

Oracle® Agile Product Lifecycle Management for Process

Product Quality Management Extensibility Guide
Release 6.2.4.x

F58011-01

May 2022

Copyrights and Trademarks
Agile Product Lifecycle Management for Process

Copyright © 2022, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly

permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,

broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-

free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing

it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,

any programs installed on the hardware, and/or documentation, delivered to U.S. Government end

users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation

and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs

installed on the hardware, and/or documentation, shall be subject to license terms and license

restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software is developed for general use in a variety of information management applications. It is not

developed or intended for use in any inherently dangerous applications, including applications which

may create a risk of personal injury. If you use this software in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe

use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by

use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks

are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,

Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of

Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and

services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly

disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
3

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your

access to or use of third-party content, products, or services.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
4

Contents

PREFACE .. 6
Audience ... 6

Variability of Installations ... 6

Documentation Accessibility ... 6

Access to Oracle Support .. 6

Software Availability ... 6

CHAPTER 1—OVERVIEW .. 7

CHAPTER 2—CUSTOM READ AND WRITE PERMISSIONS .. 8
Custom Read Permission .. 8

Custom Write Permission ... 8

CHAPTER 3—WORKFLOW ACTIONS AND GUARD CONDITIONS 9
Existing PQM Workflow Actions ... 9

CHAPTER 4—WORKFLOW EMAIL NOTIFICATIONS ..10

CHAPTER 5—RELATED ITEM DISPLAY ..11

CHAPTER 6—EXTENDED ATTRIBUTE CALCULATION ...12
PQM Calculation Veto Plugin .. 12

CHAPTER 7—VALIDATION ..13

CHAPTER 8—NOTIFICATION PANEL ..14

CHAPTER 9—EVENT MODEL ..15

CHAPTER 10—SUPPLIERS EXTENSIBILITY ...16
Supplier Source Data ... 16

Local SCRM .. 16

External SCRM ... 16

Alternate Supplier Source Systems ... 17

Configuration .. 22

SCRM Residing on a Different Database ... 25

Additional Supplier Formatting Extensibility .. 25

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
5

CHAPTER 11—AFFECTED ITEMS EXTENSIBILITY ..27
Affected Item Source Data .. 27

Local GSM.. 27

External GSM... 27

Alternate Affected Item Source Systems .. 29

Configuration .. 38

GSM Residing on a Different Database ... 40

Additional Affected Items Formatting Extensibility .. 41

Affected Item Persistence ... 42

CHAPTER 12—PQM WEB SERVICES ..43

CHAPTER 13—UTILITY CLASSES ...44
PQMWorkflowTagEvaluator ... 44

PQMUserCrossReferenceRetriever ... 44

PQMPermissionManager .. 44

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
6

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle

Management for Process. Information about using Oracle Agile PLM for Process resides in application-

specific user guides. Information about administering Oracle Agile PLM for Process resides in the Agile

Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not

match your installation. The user interface of Agile PLM for Process applications and the features

included can vary greatly depending on such variables as:

 Which applications your organization has purchased and installed

 Configuration settings that may turn features off or on

 Customization specific to your organization

 Security settings as they apply to the system and your user account

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability

Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core

software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
7

Chapter 1—Overview
The Product Quality Management (PQM) application is a full featured, fully integrated module for

Enterprise Quality Management. It is designed to tightly integrate Issues, Actions, and Audits, with the

rest of the Agile PLM for Process application suite, including GSM, SCRM, and NPD, but is flexible enough

to allow for integrations with external systems from within the user interface. Additionally, a rich set of

PQM web services allows for most of the core PQM functionality to be managed from other systems, if

desired, thus providing many options for deployment and product rollout. Furthermore, PQM provides

many useful extension points found throughout the application suite, such as Validation, Notifications,

Workflow Actions and Guard Conditions, customized emails, and more.

This document discusses the following extensibility points available for the PQM application:

 Custom Read and Write Permissions
 Workflow Actions and Guard Conditions
 Workflow Triggered Email Notifications
 Related Items Display
 Custom Data Calculation
 Validation
 Notification Panel
 Event Model
 Supplier Extensibility
 Affected Items Extensibility
 Related Project Extensibility
 Web Services
 Supplier PQM

Many of the implementation details of the different extensibility points can be found in other guides.

Additionally, there are several useful utility classes available for PQM custom code development, as

described in Chapter 13—Utility Classes.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
8

Chapter 2—Custom Read and Write Permissions
Basic PQM read, write, and workflow permissions for Issues, Actions, and Audits are based on the

workflow templates set up in Workflow Administration. PQM adds two useful extensibility points to

further customize Read and Write permissions on a PQM Item: Custom Read Permission and Custom

Write Permission.

Custom Read Permission

A Validate Plugin class can be created to extend the Read permission logic of a PQM Item, if desired.

To customize the Read permission checks for PQM, create a new Validate Plugin and add an entry into

the CustomPluginExtensions.xml file in config\Extensions, in the ValidatePlugins node, using the plugin

name “HasPQMReadPermissionPlugin”, like so:

<Plugin name="HasPQMReadPermissionPlugin"

ignoreInheritFromPluginName="true"

FactoryURL="{Your custom class using ObjectLoaderURL syntax}" />

Custom Write Permission

A Validate Plugin class can be created to extend the Write permission logic of a PQM Item, if desired.

To customize the Write permission checks for PQM, create a new Validate Plugin and add an entry into

the CustomPluginExtensions.xml file in config\Extensions, in the ValidatePlugins node, using the plugin

name “HasPQMWritePermissionPlugin”, like so:

<Plugin name="HasPQMWritePermissionPlugin"
ignoreInheritFromPluginName="true"
FactoryURL="{Your custom class using ObjectLoaderURL syntax}" />

TECHNICAL NOTE

The Validate Plugin class gets passed the current PQM data object (the PQM Issue, Action, or Audit) as a

Xeno.Data.PQM.IPQMItemBase interface, which can be cast as an IPQMActionDO, IPQMAuditDO , or

IPQMIssueDO. The current User is also available to the plugin, via the

Xeno.Prodika.PluginExtensions.Context.ValidatePluginContext User property.

To learn more about Validate Plugins, see the PluginExtensions document in the

\ReferenceImplementations\PluginExtensions\Documentation folder. Reference implementations of

Validate Plugins can be found in the

\ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins\ValidatePlugins folder.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
9

Chapter 3—Workflow Actions and Guard Conditions
Workflow Actions are extension points that trigger the execution of custom classes when a workflow

transition occurs. Guard conditions are extensibility points that help determine if a workflow transition

can occur. Workflow actions and workflow guard conditions are specified in a configuration file, and are

then assignable to workflow transitions in the WFA user interface.

Custom workflow actions and guard conditions can be created for PQM Actions, Audits, and Issues.

When configuring the workflow actions and guard conditions in CustomWFAExtensionsConfig, use the:

processTemplateTypes="PQM"

attribute value.

