

Oracle® Agile Product Lifecycle
Management for Process
Extensibility Overview Guide

Release 6.2.4.x

F58002-01

May 2022

Oracle Agile Product Lifecycle Management for Process Extensibility Guide, Release 6.2.4.x

F58002-01

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial
computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject
to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

iii

Contents

Preface ... ix

Audience... ix

Variability of Installations.. ix

Documentation Accessibility ... x

Software Availability ... x

Related Documents .. x

Conventions.. xi

1 Introducing Extensibility Points

Sample Code Disclaimer... 1-1

Technical Requirements.. 1-1

2 Extensibility Points

BOM Calc Extensions .. 2-3

Possible Uses... 2-3

Technical Overview .. 2-3

Technical Documentation ... 2-3

Reference Implementation .. 2-3

Calculation Veto Plugin ... 2-4

Possible Uses... 2-4

Technical Overview .. 2-4

Technical Documentation ... 2-4

Available Reference Implementations .. 2-4

Clone Extensibility ... 2-5

Clone Event Types... 2-5

Possible Uses... 2-5

Technical Documentation ... 2-5

Cost Extensions... 2-6

Possible Uses... 2-6

Technical Overview .. 2-6

Technical Documentation ... 2-6

Available Reference Implementations .. 2-7

Custom Data Denormalization.. 2-8

Custom Sections.. 2-8

Extended Attributes... 2-8

iv

Possible Uses... 2-8

Technical Documentation ... 2-9

Custom Portal .. 2-10

Possible Uses.. 2-10

Technical Overview ... 2-10

Technical Documentation .. 2-10

Available Reference Implementation... 2-10

Email Extensions ... 2-11

Technical Overview ... 2-11

Technical Documentation .. 2-11

eSignature Validate Plugin ... 2-12

Technical Overview ... 2-12

Technical Documentation .. 2-12

Available Reference Implementations ... 2-12

Event Framework.. 2-13

Technical Overview ... 2-13

Possible Uses.. 2-13

Technical Documentation .. 2-13

Available Reference Implementations ... 2-13

Legacy Event Model Tables .. 2-14

Tips: ... 2-14

Data Captured ... 2-14

Technical Overview.. 2-14

Table of Logged Events... 2-15

Available Event Subscribers .. 2-15

Available Event Subscriber Filters .. 2-16

Available Reference Implementations ... 2-16

Extended Attribute Calculations.. 2-17

Technical Overview ... 2-17

Technical Documentation .. 2-17

Available Reference Implementations ... 2-17

Extensible Columns... 2-18

Possible Uses.. 2-18

Technical Overview ... 2-18

Available Reference Implementations ... 2-18

FlexSync Foundation... 2-20

Overview.. 2-20

Technical Documentation .. 2-20

Formulation Output Naming Plugins.. 2-21

Possible Uses.. 2-21

Technical Documentation .. 2-21

Available Reference Implementations ... 2-22

Formulation Percent Breakdown Classification Override Plugin.. 2-23

Technical Overview ... 2-23

Technical Documentation .. 2-23

Formulation Push Percent Breakdown Plugin ... 2-24

Technical Overview ... 2-24

v

Technical Documentation .. 2-24

Available Reference Implementations ... 2-24

Get Latest Revision Extensibility... 2-25

Possible Uses.. 2-25

Technical Overview ... 2-25

Technical Documentation .. 2-26

Available Reference Implementations ... 2-26

Hierarchy Denormalization Extensibility ... 2-27

Overview.. 2-27

Possible Uses.. 2-27

Technical Documentation .. 2-27

Hierarchy Navigator Extensibility ... 2-28

Possible Uses.. 2-28

Technical Overview ... 2-28

Display Options (Identity) .. 2-28

Creating an Identity ... 2-29

Sort By Options .. 2-30

Creating a SortBy .. 2-30

Filters .. 2-31

Creating a Filter ... 2-32

Context Menu ... 2-32

<MenuItem> Attributes ... 2-33

Creating a Context Menu Item .. 2-33

Creating a Label... 2-33

Workflow Actions... 2-34

Identity Plugins.. 2-35

Object Identity Plugins... 2-35

GSM Identity Plugins... 2-36

PQM Identity Plugins... 2-38

Possible Uses.. 2-38

Technical Overview ... 2-38

Technical Documentation .. 2-39

Available Reference Implementations ... 2-39

Label Claims Extensibility.. 2-40

Technical Overview ... 2-40

Technical Documentation .. 2-40

Available Reference Implementations ... 2-40

Navigation Extensibility.. 2-41

Possible Uses.. 2-43

Technical Overview ... 2-43

Navigation Extensibility: Supplier Portal ... 2-44

Possible Uses.. 2-45

Technical Overview ... 2-45

Notification Panel .. 2-46

Possible Uses.. 2-46

Technical Overview ... 2-46

Custom Notification Table... 2-47

vi

Technical Documentation .. 2-47

Available Reference Implementations ... 2-47

Print Extensibility ... 2-48

Possible Uses.. 2-48

Technical Overview ... 2-48

Product Portfolio Management Integration ... 2-49

Use Cases ... 2-49

Supported Versions .. 2-51

Technical Documentation .. 2-51

Quick Links.. 2-52

Refresh Hierarchy Warning Plugin ... 2-53

Technical Overview ... 2-53

Rich Text Extensibility .. 2-54

Possible Uses.. 2-54

Technical Overview ... 2-54

Available Reference Implementations ... 2-54

Javascript Wrapper Example for the CkEditor ... 2-54

Provider Class Example for the CkEditor... 2-56

Search Extensibility... 2-58

Possible Uses.. 2-58

Technical Documentation .. 2-58

Section Level Editing .. 2-59

Possible Uses.. 2-59

Technical Overview ... 2-59

Technical Documentation .. 2-59

Available Reference Implementations ... 2-59

Side Bar .. 2-61

Specification Veto Plugin .. 2-62

Possible Uses.. 2-62

Technical Overview ... 2-62

Technical Documentation .. 2-62

Available Reference Implementations ... 2-62

PQM Veto Plugins ... 2-63

Custom Read Permission .. 2-63

Custom Write Permission ... 2-63

Technical Documentation ... 2-63

Supporting Document Extensions.. 2-64

External URL Sample .. 2-64

Technical Documentation .. 2-64

Configuration Changes ... 2-64

External URL Page Changes .. 2-67

User Interface Extensions ... 2-68

Technical Overview ... 2-68

Technical Documentation .. 2-68

Validation Framework .. 2-69

Possible Uses.. 2-69

Technical Overview ... 2-69

vii

Default Language.. 2-70

Technical Documentation .. 2-71

Workflow Actions and Guard Conditions... 2-72

Possible Uses.. 2-72

Technical Overview ... 2-72

Technical Documentation .. 2-72

Available Reference Implementations ... 2-72

Workflow Actions—Automatic Workflow .. 2-73

Possible Uses.. 2-74

Technical Overview ... 2-74

Technical Documentation .. 2-75

Workflow UI Extensions ... 2-76

Possible Uses.. 2-76

Technical Overview ... 2-76

Creating a Workflow Action... 2-76

Notes:... 2-76

A Developer Information

PLM4PExtensionUtils Developer Utility Library .. A-1

Object Loader URLs ... A-2

Format .. A-2

Common Usage.. A-2

Example ... A-2

Passing Parameters in the ObjectLoaderURL.. A-2

Object and Data Schema Documentation ... A-3

Database Tables ... A-3

Data Objects ... A-4

Other Available Data ... A-4

Additional Details .. A-5

PKIDs—Primary Key Identifiers.. A-5

OR Metadata Tables ... A-5

Language Aware Tables ... A-6

viii

ix

Preface

The Agile Product Lifecycle Management for Process Extensibility Overview Guide provides an
overview of the numerous extensibility points in the Oracle Agile Product Lifecycle
Management for Process suite. Extensibility points are areas in the application suite that can be
used to extend the functionality of the product, typically through custom code and/or
configuration changes.

Each extensibility point and any available reference implementations are described in the
following chapters, along with the location of more detailed documentation.

This Preface contains these topics:

? Audience

? Variability of Installations

? Documentation Accessibility

? Software Availability

? Related Documents

? Conventions

Audience
This guide is intended for technical implementers using Oracle Agile Product Lifecycle
Management for Process. It can also be used by solution architects and business analysts who
are responsible for designing and managing extension solutions. Information about
administering the system resides in the Oracle Agile Product Lifecycle Management for
Process Administrator User Guide.

Variability of Installations
Descriptions and illustrations of the Agile PLM for Process user interface included in this
manual may not match your installation. The user interface of Agile PLM for Process
applications and the features included can vary greatly depending on such variables as:

? Which applications your organization has purchased and installed

? Configuration settings that may turn features off or on

? Customization specific to your organization

? Security settings as they apply to the system and your user account

x

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the
core software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

Related Documents
For more information, see the following documents in the Oracle Agile Product Lifecycle
Management for Process documentation set:

? Agile Product Lifecycle Management for Process Web Services Guide

? Agile Product Lifecycle Management for Process Data Administration Toolkit Guide

? Agile Product Lifecycle Management for Process Print Extensibility Guide

? Agile Product Lifecycle Management for Process FlexSync Foundation Guide

? Agile Product Lifecycle Management for Process Custom Section Denormalization Guide

? Agile Product Lifecycle Management for Process Extended Attribute Denormalization
Guide

? Agile Product Lifecycle Management for Process Reporting Guide

? Agile Product Lifecycle Management for Process Navigation Configuration Guide

? Agile Product Lifecycle Management for Process Extended Attribute Calculation Guide

? Agile Product Lifecycle Management for Process Product Quality Management
Extensibility Guide

? Agile Product Lifecycle Management for Process Extensible Columns Guide

? Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide

? Agile Product Lifecycle Management for Process Release Notes

Notes and other documentation are posted on Oracle Technology Network (OTN) at this
location:

http://www.oracle.com/technetwork/documentation/agile-085940.html#plmprocess

xi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

xii

1

Introducing Extensibility Points 1-1

1Introducing Extensibility Points

This guide contains detailed information on the extensibility points included in the core product
suite, reference example source code, and compiled reference examples.

The documentation in this guide provides an overview of each extension point, a technical
introduction, and describes any available reference examples. Each extensibility point also has
more detailed documentation that provides technical implementation details to assist software
developers.

Several extensibility points (such as the Web Services API, Custom Portal, Custom Section &
Extended Attribute Denormalization) are larger in nature and are only available as deployable
tools, web applications, database scripts, or utility classes.

Sample Code Disclaimer
Copyright © 2018 Oracle Corporation, 6373 San Ignacio Avenue, San Jose, California
95119-1200 U.S.A.; Telephone 408.284.4000, Facsimile 408.284.4002, or
<http://www.oracle.com/>. All rights reserved.

The files provided as reference implementations, which have been provided by Oracle
Corporation as part of an Oracle® product for use ONLY by licensed users of the product,
include CONFIDENTIAL and PROPRIETARY information of Oracle Corporation.

USE OF THIS SOFTWARE IS GOVERNED BY THE TERMS AND CONDITIONS OF THE
LICENSE AGREEMENT AND LIMITED WARRANTY FURNISHED WITH THE
PRODUCT.

IN PARTICULAR, YOU WILL INDEMNIFY AND HOLD ORACLE CORPORATION, ITS
RELATED COMPANIES AND ITS SUPPLIERS, HARMLESS FROM AND AGAINST
ANY CLAIMS OR LIABILITIES ARISING OUT OF THE USE, REPRODUCTION, OR
DISTRIBUTION OF YOUR PROGRAMS, INCLUDING ANY CLAIMS OR LIABILITIES
ARISING OUT OF OR RESULTING FROM THE USE, MODIFICATION, OR
DISTRIBUTION OF PROGRAMS OR FILES CREATED FROM, BASED ON, AND/OR
DERIVED FROM THESE SAMPLE SOURCE CODE FILES.

Technical Requirements
The core requirements when developing Agile PLM for Process custom extensions are as
follows:

? .NET 4.5

? Visual Studio

? Proficiency in C#

? XML

1-2 Agile Product Lifecycle Management for Process Extensibility Overview Guide

? SQL (T-SQL or PL/SQL)

? Working knowledge of XSLT and XSL-FO (for printing customization)

? JavaScript (UI Extensibility requires basic JavaScript knowledge)

2

Extensibility Points 2-1

2Extensibility Points

This chapter describes the extensibility points found in Oracle Agile Product Lifecycle
Management for Process. Topics in this chapter include:

? BOM Calc Extensions

? Calculation Veto Plugin

? Clone Extensibility

? Cost Extensions

? Custom Data Denormalization

? Custom Portal

? Email Extensions

? eSignature Validate Plugin

? Event Framework

? Extended Attribute Calculations

? Extensible Columns

? FlexSync Foundation

? Formulation Output Naming Plugins

? Formulation Percent Breakdown Classification Override Plugin

? Formulation Push Percent Breakdown Plugin

? Get Latest Revision Extensibility

? Hierarchy Denormalization Extensibility

? Hierarchy Navigator Extensibility

? Identity Plugins

? Label Claims Extensibility

? Navigation Extensibility

? Navigation Extensibility: Supplier Portal

? Notification Panel

? Print Extensibility

? Product Portfolio Management Integration

? Quick Links

2-2 Agile Product Lifecycle Management for Process Extensibility Overview Guide

? Refresh Hierarchy Warning Plugin

? Rich Text Extensibility

? Search Extensibility

? Section Level Editing

? Side Bar

? Specification Veto Plugin

? Supporting Document Extensions

? User Interface Extensions

? Validation Framework

? Workflow Actions and Guard Conditions

? Workflow Actions—Automatic Workflow

? Workflow UI Extensions

BOM Calc Extensions

Extensibility Points 2-3

BOM Calc Extensions
The formulation specification’s Bill Of Material calculation process (BOM Calc) and user
interface can be extended to create custom calculation rules and user interaction.

Customers can create new calculation paths to handle a formulation specification’s inputs,
outputs, and steps, defining which fields should be editable, which fields should be locked
down, and the calculation rules that will be used. Custom tags can be created for inputs,
outputs, and/or steps, which can then be assigned in the UI as needed and guide the custom
calculation rules.

Possible Uses
1. Create a formulation specification where no calculations are performed.

2. Create a BOM calculation path that extends inputs with certain tags. These tags can be
used to extend calculations. For example, tag an input as a "protein" and always perform a
certain set of calculations on that input.

Technical Overview
A custom BOM Calc implementation requires the creation of custom classes and user interface
controls that define:

? Calculation Path—Defines the presentation of data and processing of events from the user
interface. The path determines the BOM Calculator and specifies which custom tags
should display for inputs, outputs, and steps.

? BOM Calculator—Manages the calculation logic.

Database scripts are used to set up the calculation path for user selection.

Technical Documentation
Refer to the BomCalcDocumentation.doc document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\BomCalc\Documentation folder for more
details.

Reference Implementation

A reference BomCalcPath can be found in the Installer under the folder
ReferenceImplementations/BomCalc. This reference implementation does not do any
calculations other than some multiplication of fields based on tag settings, and the events write
out messages to a log file, with a name based on the specification number of the formulation
specification being edited. The deployment files can be found in the Resources folder, while the
source code can be found in the SourceCode/BomCalcExample folder.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Calculation Veto Plugin

2-4 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Calculation Veto Plugin
Custom rules can be evaluated to determine if GSM specification and if PQM item calculations
should occur. The IsSpecCalculationAllowed and IsPQMCalculationAllowed
plugins are extension points available to all GSM specifications and PQM items that allows a
custom class to be accessed when the specification calculation process runs. The custom class
evaluates the current item and returns a true or false value to indicate if calculation should
occur.

Possible Uses
1. Turn off specification/PQM item calculation once a specification has reached Approved

status.

Technical Overview
The Calculation Veto plugin extensibility point will call the PluginExtensions framework to
check if a Validate plugin is configured for this extension point in the
CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used that
simply returns true and gives permission to run calculation. The Calculation Veto Plugins are
configured using the name IsSpecCalculationAllowed and
IsPQMCalculationAllowed.

Example CustomPluginExtensions.xml configuration for Spec Veto plugin:

<ValidatePlugins configChildKey="name">
<Plugin name="IsSpecCalculationAllowed"
FactoryURL="Class:ReferencePlugins.ValidatePlugins.WorkflowTagBasedSpecCalculat
ionDisablerFactory,ReferencePlugins$4" />

</ValidatePlugins>

Technical Documentation
Refer to the PluginExtensions document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation folder
for more details.

