitoring the deployment of the TimesTenClassic object

B-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 High Level State: Healthy
 Intended State: Active
 Name: cachetest-0
 Schema File: true
 Cache Status:
 Cache Agent: Running
 Cache UID Pwd Set: true
 N Cache Groups: 2
 Db Status:
 Db: Loaded
 Db Id: 30
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1603510527
 Pod IP: 10.244.8.170
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 1603510411
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: true
 Cg File: true
 High Level State: Healthy
 Intended State: Standby
 Name: cachetest-1
 Schema File: true
 Rep Create Statement: create active standby pair "cachetest" on
 "cachetest-0.cachetest.mynamespace.svc.cluster.local", "cachetest" on
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" NO RETURN store
 "cachetest" on "cachetest-0.cachetest.mynamespace.svc.cluster.local"
 PORT 4444 FAILTHRESHOLD 0 store "cachetest" on
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" PORT 4444
 FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 5m40s ttclassic Secret
tt2b18d81d-15a9-11eb-b999-be712d29a81e created
 - Create 5m40s ttclassic Service cachetest created
 - Create 5m40s ttclassic StatefulSet cachetest created
 - StateChange 4m28s ttclassic Pod cachetest-0 Agent Up
 - StateChange 4m28s ttclassic Pod cachetest-0 Release 18.1.4.11.0
 - StateChange 4m28s ttclassic Pod cachetest-0 Daemon Up
 - StateChange 3m18s ttclassic Pod cachetest-0 RepScheme None
 - StateChange 3m18s ttclassic Pod cachetest-0 RepAgent Not Running
 - StateChange 3m18s ttclassic Pod cachetest-0 RepState IDLE
 - StateChange 3m18s ttclassic Pod cachetest-0 Database Loaded
 - StateChange 3m18s ttclassic Pod cachetest-0 Database Updatable
 - StateChange 3m18s ttclassic Pod cachetest-0 CacheAgent Not Running

Verifying that TimesTen Cache is configured correctly

TimesTen Cache Example B-15

 - StateChange 2m57s ttclassic Pod cachetest-0 CacheAgent Running
 - StateChange 2m47s ttclassic Pod cachetest-1 Agent Up
 - StateChange 2m47s ttclassic Pod cachetest-1 Release 18.1.4.11.0
 - StateChange 2m46s ttclassic Pod cachetest-0 RepAgent Running
 - StateChange 2m46s ttclassic Pod cachetest-0 RepScheme Exists
 - StateChange 2m46s ttclassic Pod cachetest-0 RepState ACTIVE
 - StateChange 2m46s ttclassic Pod cachetest-1 Daemon Up
 - StateChange 2m9s ttclassic Pod cachetest-1 CacheAgent Running
 - StateChange 2m9s ttclassic Pod cachetest-1 Database Not Updatable
 - StateChange 2m9s ttclassic Pod cachetest-1 Database Loaded
 - StateChange 2m9s ttclassic Pod cachetest-1 RepAgent Not Running
 - StateChange 2m9s ttclassic Pod cachetest-1 RepScheme Exists
 - StateChange 2m9s ttclassic Pod cachetest-1 RepState IDLE
 - StateChange 2m3s ttclassic Pod cachetest-1 RepAgent Running
 - StateChange 118s ttclassic Pod cachetest-1 RepState STANDBY
 - StateChange 118s ttclassic TimesTenClassic was Initializing, now
Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) You are now ready to verify that TimesTen Cache is configured
correctly and is working properly.

Verifying that TimesTen Cache is configured correctly
To verify that TimesTen Cache is configured correctly and is working properly,
perform the following steps:

1. Review the active (cachetest-0, in this example) Pod and the standby Pod
(cachetest-1, in this example).

% kubectl get pods
NAME READY STATUS RESTARTS AGE
cachetest-0 2/2 Running 0 8m16s
cachetest-1 2/2 Running 0 8m15s
timestenclassic-operator-f84766548-tch7s 1/1 Running 0 36d

2. Use the kubectl exec -it command to invoke the shell in the active Pod
(cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /usr/bin/su - oracle

3. Use ttIsql to connect to the cachetest database. Confirm the TimesTen
connection attributes are correct. In particular, note that the
OracleNetServiceName connection attribute is correctly set to Oracache
(represented in bold).

% ttIsql cachetest;

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachetest";
Connection successful:
DSN=cachetest;UID=oracle;DataStore=/tt/home/oracle/datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Performing operations on the cache group tables

B-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

4. Use the ttIsql cachegroups to view the definition of the cacheuser2.readcache
and the cacheuser2.writecache cache groups.

Command> cachegroups;

Cache Group CACHEUSER2.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: ORATT.READTAB
 Table Type: Read Only

Cache Group CACHEUSER2.WRITECACHE:

 Cache Group Type: Asynchronous Writethrough (Dynamic)
 Autorefresh: No
 Aging: LRU on

 Root Table: ORATT.WRITETAB
 Table Type: Propagate

2 cache groups found.

5. Use ttIsql to query the oratt.readtab cache table. Note that the data from the
oratt.readtab cached table in the Oracle Database is correctly loaded in the
oratt.readcache cache table in the TimesTen database. Recall that you specified
the LOAD CACHE GROUP statement in the cachegroups.sql metadata file. See
"Creating the metadata files and the Kubernetes facility" on page B-6 for
information on this cachegroups.sql metadata file.

Command> SELECT * FROM oratt.readtab;
< 1, Hello >
< 2, World >
2 rows found.

You have verified that the cache groups were created and data was correctly loaded in
the oratt.readtab table.

Performing operations on the cache group tables
The examples in this section perform operations on the oratt.readtab and the
oratt.writetab tables to verify that TimesTen Cache is working properly.

■ Perform operations on the oratt.readtab table

■ Perform operations on the oratt.writetab table

Perform operations on the oratt.readtab table
This section performs operations on the oratt.readtab table.

1. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle Database as the schema user (oratt, in this

Performing operations on the cache group tables

TimesTen Cache Example B-17

example). Then, insert a new row, delete an existing row, and update an existing
row in the oratt.readtab table of the Oracle Database and commit the changes.

% sqlplus oratt/oraclepwd@oracache;

SQL*Plus: Release 12.1.0.2.0 Production on Fri Oct 23 21:57:42 2020

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> INSERT INTO oratt.readtab VALUES (3,'Welcome');

1 row created.

SQL> DELETE FROM oratt.readtab WHERE keyval=2;

1 row deleted.