Existing PQM Workflow Actions

Two workflow actions are available for use for PQM actions:

1. PQM Action - Release Related Issues: For a PQM action, this marks any related Issues as

Released unless the issue is already in a cancelled state. This assumes that statuses in WFA are

assigned the relevant PQM workflow tags.

2. PQM Action - Cancel Related Issues: For a PQM action, this marks any related Issues as

Cancelled. This assumes that statuses in WFA are assigned the relevant PQM workflow tags.

These workflow actions are made available by un-commenting them from the

CustomWFAExtensionsConfig.xml in config\Extensions.

TECHNICAL NOTE

Workflow Action classes are passed an IPQMLinearTransitionContext

(Xeno.Prodika.Services.PQM.Workflow) object which contains the current PQM item business object

(IPQMItemBaseBO) and the PQM service IPQMItemService.

To learn more about workflow actions and guard conditions, see the Workflow Actions and Guard

Conditions document in the \ReferenceImplementations\WorkflowActions\Documentation folder.

Reference implementations of Workflow Actions and Guard Conditions can be found in the

\ReferenceImplementations\ WorkflowActions\SourceCode\ReferenceWorkflows folder.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
10

Chapter 4—Workflow Email Notifications
PLM for Process provides various automated email notifications when PQM actions, issues, and audits,

move from one workflow status to another. Emails can be sent to owners of the PQM items informing

them that the item is now in their action items listing, or that they need to sign off on the item, or as a

simple notification that the item moved from one status to another. The email recipients are specified in

the WFA application, using the Owners, Notifications, and Signature Request grids.

Clients wishing to customize the existing emails may do so by modifying the translation templates used

for the PQM workflows, or by writing custom classes for more fine-grained control.

See the PLM for Process Email Extensibility document for more details.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
11

Chapter 5—Related Item Display
The various PQM Related Items listings show basic information on the related PQM items. The

information shown can be customized to include additional display data. Clients can create custom

Format Plugins classes for the Related Issues, Related Actions, and Related Audits listings by using the

following Format Plugin extension points:

 PQMRelatedIssues
 PQMRelatedActions
 PQMRelatedAudits

When configuring any of the above FormatPlugins, be sure to include the following XML attribute:

ignoreInheritFromPluginName="true"

See the PluginExtensions documentation for details on writing FormatPlugins.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
12

Chapter 6—Extended Attribute Calculation
Calculated extended attributes (Calculated Numeric/Boolean/Text) on PQM items allow you to create a

read‐only extended attribute (EA) that displays results of a calculation to the user. The calculation

(written in JScript), specified in the Data Admin user interface for extended attributes, can access data

from other extended attributes, custom sections, and other data from the PQM item the EA is attached

to. Additionally, the script can execute a call to a custom class to return additional data to the script.

Clients wishing to have more control over calculations, consolidate their calculation logic, or access

other data not directly available through JScript (and the predefined functions), may call out to custom

classes from their scripts. The custom classes get executed and return a result back to the script. They

may optionally receive parameter data from the script. Custom calculation classes have access to the

PQM Item business object (IPQMItemBaseBO) using the Entity property, which provides full access to

the PQM item.

PQM Calculation Veto Plugin

Clients may limit the times when PQM Custom Section calculation should occur by creating a

ValidatePlugin class using the extension name “IsPQMCalculationAllowed”. This plugin can be used to

determine if calculation should be turned on or off. This can be combined with the Format plugin

“IsPQMCalculationAllowedOverrideMessage” to provide a customized message to indicate if the

specification calculation was enabled or disabled.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
13

Chapter 7—Validation
The validation framework allows you to configure custom validation rules to specific UI events in the

system. For example, when a user selects the Save button on a PQM action, code can be put in place to

make sure specific required fields are properly filled out. If any required fields are left blank, an error

message can be displayed preventing the user from saving the action until all of the data is provided.

Custom validation rules can be written that validate against PQM actions (type=7003),issues

(type=7002), and audits (type=7004) for Save, Copy, and Workflow events. PQM item templates are also

available for validation (7002T, 7003T, & 7004T) for the same events.

See the Validation Training documentation for details.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
14

Chapter 8—Notification Panel
Notification Panels are available on the PQM user interface. To create custom notifications that can

show up in PQM, clients can create Notification Plugins and configure them using the

usedIn="PQMItem" XML attribute.

See the PluginExtensions documentation for details on writing NotificationPlugins.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
15

Chapter 9—Event Model
As specific events occur in PQM, their details are captured and recorded in the pqmLifecycleEventLog

database table. Clients can watch for events added to this table to trigger some custom actions.

Each event captured may include the following information:

 Event Type—The type of event that occurred (1: Create, 2: Save, 3: Workflow, 4: Copy)
 Event Source— What caused the event (a PQM Edit, a web service, etc.)
 Actor—User who performed the event
 Timestamp —Date and time stamp of when the event happened
 Affected Object—PQM business object that was acted upon (object that was saved/copied, etc.)
 Related Object—Related object when appropriate (Workflow step)
 Reason—Reason the action occurred when appropriate (ex: Workflow comments)

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
16

Chapter 10—Suppliers Extensibility
The source of PQM supplier data (Company and Facility entries in the action, issue, and audit Supplier

grid) can be customized to pull data from the current (local) SCRM instance, some other instance of PLM

for Process SCRM, and/or from entirely different applications.

Supplier Source Data

The out of the box configuration assumes the Agile PLM for Process Supply Chain Relationship

Management (SCRM) application is local and on a shared database. Using an alternate instance of SCRM,

in which PQM and SCRM reside on different databases, can be done by some simple configuration

changes. Pulling in supplier data from other systems requires that a custom ASCX control be created and

deployed into PQM, as well as a class which takes the PQM supplier data and generates the formatted

view for display in the UI. Multiple configurations of source data are permitted, which allow PQM

supplier data to be pulled from multiple applications.

Additionally, the configuration for PQM suppliers is flexible enough to allow different configurations for

actions, audits, and issues, if needed.

Local SCRM

Assumes the PQM supplier data is populated from SCRM residing on the same database. This is the

default configuration for PQM suppliers, so no configuration changes are required to the out-of-the box

installation.

External SCRM

Agile PLM for Process SCRM that is deployed on a separate database from PQM requires configuration

changes that specify the server URL and database connection. Additionally, this configuration requires

that the Reporting DB connection pool is configured (on the PQM application’s configuration files) to

point to the database connection where SCRM is hosted.

See the Configuration > SCRM Residing on a Different Database section in this document.

Trusted Site

When searching for SCRM companies and facilities on a different server from PQM, users must update

their Chrome browser settings to add that SCRM web site as a Trusted Site. Failing to do so will result in

the Add Suppliers popup and the SCRM EQT Popup being unable to post the results back to PQM.