Available Reference Implementations
1. WorkflowTagBasedSpecCalculationDisabler is a reference implementation of a Validate

plugin that examines a specification and turns off calculation if the specification status is
Approved. The Approved status is determined by checking the workflow tags on the
current status - if the IsApproved workflow tag (which has a BehaviorID of 4), then
calculation is disabled. The BehaviorID is entered in the configuration file, so that it can
easily be changed; for instance, adding other workflow tag behaviorID.

Source code: See the ValidatePlugins in
ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins for details.

Clone Extensibility

Extensibility Points 2-5

Clone Extensibility
Clone extensibility allows you to control which fields are included when a specification or
object is copied. This extensibility point allows you to control clone rules in the following
applications: GSM, SCRM, NPD, PQM, UGM, EQ, DRL and NSM. Clone extensibility could
be as simple as a quick xml configuration update to copy the “Available UOMs” section when a
specification is cloned to more complex conditional logic like “if the specification category is
Dairy then copy Short Name, else leave blank.”

Clone Event Types
There are four clone event types supported by clone extensibility:

1. Copy

2. New Issue

3. Create From Template

4. Target Revision

Possible Uses
1. Always include Available UOMs section when copying a specification.

2. Provide a UI that allows users to select which elements are copied when a packaging
specification is issued.

Technical Documentation
To learn more about clone extensibility and review some out of the box reference
implementations refer to the Clone Extensibility document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\CloneExtensibility\Documentation folder
for more details.

Cost Extensions

2-6 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Cost Extensions
Extensions are available around costing for trade, packaging material, and formulation
specifications in the following areas:

? Input Cost—Allows you to adjust the cost being pulled from the cost book.

? Displayed Calculated Cost—Allows you to adjust the calculated cost being displayed.

? Theoretical Cost Book Entry—Allows you to adjust the total cost that is added to the
theoretical cost book.

Possible Uses
1. Formulation Input Cost—The cost book contains the base cost for a raw material, but

because this formulation is a dairy formulation increase raw material costs by 5%.

2. Trade Displayed Calculated Cost—Any raw material that is used in amounts greater than
50lbs increase the cost by 2%.

3. Packaging Material Theoretical Cost Book Entry—Adjust the total theoretical cost for the
parent Packaging Material based on the Per Unit "Labor Cost" extended attribute due to
required assembly.

Technical Overview
Cost extensions use Format Plugins to return an adjusted cost numeric value as a string. Each
plugin is configured in the config\Extensions\CustomPluginExtensions.xml file, using the
following plugin names:

Technical Documentation
Refer to the PluginExtensions document, located in
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\SourceCode\ReferenceP
lugins\FormatPlugins\CostExtensions for more details.

Cost Extension Plugin names

Input Cost TradeAssociatedMaterialCostPriceOverride

TradeLowerLevelTradeCostPriceOverride

TradePackagingSubcomponentCostPriceOverride

PackagingSubComponentCostPriceOverride

FormulationInputCostBookPriceOverride

Formulation Displayed Calculated
Cost

TradeAssociatedMaterialTheoreticalCostPriceOverride

TradeLowerLevelTradeTheoreticalCostPriceOverride

TradePackagingSubcomponentTheoreticalCostPriceOver

ride

PackagingSubComponentTheoreticalCostPriceOverride

FormulationOutputTheoreticialCostPriceOverride

Formulation Theoretical Cost Book
Entry

TradePersistedTheoreticalCostPriceOverride

PackagingPersistedTheoreticalCostPriceOverride

FormulationOutputPersistedTheoreticialCostPriceOverride

Cost Extensions

Extensibility Points 2-7

Available Reference Implementations
1. Highest, Lowest, and Average cost plugins—Classes that return the highest, lowest, or

average cost for a formulation input when there are several possible valid costs.

Note that while this capability is now a core feature of the product (available through
CustomerSettings.config in the GSMSettings node using the entry <add
key="GSM.Cost.MultipleFound"
value="Highest/Lowest/Average"></add>), the Reference Implementation code is
still available to demonstrate building a costing extension.

Source Code: See
ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins\FormatPlugins\Co
stExtensions for details.

Custom Data Denormalization

2-8 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Custom Data Denormalization
Custom Data Denormalization is available via two denormalization techniques: Custom Section
Denormalization and Extended Attribute Denormalization. PLM for Process provides database
scripts that are used to create new denormalized database tables and populate those tables with
the denormalized data. Custom Section denormalization is configured in the Data Admin
application of the PLM for Process suite, and allows for specifying how each custom section
should be denormalized. Extended Attribute denormalization is not configured in the user
interface; instead, all relevant extended attributes are automatically included in the process.

Custom sections and extended attributes can be denormalized in (near) real time, triggered by
the Save events of business objects such as GSM specifications. See the Agile Product
Lifecycle Management for Process Custom Section Denormalization Guide and the Agile
Product Lifecycle Management for Process Extended Attribute Denormalization Guide for
details.

Custom Sections
Custom Section Denormalization (CS Denorm) is a feature that provides the ability to convert
the internal data storage of a custom section into data structures that are easier to understand
and report against while providing improved query performance.

The CS Denorm process allows clients to select which custom sections (and which rows and
columns) to denormalize and indicate how the target database tables should be set up. The CS
Denorm process then reads this information, pulls the relevant Custom Section data from
specifications (or other business objects), and populates that data into a single, simplified
database table created solely for that custom section.

This approach provides customers with the following benefits:

1. Improve Performance—The denormalized data will be accessible via far fewer joins.

a. Without Denormalization, querying for custom section data can involve over 20
database tables just for the custom section data.

b. Using CS Denorm, simply querying the single new table provides most of that same
data needed.

2. Lower Cost and Improve Delivery Time:—Since the denormalized data for a custom
section is stored in a single table, the SQL needed is very easy to write. This will improve
the time it takes to access the data and make the solution easier to maintain.

Extended Attributes
Extended Attribute Denormalization (EA Denorm) is a feature that provides the ability to
convert the internal data storage of extended attributes into data structures that are easier to
understand and report against while providing improved query performance.

The EA Denorm process pulls data for all activated (Active, Archive, and Inactive) extended
attributes from specifications (or other business objects, such as sourcing approvals, NPD
projects, etc.), and populates that data into specific denormalization tables. Extended attributes
from custom sections are also included if they are marked as IsDistinct. The denormalization
tables include additional information such as attribute IDs, custom section IDs, etc., that make
the data easier to query against for reporting purposes.

Possible Uses
1. Reporting

2. Analytics

Custom Data Denormalization

Extensibility Points 2-9

Technical Documentation
Detailed documentation explaining custom data denormalization can be found in the following
guides:

Agile Product Lifecycle Management for Process Custom Section Denormalization Guide

Agile Product Lifecycle Management for Process Extended Attribute Denormalization Guide

Custom Portal

2-10 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Custom Portal
The Custom Portal is an extension of the Agile PLM for Process (PLMP) application suite. It
allows customers to implement various integration solutions that leverage the PLMP data and
capabilities without using the core application. Its primary usage is to provide a framework for
searching, filtering, and displaying PLMP data, and gives solution implementers the ability to
customize each of those aspects.

Custom Portal pages can be built to give users (who would not typically access PLMP) very
specific access to certain data. Views of that data can be tailored to meet specific business
needs, such as providing business partners with custom views into their specifications.

Possible Uses
1. Grant read only access to your individual plants. Plant users are a very different audience

compared to the average GSM specification user. Plant users need to see a read only view
of the entire finished good specification. This could be a combined view of data spanning
attributes from the trade, nutrient profile, formulation, and raw materials.

2. Grant read only access to internal departments in a format they are used to seeing the data.
For example, you can grant the Marketing department access to Product Fact Sheet reports
for only approved finished goods. This would allow them to see nutritional fact panels and
label claims pertaining to a particular finished good without granting them access to the
entire nutrient profile and trade specification.

Technical Overview
Custom Portal is a web application that must be installed in an existing Agile PLM for Process
environment. It contains portal management screens, page layout, security, and a pluggable
framework that is used to develop custom search, filter, and display functionality. It relies on
the Interfaces located in the CustomPortalInterfaces assembly, which define the class structure
required when using the Search, Render, and Filter Plugins.

Client implementations that use the Agile PLM for Process Web Services API will require that
the Web Services API is installed in an accessible environment.

Custom Portal may also host the client’s own web application or assembly in which most of the
customized plugins and other implementation code should be located.

Technical Documentation
Detailed documentation explaining the Custom Portal framework, including the administration
of portal pages and views, the technical implementation requirements for extending the portal,
and the existing reference implementation, can be found in the following location:

Web\CustomPortal\Documentation\Custom Portal Implementation Guide.doc.

Available Reference Implementation

MockCustomPortalPlugins is a reference implementation of a CustomPortal solution. It
demonstrates the use of various search criteria and Plugins, and uses various web service calls
and direct database queries to populate data that is then rendered as a PDF.

Source code: See: [ProdikaHome]\Installer\Extensions\MockCustomPortalPlugins\.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Email Extensions

Extensibility Points 2-11

Email Extensions
PLM for Process provides various automated email notifications when certain business objects
move from one status to another. Emails can be sent:

? To owners of a certain object informing them that the item is now in their action items
listing

? To users asking them to sign off on the item

? To users as a simple notification that the item moved from one status to another.

The email recipients for GSM, SCRM and PQM are specified in the WFA application, using
the Owners, Signature Request, and Notifications grids.

Emails for GSM, SCRM, PQM, UGM, Supplier Portal, and NPD may be customized in the
following ways:

1. You can change the email subject and body contents by modifying the translations that are
offered out of the box, using placeholder variables that are replaced with data from the
business object. Customizing the content of workflow emails in GSM and SCRM without
custom code is now easier with the addition of a new set of placeholder variables,
conditional variables, and other capabilities. These variables are listed in Email
Extensions.docx file.

Some examples of the new functionality include:

? Displaying new data in the emails, such as Cross Reference numbers,
Category/Sub-category/Group, a trade specification's GTIN, a material specification's
Ingredient Statement, and more.

? Providing meaningful related specification information in Signature Document emails.

? Conditionally displaying data, such as only including a material specification's
classification if it is an Approved status.

2. You can create your own format plugin and actually send different email messages based
on certain conditions. For example, when a packaging specification is going from Draft to
Review send "Message A"; when it's going from Review to Approved send "Message B".
You can even go a step further and base which email is sent by which tag a status contains.
This allows you to create email templates and the WFA business administrator can select
when to send them. For example, send "Message A" when entering a step containing the
"Development" tag. Send "Message B" when entering a step containing the "Management
Review" tag.

Technical Overview
Clients wishing greater control over the email contents can choose to use FormatPlugin classes
to replace the email subject and/or body contents, rather than just using the translations. A
format plugin can be specified for each email type and for the email subject and email body.
This allows clients to keep certain email behaviors as is, and just customize what is needed. See
the documentation for more details.

Technical Documentation
See the
[ProdikaHome]\Installer\ReferenceImplementations\EmailExtensions\Documentation\Email
Extensions.docx file for details.

eSignature Validate Plugin

2-12 Agile Product Lifecycle Management for Process Extensibility Overview Guide

eSignature Validate Plugin
If using the eSignature feature, and not using the out-of-the-box Passphrase based eSignature
feature, this plugin can be called to perform custom eSignature authentication. The plugin
receives the token passphrase (a string value) entered for eSignature authentication. The current
user account is also available via the User property.

Technical Overview
The eSignature Validate plugin extensibility point will call the PluginExtensions framework to
check if a Validate plugin is configured for this extension point in the
CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used that
simply returns true and gives permission to the eSignature entry.

The eSignature Validate plugin is configured using the name eSignatureValidatePlugin.

Example CustomPluginExtensions.xml configuration:

<ValidatePlugins configChildKey="name">
<Plugin name="eSignatureValidatePlugin"
FactoryURL="Class:Xeno.Prodika.PluginExtensions.Plugins.DefaultPlugins.DefaultV
alidateTruePluginExtensionFactory,PluginExtensions" />

</ValidatePlugins>

Technical Documentation
Refer to the PluginExtensions document, located in
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation for more
details.

Available Reference Implementations
While there are no specific reference implementations, any other validate plugin reference
implementation can be reviewed for general guidelines.

Event Framework

Extensibility Points 2-13

Event Framework

Technical Overview
The Event Framework provides a consistent, extensible, and flexible way to handle raised
events throughout the application suite. System events are raised for actions such as Save,
Workflow, Read, Copy, Print, Login (captured for all applications), and more, and are currently
active in GSM, SCRM, PQM, and NPD (projects and activities. Customers can subscribe to
and act on core application events by leveraging out-of-the-box event subscribers or creating
their own. Event Subscribers are classes that get called to handle specific events, and are passed
event argument data, such as the object being acted on (eg., the current specification).

A flexible configuration allows for simple ways to specify which events a subscriber should be
called to handle and when. For example, a subscriber can be configured to get called for any
GSM specification Copy event if the specification is not in Approved Status, or for Material
Spec Read events when the specification is Approved and the user is in a specific Group.
Additionally, the configuration itself is extensible so that customers can create their own filters
to help determine if a subscriber should be called.

Possible Uses
The events can be the catalyst to a third party system action (email notifications, data
comparisons, etc.). They can also be used to create audit tables. Here are a few examples:

1. Capture every time a user reads a spec and store it in a custom Audit table.

2. Every time a material specification is created, the Material Manager is notified by email.

3. Every time a new specification issue is created a comparison will be performed. If any
compliance data has changed, the facilities producing the product will be notified by email.

Technical Documentation
Event subscribers are C# classes that receive event related information and are specified in the
config\Extensions\CustomEventing.xml file. The subscriber configuration can specify events
such as GSM.Item.5816.Create for formulation specification creation events, or
GSM.Item.*.Copy for any specification Copy events.

For more details, see the Agile Product Lifecycle Management for Process System Events
Extensibility Guide.

Available Reference Implementations
A reference implementation is available that demonstrates how to notify a user if the
specification allergens have been changed. This can be found in the following location:

[ProdikaHome]\Installer\ReferenceImplementations\EventFrameworkExtensions

Event Framework

2-14 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Legacy Event Model Tables
The previous eventing solution was a table driven approach that populated two tables,
CommonLifecycleEventLog and PQMLifecycleEventLog, based on system events. These
tables will not be supported long term. Customers wishing to take advantage of events should
create a subscriber for the events they are interested in, using the new Event Framework.
Customers already using these tables should plan on creating a subscriber that populates similar
tables to the ones above, resulting in minimal rework of their solution.

Tips: As part of the feature replacement plan, the legacy table-based logging feature
"Common.Auditing.LifecycleEvents.Enabled" has been refigured as a prerequisite of the
built-in Hierarchy Denormalization feature. So it has been renamed to
"HierarchyDenorm.Auditing.LifecycleEvents.Enabled" while the legacy logging behavior
doesn't change at all. If a customer wishes to stay on their old, existing extensions which are
dependant on the legacy table "CommonLifecycleEventLog" for a short while, just simply
adjust the feature name in CustomerSettings.config to be
"HierarchyDenorm.Auditing.LifecycleEvents.Enabled". That provides a buffer time to further
code migration. Note that there is no change at the "PQM.Auditing.LifecycleEvents.Enabled"
feature in this release, which should be moved out in the next several major releases.

Data Captured
We offer a few out of the box database tables that do not get purged regularly. These tables
store key events in GSM, SCRM and PQM.

Each event captured may include the following information:

Event Type—The type of event that occurred 1: Create, 2: Save, 3: Workflow, 4: Copy, 5: Get
Latest Revision, 6: Add Material to Substitutes

Event Source—What caused the event (New issue of a specification, workflow transition, etc.)

Actor—User who performed the event

Time—Date and time stamp of when the event happened

Affected Object—Specification or object that was acted upon (Specification that was saved,
specification that was copied, etc.)

Related Object—Related object when appropriate (Workflow step, smart issue request,
specification ID, etc.)

Reason—Reason the action occurred when appropriate (Workflow comments, global
succession reason for change, smart issue request that caused the change, etc.)

Technical Overview
A feature configuration will determine if events will be logged.