SQL> UPDATE oratt.readtab SET str='Hi' WHERE keyval=1;

1 row updated.

SQL> COMMIT;

Commit complete.

Since the read-only cache group was created with an autorefresh interval of 5
seconds, the TimesTen oratt.readtab cache table in the readcache cache group is
automatically refreshed after 5 seconds with the committed updates from the
cached oratt.readtab table of the Oracle Database. The next step is to test that the
data was correctly propagated from the Oracle Database to the TimesTen database.

2. Use the kubectl exec -it command to invoke the shell in the container of the Pod
that is running the TimesTen active database (cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /usr/bin/su - oracle

3. Use the TimesTen ttIsql utility to connect to the cachetest database. Query the
TimesTen oratt.readtab table to verify that the table has been updated with the
committed updates from the Oracle Database.

% ttIsql cachetest;

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachetest";
Connection successful:
DSN=cachetest;UID=oracle;DataStore=/tt/home/oracle/datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Performing operations on the cache group tables

B-18 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Command> SELECT * FROM oratt.readtab;
< 1, Hi >
< 3, Welcome >
2 rows found.

You have verified that TimesTen Cache is working correctly for the oratt.readtab
table and the readcache cachegroup.

Perform operations on the oratt.writetab table
This example performs operations on the oratt.writetab table.

1. Use the kubectl exec -it command to invoke the shell in the container of the Pod
that is running the TimesTen active database (cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /usr/bin/su - oracle

2. Use the TimesTen ttIsql utility to connect to the cachetest database as the cache
manager user (cacheuser2, in this example). Issue a SELECT statement on the
TimesTen oratt.writetab table. Recall that the writecache cache group is a
dynamic cache group. Thus by issuing the SELECT statement, the cache instance is
automatically loaded from the cached Oracle Database table, if the data is not
found in the TimeTen cache table.

% ttIsql "DSN=cachetest;UID=cacheuser2;PWD=ttpwd;OraclePWD=oraclepwd";

Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachetest;UID=cacheuser2;PWD=********;OraclePWD=********";
Connection successful:
DSN=cachetest;UID=cacheuser2;DataStore=/tt/home/oracle/datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Command> SELECT * FROM oratt.writetab WHERE pk=100;
< 100, TimesTen >
1 row found.

3. Use ttIsql to insert a new row, delete an existing row, and update an existing row
in the TimesTen oratt.writetab cache table, and commit the changes.

Command> INSERT INTO oratt.writetab VALUES (102,'Cache');
1 row inserted.
Command> DELETE FROM oratt.writetab WHERE pk=101;
1 row deleted.
Command> UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;
1 row updated.
Command> COMMIT;

The committed updates on the TimesTen oratt.writetab cache table in the
writecache cache group should automatically be propagated to the
oratt.writetab table in the Oracle Database.

4. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle database as the schema user (oratt, in this
example). Then query the contents of the oratt.writetab table in the Oracle

Cleaning up the cache metadata on the Oracle Database

TimesTen Cache Example B-19

Database to verify the committed updates from the TimesTen database have been
propagated to the oratt.writetab table of the Oracle Database.

% sqlplus oratt/oraclepwd@orapcache;

SQL*Plus: Release 12.1.0.2.0 Production on Fri Oct 23 21:57:42 2020

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> SELECT * FROM oratt.writetab ORDER BY pk;

 PK ATTR
---------- --
 100 Oracle
 102 Cache

You have verified that TimesTen Cache is working correctly for the oratt.writetab
table and the writecache cachegroup.

Cleaning up the cache metadata on the Oracle Database
When you create certain types of cache groups in a TimesTen database, TimesTen
stores metadata about that cache group in the Oracle Database. If you later delete that
TimesTen database, TimesTen does not automatically delete the metadata in the Oracle
Database. As a result, metadata can accumulate on the Oracle Database. See "Dropping
Oracle Database objects used by autorefresh cache groups" in the Oracle TimesTen
Application-Tier Database Cache User's Guide for more information.

However, in a Kubernetes environment, if you provide a cacheUser metadata file and
a cachegroups.sql metadata file when you initially create the TimesTenClassic object,
then, by default, the Operator automatically cleans up the Oracle Database metadata if
you delete that TimesTenClassic object.

 If you do not want the Operator to automatically clean up the Oracle Database, you
set the cacheCleanup field in the TimesTenClassic object definition to false. See the
cacheCleanup entry in Table 11–3, " TimesTenClassicSpecSpec" for more information.
Also see "The supported metadata files" on page 3-1 for information on the cacheUser
and the cachegroups.sql files.

Cleaning up the cache metadata on the Oracle Database

B-20 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

C

Run Containers as Non-Root C-1

CRun Containers as Non-Root

The Dockerfiles, as shipped, contain one Perl script that runs as root. This Perl script
performs an initial configuration of the tt container in each Pod. It then switches from
root to the oracle user. If you do not want any process in any container to run as root,
you can use the procedure in this appendix.

Note: TimesTen (including the TimesTen daemons, the TimesTen agent, and the
Kubernetes Operator) does not run as root.

The appendix shows a complete example.

The overview describes the requirements for configuring the TimesTen containers to
run as non-root. The remaining sections show the standard setup procedures for
configuring your active standby pairs of TimesTen databases. The final section shows
you how to verify the TimesTen containers are running as non-root.

Topics:

■ Overview

■ Set up the environment

■ Create the ConfigMap object

■ Create the TimesTenClassic object

■ Monitor deployment

■ Verify the TimesTen container runs as non-root

Overview
You can configure your containers to run as non-root. This involves two additional
steps from the standard setup procedures:

1. Uncomment USER 333 in the Dockerfile located in the /ttimage directory. See
"Build the TimesTen image" on page C-7 for details.

2. Include .template.spec.securityContext information in the YAML file of your
TimesTenClassic object. See "Create the TimesTenClassic object" on page C-11 for
details.

Set up the environment
Before starting the example, ensure you have:

■ Completed the prerequisites. See "Prerequisites" on page 2-1 for information on
the required prerequisites.

Set up the environment

C-2 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

To set up the environment, perform these steps from your Linux development host:

■ Download the TimesTen Operator

■ Configure Kubernetes

■ Deploy the TimesTenClassic CRD

■ Build the Operator image

■ Deploy the Operator

■ Build the TimesTen image

Download the TimesTen Operator
Perform these steps to download the full distribution of TimesTen and then unpack the
TimesTen Operator distribution that is embedded within it. Perform all steps from
your Linux development host.

