Oracle® Agile Product Lifecycle Management for Process

Extended Attribute Calculation Guide

Release 6.2.4.x
F58004-01

May 2022

ORACLE

Copyrights and Trademarks

Agile Product Lifecycle Management for Process
Copyright © 2022, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Contents
PREFACEt e e e e et e e ae e e e e e e eerea s 6
AUIENCE ...ttt ettt et ettt e sttt e b ee e s ab e e s bt e e sabeesabeeebeeesabeeeaabeesabeeeabeeesabeesnseesabeesneeesareeaane 6
Variability Of INSTAIIAtIONSeiiciiiieecceee e e e e ree e e e abe e e e e ab e e e e eenbaeeeennreeeeennrenas 6
DocumeNntation ACCESSIDIITY....ccccuiiei i e e e e e e e ae e e e earaeas 6
F Yool Ty o J O =Tl LI U o] o Yo o SR 6
Yo AN L=l YY1 =1 o111 A TP 6
CHAPTER 1—0OVERVIEW ...ttt e et ab e e e e e e e eaenes 7
CHAPTER 2—CALCULATION SCRIPTING ...ttt ettt aa e 8
Yol g o Lol = g T =41 (=L T T ST T PP 8
(0o T o) 7= (U= 4T o A PSPPI 8
Yol oL A 2 (ST U | PSRN 9
SOOIt SYNTAX CNANEES . eiiiiiiiiee ettt ettt e et e e e et e e e s bteeeesbeeeeesabteeeesbteeeesnseaeesssteeessssranensse 10
Variable ASSIZNIMENTeiiiiiee e e e e e e e e e e st e e e e e ateeesensteeeeenteeeeenbeeesennteeesanrenas 10
(O] aaT o g1 o] O] o 1=] =) o] T T U PSPPSR 10
(01 oY= ol Yol T o1 AV] 7) PSP 11
Available PLM for Process FUNCtions and Propertiescccceeeicveeeiieieeeicciies et ereee e eseee s seee e 11
Calculation Warnings and EITOrSeiicciiiiiiiiiie ettt ettt e e e ree e e sabae e e s abae e s s nbaeessnsbeeeeennsenas 12
(0 TolW] A oY =T o T=Ta o 1= ool =T PP PR 13
Processing Results Returned by an ENUMEIAtOr......c.ccuiiiieciiee ettt ettt e e e ctree e e earee e e earaeeeeanes 13
CHAPTER 3—AVAILABLE PROPERTIES AND FUNCTIONS ... 14
Variables of CUrrent BUSINESS ODJECT........cuuiii ittt et tte e e etee e e e ebee e e e eabeee s enbaeesennreeas 14
NULFIENT FUNCHIONS .t e s e s e e s sree e e s ereeeeseanee 14
TaAre WeEIght FUNCHIONS....coi ittt ettt e e e te e e s s bt e e e s s bteeeesabteeessseaeessseaeansnnes 15
LI L A=Y =d LA e oY o T=T = U UPPSRRY 15
Lo L1 e 1 APPSR PSPPI 16
Extended AtEribute FUNCHIONSooiii et e s 17
Distinct Extended Attribute Value FUNCTIONS........coceiiiiiiiiii e e 17
Distinct Extended Attribute Boolean FUNCLIONS.........coiiiiiiiiiiieeee e e 18
Custom SECtiON FUNCHIONS......ocuiiiiiiiiiiiiiiiiii e sa e s 18
CUSTOM SECLION Cell PrOPEITIES. ..ciiuiiiieieiiieecciieee ettt e et e e e s te e e e sbte e e e sbeeeeesbeeeeesseaeeesnnes 18

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Custom Section Cell Retrieval FUNCHIONS.ciiiiiiiiiiee e 19
(00|01 =T ot e oY o =] 1= PRSP 21

Cell ObjJect Value FUNCLIONSveiiiiiiee ettt e et e e e tte e e e e tte e e s eabaeeeeebtaeesearteaeesansaeeesnnes 21
CHAPTER 4—CUSTOM CALCULATION CLASSES......o e 23
JScript Custom Classes (aka Dynamic Script Methods)......ccuviiieciiieicciiie e 23
CIaSS STIUCTUIE ..enieetieitie ettt ettt ettt et b e s ae e et e e bt e s bt e she e sat e e bt e b e e bt e s beesbeesateeaseebeenneesnnenas 23
=10 Y o] LTSRS 24

(0o T o) 7= {0 - 1 4T o TP PPPUPPRN 26

[DL=T o] [0 1Y 0 o1 o | PP 26
1001 o] < USSR 26
(6o o [T PP P RO PRSP PTURROPPOUONt 27

[BT=T o] {0} 0 a1 o] RS 27

(0o T} 7= (U= 1 4T o ST PPPURPRN 27

(07 [T Y 4o] Y ol o T PP PPPUPRRN 28
Determining Calculation LOCAtiON.......ccuiiii ittt e e e e sbe e e e e e e e e e sareeas 28
Performance CoNSIAErationSccoeiiieriiiiiieieeree ettt st ettt sb e sae e saee s e e b e b e nas 28
Creating Custom Helper METNOAScoiciiieecee ettt e e e et e e e e aba e e s enrae e s eenreeas 29
APPENDIX A—IN FOODS IDS AND UOM ISO CODES. ..ot 31
T e TeTe L3110 T TSP TOROPRP 31
UNit Of MEASUIE I1SO COUESeeiuiietieitieeiie ettt ettt ettt ettt e e bt esbeesatesatesabe e bt e nbeesbeesmeesaeeeneeentean 32

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle
Management for Process. Information about using Oracle Agile PLM for Process resides in application-
specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle
Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not
match your installation. The user interface of Agile PLM for Process applications and the features
included can vary greatly depending on such variables as:

= Which applications your organization has purchased and installed

= Configuration settings that may turn features off or on

= Customization specific to your organization

= Security settings as they apply to the system and your user account

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core
software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Chapter 1—Overview

Calculated Extended Attributes allow you to create a read-only extended attribute (EA) that displays
results of a calculation to the user. The calculation logic, specified in the Data Admin user interface for
Extended Attributes, is written as a script which can access data from other extended attributes, custom
sections, nutrients, and additional data of the owning business object (e.g., specifications). Additionally,
the script can execute calls to custom classes to return additional data to the script.

Calculation scripts are written in a scripting language (such as JavaScript) and executed server-side by a
script interpreter engine.

This document details the process of creating calculation scripts, accessing data from various available
sources, and leveraging custom classes for the calculation.

Reference implementation code is also available in the core release package that provides guidelines
and example implementations of creating custom calculation class extension points.

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Chapter 2—Calculation Scripting

All Calculated EAs (Calculated Numeric, Calculated Text, and Calculated Boolean) must implement a
calculation using JScript or JavaScript. However, most calculations require data available on the business
object (specification, sourcing approval, etc.). Therefore, PLM for Process allows for ways to extend the
scripting feature set by exposing many predefined PLM for Process functions and properties that give
access to specific data. Additionally, scripts can execute custom classes and get a return value to aid in
the calculation.

Script Engines
There are two script engines available for calculation scripts.

1. JScript Engine - This is the default scripting engine. Scripts are written in JScript (an interpreted,
object-based scripting language that is the Microsoft implementation of the ECMA 262 language
specification (ECMAScript Edition 3)), and must use a slightly modified syntax for variable
assignment and comparison operators. All examples in this document are using JScript and the
modified syntax.

