

Oracle® Agile Product Lifecycle Management for Process

Hierarchy Denormalization Guide
Release 6.2.4.x

F58008-01

May 2022

Copyrights and Trademarks
Agile Product Lifecycle Management for Process

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly

permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,

broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-

free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing

it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,

any programs installed on the hardware, and/or documentation, delivered to U.S. Government end

users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation

and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs

installed on the hardware, and/or documentation, shall be subject to license terms and license

restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management

applications. It is not developed or intended for use in any inherently dangerous applications, including

applications that may create a risk of personal injury. If you use this software or hardware in dangerous

applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and

other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any

damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks

are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,

Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of

Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,

products, and services from third parties. Oracle Corporation and its affiliates are not responsible for

and expressly disclaim all warranties of any kind with respect to third-party content, products, and

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
3

services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages

incurred due to your access to or use of third-party content, products, or services.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
4

Contents

PREFACE .. 5
Audience ... 5

Variability of Installations ... 5

Documentation Accessibility ... 5

Access to Oracle Support .. 5

Software Availability ... 5

CHAPTER 1—HIERARCHY DENORMALIZATION INTRODUCTION 6
Purpose ... 6

Overview ... 6

CHAPTER 2—INSTALLATION ... 7
Activate the feature .. 7

Performance Estimation for Initial Denormalization .. 7

CHAPTER 3—CONFIGURATION ..10

CHAPTER 4—EXTENDING HIERARCHY DENORMALIZATION ..13
Detectors ... 13

Denormalizers ... 13

Relationship Context Definitions .. 15

Denormalization Processor ... 16

Supported Relationships that are Denormalized in GSM ... 19

Supported Relationships that are Denormalized in SCRM ... 21

CHAPTER 5—UNDERSTANDING THE HIERARCHY DENORMALIZATION DATA MODEL .22
Denormalization Results under Nested-Set Model .. 24

CHAPTER 6—EXTENSIBILITY REFERENCES ...26
Implementation Example .. 27

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
5

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle

Management for Process. Information about using Oracle Agile PLM for Process resides in application-

specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle

Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not

match your installation. The user interface of Agile PLM for Process applications and the features

included can vary greatly depending on such variables as:

 Which applications your organization has purchased and installed

 Configuration settings that may turn features off or on

 Customization specific to your organization

 Security settings as they apply to the system and your user account

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability

Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core

software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

http://edelivery.oracle.com/

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
6

Chapter 1—Hierarchy Denormalization Introduction

Purpose

This guide describes how to configure and use the Hierarchy Denormalization feature.

Because of the strong dependency of the features, Hierarchy Denormalization feature has become a

part of Agile PLM for Process application suite since v6.2.2.

Overview

Oracle Agile PLM for Process stores objects, such as specifications, along with the relationships to each

other, in a normalized database schema, making inserts, updates and deletes highly efficient while

minimizing its size. The challenges with having a normalized schema are that it can make custom SQL

queries complex and possibly not optimal for bulk data retrieval. For example, to construct a report that

returns the entire hierarchy of a trade specification, would require a deep understanding of many

relationship tables and would be extremely difficult to do in SQL alone, due to the varying number of

possible layers in the hierarchy. A hierarchy of a specification is defined as that specification plus all

descendant specifications as well as other related objects. For example, these objects would be

considered part of a trade hierarchy:

 The main trade specification

 All lower level trade specifications

 The material specification directly associated to the trade specification

 The formula to create the above material

 All inputs and outputs to the above formula

 All formulas that create the above inputs

 All inputs and outputs to the above formulas

 etc.

By continuing to drill down into the formula and intermediate formulas that comprise a trade

specification, you will have what we are referring to as the Trade Hierarchy. This hierarchy is not limited

to the relationships defined above but covers many of the relationships that are defined in PLM for

Process.

Hierarchy Denormalization was designed as a near real-time backend feature in RemotingContainer. By

adjusting the corresponding configuration nodes, the denormalizers can reflect a little faster or slower

but cannot reach the absolute real-time. It provides a solution to this data access problem by storing the

object relationship information in a single table, allowing for simple and performant hierarchy retrieval.

Many solutions can use this table to provide functionality such as hierarchical navigation and reporting.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
7

Chapter 2—Installation
Note: Hierarchy Denormalization goes along with the core release of Oracle Agile PLM for Process.

Activate the feature

1. Make sure v6.2.3.x deployment is complete.

Warning: Hierarchy Denormalization was moved to CORE release since v6.2.2. And because of the

new data related features, the ApplyScripts utility is going to REMOVE all pre-existing

denormalization results no matter whether it’s a new install or not. A full denormalization will

automatically start once firstly activate the feature. Customers should arrange a specific period for

such an initial data refresh when the new install/upgrade begins so that the feature would work

under the designed performance capability. Please refer to the next section “Performance

Estimation for Initial Denormalization” for details.

2. Edit configuration file “<PLM for Process>\config\environmentvariables.config” and make the

changes as below.

PLM4P.HierarchyDenormDetectorService.Enabled = true

PLM4P.HierarchyDenormProcessorService.Enabled = true

PLM4P.HierarchyDenormInspectorService.Enabled = true

3. Edit configuration file “<PLM for Process>\config\Custom\CustomerSettings.config” and add the

entry under node “<FeatureConfig></FeatureConfig>”.