1. From the directory of your choice:

■ Create one subdirectory into which you will download the TimesTen full
distribution. For example, create the installation_dir subdirectory. (The
installation_dir directory is used in the remainder of this chapter.)

■ Create a second subdirectory into which you will unpack the TimesTen
Operator distribution. For example, create the kube_files subdirectory. (This
kube_files directory is used in the remainder of this chapter.)

% mkdir -p installation_dir
% mkdir -p kube_files

You are now ready to download and unpack the TimesTen full distribution.

2. Navigate to installation_dir.

% cd installation_dir

Download the TimesTen full distribution into this directory. As an example,
download the timesten1814110.server.linux8664.zip file, (the 18.1.4.11.0 full
distribution for Linux 64-bit).

3. From the installation_dir, use the ZIP utility to unpack the TimesTen
distribution.

% unzip timesten1814110.server.linux8664.zip
Archive: /timesten/installation/timesten1814110.server.linux8664.zip
 creating: tt18.1.4.11.0/
 creating: tt18.1.4.11.0/ttoracle_home/
...
 creating: tt18.1.4.11.0/kubernetes/
...

You successfully unpacked the TimesTen full distribution.

Note that the installation_dir/tt18.1.4.11.0/kubernetes directory is created.
The operator.zip file is located in this directory. For example, this is a sample
directory structure after unpacking the distribution:

% pwd
installation_dir/tt18.1.4.11.0
% dir
3rdparty include lib oraclescripts README.html ttoracle_home
bin info network PERL startup

Set up the environment

Run Containers as Non-Root C-3

grid kubernetes nls plsql support

4. Navigate to the kube_files directory and unpack the operator.zip file into it. In
this example, unpack the installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file.

% cd kube_files
% unzip installation_dir/tt18.1.4.11.0/kubernetes/operator.zip
[...UNZIP OUTPUT...]

You successfully unpacked the installation_
dir/tt18.1.4.11.0/kubernetes/operator.zip file into the kube_files directory.

5. Review the directory structure. Later in this chapter, you will modify some of the
files in these subdirectories. This example shows the most important
subdirectories and files, which can change from release to release.

README.md
deploy/crd.yaml
deploy/operator.yaml
deploy/service_account.yaml
operator/Dockerfile
operator/timestenclassic-operator
ttimage/agent2
ttimage/.bashrc
ttimage/create1.sql
ttimage/create2.sql
ttimage/Dockerfile
ttimage/get1.sql
ttimage/pausecq.sql
ttimage/repcreate.sql
ttimage/repduplicate.sql
ttimage/runsql,sql
ttimage/starthost.pl
ttimage/.ttdotversion
ttimage/.ttdrop

You successfully downloaded and unpacked the TimesTen Operator distribution.

Configure Kubernetes
The Operator runs by using a Kubernetes service account. This service account needs
permissions and privileges in your namespace. These permissions and privileges are

Note: This directory tree must persist through the lifetime of the
TimesTen Operator.

In addition, do not delete the TimesTen full distribution file
(timesten1814110.server.linux8664.zip, in this example). You need
to copy this file into the:

■ /operator directory to build the Operator image and push the
image to the image registry. See "Build the Operator image" on
page C-4 for details.

■ /ttimage directory to build the TimesTen image and push the
image to the image registry. See "Build the TimesTen image" on
page C-7 for details.

Set up the environment

C-4 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

granted through a role. The service_account.yaml file adds the service account and
the role to your namespace, and grants the service account the privileges that are
specified in the role. The service_account.yaml file is provided in the operator.zip
file you previously unpacked.

Perform these steps:

1. Navigate to the kube_files/deploy directory.

% cd kube_files/deploy

2. Create the service account.

% kubectl create -f service_account.yaml
role.rbac.authorization.k8s.io/timestenclassic-operator created
serviceaccount/timestenclassic-operator created
rolebinding.rbac.authorization.k8s.io/timestenclassic-operator created

The service_account.yaml file created the timestenclassic-operator service
account and the timestenclassic-operator role in your namespace, and granted the
service account the privileges specified in the role.

Deploy the TimesTenClassic CRD
Navigate to the kube_files/deploy directory, and then use the kubectl create
command to create the TimesTenClassic customized resource definition (CRD) in your
Kubernetes cluster.

% cd kube_files/deploy
% kubectl create -f crd.yaml
customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com created

You successfully added the TimesTenClassic object type to your Kubernetes cluster.

Build the Operator image
Kubernetes Operators are Pods that run a customized image. Before you can run the
Operator, you must build this image and push it to your image registry.

The files needed to create the image are provided in the kube_files/operator
directory (part of the ZIP file you previously unpacked). In the kube_files/operator
directory are the Dockerfile and the binaries needed to create the Operator image.

To build the Operator image and push it to your registry, perform these steps:

1. Navigate to the kube_files/operator directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the installation_dir
directory. See "Download the TimesTen Operator" on page C-2 for information.
Then, verify the timesten1814110.server.linux8664.zip file is in the kube_
files/operator directory.

Note: The provided role gives the timestenclassic-operator broad
permissions within your namespace. Examine the permissions
provided in the service_account.yaml file to see if the permissions
need to be modified. If so, modify the permissions before running the
commands in this example.

Set up the environment

Run Containers as Non-Root C-5

% cd kube_files/operator
% cp installation_dir/timesten1814110.server.linux8664.zip .
% ls -a
Dockerfile
timesten1814110.server.linux8664.zip
timestenclassic-operator

2. Navigate to the kube_files/operator directory (if not already in this directory)
and use the docker command to build the Operator image. You can choose any
name for ttclassic-operator:2 (represented in bold in this example). Note that
the output may change from release to release.

% cd kube_files/operator
% docker build -t ttclassic-operator:3 .
Sending build context to Docker daemon 478.6MB
Step 1/7 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/7 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/7 : RUN yum -y install openssl unzip && /usr/sbin/useradd -d
/tt-operator -m -u 1001 -s /bin/nologin -U tt-operator
 ---> Using cache
 ---> e3f1427246ab
Step 4/7 : COPY --chown=tt-operator:tt-operator timestenclassic-operator
/usr/local/bin/timestenclassic-operator
 ---> Using cache
 ---> 6ccad53230f0
Step 5/7 : COPY --chown=tt-operator:tt-operator $TT_DISTRO /tt-operator/
$TT_DISTRO
 ---> 5cd31705485a
Step 6/7 : USER tt-operator
 ---> Running in 6a773ddac5dd
Removing intermediate container 6a773ddac5dd
 ---> 875ee38ebc75
Step 7/7 : ENTRYPOINT ["/usr/local/bin/timestenclassic-operator"]
 ---> Running in fed0f6c94c2f
Removing intermediate container fed0f6c94c2f
 ---> 10dde79e1617
Successfully built 10dde79e1617
Successfully tagged ttclassic-operator:3

3. Use the docker command to tag the Operator image.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous step.
(ttclassic-operator is represented in bold in this example.)