SCRM EQT Feature Configuration

When using PQM to search for actions, issues, or audits that have a specific SCRM companies or

facilities, different configurations control whether or not the search options should include a local SCRM

search and/or a remote SCRM search. The following FeatureConfiguration entries enable the behaviors:

<add key="PQM.EQT.Action.SupplierSCRMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Action EQT Search of Suppliers by local SCRM DB"/>

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
17

<add key="PQM.EQT.Action.SupplierSCRMSearch.External.Enabled" value="false"
configDescription="Sets PQM Action EQT Search of Suppliers by External SCRM DB"/>

<add key="PQM.EQT.Audit.SupplierSCRMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Audit EQT Search of Suppliers by local SCRM DB"/>
<add key="PQM.EQT.Audit.SupplierSCRMSearch.External.Enabled" value="false"
configDescription="Sets PQM Audit EQT Search of Suppliers by External SCRM DB"/>

<add key="PQM.EQT.Issue.SupplierSCRMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Issue EQT Search of Suppliers by local SCRM DB"/>
<add key="PQM.EQT.Issue.SupplierSCRMSearch.External.Enabled" value="false"
configDescription="Sets PQM Issue EQT Search of Suppliers by External SCRM DB"/>

Alternate Supplier Source Systems

When pulling supplier data from alternate systems, a custom ASCX control must be created and plugged

into PQM that allows for searching and selecting a company or facility. This company or facility is then

added to the Suppliers listing in PQM via the hosting aspx page’s AddItem Javascript function.

The configured list of possible suppliers is added to the Add New button. Clicking on the external

supplier system launches the custom control.

ASCX control

The custom control’s responsibility it to provide a mechanism for users to search for supplier data (ex

company or facility data), and then select the entry that will be populated in the Suppliers listing. The

control could, for example, allow users to enter some search criteria, and pass those values to a web

service call to another system, returning any matching suppliers. Alternatively, the control could simply

display a listing of all suppliers from a different database (see example below). Selecting the desired

supplier entry must then call an existing Javascript function, AddItem() to add the entry to the PQM

item. For more details, see the following reference example, and the Configuration section:

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
18

The above screenshot is an example of a control that displays data from a different database, using a

.NET GridView control. This code for this simple GridView control is shown below.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="NorthwindSuppliers.ascx.cs" Inherits="Referen
cePQMExtensions.Suppliers.NorthwindSuppliers" %>
<div>

 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False" DataKeyNames="SupplierID"
 DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="SupplierID" HeaderText="CustomerID" ReadOnly="True"
 SortExpression="SupplierID" />
 <asp:BoundField DataField="CompanyName" HeaderText="CompanyName"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="ContactName"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle" HeaderText="ContactTitle"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="City" HeaderText="City" SortExpression="City" />
 <asp:BoundField DataField="Region" HeaderText="Region"
 SortExpression="Region" />
 <asp:BoundField DataField="PostalCode" HeaderText="PostalCode"
 SortExpression="PostalCode" />
 <asp:BoundField DataField="Country" HeaderText="Country"
 SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone" SortExpression="Phone" />
 </Columns>
 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=(local);Initial Catalog=northwind;Integrated Security=true"
 SelectCommand="SELECT * FROM [Suppliers]"></asp:SqlDataSource>

</div>

In the code-behind, we add an event for when the row is clicked, which calls the AddItem function:

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
19

using System;
using System.Web.UI.WebControls;

namespace ReferencePQMExtensions.Suppliers
{
 public partial class NorthwindSuppliers : System.Web.UI.UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 GridView1.RowDataBound += gvSearch_RowDataBound;
 }

 protected void gvSearch_RowDataBound(object sender, GridViewRowEventArgs e)
 {
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 e.Row.Attributes.Add("onmouseover", "this.style.backgroundColor='#ceedfc'");
 e.Row.Attributes.Add("onmouseout", "this.style.backgroundColor=''");
 e.Row.Attributes.Add("style", "cursor:pointer;");
 e.Row.Attributes.Add("onclick", "AddItem('" + e.Row.Cells[0].Text + "','','Nor
thwindCompany','Northwind');");
 }
 }
 }
}

The control adds the item to the Suppliers listing of the PQM item using only the item’s internal

identifier, some external identifier, an item type, and the SourceSystemID. Next, a new class must be

created to handle displaying data returned by this control. The company and facility names are not

stored in the database, so that there is no issue with keeping multiple data sources in synch. This class is

therefore responsible for retrieving the company (and optionally the facility name), along with an

additional description and an optional URL to link to that company/facility.

View Model Retriever

A custom SupplierRetriever class must be created that creates a ViewModel object for each supplier in

the listing. The View Model is responsible for display of the supplier data in the User Interface.

The PQMSupplierViewModelRetrieverFactory simply creates and returns a

PQMSupplierViewModelRetriever

The PQMSupplierViewModelRetriever’s GetViewModels method takes a collection of PQMSupplier data

objects which are stored on the PQM item, and takes the PKID of the owning PQM business object. The

owner would be a PQM action, issue, or audit, or alternatively, a PQMIssueAffectedItem data object

which also has a supplier property. The retriever must then return a corresponding list of view models.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
20

Given the list of PQMSupplier data objects, which hold the ItemInternalID, ItemExternalID, etc, those

properties are then used by the retriever to query another system (using web services, for example) and

retrieve the relevant information for display in the view models.

Custom view model classes can extend the PQMSupplierViewModelBase abstract class, to leverage

some common properties and methods.

Example Code

The following code represents a simple implementation of a supplier view model and retriever class. The

Retriever factory class simply creates a new view model Retriever. The Retriever’s GetViewModels

method takes the pqmSupplier collection, which holds the internal identifiers of the supplier, and

queries the Northwind database to retrieve the supplier’s CompanyName and location information.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
21

Note that the URL links for the company link to a non-existent web site. In this example, the supplier

data represents a company only, and not a facility.

public class NorthwindSupplierViewModelRetrieverFactory :IPQMSupplierViewModelRetrieverFactory
{
 public IPQMSupplierViewModelRetriever Create()
 {
 return new NorthwindSupplierViewModelRetriever();
 }
}

 public class NorthwindSupplierViewModelRetriever : IPQMSupplierViewModelRetriever
 {

 private const string _queryString = "SELECT CompanyName, City, Region, Country FROM dbo.Suppliers
where SupplierID = @SupplierID;";

 public List<IPQMSupplierViewModel> GetViewModels(ICollection<IPQMSupplier> pqmSuppliers, string fk
Owner)
 {
 List<IPQMSupplierViewModel> supplierViewModels = new List<IPQMSupplierViewModel>();
 foreach (var pqmSupplier in pqmSuppliers)
 {
 var supplier = LoadSupplier(pqmSupplier, fkOwner);
 if (supplier != null)
 supplierViewModels.Add(supplier);
 }
 return supplierViewModels;
 }

 private IPQMSupplierViewModel LoadSupplier(IPQMSupplier pqmSupplier, string fkOwner)
 {

