ORACLE

INSURANCE

Oracle Health Insurance Back
Office

HTTP Service Layer (HSL) User Manual

Version 1.4

Part number: E97070-01
September 19th, 2018

ORACLE’

Copyright © 2016, 2018, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are “commercial computer software” or “commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including
applications which may create a risk of personal injury. If you use this software in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include
related notices. For information on third party notices and the software and related documentation
in connection with which they need to be included, please contact the attorney from the
Development and Strategic Initiatives Legal Group that supports the development team for the
Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should
be considered in your capacity as a customer advisory board member or pursuant to your beta trial
agreement only. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the
terms and conditions of your Oracle Software License and Service Agreement, which has been
executed and with which you agree to comply. This document and information contained herein
may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

CHANGE HISTORY

Release Version
10.16.2.3.0 0.1 New (internal) document CDO 15195
Removed references to XML
10.17.1.4.0 0.2 Revised document.
10.17.1.4.0 0.3 Revised document
Added chapter on ‘Language Aspects’
10.17.1.4.0 0.4 Processed feedback from review by EVI
10.17.1.4.0 0.5 Processed feedback from review by KOS
10.17.1.4.0 1.0 Some minor textual changes, increased to version nr 1.0
10.17.2.0.0 11 Revised URLs for retrieving Swagger definition
Revised comments for PL/SQL client code fragment
Revised ‘Error Handling’ paragraph.
Added “Input Validation’ paragraph
10.17.2.2.0 1.2 Revised HSL Technical Principles
Added “Basic Authentication” to Terminology
10.18.1.0.0 1.3 Changed title
Added “security aspects’ to introduction with reference to Doc[1] for
OAUTH2 and OPTIONS support
Revised security item in “HSL technical principles’
10.18.1.3 14 Updated HTTP return codes

Added paragraph about optimistic locking

Introduction

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that is related to this document.
Below is a list of related documents:

e Doc[1]: Back Office HTTP Service Layer Installation & Configuration Manual (internal code CTA 13681)

Introduction

Contents
B 915 5o Yo 1 Tt T} o WU SRR 3
1.1 SeCUTity ASPECES.....ociiiiiiiiiiiiiic 3
1.2 Purpose of This DOCUMENLccoevueueirreriinieiiiriereirerecnrereereereesseneeseenenens 4
2 Design PrNCIPIEScccucuiiiuiiiiiiiiicieicccct e e 5
21 HSL Interfacing DeciSions ... 5
2.2 HSL Technical Principles........cococcvreieneinneinecineccnieeeneeneenseneeseenenens 8
3 Generic usage aspects of HSL SEIVICESccovuvururieicuiuiiiiniiiccciceccceereeeeenee 10
3.1 Creating HTTP requests ... 10
3.1.1 HTTP Request Headers. ...ttt vciceesesieseseeeseseenes 10
312 Accept-Language ... 10
3.2 HTTP VEIDS ..ottt ettt ettt e e 11
3.3 HTTP RetUrn COAESuvviinviiieeiiieeeeeeeeeeee ettt s 12
3.4 Optimistic LOCKINGocooviviiiieiciiiiiiiirrreeceecccc e 13
3.5 INput Validation.......ccoveernieirinieinincinineenreeceneeeseeieesereesee e nene e 14
3.6 Error Handling..........cooviieeeiiiirnecccccccceeeee e 15
I TS WA Ta <l D<) 0515 (o) s UOURR RSO SSR OSSOSO SRR 17
41 Viewing the Swagger Definition ... 17
42 Understanding SWaggercccccccrrrrrerieeeiiierseeeeeieee s 18
43 b0 o (ol 1 01 4 <SRRI 18
4.3.1 Paths and OPErations........c.cccovrreeueueiinnieiereieentririeereseettsese e rereseeseseesesesestseseeees 18
44 OHIBO-SPecific @XtENSIONS ...c..oveverirveeiririeiirinieiinieietreeieeneenereseereessereseseenenens 19
44T ENUMETAtIONS ...ooiviieiiiiiecie ettt ettt ettt steeeteestae e taeeaveeseeeveesaseenseesaseeseens 19
5 Configuration information ... 21
6 Singular resource OPErations...........cccccceueiririririrerieueueieiiieeseeeeeee et seeeeaenene 22
6.1.1 Default MEMDETS........c.cccvievieeeeiieeeeeeeecteeeeete ettt et eraeere e ers e ereeereersenseeren 22
6.2 GET ettt e e e et e st e e et e e st e e et s e et e e et e e saeennes 22
6.2.1 Default fIlEOIS:ccveiueierieeeeeteeeeeteee ettt ettt ettt ettt aeereeaeenen 22
6.2.2 HTTP retUIN COAES....uvieueiriiniierieteeereeeeete ettt ettt ere e ete e erseeeereenseenseneeenean 22
6.3 PUT ettt ettt ettt e st e st e st e et e e steeeattesraeesaneas 22
6.3.1 Default fIlEOIS.....ccvieeeierieeeieteeeeete ettt ettt et ere e eaeeaeenen 22
6.3.2 HTTP retUIN COAES....uviiuririiniicrieteeeeeeeeete ettt ettt et e ete e erseeeereenseerseneeenean 23
6.4 POST ...ttt et ettt e st e st e et este e et esraeeeaneas 23
6.4.1 Default fIlEOIS.....ccvicveierieeeeeieeeeeteee ettt ettt ettt e te e ereeaeenen 23
6.4.2 HTTP retUIN COAES...uviiueiriiiieiieeeeeeeeeeete ettt ete e et ere e ers e e ereeseersereeerean 23
6.5 PATCH ...ttt ettt ettt e st e e et saeesaneas 23
6.5.1 Default fIlEOIS.....ccveeeeierieeeiereceeeee ettt ettt ettt e ere e ere e enen 23
6.5.2 HTTP IetUIN COAES....uviiuiiriiniirieteeeeeeeeete ettt et ete e et eveerseeeereeeeerseneeerean 23
6.6 DELETE..... oottt ettt ettt ettt e et esate e saatesraeesaneas 23
6.6.1 Defatlt FIILEIS....ccuoovievieeeeeceeeeteeeeeteeeete et ettt et ere e eve e eaeenaeenean 23
6.6.2 HTTP retUIN COAES....uviiueiriiniietieeeeeeeeeecte ettt ettt ete e ere e erseeeereeaeerseneeenean 23
7 Collection reSoUIce OPETations..........ccceueueiirirerirerieiereueieeeereseseee ettt seseseesenene 24
7011 Default MEMDETS.......c.ooviivieeiiceeeeeeeeeeeeteeeeteee ettt ettt ere e enean 24

7.2 GET ..ttt sttt sttt st st naen 25

10

11

721 Default fIETS......cvciiiieriiciceeeeeeee ettt re ettt eaens
7.2.2 HTTP return codes
7.3 P T ettt e et e e et e e e e ta e e e stte e e e nraeeeenaaaeas
7.4 POST ...ttt ettt e et e et e e teeete e eteeereeeteeenreas
74T Default fIlETS......cociieieriieececececee ettt reetesaens
74.2 HTTP return codes
7.5 PATCH ...ttt ettt et e e aeeeveeeanens
7.6 DELETE ... ettt et e et e e e e e e tt e e e e tae e eeaaaea s