% docker tag ttclassic-operator:3 phx.ocir.io/youraccount/ttclassic-operator:3

4. Use the docker command to push the Operator image to your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.
(phx.ocir.io/youraccount is represented in bold in this example.)

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps. (ttclassic-operator:3 is represented in bold in this example.)

% docker push phx.ocir.io/youraccount/ttclassic-operator:3
The push refers to repository [phx.ocir.io/youraccount/ttclassic-operator]

Set up the environment

C-6 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

46458e9fc890: Pushed
471a399f0540: Pushed
9e51a2b82af3: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:9b941f12e3d52298b9b38f7766ddcdfb1d011857a990ff01a8adafd32f3d3e8d size:
1166

You successfully built the Operator image and pushed it to your image registry.

Deploy the Operator
To deploy the Operator, you first customize it for your namespace and then deploy it.
As a final step, you can verify the Operator is running. See "Deploying the Operator"
on page 2-6 for information.

To customize the Operator for your namespace, navigate to the kube_files/deploy
directory, and edit the operator.yaml file. This file is provided in the distribution that
you previously unpacked. See "Downloading TimesTen and the TimesTen Operator"
on page 2-2 for details.

1. Modify these fields represented in bold (in the operator.yaml file below):

■ replicas: 1

Replace 1 with the number of copies of the Operator that you would like to
run. 1 is acceptable for development and testing. However, you can run more
than one replica for high availability purposes.

■ Replace sekret with the name of the image pull secret that Kubernetes uses to
pull images from your registry.

■ Replace phx.ocir.io/youraccount with the location of your image registry.

■ Replace ttclassic-operator:3 with the name you chose in the previous
steps.

% cd kube_files/deploy
% vi operator.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: timestenclassic-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 name: timestenclassic-operator
 template:
 metadata:
 labels:
 name: timestenclassic-operator
 spec:
 serviceAccountName: timestenclassic-operator
 imagePullSecrets:
 - name: sekret
 containers:
 - name: timestenclassic-operator
 image: phx.ocir.io/youraccount/ttclassic-operator:3
 command:
 - timestenclassic-operator

Set up the environment

Run Containers as Non-Root C-7

 imagePullPolicy: Always
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: OPERATOR_NAME
 value: "timestenclassic-operator"
 - name: GODEBUG
 value: "x509ignoreCN=0"

2. Use the kubectl create command to define the Operator to your namespace and
to start the Operator.

% kubectl create -f operator.yaml
deployment.apps/timestenclassic-operator created

You deployed the Operator. The Operator should now be running.

3. Use the kubectl get pods command to verify the Operator is running. If the
STATUS field has a value of Running, the Operator is running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timestenclassic-operator-846cb5c97c-9gv46 1/1 Running 0 37s

You verified that the Operator is running.

Build the TimesTen image
Before you can start TimesTen in your Kubernetes cluster, you must first package
TimesTen as a container image and then push the image to your image registry. The
files that you need to do this are provided in the kube_files directory tree. See
"Building the TimesTen image" on page 2-8 for information.

To run the TimesTen containers as non-root, you must uncomment USER 333 in the
kube_files/ttimage/Dockerfile.

To create the TimesTen container image, perform these steps:

1. Navigate to the kube_files/ttimage directory, and copy the TimesTen
distribution into it. This example assumes you downloaded the
timesten1814110.server.linux8664.zip distribution into the installation_dir
directory. See "Download the TimesTen Operator" on page C-2 for information.
Then, verify the timesten1814110.server.linux8664.zip file is in the kube_
files/ttimage directory.

% cd kube_files/ttimage
% cp installation_dir/timesten1814110.server.linux8664.zip .
% ls *.zip
timesten1814110.server.linux8664.zip

2. Navigate to the kube_files/ttimage directory (if not already in this directory).
Edit the Dockerfile, replacing timesten1814110.server.linux8664.zip with the
name of your TimesTen full distribution. If your TimesTen distribution is
timesten1814110.server.linux8664.zip, no modification is necessary. If not, the

Set up the environment

C-8 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

modification you need to make is represented in bold. Note: The TimesTen full
distribution must be 18.1.4.11.0 or later.

In addition, uncomment USER 333 in this Dockerfile (represented in bold, in this
example).

% cd kube_files/ttimage
% vi Dockerfile

Copyright (c) 2019, 2021, Oracle and/or its affiliates.

FROM container-registry.oracle.com/os/oraclelinux:7

ARG TT_DISTRO=timesten1814110.server.linux8664.zip

RUN yum -y install tar gzip vim curl unzip libaio util-linux
RUN groupadd -g 333 oracle
RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle oracle
RUN install -d -m 0750 -o oracle -g oracle /home/oracle
COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop .ttdotversion agent2
create1.sql create2.sql get1.sql repcreate.sql repduplicate.sql runsql.sql
pausecg.sql /home/oracle/
Uncomment the following line if you are using the optional non-root
installation procedure.
USER 333
ENTRYPOINT "/home/oracle/starthost.pl"

3. Use the docker command to build the TimesTen container image. Replace
tt1814110 with a name of your choosing (represented in bold, in the docker build
command below). Note that the output may change from release to release.

% docker build -t tt1814110:3 .