<add key="HierarchyDenorm.Auditing.LifecycleEvents.Enabled" value="true"></add>

4. Restart RemotingContainer Service.
5. Restart IIS.

Performance Estimation for Initial Denormalization

Hierarchy Denormalization is a background process running in the Remoting Container. After the initial

startup of the Remoting Container after installation, all hierarchies are going to be denormalized. The

amount of time to perform this depends on some factors such as hardware performance, number of

specifications, depth of hierarchies and Hierarcy Denormalization configuration settings.

For an approximation of how long it will take to complete the initial processing, tests were performed

on three data sets. Below are the test details and results.

Testing server (Virtual Machine) information:

 APP server: Xeon 2.93G Dual, 8G RAM, 1000M Intranet, Windows 2008 R2 (64-bit) with IIS7

 DB server A: Xeon 2.93G Dual, 8G RAM, 1000M Intranet, Oracle 11g Release 2 for Windows (64-bit)

 DB server B: Xeon 2.93G Dual, 8G RAM, 1000M Intranet, Oracle 11g Release 2 for Linux

The following is a snapshot of the configuration file “HierarchyDenormConfig.xml” used.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
8

Note: By adjusting “PollingIntervalInSeconds_Processor” value in the configuration file as below, it’s

able to make processors jump over the sleep period. This would greatly help with the performance of

initial denormalization. The idea is only acceptable for new install or upgrade. Do restore it to be a

proper value according to the server capacity after the deploying period. The default value is 90.

Four database samples with legacy data have been selected for the performance estimation. The

involved object types are listed in the table.

Scope Object Spec Type Table Name

GSM Printed Packaging (deprecated) 2121 FinishedPackagingSpec

Menu 6500 FoodServiceMenuItem

Formulation 5816 formulationSpecification

Material 1004 MaterialSpec

Trade 2147 gsmBaseTradeSpec

Product 6501 FoodServiceProduct

Delivered Material Packing 1010 PackingSpec

Label 1006 LabelingSpec

Packaging 1009 PackagingSpec

Equipment 2280 gsmEquipmentSpecification

Packing Configuration 2076 PackingConfigurationSpec

Activity 2283 SpecActivitySpecification

SCRM Company 5002 scrmCompany

Facility 5001 scrmFacility

SourcingApproval 5012 scrmSourcingApproval

NonSpecSourcingApproval 5019 scrmSourcingApprovalNonSpec

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
9

 Sample A - Oracle for Windows

Total: ~ 26,000 requests

Duration: ~ 173 minutes

Average: ~ 2.5 requests/second

 Sample B - Oracle for Linux

Total: ~ 26,000 requests

Duration: ~ 172 minutes

Average: ~ 2.5 requests/second

 Indicators on Oracle platform:

RemotingContainer CPU usage:

Average: 6%

Peak: 12%

Valley: less than 1%

RemotingContainer Memory usage:

150MB ~ 350MB

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
10

Chapter 3—Configuration
By default, Hierarchy Denormalization will execute without the need to update the configuration

settings. The configuration settings can be used to change how often the denormalization process runs

as well as what will be denormalized. To understand when data will be denormalized, it’s helpful to

understand the processes involved.

Hierarchy Denormalization is designed as 3 endless processing services: Detector service, Processor

service, and Inspector service. The Detector service checks whether the hierarchy was changed after the

last time Denormalization Processor was executed. If changes were detected, it will create

denormalization requests. The Processor service will orchestrate the execution of denormalizers which

does the actual denormalization work. The Inspector service is constantly performing the data

check/maintenance work batch by batch, which implements a balance between data accuracy and

overall performance.

All services are designed to be triggered in a configurable frequency as shown in the table below. This

table also shows the configuration for controlling what is denormalized.

The following are the configurable properties located in the “HierarchyDenormConfig/Settings” section

of the configuration file located at “<PLM for Process>\config\Extensions\HierarchyDenormConfig.xml”.

Property Name Acceptable
values

Default
Value

Description

PollingIntervalInSeconds_Detector Number in
seconds

90 Interval of detector service
running frequency.

Note: 90 seconds is a
recommended value for
normal users. The smaller this
configuration is, the closer to
real-time that
denormalization can do.

Therefore, a smaller value
may result in heavy pressure
on denormalization service,
which may result unpleasant
performance issue. Please
change with caution.

PollingIntervalInSeconds_Processor Number in
seconds

100 Interval of processor service
running frequency.

PollingIntervalInSeconds_Inspector ① Number in
seconds

120 Interval of inspector service
running frequency.

DenormMaxLevel Number 12 Denormalized hierarchy tree
max depth limitation.

DenormMaxLevel_BreakdownComponent Number 3 Denormalized hierarchy
branch max depth limitation
specific for a Breakdown

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
11

Property Name Acceptable
values

Default
Value

Description

Component.

If current branch has a node
whose relationship context is
“BreakdownComponent” it
would perform a level-limited
denormalization. The default
value indicates the parent will
at most have 3-levels children.

DenormMaxLevel_AlternateOutput Number 2 Denormalized hierarchy
branch max depth limitation
specific for an Alternate
Output.

If current branch has a node
whose relationship context is
“AlternateOutput” it would
perform a level-limited
denormalization. The default
value indicates the parent will
at most have 2-levels children.

DenormMode_AssociatedSpec “TargetOnly”;
“HostOnly”;
“Both”

“TargetOnl
y”

Determines which type of sub-
relationships should be
resolved.