GSM & SCRM—HierarchyDenorm.Auditing.LifecycleEvents.Enabled

PQM—PQM.Auditing.LifecycleEvents.Enabled

The following tables are used to capture these events:

GSM & SCRM—commonLifecycleEventLog

PQM—pqmLifecycleEventLog

The table schemas are the same for both tables:

commonLifecycleEventLog (
pkid char(40) not null unique,
eventType int not null, -- create, save, workflow, etc.

Event Framework

Extensibility Points 2-15

eventSource varchar(50), -- cause of the event
timestamp DateTime not null, -- time of change
fkActor char(40) not null, -- user making the changefkAffectedObject
char(40) not null, -- changed data object
reason nvarchar(256), -- user comments
fkRelatedObject char(40) -- optional participant
)

Table of Logged Events

Available Event Subscribers
The following out of the box Event Subscribers are available for any event type. These Event
Subscribers simply log event information, including the application name, event name, primary
object id, secondary objectid, object status info, userID, and more to a database table or a file.

Table 2–1 Table of Logged Events

Event Source Event Type Affected Object Related

GSM.Editor Save Specification saved (pkid)

GSM.Clone Create New specification created (pkid)

GSM.Clone Copy Specification copied (pkid) New specification created (pkid)

GSM.NewIssue Create New specification Issued (pkid)

GSM.NewIssue Copy Specification copied (pkid) New specification created (pkid)

GSM.Workflow.Transi
tion

Workflow Specification transitioned (pkid) Workflow Step (pkid)

GSM.Workflow.Resol
ve

Workflow Resolved specification (pkid) Workflow Step (pkid)

GSM.Workflow.Resol
ve

Save Resolved specification (pkid)

GSM.SmartIssue Create Specification created (pkid) Smart Issue Request (pkid)

GSM.SmartIssue Copy Specification copied (pkid) New specification created (pkid)

GSM.GlobalSuccessio
n

Save Host specification (pkid) Specification that was replaced (pkid)

GSM.Revision Revision Revision Object (pkid)

GSM.Substitute Substitute Substitute Material Spec (pkid)

SCRM.Editor Save Specification object (pkid)

SCRM.Clone Create Sourcing Approval copied (pkid)

SCRM.Clone Copy Sourcing Approval copied (pkid) Sourcing Approval created (pkid)

SCRM.Workflow.Tran
sition

Workflow Sourcing Approval transitioned
(pkid)

Workflow Step (pkid)

SCRM.Workflow.Reso
lve

Workflow Resolved specification (pkid) Workflow Step (pkid)

SCRM.Workflow.Reso
lve

Save Resolved specification (pkid)

PQM.Editor Create New PQM object (pkid)

PQM.Editor Edit PQM object Save (pkid)

Event Framework

2-16 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Database Logger—An out of the box subscriber is available that can log events to a database
table. By default, this logs to the CommonEventingLog, but it can be changed to log to other
tables created by customers

File Logger—An out of the box subscriber is available that can log events to a configurable
system file.

See the Event Framework document for more details.

Available Event Subscriber Filters
Event Subscribers can be controlled by the event type, the object types, the object status, and
more, through simple configuration options. Additionally, filters can be used to provide further
filtering options.

The following out of the box Event Subscriber Filters are available for any event type.

User Group Filter—Allows for filtering an event by a list of included and/or excluded User
Groups

User Role Filter—Allows for filtering an event by a list of included and/or excluded User
Roles

Segments Filter—Allows for filtering an event by a list of included and/or excluded Segments
for the current object

Reflective Property Filter—An out of the box event subscriber filter allows for filtering an
event by a list of included and/or excluded values to compare against a specific property on the
current object. For instance, this filter can be used to restrict the event to specific trade spec
types (eg, TU co-pack)

Custom Filters can be added for further control.

See the Event Framework document for more details.

Available Reference Implementations
An Event Subscriber reference implementation is available that demonstrates how to notify a
user if the specification allergens have been changed.

An Event Subscriber Filter reference implementation is available which uses a Material Spec
Classification as a filter, allowing filtering by a list of classifications for inclusion and a list for
exclusion.

These can be found in the following location:

[ProdikaHome]\Installer\ReferenceImplementations\EventFrameworkExtensions

Extended Attribute Calculations

Extensibility Points 2-17

Extended Attribute Calculations
Calculated Extended Attributes allow you to create a read-only extended attribute that displays
results of a calculation to the user. There are three types of calculated attributes: Numeric,
Boolean and Text. The calculation, entered in the Data Admin user interface for Extended
Attributes, must be written in JScript, and can access many predefined PLM for Process
functions and properties that give access to specific data. Custom warning messages may be
added during the calculation process for display to the user.

Clients wishing to have more control over calculations, consolidate their calculation logic, or
access other data not directly available through JScript (and the predefined functions), may call
out to custom classes from their scripts. The custom classes get executed and return a result
back to the script. They may optionally receive parameter data from the script.

Technical Overview
Custom calculation classes, written in c#, are identified in the CustomerSettings.config file
using a unique key for each class. This key is then referenced in the extended attribute’s JScript
calculation which calls out to the class and optionally passes data from the script to it.

Technical Documentation
Refer to the Agile Product Lifecycle Management for Process Extended Attribute Calculation
Guide for more details.

Available Reference Implementations
An example custom calculation class, Other Carbohydrates Calculator, demonstrates how a
custom class can be used in calculations.

Two cost calculation classes, Formulation Total Costs Calculator and Trade Total Costs
Calculator, demonstrate how to get the total costs of a specification.

See the reference implementation in
[ProdikaHome]\Installer\ReferenceImplementations\CalculationExtensions\SourceCode for
implementation details.

Extensible Columns

2-18 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Extensible Columns
A few sections in PLM for Process allow you to add additional columns. These columns can
display custom read only content. The following locations are available:

Trade > Packaging

Trade > Alternate Packaging

Trade > Material

Trade > Next Lower Level Items

Trade > Parent Items

Trade > Sourcing Approvals

Formulation > Inputs Grid

Formulation > Outputs Grid

Packaging > Packaging Sub Components

Packaging > Sourcing Approvals

Packaging > Printed Packaging (Deprecated)

Printed Packaging (Deprecated) > Packaging

Printed Packaging (Deprecated) > Sourcing Approvals

Material > Sourcing Approvals

Equipment > Sourcing Approvals

Menu > Menu Item Build

Product > Sourcing Approvals

GSM > Cross References Grid

SCRM > Cross References Grid

PQM > Cross Reference Grid

Possible Uses
1. Add Qty Volume column to GSM formulation input BOM so that when the weight Qty

column is adjusted the calculated volume is automatically shown.

2. Add theoretical nutrient "Sodium" or Extended Attribute like "% Meat" to the formulation
output grid so that a specific theoretical target can be monitored when editing quantities.

3. Display the number of open quality issues found around the packaging specification
included in the trade packaging BOM.

Technical Overview
For more information, refer to the Agile Product Lifecycle Management for Process Extensible
Column Guide.

Available Reference Implementations
1. Formulation Input and Output Quantity as Volume—These plugins convert and display the

formulation inputs or outputs to a volume measurement.

Extensible Columns

Extensibility Points 2-19

? See the InputVolumeNoStorageExtensibleColumnPlugin and
OutputVolumeNoStorageExtensibleColumnPlugin classes for formulation extensible
columns examples that do not store the volume in the database.

? See the InputFloatWithOptionalUOMColumnPlugin (along with the
InputNumericWithOptionalUOMColumnPluginFactory) and the
OutputStoredFloatWithOptionalUOMColumnPlugin (along with the
OutputNumericWithOptionalUOMColumnPluginFactory) for formulation extensible
columns that do store the volume in the database, as well as the related calculation
methods.

2. Preferred UOM Input Quantity and Yield and Output Quantity and Yield column plugins—
These plugins will display new input or output columns with quantity or yield values using
the user’s preferred Units of Measure. For instance, if the formulation is using pounds for
the Quantity values, and the user’s preferred UOM is KG, the new column would display
the value in KG.

Source Code: See
[ProdikaHome]\Installer\ReferenceImplementations\ExtensibleColumns\SourceCode\Formulati
onExtensionsSample\ for many examples.

FlexSync Foundation

2-20 Agile Product Lifecycle Management for Process Extensibility Overview Guide

FlexSync Foundation

Overview
FlexSync Foundation provides the platform necessary to create, manage, and orchestrate
reports, providing you with the ability to export relevant data to a customized Excel user
interface with macros, manipulate the data based on business needs, and then import the data
back into PLM4P to maintain your single source of truth.

Features include:

? Chains of data handlers allow data to be pulled/pushed via a variety of mechanisms
allowing for unlimited extensibility.

? Oracle-provided general purpose handlers provide out of the box functionality.

? Reusability of out of the box templates. Templates can be modified to provide additional
functionality without the need for a developer to create new handler chains.

? Table based report configuration allows for easy report creation/maintenance.

FlexSync foundation is the base for the FlexSync Formulation feature. To enable FlexSync
formulation:

1. Set configuration: <add key="GSM.FlexSyncFormulation.Enabled"
value="true" configDescription="Enables the flexSync
formulation feature when configure is true. When it's
enabled, Users assigned with role [FRM_FLEXSYNC] can access
the FlexSync output tool for formulation specifications. "/>
in the CustomerSettings.config file.

2. Restart IIS.

Technical Documentation
For more information, see the Agile Product Lifecycle Management for Process FlexSync
Foundation Guide and the Agile Product Lifecycle Management for Process FlexSync
Formulation Guide.

Formulation Output Naming Plugins

Extensibility Points 2-21

Formulation Output Naming Plugins
An output naming plugin is available to set formulation output name as user preferred
automatically. When the name field is locked, it will refresh automatically when it meets the
configuration criteria.

The out of box implementation is turned off.

As explained below, clients can use the default internal/external output naming factory with
parameters and create their own internal/external output naming factory.

Note the lock/unlock for output Spec Name and Short Name in the Output dialog. If turned on,
users can unlock for the name if they don’t want to use it. The lock feature is are controlled by
configurations described in the Agile Product Lifecycle Management for Process Configuration
Guide.

Figure 2–1 Example of locked and unlocked fields

Possible Uses
1. Set First External output name same as formulation name. Currently, all the external output

has a non-descriptive name like ‘Step 1 Output xxxxx-001’, which is annoying when a user
tries to search this specification, or has to manually change the name to a more meaningful
one before saving. Now with this new feature, the external output name will be refreshed
to same as formulation name automatically, saving the user a lot of time.

2. Set different output name rule based on different output type. For example, when output
type is 'External-Product', set the name same as formulation name; when output type is
'External - Waste', set the name same as 'formulation name + waste'. You can set up as
many rules as you prefer.

Technical Documentation
Refer to the PluginExtensions document, located in the [ProdikaHome]\Installer\
ReferenceImplementations\PluginExtensions\Documentation folder for more details.

Formulation Output Naming Plugins

2-22 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Available Reference Implementations
All output types are supported and are controlled by the following plugins.

? Internal Output Spec Name

Internal Output Spec Name Format Plug-in: FrmInternalOutputMaterialNamePlugin

Default Internal Output Spec Name Factory: FormulationOutputMaterialNamePluginFactory

? External Output Spec Name

External Output Spec Name Format Plug-in: FrmExternalOutputMaterialNamePlugin

Default External Output Spec Name Factory: FormulationOutputMaterialNamePluginFactory

? Internal Output Short Name

Internal Output Short Name Format Plug-in: FrmInternalOutputMaterialShortNamePlugin

Default Internal Output Short Name Factory:
FormulationOutputMaterialShortNamePluginFactory

? External Output Short Name

External Output Short Name Format Plug-in: FrmExternalOutputMaterialShortNamePlugin

Default External Output Short Name Factory:
FormulationOutputMaterialShortNamePluginFactory

Formulation Percent Breakdown Classification Override Plugin

Extensibility Points 2-23

Formulation Percent Breakdown Classification Override
Plugin

This extension point allows for the programmatic override of the percent breakdown
classification on the formulation output popup. Out of the box the classification override can be
declared by the formulator on the formulation output. This plugin allows you to calculate the
classification override.

Technical Overview
The Formulation Percent Breakdown Classification Override plugin extensibility point will call
the PluginExtensions framework to check if a Format plugin is configured for this extension
point in the CustomPluginExtensions.xml file. If a custom plugin is configured, it must return a
list of comma separated Formulation Classification PKIDs, which will then be listed by their
names in the UI. If no plugin is configured, the overrides must be done manually in the UI.

The Formulation Percent Breakdown Classification Override plugin is configured using the
name FormulationPercentBreakdownClassificationOverride.

Example CustomPluginExtensions.xml configuration:

< FormatPlugins configChildKey="name">
<Plugin name="FormulationPercentBreakdownClassificationOverride"
ignoreInheritFromPluginName="true"
FactoryURL="Class:AcmePLM.FormatPlugins.CustomFormulationPercentBreakdownClassi
ficationOverrideFactory,AcmePlugins" />

</ FormatPlugins>

Technical Documentation
Refer to the PluginExtensions document, located in
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation for more
details.

Formulation Push Percent Breakdown Plugin

2-24 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Formulation Push Percent Breakdown Plugin
This extension point allows for the conditional enabling/disabling of the formulation output
push of percent breakdown information to the material specification.

Technical Overview
The Formulation Push Percent Breakdown plugin extensibility point will call the
PluginExtensions framework to check if a Validate plugin is configured for this extension point
in the CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used that
simply returns true and gives permission to push the percent breakdown.

The Formulation Push Percent Breakdown plugin is configured using the name
FormulationPushPercentBreakdown.

Example CustomPluginExtensions.xml configuration:

<ValidatePlugins configChildKey="name">
<Plugin name="FormulationPushPercentBreakdown"
FactoryURL="Class:Xeno.Prodika.GSMLib.Security.Plugins.DefaultPushOutputBreakdo
wnValidatePluginFactory,GSMLib" />

</ValidatePlugins>

Technical Documentation
Refer to the PluginExtensions document, located in
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation for more
details.

Available Reference Implementations
While there are no specific reference implementations, any other validate plugin reference
implementation can be reviewed for general guidelines.

Get Latest Revision Extensibility

Extensibility Points 2-25

Get Latest Revision Extensibility
Get Latest Revision (GLR) is a feature that allows Agile PLM for Process specifications links
to be automatically updated with newer Approved revisions. In the user interface, a lock icon
next to a linked specification controls the GLR status for that item.

? When the icon is marked as locked (), the specification is tied to an exact
specification/issue combination.

? When the icon is marked as unlocked (), however, the specification will be replaced
with the latest revision/issue of that specification, based on defined behavior.

See the Agile Product Lifecycle Management for Process Configuration Guide, Table A-20
Custom Revisions for a list of locations where get latest revision is available. Out of the box the
system will find the latest issue in a status that contains the isApproved tag. This extension
allows you to change this behavior.

Figure 2–2 Locked and unlocked icons

The default behavior for retrieving the latest issue of a spec is to retrieve the latest Approved
issue of that specification. If there are no newer approved issues of that specification, no
updates are made.

This extension point allows for customizing the default behavior of Get Latest Revision, either
by modifying the retrieval behavior to include specs in other workflow statuses, or using
custom retrieval logic by implementing custom classes.

Possible Uses
1. The relationship will remain unlocked until the specification is in an archived state. This

will allow a historical record of the final relationship that was active.

2. The relationship will only be updated if Allergens have not changed from the previous
version of the specification.

Technical Overview
Get Latest Revision works in the UI by examining a spec link as it is loaded and, if unlocked,
retrieving any newer revisions. A separate process runs on the Remoting Container on a regular
basis to find any newer revisions and update the relevant spec links behind the scenes. To
customize the GLR behavior, you will have to modify both functional areas.

Note: The GLR feature actually identifies a specification as Approved if its
current workflow status contains the IsApproved workflow tag.

Get Latest Revision Extensibility

2-26 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Modifying the behavior to allow for different workflow statuses can generally be accomplished
with no code changes, while implementing more complex customization will require a more
involved implementation.

Technical Documentation
Refer to the GetLatestRevision document, located in
[ProdikaHome]\Installer\ReferenceImplementations\GetLatestRevision\Documentation for
more details.

Available Reference Implementations
A reference implementation demonstrates how to prevent a trade specification link from being
updated if the parent trade specification is in a status with one of the given workflow statuses
(using workflow tag behaviorIDs).

See the reference implementations in
ReferenceImplementations\GetLatestRevision\SourceCode for implementation examples.