Sending build context to Docker daemon 445.8MB
Step 1/9 : FROM container-registry.oracle.com/os/oraclelinux:7
 ---> d788eca028a0
Step 2/9 : ARG TT_DISTRO=timesten1814110.server.linux8664.zip
 ---> Using cache
 ---> a259a93fe906
Step 3/9 : RUN yum -y install tar gzip vim curl unzip libaio util-linux
 ---> Using cache
 ---> ac676b5376f3
Step 4/9 : RUN groupadd -g 333 oracle
 ---> Using cache
 ---> ce16920f085c
Step 5/9 : RUN useradd -M -d /tt/home/oracle -s /bin/bash -u 333 -g oracle
oracle
 ---> Using cache
 ---> 0319814aca1c
Step 6/9 : RUN install -d -m 0750 -o oracle -g oracle /home/oracle
 ---> Using cache
 ---> c8612b53398a
Step 7/9 : COPY --chown=oracle:oracle $TT_DISTRO /home/oracle/
 ---> 31cae98b71fd
Step 8/9 : COPY --chown=oracle:oracle .bashrc starthost.pl .ttdrop
.ttdotversion agent2 create1.sql create2.sql get1.sql repcreate.sql
repduplicate.sql runsql.sql pausecg.sql /home/oracle/
 ---> e50eb99c9b54
Step 9/9 : ENTRYPOINT "/home/oracle/starthost.pl"
 ---> Running in 0b41efd38837

Create the ConfigMap object

Run Containers as Non-Root C-9

Removing intermediate container 0b41efd38837
 ---> 171245e546d5
Successfully built 171245e546d5
Successfully tagged tt1814110:3

4. Use the docker command to tag the TimesTen container image. Replace the
following, represented in bold, in the docker tag command below.

■ tt1814110:3 with the name you chose in the previous step.

■ phx.ocir.io/youraccount with the location of your image registry.

% docker tag tt1814110:3 phx.ocir.io/youraccount/tt1814110:3

5. Use the docker command to push the TimesTen container image to your registry.
Replace the following, represented in bold, in the docker push command below.

■ phx.ocir.io/youraccount with the location of your image registry.

■ tt1814110:3 with the name you chose previously.

% docker push phx.ocir.io/youraccount/tt1814110:3

The push refers to repository [phx.ocir.io/youraccount/tt1814110]
97a0f250b2fe: Pushed
650b003a3ad4: Pushed
b8de51528854: Pushed
62192d26e325: Pushed
7dfe13e9b5a4: Pushed
d8570fce965c: Pushed
2f915858a916: Layer already exists
3: digest:
sha256:a6ac313394229eb2256d4a56fbcd8e2eda50ea2cc21991fa76f11701f2299710
size: 1788

You successfully built the TimesTen container image. It is pushed to your image
registry.

Create the ConfigMap object
This section creates the sample ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files. This ConfigMap will be referenced
when you define the TimesTenClassic object. See "Understanding the configuration
metadata and the Kubernetes facilities" on page 3-1 for information on the
configuration files and the ConfigMap facility.

On your Linux development host, perform these steps:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_sample subdirectory. (The cm_sample directory is
used in the remainder of this example to denote this directory.)

% mkdir -p cm_sample

2. Navigate to the ConfigMap directory.

% cd cm_sample

3. Create the db.ini file in this ConfigMap directory (cm_sample, in this example). In
this db.ini file, define the PermSize and DatabaseCharacterSet connection
attributes.

vi db.ini

Create the ConfigMap object

C-10 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file in this ConfigMap directory (cm_sample in this example).
In this adminUser file, create the scott user with the tiger password.

vi adminUser

scott/tiger

5. Create the schema.sql file in this ConfigMap directory (cm_sample in this
example). In this schema.sql file, define the s sequence and the emp table for the
scott user. The Operator will automatically initialize your database with these
object definitions.

vi schema.sql

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_sample directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

■ The name of the ConfigMap is sample. Replace sample with a name of your
choosing. (sample is represented in bold in this example.)

■ This example uses cm_sample as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace cm_
sample with the name of your directory. (cm_sample is represented in bold in
this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap sample --from-file=cm_sample
configmap/sample created

You successfully created and deployed the sample ConfigMap.

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(sample, in this example.)

% kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

scott/tiger

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

Create the TimesTenClassic object

Run Containers as Non-Root C-11

schema.sql:

create sequence scott.s;
create table scott.emp (
 id number not null primary key,
 name char(32)
);

Events: <none>

Create the TimesTenClassic object
This section creates the TimesTenClassic object. See "Defining and creating the
TimesTenClassic object" on page 4-2 and "The TimesTenClassic object type" on
page 11-1 for detailed information on the TimesTenClassic object.

To run the TimesTen containers as non-root, you must add SecurityContext as
illustrated below.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, sample.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" on page 11-3 for information on the fields
that you must specify in this YAML file as well as the fields that are optional.

To run the TimesTen containers as non-root, add
.template.spec.securityContext information (represented in bold, in this
example).

In addition, replace the following. (The values you can replace are represented in
bold.)

■ name: Replace sample with the name of your TimesTenClassic object.

■ storageClassName: Replace oci with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

■ storageSize: Replace 250G with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250G for storageSize. For
demonstration purposes, a value of 50G is adequate. See the storageSize and
the logStorageSize entries in the Table 11–3, " TimesTenClassicSpecSpec" for
information.

■ image: Replace phx.ocir.io/youraccount/tt1814110:3 with the location of
the image registry (phx.ocir.io/youraccount) and the image containing
TimesTen (tt1814110:3)

■ imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

■ dbConfigMap: This example uses one ConfigMap (called sample) for the
db.ini, the adminUser, and the schema.sql metadata files. This ConfigMap
will be included in the ProjectedVolume. This volume is mounted as
/ttconfig in the TimesTen containers. See "Using ConfigMaps and Secrets" on

Monitor deployment

C-12 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

page 3-6 and "Example using one ConfigMap" on page 3-7 for information on
ConfigMaps.

% vi sample.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: phx.ocir.io/youraccount/tt1814110:3
 dbConfigMap:
 - sample
 imagePullSecret: sekret
 template:
 spec:
 securityContext:
 fsGroup: 333
 containers:
 - name: tt
 securityContext:
 runAsUser: 333
 runAsGroup: 333

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, sample.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f sample.yaml
configmap/sample created
timestenclassic.timesten.oracle.com/sample created

You successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitor deployment
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get timestenclassic sample
NAME STATE ACTIVE AGE

Note: For the kubectl get timestenclassic and kubectl describe
timestenclassic commands, you can alternatively specify kubectl
get ttc and kubectl describe ttc respectively. timestenclassic and
ttc are synonymous when used in these commands, and return the
same results. The first kubectl get and the first kubectl describe
examples in this appendix use timestenclassic. The remaining
examples in this appendix use ttc for simplicity.

Monitor deployment

Run Containers as Non-Root C-13

sample Initializing None 11s

2. Use the kubectl get command again to see if value of the STATE field has changed.
In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 3m33s

3. Use the kubectl describe command again to view the active standby pair
provisioning in detail. Note the Security Context (represented in bold) is
included in the active standby pair provisioning, indicating the TimesTen
containers are running as non-root.