DenormMode_DetectingTimeSpan ① Number 10 Determinate the time span in
days to a detecting cycle.

DenormMode_InspectingTimeSpan ① Number 7 Determinate the time span in
days. Inspecting service will
jump over the hierarchies
which were updated between
{Today-TimeSpan} and
{Today}.

DenormMode_RequestBatchCount Number 200 Determinate how many valid
requests will be resolved in a
denormalization period.

DenormMode_InspectingBatchCount ① Number 100 Determinate how many
hierarchies will be resolved in
an inspecting cycle.

DenormMode_SyncReferenceMethod “ByDiff”
“ByRedenorm
”

“ByDiff” Determinate how to sync the
references.

LoggingLevel “ErrorOnly”;
“WithWarning
”;
“WithWarning
AndInfo”

“ErrorOnly
”

Determinate how many types
of logs should be written.

LoggingWhiteList_SkipWarning TypeID string “5816,100 The listed spec types would

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
12

Property Name Acceptable
values

Default
Value

Description

separated by
comma

4,2147,10
09,2280,2
121,1006,
2076,1010
,6500,650
1,5002,50
01,5012,5
019”

always skip writing any
denormalization warning no
matter what LoggingLevel is.

①: New since v6.2.2.0.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
13

Chapter 4—Extending Hierarchy Denormalization
Hierarchy Denormalization is designed as a pluggable architecture that enables customers to extend the

out of the box functionality by adding other relationships to the denormalized table. The two

components necessary to make this possible are Detectors and Denormalizors. Detectors are

components that determine what and when a relationship should be denormalized. Denormalizors are

components that do the actual work of populating the denormalized table. These are both pluggable

components written in C#.

A full reference of how to extend Hierarchy Denormalization can be found below in the Chapter 6—

Extensibility References section.

Detectors

The purpose of detectors is to find objects that have been modified since the denormalizers last ran. To

determine this, it compares last updated dates of the objects to the last run dates of the denormalizers.

Each object type will have a specific detector that is responsible for performing this operation.

Detector settings were organized in “HierarchyDenormConfig/Detectors” section of the “<PLM for

Process>\config\Extensions\HierarchyDenormConfig.xml” file. It can accept a sequence of “Detector”

nodes within the section.

Each “detector” should have an “objectURL” and “id” attribute. The value of “id” attribute should be

unique across the section. “objectURL” is configured as the full class name of the detector producing

factory.

The user can either add new detectors or customize the existing ones. (See more at Chapter 6—

Extensibility References). Example of Detector settings:

<Detectors configChildKey=”id”>
 <Detector
objectURL=”Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Detectors.RequestArchiveDetector,HDGSM
Lib” id=”RequestArchiveDetector”/>
 <Detector
objectURL=”Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Detectors.ActivityDetector,HDGSMLib”
id=”ActivityDetector”/>
 …
</Detectors>

Any detector is allowed to accept a parameter “UseSharedTransaction” to determine if the extended

detector behavior is put into the shared identical DB transaction when detecting during the period

between “DetectorCheckpoint.LastRunDate” and “DetectorCheckpoint.Now”. The default value is

“True”. Below is an example of the usage:

<Detector id="RequestArchiveDetector"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Detectors.RequestArchiveDetector,HDGSM
Lib$UseSharedTransaction=false"></Detector>

Denormalizers

The purpose of denormalizers is to actually populate the denormalized table.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
14

Denormalizer settings were organized in “HierarchyDenormConfig/Denormalizers” section of the “<PLM

for Process>\config\Extensions\HierarchyDenormConfig.xml” file. It can accept a sequence of

“Denormalizer” nodes within the section.

Each “Denormalizer” must have “objectURL”, “type” and “dataTable” attributes. The “type” attribute

will represent the type id defined in PLM for Process. “objectURL” is configured as the full class name of

the denormalizer producing factory. And “dataTable” determinates the table in which the corresponding

denormalization results should be saved. Note the target data tables must have been pre-defined in

deploying time. Currently, this feature supports the following spec type and repository mappings:

ClassName Type DataTable/Repository

IngredientSpecification 1004 DENORM_HD_HIERARCHY_GSM

LabelingSpecification 1006 DENORM_HD_HIERARCHY_GSM

PackagingSpecification 1009 DENORM_HD_HIERARCHY_GSM

PackingSpecification 1010 DENORM_HD_HIERARCHY_GSM

PackingConfigurationSpecification 2076 DENORM_HD_HIERARCHY_GSM

FinishedPackagingSpecification 2121 DENORM_HD_HIERARCHY_GSM

GSMTradeSpecDO 2147 DENORM_HD_HIERARCHY_GSM

EquipmentSpecification 2280 DENORM_HD_HIERARCHY_GSM

FormulationSpecification 5816 DENORM_HD_HIERARCHY_GSM

FoodServiceMenuItemDO 6500 DENORM_HD_HIERARCHY_GSM

FoodServiceProductDO 6501 DENORM_HD_HIERARCHY_GSM

SCRMFacilityDO 5001 DENORM_HD_HIERARCHY_SCRM

SCRMCompanyDO 5002 DENORM_HD_HIERARCHY_SCRM

SourcingApproval 5012 DENORM_HD_HIERARCHY_SCRM

SourcingApprovalNonSpec 5019 DENORM_HD_HIERARCHY_SCRM

For example, when a formulation specification, type 5816 is denormalized, the resulting denormalized

data will be stored in the “DENORM_HD_HIERARCHY_GSM” table.