2. lJint Engine — A new script engine introduced in the 6.2 release allows scripts to be written in
traditional JavaScript, with no need to modify the syntax for variable assignment and
comparison operators. Scripts written for the Jint engine can leverage all of the existing helper
methods and functions defined in this document, and have a more intuitive and effective
management and use of custom classes and methods.

The script engine is selected from the Data Admin Screen:

Script Engines: |yt v

Calculation Script: m

x o JScript ntCell @ GetCell(MyRow, MyColumn);
var CurrentlowSequence @ MyCel

var CurrentColumnSequence € MyCell.ColumnSeguence;

return (CurrentCoiumnSequence<<i) + CurrentRowSegquence;

Cakulate

Configuration

Script Engines are configured in the CustomScriptEvaluationConfig.xml file in the config\Extensions
directory. ScriptEngine entries are nodes within the Usage node for EACalculation. The JScript engine is
configured as the default, but can be changed to the Jint engine using the attribute default. The
ScriptEngines defined here are the ones available in the EA calculation screen in Data Admin.

Each Script Engine can use Script Helper classes to define new helper methods that can be called from
the calculation script. See the Chapter 4—Custom Calculation Classes section below for details.

Here is a sample configuration entry for EA Calculation, using an out-of-the-box helper class:

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

<ScriptEngine default="false" name="Jint"
FactoryURL="Class:0Oracle.PLM4P.ScriptEvaluation.ScriptEngine.JintScriptEngineFactory,ScriptEva
luationLib" LogErrorsToUser="true">

<ScriptHelper name="CoreHelper" UseInApps="*"
FactoryURL="Class:Xeno.Prodika.ExtendedAttributes.Calculation.Hosts.HostBasedScriptEvaluationF
acadeFactory,ProdikalLib">

</ScriptHelper>

</ScriptEngine>

Script Results
The basic calculation script requirement is to return a value that can be converted to the relevant .NET

type.

= Calculated Boolean — Must return a Boolean, or NULL
= Calculated Numeric — Must return an integer, double, or float
= Calculated Text — Must return a string

For example:

var x @ GetNutrientPer100g('PROCNT");
return x/2;

The following screenshot demonstrates a Calculated Text extended attribute that uses JScript to
determine if the daily value for fat is less than 2%. If it is it returns “Less than 2%”, otherwise it returns
the daily value for fat, followed by a % symbol.

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

‘s Daily Value for Fat (Us-DVFat-Text) Active

Extended Attribute Template

Summary

~ Attribute Configuration
Attribute Name: Daily Value for Fat &
Attribute ID: US-DVFat-Text
Type: Calculated Text
Status: Active
Distinck:
Available In: Nutrient Profile
Class: Custom Sections
Tags: Do Mot Publish To Supplier
Group(s): Chid Nutrition

Behaviors: Allow Mulls Show Error Details

Calculation Scripz | yar satFatPercentDailyValue @ GethumericExtendedAttributeValue(Saturated_Fat_DVY);
if (satFatPercentDailyValue < Z)
return "Less than 236"
else
return satFatPercentDailyValue + ™36

Calculate

Calculation Result:

JScript Syntax Changes
When creating a JScript calculation script, there are several special syntactical modifications required for
PLM for Process that differ from JScript.

Variable Assignment
You must use the ‘@’ sign for assignment, which will get converted to an equals (=) sigh when the script
is being interpreted. For example:

var x @ 3.75; //declare variable x to be 3.75

Comparison Operators
When comparing values, use a single equals (=) sign, which will get converted to a double equals (==)
sign when the script is being interpreted. For example:

if (x = y) //checks to see if x is equal to y
{ \\ do something . . . }

Likewise, use the <@ and @> signs for less than or equal to and greater than or equal to, respectively.

To test inequality, use !@ for not equals (!=). The following table lists the syntax changes required for
JScript scripts.

© 2018 Oracle Corporation T

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Operation Use this Instead of this
Variable assignment @ =

Equals = ==

Not equals @ I=

Less than or equal to <@ <=

Greater than or equal to >@ >=

This sample JScript calculation shows how to do use conditional logic, variable assignment, and
comparison with the required syntax changes for PLM for Process scripts.

var x @ 3; //declare variable x to be 3

var y @ 7; //declare variable y to be 7

var z @ 6; //declare variable z to be 6

var result; //declares a variable called result

result @ GetNutrientPer100g('PROCNT'); //assigned the Protein amount per 100g to result variable
if (x =y) //checks to see if x is equal to y

if (z<y && y>x) //checks to see if z is less than y and y is greater than x
result@result+l; //adds one to the result

else
result@result+2; //adds two to the result

else if (x <@ y) //checks to see if x is less than or equal to y

if (z<y || y>x) //checks to see if z is less than y or y is greater than x
result@result+10; //adds ten to the result

else
result@result+12; //adds twelve to the result

else // x is greater than y

{
result @ 100; //set the result to 100

}

return result;

Other JScript Syntax

All other syntax rules can be found in the Microsoft JScript documentation available online:

http://msdn.microsoft.com/en-us/library/z688wt03 (VS.80) .aspx

Available PLM for Process Functions and Properties

One of the major features available to EA calculation scripts is the ability to access many out of the box
PLM for Process functions and properties. These functions and properties provide access to various data
elements of the business object that the EA is added to, such as nutrition information, compliance
values, custom section and extended attribute values, and more.

Referencing the name of the function or property in the script will allow it to be called.

For example, the following script would return the value of the numeric extended attribute with a
unique attributelD of “HeatIndex.” This is an example of how to set up a calculated attribute that
references another extended attribute.

© 2018 Oracle Corporation

11

http://msdn.microsoft.com/en-us/library/z688wt03(VS.80).aspx

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

var heat @ GetNumericExtendedAttributeValue('HeatIndex');
return heat;

inthefolloning exanmple, aproperty called BeginningBaichSize, which retums the beginning betch size
of a formulation specification, is used to evaluate the Protein per Batch calculation. The
GetNutrientPer100g function is passed “PROCNT”, a nutrient id (see

FHBOHENDS v he Thfsterercalsaiersre 1ee2feis e il T pigsiagic, or access

other data not directly available through the script properties and functions listed above, may call out to
custom classes from their scripts. The custom classes get executed and return a result back to the script.
They may optionally receive parameter data from the script.

JScript Custom Classes (aka Dynamic Script Methods)

Note that while Dynamic Script Methods are fully functional and supported for
JScript, an improved implementation option is available that does not restrict the
helper class to one method. See the Creating Custom Helper Methods section
below for details.

Dynamic script methods allow customers to call to a specific class to invoke a helper method. Customers
create a class, add the class to a configuration to make it accessible to the EA Calculation, and use a
predefined PLM for Process function, called MethodInvoke, to call out the desired class. Most of the
functions that are available in JScript are also available to the custom class, albeit with some slight
differences in naming and parameters required. Additionally, the business object attached to the EA can
be accessed.

The MethodIinvoke JScript call takes two parameters:

1. The key that references your custom class. This key/name is added to the
CustomerSettings.config file. See below for more details.
2. Anarray of data to pass into your custom class. See example below.
For example:

var params @ new Array(1l);
params(@) @ GetNumericExtendedAttributeValue('BOX_LENGTH');
var emptyVol @ MethodInvoke('MySampleEmptyVolumeCalculator', params);

Class Structure

A custom calculation class must implement the interface
Xeno.Prodika.ExtendedAttributes.Calculation.IDynamicScriptMethod, referencing the ProdikalLib.dll
assembly.