 IPQMSupplierViewModel northwindSupplier = null;

 using (var connection = new SqlConnection(NorthwindDBHelper.ConnectionString))
 {
 var command = new SqlCommand(_queryString, connection);
 command.Parameters.AddWithValue("@SupplierID", pqmSupplier.ItemInternalID);

 try
 {
 connection.Open();
 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())
 {
 string companyDescription = reader.GetString(0);
 string companyURL = "http://somenorthwind.com/supplier/" + pqmSupplier.ItemInterna
lID;
 string city = reader.IsDBNull(1) ? String.Empty : reader.GetString(1);
 string region = reader.IsDBNull(2) ? String.Empty : reader.GetString(2);
 string country = reader.IsDBNull(3) ? String.Empty : reader.GetString(3);
 string companyDescriptionExtended = String.Format("{0}, {1} {2}", city, region, co
untry);

 northwindSupplier = new NorthwindSupplierViewModel(pqmSupplier
 , fkOwner
 , companyDescription
 , companyDescriptionExtended
 , companyURL);
 }
 reader.Close();
 }
 catch (Exception ex)
 {
 northwindSupplier = new NorthwindSupplierViewModel(pqmSupplier

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
22

 , fkOwner
 , "Error Occurred"
 , String.Format("Northwind record # {0} -
 {1}", pqmSupplier.ItemInternalID, ex.Message)
 , "http://somenorthwind.com/supplier/" + pqmSupplier.ItemInternalID);
 }
 return northwindSupplier;
 }
 }
 }

The sample View Model class extends the PQMSupplierViewModelBase abstract class. It sets the

company information, and marks the facility information as blank (the suppliers table used only has a

single entity, so only a company is used here). In other scenarios, both the company and the facility can

be used.

using System;
using Xeno.Data.PQM;
using Xeno.Prodika.Services.PQM.Models.Suppliers;

namespace ReferencePQMExtensions.Suppliers
{
 public class NorthwindSupplierViewModel : PQMSupplierViewModelBase
 {
 public NorthwindSupplierViewModel(IPQMSupplier pqmSupplier, string fkOwner, string com
panyName, string companyLocation, string homepage) : base(pqmSupplier, fkOwner)
 {
 CompanyDescription = companyName;
 CompanyDescriptionExtended = companyLocation;
 CompanyURL = homepage;
 FacilityDescription = String.Empty;
 FacilityDescriptionExtended = String.Empty;
 FacilityURL = String.Empty;
 }
 }
}

Configuration

In the CustomerSettings.config file, the PQM node has individual nodes for each PQM business object

(action/audit/issue). The SupplierRetrievers node contains PQMItemRetrieverConfig child nodes, which

specify each data source.

The following configuration entry shows the default supplier configuration (where supplier data is

retrieved from a local SCRM instance), and is followed by the configuration used by the example shown

above (SourceSystemID=”Northwind”):

<PQM>
 <Action>
 ...
 <SupplierRetrievers configChildKey="SourceSystemID">
 <PQMItemRetrieverConfig
SourceSystemID="SCRM"
SourceSystemTranslationID="lblSCRM"
 ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.Suppliers.SCRM.SCRMSuppl
ierViewModelRetrieverFactory,PQMLib$SCRM"

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
23

 UseEQT="true"
 EQTBaseURL="@@VAR:Prodika.PQM.URL@@"
 EQTConfiguration="SearchableView:Config:ProdikaSettings/EQTConfiguration/SearchableMult
iSelectViewsSCRM,CompanyFacilitySingleViewPopup"
 ItemViewBaseURL="@@VAR:Prodika.SCRM.URL@@"
 ItemAddControl="" />

 <PQMItemRetrieverConfig
 SourceSystemID="Northwind"
 SourceSystemTranslationID="lblNorthwind"

 ItemRetrieverObjectURL="Class:ReferencePQMExtensions.Suppliers.NorthwindSupplierViewMod
elRetrieverFactory,ReferencePQMExtensions"
 UseEQT="false"
 EQTBaseURL=""
 EQTConfiguration=""
 ItemViewBaseURL="http://northwinddb.com/suppliers/"
 ItemAddControl="NorthwindSuppliers.ascx" />
...

The configuration details are as follows:

Attribute Description

SourceSystemID Identifies where the supplier data comes from. This value should be
unique within the individual item type (action/audit/issue) – that is, the
action SupplierRetrievers node should not contain 2
PQMItemRetrieverConfig entries with the same SourceSystemID values.

SourceSystemTranslationID Will be used to display the name in the supplier section of the user
interface if there is more than one entry configured for the PQM item
type.
When adding new translations, add a new entry into the
commonXLAExtensionCacheItem table, where the fkParent value is the
pkid of the ‘frmPQM/Extension’ entry in the commonXLAExtensionCache
table. For example:
insert into commonXLAExtensionCacheItem values
('1059'+UPPER(NEWID()), '10586A177FC6-F446-4FC2-885D-
788B8C89AAF3', 0, 'lblNorthwind', 'Northwind Supplier');

ItemRetrieverObjectURL This customizable class is a factory
(IPQMSupplierViewModelRetrieverFactory) that, given a list of supplier
data objects (IPQMSupplier) stored in PQM, retrieves the related view
models (IPQMSupplierViewModel), which are classes that are used to
generate the UI details.
Custom classes can leverage the abstract base view model class,
PQMSupplierViewModelBase, when creating their own view models.

UseEQT true if using Agile PLM for Process SCRM; false otherwise

EQTBaseURL Required if using SCRM; app location of the SCRM company/facility
selection popup.

EQTConfiguration Required if using SCRM; can be customized to specify different EQT views
when searching for SCRM Companies and Facilities.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
24

Attribute Description

ItemViewBaseURL Supplier company and facility entries in the user interface can be links –
this setting specifies the base URL of SCRM based links, and can be used by
the ViewModel retriever to create the URL links.

ItemAddControl Required when supplier data is coming from a non-SCRM source. This
value specifies the ASCX control that should be loaded in a PQM pop and
that can manage the display of Suppliers from external systems. This value
is ignored if the UseEQT attribute value is set to true.

The custom control’s responsibility is to provide a mechanism for users to
search for company and/or facility supplier data, and select the entry that
will be populated in the Suppliers listing. The control could, for example,
allow users to enter some search criteria, and pass those values to a web
service call to another system, returning any matching suppliers. Selecting
the desired supplier entry must then call an existing javascript function,
AddItem() to add the entry to the PQM item. The AddItem function takes
the following parameters:

 internalID – The internal unique identifier of the entry. This will
not be visible to users.

 ExternalID – A visible identifier. This can be modified by providing
additional ExternalID options in the ItemRetriever class, if needed.

 ItemType – A value that can be used to distinguish companies
from facilities.

 SourceSystemID – A value that should match the SourceSystemID
entry in the configuration, telling the system where the data came
from. For PLM for Process SCRM, the value “SCRM” is used.

The ASCX control must pass specific data to the main PQM window by
calling the PQMSupplierItemAdd.aspx’s AddItem() javascript function.

The .ascx file must be placed in the PQMItemControls\Extensions folder in
PQM. The compiled DLL for this control must be included in the PQM\bin
directory.