For each “Denormalizer”, the relationships that should be denormalized should also be defined. The

relationships also have attributes of “objectURL” and “id”. An expected “RelationshipContext” should be

bound with a relationship resolver by adding its unique name to the end of the “objectURL” (Refer to

“Relationship Context Definitions”).

Customers can create new denormalizers or customize the existing ones. (See more at Chapter 6—

Extensibility References).

Example of Denormalizer settings:

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
15

<Denormalizer
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Denormalizers.FormulationDenormalizer,
HDGSMLib" type="5816" dataTable="DENORM_HD_HIERARCHY_GSM">
 <Relationships configChildKey="id">
 <Relationship
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.ComActivities,
HDGSMLib$PrimaryActivity" id="ComActivities"/>
 <Relationship
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.ComMasterSpec,
HDGSMLib$ExplicitMaster" id="ComMasterSpec"/>
 …
 </Relationships>
</Denormalizer>

Relationship Context Definitions

Specifications can be related to each other in different ways. For instance, a formulation can have an

input BOM item or it can have an alternate BOM item. If that formulation was part of a trade

specification, then the relationship between the trade and the BOM items would also have certain

relationship types. Hierarchy Denormalization captures these relationships types in 2 columns in the

DENORM_HD_HIERARCHY_XXXX table, one for the Parent and one for the Ancestor,

“fkParentRelationshipContext” and “fkAncestorRelationshipContext”. These fields are foreign keys to

the “DENORM_HD_RELATIONSHIP_CTX” table and “DENORM_HD_RELATIONSHIP_CTX_ML” table, which

both store the readable relationship type, the latter stores the multilingual types. These tables should

not be modified.

Example:

SELECT PARENT.Context,ANCESTOR.Context,H.* FROM DENORM_HD_HIERARCHY_XXXX H

LEFT JOIN DENORM_HD_RELATIONSHIP_CTX PARENT ON H.fkParentRelationshipContext=PARENT.PKID

LEFT JOIN DENORM_HD_RELATIONSHIP_CTX ANCESTOR ON H.fkParentRelationshipContext=ANCESTOR.PKID

WHERE H.fkAncestor='<AncestorPKID>'

Column Data type Description

PKID Number Identifier

Context Varchar Relationship context unique name

MaxLevelLimit Number Indicate the max allowable level under current relationship type

IsAlternate Bool IsAlternate flag

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
16

And Table “DENORM_HD_RELATIONSHIP_CTX_ML” is the corresponding translations. Link it for multi-

language support.

Column Data type Description

PKID Number Relationship context identifier

LangID Number Language ID.

0: English

Context Varchar Relationship context translation.

Denormalization Processor

The processor is a background service running in RemotingContainer. The responsibility of this process is

to orchestrate the execution of the denormalizers. Each denormalizer is responsible for updating one

level of the hierarchy, so the generation of the complete hierarchy will take many denormalizers.

For example, this is an expected tree:

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
17

For example, in order to denormalize the above hierarchy, a denormalizer would be executed for each

node, according to spec type. The sequence of execution would be similar to the below diagram.

Each denormalizer contains multiple child processes called relationship-resolvers, which are responsible

for updating the relationships specific to an object type. For instance, if a formulation specification

contains a master specification, primary Inputs and an alternate output, within the Formulation

Denormalizer, three relationship-resolvers will be executed; the Master Specification relationship-

resolver is going to update the relationships to the master specification, the Primary Input relationship-

resolver is going to update the relationships to the primary inputs and so on.

Customers wanting to add new types of relationships to the denormalized output can add their own

relationship resolvers with the runtime context parameters given by the relationship resolver interface.

The input parameter of denormalizer is taking the denormalization context transferred from the

previous denormalizer. That includes the parent PKID, the relationship context, some referenced

resource entries, and so on. They ensure the denormalizer finish its work as designed.

Similarly, the output parameter is taking the specific denormalization context that should be transferred

to the next denormalizer. Actually, a parent output parameter can be rapidly converted to be a child

input parameter directly.

The procedure is being described by below diagram.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
18

Finally, every denormalizer and its related relationship-resolvers are configurable. The corresponding

configuration node for the above FormulationDenormalizer is:

<Denormalizer type="5816"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.Denormalizers.FormulationDenormalizer,
HDGSMLib" dataTable="DENORM_HD_HIERARCHY_GSM">

 <Relationships configChildKey="id">

 <Relationship id="ComMasterSpec"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.ComMasterSpec,
HDGSMLib$ExplicitMaster"/>

 <Relationship id="FrmInput"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.FrmInput,HDGSM
Lib$Input"/>

 <Relationship id="FrmAlternateOutput"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDGSMLib.DescendentRelationships.FrmAlternateOu
tput,HDGSMLib$AlternateOutput"/>

 <Relationship … />

 …

 </Relationships>

 </Denormalizer>

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
19

You can find the full official mappings in the configuration file located in the following path “<PLM for

Process>\config\Extensions\HierarchyDenormConfig.xml”.

Note: Each relationship-resolver ObjectURL is taking an additional parameter separated by “$” character.

That means this relationship-resolver is binding with a named “Relationship Context” so that the

resolver’s outputs can also take the context as its “ParentRelationshipContext” property. Please refer to

Relationship Context Definitions section.

