

Start

Oracle Health Insurance Back

Office

SOAP Service Layer (SVL)

Installation & Configuration Manual

Version 1.28

Part number: E97070-01

May 24th, 2018

Copyright © 2011-2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If

you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf

of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government

customers are “commercial computer software” or “commercial technical data” pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,

disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the

applicable Government contract, and, to the extent applicable by the terms of the Government contract, the

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).

Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not

developed or intended for use in any inherently dangerous applications, including applications which may

create a risk of personal injury. If you use this software in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of

this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this

software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of

their respective owners.

This software and documentation may provide access to or information on content, products, and services from

third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties

of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will

not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related

notices. For information on third party notices and the software and related documentation in connection with

which they need to be included, please contact the attorney from the Development and Strategic Initiatives

Legal Group that supports the development team for the Oracle offering. Contact information can be found on

the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be

considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in

making purchasing decisions. The development, release, and timing of any features or functionality described

in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions

of your Oracle Software License and Service Agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be disclosed, copied, reproduced, or

distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your

license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or

affiliates.

cta13651.doc Installation manual web services & service consumers iii

CHANGE HISTORY

Release Version Changes

10.12.2.0.0 1.8  Added additional paragraph regarding securing web service access.

10.12.2.2.0 1.9  ohibo.properties changes for the latest releases up to 2012.02 have been
added

10.12.3.0.0 1.10  Made clear to delete retired deployment before updating again.

10.13.1.1.0 1.11  Updated a number of screen prints.

10.13.1.4.0 1.12  Added new ohibo.properties for the latest releases up to 10.13.1.4

10.13.2.1.0 1.13  Web service consumers are now referenced using this correct term.

10.13.3.0.0 1.14  The situation as needed for the properties file for 10.13.3 has been
documented. Please be aware of the new quotations and providercontract
properties (the latter were introduced in a patchset on 10.13.2) and the
rename of the collectiveagreement to groupcontract.

10.13.3.0.0 1.15  When calling alg_security_pck.svl_grants the grantee parameter name
should be passed named as this routine is overloaded.

 The folder that covers publishing the services now contains also some
simple instructions where the WSDL files can be found in the .ear file.

10.13.3.3.0 1.16  Added changes in the properties file for patchset release 10.13.3.3.

10.14.1.0.0 1.17  Added changes in the properties file for major release 10.14.1.0.0.

10.14.1.3.0 1.18  Added changes in the properties file for patchset release 10.14.1.3.0.

10.14.2.0.0 1.19  Introduction of secure deployment by default. Rewrote most of Ch. 3
(‘Installation of SVL provider services’). Described security configuration.

 Added Appendix A (‘Removing a WLS domain’)

 Added Appendix B (‘Compare version information in EAR files’)

10.15.1.0.0 1.20  Some additional information added regarding the security configuration
of the Service Layer web services.

 Added Appendix C (‘Managing security policies using WSLT’)

 Added Appendix D (‘fixear.sh’)

 Added Appendix E (‘polman.py’)

10.15.3.0.0 1.21  Added changes in the properties file for patchset release 10.15.1.1.

 Added changes in the properties file for patchset release 10.15.1.3.

 Added changes in the properties file for major release 10.15.3.0

10.16.1.0.0 1.22  Added missing changes in the properties file for major release 10.16.1.0

 Added a small paragraph about sizing/load impact

10.16.2.0.0 1.23  Adapted for FMW 12.2.1.1.0

 Removed old properties file definitions, which break the links above.

10.16.2.3.0 1.24  Some minor adjustments in SVL domain configuration.

 Replaced Log4J configuration by Java Util logging configuration

10.17.1.0.0 1.25  Updated reference from FRS12211 to FRS12212

 Changed grant instructions

10.17.2.0.0 1.26  No changes

10.17.2.3.0 1.27  Added changes in the properties file relevant starting with patchset
release 10.17.2.2.

 Added JDK version specific information regarding JSSE configuration.