Hierarchy Denormalization Extensibility

Extensibility Points 2-27

Hierarchy Denormalization Extensibility

Overview
Agile PLM for Process stores objects, such as specifications, along with the relationships to
each other, in a normalized database schema, making inserts, updates and deletes highly
efficient while minimizing its size. The challenges with having a normalized schema are that it
can make custom SQL queries complex and possibly not optimal for bulk data retrieval. For
example, to construct a report that returns the entire hierarchy of a trade specification, would
require a deep understanding of many relationship tables and would be extremely difficult to do
in SQL alone, due to the varying number of possible layers in the hierarchy. A hierarchy of a
specification is defined as that specification plus all descendant specifications as well as other
related objects. For example, these objects would be considered part of a trade hierarchy:

? The main trade specification

? All lower level trade specifications

? The material specification directly associated to the trade specification

? The formula to create the above material

? All inputs and outputs to the above formula

? All formulas that create the above inputs

? All inputs and outputs to the above formulas

By continuing to drill down into the formula and intermediate formulas that comprise a trade
specification, you will have what we are referring to as the Trade Hierarchy. This hierarchy is
not limited to the relationships defined above but covers many of the relationships that are
defined in PLM for Process.

Hierarchy Denormalization was designed as a near real-time backend feature in
RemotingContainer. By adjusting the corresponding configuration nodes, the denormalizers can
reflect a little faster or slower but cannot reach the absolute real-time. It provides a solution to
this data access problem by storing the object relationship information in a single table,
allowing for simple and performant hierarchy retrieval.

Many solutions can use this table to provide functionality such as hierarchical navigation and
reporting.

Possible Uses
1. Reporting

2. Analytics

3. Hierarchy Navigator

Technical Documentation
For more information, see the Agile Product Lifecycle Management for Process Hierarchy
Denormalization Guide.

Hierarchy Navigator Extensibility

2-28 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Hierarchy Navigator Extensibility
The following areas of Hierarchy Navigator are extensible:

? Display Options (Identities)

? Sort By Options

? Filters

? Node Contextual Menus

? Workflow Actions

This section outlines important files used to enable the feature. You can modify it based on
your implementation.

Possible Uses
1. Show the Segment of all items in Hierarchy Navigator panel so user can make sure they

are all from the same segment type.

2. Add a new filter to show items only owned by current user.

Technical Overview

Display Options (Identity)
Identities are used to display object information in a tree node. There are several default
identities for display view under the
"HierarchyNavigatorCustomExtensions\IdentityExtensions" section. You can add new entries
or override an existing one to change the display item.

Example:

<IdentityExtensions>
<Identity Key="ObjectNameIdentity" SortOrder="10" DisplayText="Object Name"
Default="true" >

<Retriever ObjectTypes="1004,1005,1006"
Factory="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtension
s.ObjectNameIdentity.GSMObjectNameIdentityExtension, WebCommon" />

</Identity>
</IdentityExtensions>

Table 2–2 <Identity> Attributes

Attribute Description Notes

Key Identify the entry Used for translation as well

SortOrder Specify an order number

DisplayText Specify text note for the entry This will be used as the caption of the
item if the node has no translation

Default Specify if the item will be default
displayed on the hierarchy node

true/false

Hierarchy Navigator Extensibility

Extensibility Points 2-29

Creating an Identity Complete the following steps for creating a new identity. The user can
select the new identity from display view after configured. It will display the information on the
tree node when new identity is checked on.

1. Create a new identity retriever extension based on the interface. For example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Xeno.Prodika.Common;

namespace
Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtensions.IdentityExtensions
{
 public class IdentityExtensionFactoryExample1 : IFactory
 {
 public Object Create()
 {
 return new IdentityExample1();
 }
 }

 public class IdentityExample1 : IIdentityExtension
 {
 public string GetFormatedIdentity(IHierarchyNavigatorNode obj)
 {
 return "IdentityExample1";
 }

 public virtual string GetIdentity(IHierarchyNavigatorNode obj)
 {
 return "IdentityExample1";
 }
 }
}

2. Build and put the compiled DLL into application directory. Let's say "MyExtensions.dll".

3. Add an entry to "HierarchyNavigatorCustomExtensions\IdentityExtensions".

<Identity Key="TestIdentity" SortOrder="60" DisplayText="TestIdentity"
Default="true" >

<Retriever ObjectTypes="<YourObjectTypes>"
Factory="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtensions.Id
entityExtensions.IdentityExtensionFactoryExample1, MyExtensions" />

</Identity>

4. Restart IIS.

Table 2–3 <Identity/Retriever> Attributes

Attribute Description Notes

ObjectTypes Specify the object type which the
retriever applied for

Can be set with multiple object types

Factory Specify the retriever
implementation factory

Hierarchy Navigator Extensibility

2-30 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Sort By Options
There are several default entries for sort view under
"HierarchyNavigatorCustomExtensions\SortByExtensions" section. User can add new entry or
override existing one to change the sort item.

Example:

<SortByExtensions>
<SortBy Key="ObjectNameSort" DisplayText="Object Name" SortOrder="10" >

<Retriever ObjectTypes="1004,1005,1006"
Factory="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtension
s.ObjectNameSort.GeneralObjectNameSort, WebCommon"/>

</SortBy>
</SortByExtensions>

Creating a SortBy Complete the following steps for creating a new SortBy. The user can
sort hierarchy content by the new SortBy from sorting view after configured.

1. Create a new SortBy retriever extension based on the interface. For example:

using Xeno.Data;

namespace
Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtensions.SortByExtensions

{

 public class SortByFactoryExample1 : IFactory

 {

 public Object Create()

 {

 return new SortByExample1();

 }

 }

Table 2–4 <SortBy> Attributes

Attribute Description Notes

Key Identify the entry Used for translation as well

SortOrder Specify an order number

DisplayText Specify text note for the entry This will be used as the caption of the
item if the node has no translation

Default Specify if the item will be default
displayed on the hierarchy node

true/false

Table 2–5 <SortBy/Retriever> Attributes

Attribute Description Notes

ObjectTypes Specify the object type which the
retriever applied for

Can be set with multiple object types

Factory Specify the retriever
implementation factory

Hierarchy Navigator Extensibility

Extensibility Points 2-31

 public class SortByExample1 : ISortExtension

 {

 public int Compare(object x, object y)

 {

 return 0;

 }

 }

}

2. Build and put the compiled DLL into application directory. Let's say "MyExtensions.dll".

3. Add an entry to "HierarchyNavigatorCustomExtensions\SortByExtensions".

<SortBy Key="TestSortBy" DisplayText="Test SortBy" SortOrder="60" >
<Retriever ObjectTypes="<YourObjectTypes>"
Factory="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtensions.So
rtByExtensions.SortByFactoryExample1, MyExtensions"/>

</SortBy>

4. Restart IIS.

Filters
There are several default entries for filters under
"HierarchyNavigatorCustomExtensions\FilterExtensions" section. User can add new entry or
override existing one to change the filter item.

Example:

<FilterExtensions>
<Filter Key="All" DisplayText="Select All" SortOrder="10" >

<Filter Key="ObjectTypeFilter" DisplayText="Object Type" SortOrder="10"
DynamicGenerator="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.Custom
Extensions.ObjectTypeFilter.ObjectTypeFilterGenerator, WebCommon">
</Filter>
<Filter Key="AlternateFilter" DisplayText="Alternate" SortOrder="30" >

<Retriever ObjectTypes="1004,1005,1006"
Factory="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExten
sions.AlternateFilter.AlternateFilter, WebCommon"/>

</Filter>
</Filter>

</FilterExtensions>

Table 2–6 <Filter> Attributes

Attribute Description Notes

Key Identify the entry Used for translation

SortOrder Specify an order number

DisplayText Specify text note for the entry This will be used as the caption of the
item if the node has no translation

DynamicGenerator Specify a generator for generating
a list based on the hierarchy
content

No need to add retriever if you
specify this attribute

Hierarchy Navigator Extensibility

2-32 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Creating a Filter Complete the following steps for creating a new filter. The user can filter
hierarchy content by the new filter from filter view after configured. Nested filter is supported.

1. Create a new filter retriever extension based on the interface. For example:

using System;
using System.Collections.Generic;
using System.Text;

namespace
Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtensions.FilterExtensions
{
 public class FilterExtensionFactoryExample1 : IFactory
 {
 public Object Create()
 {
 return new FilterExample1();
 }
 }

 public class FilterExample1 : IFilter
 {
 public bool IsItemIncluded(IHierarchyNavigatorNode node)
 {
 return (int)node.DenormResult["fkAncestorRelationshipContext"] >= 0;
 }
 }
}
2. Build and put the compiled DLL into application directory. Let's say "MyExtensions.dll".

3. Add an entry to "HierarchyNavigatorCustomExtensions\FilterExtensions".

<Filter Key="FilterExample1" DisplayText="FilterExample1" SortOrder="30" >
<Retriever ObjectTypes="1004,1005,1006"
Factory="Class:Oracle.PLM4P.SolutionPack.HierarchyNavigator.CustomExtensions.Fi
lterExtensions.FilterExtensionFactoryExample1, MyExtensions"/>

</Filter>

4. Restart IIS.

Context Menu
The navigator allows you to add a contextual menu per node. This menu is accessed by right
clicking on the node. For example, the user could launch a report from a node within the tree.
User can configure context menu when right click on one node from hierarchy navigator. The
menu configuration follows the same structure and concepts as the action navigation extension.
(See the Agile Product Lifecycle Management for Process Navigation Configuration Guide for
more details.)

The "HierarchyNavigatorTreeviewContextMenu" node located in Sitemap-extensions.xml is
used for the hierarchy navigator context menu.

Table 2–7 <Filter/Retriever> Attributes

Attribute Description Notes

ObjectTypes Specify the object type which the
retriever applied for

Can be set with multiple object types

Factory Specify the retriever
implementation factory

Hierarchy Navigator Extensibility

Extensibility Points 2-33

Example:

<MenuItem ID="HierarchyNavigatorTreeviewContextMenu">
<MenuItem ID="lblTest" ClientSideCommand="alert(NavigatorNode.nodeIdentifier)"
/>

</MenuItem>

<MenuItem> Attributes
See the Agile Product Lifecycle Management for Process Navigation Configuration Guide.

Creating a Context Menu Item Complete the following steps for adding a new context
menu item. The user can right click on a node to get the menu item configured.

1. Add an entry to "HierarchyNavigatorTreeviewContextMenu".

<MenuItem ID="HierarchyNavigatorTreeviewContextMenu">
<MenuItem ID="lblTest" ClientSideCommand="alert(NavigatorNode.nodeIdentifier)"
/>

</MenuItem>

2. Restart IIS.

Creating a Label Labels for the context menu are created the same way as outlined in the
Agile Product Lifecycle Management for Process Navigation Configuration Guide.

A translatable or non-translatable label can be created.

Non-translatable: Omit the ID attribute from the MenuItem node and add the DisplayText
attribute with the label value. Example:

<MenuItem ID="HierarchyNavigatorTreeviewContextMenu">
<MenuItem DisplayText="TestLabel"
ClientSideCommand="alert(NavigatorNode.nodeIdentifier)" />

</MenuItem>

Translatable: Add the ID attribute to the MenuItem node and add the proper translations to the
commonXLAExtensionCacheItem table. Example:

<MenuItem ID="HierarchyNavigatorTreeviewContextMenu">
<MenuItem ID='HierarchyNavigatorLabelTest'
ClientSideCommand="alert(NavigatorNode.nodeIdentifier)" />

</MenuItem>

To add the translation you will need to use the 'NavigationMenu' translation cache found in the
commonXLAExtensionCache database table.

Table 2–8 Variables

Variable Value Notes

NavigatorNode.nodeIdent
ifier

The active node PKID when right
clicking

NavigatorNode.level The level of current node

NavigatorNode.url The object URL for current node

NavigatorNode.childItem
s

Child item of current node An array of node items

NavigatorNode.hasChildr
en

Indicate a node has children or not true/false

Hierarchy Navigator Extensibility

2-34 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Workflow Actions
You can workflow a specification from multiple locations throughout the GSM application.
You no longer have to be on the specification to initiate a workflow. Workflow is available
from Hierarchy Navigator as well as specification search result listings.

Calling the workflow dialog is also possible from other locations throughout GSM as an
extension. This setup allows you to place the workflow action in other locations throughout
GSM using UI extensibility or navigation extensions. You can reference "Workflow UI
Extensions" in this guide to learn how to call the workflow dialog panel.

Figure 2–3 Right-click a specification within the hierarchy and select the Workflow action

Identity Plugins

Extensibility Points 2-35

Identity Plugins
The application suite includes three types of identity plugins which are described below.

Object Identity Plugins
Throughout the application suite, all objects are displayed with an associated suite header,
object header, and Most Recently Used (MRU) menu. All of these locations are extensible and
can be adjusted. For example, if the Short Name is an important identifier for your GSM
specifications you can display it next to the specification name or even replace the specification
name entirely. All configurations can be found in PluginExtensions.xml and follow specific
naming conventions. The following areas are extensible:

Figure 2–4 Object Header

The Suite and Object Identity Header can be broken apart into multiple extensible components,
which are highlighted in Figure 2–4 above.

Figure 2–5 Most Recently Used

Most Recently Used (MRU) can be broken apart into multiple extensible components, which
are highlighted in Figure 2–5:

Table 2–9 Suite and Object Identity Header, extensible components

Object Identity Component Plugin Naming Convention

1. Suite Header Page Name SuiteHeader.PageName.APPNAME.OBJECT

2. Object Icon ObjectHeader.ObjectIcon.APPNAME.OBJECT

3. Object Page Name ObjectHeader.ObjectCaption.APPNAME.OBJECT

4. Object Type ObjectHeader.ObjectType.APPNAME.OBJECT

5. Object Status ObjectHeader.ObjectStatus.APPNAME.OBJECT

Table 2–10 Most Recently Used, extensible components

Object Identity Component Plugin Naming Convention

1. Object Icon MRU.ObjectIcon.APPNAME.OBJECT

2. Object Page Name MRU.ObjectCaption.APPNAME.OBJECT

Identity Plugins

2-36 Agile Product Lifecycle Management for Process Extensibility Overview Guide

The Object Identity plugins include the following capabilities:

? NameMaxLength—Configuration setting that tells the plugin the maximum length the
name can be.

? NumberMaxLength—Configuration setting that tells the plugin the maximum length the
number can be.

GSM Identity Plugins
Throughout the application suite there are many grids and fields that display related
specifications. For example, Formulation Input BOM and Trade Packaging BOM. The identity
extension allows for additional information to be displayed along with the standard
specification information. Out-of-the-box, this extension shows the specification status in the
majority of locations, however this plugin can be replaced with your own custom plugin
displaying other information.

There are 34 unique specification identity extension points that can be leveraged to display
additional specification related information. Each extension point is uniquely identified; for
instance, the specifications listed in the trade specification’s Next Lower Level Items grid are
configured using the plugin name "TrdNextLowerLevelItemsIdentityPlugin". Each plugin can
implement its own behavior, or it can call a common plugin. These plugins also return data for
display in the print results, and can have the output returned for printing be different than the
output returned for the user interface.