Figure 1. IDynamicScriptMethod interface

© 2018 Oracle Corporation

12

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

| IDynamicScriptMethod 2
lnterface
-

= Methods
W fmeokefobrectl paramefers, ipmamicS crpflfeiftooonferf corfexd! afvect

Your custom business logic is coded in this Invoke method, and must return an object, which can be

used as needed by the script that receives the result. JScript can then convert the returned object to the
required data type.

The Invoke method takes the following arguments:

1. Parameters: An object array that is passed in from the JScript, which clients can use to pass relevant
information to the custom calculation class.

2. Context: An IDynamicScriptMethodContext object. See below.

Figure 2. iDynamicScriptMethodContext object

' IDynamicS criptMethodContest 2

Interface

' Properties
T Opnamics crpflarabiaTesolvar gaf o i0pnamic 5 copfE xianded fnbufal/arabiad asolvar
T Ervoes o gaf B I E o Sf
T VanatePesohver gal b i kferdedd fbute Yaradie T esodver
T WarmingsOff f ged- zef- - boad
“ hethods
W Aot rordMeszagefzfing meszage) - woid

The IDynamicScriptMethodContext object provides:

e Errors: Access to the Errors collection.

e WarningsOff: A property to allow for turning Warnings on/off.

e AddErrorMessage(): Method that only adds an error if Warnings are set to Off.
e DynamicScriptVariableResolver: Returns a utility class

(IDynamicScriptExtendedAttributevariableResolver) that provides many of the same method
calls and variables that are available in the JScript functions.

o The Entity property gives access to the in-memory business object that holds the EA
(e.g., a trade specification).

o Note: If your custom calculation class is leveraging other calculated extended
attributes, use the DynamicScriptVariableResolver to retrieve their values, which will

© 2018 Oracle Corporation

13

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

ensure they get calculated. Do not retrieve them from the Entity directly, as they may
not be calculated yet.
e VariableResolver — obsolete — Do not use.

Example

The following example demonstrates a simple custom calculation class that calculates the empty volume
in a product package. For illustration purposes, it receives two values directly from the JScript, length
and width, as input parameters. It then retrieves (with Warnings off) extended attribute values for two
EAs, calculates and returns the volume, and adds a warning message if the calculated result is less than
0.

using Xeno.Prodika.ExtendedAttributes.Calculation;

namespace CalculationExtensions.ExtendedAttributes

{
public class SampleEmptyVolumeCalculator : IDynamicScriptMethod
{
public object Invoke(object[] parameters, IDynamicScriptMethodContext context)
{
double volume = 0.0;
double length = double.Parse(parameters[@0].ToString());
double width = double.Parse(parameters[1].ToString());
context.WarningsOff = true;
double height = GetExtendedAttribute(context, "BOX_HEIGHT", "IN"); // inches
double fill = GetExtendedAttribute(context, "FILL", "CI"); //cubic inches
context.WarningsOff = false;
volume = (length * width * height) - fill;
if (volume < 9)
// this adds errors to the UI when calculation is triggered, if the calculated value is ne
gative.
context.AddErrorMessage("Empty Volume has returned a negative number");
}
return volume;
}
private double GetExtendedAttribute(IDynamicScriptMethodContext context
, string attributeID, string UOM)
{
return context.DynamicScriptVariableResolver.GetExtendedAttributeValue(attributeID,
uoM, -1, -1);
}
}
¥

The JScript for the EA would look like the following:

var result;
var params @ new Array(2);

params(0) @ GetNumericExtendedAttributeValue('BOX_LENGTH');
params(1l) @ GetNumericExtendedAttributeValue('BOX_WIDTH');

result @ MethodInvoke('MySampleEmptyVolumeCalculator', params);

return result;

© 2018 Oracle Corporation

14

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Configuration
To enable your custom class for EA calculations, you must add it to the CustomerSettings.config file:

Find the <Extended Attributes><DynamicScriptMethods> section and add a new entry for your custom
class:

<add key="YourCustomFunctionName"
value="Class:<Fully qualified namespace.classname>,<DLLName>" />

Example:

<add key="MySampleEmptyVolumeCalculator"
value="Class:CalculationExtensions.ExtendedAttributes.SampleEmptyVolumeCalculator,CalculationE
xtensions" />

Deployment
Build your class library and copy the DLL to the bin folders of each module that will need to access it.

= {PRODIKA_HOMENWeb\gsm\bin (For GSM)
= {PRODIKA_HOMENWeb\scrm\bin (For SCRM)
= {PRODIKA_HOMENWeb\pgm\bin (For POM)
= {PRODIKA_HOME}\Web\reg\bin (For ADMIN)

Reset IIS for configuration changes to take effect.

Example 2

The following example demonstrates a custom calculation class that calculates the total costs for a trade
specification. We also created another class for formulation specification, the usage of them are all the
same. This method will receive a parameter from Jscript(abbreviation of currency), this parameter also
can be set to “, then it will try to convert context.DynamicScriptVariableResolver.Entity to ITradSpecBO,
if it works then continue to calculate the total cost for the spec, if any errors occur it will add a warning
message and return 0.

FUNCTION LIST

Function Name in JScript Parameter Return value (assume USD is the
preferred currency)

TradeTotalCostsCalculator ‘usp’ 10.00
TradeTotalCostsCalculator ‘CNY’ 60.00
TradeTotalCostsCalculator v 10.00 USD
FormulationTotalCostsCalculator | ‘USD’ 10.00
FormulationTotalCostsCalculator | ‘CNY’ 60.00
FormulationTotalCostsCalculator | “ 10.00 USD

© 2018 Oracle Corporation

15

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Code
namespace CalculationExtensions.ExtendedAttributes

{
class TradeSpecTotalCostsCalculator : IDynamicScriptMethod

{
public object Invoke(object[] parameters, IDynamicScriptMethodContext context)

{
string abbr = parameters[0].ToString();

var currency =
CommonCostHelper.CurrencyService.GetCurrencyByAbbriviation(abbr);

var specBo = context.DynamicScriptVariableResolver.Entity as ITradeSpecBO;
if (specBo == null) return 0;

var specDo = (IGSMTradeSpecDO)specBo.DataObject;

var sourceCost = CommonCostHelper.CreateCost(specDo.TheoreticalCost);

var targetCurrencyId = currency != null ? currency.PKID :
specBo.PreferredCurrency.PKID;

var targetCost = CommonCostHelper.CreateDefaultCost(targetCurrencyId, 1,
TradeSubComponentCostHelper.RollupCostPerValueUOM.PKID);

if (CommonCostHelper.TryConvertCostExceptUOM(sourceCost, ref targetCost))
{

if (currency != null)

{

return targetCost.Price;

}

return targetCost.Price + +
specBo.PreferredCurrency.CurrencyML.Abbreviation;

}

context.AddErrorMessage("An errors occurred during conversion.");

return 0;
}
}
}
Deployment
Build your class library and copy the DLL to the bin folders of each module that will need to
access it

{PRODIKA_HOMENWeb\gsm\bin
{PRODIKA_HOMENWeb\reg\bin

Configuration
Find the <Extended Attributes><DynamicScriptMethods> section in CustomerSettings.config file and add
a new entry for the custom class,

© 2018 Oracle Corporation

16

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

<add key="TradeSpecTotalCostsCalculator"
value="Class:CalculationExtensions.ExtendedAttributes.SpecTotalCostsCalculator,CalculationExte
nsions" />

Calculation Script

Create a Calculated Text EA to invoke this new function, the JScript for the EA would look like the
following:

var result;

var params @ new Array(1l);

params(@) @ USD’
result @ MethodInvoke('TradeTotalCostsCalculator', params);

return result;

Reset IIS for configuration changes to take effect

Determining Calculation Location

Calculation scripts must be tested in Data Admin as well as when on an actual business object. However,
when running the script in Data Admin, you will not have access to other EAs that may be required in
when on the business object. This may lead your script to return an invalid result in Data Admin, but a
valid result on a specification. Therefore, you can determine in your script whether or not you are
executing the script on a real business object or not, and modify the script, if needed. For instance, you
could turn warnings off when the script is running in Data Admin.