10.18.1.0.0 1.28  Revised introduction and document title

 Revised Architectural Overview

cta13651.doc Installation manual web services & service consumers iv

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that
is related to this document.
Below is a list of related documents:

Doc[1] Object Authorisation within OHI Back Office (CTA 13533)

Doc[2] Oracle Health Insurance Back Office HTTP Service Layer - Installation
and Configuration Guide (CTA 13681)

cta13651.doc Installation manual web services & service consumers v

Contents

1 Introduction ...7

1.1 Provider web services and web service consumers7
1.2 PL/SQL and SOAP interface ..7

1.2.1 SVL web service consumers .. 8
1.3 Usage rights ...8

2 Architectural overview ..9

2.1 Provider web services ..9
2.2 Web service consumers ..10

3 Installation of SVL provider services ...12

3.1 Sizing/load aspects ..12
3.1.1 Deployment choices.. 13

3.2 Database installation ..13
3.3 WLS Preparation ...14

3.3.1 Requirements ... 15
3.3.2 Creating a domain .. 16
3.3.3 Creating Managed Server(s) .. 18
3.3.4 Creating a machine definition ... 20
3.3.5 Creating a data source .. 21

3.4 Security Configuration ...27
3.4.1 Set up security realm .. 27
3.4.2 Enable SSL.. 28
3.4.3 Configure JSSE .. 28

..3.4.3.1 JDK 1.8.0_162 and above ... 29

..3.4.3.2 JDK 1.8.0_151 .. 1.8.0_161 .. 29

..3.4.3.3 Below JDK 1.8.0_151 .. 29
3.4.4 Setting up a key store ... 29
3.4.5 Configure logging level ... 30
3.4.6 Set user lockout ... 31

3.5 (Re)deployment of the SVL Application ...32
3.5.1 Deploy to a single Managed Server.. 32
3.5.2 Deploy to multiple Managed Servers .. 36
3.5.3 Deploy to cluster ... 36
3.5.4 Deploy for multiple environments (DTAP) .. 36
3.5.5 Publishing the deployed services ... 37

..3.5.5.1 Retrieving the WSDL from the EAR file ... 37
3.6 Security Aspects ..37

3.6.1 Using the default security policy .. 38
3.6.2 Overruling the default policy .. 39
3.6.3 Restricting access with custom roles .. 40
3.6.4 Testing with SoapUI ... 41

4 Configuration files for provider web services ..44

4.1 Back Office web services properties file ..44
4.1.1 10.18.1.0.0 properties .. 45
4.1.2 10.17.2.2 properties ... 45

5 OHI release upgrade and provider web services ...48

6 Installing and deploying web service consumers ...50

cta13651.doc Installation manual web services & service consumers 6

6.1 Preparation of your database environment ..50
6.2 Prepare a secure setup ...50
6.3 Deployment of web service consumers ...50

7 Appendix A – Removing a WLS domain ..52

8 Appendix B – Compare version information in EAR files ..53

8.1 Invocation ..53
8.2 Operation ...53
8.3 Output ..54

9 Appendix C - Managing security policies using WSLT ...55

9.1 Relevant WLST commands ...55
9.2 Requirements ..55

9.2.1 WLS version ... 55
9.2.2 OWSM needed to attach policies using WLST ... 55

9.3 Restrictions in WLST ..56
9.4 Tips and Tricks ..56

9.4.1 Capturing listWebServices output .. 56
9.4.2 Listing available OWSM policies .. 56
9.4.3 Activate application before running WLST commands 57

9.5 Example WLST script (polman.py) ..58
9.5.1 CSV format... 58
9.5.2 Script source .. 59

10 Appendix D – polman.py ...60

cta13651.doc Installation manual web services & service consumers 7

1 Introduction

OHI Back Office web services are used to integrate with existing applications or
provide a back end to bespoke self-service portals for insurance members.

OHI Back Office provides two types of web services:

 Business services (aka. SVL services) – this document
generic object-oriented SOAP/HTTP operations on core OHI Back Office data,
with ‘find’ and ‘get’ operations to retrieve data and ‘write’ operations to
update/add data.

 Use Case services (aka HSL services) – see Doc[2]
REST operations to support typical use cases for Dutch healthcare payers.
Examples: requesting a new policy, adding an insured member, changing insured
products, changing payment method etc.

The default security for all web services is Basic Authentication over SSL.