The @@VAR:Prodika.SCRM.URL@@ value gets automatically replaced by the value in

environmentvariables.config, but a different value can be specified here if needed.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
25

SCRM Residing on a Different Database

If SCRM data resides in a different database, the configuration entry of the ItemRetrieverObjectURL

must be changed by appending the following, starting with the pipe (|) symbol:

|Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBDataManagerStrategy,PQMLib

So the attribute would be:

ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.Suppliers.SCRM.SCRMSupplierViewModelRetr

ieverFactory,PQMLib$SCRM|Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBDataMa

nagerStrategy,PQMLib"

This configuration requires that the Reporting DB connection pool is configured (on the PQM

application’s configuration files) to point to the database connection where SCRM is hosted.

Additionally, the ItemViewBaseURL and EQTBaseURL must point to that separate SCRM web application.

Additional Supplier Formatting Extensibility

When using SCRM for facility and company supplier data, the user interface display in the Supplier listing

can be customized by implementing any of the following Format Plugins.

 PQMActionSupplierFacility
 PQMActionSupplierCompany
 PQMAuditSupplierFacility
 PQMAuditSupplierCompany
 PQMIssueSupplierFacility
 PQMIssueSupplierCompany

The output of each plugin is used to display additional facility or company information. By default, these

plugins will display the equivalent value of the user’s SCRM preferred cross reference, if available;

otherwise, the company or facility number is displayed.

When configuring any of the above FormatPlugins, be sure to include the following XML attribute:

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
26

ignoreInheritFromPluginName="true"

See the PluginExtensions documentation for details on writing FormatPlugins.

Note that in the above screenshot, the entries that came from an external system (Northwind) are

specifying the extended description on the ViewModelRetriever class, rather than pulling in the format

plugins, while the data from SCRM is using the default FormatPlugin.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
27

Chapter 11—Affected Items Extensibility
The source of PQM Affected Items data for PQM actions, issues, and audits can be customized to pull

data from the current/local GSM instance, some other instance of PLM for Process GSM, or from

entirely different applications.

Affected Item Source Data

The out of the box configuration assumes the Agile PLM for Process GSM application is local and on a

shared database. Using an alternate instance of GSM, in which PQM and GSM reside on different

databases, can be done by some simple configuration changes. Pulling in Affected Item data from other

systems requires that a custom ASCX control be created and deployed into PQM, as well as a class which

takes the PQM affected item data and generates the formatted view for display in the UI. Multiple

configurations of affected item data are permitted, which allow PQM affected item data to be pulled

from multiple applications.

Additionally, the configuration for PQM Affected Items is flexible enough to allow different

configurations for actions, audits, and issues, if needed.

Local GSM

Assumes the PQM Affected Item data is populated from GSM residing on the same database. This is the

default configuration for PQM Affected Items, so no configuration changes are required.

External GSM

Agile PLM for Process GSM that is deployed on a separate database from PQM, configuration changes

are required that specify the server URL and database connection. The configuration setting changes

indicate the GSM server URL. Additionally, this configuration requires that the Reporting DB connection

pool is configured (on the PQM application’s configuration files) to point to the database connection

where GSM is hosted.

See the Configuration > GSM Residing on a Different Database section in this document.

Trusted Site

Additionally, when searching for GSM specification data in another server from PQM, users must update

their Chrome browser settings to add that GSM web site as a Trusted Site. Failing to do so will result in

the GSM EQT Popup being unable to post the search results back to PQM.

GSM EQT Feature Configuration

When adding a GSM Specifications to the affected items listing, the search popup includes all

specification types.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
28

To limit which specification types should be available, configuration entries can be configured separately

for actions, audits, and issues. The following Feature Configuration entries control this access, where the

4 digit number represents the specification types:

Action Audit Issue

PQM.Action.AffectedItem.1004.Enabled
PQM.Action.AffectedItem.1005.Enabled
PQM.Action.AffectedItem.1006.Enabled
PQM.Action.AffectedItem.1009.Enabled
PQM.Action.AffectedItem.1010.Enabled
PQM.Action.AffectedItem.2076.Enabled
PQM.Action.AffectedItem.2121.Enabled
PQM.Action.AffectedItem.2147.Enabled
PQM.Action.AffectedItem.2280.Enabled
PQM.Action.AffectedItem.2283.Enabled
PQM.Action.AffectedItem.5750.Enabled
PQM.Action.AffectedItem.5816.Enabled
PQM.Action.AffectedItem.6500.Enabled
PQM.Action.AffectedItem.6501.Enabled

PQM.Audit.AffectedItem.1004.Enabled
PQM.Audit.AffectedItem.1005.Enabled
PQM.Audit.AffectedItem.1006.Enabled
PQM.Audit.AffectedItem.1009.Enabled
PQM.Audit.AffectedItem.1010.Enabled
PQM.Audit.AffectedItem.2076.Enabled
PQM.Audit.AffectedItem.2121.Enabled
PQM.Audit.AffectedItem.2147.Enabled
PQM.Audit.AffectedItem.2280.Enabled
PQM.Audit.AffectedItem.2283.Enabled
PQM.Audit.AffectedItem.5750.Enabled
PQM.Audit.AffectedItem.5816.Enabled
PQM.Audit.AffectedItem.6500.Enabled
PQM.Audit.AffectedItem.6501.Enabled

PQM.Issue.AffectedItem.1004.Enabled
PQM.Issue.AffectedItem.1005.Enabled
PQM.Issue.AffectedItem.1006.Enabled
PQM.Issue.AffectedItem.1009.Enabled
PQM.Issue.AffectedItem.1010.Enabled
PQM.Issue.AffectedItem.2076.Enabled
PQM.Issue.AffectedItem.2121.Enabled
PQM.Issue.AffectedItem.2147.Enabled
PQM.Issue.AffectedItem.2280.Enabled
PQM.Issue.AffectedItem.2283.Enabled
PQM.Issue.AffectedItem.5750.Enabled
PQM.Issue.AffectedItem.5816.Enabled
PQM.Issue.AffectedItem.6500.Enabled
PQM.Issue.AffectedItem.6501.Enabled

Also, when using PQM to search for actions, issues, or audits that have a specific GSM specification,

different configurations control whether or not the search options should include a local (same DB) GSM

specification search and/or a remote/external GSM specification search. The following Feature

Configuration entries enable the behaviors:

<add key="PQM.EQT.Action.AffectedItemGSMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Action EQT Search of Affected Items by local GSM DB"/>
<add key="PQM.EQT.Action.AffectedItemGSMSearch.External.Enabled" value="false"
configDescription="Sets PQM Action EQT Search of Affected Items by External GSM DB"/>

<add key="PQM.EQT.Audit.AffectedItemGSMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Audit EQT Search of Affected Items by local GSM DB"/>

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
29

<add key="PQM.EQT.Audit.AffectedItemGSMSearch.External.Enabled" value="false"
configDescription="Sets PQM Audit EQT Search of Affected Items by External GSM DB"/>

<add key="PQM.EQT.Issue.AffectedItemGSMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Issue EQT Search of Affected Items by local GSM DB"/>
<add key="PQM.EQT.Issue.AffectedItemGSMSearch.External.Enabled" value="false"
configDescription="Sets PQM Issue EQT Search of Affected Items by External GSM DB"/>

Alternate Affected Item Source Systems

When pulling Affected Item data from alternate systems, a custom ASCX control must be created and

plugged into PQM that allows for searching and selecting an affected item such as a specification. This

item is then added to the Affected Items listing in PQM via the hosting aspx page’s AddItem Javascript

function.