Supported Relationships that are Denormalized in GSM

Object

(Parent)

Related Object

(Child)

Relationship Resolver Name in HDGSMLib

Trade Trade Specifications Primary TrdNextLowerLevelItems

Primary Packaging
Specifications

Primary TrdPackagingMaterials

Alternate Packaging
Specifications

Alternate TrdAlternatePackaging

Material Primary TrdRelatedMaterial

Formulation that produces
associated Material

FormulationContext MatFormulationContext

Breakdown Materials of the
associated Material

BreakdownComponent ComBreakdown

Nutrient Profiles Primary ComNutrientProfile

Sourcing Approval Primary ComSourcingApproval

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Formulation Materials Input, Output FrmInput, FrmOutput

Alternate Materials Alternate, AlternateOutput FrmAlternateInput,
FrmAlternateOutput

Packaging Input FrmInput

Alternate Packaging Alternate FrmAlternateInput

Formulation context FormulationContext,
AlternateFormulationContext

MatFormulationContext,
MatAlternateFormulationContext

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Menu Product/Menu Primary MenuMenuItemBuild

Packaging Primary MenuPackagingMaterial

Alternate Pkg Alternate MenuAlternatePackaging

Global/Regional Standard - -

Alternate Standards AlternateStandards ComAlternateStandards

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
20

Object

(Parent)

Related Object

(Child)

Relationship Resolver Name in HDGSMLib

Nutrient Profile Primary ComNutrientProfile

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Product Breakdown Materials BreakdownComponent ComBreakdown

Global/Regional Standard - -

Alternate Starndards AlternateStandards ComAlternateStandards

Packing config Primary ComPackingConfigurationSpec

Sourcing Approval Primary ComSourcingApproval

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Material Breakdown Materials BreakdownComponent ComBreakdown

Substitute Material Substitute ComSubstituteMaterial

Packing config Primary ComPackingConfigurationSpec

Produced By Formulation Primary MatProducedBy

LIO Profile - -

Sourcing Approval Primary ComSourcingApproval

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Packaging Sub Components SubComponent PkgSubComponents

Packing Config Primary ComPackingConfigurationSpec

Equipment Primary PkgEquipmentSpec

Substitute Material Substitute ComSubstituteMaterial

Sourcing Approval Primary ComSourcingApproval

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Equipment Sub Components SubComponent EquSubComponent

Sourcing Approval Primary ComSourcingApproval

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Delivered
Material

Labeling Primary DmatLabelingSpec

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
21

Object

(Parent)

Related Object

(Child)

Relationship Resolver Name in HDGSMLib

Master Specs ExplicitMaster ComMasterSpec

Packing
Config

Delivered Material Primary PcfgDeliveredMaterialPackingSpec

Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Labeling Associated Specs Associated ComAssociatedSpec

Activities PrimaryActivity ComActivities

Master Specs ExplicitMaster ComMasterSpec

Supported Relationships that are Denormalized in SCRM

Object

(Parent)

Related Object

(Child)

Relationship Resolver Name in HDSCRMLib

Company Company Primary CompChildCompany

Facility Primary CompFacility

Facility Sourcing Approval Primary FacNonSAC, FacSAC

Sourcing
Approval

Specification Primary SACSpec

Facility Primary ComReceivingFacility

Non Sourcing
Approval

Facility Primary ComReceivingFacility

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
22

Chapter 5—Understanding the Hierarchy Denormalization Data Model
All hierarchies will be stored in the denormalized table, with each node represented by one row. Each

row will contain information such as a reference to the parent object, level in the hierarchy and the type

of relationship. These nodes are tied together by a column, fkAncestor, - that references the relative top

node of the hierarchy. By using this column as the query criteria all the nodes for a specific hierarchy can

be returned.

For Example:

Retrieve the single tree with this script:

select * from DENORM_HD_HIERARCHY_GSM

where fkAncestor='21475f5fc62c-1ccb-4067-80f8-4f5810806fb5';

And following is the sample data table from above script:

PKID fkAncestor fkDescendent fkDescendentParent CurrentL
evel

fkParentRelationsh
ipContext

2 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

21475f5fc62c-1ccb-4067-80f8-
4f5810806fb5

 0 1

3 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

10044dd5a3b8-0bae-4c93-
b711-ecaf8f7b4e6a

21475f5fc62c-1ccb-4067-80f8-
4f5810806fb5

1 6

4 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

10044209f6dc-05d8-4c82-
9e11-a54a7bb443c5

10044dd5a3b8-0bae-4c93-
b711-ecaf8f7b4e6a

2 14

5 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

100499340adc-87ec-4fd2-adf6-
7c93718e5568

10044dd5a3b8-0bae-4c93-
b711-ecaf8f7b4e6a

2 14

6 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

581603d28db4-0ce2-4b13-
be70-ae22f6480079

10044dd5a3b8-0bae-4c93-
b711-ecaf8f7b4e6a

2 13

7 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

1005a6fd6f82-31a9-4ad2-
92da-332c504b5f80

10044209f6dc-05d8-4c82-9e11-
a54a7bb443c5

3 8

8 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

10044209f6dc-05d8-4c82-
9e11-a54a7bb443c5

581603d28db4-0ce2-4b13-
be70-ae22f6480079

3 9

9 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

100499340adc-87ec-4fd2-adf6-
7c93718e5568

581603d28db4-0ce2-4b13-
be70-ae22f6480079

3 9

10 21475f5fc62c-1ccb-4067-
80f8-4f5810806fb5

1005a6fd6f82-31a9-4ad2-
92da-332c504b5f80

10044209f6dc-05d8-4c82-9e11-
a54a7bb443c5

4 8

fkAncestorRelationshi
pContext

ObjectT
ype

fkObjectSubType fkObjectSubTy
peEx

fkRelationshipIdentifier BoxLft BoxRgt

1 2147 1 18

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
23

6 1004 2210083d0660-b2a6-4256-
ad98-3d3dcc2d5d43

 5826d5ba6106-6df9-4f97-
8dab-8c59a0ed48c3

2 17

6 1004 2210e2704850-c6e1-4c3f-
8bd4-7e11bbe862b0

 101323a10b8c-45d8-4eb8-
8dbf-9f09d138ae24

3 6

6 1004 2210e2704850-c6e1-4c3f-
8bd4-7e11bbe862b0

 1013fa756721-35a9-4f34-
9f68-4a1319b3be7b

7 8

6 5816 5826d5ba6106-6df9-4f97-
8dab-8c59a0ed48c3

9 16

6 1005 104058d05bf4-afbe-40ef-
bb7e-373aa23217b1

4 5

6 1004 2210e2704850-c6e1-4c3f-
8bd4-7e11bbe862b0

 5817c375fbf5-b990-42ba-
8d7b-b10bfc917303

10 13

6 1004 2210e2704850-c6e1-4c3f-
8bd4-7e11bbe862b0

 5817d503e570-aa02-4f60-
9b58-e67bf550bb1a

14 15

6 1005 104058d05bf4-afbe-40ef-
bb7e-373aa23217b1

11 12

The structure definition of the table is shown in below. The current node’s primary key is stored in the

fkDescendent column.

Column Data type Description

PKID Number Primary key

fkAncestor Char PKID of the top node of the hierarchy.

fkDescendent Char PKID of the object for the current node of the hierarchy.

fkDescendentParent Char PKID of the parent object of the current node.

CurrentLevel Number Level of the hierarchy for the current node. Top node is

0, first level down is 1 and so on.

fkParentRelationshipContext Number The relationship type between current node and its

parent node. (Refer to “Relationship Context

Definitions”)

fkAncestorRelationshipContext Number The relationship type between current node and the

ancestor node. (Refer to Relationship Context

Definitions).

ObjectType Number The 4 digit object type ID of current node.

fkObjectSubType Char The first item type ID for current node.

fkObjectSubTypeEx Char The second item type ID for current node.

fkRelationshipIdentifier Char This is the row PKID when a node exists as one row

within in a collection. For example when multiple

Materials exist within a Formula as BOM items, this

represents the ID that can be tied back to retrieve more

row detail such as Quantitiy.

LastEdit Datetime Last edit date of the object represented by this node.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
24

Column Data type Description

Remark Varchar (For internal use).

MaxLevel Number (For internal use). Indicate the max allowable level for

current node’s children.

ContextOwner Char (For internal use). Keep the formulation context from

parent denormalizer.

BoxLft Number Nested-set mode LEFT value. Help to identify the tree

branch.

BoxRgt Number Nested-set model RIGHT value. Help to identify the tree

branch.

CreateTime Datetime Create date of the object represented by this node.

Denormalization Results under Nested-Set Model

The nested-set model is a high efficient model for storing hierarchical data or trees. A metaphor used to

describe this model is that each parent node is a box, and all its children are also boxes inside the parent

box. For hierarchies greater than two levels there will be boxes inside of boxes. Each box will have 2

numbers, one for each side, box-left and box-right. These numbers facilitate the retrieval and

reconstruction of the hierarchy. The solution guarantees that each box will have two serial numbers

(Box-Left and Box-Right). They help to identify each node and facilitate thee retrieval of all parents or all

children nodes for a selected node. Example:

The visual nested-set model of the picture is like below:

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
25

And this is the corresponding data table:

Object Level BoxLft BoxRgt

Trade 01 0 1 12

Material 01 1 2 7

Formulation 01 2 3 4

Material 02 2 5 6

Trade 02 1 8 11

Trade 03 2 9 10

As above shown, those unique numbers (BoxLft and BoxRgt) could help to search or traverse the whole

result tree. Assuming there is a node named “X”. Here are some tips:

a) When “X.BoxRgt – X.BoxLft == 1”, it must be a leaf node.

b) If “{NODE}.BoxLft < X.BoxLft && {NODE}.BoxRgt > X.BoxRgt”, {NODE} must be X’s parent.

c) If “{NODE}.BoxLft > X.BoxLft && {NODE}.BoxRgt < X.BoxRgt”, {NODE} must be X’s child.

d) With b) and c), it’s convenient to get the direct parent, the direct children or the whole branch

members in the tree as well.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
26

Chapter 6—Extensibility References
Below is a complete implementation of how to extend Hierarchy Denormalization. We are going to

create a new denormalizer to support a new relationship. To create a new detector to identify the

relationship change in future. And to create a new inspector to actively expire a hierarchy.

In this example we will use the PQM Issue relationship with its supplier and affected items (material

specification).

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
27

Implementation Example

1. Create Visual Studio Project.

Open Visual Studio 201x and create a class library.

For this example it is called “HDPQMLib” under .NET Framework 4.6.1. Normally, it’s strongly

recommended to create sub-directories for better organization.

2. Create Detector.

Create a Detector for PQM Issue object so that the Denormalization service would know if an Issue

has been changed for any reason.