HATEOAS LINKS....itiiiiinieieienicieierieeetentet sttt ettt et st ene s 27

Language ASPECES........cccucuiiriiiiiiciiiicic s 35

10.1 CUIrent BENAVIOULTccviiiietieiecieceeee ettt ettt e eae s
10.1.1 MeSsagescccccevvvruvurucucuncnnnnn
10.1.2 Language-dependent data..........
10.1.3 Domain-based Enumerations
10.1.4 Swagger Definition..........ccccoviiiccccicciiinisccccccceene
10.1.5 Known Issue: HSL_POL service
10.1.6 Known Issue: HSL_REL service

10.2 Intended Behaviour (post M-5028)........cccccoeimmiiiiciiniiiicicecccenes 36
10.21 Domain-based ENumerations...........ccccoceeveinieiiiiiinieieiscceee e 36
10.2.2 Swagger Definition........ccccceiiriiiccucicicieieieiee e 37
TermMINOLOZY ...t e 39

Introduction ii

Back Office HTTP Service Layer User Manual

|
1 Introduction

The OHI Back Office HTTP Service Layer (HSL) is used to implement operations for
so-called Use Case Services. These services support (parts of) typical processes
relevant to OHI BO customers.

The end-user applications that will use these operations are likely to be used by self-
service users (insured members, care providers etc) but also by call-center operators.

The HTTP Service Layer is based on RESTful services technology which has the
following advantages for current web application frameworks (like Angular]S and
Oracle JET):

e accessible through HTTP

e supports JSON as input and output formats

e standardized interface language through using HTTP verbs (GET, POST, PUT,
PATCH, DELETE, OPTIONS)

e standardized set of exceptions through HTTP error codes

It is strongly advised not to expose the HSL service directly to the internet but hide
the HSL service behind an intermediary REST service. This has the following
advantages:

e end user security can be implemented in the intermediary REST service.

e support a central monitoring and security implementation.

e allows additional code and helps to bridge interface changes in subsequent
versions of the OHI-supplied services in a central location, only once.

The functional implementation of the HSL services is done in PL/SQL.

A generated Java layer exposes the HSL services through the Weblogic Application
Server as RESTful services.

Using PL/SQL as the basis for HSL service means that the HSL operations can also be
accessed through PL/SQL within the OHI Back Office database. This may provide a

performance benefit because it bypasses the overhead of the Weblogic Application
Server and obviates the need to serialize and deserialize objects.

1.1 Security Aspects
Default authentication for the HSL services is Basic Authentication over SSL.
In 10.18.1.0.0 the following changes were made to the security of the HSL services:
¢ No authentication needed for OPTIONS method
This requires that the HSL service is deployed with ‘Custom Roles and

Policies’

e OAUTH 2.0 token authentication and validation as an alternative to Basic
Authentication

Introduction 3

Back Office HTTP Service Layer User Manual

See Doc[1] for more information.
1.2 Purpose of This Document
This document describes the generic aspects of the HTTP Service Layer.

The functionality and interface of each service is described in a so-called Swagger
schema which can be retrieved once the service is deployed to the application server.

A terminology list is included at the end of this document.

For information regarding installation and configuration of OHI Back Office HTTP
service layer components please use Doc[1].

Introduction 4

Back Office HTTP Service Layer User Manual

2 Design Principles

The HTTP Service Layer is based on RESTful service concepts and the following
architecture decisions:

e PL/SQL is used to implement the functionality, using SQL types as content
containers

e the HTTP interface layer is implemented in Java and exposed through WLS and
PL/SQL

e a]Java class model is used to pass data from SQL types and vice versa
e Javais used to generate metadata and schema information

e Javais used for technical validation of request data (datatype, presence of
mandatory data etc).

To avoid confusion and prevent dependency with the existing SOAP-based SVL
components, the HSL services will have their own SQL types and tooling.

Where possible, existing Java libraries and frameworks such as JPA-RS, Jersey, MOXy
and JDBC are used to handle the interfacing.

The diagram below shows the various parts of a HSL service:

WLS runtime process

g ‘ WLS libraries

Service WAR

Java libraries

= - Java service class
package - o

A © 1 A
8

Y =

SQL types model |- » Java class model
Y \
Request Response Metadata
JSON JSON JSON/YAML

The components shown in grey are maintained by OHI BO.
21 HSL Interfacing Decisions

This paragraph describes the interfacing decisions taken by OHI Back Office which
may affect how you write and test your client applications:

Design Principles 5

Back Office HTTP Service Layer User Manual

Terminology, terms and documentation will be in the English language.

Rationale: the service layer is typically used by developers who are used to
technical documentation in English.

A Use Case service is designed to perform a specific set of tasks.

Rationale: this allows a more compact object model for each service and
makes writing client applications more straightforward.

A HSL service operation typically applies on a resource.

Rationale: The key abstraction of information in REST is a resource
(dissertation of Fielding outlining RESTful principles).

In OHI BO, a resource is an object which can be accessed through a service
operation and which can (normally) be mapped on a OHI BO entity such as a
policy, claim, person etc.

A collection resource is a list of singular resources. Example: a collection resource
claimCollection isa list of claim resources.

The functionality of HSL services is implemented in PL/SQL.

Rationale: implementing the functionality in the database is more efficient
and saves many roundtrips compared to implementing application

functionality in the middle tier.

The operations of a HSL application may be accessed through PL/SQL and
Weblogic Application server.

Rationale: allows PL/SQL to access the same functionality as the HTTP
interface (although its use may be different).

The interface definition is aligned with Oracle internal standards.
Examples: resource concepts, HATEOAS links, pagination, metadata.

Rationale: align with internal Oracle requirements (most of which also
improve integration facilities right out of the box).

Each service is based on a Swagger 2.0 schema.

Rationale: apart from an internal requirement within Oracle, Swagger 2.0
specifications provide a readable and detailed interface description which can
be used by analysts, programmers and testers.

Each service has its own objects.

Apart from common definitions for (primitive) scalar types, no objects are

shared between services.

Rationale: since the changes to a class model of a service are local to that
service, these changes have no impact on other services.

Inbound and outbound resources may be in JSON format.

Rationale: required by Oracle internal standards.
JSON (Javascript Object Notation) has become the de facto standard for

Design Principles 6

10.

11.

12.

13.

14.

15.

16.

Back Office HTTP Service Layer User Manual

serializing objects in Internet applications.
Note that XML format is not supported.
POST/PUT operations assume that the inbound resource is a complete object.

When validating the inbound object, an exception will be raised if one of the
required fields is not present.

Rationale: consistent with HTTP convention.

PATCH operations assume that the inbound resource may be an incomplete
object.

When processing the inbound object, only those fields which are set are
validated.

Rationale: consistent with HTTP convention.

Domain-based enumerations are mapped to domain meanings if Accept-
Language is set.