SVL services are deployed to WebLogic Server to be accessed over SOAP/HTTP.
Service operations can also be called using PL/SQL since the service functionality is
implemented in PL/SQL.

This document describes the generic technical details regarding the SVL services, how
to install and update them and how to change configuration settings.

1.1 Provider web services and web service consumers

There are two types of SVL components:

 provider web services
SOAP/HTTP services built by OHI Back Office to be called (‘consumed’) by client
applications in the surrounding environment.

 web service consumers
Java classes built by OHI Back Office to ‘consume’ third party SOAP/HTTP
services from within the OHI Back Office database.

The implementation of the web service consumers is very different from that of the
(provider) web services. Common for both is the use of SOAP/HTTP technology
which implies that WSDL is used to describe the interface and that XML is used to
serialize objects.

It depends on the requirements of your organisation whether you need to set up both
types of web service ‘components’.

1.2 PL/SQL and SOAP interface

SVL services are primarily invoked through SOAP/HTTPas document-style web
services in a Service Oriented Architecture.
However, they can also be called be called from PL/SQL. Using the PL/SQL interface
can be attractive if your client code is a PL/SQL script or package.

The Java classes which provide the SOAP/HTTP interface are a light weight wrapper
around the functional implementation in PL/SQL.

cta13651.doc Installation manual web services & service consumers 8

1.2.1 SVL web service consumers

The web service consumers were designed to call a third-party web service from
within the database.

Each service consumer has:

 a JAR file with Java client code generated from the WSDL.
This JAR file must be loaded into the OHI Back Office database for running in the
Oracle JVM (Oracle’s JVM in the database)

 A PL/SQL wrapper package providing a PL/SQL interface to the public methods
of the Java classes in the consumer JAR file.
The PL/SQL wrapper functions are called from within the OHI Back Office
database.

1.3 Usage rights

Customers are required to have the appropriate license rights for using SVL services.

Customers with a Connect to Back Office license are currently permitted to install and
use OHI Back Office servicesthe web service component of the Service Layer. This is
valid until further notice.

Without Connect to Back Office license customers may use the ‘Vecozo-specific web
services. The PreAuthorization service is an example of this. It is allowed to deploy
the web services for using this web service.

Also the use of the SVL service consumers is permitted without a license for the
Service Layer.

For the Relation Service the get function to obtain Composite Relation Details may
only be used when the so-called Connector option for the Oracle Service Cloud has
been purchased.

The corresponding PL/SQL services may not be used when no Connect to Back
Office or Service Layer license is obtained.

For further information please consult your OHI sales representative.

cta13651.doc Installation manual web services & service consumers 9

2 Architectural overview

This chapter gives a high level architectural overview of the current SVL services and
service consumers.

2.1 Provider web services

The Java classes of each SVL provider web service are stored as a WAR file. The SVL
services are then bundled into a single EAR file and deployed to WebLogic Server.

Each SVL service has the following architecture:

The persistence layer is used to map Java objects to SQL types and vice versa when
calling the PL/SQL services in the OHI Back Office database.

Webservice Layer

Persistency Layer

Transformation Layer

Persistency Objects

Webservices Objects

cta13651.doc Installation manual web services & service consumers 10

The schema below shows how the deployed SVL service connects to the OHI Back
Office database.
The SVL ‘connection schema’ is a separate database account with limited access rights
which is used to call the PL/SQL implemnentation of the SVL service.

2.2 Web service consumers

Each service consumer consists of a JAR archive with Java JAX-RPC client classes and
a PL/SQL wrapper package. Both components are derived from the same WSDL
definition. Note that the WSDL will closely resemble the WSDL provided by the
third-party web service.

The JAR archive must be uploaded into the OHI Back Office database so that its code
can be executed by Oracle’s JVM in the database (OJVM).
The PL/SQL wrapper package provides the PL/SQL interface to execute the Java
client code to call the third party web service.

The diagram below shows how the PL/SQL code works with the Java client code in
the database to make a web service callout.