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-04-09T22:01:34Z
 Generation: 1
 Resource Version: 148466657
 Self Link:
 /apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 25ff6f40-997f-11eb-86a3-06b2b9dd76bc
Spec:
 Template:
 Spec:
 Containers:
 Name: tt
 Security Context:
 Run As Group: 333
 Run As User: 333
 Security Context:
 Fs Group: 333
 Ttspec:
 Db Config Map:
 sample
 Image: phx.ocir.io/youraccount/tt1814110:3
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250G
Status:
 Classic Upgrade Status:
 Active Start Time: 0
 Active Status:
 Image Update Pending: false
 Last Upgrade State Switch: 0
 Prev Reset Upgrade State:
 Prev Upgrade State:
 Standby Start Time: 0
 Standby Status:
 Upgrade Start Time: 0
 Upgrade State:
 Active Pods: sample-0
 High Level State: Normal

Monitor deployment

C-14 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

 Last Event: 27
 Last High Level State Switch: 1618005884
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 34
 Db Updatable: Yes
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618006024
 Pod IP: 10.244.7.37
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image:
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Active
 Local Commit: false
 Name: sample-0
 Schema File: true
 Using Twosafe: false
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 34
 Db Updatable: No
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1618006024
 Pod IP: 10.244.14.33
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image:
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running

Monitor deployment

Run Containers as Non-Root C-15

 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 18.1.4.11.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Standby
 Local Commit: false
 Name: sample-1
 Schema File: true
 Using Twosafe: false
 Prev High Level State: Initializing
 Prev Reexamine:
 Prev Stop Managing:
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 5m34s ttclassic Service sample created
 - Create 5m34s ttclassic StatefulSet sample created
 - Create 5m34s ttclassic Secret
tt25ff6f40-997f-11eb-86a3-06b2b9dd76bc created
 - StateChange 4m12s ttclassic Pod sample-1 Daemon Up
 - StateChange 4m12s ttclassic Pod sample-0 Agent Up
 - StateChange 4m12s ttclassic Pod sample-0 Release 18.1.4.11.0
 - StateChange 4m12s ttclassic Pod sample-1 Agent Up
 - StateChange 4m12s ttclassic Pod sample-1 Release 18.1.4.11.0
 - StateChange 4m12s ttclassic Pod sample-0 Daemon Up
 - StateChange 3m2s ttclassic Pod sample-0 Database Loaded
 - StateChange 3m2s ttclassic Pod sample-0 Database Updatable
 - StateChange 3m2s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 3m2s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 3m2s ttclassic Pod sample-0 RepState IDLE
 - StateChange 3m2s ttclassic Pod sample-0 RepScheme None
 - StateChange 3m1s ttclassic Pod sample-0 RepAgent Running
 - StateChange 3m1s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 3m1s ttclassic Pod sample-0 RepState ACTIVE
 - StateChange 2m42s ttclassic Pod sample-1 Database Loaded
 - StateChange 2m42s ttclassic Pod sample-1 Database Not Updatable
 - StateChange 2m42s ttclassic Pod sample-1 CacheAgent Not Running
 - StateChange 2m42s ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 2m42s ttclassic Pod sample-1 RepScheme Exists
 - StateChange 2m42s ttclassic Pod sample-1 RepState IDLE
 - StateChange 2m31s ttclassic Pod sample-1 RepAgent Running
 - StateChange 2m31s ttclassic Pod sample-1 RepState STANDBY
 - StateChange 2m25s ttclassic TimesTenClassic was Initializing, now
Normal

Verify the TimesTen container runs as non-root

C-16 Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) There are two TimesTen databases, configured as an active
standby pair. One database is active. (In this example, sample-0 is the active database,
as indicated by Rep State ACTIVE). The other database is standby. (In this example,
sample-1 is the standby database as indicated by Rep State STANDBY). The active
database can be modified and queried. Changes made on the active database are
replicated to the standby database. If the active database fails, the Operator
automatically promotes the standby database to be the active. The formerly active
database will be repaired or replaced, and will then become the standby.

Verify the TimesTen container runs as non-root
You can run the kubectl exec command to invoke shells in your Pods and control
TimesTen, which is running in those Pods. Run the Linux id command to verify the
UID is 333.

1. Establish a shell in the Pod and run the Linux id command.

% kubectl exec -it sample-0 -c tt -- /usr/bin/bash
% id
uid=333(oracle) gid=333(oracle) groups=333(oracle)

2. Verify you can connect to the sample database and run a simple query.

% ttisql sample
Copyright (c) 1996, 2020, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=oracle;DataStore=/tt/home/oracle/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Command> SELECT * FROM dual;
< X >
1 row found.

Index-1

Index

A
active standby pair deployment

monitor, 4-3
ActiveDown

state of active standby pair, 6-3
ActiveTakeover

health of active standby pair, 6-3
adminUser

metadata file, 3-2

B
BothDown

handling, 6-5
state of active standby pair, 6-4

C
cachegroups.sql

metadata file, 3-2
cacheUser

metadata file, 3-3
CatchingUp

health of Pod, 6-2
client/server drivers

using, 5-3
complete example

build Operator image, A-4
build TimesTen image, A-7, C-7
cleanup, A-19
configure Kubernetes, A-3
create ConfigMap, A-9
create TimesTenClassic object, A-10
deploy Operator, A-5
deploy TimesTenClassic CRD, A-4
download TimesTen Operator, A-2
monitor deployment, A-12
recover from failure, A-18
set up environment, A-1
verify connection to active TimesTen

database, A-17
verify underlying objects, A-16

concepts
Kubernetes, 1-1

ConfigMaps

using, 3-6
configuration metadata, 3-1
configuration options

persistent storage, 3-13
ConfiguringActive

state of active standby pair, 6-4
connection to database

verify, 4-8
containers

Kubernetes, 1-1
CRD

definition, 1-2
csWallet

metadata file, 3-4
Customer Resource Definition

definition, 1-2

D
db.ini

metadata file, 3-4
Deployment

definition, 1-1
deployment

TimesTen databases, 4-1
TimesTenClassic CRD, 2-4

direct mode applications
using, 5-1

Down
health of Pod, 6-2

E
encryption

client for TimesTen client/server,configure
client-side attributes, 8-18

client for TimesTen client/server,copy client
wallet, 8-18

configuration on TimesTen Server,metadata
files, 8-11

configure client for TimesTen client/server, 8-17
configure on TimesTen server,create Kubernetes

facilities, 8-12
configure TLS for client/server, 8-11
configure TLS for replication, 8-3
configure TLS on TimesTen server, 8-11