The configured list of possible Affected Item sources is added to the Add New button. Clicking on the

external system launches the custom control.

ASCX control

The custom control’s responsibility is to provide a mechanism for users to search for affected item data

and then select the entry that will be populated in the Affected Items listing. The control could, for

example, allow users to enter some search criteria, and pass those values to a web service call to

another system, returning any matching suppliers. Alternatively, the control could simply display a

listing of all products from a different database (see the following example). Selecting the desired

affected item entry must then call an existing Javascript function, AddItem() to add the entry to the

PQM item. For more details, see the following reference example, and the Configuration section.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
30

The above screenshot is an example of a control that displays data from a different database, using a

.NET GridView control. The example code for this simple GridView control is shown below.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="NorthwindProducts.ascx.cs" Inherits="Referenc
ePQMExtensions.AffectedItems.NorthwindProducts" %>
<div>
 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False" DataKeyNames="ProductID"
 DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID" ReadOnly="True"
 SortExpression="ProductID" />
 <asp:BoundField DataField="ProductName" HeaderText="ProductName"
 SortExpression="ProductName" />
 <asp:BoundField DataField="CategoryName" HeaderText="CategoryName"
 SortExpression="CategoryName" />
 <asp:BoundField DataField="Description" HeaderText="CategoryDescription"
 SortExpression="Description" />
 <asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit" SortExpression="Quant
ityPerUnit" />
 <asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
 SortExpression="RegionUnitPrice" />

 </Columns>
 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=(local);Initial Catalog=northwind;Integrated Security=true"
 SelectCommand="SELECT p.*, c.CategoryName, c.Description FROM Products p inner join Categories c o
n p.CategoryID = c.CategoryID where discontinued = 0"></asp:SqlDataSource>
</div>

In the code-behind, we add an event for when the row is clicked, which calls the AddItem function:

using System;
using System.Web.UI.WebControls;

namespace ReferencePQMExtensions.AffectedItems
{
 public partial class NorthwindProducts : System.Web.UI.UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 GridView1.RowDataBound += gvSearch_RowDataBound;
 }

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
31

 protected void gvSearch_RowDataBound(object sender, GridViewRowEventArgs e)
 {
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 e.Row.Attributes.Add("onmouseover", "this.style.backgroundColor='#ceedfc'");
 e.Row.Attributes.Add("onmouseout", "this.style.backgroundColor=''");
 e.Row.Attributes.Add("style", "cursor:pointer;");
 e.Row.Attributes.Add("onclick", "AddItem('" + e.Row.Cells[0].Text + "','" + e.
Row.Cells[2].Text + "','NorthwindProduct','" + e.Row.Cells[0].Text + "','" + e.Row.Cells[0].Te
xt + "','Northwind');");
 }
 }
 }
}

The control adds the item to the Affected Items listing of the PQM item using only the item’s internal

identifier, some external identifier, an item type, and the SourceSystemID. Next, a new class must be

created to handle displaying data returned by this control. The affected item’s name is not stored in the

database, so that there is no issue with keeping multiple data sources in synch. This class is therefore

responsible for retrieving the product name, along with an additional description and an optional URL to

link to that product.

View Model Retriever

A custom Affected Item Retriever class must be created that creates a view model object for each

Affected Item in the listing. The view model is responsible for display of the affected item data in the

User Interface. Affected Items for Issues have slightly different retriever and view model interfaces.

The PQMAffectedItemViewModelRetrieverFactory simply creates and returns a

PQMAffectedItemViewModelRetriever

public interface IPQMAffectedItemViewModelRetrieverFactory<TViewModel, TDataObject>
 where TViewModel : IPQMAffectedItemViewModel
 where TDataObject : IPQMAffectedItem
{
 IPQMAffectedItemViewModelRetriever<TViewModel, TDataObject> Create();
}

public interface IPQMAffectedItemViewModelRetrieverActionFactory :
IPQMAffectedItemViewModelRetrieverFactory<IPQMAffectedItemViewModel, IPQMAffectedItem> { }

public interface IPQMAffectedItemViewModelRetrieverAuditFactory :
IPQMAffectedItemViewModelRetrieverFactory<IPQMAffectedItemViewModel, IPQMAffectedItem> { }

public interface IPQMAffectedItemViewModelRetrieverIssueFactory :
IPQMAffectedItemViewModelRetrieverFactory<IPQMIssueAffectedItemViewModel,
IPQMIssueAffectedItem> { }

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
32

Each retriever returns a list of view models via the GetViewModels method.

The retriever’s GetViewModels method takes a collection of PQMAffectedItem data objects (or

PQMIssueAffectedItem data objects for PQM issues) which are stored on the PQM item. The retriever

must then return a corresponding list of view models. Given the list of PQMAffectedItem data objects,

which hold the ItemInternalID, ItemExternalID, etc, those properties are then used by the retriever to

query another system (using web services or SQL queries for example) and retrieve the relevant

information for display in the view models.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
33

View models of actions and audits must implement the IPQMAffectedItemViewModel:

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
34

PQM issue view models must implement the IPQMIssueAffectedItemViewModel:

Custom AffectedItemViewModel classes can extend the PQMAffectedItemViewModelBase abstract

class. Note that the view model has a property named ItemIconCSS, which is used to display custom

icons representing the affected item type.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
35

Example Code

The following code represents a simple implementation of an Affected Items view model retriever. The

retriever factory simply creates a new retriever class. The retriever class delegates the load of

Northwind product data to the view model.

using System.Collections.Generic;
using Xeno.Data.PQM;
using Xeno.Prodika.Services.PQM.Models;

namespace ReferencePQMExtensions.AffectedItems
{
 public class NorthwindProductsAffectedItemViewModelRetrieverActionFactory : IPQMAffectedIt
emViewModelRetrieverActionFactory
 {
 public IPQMAffectedItemViewModelRetriever<IPQMAffectedItemViewModel
, IPQMAffectedItem> Create()
 {
 return new NorthwindProductsAffectedItemViewModelRetriever();
 }
 }

 public class NorthwindProductsAffectedItemViewModelRetriever : IPQMAffectedItemViewModelRe
triever<IPQMAffectedItemViewModel, IPQMAffectedItem>
 {
 public List<IPQMAffectedItemViewModel> GetViewModels(ICollection<IPQMAffectedItem> pqm
AffectedItems)
 {
 List<IPQMAffectedItemViewModel> viewModels =new List<IPQMAffectedItemViewModel>();

 foreach (var pqmAffectedItem in pqmAffectedItems)
 {
 viewModels.Add(new NorthwindProductsAffectedItemViewModel(pqmAffectedItem));
 }

 return viewModels;
 }
 }
}

The sample view model class extends the PQMAffectedItemViewModelBase abstract class. It loads and

assigns the product information from the Northwind database, and if the Revision Fixed internalID is set,

retrieves and assigns that from the database.