The following code will return true if you are running this for an actual business object, or false if
running this in Data Admin:

if (context.DynamicScriptVariableResolver.Entity is IXUniqueObject) {..}

Performance Considerations

Be aware that having a large number of calculated EAs on a business object may have a negative effect
on performance. If utilizing many custom classes to perform calculations, try to limit their impact as
much as possible by minimizing the scope of their work, using caching (if applicable), and consolidating
classes if possible.

© 2018 Oracle Corporation

17

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Creating Custom Helper Methods

Customer script helper classes can be used to provide multiple methods and properties to the
calculation script. These helper classes are specified in the
config\extensions\CustomScriptEvaluationConfig.xml configuration file. The helper class is specified as a
ScriptHelper node to the /ScriptEvaluationUsages/Usage[name="EACalculation"]/ScriptEngine element.

<ScriptEvaluationUsages configChildKey="name">
<Usage name="EACalculation" configChildKey="name">

<ScriptEngine name="Jint"
FactoryURL="Class:0Oracle.PLM4P.ScriptEvaluation.ScriptEngine.JintScriptEngineFactory,ScriptEva
luationLib" LogErrorsToUser="true">

<ScriptHelper name="CoreFacade" UseInApps="*"
FactoryURL="Class:0Oracle.PLM4P.ScriptEvaluation.ScriptEvaluationHelpers.CoreScriptEvaluationHe
lperFacadeFactory,ScriptEvaluationLib"></ScriptHelper>

<ScriptHelper name="MyCustomScriptHelper" UseInApps="*"
FactoryURL="Class:Examples.ScriptEvaluationHelpers.EACalculation.EvaluationHelperFacadeFactory
,MyCustomUtils"></ScriptHelper>

<ScriptHelper name="MyGSMCustomScriptHelper" UseInApps="GSM"
FactoryURL="Class:Examples.ScriptEvaluationHelpers.EACalculation.GSMEvaluationHelperFacadeFact
ory,MyCustomUtils"></ScriptHelper>

</ScriptEngine>
</Usage>
The name attribute is used to refer to the helper class inside your scripts (e.g.,
MyGSMCustomScriptHelper.IsSpecApproved()).

The UselnApps attribute specifies which application (or comma delimited a list of applications) this
helper is available for (e.g., “GSM,SCRM,NPD”). The asterisk (*) is used to indicate that it is available to
all applications.

The FactoryURL attribute specifies the class you will be using, using the ObjectLoaderURL syntax. See
the appendix in the Agile Product Lifecycle Management for Process Extensibility Overview Guide for
more details.

The script helper class must be designed as follows:

A factory class that implements
Oracle.PLMA4P.ScriptEvaluation.ScriptEvaluationHelpers.IScriptEvaluationHelperFacadeFactory from the
ScriptEvaluationLib.dll, and implements a simple Property for the ReferenceName and a Create method
that returns a ScriptEvaluatrionHelperFacade class.

© 2018 Oracle Corporation

18

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

» |

| IScriptEvaluationHelperFacadeFactory
Interface

= Properties
B Referencenlame get set o string
=l hethods

B CreatefiscriptEvaivationCantext schptEvaiuatianCantaxt) ! iScriptEvaiuationracads

The Create method receives a scriptEvaluationContext as a parameter, which contains
IScriptEvaluationContext interface which contains a list of Results (for EA Calculation, this represents the
list of calculation errors) and TargetObject which holds the current object being validated.

» |

| IScriptEvaluationContext
Interface

= Properties
B Recyits f get Fr it tring =
& TargetOuject { get; }r affect
= hethods
[AddRescuwithdecsagetiring mecsags) ! vaid

The implementation of IScriptEvaluationHelperFacade is the class that will be providing your helper
methods.

» |

| IscriptEvaluationFacade
Interface

= Properties
J Recyits f get Friiet< etring =
& TargetOiject { get;] r abyect
= Methods
[AddRecuitMecsagetiring mecsage) | vaid

Extending the existing CoreScriptEvaluationFacade will simplify you class, as you will not have to

implement the Properties and Methods defined above. This lets your class focus on the helper methods
you want to add.

© 2018 Oracle Corporation

19

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Appendix) representing Protein. This script simply returns the result of dividing the protein amount per
100g by beginning batch size.

return BeginningBatchSize/GetNutrientPer100g('PROCNT");

A detailed listing of all available functions and properties is available in Chapter 3—Available
Properties and Functions.

Calculation Warnings and Errors

When calling some of the predefined functions, warning messages may get generated under certain
conditions. For instance, when trying to retrieve a specific EA that is not on the business object, a
warning is created and would be viewable to the user. Turning calculation warnings off prior to the EA
retrieval would prevent that warning message from being displayed.

You can control calculation warnings and errors using the following techniques:

= TurnWarningsOff() — Turns warnings off in the following lines of code until it is turned back on
or the script ends

= TurnWarningsOn() — Turns warnings on in the following lines of code until it is turned off
explicitly. Warnings are on by default

= AddErrorMessage(<string>) — Displays an error message within quotes
ex: AddErrorMessage('Error in running this script')

For example:

TurnWarningsOff();
var override @ GetNumericExtendedAttributeValue('FPCalciumOverride','ME', -1, -1);
TurnWarningsOn();

var roundedCalciumPerServing @ GetNumericExtendedAttributeValue('FPCalciumRounded', -1234567890, -
1234567890) ;

if (roundedCalciumPerServing = -1234567890)

AddErrorMessage('Please correct this problem by adding Calcium to the Nutrition Panel.');

}

else

{

if(override > -1)
{

return override;
}
}

return roundedCalciumPerServing;

In this example, if the FPCalciumOverride extended attribute is not found it will not display a warning
icon, however if it cannot find FPCalciumRounded it will display the warning. In addition, if
FPCalciumRounded is null (-1234567890) then it will also display the additional error message. You could
also turn warnings off here and just display your added error message.

© 2018 Oracle Corporation

20

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Calculation Dependencies

If your custom calculation script is leveraging other calculated extended attributes, retrieving their value
will force them to be calculated too, unless they have already been calculated. This occurs regardless of
in which order the extended attributes are located in the Ul.