Weblogic Server

Database server

SVL ‘connection schema‘
with limited rights

OHI object schema owner

Managed server: OHIBOWebservices (example name)

Datasource
SVLBOWS.ear

JDBC Connectionpool

cta13651.doc Installation manual web services & service consumers 11

cta13651.doc Installation manual web services & service consumers 12

3 Installation of SVL provider services

This chapter describes the steps to (re)install the SVL provider services (as opposed to
the SVL consumer services).

This chapter contains the following parts to separate the various work areas:

1. Sizing/load aspects

2. Database installation

3. WLS preparation

4. Security configuration

5. (Re)deployment of the SVL application (SVLBOWS.ear)

6. Security aspects

7. Miscellaneous

3.1 Sizing/load aspects

From the “Introduction” and the “Architectural overview” chapters it should be clear
that the actual functionality of the services is offered by the pl/sql implementation in
the database.

The SOAP interface as implemented in Java within the application server is a very
light weight pass through layer for the request and response messages. It only
validates and transforms the actual XML request call to a pl/sql call and transforms
the result from the pl/sql routine back to an XML response message.

As a result of this choice the load on the application server is very limited. The
processing on the application server is typically less than 10% of all processing
involved. As a rule of thumb you may assume that when you have a heavy load
situation, where 10 CPU threads are involved on the database server handling all the
incoming web service requests, you should not need more than 1 CPU thread busy on
the application server handling these web service calls.

Most of the more simple service operations on a well-sized and well-performing
production environment should not take more than 0.1 up to 0.5 second in total
elapsed time when measured on the WebLogic Server. Of this elapsed time most of
the time should be spent by the database server handling the call, as mentioned
before.

More complicated calls and service calls that return large data sets may take more
time but usually should not exceed response times of more than a few seconds. As an
example a typical premium calculation call should be executed within a second and a
large set of claim lines (several hundreds) should usually be returned within 5 to 10
seconds.

An exception to this rule is processing a large provider contract write request, this
may take minutes to process (on the database server by the pl/sql implementation).

These response times are based on production experiences with the OHI services as
observed until early in 2016.

cta13651.doc Installation manual web services & service consumers 13

3.1.1 Deployment choices

Of course the overall load of the OHI application and the portion of the load that is
related to the web service calls is customer specific and may change over time. When
all insured members use a healthcare payer website that directly calls the OHI web
services quite some load may be expected during the commercial season. Offloading
choices to standby databases and potentially caching may reduce this load.

It is expected that the actual load of the application functionality that calls the OHI
web services and the related database load still widely exceed the web service
application server load given only the low level pass through functionality
implemented on the application server.

Knowing this, the application server that is used for the OHI user interface processes
(implemented through Oracle Forms and WebLogic Server) may be an obvious and
valid choice for the deployment of the application server part of the web services.
When the application server load of the service calls grows a lot over time additional
processing power may be required. Monitoring the load of the Forms processes and
the Service Layer processes will show whether this might be needed at some moment.

An advantage of deploying the web services on the same application server is that
existing WebLogic Server licenses for Oracle Forms can be used for the web services.
The OHI web services are typically certified for the same WebLogic Server version
that is certified for using the Oracle Forms user interface.

Of course requirements like high availability and fail over may influence the
deployment choices as well as the use of a service bus. This may lead to re-using
existing infrastructure and licenses for other Oracle products using the same
WebLogic Server technology stack, provided the same certified versions of these
technology products are used.

3.2 Database installation

The database installation for the Service Layer consists of the creation of a separate
account (or even several) with Service Layer access privileges. All functional Service
Layer database objects are owned by the OHI Back Office schema owner and should
have been installed as part of the database part of the OHI Back Office release
installation.

The separate database account(s) should be created, provided you have a license for
the Service Layer.

Before creating the account(s), check if you will be able to use the Service Layer.

Please check if you have a database object (package) SVL_UTILS_PCK in the OHI
Back Office schema owner. If not, something went wrong regarding the installation of
the Service Layer code. If this is incorrect please contact the OHI Support department.

If the package is present in your database you can continue with the database part of
the installation.

The use of a separate database account / schema owner for accessing the Service
Layer components is required for improved security. This account needs to receive
the necessary object privileges.