using System.Collections.Generic;
using Xeno.Data.PQM;
using Xeno.Prodika.Services.PQM.Models;

namespace ReferencePQMExtensions.AffectedItems
{
 public class NorthwindProductsAffectedItemViewModel : PQMAffectedItemViewModelBase
 {
 private IPQMAffectedItem PqmAffectedItem { get; set; }
 private string _revisionFixedDescription;
 private string _revisionFixedDisplayNumber;

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
36

 public NorthwindProductsAffectedItemViewModel(IPQMAffectedItem pqmAffectedItem) : base
(pqmAffectedItem)
 {
 PqmAffectedItem = pqmAffectedItem;
 LoadProduct();
 }

 private void LoadProduct()
 {
 //Load Revision Found
 var itemDesc = RevisionDescriptionLoader.GetDescriptionForProduct(PqmAffectedItem.
ItemInternalID);
 Description = itemDesc.Description;
 ExtendedDescription = itemDesc.DescriptionExtended;
 ItemExternalID = itemDesc.ExternalID;
 ItemURL = itemDesc.ItemURL;

 AvailableRevisionFound = new List<KeyValuePair<string, string>>() { new KeyValuePa
ir<string, string>(ItemInternalID, ItemInternalID) };
 ItemExternalIDs = new List<KeyValuePair<string, string>>() { new KeyValuePair<stri
ng, string>(ItemExternalID, ItemExternalID) };

 //Load Revision Fixed
 var revisionItem = RevisionDescriptionLoader.GetDescriptionForProduct(RevisionFixe
dInternalID);
 _revisionFixedDescription = revisionItem.Description;
 _revisionFixedDisplayNumber = RevisionFixedInternalID;
 RevisionFixedItemNumberRev = RevisionFixedInternalID;
 RevisionFixedURL = revisionItem.ItemURL;
 }

 public override string RevisionFixedDisplayNumber { get { return _revisionFixedDisplay
Number; } }
 public override string RevisionFixedDescription {get { return _revisionFixedDescriptio
n; }}
 public override string RevisionFixedURL { get; set; }
 public override string ItemIconCSS { get; set; }
 public override string ItemURL { get; set; }
 public override string ExtendedDescription { get; set; }
 public override List<KeyValuePair<string, string>> AvailableRevisionFound { get; set;
}
 public override List<KeyValuePair<string, string>> ItemExternalIDs { get; set; }
 public override string Description { get; set; }

 }
}

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
37

The RevisionDescriptionLoader queries a database for product information to display for the affected

item.

internal class RevisionDescriptionLoader
 {
 private const string _queryString = @"SELECT p.ProductName, c.CategoryName, p.Quantity
PerUnit FROM Products p inner join Categories c on p.CategoryID = c.CategoryID
 where p.ProductID = @ProductID;";

 internal static RevisionDescription GetDescriptionForProduct(string productID)
 {
 if (String.IsNullOrEmpty(productID))
 return new RevisionDescription() {Description = String.Empty};

 RevisionDescription item = new RevisionDescription();
 using (var connection = new SqlConnection(NorthwindDBHelper.ConnectionString))
 {
 var command = new SqlCommand(_queryString, connection);
 command.Parameters.AddWithValue("@ProductID", productID);

 try
 {
 connection.Open();
 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())
 {

 item.Description = reader.IsDBNull(0) ? String.Empty : reader.GetStrin
g(0);
 item.DescriptionExtended = reader.IsDBNull(1) ? String.Empty : String.
Format("[{0}]", reader.GetString(1)); //category name
 item.ExternalID = reader.IsDBNull(2) ? String.Empty : reader.GetString
(2); //quantityperunit
 item.ItemURL = "http://somenorthwind.com/product/" + productID;

 }
 reader.Close();
 }
 catch (Exception ex)
 {
 item.Description = "Error Occurred";
 item.DescriptionExtended = String.Format("Northwind Product record # {0} -
 {1}", productID, ex.Message);
 }

 }
 return item;
 }
 }

Remember that affected items for a PQM issue have additional fields if the Issue is a Non-Conformance

report (NCR) issue type. Therefore, the view model and retriever interfaces are different than for the

affected items of an action or audit. See the previous class diagram.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
38

Configuration

In the CustomerSettings.config file, the PQM node has individual nodes for each PQM business object

(action/audit/issue). Like the PQM Suppliers configuration, the AffectedItemRetrievers node contains

PQMItemRetrieverConfig child nodes, which specify each data source.

The following configuration entry shows the default affected item configuration (where Affected Item

data is retrieved from a local GSM instance), and is followed by the configuration used by the example

shown above (SourceSystemID=”Northwind”):

<PQM>
 <Action>
 <AffectedItemRetrievers configChildKey="SourceSystemID">
 <PQMItemRetrieverConfig
 SourceSystemID="GSM"
 SourceSystemTranslationID="lblGSM"
ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.GSM.GSMSpecAffectedItemViewMode
lRetrieverActionFactory,PQMLib$GSM"
 UseEQT="true"
 EQTBaseURL="@@VAR:Prodika.PQM.URL@@"
EQTConfiguration="SearchableView:Config:ProdikaSettings/EQTConfiguration/SearchableMultiSelect
ViewsGSM,PQMActionSpecSummaryView"
 ItemViewBaseURL="@@VAR:Prodika.GSMView.URL@@"
 ItemAddControl="" />

<PQMItemRetrieverConfig
 SourceSystemID="Northwind"
 SourceSystemTranslationID="lblNorthwindProducts"

 ItemRetrieverObjectURL="Class:ReferencePQMExtensions.AffectedItems.NorthwindProductsAff
ectedItemViewModelRetrieverActionFactory,ReferencePQMExtensions"
 UseEQT="false"
 EQTBaseURL=""

 EQTConfiguration="SearchableView:Config:ProdikaSettings/EQTConfiguration/SearchableMult
iSelectViewsGSM,PQMActionSpecSummaryViewMultiSelect"
 ItemViewBaseURL="http://northwinddb.com/products/"
 ItemAddControl="NorthwindProducts.ascx" />
...

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
39

Due to a bug, the EQTConfiguration entry is required even for external systems, though it is not

used.

Attribute Description

SourceSystemID Identifies where the Affected Item data comes from. This value should be
unique within the individual item type (Action/Audit/Issue) – that is, the
Action AffectedItemRetrievers node should not contain 2
PQMItemRetrieverConfig entries with the same SourceSystemID values.