Processing Results Returned by an Enumerator
When results are returned as an enumerator by functions such as GetCells (see

© 2018 Oracle Corporation

21

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Chapter 3—Auvailable Properties and Functions), a loop structure is used to iterate through it in order to
access a particular cell data. Two methods are used to access each item in an enumerator:

Method 1

var item;
var cellsInRow @ GetCells(MyRow,,, 'LEFT');
while(cellsInRow.MoveNext())

{
item @ cellsInRow.Current;
// at this point your item variable is a cell object
¥
Method 2
var item;

var cellsInRow @ GetCells(MyRow,,, 'LEFT');
for(;cellsInRow.MoveNext();)
{

item @ cellsInRow.Current;

// at this point your item variable is a cell object

© 2018 Oracle Corporation

22

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Chapter 3—Available Properties and Functions

Note that example scripts provided in this section are based on the |Script
modified syntax. However, these properties and functions are also available to the
Jint engine (except without the “@”syntax changes).

Variables of Current Business Object
Any variables that are not defined on a business object will return a zero (0).

Variable Name

Return value

BeginningPercentTS The beginning % total solids value from the specification
FinalPercentTS The final % total solids value from the specification
TotalSolids The total solids value from the specification

FinalPercentTSOverride

The final % total solid override value from the specification

Density The density value from the specification

FinalDensity The final density value from the specification
FinalDensityOverride The final density override value from the specification
AmountPerServing The amount per service value from the specification
ReferenceAmount The reference amount value from the specification
BeginningBatchSize The beginning batch size value from the specification
ApproximateYield The approximate yield value from the specification

Note: All values in the database are stored as % solid values even if your system is configured to display

% moisture.

Nutrient Functions

Function

Definition

Common Parameters and Definitions

GetNutrientItemRoundedValue

Returns the rounded value of
the Nutrient declared.

GetNutrientPerleog Returns the declared value
of the Nutrient declared Per
100 grams.

GetNutrientPerieemL Returns the declared value

of the Nutrient declared Per
100 ml.

GetNutrientValuePerServing

Returns the per-serving
value of the Nutrient
declared.

e <infoodsID>—String value representing the
ID of the nutrient to obtain

e <returnVallfNotDeclared>—Optional,
numeric value to be returned if the nutrient
is not declared

e <returnVallfNotDefined>—Optional,
numeric value to be returned if the nutrient
is not defined

© 2018 Oracle Corporation

23

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Tare Weight Functions

GetTareWeight Returns the Tare Weight | ¢ <uomISOCode>—Optional, string value

information from the representing the ISO code of the UOM the
extended attribute is expressed

e <returnVallfNotDefined>—Optional,

GetTareWeightReferenceWeight Returns the Reference numeric value to be returned if the tare
weight additive is not defined

specification.

Weight information from
the specification.

Tare Weight Properties

TareWeightPer Returns the value from
the Tare Weight Per field
as described on the
specification.

© 2018 Oracle Corporation 24

Total Cost

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Function

Definition

Common Parameters and Definitions

GetSpecTotalCost

Returns the sum total of
cost on the trade and/or
formulation
specification. When used
on the trade, this
function sums the cost of
directly associated lower
level trade specifications,
packaging specifications
and the material
specification (if
applicable). When used
on the formulation, this
function sums the cost of
directly associated
packaging and material
inputs.

GetMatSpecTotalCost

Returns the total cost of
the directly associated
material specification(s)
on the trade and/or
formulation
specification.

GetPkgSpecTotalCost

Returns the total cost of
the directly associated
packaging
specification(s) on the
trade and/or formulation
specification.

e <currencylSOCode>—O0ptional, string
value representing the I1SO code of the
currency the extended attribute is
expressed. If not specified, we will use the
spec preferred currency as default.

e <returnVallfNotDefined>—Optional, a
string value to be returned if the method is
not defined.

© 2018 Oracle Corporation

25

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Compliance Functions

Function

Definition

Common Parameters and Definitions

GetAdditiveKTCMax100g

Returns the declared value
of the Known To Contain
Additive.

e <CompliancelD>—String value
representing the ID of the compliance
item to obtain

e <uomlSOCode>—Optional, string value

GetAdditiveMCMax100g

Returns the declared value
of the May Contain
Additive.

representing the ISO code of the UOM
the extended attribute is expressed

e <returnVallfNotDeclared>—Optional,
numeric value to be returned if the

GetAllergenKTCMax100g

Returns the declared value
of the Known To Contain
Allergen.

compliance item is not declared

e <returnVallfNotDefined>—Optional,
numeric value to be returned if the
compliance item is not defined

GetAllergenMCMax100g

Returns the declared value
of the May Contain
Allergen.

GetSensitivityKTCMax100g

Returns the declared value
of the Known To Contain
Intolerances/Sensitivity.

GetSensitivityMCMax1e0g

Returns the declared value
of the May Contain
Intolerances/Sensitivity.

Extended Attribute Functions

Distinct Extended Attribute Value Functions
Note that when retrieving EAs by the attribute ID, the EA must be configured as Distinct in Data Admin.

Function

Definition

Common Parameters and Definitions

GetMaxRangeExtendedAttributeVvalu
e

Returns the .
declared value of

GetMinRangeExtendedAttributeVvalu
e

the extended
attribute

GetNumericExtendedAttributeValue

GetTargetRangeExtendedAttributeV
alue

<extAttrID>—String value representing the
Attribute ID of the extended attribute to obtain
for use in the calculation
<uomISOCode>—Optional, string value
representing the ISO code of the UOM in which
the extended attribute is expressed
<returnVallfNotDeclared>—Optional, numeric
value to be returned if the extended attribute
is not declared
<returnVallfNotDefined>—Optional, numeric
value to be returned if the extended attribute
is not defined, or if the extended attribute has
been defined but is not of type Numeric

© 2018 Oracle Corporation

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Distinct Extended Attribute Boolean Functions

Function

Definition

Common Parameters and Definitions

IsBooleanExtendedAttributeSet

IsExtendedAttributeMinValueSet

IsExtendedAttributeMaxValueSet

IsExtendedAttributeTargetValueSe
t

IsNumericExtendedAttributeSet

IsQualitativeExtendedAttributeVa
lueSet

IsQualitativelLookupExtendedAttri
buteSet

Each of these
functions returns
true if the
<extAttrID> exists
and a value is set;
otherwise false.

<extAttrID>—String value representing the
Attribute ID of the extended attribute to obtain for
use in the calculation

Custom Section Functions

Custom Section Cell Properties

Property Definition Return Value Example

MyCell A property that identifies a A cell object value | var selfCell @ MyCell;
cell of a current extended
attribute.

MyColumn A property that identifies an | String value that var currentCollumn @ MyColumn;
Agile handle of a column represents column
that extended attribute is Agile handle
located on.

MyRow A property that identifies an | String value that var currentRow @ MyRow;
Agile handle of a row that represents row
extended attribute is located | Agile handle
on.

© 2018 Oracle Corporation

27

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Custom Section Cell Retrieval Functions

Function Definition Return Common Parameters and
value Definitions
GetCell A function that identifies | A cell <rowHandle>—An Agile
a cell specified by arow | object handle of a row
Example:
. and a column.
var x @ GetCell(MyRow,MyColumn); <columnHandle>—An Agile
handle of a column
GetCells A function that identifies | A list of <rowlD>—User-defined row
list of cells specified by a | cell objects | ID or an Agile handle of a

var typeFilter @ new Array(2);

typeFilter[@] @ 'Boolean’;

typeFilter[1] @ 'Numeric’;

var allCellsInTestColumn @ GetCells(
,‘TESt',,);

var allFilteredCellsInLeftToMyCell @

GetCells(MyRow, ,typeFilter, 'LEFT");

combination of row,
column, EA type, and
direction. It may include
current cell as a part of
the result. If both
<rowID> and
<columnID> are null
parameters, returns an
empty enumeration.

row. If a null parameter, it
acts as all rows.