The “ PQMLifeCycleEventLogDetector” is responsibility to detect the edit event in the UI and deliver

the related object PKID(s) to Denormalization request queue.

To add the item to the queue it is possible to use a SQL insert statement to write to the

“DENORM_HD_REQUEST” table directly or by using pre-defined HierarchyDenormRequest data

object.

Below is an example of the SQL solution.

public class PQMLifeCycleEventLogDetector : DetectorBase

{

 private const string DETECTOR_SQL = @"insert into DENORM_HD_REQUEST (PKID, fkSpec)

 select NEWID(), a.SpecPKID

 from

 (

 select distinct fkaffectedObject SpecPKID

 from {0}

 where timestamp >= {1} and timestamp < {2}

) a

 ";

 [ContainsDynamicSQL]

 public override void Process(DetectorCheckpoint c)

 {

 var sql = string.Format(DETECTOR_SQL, EnumMetaClassInfo.PQMLifecycleEventDO.TableName,
FormatDateTimeValue(c.LastRunDate), FormatDateTimeValue(c.Now));

 var i = executeNonQuery(sql);

 HierarchyDenormLogger.GetInstance().WriteEntryConsole("Created " + i.ToString() + " new
denorm requests from [PQMLifeCycleEvent]");

 }

}

The most critical point is the new Detector must inherit from

“Oracle.PLM4P.SolutionPack.HierarchyDenorm.DetectorService.DetectorBase” and implement the

“Process” method. The delivery work should be done in the designated method.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
28

In this case, the Detector makes a scan on the “commonLifecycleEventLog” table in which many

events are captured and then inserts the appropriate PKIDs in the “DENORM_HD_REQUEST”

table.To help understand the “CommonLifecycleEventLog” better, below are some of the details of

what this table captures.

Action Category eventType eventSource

Create

1 GSM.CreateFromTemplate

1 GSM.Editor

1 GSM.SmartIssue

1 SCRM.Clone

Update

2 GSM.Editor

2 GSM.GlobalSuccession

2 GSM.Workflow.Resolve

2 SCRM.Editor

2 SCRM.Features.Facility.CompanyChange

2 SCRM.Workflow.Resolve

Workflow

3 GSM.Workflow.Resolve

3 GSM.Workflow.Transition

3 SCRM.Workflow.Resolve

Copy

4 GSM.Clone

4 GSM.CreateFromTemplate

4 GSM.NewIssue

4 GSM.SmartIssue

4 SCRM.Clone

Get Latest Revision 5 Revision

Substitute 6 GSM.Substitute

Alternatively, the following code shows how to programmatically create a request by using the pre-

defined data object.

3. Register the Detector.

In order for the RemotingContainer to recognize the new Detector it must be registered properly. To

do this, open the “<PLM for Process>\config\Extensions\HierarchyDenormConfig.xml” file with any

text editor. Add the following node to the “/HierarchyDenormConfig/Detectors” section.

Note: The detector depends on the DetectorCheckpoint period, you should leave

“ UseSharedTransaction” as the default value.

<Detector id="PQMIssueDetector"
objectURL="Class:YourCompany.HDPQMLib.Detectors.PQMIssueDetector,HDPQMLib"/>

4. Create Denormalizer.

Find the specification type ID for the main object, in this example it is the PQM Issue, 7002. This can

be done by querying the “ORClassMetaInfo” table.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
29

select * from orclassmetainfo where classname = 'PQMIssueDO'

Normally, there is no need to create a new specific denormalizer for each object type. Use

“Oracle.PLM4P.SolutionPack.HierarchyDenorm.ProcessorService.DenormalizerBase” instead if the

current target object doesn’t have to overwrite some denormalization runtime Context.

In current release version, only FormulationSpecification uses this feature. This screenshot helps to

explain the concept.

As a result, this configuration node should be added to “/HierarchyDenormConfig/Denormalizers”

section.

<Denormalizer type="7002"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.ProcessorService.DenormalizerBase,Hierarchy
DenormProcessorService" dataTable="DENORM_HD_HIERARCHY_PQM">

<Relationships configChildKey="id">

</Relationships>

</Denormalizer>

Please note the marked “dataTable” property here. This property determines the repository of the

data generated by this Denormalizer. The direct table name should be given there; however, the

user must ensure the target data table exists. If not, use following scripts to create a new repository

for the new customized denormalization.

-- SQL Server

IF EXISTS(SELECT 1 FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = 'DENORM_HD_HIERARCHY_PQM')

 DROP TABLE DENORM_HD_HIERARCHY_PQM

GO

CREATE TABLE DENORM_HD_HIERARCHY_PQM(

 PKID bigint NOT NULL,

 fkAncestor char(40) NOT NULL,

 fkDescendent char(40) NOT NULL,

 fkDescendentParent char(40) NULL,

 CurrentLevel int NOT NULL,

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
30

 fkParentRelationshipContext int NOT NULL,

 fkAncestorRelationshipContext int NOT NULL,

 ObjectType int NOT NULL,

 fkObjectSubType char(40) NULL,

 fkObjectSubTypeEx char(40) NULL,

 fkRelationshipIdentifier char(40) NULL,

 LastEdit datetime NOT NULL CONSTRAINT DF_DENORM_HD_HIERARCHY_PQM_LastEdit DEFAULT (getdate()),