SourceSystemTranslationID The translation value will be used to display the name in the Affected Item
section of the user interface if there is more than one entry configured for
the PQM item type.
When adding new translations, add a new entry into the
commonXLAExtensionCacheItem table, where the fkParent value is the
pkid of the ‘frmPQM/Extension’ entry in the commonXLAExtensionCache
table. For example:
insert into commonXLAExtensionCacheItem values
('1059'+UPPER(NEWID()), '10586A177FC6-F446-4FC2-885D-
788B8C89AAF3', 0, 'lblNorthwindProducts', 'Northwind
Products');

ItemRetrieverObjectURL This customizable class is a factory
(IPQMAffectedItemViewModelRetrieverFactory) that, given a list of
Affected Item data objects (IPQMAffectedItem or IPQMIssueAffectedItem)
stored in PQM, retrieves the related View Models
(IPQMAffectedItemViewModel or IPQMIssueAffectedItemViewModel),
which are classes that are used to generate the UI details.
Custom classes can leverage the abstract base view model class,
PQMAffectedItemViewModelBase, when creating their own view models.

UseEQT true if using GSM data; false otherwise

EQTBaseURL Required if using GSM; app location of the GSM specification selection
popup.

EQTConfiguration Required if using GSM; can be customized to specify different EQT views
when searching for GSM Specifications.
** Note that due to a bug, the EQTConfiguration entry is required even for

external systems, though it is not used.

ItemViewBaseURL Affected Item entries in the user interface can be links – this setting
specifies the base URL of GSM Spec-based links, and can be used by the
ViewModel retriever to create the URL links.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
40

Attribute Description

ItemAddControl Only required when supplier data is coming from a non-GSM data source.
This value specifies the ASCX control that should be loaded in a PQM pop
and that can manage the display of Affected Item data from external
systems. This value is ignored if the UseEQT attribute value is set to true.

The custom control’s responsibility is to provide a mechanism for users to
search for affected item data, and select the entry that will be populated
in the Affected Items listing. The control could, for example, allow users to
enter some search criteria, and pass those values to a web service call to
another system, returning any matching items. Selecting the desired
affected item entry must then call an existing javascript function,
AddItem() to add the entry to the PQM item. The AddItem function takes
the following parameters:

 internalID – The internal unique identifier of the entry. This will
not be visible to users

 ExternalID – A visible identifier. This can be modified by providing
additional ExternalID options in the ItemRetriever class, if needed.

 ItemType – A value that can be used to distinguish affected item
types. For GSM specifications, for instance, this represents the 4
digit specification type (e.g. 1004 for Material Specs)

 ItemNumber – The main user interface identifier for the item. For
GSM specifications, for instance, this value is the specification
number (without the issue number).

 ItemRevision – The version number for the item. For GSM
specifications, for instance, this value is the specification’s issue
number.

 SourceSystemID – A value that should match the SourceSystemID
entry in the configuration, telling the system where the data came
from. For PLM for Process GSM, the value “GSM” is used.

The ASCX control must pass specific data to the main PQM window by
calling the PQMCustomAffectedItemAdd.aspx’s AddItem() javascript
function.

The .ascx file must be placed in the PQMItemControls\Extensions folder in
PQM. The compiled DLL for this control must be included in the PQM\bin
directory.

The @@VAR:Prodika.GSM.URL@@ value gets automatically replaced by the value in

environmentvariables.config, but a different value can be specified here if needed.

GSM Residing on a Different Database

If GSM data resides in a different database, the configuration entry of the ItemRetrieverObjectURL must

be changed by appending the following, starting with the pipe (|) symbol:

|Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBDataManagerStrategy,PQMLib

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
41

So the attribute would be:

ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.GSM.GSMSpecAffectedItemViewModelRetrie

verActionFactory,PQMLib$GSM|Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBData

ManagerStrategy,PQMLib"

This configuration requires that the Reporting DB connection pool is configured (on the PQM

application’s configuration files) to point to the database connection where GSM is hosted.

Additional Affected Items Formatting Extensibility

When using GSM for affected item data, the user interface display in the Affected Items listing can be

customized by implementing format plugins. By default, the GSM specifications listed here use the

SpecStatusIdentityPlugin to append the specification’s status to the description.

The following format plugins are used:

 PQMActionAffectedItems
 PQMActionAffectedItemsRevFixed
 PQMAuditAffectedItems
 PQMAuditAffectedItemsRevFixed
 PQMIssueAffectedItems
 PQMIssueAffectedItemsRevFixed

The affected items for an Issue have an additional format plugin (plugin name is

PQMIssueAffectedItemsAdditionalIdentifier) available used for the SKU/GTIN column. By default, the

GSM specifications listed here use a plugin which shows the GTIN number.

The output of each plugin is used to display any additional desired information.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
42

When configuring any of the above FormatPlugins, be sure to include the following XML attribute:

ignoreInheritFromPluginName="true"

See the PluginExtensions documentation for details on writing FormatPlugins.

Note that in the above screenshot, the entries that came from an external system (Northwind) are

specifying the extended description on the ViewModelRetriever class, rather than pulling in the format

plugins, while the data from GSM is using the default FormatPlugins.

Affected Item Persistence

When Affected Items data pulled into PQM, it is saved in the pqmAffectedItem table for PQM actions

and audits and in the pqmIssueAffectedItem table for PQM issues. The following core data is saved from

the source system, and is then passed to the retriever classes to generate a view model for displaying

user friendly information.

 SourceSystemID – Name of the source system, as configured in the PQMItemRetrieverConfig
xml entries. When data is retrieved from the table for display, the retriever class with a
matching SourceSystemID is used to generate the view models.

 ItemInternalID – Internal, non-display, unique identifier for the affected item. For GSM
specifications, this field contains the Spec ID (PKID). This is used by the retriever classes to load
relevant details for display.

 ItemRevisionFound – The revision of the Affected Item. For GSM Specs, this field contains the
issue number.

 ItemType – An identifier to specify the affected item type. For GSM specifications, this
represents the specification type (1004: material specifications, 2147: trade specifications, etc.)

 ItemNumber – The primary identifier of the affected item. For GSM specifications, this
represents the specification number (without the issue number)

 ItemExternalID – An alternate identifier for the affected item, displayed in the user interface.
The retriever class can provide a list of possible selections for the user to choose from.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
43

Chapter 12—PQM Web Services
A comprehensive set of web services are available for integration with PQM. See the Agile Product

Lifecycle Management for Process Web Services Guide for details.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
44

Chapter 13—Utility Classes
Several useful utility classes are available to assist external developers with Agile PLM for Process PQM

extensibility development. Custom validators, workflow actions and workflow guard conditions, plugins,

calculation extensions, and other extensibility points can leverage these utility classes by referencing the

PQMLib.dll.

The following utility classes are available:

PQMWorkflowTagEvaluator

Provides methods to help determine which workflow status a PQM item is in. The

EnumPQMWorkflowTagID enum can be passed in as a parameter, to check for predefined workflow

tags, such as IsReleased.

PQMUserCrossReferenceRetriever

Provides methods to retrieve the list of (a user’s preferred) cross references assigned to a PQMItem.

PQMPermissionManager

Available via the PQMItemService, provides permission-related information for PQM.

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
45

Agile Product Lifecycle Management for Process – PQM Extensibility

© 2022 Oracle Corporation
46