The GSM identity plugins are available in the following UI locations:

4. Object Status MRU.ObjectStatus.APPNAME.OBJECT

5. Object Type MRU.ObjectTypeNameOverride.APPNAME.OBJECT

Table 2–11 GSM identity plugin locations

GSM Specifications UI Area Plugin Name

All Specifications Associated Specification AssociatedSpecsIdentityPlugin

Master Specification MasterSpecsIdentityPlugin

Related Labeling PackingRelatedLabelingIdentityPlugi
n

Originator field OriginatorIdentityPlugin

 Supercedes field SupercedesIdentityPlugin

Equipment Specifications Related Packaging EquipmentRelatedPackagingIdentityP
lugin

Formulation
Specifications

Formulation Tab: Input Row BOMInputItemPlugin

Process Tab: Input Row BOMInputItemPlugin

Output PopUp: Composition Grid BOMInputItemPlugin

Alternate Output - Original
Material

OriginalMaterialIdentityPlugin

Alternate Input - Original
Material

OriginalMaterialIdentityPlugin

Output Material FrmOutputMaterialIdentityPlugin

Labeling Specifications Related Packing LabelingRelatedPackingIdentityPlugi
n

Table 2–10 Most Recently Used, extensible components

Object Identity Component Plugin Naming Convention

Identity Plugins

Extensibility Points 2-37

Material Specifications Related Formulations MaterialRelatedFormulationsIdentity
Plugin

Trade Specification Association MaterialSpecTrdSpecAssociationIden
tityPlugin

Trade Specification Context
Association

MaterialSpecTrdSpecContextAssociat
ionIdentityPlugin

Packaging Configuration PackagingConfigIdentityPlugin

Substitute Material SubStituteMaterialIdentityPlugin

Menu Item Specification Alt Global Standard AltGlobalStandardIdentityPlugin

Global Standard GlobalStandardIdentityPlugin

Item Alternate MenuItemAltIdentityPlugin

Item Product MenuItemProductIdentityPlugin

Alternate Packaging MenuItemRelatedAltPackagingIdentit
yPlugin

Related Packaging MenuItemRelatedPackagingIdentityP
lugin

Nutrient Profile NutrientProfileIdentityPlugin

Nutrient Profiles Related Specification NutrientProfileRelatedSpecIdentityPl
ugin

Packaging Specifications Packaging Configuration PackagingConfigIdentityPlugin

Printed Packaging Material
(Deprecated)

PackagingPrintedPkgMaterialIdentity
Plugin

Related Equipment PackagingRelatedEquipmentIdentityP
lugin

Sub Component PackagingSubComponentIdentityPlu
gin

Substitute Material SubStituteMaterialIdentityPlugin

Packing Configuration
Specifications

Relates Specs DeliveredMaterialPackingIdentityPlu
gin

Printed Packaging
Specifications
(Deprecated)

Parent Packaging Material PrintedPkgRelatedParentPkgIdentityP
lugin

Substitute Material SubStituteMaterialIdentityPlugin

Product Specifications Alternate Global Standard AltGlobalStandardIdentityPlugin

Global Standard GlobalStandardIdentityPlugin

Packaging Configuration PackagingConfigIdentityPlugin

Trade Specifications Nutrient Profile NutrientProfileIdentityPlugin

Alternate Packaging TrdAlternatePackagingIdentityPlugin

Material Specification
Association

TrdMaterialSpecAssociationIdentityP
lugin

Material Specification Context
Association

TrdMaterialSpecContextAssociationI
dentityPlugin

Next Lower Level Items TrdNextLowerLevelItemsIdentityPlu
gin

Packaging Material TrdPackagingMaterialIdentityPlugin

Parent Items TrdParentItemsIdentityPlugin

Table 2–11 GSM identity plugin locations

GSM Specifications UI Area Plugin Name

Identity Plugins

2-38 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Figure 2–6 Standard input material display

Figure 2–7 Extended input material display

PQM Identity Plugins
For more information, see the Agile Product Lifecycle Management for Process Product
Quality Management Extensibility Guide.

Possible Uses
1. Change the Object Icon for an NPD project.

2. Display the specification short name instead of the specification name.

3. Display all cross references versus just the user’s cross reference preference.

4. Display the Supplier Item #s from all sourcing approvals attached to the material
specification.

Technical Overview
Each Identity extensibility point will call the Plugin Extensions framework to check if a format
plugin is configured. Each plugin is identified by a specific unique name, which is then
referenced in the CustomPluginExtensions.xml configuration file.

If a plugin is found for the given extensibility point name, the class specified in the
configuration is loaded, passed the relevant data item (e.g., the related specification). The result
of the plugin is then returned to the user interface.

If no plugin is found, it will use the out-of-the-box specification status implementation. To
return a blank instead, use the EmptyIdentityPlugin
(inheritFromPluginName="EmptyIdentityPlugin")Example CustomPluginExtensions.xml
configuration for the Material Identity plugin:

<FormatPlugins configChildKey="name">
<Plugin name="BOMInputItemPlugin"
FactoryURL="Class:ReferencePlugins.FormatPlugins.BOMInputSupplierItemPluginFact
ory,ReferencePlugins" MaxSizeUI="40" MaxSizePrinting="100" />

Identity Plugins

Extensibility Points 2-39

</FormatPlugins>

All Identity plugins are implemented using a FormatPlugin, which provides for several
capabilities:

? MaxSizeUI—Configuration setting tells the plugin what the maximum length for display
should be.

? MaxSizePrinting—Configuration setting tells the plugin what the maximum length for
printing display should be.

? UseTextURL—A boolean setting in the plugin to determine if the display should be
replaced by some custom Javascript code.

? GetTextURL—A string value that is returned if UseTextURL returns true. This can
contain html content, such as an anchor tag with a javascript pop-up code, for instance. A
predefined pop-up is also available for use (and is demonstrated using the reference
implementation below) to display content longer than the MaxSizeUI value.

See the BOMInputSupplierItemPlugin reference implementation and the code comments for
details.

Technical Documentation
Refer to the PluginExtensions document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation folder
for more details.

Available Reference Implementations
1. BOMInputSupplierItemPlugin—Returns a list of the facility name and the supplier item

number for each sourcing approval.

2. GSMSpecNumberFormatPluginExtension—Displays the specification number and the
effective date.

Source Code: See
ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins\FormatPlugins

Label Claims Extensibility

2-40 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Label Claims Extensibility
Label Claim determination rules can be created and customized by using the Data
Administration Toolkit. Label Claim formula calculation rules must be written in JScript, and
return a boolean result indicating if the label claim is met. The formula rule calculation script
can access various nutritional and reference data from the current business object via
predefined properties.

Clients wishing to have more control over label claim determination rules, consolidate their
calculation logic, or access other data not directly available through JScript (and the predefined
functions), may call out to custom classes from their scripts. The custom classes get executed
and return a result back to the script.

Technical Overview
A custom calculation class is identified in the CustomerSettings.config file with a unique key.
This key is then referenced in the extended attribute’s JScript calculation which calls out to the
class and optionally passes data from the script to it.

Technical Documentation
Refer to the Label Claims Calculation document, located in
[ProdikaHome]\Installer\ReferenceImplementations\CalculationExtensions\Documentation for
more details.

Available Reference Implementations
An example label claims calculation class,
AlternateNutrientPer100gValueDynamicScriptMethod, demonstrates how a custom class can
be used to return an alternate nutrient value.

See the reference implementation in
[ProdikaHome]\Installer\ReferenceImplementations\CalculationExtensions\SourceCode for
implementation details.

Navigation Extensibility

Extensibility Points 2-41

Navigation Extensibility
You can extend the navigation panels throughout the application suite. There are four primary
navigation areas:

1. Platform Navigation—The navigation menu available in the top right of the browser
window inside the suite header. This menu can be adjusted in the following ways:

a. Add items

b. Remove items

c. Re-arrange items

d. Apply visibility and security controls

Figure 2–8 Platform navigation

2. Portal Navigation—Available on the portal homepage listing in the left navigation panel.
This menu can be adjusted in the following ways:

a. Add items

b. Remove items

c. Re-arrange items

d. Apply visibility and security controls

Figure 2–9 Portal navigation

Navigation Extensibility

2-42 Agile Product Lifecycle Management for Process Extensibility Overview Guide

3. Action Navigation—Available in the top left corner of all objects. This navigation also
includes the quick access icons. This menu can be adjusted in the following ways:

a. Add menu items

b. Remove menu items

c. Add quick access icons

d. Remove quick access icons

e. Adjust hot keys

f. Re-arrange items

g. Apply visibility and security controls

Figure 2–10 Action navigation

4. Search Navigation—Available on the search pages. When selected, it opens the search
results action menu, as shown below:

Navigation Extensibility

Extensibility Points 2-43

Figure 2–11 Search navigation, search results

PLM for Process is able to use the context of the search result row. For example, you can direct
a user to a report and include the specification context in your URL to use as a report
parameter.

Possible Uses
1. Only users in the UGM user group of “Nutrition” are able to see the Nutrient Profiles link

in GSM.

2. Add a quick access icon for a commonly used core action.

3. Add a link to an external system sending certain specification information to that system to
direct the user’s view.

4. Add a link to the “Where Used” report on each material specification search result row.
This would allow the user to investigate where the material is used without having to open
each individual specification they wish to investigate.

Technical Overview
For more information, refer to the following the Agile Product Lifecycle Management for
Process Navigation Configuration Guide.

Navigation Extensibility: Supplier Portal

2-44 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Navigation Extensibility: Supplier Portal
You can add navigation panels to Supplier Portal. There are two types of navigation you can
add.

1. Primary Navigation—Primary navigation is available in the top left corner of all objects.
This navigation also includes the quick access icons. This menu can be adjusted in the
following ways:

a. Add menu items

b. Add quick access icons

c. Apply visibility and security controls

Figure 2–12 Primary navigation

2. Object Navigation—Object navigation is available inline next to each specification. This
menu can be adjusted in the following ways:

a. Add menu items

b. Apply visibility and security controls

Figure 2–13 Object navigation

Navigation Extensibility: Supplier Portal

Extensibility Points 2-45

Possible Uses
1. Provide links to other sites or portals that you offer or participate in with your suppliers.

2. Provide a link to a supplier performance report.

3. Provide a link to show audit results of your supplier’s facilities over time.

4. Provide a link to a specific specification report from the specification & documents listing.

Technical Overview
For more information, refer to the following the Agile Product Lifecycle Management for
Process Navigation Configuration Guide.

Notification Panel

2-46 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Notification Panel
A Notification Panel is available to display custom notification messages in GSM, SCRM and
PQM when the user opens the object. Its content is populated through one or more Notification
Plugins and configured in the NotificationPlugins node of the CustomPluginExtensions.xml
file.

Notification Plugins are extension points used to return a list of messages. Multiple notification
plugins can be configured and are chained together; each notification plugin is executed in the
order found in the configuration file. Each notification plugin returns a list of strings, which is
displayed to the user.

Figure 2–14 Sample notification panel

Possible Uses
1. Notify users when a specification contains specific allergens

2. Notify users when they are reading a specification that is not the approved issue

3. Notify the user when there are quality issues around a supplier or specification

Technical Overview
The NotificationPlugins extensibility point will call the PluginExtensions framework to check
if any NotificationPlugins are configured for this extension point in the
CustomPluginExtensions.xml file, and executes each notification plugin listed.

Example CustomPluginExtensions.xml configuration for the Material Identity plugin:

<NotificationPlugins configChildKey="name">
<Plugin name="CustomNotificationsReaderPlugin"
FactoryURL="Class:ReferencePlugins.NotificationPlugins.CustomNotificationsReade
rPluginFactory,ReferencePlugins" UsedIn="PQMItem"/>
<Plugin name="AllergenNotifierPlugin"
FactoryURL="Class:ReferencePlugins.NotificationPlugins.AllergenNotifierPluginFa
ctory,ReferencePlugins" UsedIn="GSMSpec"/>
<Plugin name="SupplierQualityAlertPlugin"
FactoryURL="Class:ReferencePlugins.NotificationPlugins.SupplierQualityAlertPlug
inFa
ctory,ReferencePlugins" UsedIn="SCRM"/>

</NotificationPlugins>

The notification plugins are called for each rendering of the page, regardless of the tab selected,
or the edit/read mode. Creation of alternate display behavior, such as only showing the
notifications while in Read mode, is the responsibility of the individual plugin. If no results are
returned by any of the configured notification plugins, the notification panel is not displayed.

Notification Panel

Extensibility Points 2-47

Custom Notification Table
A database table, CustomNotification, is available to store custom messages and then display
them using a notification plugin. Entries in this table are not populated by any actions in Agile
PLM for Process (PLMP); rather, the table is a storage location for other integration needs to
store specific messages for an Agile PLMP object such as an ingredient specification.

These records can then be read by a notification plugin and displayed to the user as needed. A
sample implementation (CustomNotificationsReaderPlugin) is included in the
ReferencePlugins project.

CustomNotifications Table schema:

[customNotifications]
(

[pkid] [char](40) NOT NULL,
[fkOwner] [char](40) NOT NULL,
[message] [nvarchar](2048) NOT NULL,
[created] [datetime] NULL,
[starts] [datetime] NULL,
[expires] [datetime] NULL,
[NotificationContext] [nvarchar](1024) NULL

)
? pkid—4 digit typeID + 36 character GUID: [Ex: '1149' + newId()]

? fkOwner—Represents the PKID of the relevant object, such as the PKID of the
ingredient spec that the message is for

? Message—The message notification text

? NotificationContext—Unused

Technical Documentation
Refer to the PluginExtensions document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation folder
for more details.

Available Reference Implementations
1. AllergenNotifierPlugin—If the current object is a trade or material specification, a list of

contained allergens is returned.

2. FormulationOutputsNotifierPlugin—If the current object is a formulation spec, displays a
list of inputs and outputs that are not in a given status, such as approved.

3. CustomNotificationsReaderPlugin—Displays any entries for the current object in the
CustomNotificaton database table.

Print Extensibility

2-48 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Print Extensibility
Printing from GSM and Supplier Portal may be customized to meet various client needs.
Clients may limit access to specific print templates, use custom data and field translations in the
existing print templates, create their own print templates, configure what is pre-selected for
users in the print dialog UI and use other printing engines (Oracle's BI Publisher, for instance)
to render the results.

Possible Uses
1. Reformat the trade specification print out to use a different font or different spacing

guidelines.

2. Remove certain sections from appearing in the material specification printout.

3. Create a Fact Panel report that is accessed from the trade specification. This report will
include the fact panel data from the active nutrient profile and the potential label claims
stored on the trade specification.

4. Every time a user prints a trade specification the packaging specifications, the custom
sections and the active nutrient profile is included.

5. Provide a customized print view for your ingredient suppliers versus your packaging
suppliers.

Technical Overview
See the Agile Product Lifecycle Management for Process Print Extensibility Guide for more
information.

Product Portfolio Management Integration

Extensibility Points 2-49

Product Portfolio Management Integration
Agile PPM is a web-based application that enables users to manage all aspects of a project or
program. PPM is fully integrated with the complete Agile PLM suite of products to maintain a
centralized view of project records and associated product information within the organization.
Executives use the PPM Dashboards to view portfolio data pertaining to all projects or
programs. Portfolio data includes risks such as schedule slips, lack of resources, and project
costs that directly contribute to the overall status of the project.

Use Cases
Let's examine three use cases demonstrating the PPM integration:

1. Adding a PLM for Process specification as an A9 reference object:

Figure 2–15 Adding a specification

2. Viewing linked A9 objects from a PLM for Process specification:

Product Portfolio Management Integration

2-50 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Figure 2–16 Viewing a linked object

3. Updating reference object’s status in A9 from a PLM for Process specification:

Figure 2–17 Updating a status

Product Portfolio Management Integration

Extensibility Points 2-51

Supported Versions
The following versions of PLM for Process and A9 are supported:

? PLM for Process 6.2.4.x

? PLM for Process 6.2.3.x

? A9 9.3.5

Technical Documentation
Refer to the Integration Guide in [ProdikaHome]\Installer\Extensions\PPM_
Integration\Documentation folder for more details.

Quick Links

2-52 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Quick Links
Methods are available to quickly launch a specification or object by using the objects system
defined number. For example, to access a GSM object, the URL would be
http://LOCALSITEURL/gsm/getSpecByNum.aspx?SpecNum=5084567-001 (5084567-001
would be the GSM specification number and issue number).