<columnID>—User-defined
column ID or an Agile handle
of a column. If a null
parameter, it acts as all
columns

<typeFilter>—An array of
string values that represent
extended attribute types that
needs to be filtered. If a null
parameter, it ignores this
filtering. Valid values are:

- Boolean

- Calculated Boolean

- Calculated Numeric

- Calculated Text

- Date

- Free Text

- Long Free Text

- Long Multi-lingual Free Text
- Multi-lingual Free Text

- Numeric

- Qualitative Lookup

- Qualitative

- Quantitative Range

- Quantitative Tolerance

- Referenced Item Collection

<directionFilter>—A string
that represents a location of
cells relative to the current
extended attribute. If a null
parameter, it ignores this

© 2018 Oracle Corporation

28

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Function Definition Return Common Parameters and
value Definitions
filtering. Valid values are:
-UP
- DOWN
- LEFT
- RIGHT

GetCellInMyColumnByRowID A function that identifies | A cell <rowlID>—User-defined row
acellin a current object ID or an Agile handle of a row
extended attribute

Example: column specified by a

var x @ GetCellInMyColumnByRowID row. If more than one

CXY'); cell matches, returns the
first cell in the result.

GetCellInMyRowByColumnID A function that identifies | A cell <columnID>—User-defined
acellin a current object column ID or an Agile handle
extended attribute row of a column

Example: specified by a column.

var x @ GetCellInMyRowByColumnID('B');

GetCellsByRow A function that identifies | A list of <rowlD>—User-defined row
an enumeration of cells cell objects | ID or an Agile handle of a row
in a specified row. Can

Example: return cells from

var x @ GetCellsByRow(MyRow) multiple rows if they are
bounded by the same ID.

It may include current
cell as a part of the
result.

GetCellsByColumn A function that identifies | A list of <columnID>—User-defined
an enumeration of cells cell objects | column ID or an Agile handle
in a specified column. It of a column

Example: may include current cell

var x @ GetCellsByColumn('Test")

as a part of the result.

© 2018 Oracle Corporation

Cell Object Properties

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Property

Return value

ColumnHandle

String value representing a column’s Agile handle

ColumnId

String value representing the user-defined column ID

ColumnSequence

Integer representing a cell column sequence

RowHandle

String value representing a row’s Agile handle

RowId

String value representing the user-defined row ID

RowSequence

Integer representing a cell row sequence

Type

Extended attribute type. Possible types are:
'Boolean’

'Calculated Boolean'
'Calculated Numeric'
'Calculated Text'

'Date’

'Free Text'

'Long Free Text'

'Long Multi-lingual Free Text'
'Multi-lingual Free Text'
‘Numeric'

'Qualitative Lookup'
'Qualitative'

'Quantitative Range'
'Quantitative Tolerance'
'Referenced Item Collection’

Value

A property that lets you retrieve the extended attribute value of a cell object.

ex: var numValue @
GetCellInMyRowByColumnID('Test').Value.GetNumericValue()

Cell Object Value Functions

Function Definition Return value Parameters and
Definitions
GetBooleanValue Retrieves boolean integer none
value of an 0 is false,
Example:

var x @ GetCellInMyRowByCol

extended attribute. 1is true,

umnID('Test').Value.GetBooleanValue() -1if not set
GetDateValue Retrieves datetime dateTime none
value of an
Example:

var x @ GetCellInMyRowByCol
umnID('Test').Value.GetDateValue()

extended attribute.

GetFreeTextExtendedAttributeValue Retrieves string String none

Example:

var x @ GetCellInMyRowByCol
umnID('Test').Value.GetFreeTextExten

value of a free-text
extended attribute.

dedAttributeValue()

GetMultipleValues Retrieves selected Array of strings none
qualitative values

Example:

var x @ GetCellInMyRowByCol

umnID('Test').Value.GetMultipleValues()

that are on an
extended attribute.

GetNumericValue Retrieves numeric numeric <ISOCode>—An
: N value of an optional parameter,
xample: . ar
var x @ GetCellInMyRowByCol extended attribute. specifying a UOM. If
umnID('Test').Value.GetNumericValue Reports an error if it specified, the extended

© 2018 Oracle Corporation

30

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Function Definition Return value Parameters and
Definitions
O is unable to convert attribute’s value is

var x @ GetCellInMyRowByCol
umnID('Test').Value.GetNumericValue
('KG")

to the specified
UOM, returns -
123456789.

firstly converted from
the extended attribute’s
default UOM to this
UOM, then that value is
returned.

GetQualitativeExtendedAttributeValue | Retrieves string A comma- none
: N value of a delimited string
Xample: . .
var x @ GetCellInMyRowByCol qualitative extended | that represents
attribute. the selected
umnID(‘Test').Value.GetQualitativeExten extended
dedAttributeValue() attribute
value(s)

GetQualitativelookupExtended Retrieves string A comma- none

AttributeValue

Example:
var x @ GetCellInMyRowByCol

value of a
qualitative-lookup
extended attribute.

delimited string
that represents
the selected

umnID('Test').Value. extended
attribute
value(s)
GetRangeValue Retrieves numeric numeric <rangeType>—A string
N value of an value that specifies type
—p—var ” @.GetCellInMyRowByCol extended attribute of property to retrieve;
umnID('Test').Value. .GetRangeValue(based on a property case insensitive. Valid
‘max") type provided. values are
var x @ GetCellTnMyRowByCol Reports an error if it ‘min’, ‘max’, ‘target’.
umnID('Test').Value.GetRangeValue(is unable to convert
‘min’, 'KG") to specified UOM, <ISOCode>—An
returns optional parameter,
-123456789. specifying a UOM. If
specified, the extended
attribute’s value is
firstly converted from
the extended attribute’s
default UOM to this
UOM, then that value is
returned.
GetStringValue Retrieves the string | String none
value of an If EA has
Exanple: extended attribute. | multiple

var x @ GetCellInMyRowByCol
umnID('Test').Value.GetStringVvalue()

selected values,
returns comma-
delimited string
of those values

© 2018 Oracle Corporation

31

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Chapter 4—Custom Calculation Classes

Clients wishing to have more control over calculations, consolidate their calculation logic, or access
other data not directly available through the script properties and functions listed above, may call out to
custom classes from their scripts. The custom classes get executed and return a result back to the script.
They may optionally receive parameter data from the script.

JScript Custom Classes (aka Dynamic Script Methods)

Note that while Dynamic Script Methods are fully functional and supported for
JScript, an improved implementation option is available that does not restrict the
helper class to one method. See the Creating Custom Helper Methods section
below for details.

Dynamic script methods allow customers to call to a specific class to invoke a helper method. Customers
create a class, add the class to a configuration to make it accessible to the EA Calculation, and use a
predefined PLM for Process function, called MethodInvoke, to call out the desired class. Most of the
functions that are available in JScript are also available to the custom class, albeit with some slight
differences in naming and parameters required. Additionally, the business object attached to the EA can
be accessed.