When Accept-Language is set, the language for performing the operation is
set to the given language and the values of domain-based enumerations are
mapped to domain meanings (both for parameters and inbound / outbound
objects).

Rationale: makes it easier to create language-dependent HT'TP applications.
The Java layer provides basic validation for parameters and inbound objects
Rationale: provide feedback to the calling application as soon as possible.
Note that domain-based enumeration values are validated in the PL/SQL
layer.

Rationale: avoid calling the database back end unnecessarily.

Path templating is used to clarify the meaning of parameters.

Example of a template path : /v1/relation/{rel_nr}

Rationale: allows various fields to identify resources and sub resources.
Each resource URI must have a version number.

The initial version of a resource is v1.

Rationale: required by Oracle internal standards.

The HSL objects are separate from the SVL objects.

Rationale: avoid interdependency with SVL services.

Design Principles 7

Back Office HTTP Service Layer User Manual

22 HSL Technical Principles

The following technical principles may be of interest for client application developers
and administrators:

1. WebLogic Server will be used as the standard application server deployment
platform.

Rationale: this is a highly scalable, reliable and robust application server for
deploying Java applications that offers a lot of out of the box functionality.

2. Default security is basic authentication over SSL, requiring the client to login
as a Weblogic user ‘restuser’ or self defined users (depending on the
deployment option used). Basic authentication is also required for retrieving
the Swagger definition from the deployed HSL application.

OAUTH2 is supported starting with the 10.18.1.0.0 release.
See Doc[1] for more information.

3. The service calls will be stateless, which implies that subsequent service calls
are not aware of each other.

Rationale: ensure that the database is always left in a consistent state, support
scalability of the application tier.

4. A single service operation will contain one or more atomic transactions.

Rationale: a service operation should be designed to leave the database in a
consistent state. If a single operation is implemented through multiple
transactions, each transaction should leave the database in a consistent state.

5. Locking is kept to a minimum.

Rationale: HSL service operations are stateless and designed for short
running transactions.

Records will be locked with the nowait option immediately before being
updated. If a record cannot be locked, an error message is returned and the
transaction is rolled back.

Unless specifically stated, ‘optimistic locking’ is not used, ie. the contents of
the resource are not checked with a previous known state to decide whether
the update of a resource can be applied.

6. Standard HTTP return codes are used.

Rationale: standard practice in line with Oracle internal standards.

7. Functional faults will support language dependent error messages.
Rationale: although the services are in English the functional error messages
returned will use the multi-language support as present in the OHI Back
Office application; this to be able to return language specific messages based

on the calling context.

8. Standard Java logging is used for error, informative and debug level log
messages.

Rationale: by adhering to a common standard logging mechanism this will be

Design Principles 8

10.

11.

Back Office HTTP Service Layer User Manual

easier to configure and use for system administrators who are experienced
with Java based application management.

HSL services are synchronous services.

Rationale: at this stage, asynchronous services are not in scope.

Additional technical requirements will be implemented as much as possible
through applying standard solutions that are compatible with Weblogic

Server.

Rationale: focus on delivering functionality and making use of standard
components instead of developing proprietary solutions.

Date and date time values are assumed to be in local time.

Rationale: OHI Back Office currently supports local time only.

Design Principles 9

Back Office HTTP Service Layer User Manual

'
3 Generic usage aspects of HSL services

Due to the high level of standardization of HSL services the interface of each HSL
service is much the same.

The remainder of this document describes the generic aspects of HSL services.
e HTTP requests and HTTP return codes

e Retrieving the service definition

e Retrieving configuration information

e singular resource operations

collection resource operations

3.1 Creating HTTP requests

It is assumed that you know how to create HTTP requests to call HSL service
operations.

If you are testing, there are many ways to send HTTP requests to a HSL application.
You may want to use the Google Chrome app Postman or SoapUI. In our examples
we will use curl to send a HTTP request to the HSL application.

3.1.1 HTTP Request Headers
For incoming requests, the HTTP request headers are tested as indicated in the
following table:
Request Header Optional? Regular expression Example value
Accept N Aapplication/json(*; *charset=utf-8)* | application/json
Accept-Language | Y Na-z][a-z]-[A-Z][A-Z]$ nl-NL
Content-Type Y Aapplication/json(*; *charset=utf-8)* | application/json;
charset=utf-8
Content-Length Y [0-9]+ 123

Note: if the request is for /api/swagger.yaml, the value for the “Accept’ header
should be “application/yaml’.

3.1.2 Accept-Language

The default session language is the preferred language as set within the OHI User
Settings window for the OHI officer.

The OHI officer (and by implication, the session language) is set through the call-
context.

Generic usage aspects of HSL services 10

3.2

HTTP Verbs

Back Office HTTP Service Layer User Manual

* User Settings

The session language can be overruled through the HTTP request header “Accept-
Language’.

Example values:

e nl-NL
language: Dutch, country: Netherlands

e en-US
language: English, country: United States

Notes:
e the country (territory) for all OHI BO customers except PlanSeguro is always ‘NL’

e if you are creating requests directly from a browser, the browser may add the
‘Accept-Language” header to the request without your knowledge.

o If the OHI officer is set from within the internal OHI application code after
processing the call context, the previously set session language is overruled.

The following HTTP verbs may be used:

e GET
Retrieve the resource located at the URL
This is the default verb.
Idempotent operation: a subsequent call will return the same contents for the
resource if the underlying data has not been changed since the previous
invocation.

Generic usage aspects of HSL services 11

3.3 HTTP Return Codes

Back Office HTTP Service Layer User Manual

POST

Create new data.

A subsequent call with the same data will return an error.

Idempotent operation: a subsequent call with the same data will NOT result
in the creation of a new resource.

DELETE

Delete the resource located at the URL

A subsequent call with the same data will return an error.

Idempotent operation: a subsequent call will not delete any data if the first
call already deleted the data corresponding with the resource.

PUT

Used to replace the contents of the resource located at the URI.

Data which is absent from the inbound resource will be deleted from the OHI
Back Office database.

Idempotent operation: a subsequent call with the same data will have the
same effect as the first call.

PATCH

Process the contents of the resource located at the URI to update the
underlying OHI BO data.

Data which is absent from the resource is not processed.

Idempotent operation: a subsequent call with the same data will have the
same effect as the first call.

Typical HTTP return codes for HSL requests:

200 (OK)
Request successfully processed.

201 (CREATED)
Will be returned for a POST request.

400 (BAD_REQUEST)
May be returned if parameter validation failed at the Java level.

404 (NOT_FOUND)
Will be returned in the following situations:

o Requested URI was not recognized.
o Parameter validation failed at the PL/SQL level.
o OHI Back Office data could not be found.
o Parameter validation failed at the Java level
(the currently used version of the Jersey library returns HTTP 404

when parameter validation fails).

405 (METHOD_NOT_ALLOWED)
The HTTP verb was not recognized.