These methods are available for the following objects:

Table 2–12 Quick Links listing by application

Object URL

GSM http://LOCALSITEURL/gsm/getSpecByNum.aspx?SpecNum=xxxxxxx-xxx

SCRM Company http://LOCALSITEURL/scrm/BaseForms/frmCompany.aspx?EntityID=xxxxxxx

SCRM Facility http://LOCALSITEURL/scrm/BaseForms/frmFacility.aspx?EntityID=xxxxxxx

Sourcing
Approval

http://LOCALSITEURL/scrm/BaseForms/frmSAC.aspx?EntityID=xxxxxxx

Sourcing
Approval
(Non-Spec)

http://LOCALSITEURL/scrm/BaseForms/frmNonSpecSAC.aspx?EntityID=xxxxxxx

NPD Projects http://LOCALSITEURL/npd/MainPage/NPD.aspx?ContentKey=ProjectEditor&Load=xxxxx
xx

NPD Strategic
Briefs

http://LOCALSITEURL/npd/MainPage/NPD.aspx?ContentKey=StrategicBriefEditor&Load
=xxxxxxx

PQM Issue,
Action, Audit

http://LOCALSITEURL/pqm/getPQMByNumber.aspx?PQMItemNumber=xxxxxxx

NSM Analysis http://LOCALSITEURL/reg/NutritionSurveillance/NSM.aspx?ContentKey=NutrientAnalysis
&Load=xxxxxxx

NSM Composite http://LOCALSITEURL/reg/NutritionSurveillance/NSM.aspx?ContentKey=NutrientCompos
ite&Load=xxxxxxx

Smart Issue http://LOCALSITEURL/gsm/gsmextensions/SmartIssue/SmartIssue.aspx?ContentKey=Smar
tIssueRequest&Load=xxxxxxx

Global
Succession

http://LOCALSITEURL/reg/MainPage/GlobalSuccession.aspx?ContentKey=SuccessionReq
uest&Load=xxxxxxx

DRL Document http://LOCALSITEURL/drl/DRL.aspx?ContentKey=DrlDocument&DocumentId=xxxxxxx-
xxx

LIO Profile http://LOCALSITEURL/gsm/baseforms/frmLIOProfile.aspx?id=xxxxx

Component
Catalog Term

http://LOCALSITEURL/reg/FIC/GetTermByNumber.aspx?TermNumber=xxxxxxx

eQuestionnaire http://LOCALSITEURL/eq/MainPage/eq.aspx?ContentKey=ctlGetEntity&id=xxxxxxx

Refresh Hierarchy Warning Plugin

Extensibility Points 2-53

Refresh Hierarchy Warning Plugin
As part of the Refresh Hierarchy feature, a warning icon appears next to the input or
formulation specification that is required to refresh.

Technical Overview
The Refresh Hierarchy Warning plugin extensibility point will call the PluginExtensions
framework to check if a Validate plugin is configured for this extension point in the
CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used that
simply returns true and gives permission to push the warning icon.

The Refresh Hierarchy Warning plugin is configured using the name
FormulationRefreshHierarchyValidatePlugin.

Example CustomPluginExtensions.xml configuration:

<ValidatePlugins configChildKey="name">
<Plugin name="FormulationRefreshHierarchyValidatePlugin"
FactoryURL="Class:Xeno.Prodika.GSMLib.Security.Plugins.FormulationRefreshHierar
chyValidatePluginFactory,GSMLib" />

</ValidatePlugins>

Figure 2–18 Warning icon

Rich Text Extensibility

2-54 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Rich Text Extensibility
Rich Text Extensibility is an extension point that allows customer to use their own Rich Text
Editors. There are three types of rich text editors in PLM for Process: rich text editor with NLS,
rich text editor without NLS, and rich text editor in Supplier Portal. Each of them is extensible
and can be replaced with other supported Rich Text Editors.

Possible Uses
1. Every time a customer wants to use their own Rich Text Editor in Supporting Documents

in GSM.

2. Every time customer wants to use their own Rich Text Editor with NLS for an ingredient
statement in a material specification.

3. Every time customer wants to use their own Rich Text Editor in Supplier Portal.

Technical Overview
When using a new rich text editor, customers have to create a new javascript wrapper for the
new rich text editor, and have to create a new provider class as well.

The javascript wrapper is created as a Closure for initializing the new rich text editor.

The Rich Text Editor provider is created as custom classes, packaged into a DLL, and added to
the relevant web applications (web\gsm\bin, web\scrm\bin, and web\supplierPortal\bin).
Customers have to configure the EditorProviders node in the
config\Custom\EnvironmentSettings.config file to indicate their own Rich Text Editor
providers.

Available Reference Implementations

For creating a new javascript wrapper, it should include the _init function to initialize the
new rich text editor, functions for getting and setting values, handlers for event change or blur,
etc.

For creating a new Provider for new Rich Text Editor, the new provider class must extend class
AbstractEditorProvider and implement interface IEditorProvider.

Javascript Wrapper Example for the CkEditor

(function () {
 CkEditorMultiLingualEditor = function (config) {
 this.config = config;
 this.currentLanguage = config.currentLanguage.value;
 this.__proto__ = CKEDITOR.replace(config.clientID, config);

 this._init = function () {
 var myEditor = this;
 myEditor.on("change", function () {
 var pt = myEditor.getData();
 var maxLength = myEditor.config.maxLength || 3800;
 if (pt.length >= maxLength) {

Important: If the new rich text editor includes some Javascript libraries
which are not compatible with PLM for Process, customers should research
and implement an alternate solution.

Rich Text Extensibility

Extensibility Points 2-55

 var errMsg = window.__
prodikaValidate.TooLongError[parseInt(myEditor.config.currentLanguage.value.replac
e("lang", ""))];
 alert(errMsg);
 setTimeout(function(){myEditor.focus();},0);
 } else {
 myEditor.config.multiLang ? myEditor.saveHTMLEx() :
myEditor.saveHTML();
 }
 });
 myEditor.switchToLang(myEditor.currentLanguage);
 }

 this.getLangControlID = function (langID) {
 return this.config.clientID + "_" + langID;
 }

 this.saveHTMLEx = function () {
 $("#" +
this.getLangControlID(this.currentLanguage)).val(this.filterHTML(this.getData()));
 }

 this.getAllLangValues = function () {
 var dict = {};
 for (var index in this.config.supportLanguage){
 var lang = this.config.supportLanguage[index];
 if (lang.value == this.currentLanguage)
 dict[lang.value] = this.filterHTML(this.getData());
 else
 dict[lang.value] = $("#" +
this.getLangControlID(lang.value)).val() || "";
 }
 return dict;
 }

 this.setLangValue = function (lang, value) {
 if (this.currentLanguage == lang)
 this.setData(value);
 $("#" + this.getLangControlID(lang)).val(this.filterHTML(value));
 }

 this.clearAllLangValues = function () {
 this.setData("");
 for (var index in this.config.supportLanguage) {
 var lang = this.config.supportLanguage[index];
 $("#" + this.getLangControlID(lang.value)).val("");
 }
 }

 this.filterHTML = function (html) {
 var filteredHTML = html;
 var regex = /^<span([\w\W]*?)>([\w\W]*?)<\/span>$/gi;
 var match = regex.exec(filteredHTML);
 if(match && match.length == 3){
 filteredHTML = "<p" + match[1] + ">" + match[2] + "</p>";
 }
 return filteredHTML;
 }

 this.switchToLang = function (langID) {

Rich Text Extensibility

2-56 Agile Product Lifecycle Management for Process Extensibility Overview Guide

 this.setData($("#" + this.getLangControlID(langID)).val() || "");
 console.log(langID);
 this.currentLanguage = langID;
 $("#" + this.config.clientID + "_currentLanguage").val(langID);
 }

 this.getPlainText = function () {
 var stripHTML = /<\S[^><]*>/g;
 return this.getData().replace(/
/gi, '\n').replace(stripHTML,
'').replace(/^\s+|\s+$/g, '');
 }
 this._init();
 };
})();

Provider Class Example for the CkEditor

 public class CkEditorProvider : AbstractEditorProvider, IEditorProvider
 {
 public CkEditorProvider()
 {
 }

 void IEditorProvider.IncludeJS()
 {
 string editorJS =
@"/WebCommon/scripts/Ui/RichEditor/ckeditor/ckeditor.js";
 string editorWrapperJS =
@"/WebCommon/scripts/Ui/RichEditor/CkEditorMultiLingualEditor.js";

 if (Caller.GetType().BaseType.FullName ==
"Xeno.Web.UI.Common.Controls.Client.RichEditor.SimpleMultiLingualEditor")
 {
 editorWrapperJS =
@"/WebCommon/scripts/Ui/RichEditor/CkEditorMultiLingualEditor.js";
 }
 if (Caller.GetType().BaseType.FullName ==
"Xeno.Web.UI.Common.Controls.Client.RichEditor.RichEditorControl")
 {
 editorWrapperJS =
@"/WebCommon/scripts/Ui/RichEditor/CkEditorRichEditor.js";
 }

Caller.Page.ClientScript.RegisterClientScriptInclude(Caller.Page.Request.Applicati
onPath + editorJS, Caller.Page.Request.ApplicationPath + editorJS);

Caller.Page.ClientScript.RegisterClientScriptInclude(Caller.Page.Request.Applicati
onPath + editorWrapperJS, Caller.Page.Request.ApplicationPath + editorWrapperJS);

 }

 string IEditorProvider.Initializer(string config)
 {
 if (Caller.GetType().BaseType.FullName ==
"Xeno.Web.UI.Common.Controls.Client.RichEditor.SimpleMultiLingualEditor")
 {
 return @"new CkEditorMultiLingualEditor(" + config + ")";
 }

Rich Text Extensibility

Extensibility Points 2-57

 if (Caller.GetType().BaseType.FullName ==
"Xeno.Web.UI.Common.Controls.Client.RichEditor.RichEditorControl")
 {
 return @"new CkEditorRichEditor(" + config + ")";
 }

 return @"new CkEditorMultiLingualEditor(" + config + ")";
 }

 }

Search Extensibility

2-58 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Search Extensibility
While the standard application search behavior allows users to customize their experience
individually, search extensibility allows you to extend this behavior. Using search extensibility
you can do the following:

? Adjust the default top search criteria

? Adjust the default and available display columns

? Add new search criteria and display columns

Possible Uses
1. Most users search for specifications using Equivalent # instead of Spec Name. With just

an XML configuration change you can make Equivalent # the default search criteria.

2. Most users would prefer to see Concepts as a default search result column.

3. There are a handful of distinct extended attributes that users would like to see in search
result columns. You can add these extended attributes as new display columns.

Technical Documentation
Detailed documentation explaining search extensibility can be found in the Agile Product
Lifecycle Management for Process Search Extensibility Guide.

.

Section Level Editing

Extensibility Points 2-59

Section Level Editing
Custom validation rules can be created to control edit access of GSM sections. For example, a
rule can be written to turn off editing of specific sections based on UGM user group and
specification category, regardless of workflow status. When a section is read only, all editing
methods will be hidden, for example, New buttons, Edit icons (pencils, deletes, etc.).

Refer to the GSM Section IDs document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\SectionLevelEditing\Documentation folder
for a list of secured section IDs.

Possible Uses
1. Only users in the UGM group “Nutrition” can edit the Fact Panel custom section on a

nutrient profile.

2. When a specification is in an Approved state, only the Approved for Use in section is
editable.

3. Only users in the UGM Group “Packaging” can edit the packaging sections of the trade
specification.

Technical Overview
Section Level Editing rules are declared in the config\Extensions\SLESecurityExtension.config
file. Security Handler classes are created that have access to the specification and the user
information, and are used to determine if a particular GSM section can be edited.

Technical Documentation
Refer to the SLE Reference Implementation document, located in the
[ProdikaHome]\Installer\ReferenceImplementations\SectionLevelEditing \Documentation
folder for more details.

Available Reference Implementations

1. User Group and Specification Status

The included reference implementation evaluates the specification’s workflow status and
user’s UGM group membership.

a. The LockByWorkflowTagUnlessInGroupSecurityHandler example security handler
will lock down a section if a specification is in a certain workflow status (as indicated
by the workflow tag on the status), unless the user is in a certain User Group.

– If the spec editor is in the UGM group of "Spec Admin" then all sections on the
specification can be edited.

Source Code:

\ReferenceImplementations\SectionLevelEditing\SourceCode\ReferenceSectionLe
velEditingExtensions\ReferenceSLEHandlers\LockByWorkflowTagUnlessInGroupSec
urityHandlerFactory.cs

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Section Level Editing

2-60 Agile Product Lifecycle Management for Process Extensibility Overview Guide

2. Configurable Handler

This example demonstrates how to parse configurable information to the handler from the
SLESecurityExtension.config.

Source Code:

\ReferenceImplementations\SectionLevelEditing\SourceCode\ReferenceSectionLevelE
ditingExtensions\ReferenceSLEHandlers\ConfigurableSLESecurityHandler.cs

Side Bar

Extensibility Points 2-61

Side Bar
The PLM for Process user interface provides an extensible area for customers to include their
own UI components, which are displayed alongside application pages. This Sidebar can host
various components that can be launched by the user as needed. These components can display
useful contextual information, such as a specific BI report based on the current specification, a
historical event listing of object, and out-of-the-box Hierarchy Navigator, and more.

The PLM for Process Sidebar also provides helpful features, including easily selecting
placement of the sidebar, launching a menu of components to display, and more. A set of
helpful JavaScript functions are available to the sidebar components that can act on the
sidebar’s appearance and behavior.

For more information see the Agile Product Lifecycle Management for Process Sidebar
Extensibility Guide.

Specification Veto Plugin

2-62 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Specification Veto Plugin
Custom security rules can be evaluated when determining GSM specification read permissions.
The Specification Veto Plugin is an extension point available to all GSM specifications that
allows a custom class to be accessed when the user opens a specification. The custom class
evaluates the current specification and returns a true or false value giving read access to the
specification or not.

Possible Uses
1. If the user does not have read access to every specification in the trade’s hierarchy, the user

is not allowed to read the trade specification.

2. If the user does not have read access to all inputs used on the formulation specification, the
user is not allowed to read the formulation.

Technical Overview
The Specification Veto plugin extensibility point will call the PluginExtensions framework to
check if a Validate plugin is configured for this extension point in the
CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used that
simply returns true and gives read access.

The Specification Veto Plugin is configured using the name HasSpecVisibilityPlugin.

Example CustomPluginExtensions.xml configuration for Spec Veto plugin:

<ValidatePlugins configChildKey="name">
<Plugin name="HasSpecVisibilityPlugin"
FactoryURL="Class:ReferencePlugins.ValidatePlugins.ValidateTradeAccessPluginFac
tory,ReferencePlugins" />

</ValidatePlugins>

If Business Unit (BU) security is enabled, the user’s business unit permissions are evaluated
prior to calling the HasSpecVisibility plugin. If BU security is not enabled, the
HasSpecVisibility plugin is called immediately and its results determine read permission to that
specification. The specification and the current user data objects are passed to the plugin.

Technical Documentation
Refer to the PluginExtensions document, located in
the[ProdikaHome]\Installer\ReferenceImplementations\PluginExtensions\Documentation folder
for more details.

Available Reference Implementations

1. ValidateTradeAccessPlugin is a reference implementation of a Validate Plugin that
examines trade specifications and only allows access if the user has read permission to
each lower level trade specification.

Source code: See the ValidatePlugins in
ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins for details.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Specification Veto Plugin

Extensibility Points 2-63

PQM Veto Plugins
Basic PQM read, write, and workflow permissions for issues, actions, and audits are based on
the workflow templates set up in Workflow Administration. PQM adds two useful extensibility
points to further customize Read and Write permissions on a PQM item.

Custom Read Permission
A Validate Plugin class can be created to extend the Read permission logic of a PQM item, if
desired.

To customize the Read permission checks for PQM, create a new Validate Plugin and add an
entry into the CustomPluginExtensions.xml file in [ProdikaHome]\ config\Extensions, in the
ValidatePlugins node, using the plugin name "HasPQMReadPermissionPlugin", like so:

<Plugin name="HasPQMReadPermissionPlugin"
ignoreInheritFromPluginName="true"
FactoryURL="{Your custom class using ObjectLoaderURL syntax}" />

Custom Write Permission
A Validate Plugin class can be created to extend the Write permission logic of a PQM item, if
desired.

To customize the Write permission checks for PQM, create a new Validate Plugin and add an
entry into the CustomPluginExtensions.xml file in config\Extensions, in the ValidatePlugins
node, using the plugin name "HasPQMWritePermissionPlugin", like so:

<Plugin name="HasPQMWritePermissionPlugin"
ignoreInheritFromPluginName="true"
FactoryURL="{Your custom class using ObjectLoaderURL syntax}" />

Technical Documentation
To learn more about Validate Plugins, see the PluginExtensions document in the
\ReferenceImplementations\PluginExtensions\Documentation folder. Various reference
implementations of Validate Plugins can be found in the
\ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins\ValidatePlugins
folder.

Supporting Document Extensions

2-64 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Supporting Document Extensions
You can configure Supporting Document Extensions to get different functionalities and
behaviors on Supporting Documents. Please see the Agile Product Lifecycle Management for
Process Configuration Guide for more details.

Here is an example of how to enable the External URL configuration.

External URL Sample
The External URL configuration allows customers to punch out to their own systems and pull
back a URL. For example, let's say customers have their own document management system or
artwork project management system. They would put JavaScript in their systems' pages (like a
search page). The user would click browse, it would open their system search page and the
JavaScript they placed in their pages would create a URL that is sent back to our URL field.