Index-2

create ConfigMap, 8-5
create Kubernetes facilities, 8-3
create Kubernetes Secret, 8-4
create metadata files, 8-3
create TimesTenClassic object, 8-6
create TLS certificates, 8-1
monitor deployment of TimesTenClassic

object, 8-8
TimesTen server,create ConfigMap, 8-13
TimesTen server,create TimesTenClassic

object, 8-15
TimesTen server,monitor deployment, 8-16
verify TLS for replication, 8-9

epilog.sql
metadata file, 3-5

example
failover and recovery process, 9-1
using one ConfigMap, 3-7
using one ConfigMap and one Secret, 3-9

F
Failed

state of active standby pair, 6-4
failover

handling, 9-1
failover and recovery process

example, 9-1

H
Handling BothDown, 6-5
health of active standby pair

ActiveTakeover, 6-3
health of active standby pair of databases

tools to monitor, 6-3
health of each pod

monitoring, 6-1
health of Pod

CatchingUp, 6-2
Down, 6-2
Healthy, 6-2
HealthyActive, 6-2
HealthyStandby, 6-2
OtherDown, 6-2
Terminal, 6-2
Unknown, 6-2
UpgradeFailed, 6-3

Healthy
health of Pod, 6-2

HealthyActive
health of Pod, 6-2

HealthyStandby
health of Pod, 6-2

I
init container

using, 3-12
Initializing

state of active standby pair, 6-4

K
Kubernetes

concepts, 1-1
containers, 1-1

Kubernetes facilities, 3-1
Kubernetes objects

definition, 1-4
Kubernetes Operator

definition, 1-2

M
managing

delete active standby pair of TimesTen
databases, 6-29

manually invoke TimesTen utilities, 6-19
modify TimesTen connection attributes, 6-19
revert to manual control, 6-26

ManualInterventionRequired
state of active standby pair, 6-4

metadata file
adminUser, 3-2
cachegroups.sql, 3-2
cacheUser, 3-3
csWallet, 3-4
db.ini, 3-4
epilog.sql, 3-5
replicationWallet, 3-5
schema.sql, 3-5
sqlnet.ora, 3-5
tnsnames.ora, 3-6

modify
first connection attributes, 6-22
general connection attributes, 6-24

modify TimesTen connection attributes
manually edit db.ini file, 6-20

monitor
active standby deployment, 4-3

N
non-root installation

build the Operator image, C-4
configure Kubernetes, C-3
create ConfigMap, C-9
create TimesTenClassic object, C-11
deploy Operator, C-6
deploy TimesTenClassic CRD, C-4
download TimesTen Operator, C-2
monitor deployment, C-12
set up environment, C-1
verify TimesTen container, C-16

Normal
state of active standby pair, 6-4

O
Operator

definition, 1-4
tools to locate, 6-18

Index-3

upgrade, 10-2
OtherDown

health of Pod, 6-2

P
persistent storage

configuration options, 3-13
PersistentVolume

definition, 1-1
Pod

definition, 1-1
Pod location, 3-15
prerequisites, 2-1

R
recovery

handling, 9-1
Reexamine

state of active standby pair, 6-4
replicationWallet

metadata file, 3-5
resource specification

tt and daemonlog containers, 3-14

S
schema.sql

metadata file, 3-5
Secrets

using, 3-6
Service

definition, 1-2
sqlnet.ora

metadata file, 3-5
standby database, 10-23
StandbyCatchup

state of active standby pair, 6-5
StandbyDown

state of active standby pair, 6-5
StandbyStarting

state of active standby pair, 6-5
state of active standby pair

ActiveDown, 6-3
BothDown, 6-4
ConfiguringActive, 6-4
Failed, 6-4
Initializing, 6-4
ManualInterventionRequired, 6-4
Normal, 6-4
Reexamine, 6-4
StandbyCatchup, 6-5
StandbyDown, 6-5
StandbyStarting, 6-5
WaitingforActive, 6-5

StatefulSet
definition, 1-1

supported metadata files, 3-1

T
Terminal

health of Pod, 6-2
TimesTen agent, 1-7
TimesTen Cache

cachegroups.sql metadata file, 7-1
cacheUser metadata file, 7-1
clean up cache metadata, 7-10
create Kubernetes facilities, 7-3
create metadata files, 7-3
create TimesTenClassic object, 7-6
db.ini metadata file, 7-2
monitor deployment of TimesTenClassic

object, 7-7
overview, 7-1
schema.sql metadata file, 7-2
sqlnet.ora metadata file, 7-2
tnsnames.ora metadata file, 7-2

TimesTen Cache example
cleanup, B-19
create metadata files, B-6
create Oracle Database tables, B-4
create Oracle Database users, B-1
create TimesTenClassic object, B-11
grant privileges to cache administration user, B-3
monitor deployment, B-12
performing operations on cache group

tables, B-16
set up Oracle database, B-1
verify TimesTen Cache configuration, B-15

TimesTen containers, 1-7
TimesTen databases

tools for managing, 6-18
TimesTen Operator

customize Operator, 2-6
deployment, 1-7
overview, 1-2

TimesTen Operator installation, 2-1
build Operator image, 2-5
build TimesTen image, 2-8
deploy Operator, 2-6
download requirements, 2-2
Kubernetes service account, 2-4
prerequisites, 2-1
verify Operator, 2-7

TimesTen upgrade, 10-10
TimesTenClassic

syntax, 11-2
TimesTenClassic CRD

deployment, 2-4
TimesTenClassic object

create, 4-2
define, 4-2
overview, 11-1

TimesTenClassic object type
definition, 1-3
description, 11-1

TimesTenClassic state
monitor, 4-3

TimesTenClassicSpec

Index-4

syntax, 11-2
TimesTenClassicSpecSpec

syntax, 11-3
TimesTenClassicStatus

description, 11-8
tnsnames.ora

metadata file, 3-6
/ttconfig directory, 3-6

U
underlying objects

verify existence, 4-8
Unknown

health of Pod, 6-2
upgrade, 10-23

fail over, 10-27
Operator, 10-2
standby database, 10-23
TimesTen, 10-10

upgrade each TimesTenClassic object
modify TimesTenClassic object, 10-14, 10-21

upgrade Operator
build new Operator image, 10-5
download new release, 10-3
review current Operator, 10-6

upgrade process
overview, 10-1

upgrade TimesTen
build new TimesTen image, 10-10

UpgradeFailed
health of Pod, 6-3

W
WaitingforActive

state of active standby pair, 6-5

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 18.1.4.11.0
	New features in Release 18.1.4.4.0