Generic usage aspects of HSL services 12

Back Office HTTP Service Layer User Manual

e 406 (NOT ACCEPTABLE)
Should occur if a non-existing representation is required. For example if
‘Accept’ is set to “application/xml’.

e 412 (PRECONDITION_FAILED)
Enumeration value errors in the body parameter (inbound object) or request
parameters.

e 422 (FUNCTIONAL ERROR)
OHI BO business rules were violated.
An error message is returned - see note below

e 428 (PRECONDITION_REQUIRED)
Data already updated by another user.

e 500 (INTERNAL_SERVER_ERROR)
This is a catch all for failed requests that were passed to the HSL service.
Possible causes are:
o database connection not working
o missing or invalid PL/SQL components.
Note:
e Error messages are written to the service log file.
e For security reasons, error messages are suppressed from the response by
default.

Error messages are only included in the response if the application is run in
developer mode.

3.4 Optimistic Locking

As from release 10.18.1.3, OHI BO has started the implementation of optimistic
locking.

The purpose of optimistic locking is to abort an update transaction and return HTTP
428 (PRECONDITION_REQUIRED) if the data were already updated by another

user. Note that HTTP 412 was previously used for functional errors as well.

The screenshot below demonstrates how a failed update resulting in HTTP 428 might
be signalled to the user:

Generic usage aspects of HSL services 13

3.5

Back Office HTTP Service Layer User Manual

Oracle Health Insurance - Back Office | achterafcontrolegroepering - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

§# Oracle Health Insurance -... X | +

€ ©.F & | htpsisiclsemp us oracle.com7110/0h hterat g 9%2F229 c rest senvice status 412 e + A 8 o g

WARNING x

De data is aangepast door een andere gebruiker.

Achterafcontrole CTRL108 bevat in totaal 38 declaratieregels

4
CTRL108) optimistic locking

. Regels Bedral
Controle Controle 108 § ’

7|EH] JEE095EN] < 4.261,20

y g |

Bedrag o

4 x 2:01 PM Gegroepeerd op controle

Status
M Nog niet onderzocht
In onderzoek
Onderzoek afgerond
 Regel afgehandeld
Locatie

Zoek

Uitvoerder

Zoek

Implementation of optimistic locking as per release 10.18.1.3:

e Optimistic locking has been implemented in PSL_ACL.

Peter Spaanderman ~

HTTP 412: precondition failed (enumeration value errors in inbound object or

parameters)
HTTP 422: functional error
HTTP 428: data updated by another user

e Optimistic locking has NOT yet been implemented in HSL_CLA, HSL_AUN,

HSL_AUZ, HSL_REL and HSL_POL

HTTP 412: precondition failed (functional error, or enumeration value errors

in inbound object or parameters)

Input Validation

At the Java level, input parameters are validated as follows:

e Parameters and object members of the Date type are converted from a string

value (yyyy-mm-dd) to a date value.

e Parameters and object members of numerical types are converted from a

string value to an integer or BigDecimal value.

e Parameters and object members of the String type are matched with a regular

expression.

e Parameters and object members of an enumeration type are matched with the

allowed values for that enumeration type.
The validation fails in the following cases:
e A data conversion error
e astring value does not match with its predefined regular expression.
e anenumeration value does not match with its allowed values.

e avalue is not within its designated minimum-maximum range.

Generic usage aspects of HSL services

14

Back Office HTTP Service Layer User Manual

e amissing value for a NotNull parameter or object member

3.6 Error Handling

The implementation of Use Case Services uses PL/SQL to access and manipulate
data. While processing the request, the OHI Back Office business rules come into play
and raise exceptions if your data is incomplete or incorrect.

Check the functional specification or the online help in the OHI Back Office Forms
GUI application ("Help - Inhoud en Index > Use Case Services’) for a list of possible
errors for a given HSL service.

Our adyvice for validating a client application based on Use Case Services is to always
include various tests with new data.

Note that meaningful error messages are only possible when running in ‘developer
mode’.

The following example illustrates the differences in error handling between developer
mode and non-developer mode.

When running in developer mode the following response may be generated:

{

"attribute":"getRelationByNumber.xpand",

"internalStatus":"Bad Request",
"invalidvValue":"23424987897skjdfjkhkihjk238798798sdukykjy345987
egfuiyiuyui3456uiyuiy3uioyuil3y4uibyuiy34uibyui34y5uiy345uiy3453
4uyyuiyuiuiiu",

"message":"expand must match "~ (["<>]){0,100}s"

}

This response points out the nature of the error and allows to correct the request.

When not running in developer mode the following response is generated:

{

"attribute" :"Undisclosed",
"internalStatus":"Bad Request",
"invalidValue":"Undisclosed",
"message" :"Undisclosed"

}
In order to see what caused the problem we should look at the log:

Dec 06, 2017 10:38:23 AM
com.oracle.insurance.ohibo.exception.ExceptionResponse
setMessage

SEVERE: message: expand must match "~ (["<>]){0,100}$

Dec 06, 2017 10:38:23 AM
com.oracle.insurance.ohibo.exception.ExceptionResponse
setAttribute

SEVERE: attribute: getRelationByNumber.xpand

Dec 06, 2017 10:38:23 AM
com.oracle.insurance.ohibo.exception.ExceptionResponse
setInvalidValue

SEVERE: invalidValue:
23424987897skjdfjkhkjhjk238798798sdukykjy345987egfuiyiuyui3456u
iyuiy3uibyui3y4uibyuiy34uibyui34y5uiy345uiy34534uyyuiyuiuiiufas
daf

Generic usage aspects of HSL services 15

Back Office HTTP Service Layer User Manual

Since this information is not available to outsiders, the risk of malicious use is
reduced when not running in development mode.

Generic usage aspects of HSL services 16

Back Office HTTP Service Layer User Manual

|
4 Service Definition

The functionality of Use Case Services is documented in the online help of the OHI
Back Office GUI (Help - Use Case webservices). This information is derived from
the functional specification and maintained manually.

The service definition for HSL services is a Swagger 2.0 schema generated by the
deployed HSL application.

The Swagger definition documents both the operations and the objects used by a
service. Swagger (new name: ‘OpenAPI’) is a definition standard (http://swagger.io)
supported by many leading software vendors including Oracle.

The Swagger definition of each HSL application provides useful documentation to
client application developers. Swagger definitions can also be used as the basis for
code generation.

The Swagger definition is exposed as follows:

e https:/ /server:port/application/api/swagger.json
Returns the Swagger definition in JSON format

e https:/ /server:port/application/api/swagger
Returns the Swagger definition in JSON format

e https:/ /server:port/application/api/swagger.vaml
Returns the Swagger definition in YAML format

The URI to expose the Swagger definition of the POL service would look like this:

https:/ /localhost:7001 /HSL_POL/api/swagger.json

4.1 Viewing the Swagger Definition

The online Swagger editor (http:/ /editor.swagger.io) provides a user friendly user
interface to browse the Swagger definition.

In the following example we use the online Swagger editor to view the Swagger
definition of the POL service:

e Browse https:/ /server:port/HSL POL/api/swagger.json

e Copy the contents of the browser window
e Start the Swagger editor

e Choose ‘File > Paste Json’ and paste the contents of the browser window into
the edit buffer.