Technical Documentation

Configuration Changes
In config\Extensions\SupportingDocConfig.config, add or modify the SupportingDocument
node for your specification types, or other object types. The child node
Document[@type="url"] is used for URL attachments.

The features and settings of the url document are as follows. (This table can also be found in
Agile Product Lifecycle Management for Process Configuration Guide.):

Taking a GSM activity (2283) as an example, the configuration node should be as follows:

Table 2–13 url document

id Description

EditableURL enabled: whether to enable the URL textfield to be editable as
attachment

factory: class used to determine enabled property dynamically

PassUserContextID enabled: whether to enable passing the user token to the 3rd party site
to login the external system.

factory: class used to determine enabled property dynamically

ValidateProperURLFormatti
ng

enabled: whether to enable the URL validator

factory: class used to determine enabled property dynamically

External.URL external system URL to the 3rd party site

External.UserToken a token to be passed as a parameter when we are accessing 3rd party
site

External.UserTokenParam the name of the parameter representing user ID when we are accessing
3rd party site

URL.Display.Length the maximum number of characters to be shown in URL path in
toolbox doc and attachment grids

Supporting Document Extensions

Extensibility Points 2-65

Figure 2–19 GSM activity sample

? To enable External URL, 'External.URL' should be set to a page that contains the code
which invokes the callback JavaScript method. The method name is passed from query
string field CallBackFunc.

? If the opener system needs to be verified, please turn on PassUserContextID. The user
token will be added to the URL, like &UserID=PLM4P.

If 'External.URL' is empty, the URL Detail is as follows:

Figure 2–20 URL Detail, 'External.URL' is empty

Supporting Document Extensions

2-66 Agile Product Lifecycle Management for Process Extensibility Overview Guide

If 'External.URL' has a value, there would be a Browser button next to the URL input. The
external page will be opened when this button is clicked.

Figure 2–21 URL Detail,’External.URL' has a value

Supporting Document Extensions

Extensibility Points 2-67

External URL Page Changes
In the External URL page, invoke the callback method with JavaScript.

Figure 2–22 External URL page

? Include jquery and YDialog JavaScript files from the PLM4P application into the page.

? Use YDialog.opener() to refer to the opener window.

? Use query string field CallBackFunc to refer to the callback method, and the first
parameter is the URL to be returned.

? Use YDialog.close() to close the page.

Note: This page should be under the same domain of PLM4P applications,
or the callback method cannot be invoked in modern browsers. If cross
domain calling is necessary, please contact Oracle Support for help.

User Interface Extensions

2-68 Agile Product Lifecycle Management for Process Extensibility Overview Guide

User Interface Extensions
Clients wishing to customize specific user interface behavior, such as marking certain fields as
read only, or applying formatting to show required fields, as well as other front-end
customizations, will be able to do this using the User Interface Extensions (UIE) feature.
Clients can write simple Javascript code which then gets pulled into the desired user interface
pages. The Javascript code can leverage useful new Javascript variables and functions that
make it easier to perform user interface manipulation, as well as access specific data from the
given item, such as a specification’s status, the user’s groups, etc.

Out-of-the-box UIE extension points are now available for most major objects in the system,
including GSM specifications, SCRM companies, facilities, and sourcing approvals, PQM
actions, issues, and audits, NPD objects, and more.

Technical Overview
The extensibility points will call Format Plugins to return Javascript code to the page as part of
the front end rendering. To add the extensibility point, a simple single-line code statement can
be inserted into a page (.aspx) or control (.ascx) code-in-front. The Format Plugin orchestrates
the retrieval of core and client specific Javascript files, along with helper classes that generate
useful script variables and functions. Clients can write customizations in Javascript leveraging
commonly used functions and variables from separate Javascript files and some .NET
Reflection to extract some properties from the current business object.

Additionally, clients can write their own C# classes that generate their own Javascript variables
and functions, if desired.

Technical Documentation
See the User Interface Extensions.doc document in the \Utilities\UIExtensions folder for more
information.

Watch the introductory video on the User Collaboration site for a high level overview.

Validation Framework

Extensibility Points 2-69

Validation Framework
The validation framework allows you to configure custom validation rules to specific UI events
in the system. For example, when a user selects the Save action button on a specification, code
can be put in place to make sure specific required fields are properly filled out. If any required
fields are left blank, an error message can be displayed preventing the user from saving the
specification until all of the data is provided.

The following objects are tied to the validation framework:

? GSM specifications and templates

? Smart issue requests

? Testing protocols

? SCRM companies, facilities, and sourcing approvals

? eQuestionnaires

? Custom section templates

? NPD projects, activities, innovation sales pipeline, and strategic briefs

? PQM issues, actions, and audits

? UGM users and groups

To see a detailed listing of events, type IDs, validation target objects and context objects refer
to ReferenceImplementations/Validation/Documentation/Validation Objects.xls.

Possible Uses
1. Make sure all data has been added to the specification or object before it is saved or

transitioned to a new workflow state. This includes custom data. For example, a nutrient
profile cannot be approved until the custom section: NLEA Fact Panel has been added.

2. A trade specification cannot be approved until all packaging specifications attached to the
trade specification are in an approved state.

3. A sourcing approval cannot be approved until the specification it is tied to is in an
approved state.

4. A user cannot transition an issue of a specification to an approved state if a previous issue
of that specification is in an approved state.

5. A user cannot create an issue of a specification that is in a non-approved state.

Technical Overview
Validation logic is declared in a configuration file (Config\Extensions\ValidationSettings.xml)
and specified by using predefined validation classes or creating custom validation classes.

Validation Framework

2-70 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Figure 2–23 Validation classes

Example rule in ValidationSettings.xml:

<ValidationRules>
 <!-- Example Ingredient Spec save validation requires Cross References (aka
Legacy profiles) -->
 <rule type="1004">
<condition event="save">
 <if type="ReflectiveRequiredValidator" property="LegacyProfiles" />
 </condition>
 </rule>
</ValidationRules>

Validators are classes that can examine the current object and execute validation rules against it.
The result of a validator is true for a successful validation and false for a failed validation
check, along with the corresponding error messages, which are then displayed to the user.

In an effort to improve the process of writing custom validation, decrease the development and
testing time, and simplify configuration and installation, a new Validator has been created that
leverages a script-based approach to validation. The ScriptBasedValidator uses a JavaScript
Interpreter engine to run simple and more intuitive validation code that is easier to write and
requires no class compilations. Customers can write straight-forward JavaScript code to
perform server-side validation, while leveraging existing helper methods and properties. For
instance, helper methods such as GetEA(<eaID>) will return the desired Extended Attribute (if
it exists).

See the Script-based Validation Guide for details.

Default Language
UGM Admins can now set their default language to any NLS approved language using the
default validation framework plugin that is required when managing groups. This plugin auto
populates an English group name on save if one does not exist. Turn on the configuration in
Prodika\config\Extensions\CustomPluginExtensions.xml:

<Plugin name="PreSaveUGMPlugin" ignoreInheritFromPluginName="true"
FactoryURL="Class:Xeno.Prodika.Services.PrincipalManagementService.Plugins.UGMChan
geGroupPluginFactory,PrincipalManagementService" />
<Plugin name="PreWorkflowUGMPlugin" ignoreInheritFromPluginName="true"
FactoryURL="Class:Xeno.Prodika.Services.PrincipalManagementService.Plugins.UGMChan
geGroupPluginFactory,PrincipalManagementService" />

Validation Framework

Extensibility Points 2-71

Technical Documentation
Detailed technical training of the Validation Framework is available in the
[ProdikaHome]\Installer\ReferenceImplementations\Validation\Documentation\.

Workflow Actions and Guard Conditions

2-72 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Workflow Actions and Guard Conditions
A workflow action is an extension point that triggers the execution of custom classes when a
workflow transition occurs. A guard condition is an extensibility point that helps determine if a
workflow transition can occur.

Workflow actions and workflow guard conditions are assignable to workflow transitions in
WFA. Different workflow actions and guard conditions are available in WFA for GSM, SCRM,
PQM, and CSS workflows.

Possible Uses
1. Every time a sourcing approval reaches the approved state, specific data from the sourcing

approval can be sent to a third party system.

Technical Overview
Workflow actions and workflow guard conditions are created as custom classes, packaged into
a DLL, and added to the relevant web applications (web\gsm\bin, web\scrm\bin, and
web\ugm\bin).

They must be configured in the config\Extensions\CustomWFAExtensionsConfig.xml file to be
made available for assignment in WFA.

Workflow actions can perform custom activities, such as sending an email, logging
information, etc., and have access to the item being workflowed.

Guard conditions can evaluate the item being workflowed, determine if the workflow transition
should occur, and return a true or false result accordingly. Additionally, they can add error
messages which will be displayed to the user in the workflow pop-up.

Technical Documentation
See the [ProdikaHome]\Installer\ReferenceImplementations\WorkflowActions\Documentation
folder for more details.

Available Reference Implementations

Several reference implementations are available in the
ReferenceImplementations\WorkflowActions\SourceCode\ReferenceWorkflows and
ReferenceImplementations\GuardConditions\SourceCode\RefGuardConditions projects,
including:

1. SpecStatusChangeLogger—Logs workflow status changes, along with specification
identifier information, to a file.

2. We offer several out of the box workflow actions that will allow you to workflow multiple
specifications at once. Learn more in the following section, Workflow Actions—Automatic
Workflow.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Workflow Actions—Automatic Workflow

Extensibility Points 2-73

Workflow Actions—Automatic Workflow
You can configure WFA workflow templates to automatically workflow child specifications or
quality issues using automatic workflow. These reference implementations allow you to
automatically workflow GSM specifications or PQM issues directly associated to the parent.
You determine when they are enacted by selecting the workflow action inside the Transitions
section of a WFA template.

In the example below, every time this GSM activity transitions to “Approved”, the Related
Items associated to that activity will transition to “Official”.

Figure 2–24 GSM activity WFA template: Transitions section

All child specifications transitioned will have an entry added to the Event History section on
the Approval/Audit Trail tab. The specification (or GSM activity) responsible for transitioning
the specification will be indicated and linked.

Figure 2–25 GSM specification: Event History section

The following relationships are supported:

Important: Make sure your child workflow templates are able to auto
resolve to owners, signature requests, and notification participants. The user
moving the parent object will not have the opportunity to select participants
for every possible child specification being transitioned.

Parent Child Workflow Action Name

Trade Material Specification
(Reference Output)

GSMWorkflowActionUpdateReferencedOutputMaterialForTr
ade

Material Specification
(Owned Output)

GSMWorkflowActionUpdateMaterialForTrade

Lower Level Trades GSMWorkflowActionUpdateLowerLevelSpecForTrade

Packaging
Specifications

GSMWorkflowActionUpdatePackagingSpecForTrade

Sourcing Approval GSMWorkflowActionUpdateSACForTrade

Formulation Material Inputs GSMWorkflowActionUpdateMaterialInputForFormula

Reference
Output

Produced By
Formulations

GSMWorkflowActionUpdateContextForMaterial

Workflow Actions—Automatic Workflow

2-74 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Possible Uses
1. When a GSM Activity resolved to the WFA template “New Packaging Assembly”

transitions to “Approved”, workflow the packaging specifications in the Related Items
section to “Approved”.

2. When a Trade Specification resolved to WFA template “Baked Goods” transitions to
“Inactive”, workflow the associated material specification and owning formulation to
“Inactive”.

3. When a Packaging Specification resolved to WFA template “Packaging Assembly”
transitions to “Ready for Review”, workflow the associated Sub Components to “Ready
for Review”. Do not move packaging specifications already in “Approved”.

4. When a Quality Action resolved to WFA template “Corrective Action” transitions to
“Cancelled”, workflow the associated Quality Issues to “Cancelled”.

Technical Overview
Automatic workflow actions are made available by un-commenting them from
CustomWFAExtensionsConfig.xml in config\Extensions.

The following attributes are available for Automatic Workflow actions:

Name—The value specified here will be the workflow action name displayed in WFA
transitions.

ProcessTemplateType—Specifies which workflow process type can use it. Automatic
workflow actions are supported in GSM and PQM.

IncludeObjectIDs—Indicates which kind of parent specification can use this workflow action.

FactoryURL—The object loader URL of the workflow action class, followed by the assembly
name.

Example:
Class:Xeno.Prodika.GSMLib.WorkflowActions.GSMWorkflowActionUpdat
eRelatedItemForActivity,GSMLib$4|1|1004

Variables behind FactoryURL—These variables determine the specific behavior of the
workflow action.

Packaging Packaging Sub
Components

GSMWorkflowActionUpdateSubComponentForPkg

Sourcing Approval GSMWorkflowActionUpdateSACForPkg

GSM Activity Related Items GSMWorkflowActionUpdateRelatedItemForActivity

Material Material Breakdown
Components

GSMWorkflowActionUpdateBDComponentForMaterial

Sourcing Approval GSMWorkflowActionUpdateSACForMaterial

Product Sourcing Approval GSMWorkflowActionUpdateSACForProduct

Equipment Sourcing Approval GSMWorkflowActionUpdateSACForEquipment

Associated
Specs

Associated Specs GSMWorkflowActionUpdateAssociatedSpecs

PQM Action PQM Issues PQMWorkflowActionUpdateRelatedIssuesForAction

Parent Child Workflow Action Name

Workflow Actions—Automatic Workflow

Extensibility Points 2-75

Example:
Class:Xeno.Prodika.GSMLib.WorkflowActions.GSMWorkflowActionUpdat
eAssociatedSpecs,GSMLib$4|1|1004

These IDs are separated by a vertical bar (|) and represented in the following order:

? Child Transition Status—This represents the status the child specification will be moved
to. This is the behavior ID of the workflow tag added to the status definition on the child’s
WFA template. The example above shows 4. This represents the “Is Approved” tag which
was added to the “Approved” status of the child’s workflow template.

? Status to Ignore—This represents the status that will be ignored if the child specification
is already in that state. The example above shows 1. This represents the “Hide Specs” tag
which was added to the “Archived” status of the child workflow.

? Spec Types to Transition—Represents the child spec type that will be moved. Use ’,’ for
multiple spec types; for example 1004,1009,2147 = material, packaging, trade. In the
example above, only material specifications (1004) will be transitioned to “Approved”.

Here’s an example configuration key. In this example, the workflow action is advancing
associated material specifications to “Approved” (WFA Tag behavior ID=4) when the parent
trade specification advances to “Approved”. The action will not advance associated material
specifications in an Archived status (WFA Tag behavior ID=1).

<WorkflowAction processTemplateTypes="GSM"

IncludeObjectIDs="2147"

name="Trade Spec Workflow Action - Update Associated Specs"
FactoryURL="Class:Xeno.Prodika.GSMLib.WorkflowActions.GSMWorkflo
wActionUpdateAssociatedSpecs,GSMLib$4|1|1004"

></WorkflowAction>

Technical Documentation
See the [ProdikaHome]\Installer\ReferenceImplementations\WorkflowActions\Documentation
folder for more details.

Workflow UI Extensions

2-76 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Workflow UI Extensions
Hierarchy Navigator allows you to add workflow UI extensions. Workflow actions are
available for GSM specifications and SCRM sourcing approvals.

Possible Uses
1. You can workflow an object anywhere configured without opening the object. For

example, on the Formulation tab, add a workflow action for referenced output materials.

Technical Overview

Creating a Workflow Action
Complete the following steps for adding a new workflow action. The user can right click on a
node to get the menu item configured.

1. Add an entry to Prodika\Web\GSMExtensions\scripts\toggler.js.

function PopupWorkflowAction(pkid) {
var url =
"/gsm/PopUps/Workflow/frmWorkflowActionPopup.aspx?MaintainSpec=true&DataSource=
Class:Xeno.Prodika.GSMLib.WorkflowCommon.DataSources.ResolutionSetAwareSpecLine
arWorkflowPopupDataSource,GSMLib$SpecID=" + pkid + "&IsSigDoc=false";
YDialog.open(url, "WorkflowPopUp",
"height=550,width=550,status=no,toolbar=no,menubar=no,location=no,dependent=yes
,scrollbars=yes");
}

2. Add the following entry to
Prodika\Web\GSMExtensions\Formulation\Process\ctlFormulationOutputs.ascx, after the
formulation tag icon node.