The Methodlnvoke JScript call takes two parameters:

3. The key that references your custom class. This key/name is added to the
CustomerSettings.config file. See below for more details.
4. An array of data to pass into your custom class. See example below.
For example:

var params @ new Array(1l);
params(0@) @ GetNumericExtendedAttributeValue('BOX_LENGTH');
var emptyVol @ MethodInvoke('MySampleEmptyVolumeCalculator', params);

Class Structure

A custom calculation class must implement the interface
Xeno.Prodika.ExtendedAttributes.Calculation.IDynamicScriptMethod, referencing the Prodikalib.dll
assembly.

Figure 3. IDynamicScriptMethod interface

| IDynamicScriptMethod 2
lnterface
-

= hdethods
W imokelobieckT paramatars, (Dpnamies crpitfaifooonferf confext! . obacs

© 2018 Oracle Corporation

32

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Your custom business logic is coded in this Invoke method, and must return an object, which can be
used as needed by the script that receives the result. JScript can then convert the returned object to the
required data type.

The Invoke method takes the following arguments:

3. Parameters: An object array that is passed in from the JScript, which clients can use to pass relevant
information to the custom calculation class.

4. Context: An IDynamicScriptMethodContext object. See below.

Figure 4. iDynamicScriptMethodContext object

' IDynamicS criptMethodContext

Interface

' Properties
T Opnamics crpflarabiaTesolvar gaf o i0pnamic 5 copfE xianded fnbufal/arabiad asolvar
T Ervoes o gaf B I E o Sf
T VanatePesohver gal b i kferdedd fbute Yaradie T esodver
T WarmingsOff f ged- zef- - boad
“ hethods
W Addt oM eszagefafing meszage) - woid

The IDynamicScriptMethodContext object provides:

e Errors: Access to the Errors collection.

e WarningsOff: A property to allow for turning Warnings on/off.

e AddErrorMessage(): Method that only adds an error if Warnings are set to Off.

e DynamicScriptVariableResolver: Returns a utility class
(I1DynamicScriptExtendedAttributevariableResolver) that provides many of the same method
calls and variables that are available in the JScript functions.

o The Entity property gives access to the in-memory business object that holds the EA
(e.g., a trade specification).

o Note: If your custom calculation class is leveraging other calculated extended
attributes, use the DynamicScriptVariableResolver to retrieve their values, which will
ensure they get calculated. Do not retrieve them from the Entity directly, as they may
not be calculated yet.

e VariableResolver — obsolete — Do not use.

Example

The following example demonstrates a simple custom calculation class that calculates the empty volume
in a product package. For illustration purposes, it receives two values directly from the JScript, length
and width, as input parameters. It then retrieves (with Warnings off) extended attribute values for two

© 2018 Oracle Corporation

33

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

EAs, calculates and returns the volume, and adds a warning message if the calculated result is less than
0.

using Xeno.Prodika.ExtendedAttributes.Calculation;

namespace CalculationExtensions.ExtendedAttributes

{
public class SampleEmptyVolumeCalculator : IDynamicScriptMethod
{
public object Invoke(object[] parameters, IDynamicScriptMethodContext context)
{
double volume = 0.0;
double length = double.Parse(parameters[0].ToString());
double width = double.Parse(parameters[1].ToString());
context.WarningsOff = true;
double height = GetExtendedAttribute(context, "BOX_HEIGHT", "IN"); // inches
double fill = GetExtendedAttribute(context, "FILL", "CI"); //cubic inches
context.WarningsOff = false;
volume = (length * width * height) - fill;
if (volume < 9)
// this adds errors to the UI when calculation is triggered, if the calculated value is ne
gative.
context.AddErrorMessage("Empty Volume has returned a negative number");
}
return volume;
X
private double GetExtendedAttribute(IDynamicScriptMethodContext context
, string attributeID, string UOM)
{
return context.DynamicScriptVariableResolver.GetExtendedAttributeValue(attributeID,
uom, -1, -1);
}
}
¥

The JScript for the EA would look like the following:

var result;
var params @ new Array(2);

params(0) @ GetNumericExtendedAttributeValue('BOX_LENGTH');
params(1l) @ GetNumericExtendedAttributeValue('BOX_WIDTH');

result @ MethodInvoke('MySampleEmptyVolumeCalculator', params);

return result;

© 2018 Oracle Corporation

34

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Configuration
To enable your custom class for EA calculations, you must add it to the CustomerSettings.config file:

Find the <Extended Attributes><DynamicScriptMethods> section and add a new entry for your custom
class:

<add key="YourCustomFunctionName"
value="Class:<Fully qualified namespace.classname>,<DLLName>" />

Example:

<add key="MySampleEmptyVolumeCalculator"
value="Class:CalculationExtensions.ExtendedAttributes.SampleEmptyVolumeCalculator,CalculationE
xtensions" />

Deployment
Build your class library and copy the DLL to the bin folders of each module that will need to access it.

= {PRODIKA_HOMENWeb\gsm\bin (For GSM)
= {PRODIKA_HOMENWeb\scrm\bin (For SCRM)
= {PRODIKA_HOMENWeb\pgm\bin (For POM)
= {PRODIKA_HOME}\Web\reg\bin (For ADMIN)

Reset IIS for configuration changes to take effect.

Example 2

The following example demonstrates a custom calculation class that calculates the total costs for a trade
specification. We also created another class for formulation specification, the usage of them are all the
same. This method will receive a parameter from Jscript(abbreviation of currency), this parameter also
can be set to “, then it will try to convert context.DynamicScriptVariableResolver.Entity to ITradSpecBO,
if it works then continue to calculate the total cost for the spec, if any errors occur it will add a warning
message and return 0.

FUNCTION LIST

Function Name in JScript Parameter Return value (assume USD is the
preferred currency)

TradeTotalCostsCalculator ‘usp’ 10.00
TradeTotalCostsCalculator ‘CNY’ 60.00
TradeTotalCostsCalculator v 10.00 USD
FormulationTotalCostsCalculator | ‘USD’ 10.00
FormulationTotalCostsCalculator | ‘CNY’ 60.00
FormulationTotalCostsCalculator | “ 10.00 USD

© 2018 Oracle Corporation

35

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Code
namespace CalculationExtensions.ExtendedAttributes

{
class TradeSpecTotalCostsCalculator : IDynamicScriptMethod

{
public object Invoke(object[] parameters, IDynamicScriptMethodContext context)

{
string abbr = parameters[0].ToString();

var currency =
CommonCostHelper.CurrencyService.GetCurrencyByAbbriviation(abbr);

var specBo = context.DynamicScriptVariableResolver.Entity as ITradeSpecBO;
if (specBo == null) return 0;

var specDo = (IGSMTradeSpecDO)specBo.DataObject;

var sourceCost = CommonCostHelper.CreateCost(specDo.TheoreticalCost);

var targetCurrencyId = currency != null ? currency.PKID :
specBo.PreferredCurrency.PKID;

var targetCost = CommonCostHelper.CreateDefaultCost(targetCurrencyId, 1,
TradeSubComponentCostHelper.RollupCostPerValueUOM.PKID);

if (CommonCostHelper.TryConvertCostExceptUOM(sourceCost, ref targetCost))
{

if (currency != null)

{

return targetCost.Price;

}

return targetCost.Price + +
specBo.PreferredCurrency.CurrencyML.Abbreviation;

}

context.AddErrorMessage("An errors occurred during conversion.");

return 0;
}
}
}
Deployment
Build your class library and copy the DLL to the bin folders of each module that will need to
access it