Service Definition 17

https://server:port/application/api/swagger.json
https://server:port/application/api/swagger
https://server:port/application/api/swagger.yaml
https://localhost:7001/HSL_POL/api/swagger.json
https://server:port/HSL_POL/api/swagger.json

Back Office HTTP Service Layer User Manual

Oracle Health Insurance - Policy
resource®

Deze use case service bevat operaties op OHI Back Office polis niveau

/dbinfo Get database info

/templates Listiemplate info

patchPolicyCollections

Aanpassen polis incassowijzes via

Al a A L b i A b S s A e -

4.2 Understanding Swagger
In case you are not familiar with Swagger these links will get you started:

e http://swagger.io/specification/
Contains the Swagger specifications

e http://petstore.swagger.io/
A simple example to learn how the Swagger specification hangs together.

4.3 Structure
The main sections of a Swagger definition are:

e definitions
This is the class model for the service. It contains all the classes that may be
used in the service operations.

e paths
This section describes the functionality of the service. It contains all the paths
for which a request can be created (except for the /api/swagger paths).

e x-ohibo-enumerations
This section contains the enumerations referenced by scalar object members
or parameters. Each enumeration contains a mapping between OHI internal
values and external values.
The OHI internal values are used in the OHI Back Office database. The
external representations are used for interfacing with the client application.

4.3.1 Paths and operations

The unit of work in a HSL service is the operation. An operation is a combination of a
path and a HTTP verb (POST, GET, PUT, PATCH, DELETE)

Examples for the fictitious HSL_XYZ service:

e /xyz/vl/relation + POST
Create a new relation.

Service Definition 18

http://swagger.io/specification/
http://petstore.swagger.io/

Back Office HTTP Service Layer User Manual

e /xyz/vl/relation/{rel_nr} + GET
Retrieve an existing relation.

e /xyz/vl/relation/{rel_nr} +PUT
Replace an existing relation.

e /xyz/vl/relation/{rel_nr} +PATCH
Selectively update an existing relation.

e /xyz/vl/relation/{rel_nr} +DELETE
Delete an existing relation.

44 OHIBO-Specific extensions

The Swagger schema generated by the HSL application contains the following
OHIBO-specific extensions:

e x-ohibo-revision
The OHI revision number of the OHI internal schema definition. The revision
number is used for tracing a specific HSL application to a change in the OHI
source code control system.

e x-ohibo-enumerations
List of enumerations containing;:

o domain : optional link to OHI BO domain

o values: list of enumeration items. Each enumeration item has an
external value and OHI internal value.

e x-ohibo-enum
Associates a scalar value to an x-ohibo-enumeration.
May apply to object members and parameters.

e x-ohibo-column
Assigned to each scalar object member. Possible values:

o ‘none’
The value of the object member is not (directly) related to an existing
table.column value.

o <table>.<column>
The OHI table.column associated with this object member.

o <empty>

An empty value indicates an incomplete Swagger source
specification.

44.1 Enumerations

Each enumeration item has an external value and an OHI internal value.

Example:
"RelationStatus" : {
"values" : {
"approved" : "A",

Service Definition 19

Back Office HTTP Service Layer User Manual

"rejected" : "R"
}
by

As you can see, the external value ‘approved’ is mapped to an OHI internal value “A’.
The external value is used for interfacing. The OHI internal value may be useful to
understand OHI system messages triggered by a business rule violation or functional
erTors.

Note that when you use the PL/SQL interface you should use the external
enumeration value when passing objects and parameters to the PL/SQL layer.
Likewise, enumeration values in objects returned by the PL/SQL layer are
automatically converted from OHI internal format to their external representation.

Service Definition 20

Back Office HTTP Service Layer User Manual

__|
5 Configuration information

The following URI gives you information about a running HSL application:
https:/ / <server>:<port>/<application>/dbinfo
For example

https:/ /localhost:7002/HSL_POL/dbinfo

The following information is given:

e basePath
Format: https:/ / <server>:<port>/<application>/ <context>
This is the base URI for all operations in this service.

e database
The name of the database associated with the current database connection.

e instance
Instance name of the database associated with the current database connection.

e jndiName
The JNDI name of the database connection (specified in the hsl.properties
configuration file described in Doc[1])

e plsqlPackage
The PL/SQL package which implements the operations of the HSL service.
In this release, the revision number refers to the revision number of the code
template used to generate the PL/SQL package. In a future release this will point
to the revision number of the compiled PL/SQL package.

e user
The database account used to log on to the database.

e user context
The default OHI officer on whose behalf service operations are performed, as

specified in the hsl.properties file.

Note that hsl.properties refers to the configuration file which is used to start the HSL
service. The format of the hsl.properties file is described in Doc[1].

Configuration information 21

https://localhost:7002/HSL_POL/dbinfo

Back Office HTTP Service Layer User Manual

'
6 Singular resource operations

A singular resource contains a single object.

6.1.1 Default members

By default, each singular resource has the following members:

o links
a list of (HATEOAS) links to navigate to related operations on the same object
(such as PUT, POST, PATCH, DELETE) or to navigate to nested objects or to re-
request the object (“self’).

o id
An integer to uniquely identify the object. May not yet be uniformly
implemented. See the Swagger definition or the online help in the OHI Back
Office GUI application for more information.

6.2 GET
Return a singular resource.
6.2.1 Default filters:
o expand
Possible values:
o ‘all
Include all nested objects
o empty
Do not include nested objects
o <object.member>[,<object. member>]..
Comma separated list to selectively include nested objects.
6.2.2 HTTP return codes
e 200: the resource is returned in the requested format.
e Other: see "HTTP return codes’
6.3 PUT
Replace existing singular resource.
The inbound object must be complete.
Use PATCH for selective updates!
6.3.1 Default filters

Not applicable

Singular resource operations 22

6.3.2

Back Office HTTP Service Layer User Manual

HTTP return codes

6.4

6.4.1

e 200 (OK)
A response object may be returned depending on the definition of this operation
in the Swagger schema.

e Other: see "HTTP return codes’.
POST
Create singular resource.

Normally a POST for a singular resource should be an operation on a collection
resource.

Default filters

6.4.2

Not applicable.

HTTP return codes

6.5

6.5.1

e 201 (CREATED)
A response object may be returned depending on the definition of this operation
in the Swagger schema.

e Other: see "HTTP return codes’

PATCH

Selectively update a singular resource.

Default filters

6.5.2

Not applicable.

HTTP return codes

6.6

6.6.1

e 200 (OK)
A response object may be returned depending on the definition of this operation
in the Swagger schema.
e Other: See "HTTP return codes’
DELETE

Delete a singular resource.

Default Filters

6.6.2

Not applicable

HTTP return codes

e 200 (OK)
A response object is not returned (because it has been deleted)

Singular resource operations 23

Back Office HTTP Service Layer User Manual

__|
7 Collection resource operations

A collection resource consists of a list of singular resources.
For example, an AddressCollection object consists of a list of Address objects.

Normally the only verbs that apply on a collection resource are GET and POST.