 Remark nvarchar(512) NULL,

 MaxLevel int NOT NULL,

 ContextOwner char(40) NULL,

 BoxLft int NOT NULL,

 BoxRgt int NOT NULL,

CreateTime datetime NOT NULL DEFAULT getdate(),

 CONSTRAINT PK_DENORM_HD_HIERARCHY_PQM PRIMARY KEY CLUSTERED

 (

 PKID ASC

)

)

GO

-- Oracle

DECLARE cnt NUMBER;

BEGIN

 cnt:=0;

 Select count(*) into cnt from user_tables where table_name = upper('DENORM_HD_HIERARCHY_PQM');

 If(cnt>0) then

 execute immediate ('DROP TABLE DENORM_HD_HIERARCHY_PQM');

 End if;

 execute immediate ('

 CREATE TABLE DENORM_HD_HIERARCHY_PQM(

PKID number(20,0) NOT NULL,

fkAncestor char(40) NOT NULL,

fkDescendent char(40) NOT NULL,

fkDescendentParent char(40) NULL,

CurrentLevel number(10,0) NOT NULL,

fkParentRelationshipContext number(10,0) NOT NULL,

fkAncestorRelationshipContext number(10,0) NOT NULL,

ObjectType number(10,0) NOT NULL,

fkObjectSubType char(40) NULL,

fkObjectSubTypeEx char(40) NULL,

fkRelationshipIdentifier char(40) NULL,

LastEdit timestamp DEFAULT CURRENT_TIMESTAMP,

Remark nvarchar2(512) NULL,

MaxLevel number(10,0) NOT NULL,

ContextOwner char(40) NULL,

BoxLft number(10,0) NOT NULL,

BoxRgt number(10,0) NOT NULL,

CreateTime TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,

CONSTRAINT PK_DENORM_HD_HIERARCHY_PQM PRIMARY KEY

(

PKID

)

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
31

)

 ');

END;

Note: Regarding performance concern, it’s reasonable to add indexes to the new table next. A

recommended column set is: fkAncestor, fkDescendent, fkDescendentParent, BOXLFT, BOXRGT,

CurrentLevel, LASTEDIT, CreateTime.

5. Create Relationship Resolvers.

Next, create two relationship resolvers for “Suppliers” and “AffectedItems”.

This will be similar to the Detector development. The user should create two classes named

“IssueAffectedItem” and “IssueSupplier” under the DescendentRelationships directory of the project.

Both of them must inherit from

“Oracle.PLM4P.SolutionPack.HierarchyDenorm.ProcessorService.DescendentRelationshipBase” and

implement the “GetDescendents” method. In the implementation of the method, with the input

parameter (packaging the denormalization context of current scenario), “IssueAffectedItem”

resolver should retrieve the AffectedItem relationship children of current PQM Issue whose PKID

was being assigned in “input.fkDescendentParent”. And “IssueSupplier” resolver should retrieve the

Supplier relationship children of current PQM Issue specification whose PKID was being assigned in

“input.fkDescendentParent” as well. In fact, the input parameter should have provided whatever

the task needs.

Below is the example:

The solution relies on the reflection feature provided by PLM for Process core. It will be helpful to

make a basic understanding of the PLM for Process objects.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
32

Then the object property retrievers provided by this feature would help to get the direct PKIDs, and

then wrap them as an output for next phase. The actual code doesn’t look very complex.

6. Register the Resolvers.

The new resolvers should be registered in configuration.

Add the two nodes to “/HierarchyDenormConfig/Denormalizers/Denormalizer/Relationships”

section. Put them under the “7002” one.

<Relationship id="ComAffectedItem"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.DescendentRelationships.IssueAffec
tedItem,HDPQMLib$PrimaryXApp"/>

<Relationship id="ComCompany"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.DescendentRelationships.IssueSuppl
ier,HDPQMLib$PrimaryXApp"/>

Meanwhile, the expected relationship context for current resolver will be assigned here. Refer to

Relationship Context Definitions for more detail about the additional parameter at the end of

“objectURL” value.

7. [Optional] Create an customized inspector for result table.

Inspector service in background is termly performing a rolling review on the denormalization results

among all configured result tables. For performance concern, the service is working under single

thread, reads the Hierarchy Denormalization configurations, triggers review action at regular

intervals, resolves limited records batch by batch. The service essentially refresh the LastEdit column

of result rows to implement the rolling forward when one review session finished.

Assuming customer is willing to erase the oldest records termly, creating a new inspector is the right

resolution.

Create a new class “HierarchyExpiryInspector” inheriting from

“Oracle.PLM4P.SolutionPack.HierarchyDenorm.InspectorService.InspectorBase”. Then implement

the “Process” method.

This is the example:

The inspector is testing the CreateTime of the hierarchy. If it’s older than 180 days, perform the

erase action. Alternatively, customer is able to create a new denormalization request here. That

brings back the expired hierarchy.

Any new inspector should be registered under “/HierarchyDenormConfig/HierarchyInspectors”

section.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
33

<HierarchyInspector id="ExpiryInspector"
objectURL="Class:Oracle.PLM4P.SolutionPack.HierarchyDenorm.HDPQMLib.Inspectors.HierarchyExpiryInspecto
r,HDGSMLib"></HierarchyInspector>

8. Create DLL.

Finally, compile the new project to be a DLL file and put it to “<PLM for

Process>\RemotingContainer\dependentAssemblies”.

Agile Product Lifecycle Management for Process – Hierarchy Denormalization

© 2018 Oracle Corporation
34