	1 Overview of the Oracle TimesTen Kubernetes Operator
	Overview of containers and Kubernetes
	Custom Resource Definition
	Kubernetes Operator

	Introducing the TimesTen Operator
	The TimesTenClassic object type
	Kubernetes objects: named and typed

	The Operator

	Understanding how the Operator functions
	Objects created by the Operator
	StatefulSet
	Service
	Secret
	Pods
	Events

	The TimesTen containers and the TimesTen agent

	Simple deployment of the TimesTen Operator

	2 Setting up the Environment
	Prerequisites
	Downloading TimesTen and the TimesTen Operator
	Configuring Kubernetes
	Deploying the TimesTenClassic CRD
	Building the Operator image
	Deploying the Operator
	Customize the Operator
	Verify that the Operator is running

	Building the TimesTen image

	3 Using Configuration Metadata
	Understanding the configuration metadata and the Kubernetes facilities
	The supported metadata files
	adminUser file
	cachegroups.sql
	cacheUser
	csWallet
	db.ini file
	epilog.sql
	replicationWallet
	schema.sql file
	sqlnet.ora file
	tnsnames.ora file

	Populating the /ttconfig directory
	Using ConfigMaps and Secrets
	Example using one ConfigMap
	Example using one ConfigMap and one Secret

	Using an init container

	Additional configuration options
	Persistent storage
	Resources specification for the tt and the daemonlog containers
	Pod location

	4 Deploying TimesTen Databases
	Understanding the deployment process
	Defining and creating the TimesTenClassic object
	Monitoring the progress of the active standby pair deployment
	Monitor the state of TimesTenClassic
	Verify the underlying objects exist
	Verify connection to the active database

	5 Using TimesTen Databases
	Using direct mode applications
	Using Client/Server drivers

	6 Managing and Monitoring Your Active Standby Pairs
	Monitoring the health of each pod in the active standby pair
	CatchingUp
	Down
	Healthy
	HealthyActive
	HealthyStandby
	OtherDown
	Terminal
	Unknown
	UpgradeFailed

	Monitoring the health of the active standby pair of databases
	ActiveDown
	ActiveTakeover
	BothDown
	ConfiguringActive
	Failed
	Initializing
	ManualInterventionRequired
	Normal
	Reexamine
	StandbyCatchup
	StandbyDown
	StandbyStarting
	WaitingForActive

	Understanding the BothDown state
	Understanding the ManualInterventionRequired state
	Bringing up one database
	Verify the conditions are met for the database
	Set the reexamine value

	Suspending the management of a TimesTenClassic object
	Overview
	Suspend management of the TimesTenClassic object

	Locating the Operator
	Managing the TimesTen databases
	Manually invoke TimesTen utilities
	Modify TimesTen connection attributes
	Manually edit the db.ini file
	Modifying first connection attributes
	Modifying general connection attributes

	Revert to manual control
	Delete an active standby pair of TimesTen databases

	7 Working with TimesTen Cache
	Overview
	Creating the metadata files and the Kubernetes facility
	Creating the TimesTenClassic object
	Monitoring the deployment of the TimesTenClassic object
	Cleaning up the cache metadata on the Oracle Database

	8 Using Encryption for Data Transmission
	Creating TLS certificates for replication and Client/Server
	Configuring TLS for replication
	Create the metadata files and the Kubernetes facilities
	Create the Kubernetes Secret
	Create the ConfigMap

	Create the TimesTenClassic object
	Monitor the deployment of the TimesTenClassic object
	Verify that TLS is being used for replication

	Configuring TLS for Client/Server
	Configuration on the server
	Overview of the metadata files and the Kubernetes facilities
	Create the Kubernetes Secret for the csWallet metadata file
	Create the ConfigMap for the server-side attributes
	Create the TimesTenClassic object
	Monitor the deployment of the TimesTenClassic object

	Configuration on the client
	Copy the client wallet
	Configure the client-side attributes

	9 Handling Failover and Recovery
	Handling failover and recovery
	An example illustrating the failover and recovery process

	10 Performing Upgrades
	Overview of the upgrade process
	Upgrading the Operator
	Download the new release of the TimesTen Operator
	Replace the crd.yaml and the service_account.yaml files
	Build the new Operator image
	Review the current Operator
	Update the timestenclassic-operator Deployment

	Upgrading TimesTen
	Build the new TimesTen image
	Check the upgrade strategy for each TimesTenClassic object
	Perform an automated upgrade
	Modify the TimesTenClassic object: automated upgrade
	Monitor the automated upgrade

	Perform a manual upgrade
	Modify the TimesTenClassic object: manual upgrade
	Upgrade the standby database
	Failover

	Verify the active standby pair of databases are upgraded

	11 The TimesTenClassic Object Type
	Overview of the TimesTenClassic object type
	The TimesTenClassic object type
	TimesTenClassic
	TimesTenClassicSpec
	TimesTenClassicSpecSpec
	TimesTenClassicStatus

	A Active Standby Pair Example
	Set up the environment
	Download the TimesTen Operator
	Configure Kubernetes
	Deploy the TimesTenClassic CRD
	Build the Operator image
	Deploy the Operator
	Build the TimesTen image

	Create the ConfigMap object
	Create the TimesTenClassic object
	Monitor deployment
	Verify the existence of the underlying objects
	Verify the connection to the active TimesTen database
	Recover from failure
	Cleanup

	B TimesTen Cache Example
	Setting up the Oracle Database to cache data
	Create the Oracle Database users
	Grant privileges to the cache administration user
	Create the Oracle Database tables to be cached

	Creating the metadata files and the Kubernetes facility
	Creating the TimesTenClassic object
	Monitoring the deployment of the TimesTenClassic object
	Verifying that TimesTen Cache is configured correctly
	Performing operations on the cache group tables
	Perform operations on the oratt.readtab table
	Perform operations on the oratt.writetab table

	Cleaning up the cache metadata on the Oracle Database

	C Run Containers as Non-Root
	Overview
	Set up the environment
	Download the TimesTen Operator
	Configure Kubernetes
	Deploy the TimesTenClassic CRD
	Build the Operator image
	Deploy the Operator
	Build the TimesTen image

	Create the ConfigMap object
	Create the TimesTenClassic object
	Monitor deployment
	Verify the TimesTen container runs as non-root

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U
	W