71.1 Default members

By default, a collection resource has the following members:

o items
A list of 0 or more singular resources.

o links
A list of HATEOAS links to navigate to other operations on the collection
resource or to its items.

o totalResults
The number of results matching the search criteria. This is NOT the size of the
items list.

o limit
The number of items that may be returned by the GET operation.
It is either:

o the limit parameter which was passed to the request; or

o the default limit value for this operation as described in the Swagger
schema; or

o the default limit value in the OHI Back Office tooling (10).

e count
The number of items which were returned by the GET operation.
This is a value between 0 and the value of limit

o offset

Specifies the index of the first result to be returned (0 means that the first result is
returned as the first item).

Note that the ordering of the result set is determined by the implementation code.
Beware that the contents of the results set may change between two invocations!
The offset value is either:

o the offset parameter which was passed to the request; or

o the default offset value for this operation as described in the Swagger
schema; or

o the default offset value in the OHI Back Office tooling (0)
e hasMore

Boolean indicating whether more results may be found with a subsequent call.
True if totalResults > offset + limit

Collection resource operations 24

Back Office HTTP Service Layer User Manual

7.2 GET
Return a collection resource.
7.2.1 Default filters
e Expand=value
Possible values:
o ‘all
Include all nested objects
o empty
Do not include nested objects
o <object.member>[,<object. member>]..
Comma separated list to selectively include nested objects.
e limit=n
Limits the number of items to n.
o offset=n
Indicates that the first item should be item #n of the search results.
‘offset=0" means that the list should start with the first search result.
7.2.2 HTTP return codes
e 200
Return resource
e Other: see "HTTP return codes’.
7.3 PUT
Not implemented.
7.4 POST
Create a new singular resource and add it to the collection.
74.1 Default filters
Not applicable.
7.4.2 HTTP return codes

e 201 (CREATED)
The response body must contain the newly created resource.
The Location response header should contain a URI to the newly created resource
if the resource can be independently accessed.
Form: “Location: <uri>’

Collection resource operations 25

Back Office HTTP Service Layer User Manual

7.5 PATCH

Not implemented.

7.6 DELETE

Not implemented.

Collection resource operations 26

Back Office HTTP Service Layer User Manual

8 HATEOAS Links

HATEOAS links are server-provided links to help the REST client navigate through
the server application.

See https:/ /en.wikipedia.org/wiki/HATEOAS for more information about the use of
HATEOAS links.

Both the PL/SQL interface and Java interface return HATEOAS links as part of a
resource response object.

The HATEOAS link object as used in the HSL layer has the following members:

e href=<absolute URI>
An absolute URI generated from an initial path after expanding templates,
adding query parameters and adding the base path.

o mediaType
Not currently used.

o method=<get | put | post | patch | delete>
The HTTP verb associated with the link

o profile
Not currently used.

o rel=<self|edit>
‘self” is used to repeat the original request.

o templated=<true| false>

A link is templated if it is generated from a templated path. An example of a
templated path is */policy / {number}/member’.

HATEOAS Links 27

https://en.wikipedia.org/wiki/HATEOAS

Back Office HTTP Service Layer User Manual

Invocation from PL/SQL

HSL services can be accessed through the RESTful HTTP interface and through
PL/SQL. This means it is possible to create custom applications which access HSL
services through PL/SQL. This chapter provides a few pointers for interfacing with
HSL services through PL/SQL.

In the diagram below, HSL_APP_SP_PCK indicates the PL/SQL package which is the
interface to the Java service layer and which can be invoked from PL/SQL:

ARl s [- > Java service class
Interface + control - o
A A Q A
8
Y - | J
HSL_APP_XYZ_TP - Java class

HSL_APP_CP_PCK
Implementation

"

OHI Tabel

The following fragment illustrates how a HSL service operation can be invoked
through PL/SQL:

declare

1 call context hsl cmn call context tp := hsl cmn call context tp();
1 return context hsl cmn return context _tp;
1 _output “hsl _pol 51mple pollcy coll _tp;

begin
alg trace pck.enable;
1 call context.m language := hsl cmn string4000 tp('nl-NL'); -- language
1 call context.m user context := hsl cmn string4000 tp('MANAGER'); -- usercontext

hsl pol sp pck.simplepoliciesbycco

(pi call context => 1 call context
po return context => 1 return context
po_output => 1 output

pi _expand => 'all'

pi limit => 10

pi collectiveagreementnumber => 329
pi referencedate => null

pi offset => 0

’

~— N N N N SN N N

1 return context.print ('l return context'); -- print HTTP return code
1 _output. Lprint (" 1 output'); -- print collection resource
end;

/

HATEOAS Links 28

9.1

begin

Back Office HTTP Service Layer User Manual

Notes:

e Thecalltoalg trace pck.enable only serves to enable dbms_output. It
should not be used in production mode, because:

o The use of alg_trace_pck.enable prevents the reset of the package state.
o The alg_trace_pck package is not normally granted to the HSL user

e The call context (see ‘SQL Types’ later in this chapter) contains generic meta data
to control the transaction.

e The user context must refer to a valid OHI BO officer who will be associated with
the transaction.

e The language of the call context can be used to override the language of the OHI
BO officer selected with the “user context’.

e Pagination is handled at the PL/SQL level and controlled through the pi_limit
and pi_offset parameters.

e The ‘expand’ parameter controls which sub-objects are included. A value of ‘all’
means that all sub-objects are included.

Oracle Account

You need a database account to call the plsql implementation. This must NOT be the
OHI object owner or you will run into HTTP 412 (object owner is not allowed to
execute HSL operations).

Doc[1] describes how to set up an account for using HSL services.

Note that the OHI object owner will need to grant access to the HSL user account.
See the example below how it is done for the fictitious account hsl_test:

alg security pck.hsl grants(pi grantee=> 'HSL TEST');

end;

/
9.2

9.3

Which Package?

Each HSL service is associated with a single interface package with procedures and
functions that can be invoked by custom applications.

The name of the interface package can be derived from the WAR file associated with
the service.

Given a service XYZ, its WAR file would be HSL_XYZ.war.The corresponding
PL/SQL interface package would then be HSL_XYZ_SP_PCK.

So for the POL service, the interface package is HSL_POL_SP_PCK.

Mapping Operations to Packaged Procedures

When using the HTTP interface, each operation is a combination of a path and a
HTTP verb.

HATEOAS Links 29

Back Office HTTP Service Layer User Manual

In the Swagger definition, each operation is given a unique name, called ‘operation
ID'".

In the example below the operation ID for /hba/v1/relation + POST is defined as
‘addRelation”:

/hba/vl/relation:
post.:
tags:

- rel

summary: Add a new relation

descrintion:
operationld: addRelation
consumes.

- application/json

From the application name “‘HBA” we can deduce that the interface package is called
"HSL_HBA_SP_PCK'.

The procedure name is mapped to the operationld.

So if the application name is ‘HBA” and the operation ID is ‘addRelation’, the
corresponding PL/SQL packaged procedure is HSL_HBA_SP_PCK.addrelation.

9.4 Invoking an Operation

The interface package provides a packaged procedure for every service operation.