{PRODIKA_HOMENWeb\gsm\bin
{PRODIKA_HOMENWeb\reg\bin

Configuration
Find the <Extended Attributes><DynamicScriptMethods> section in CustomerSettings.config file and add
a new entry for the custom class,

© 2018 Oracle Corporation

36

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

<add key="TradeSpecTotalCostsCalculator"
value="Class:CalculationExtensions.ExtendedAttributes.SpecTotalCostsCalculator,CalculationExte
nsions" />

Calculation Script

Create a Calculated Text EA to invoke this new function, the JScript for the EA would look like the
following:

var result;

var params @ new Array(1l);

params(@) @ USD’
result @ MethodInvoke('TradeTotalCostsCalculator', params);

return result;

Reset IIS for configuration changes to take effect

Determining Calculation Location

Calculation scripts must be tested in Data Admin as well as when on an actual business object. However,
when running the script in Data Admin, you will not have access to other EAs that may be required in
when on the business object. This may lead your script to return an invalid result in Data Admin, but a
valid result on a specification. Therefore, you can determine in your script whether or not you are
executing the script on a real business object or not, and modify the script, if needed. For instance, you
could turn warnings off when the script is running in Data Admin.

The following code will return true if you are running this for an actual business object, or false if
running this in Data Admin:

if (context.DynamicScriptVariableResolver.Entity is IXUniqueObject) {..}

Performance Considerations

Be aware that having a large number of calculated EAs on a business object may have a negative effect
on performance. If utilizing many custom classes to perform calculations, try to limit their impact as
much as possible by minimizing the scope of their work, using caching (if applicable), and consolidating
classes if possible.

© 2018 Oracle Corporation

37

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Creating Custom Helper Methods

Customer script helper classes can be used to provide multiple methods and properties to the
calculation script. These helper classes are specified in the
config\extensions\CustomScriptEvaluationConfig.xml configuration file. The helper class is specified as a
ScriptHelper node to the /ScriptEvaluationUsages/Usage[name="EACalculation"]/ScriptEngine element.

<ScriptEvaluationUsages configChildKey="name">
<Usage name="EACalculation" configChildKey="name">

<ScriptEngine name="Jint"
FactoryURL="Class:0Oracle.PLM4P.ScriptEvaluation.ScriptEngine.JintScriptEngineFactory,ScriptEva
luationLib" LogErrorsToUser="true">

<ScriptHelper name="CoreFacade" UseInApps="*"
FactoryURL="Class:0Oracle.PLM4P.ScriptEvaluation.ScriptEvaluationHelpers.CoreScriptEvaluationHe
lperFacadeFactory,ScriptEvaluationLib"></ScriptHelper>

<ScriptHelper name="MyCustomScriptHelper" UseInApps="*"
FactoryURL="Class:Examples.ScriptEvaluationHelpers.EACalculation.EvaluationHelperFacadeFactory
,MyCustomUtils"></ScriptHelper>

<ScriptHelper name="MyGSMCustomScriptHelper" UseInApps="GSM"
FactoryURL="Class:Examples.ScriptEvaluationHelpers.EACalculation.GSMEvaluationHelperFacadeFact
ory,MyCustomUtils"></ScriptHelper>

</ScriptEngine>
</Usage>
The name attribute is used to refer to the helper class inside your scripts (e.g.,
MyGSMCustomScriptHelper.IsSpecApproved()).

The UselnApps attribute specifies which application (or comma delimited a list of applications) this
helper is available for (e.g., “GSM,SCRM,NPD”). The asterisk (*) is used to indicate that it is available to
all applications.

The FactoryURL attribute specifies the class you will be using, using the ObjectLoaderURL syntax. See
the appendix in the Agile Product Lifecycle Management for Process Extensibility Overview Guide for
more details.

The script helper class must be designed as follows:

A factory class that implements
Oracle.PLMA4P.ScriptEvaluation.ScriptEvaluationHelpers.IScriptEvaluationHelperFacadeFactory from the
ScriptEvaluationLib.dll, and implements a simple Property for the ReferenceName and a Create method
that returns a ScriptEvaluatrionHelperFacade class.

© 2018 Oracle Corporation

38

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

» |

| IScriptEvaluationHelperFacadeFactory
Interface

= Properties
B Referencenlame get set o string
=l hethods

B CreatefiscriptEvaivationCantext schptEvaiuatianCantaxt) ! iScriptEvaiuationracads

The Create method receives a scriptEvaluationContext as a parameter, which contains
IScriptEvaluationContext interface which contains a list of Results (for EA Calculation, this represents the
list of calculation errors) and TargetObject which holds the current object being validated.

» |

| IScriptEvaluationContext
Interface

= Properties
B Recyits f get Fr it tring =
& TargetOuject { get; }r affect
= hethods
[AddRescuwithdecsagetiring mecsags) ! vaid

The implementation of IScriptEvaluationHelperFacade is the class that will be providing your helper
methods.

» |

| IscriptEvaluationFacade
Interface

= Properties
J Recyits f get Friiet< etring =
& TargetOiject { get;] r abyect
= Methods
[AddRecuitMecsagetiring mecsage) | vaid

Extending the existing CoreScriptEvaluationFacade will simplify you class, as you will not have to

implement the Properties and Methods defined above. This lets your class focus on the helper methods
you want to add.

© 2018 Oracle Corporation

39

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Appendix A—In Foods IDs and UOM ISO Codes

InFoods IDs

Run the following SQL query to retrieve the list of InFoods IDs:

select ml.Name, p.InFoodsID, p.UNID, p.SequenceNumber

from

comStandardNutrientProperties p

inner join comStdNutrientPropertiesML ml

on ml.fkStandardNutrientProperties = p.pkid
and langID = © and Status =1

order by ml.name

Some common InFoods IDs:

Name InFoods ID UNID Sequence
Calcium CA cA 350
Calories ENERC_KCAL ENERC_KCAL 10
Carbohydrate (Available) CHOAVL CHOAVL 45
Carbohydrates CHOCDF CHOCDF 40
Cholesterol CHOLE CHOLE 190
Dietary Fiber FIBTS FIBTS 50
Energy kJ ENERC_KIJ ENERC_KJ 20
Iron FE FE 370
Polyunsaturated Fat FAPU FAPU 150
Potassium K K 400
Protein PROCNT PROCNT 30
Protein (Nx6.25) PROCNT_NX625 PROCNTx625 32
Saturated Fat FASAT FASAT 130
Sodium NA NA 410
Total Fat FAT FAT 120
Total solids TTLSOLID TTLSOLID 205
Total Sugar SUGAR SUGAR 70
Trans Fatty Acid FATRN FATRN 180
Vitamin A - IU VITA_IU VITA_IU 223
Vitamin A - Total VITA- VITA- 220
Vitamin C VITC VITC 290
Vitamin D VITD- VITD- 300
Vitamin E VITE VITE 310
Vitamin K VITK VITK 330
Zinc ZN ZN 420

2018 Oracle Corporation

40

Agile Product Lifecycle Management for Process — Extended Attribute Calculation

Unit of Measure ISO Codes
Run the following SQL query to retrieve the list of UOMs:

SELECT Name, Abbreviation, id, ISOCode, Status
FROM UOM a INNER JOIN UOMML ml

ON ml.fkUOM = a.pkid AND ml.langID = ©
ORDER BY name

© 2018 Oracle Corporation

41