<asp:Panel id="pnlWorkflow" style="display:inline" runat="server"
Visible="<%#((FormulationOutputRowModel)Container.DataItem).IsReferenced%>">
<td>
<a href="#"
onclick="javascript:PopupWorkflowAction('<%#((FormulationOutputRowModel)Contain
er.DataItem).OutputItem.Material.PKID%>');"><img id="imgWorkflow"
src='../images/navmenu/Action-Workflow.gif'/>
</td>
</asp:Panel>

Notes:
 ? Workflow actions cannot be applied to specifications which do not support workflow

behavior, or for internal output materials and external output materials. Please
remember to add visible condition like
visible="<%#((FormulationOutputRowModel)Container.DataItem
).IsReferenced%>" to avoid abuse.

? The popup URL can be changed via workflow objects. If the current workflow object
is a specification, the popup URL should be:

"/gsm/PopUps/Workflow/frmWorkflowActionPopup.aspx?Maintain
Spec=true&DataSource=Class:Xeno.Prodika.GSMLib.WorkflowCom
mon.DataSources.ResolutionSetAwareSpecLinearWorkflowPopupD
ataSource,GSMLib$SpecID=" + GSM.SpecificationPKID +
"&IsSigDoc=false"

Workflow UI Extensions

Extensibility Points 2-77

Otherwise, if the current workflow object is a souring approval, the popup URL
should be:

"/scrm/PopUps/Workflow/frmWorkflowActionPopup.aspx?Maintai
nSpec=true&DataSource=Class:Xeno.Prodika.SCRM.WorkflowComm
on.DataSources.SACLinearWorkflowPopupDataSource,SCRMLib$En
tityID=" + SCRM.SouringApprovalPKID +
"&IsSigDoc=false&hdnActiveSACType=SPEC";

3. Navigate to the target formulation specification. You can see the additional workflow icon
displayed for the referenced output materials.

4. Click the workflow icon on the Formulation tab. A workflow popup window appears with
the Spec Name and Spec #. Now you can workflow the specification to any status you
prefer.

Workflow UI Extensions

2-78 Agile Product Lifecycle Management for Process Extensibility Overview Guide

A

Developer Information A-1

ADeveloper Information

PLM4PExtensionUtils Developer Utility Library
PLM4PExtensionUtils is a library that provides classes to assist external developers with Agile
PLM for Process extensibility development. Custom Validators, Workflow Actions and
Workflow Guard Conditions, Plugins, Calculation Extensions, and other extensibility points
can leverage these utility classes by referencing the PLM4PExtensionUtils.dll.

The following utility classes are available:

? SpecPermissionEvaluator—Provides specification related security permission methods

? SpecWorkflowTagEvaluator—Provides workflow status related methods for GSM
specifications

? SCRMWorkflowTagEvaluator—Provides workflow status related methods for SCRM
sourcing approvals

? FormulationStepsRetriever—Retrieves a sorted list of formulation steps for a given
formulation specification

? CustomDataFacade—A class that provides simplified access to extended attributes and
custom sections.

Detailed documentation and the PLM4PExtensionUtils.dll are available in the Extension
Utilities document in the Utilities\PLM4PExtensionUtils folder.

Several reference implementations, such as the ValidateTradeAccessPlugin in
ReferencePlugins, already leverage the various classes available in this dll.

Object Loader URLs

A-2 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Object Loader URLs
Object Loader URLs are classpaths that are used to dynamically load objects. They are used to
declare the protocol to use when loading the class, the class path, and optionally any parameters
to pass to the class.

Format
[Protocol] : [Path] $ [{parameter1} | { parameter2}|…]

? Protocol—Examples are "Class" and “Singleton"

? Path—The fully qualified class name, including the package name. For example
"Xeno.Prodika.SecurityModel.Contextual.UserRoleBasedSecuri
tyPluginFactory,ProdikaLib" where ProdikaLib is the name of the package
(.dll file).

? Parameters—If the class implements the ITakesParameters interface, the parameter
list, separated by pipes (|), is available to the class. See Passing Parameters in the
ObjectLoaderURL below.

When loading an object, the loader first inspects the Protocol and using lazy loading,
determines an appropriate protocol handler based on this protocol’s name. The "Class"
protocol may refer to a class that accepts parameters during instantiation which are defined
after a "$" and delimited by "|"s (pipes).

Common Usage
The most common usage of this class is in configuration files. Often a factory class is supplied
in a configuration and the Object Loader bootstraps the factory, which in turn facilitates the use
of the rest of the implementation. These implementations are easily swapped by simply
providing a different factory in the configuration.

Example
Class:Xeno.Prodika.Portal.WebUI.Util.Security.UserPropertyBasedS
ecurityPluginFactory,ProdikaLib$NPD

"Class" is the protocol, "NPD" is a parameter, and the rest of the string between the ":" and the
"$" is the path as defined by the protocol. In this case, it is the class path of the object that is to
be instantiated.

Passing Parameters in the ObjectLoaderURL
Implementing the Xeno.Prodika.Common.ITakesParameters interface (from
ProdikaCommon.dll) by the Factory class allows the passing in of parameters in the
ObjectLoaderURL. Its method setParams is called, with the StringSplitter input parameter
containing the arguments in the ObjectLoaderURL. This allows the same factory class to be
used for multiple situations, such as passing in the desired workflow statuses as a parameter.

For an example of a class that implements the ITakesParameters interface, see the
WorkflowTagBasedSpecCalculationDisablerFactory in ReferencePlugins

Object and Data Schema Documentation

Developer Information A-3

public class WorkflowTagBasedSpecCalculationDisablerFactory:
IValidatePluginExtensionFactory, ITakesParameters
{

private IList<int> _behaviorIDs ;
public IValidatePlugin Create()
{

return new WorkflowTagBasedSpecCalculationDisablerPlugin(_behaviorIDs);
 }

public void setParams(StringSplitter splitter)
 {

_behaviorIDs = new List<int>();
 Assert.True(splitter.hasMoreTokens(),
"WorkflowTagBasedSpecCalculationDisablerFactory must pass a comma delimited
list of workflow behavior IDs assigned to Workflow Steps that should not have
Calculation occur.");

string[] tags = splitter.nextToken().Split(',');
foreach(string tag in tags)
{

_behaviorIDs.Add(int.Parse(tag));
}

}
}

Object and Data Schema Documentation
When writing custom reports or SQL queries against the PLM4P database, or writing various
extensibility points such as Validators, Workflow Actions, and more, developers must be able to
navigate and understand the internal data and object structures they will be interacting with.
The Object and Database Schema document (available via the index.html file in the
DatabaseAndObjectSchema folder) is a catalog of the Agile PLM for Process database tables
and data object classes. The tool allows SQL developers and .NET developers to inspect the
internal Agile PLM for Process database and data object hierarchies using HTML files. It
provides a listing of all database tables and their corresponding data object classes, categorized
by the application and the high level business objects (e.g., GSM -> Packaging Specification).

Database Tables
Each database table listed describes its database columns and its various relationships to and
from other tables. Clicking on a relationship link will display the related table and maintain a
breadcrumb trail of the relationship. A “Show SQL” link can be used to show SQL code that
can be used to join the tables defined in the breadcrumb trail.

For instance, to get the trade type name of a trade specification, (starting in All Applications),
click GSM, then Trade Specification, then gsmTradeType, then gsmTradeTypeMML, where
the Name column can be found. The breadcrumb trail shows the following: Applications >
GSM > gsmBaseTradeSpec > gsmTradeType > gsmTradeTypeMML.

Clicking Show SQL displays the following results:

SELECT * FROM gsmBaseTradeSpec t1
INNER JOIN gsmTradeType t2 ON t1.fkTradeType = t2.pkid
INNER JOIN gsmTradeTypeMML t3 ON t2.pkid = t3.fkTradeType

Additionally, since each database table is related to a specific .NET class, a link to its
corresponding data object is available.

Object and Data Schema Documentation

A-4 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Data Objects
Each data object listed describes its implemented interfaces, simple/primitive properties, object
properties, and collection properties. The PLM4P internal data objects, however, can only be
accessed by their immediate interface.

For instance, the AdditiveContainedDO data object can be accessed by the
IAdditiveContainedDO interface. Since Additives may be found on multiple specification
types, the AdditiveContainedDO data object has a property named Parent, which is of type
IBaseSpec, the common interface of all specification types.

To access the trade type information for the data object, (starting in All Applications), click
GSM, then Trade Specification, then the Data-Object IGSMTradeSpecDO link, then
ITradeType, then ITradeTypeMML, where the Name property can be found. If trying to
access this data in code, the property can be accessed like so: string tradeName =
((IGSMTradeSpecDO) baseSpec).TradeType.TradeTypeMML.Name;

Each data object also links back to its related database table.

Other Available Data
The topmost navigation provides several other useful listings:

? All Applications—The front page of this document set and provides an alphabetized list of
all application groupings of the highest level business objects. You can navigate from any
of the listed objects to all of their constituent tables via their relationships.

? All Tables—An alphabetical listing of all of the documented tables.

? All Columns—An alphabetical index of all of the Agile PLM4P fields (columns and
join-tables) with their descriptions. This index can be especially useful when searching for
a table when all that is known is a keyword/concept. Columns are listed in the form of
"Columnname.Tablename: Description" (or "JoinTableName.MasterTableName:
Description" for join-relationships). The hyperlink navigates to the table where that
relationship is defined, and down to the specific section where that column is listed.

? All Data-Objects—An alphabetical listing of all of the documented data-object/classes.

? All Data-Object Properties—An alphabetical listing of all of the documented data-object
properties with their descriptions. This index can be especially useful when searching for a
data-object when all that is known is a keyword/concept. Properties are listed in the form
of "Classname.Property: Description". The hyperlink navigates to the data-object where
that relationship is defined, and down to the specific section where that property is listed.

? All Views—An alphabetical listing of all of the Agile PLM4P views.

Object and Data Schema Documentation

Developer Information A-5

Additional Details
Agile PLM for Process uses a custom Object Relational Mapping layer, which defines how the
data objects used in the application are tied to the database tables. Each class relates to a
database table. Each row in the table represents a single object instance. The OR Mapping
relationships are stored in the database. This provides a way to understand the database table
relationships by examining the OR Mapping tables.

PKIDs—Primary Key Identifiers
All tables entries have a uniquely typed PKID by prefixing a 4 digit type id onto the front of a
36 character GUID (or 6 character GUID in some cases).

PKID = 4 Digit Type ID + GUID (Globally Unique Identifier)

The TypeID can help navigate the database structure to locate where an identifier can be found.
For example, the SpecSummary table maintains a SpecID column, which could point to one of
many different specification tables. Extracting the typeID value from the SpecID foreign key
will tell us which table.

OR Metadata Tables
The ORClassMetaInfo table tells us which database table (and therefore which class) the
TypeID represents:

SELECT * FROM orclassmetainfo WHERE type=1004 OR type = 2147;

We can now see that a PKID starting with:

TypeID 1004 is a material specification, the table is MaterialSpec, and the class is
IngredientSpecification

TypeID 2147 is a trade specification, the table is gsmBaseTradeSpec, and the class is
GSMTradeSpecDO

? ORClassMetaInfo—Tells which database table the TypeID represents.

? ORObjectPropertyMetaInfo —Tells the related objects for a table, for single and
multi-value secondary object references. To find related tables based on a specific table
look at:

SELECT * FROM orpropertymetainfo WHERE fkORClassMetaInfo = (SELECT pkid FROM
orclassmetainfo WHERE tablename = '<yourtablename>')

? ORPropertyMetaInfo —Simple and foreign-key fields.

Tablename Classname Type

MaterialSpec IngredientSpecification 1004

gsmBaseTradeSpec GSMTradeSpecDO 2147

Object and Data Schema Documentation

A-6 Agile Product Lifecycle Management for Process Extensibility Overview Guide

Language Aware Tables
To support multiple languages, all translatable text is stored in language aware tables. These
tables will always contain the column, langID, which is a reference to a predefined language in
the SupportedLanguages table. Many of the language aware tables also contain "ML" as part of
the table name. For example, gsmShortNameML contains the text for the specification's short
name. The default value for langID is 0 (English). There should always be a value in the
language aware tables with langID=0. It is important to specify the langID when writing direct
SQL or you may end up with more results than desired. For example:

Select
spec.SpecNumber,
specname.name,
shortname.name shortname

From specSummary spec
inner join SpecSummaryName specname on specname.fkSpecsummary = spec.PKID and
specname.langid = 0
inner join gsmShortNameML shortname on shortname.fkSpecSummary = spec.PKID and
shortname.langid = 0

where
specname.name like '%test%';

	Oracle Agile Product Lifecycle Management for Process Extensibility Guide, Release 6.2.4.x
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Software Availability
	Related Documents
	Conventions

	1 Introducing Extensibility Points
	Sample Code Disclaimer
	Technical Requirements

	2 Extensibility Points
	BOM Calc Extensions
	Possible Uses
	Technical Overview
	Technical Documentation
	Reference Implementation

	Calculation Veto Plugin
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Clone Extensibility
	Clone Event Types
	Possible Uses
	Technical Documentation

	Cost Extensions
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Custom Data Denormalization
	Custom Sections
	Extended Attributes
	Possible Uses
	Technical Documentation

	Custom Portal
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementation

	Email Extensions
	Technical Overview
	Technical Documentation

	eSignature Validate Plugin
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Event Framework
	Technical Overview
	Possible Uses
	Technical Documentation
	Available Reference Implementations
	Legacy Event Model Tables
	Tips:
	Data Captured
	Technical Overview
	Table of Logged Events

	Available Event Subscribers
	Available Event Subscriber Filters
	Available Reference Implementations

	Extended Attribute Calculations
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Extensible Columns
	Possible Uses
	Technical Overview
	Available Reference Implementations

	FlexSync Foundation
	Overview
	Technical Documentation

	Formulation Output Naming Plugins
	Possible Uses
	Technical Documentation
	Available Reference Implementations

	Formulation Percent Breakdown Classification Override Plugin
	Technical Overview
	Technical Documentation

	Formulation Push Percent Breakdown Plugin
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Get Latest Revision Extensibility
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Hierarchy Denormalization Extensibility
	Overview
	Possible Uses
	Technical Documentation

	Hierarchy Navigator Extensibility
	Possible Uses
	Technical Overview
	Display Options (Identity)
	Creating an Identity

	Sort By Options
	Creating a SortBy

	Filters
	Creating a Filter

	Context Menu
	<MenuItem> Attributes
	Creating a Context Menu Item
	Creating a Label

	Workflow Actions

	Identity Plugins
	Object Identity Plugins
	GSM Identity Plugins
	PQM Identity Plugins
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Label Claims Extensibility
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Navigation Extensibility
	Possible Uses
	Technical Overview

	Navigation Extensibility: Supplier Portal
	Possible Uses
	Technical Overview

	Notification Panel
	Possible Uses
	Technical Overview
	Custom Notification Table
	Technical Documentation
	Available Reference Implementations

	Print Extensibility
	Possible Uses
	Technical Overview

	Product Portfolio Management Integration
	Use Cases
	Supported Versions
	Technical Documentation

	Quick Links
	Refresh Hierarchy Warning Plugin
	Technical Overview

	Rich Text Extensibility
	Possible Uses
	Technical Overview
	Available Reference Implementations
	Javascript Wrapper Example for the CkEditor
	Provider Class Example for the CkEditor

	Search Extensibility
	Possible Uses
	Technical Documentation

	Section Level Editing
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Side Bar
	Specification Veto Plugin
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations
	PQM Veto Plugins
	Custom Read Permission
	Custom Write Permission
	Technical Documentation

	Supporting Document Extensions
	External URL Sample
	Technical Documentation
	Configuration Changes
	External URL Page Changes

	User Interface Extensions
	Technical Overview
	Technical Documentation

	Validation Framework
	Possible Uses
	Technical Overview
	Default Language

	Technical Documentation

	Workflow Actions and Guard Conditions
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Workflow Actions—Automatic Workflow
	Possible Uses
	Technical Overview
	Technical Documentation

	Workflow UI Extensions
	Possible Uses
	Technical Overview
	Creating a Workflow Action
	Notes:

	A Developer Information
	PLM4PExtensionUtils Developer Utility Library
	Object Loader URLs
	Format
	Common Usage
	Example
	Passing Parameters in the ObjectLoaderURL

	Object and Data Schema Documentation
	Database Tables
	Data Objects
	Other Available Data
	Additional Details
	PKIDs—Primary Key Identifiers
	OR Metadata Tables
	Language Aware Tables