The interface of every operation procedure is similar.

procedure dosomething
(pi_call_context in hsl cmn call context tp

po_return_context
pi some inbound par
po_output

~ N~ N~

’

procedure addrelation
po_return context

pi forceupdate in v
pi_expand in varcha

~ N N N 0~ _

pi_relatign in hsl

out hsl cmn return context tp
am

Each procedure has the following parameters:

e pi_call context
Inbound object containing runtime metadata such as the base path, language, and
OHI officer.

e po_return_context
Outbound object containing HTTP code, and technical and functional message if

an error occurred.

Our first example is a procedure to add a relation:

pi call context in hsl cmn _call context tp

out hsl cmn return context tp
hba relation tp
archar?2 default 'true'
r2

This procedure has several inbound parameters including an inbound object
pi_relation. It has no outbound object, meaning that the calling application will get a
HTTP code but no content.

HATEOAS Links 30

Back Office HTTP Service Layer User Manual

Our second example is a procedure to patch a relation:

procedure patchrelation

(pi_call context

~ N N N~

po_return context _
po_output out hsl hba relation tp
pi relation in hsl hba relation tp
pi expand in varchar2

in hsl cmn _call context tp

out hsl cmn return context tp

This operation was designed to return the updated copy of the object.

Note that all operations may process at most one inbound object and return at most
one outbound object.

9.5 SQL types
Whereas Java classes are the containers to hold objects in Java, SQL types are the
containers to hold objects in PL/SQL.

9.5.1 Service-specific types and common types

HSL services have their own SQL types which are not shared with for example SVL
services.

Most HSL types are not even shared with other HSL services.They are prefixed with
HSL_<APP>.

Example: all complex SQL types for the REL service are prefixed HSL_REL
Common types may be used by multiple HSL services. They are prefixed HSL_CMN
designating their common use.

Common types are used for scalar values or generic metadata. They are shared
because the definitions of these types are unlikely to change over time.

Examples of service-specific types:

e hsl _rel_preferred_acco_tp
type definition to hold preferred account details for the REL service.

e hsl_rel_link_tp
type definition to hold link details for the REL service

e hsl_pol_policy_tp
type definition to hold policy data for the POL service.

e hsl_pol link_tp
type definition to hold link details for the POL service.

Examples of common types:

e hsl_cmn_call_context_tp
generic definition to hold call context of an operation.

e hsl_cmn_return_context_tp

generic definition of a return context holding HTTP result code and error
messages

HATEOAS Links 31

Back Office HTTP Service Layer User Manual

e hsl_cmn_string30_tp
holds a single varchar2(30) value

e hsl_cmn_date_tp
holds a single date value.

9.5.2 Call Context

The call context object is passed to every operation to pass metadata:
It contains the following information:

e m_base_path
The basepath is the URI which is prepended to create the absolute links
needed by the calling application.

e m_caller id
The caller ID may be set to identify the end user on whose behalf the HTTP
request was generated. For example the relation number of an insurance
member, care provider or broker.
See the documentation of the HSL service operation if the m_caller_id must
be set.

e m_caller role
The caller role may be set to indicate the role of the end user on whose behalf
the HTTP request was created.
Theoretically it is possible that a care provider is also an insurance member.
A request to retrieve claims would then be ambiguous: is the caller an
insurance member wishing to retrieve his own claims or a care provider
wishing to retrieve claims associated with his services?
Together, the caller ID and caller role should provide an unambiguous
context to the operation.
See the documentation of the HSL service operation if the m_caller_role must
be set.

¢ m_language (optional)
End user language, for example nl-NL
See “Accept-Language’ in ‘Creating HT'TP requests” earlier in this document.

e m_user_context (mandatory)
Indicates the OHI officer on whose behalf the request is processed. Must be
an existing Oracle database account name and refer to an existing and time
valid row in ALG_FUNCTIONARISSEN.
The OHI officer may be an employee of the OHI customer, functional
administrator, call center employee, or an account registered for self-service
actions.

9.5.3 Return context

The PL/SQL implementation of each operation passes a return context to the caller.
The caller is either the service class in the Java layer providing the HTTP RESTful
interface or PL/SQL custom code.

The return context is a SQL type with the following members:

HATEOAS Links 32

Back Office HTTP Service Layer User Manual

m_code
a HTTP return code, eg. 200 (OK)

m_functional_message
May be set if an exception occurred while processing the operation.

m_technical_message
May be set if an exception occurred while processing the operation.

9.5.4 Built-in functionality of HSL types
Each service-specific SQL type in a HSL service (example: HSL_POL_POLICY_TP)
has the following generic functionality:
e constructor
The constructor creates a new object and sets appropriate default values for
scalar values if required by the original OHI Swagger definition.
e example
This function populates an object with example data, derived from the
original OHI Swagger definition.
e 02x
Creates an external representation of an object to be handed to the calling
application.
e x20
Creates an internal representation of an object (which is used by the OHI
implementation code).
e print
prints the content of an object and its nested objects using
dbms_output.put_line
e scalars_to_str
returns a varchar? string formatted as ‘namel="valuel” ,name2="value2””
etc. Used by OHI implementation code.
e class name
Returns the name of the Java class corresponding witht this SQL type.
9.6 GET Example
The following example calls a GET-operation to retrieve a single resource:
declare
1 call context hsl cmn call context tp := hsl cmn call context tp();

1 return context hsl cmn return context tp;
1 output hsl pol policy tp;

begin
alg trace pck.enable;

1 call context.m base path := hsl cmn string4000 tp('http://0l6ohi:4321/HSL pol')

1 call context.m language

:= hsl cmn string4000 tp('nl-NL');

1 call context.m user context := hsl cmn string4000 tp ('MANAGER');

hsl pol sp pck.policybynumber
(pi_call context

=> 1 call context

HATEOAS Links

’

33

Back Office HTTP Service Layer User Manual

;, po_return context => 1 return context
;, po_output => 1 output

, Pi_expand => 'all'

, P1_number => 1764

, Pi_referencedate => null

1 return context.print('l return context');
1 output.print ('l output');
end;

HATEOAS Links 34

Back Office HTTP Service Layer User Manual

10 Language Aspects

The session language in the PL/SQL session (which implements the HSL service
operation determines) the representation of:

e Messages
e Language dependent data (example: multilingual product description)
e Domain-based enumeration values

Selecting the correct session language has an impact on the functioning of the HSL
application!

The default language in the PL/SQL session is the preferred language of the OHI
officer which is set through the call context. If you are using the Java interface, the call
context is set through the hsl.properties configuration file set up by your OHI

technical administrator (see Doc[1]).

The session language can be overruled using the HTTP request header “Accept-
Language” as described in ‘Generic Usage Aspects of HSL Services'.

Note that the session language is set for each request.

This language functionality might be used to address a customer in a customer
specific language.

10.1 Current Behaviour

Setting the HTTP request header “Accept-Language” will set the language for the
session.

10.1.1 Messages
Messages will be given in the session language. This behaviour is in line with the GUI
application.

10.1.2 Language-dependent data
Language-dependent data will be displayed and processed in the session language.
This behaviour is in line with the GUI application.

10.1.3 Domain-based Enumerations

Domain-based enumeration values are currently NOT displayed and processed in the
session language.

This means that the English-language enumeration values as specified in the Swagger
definition will be used for:

e The contents of resources returned by the HTTP request.

e The contents of resources processed by the HTTP request (so-called body
parameters)

Language Aspects 35

10.1.4

Back Office HTTP Service Layer User Manual

e HTTP request parameters.

Swagger Definition

10.1.5

When the Swagger definition is requested, enumeration values in the Swagger
definition are currently NOT translated to the session language.

Known Issue: HSL_POL service

10.1.6

If set, the Back Office parameter value for ‘Polis use case service > functionaris” will
override the OHI officer.

In that case, the session language will be overruled by the preferred language of the
OHI officer associated with the Back office parameter value for ‘Polis use case
service > functionaris’.

Known Issue: HSL_REL service

10.2

10.2.1

If set, the Back Office parameter value for ‘Relatie use case service > functionaris” will
override the OHI officer.

In that case, the session language will be overruled by the preferred language of the
OHI officer associated with the Back office parameter value for ‘Relatie use case
service > functionaris’.

Intended Behaviour (post M-5028)

Theme M-5028 is planned to revise the initial versions of the HSL services (HSL_POL
and HSL_REL). This theme is scheduled for the 10.17.2.0.0 release of OHI Back Office.

Part of the revision has an impact on the language-specific behaviour:

e Setting the HTTP request header *Accept-Language” will set the language for
the session (current behaviour)

e Domain-based enumeration values will be converted to and from the session
language.

This means that existing client application code must be realigned to be used with the
use of language-dependent enumeration values.

Domain-based Enumerations

Domain-based enumeration values will be displayed and processed in the session
language.

The language-dependent enumeration values are the domain meanings in the session
language. These can be maintained by the customer:

Language Aspects 36

Back Office HTTP Service Layer User Manual

[Maintain Domain Values -

Domain (Lower) Value Description Abbreviation
B B Bank account number Bank
SOORT REKENINGGEGEVEN C Credit card ID Credit card
SOORT REKENINGGEGEVEN D Direct debit account Domicile
SOORT REKENINGGEGEVEN E Debit card ID Debit card
SOORT REKENINGGEGEVEN | IBAN IBAN
SOORT REKENINGGEGEVEN T Internal number Internal

The following table illustrates for the above example how OHI-BO domain values
relate to the original Swagger definition and how they are translated for various
languages (‘nl-NL’, “en-US’ and a fictitious customer-specific language ‘my-NL)’".
OHI BO Internal Value B D I
PL/SQL Identifier Bankrekeningnummer$ Domilicieringsnummer$ Iban nummer$
Value in original Swagger source [NsE11 9-Ndelbiple DirectDebitAccount IbanAccount
nl-NL Bankrekeningnummer Domiciliéringsnummer IBAN nummer

en-US Bank account number Direct debit account IBAN

‘my-NL’ Bankrekening Domiciliéringsnummer IBAN

Note that language-dependent values will be used for domain-based enumerations
for:

e the contents of resources returned by the HTTP request.

e the contents of resources processed by the HTTP request (so-called body
parameters)
Note: this means that the domain-based enumeration values in the inbound
resource must follow the Swagger definition for the session language.

e HTTP request parameters

Note: this means that the domain-based enumeration values in the inbound
parameter must follow the Swagger definition for the session language.

10.2.2 Swagger Definition

When the Swagger definition is requested, domain-based enumeration values will be
displayed in the session language.

Without language support, domain-based enumerations would look like this:

Language Aspects 37

Back Office HTTP Service Layer User Manual

"BankAccountType" : {
"domain" : "soort rekeninggegeven",
"values" : {
"BankAccount" : "dom_soort rekeninggegeven.bankrekeningnummers$",
"DirectDebitAccount": "dom soort rekeninggegeven.domicilieringsnummers$S",
"IbanAccount" : "dom_ soort rekeninggegeven.iban nummer$"

}
by

With language support, the same enumeration would look like this for ‘nl-NL":

"BankAccountType" : {
"domain" : "soort rekeninggegeven",
"values" : {
"Bankrekeningnummer" : "dom soort rekeninggegeven.bankrekeningnummers$",
"Domiciliéringsnummer": "dom soort rekeninggegeven.domicilieringsnummer$",
"IBAN nummer" : "dom_ soort rekeninggegeven.iban nummer$"

by

See the discussion about domain-based enumerations in the previous paragraph.

Language Aspects 38

Back Office HTTP Service Layer User Manual

'
11 Terminology

Term Meaning Example ‘
Application Unit of deployment for a

HSL service
Attribute A scalar member of a

resource

Basic Authentication

a method for an HTTP user
agent to provide a user
name and password when
making a request.

Body Parameter

A resource passed as the
payload of a request

Collection Resource

A resource consisting of
metadata attributes and a
list of singular resources

Deserialization

Conversion of a character
string (JSON format) to an
object.

Enumeration

a set of allowed (string)
values

HATEOAS

A follow-up link returned as
part of the response to a
REST operation to help the
client operation navigate to
an appropriate next request.

Header

a name/value pairin a HTTP
request or response.

Accept-Language:nl-NL

HSL

HTTP Service Layer - the
technical implementation
for OHI Back Office Use Case
services.

HTTP Code

Standardized return code
for a HTTP request.

200 (OK), 201 (CREATED), 400 (BAD_REQUEST), 404
NOT_FOUND), 405 (METHOD_NOT_ALLOWED), 500
(INTERNAL_SERVER_ERROR)

HTTP Verb

A value from the following
set: GET, PUT, PATCH, POST
or DELETE. The verb and URI
together define the required
service operation.

JSON

A standard format for
serializing objects to ASCII
strings (and vice versa)

Object

An object in the object
model of a REST service.
Same as 'type'.

Operation

A single action on a resource
in a RESTful service

Pagination

Creation of a subset when

Terminology 39

Back Office HTTP Service Layer User Manual

returning a collection
resource.

Parameter

A parameter to a HTTP
request. See also 'Body
Parameter’, 'Query
Parameter', and 'Path
Parameter'

Path Parameter

A parameter which is part of
the path.

/pol/v1/simplePolicies/123

Query Parameter

A parameter which is added
to the path.

/pol/vl/simplePolicies/123?referenceDate=2011-12-31

Resource

An object which is passed
to, or returned by a service
operation.

RESTful Service

A HTTP-based web service
following the REST
application architecture.

Return code

HTTP Code returned by a
service operation.

Serialization

Conversion of an object to a
machine-independent
format.

Service

A group of operations and
its object model. The service
interface is defined by the
'Swagger Schema'. The
service is deployed as a
(WAR) application.

Singular Resource

A single object which is
passed to, or returned by a
service operation. See also
‘Collective Resource'.

Swagger Schema

The specification document
that describes the interface
of a RESTful service.

Tag

A logical category for
grouping operationsin a
Swagger schema. An
operation may have
multiple tags.

Templated Path

A path with one or more
path parameters.

Type An object in the object
model of a REST service.
Same as 'object’

WAR File format for deploying

web applications such as
HSL services.

Terminology

40