One or more of these accounts can be created. It is an option to use this account also
as schema owner for custom code development. If you choose to do that, please
follow the directions as described in Doc[1]. We advise to use separate accounts for
these purposes, though.

The following steps are needed to setup a Service Layer database account:

cta13651.doc Installation manual web services & service consumers 14

1. Create a schema owner, for example SVL_USER. Determine the password
policy, temporary tablespace, etc. according to your company standards but
beware there is no interactive login which might show expiration messages
for the password due to the enforced password policy.

2. Grant create session system privilege to this account.

3. Grant the Service Layer object privileges: logon as the OHI Back Office
schema owner, enable server output, and run
“alg_security_pck.svl_grants(pi_owner => ‘<your OHI schema owner>’,
pi_grantee => ‘<your account>’)”, for example:

execute

alg_security_pck.svl_grants

(pi_owner => 'OZG_OWNER'

,pi_grantee => 'SVL_USER')

IMPORTANT: This command does not have to be repeated after each new
deployment of a new .ear file. During the database installation of OHI
patches any existing grantees of the SVL objects receive any required
additional grants. However, if you run into ORA-01403 errors during a web
service execution your first check should be to run this command in sqlplus,
enabling server output before running, and see whether missing grant
privileges were granted.

For future web service locking functionalities it may be that the specific use of these
web services require to activate an additional setting on specific OHI database tables.
The OHI web service developers should indicate this based on their needs and if so
this will be communicated to you.

If needed a database reorganisation is required where each indicated table needs to
be activated with the ROWDEPENDENCIES setting to enable the row-level
dependency tracking mechanism. This will be used to implement an optimistic
locking strategy.

The only reason for communicating this to you while it is still not a current
requirement is that you might enable this during already planned/foreseen actions to
reorganise/move tables.

3.3 WLS Preparation

When the database account has been created and granted successfully, a WebLogic
Server environment (software home) must be prepared for deploying the SVL
application.

These are your options:

 Use the same WebLogic environment which is used for servicing the OHI Back
Office user interface and batches. In that case you are required to create a new
WebLogic domain (with a new Admin Server) to run the SVL services, in order to
prevent interference with the GUI application.

 Deploy the web services in a separate WebLogic environment (possibly on a
separate server). This has the advantage that you can separately upgrade or patch
the different WebLogic environments, or implement a workload distribution.

Deploy the web service application in multiple environments for better
scalability. Be sure to deploy the SVL services only once in a Managed Server or a
cluster of Managed Servers.

cta13651.doc Installation manual web services & service consumers 15

 For testing purposes you may want to have multiple versions within the same
domain. In that case you should have a separate Managed Server for each
deployment.

Some remarks about installing in a separate WebLogic environment:

 The OHI Back Office GUI application (Forms) installation requires a
WebLogic Server “Infrastructure” installation. That means the domain
created for Forms needs to have its own database schemas with OPSS and
Audit database tables (created by RCU). For the Service Layer domain these
schemas are not required provided you do not select more components
during the domain configuration than described.

 When installing in a separate WebLogic Server environment, use a different
Installer: use the “Generic” installer instead of the “FMW Infrastructure”
installer. When installing in a separate WebLogic environment make sure the
correct components are installed when creating the Domain. You need at
least:

o Weblogic Advanced Web Services for JAX-WS Extension -

12.2.1 [oracle_common]

o Weblogic JAX-WS SOAP/JMS Extension -

12.2.1 [oracle_common]

When you have not installed these components your web services will
respond with ‘There are error messages.’ While all info in the
functionalFaultType will contain question marks (???).

The instructions in the following paragraphs cover the setup of a new domain
including the setting up of Managed Servers, a machine definition, data sources, etc.

This will support the following scenarios:

 Creating a separate domain with a single Managed Server

 Creating a separate domain with a cluster of 2 Managed Servers

 Adding a Managed Server to an existing domain

3.3.1 Requirements

The following requirements/limitations must be taken into account:

 A certified WebLogic Server version including JAX-WS (SOAP/JMS)
extensions. The web services must be deployed on a single Managed Server
or a cluster of Managed Servers (the ‘target’).

 The web services may not be deployed on a Managed Server which is also
used for hosting the OHI GUI application (Forms). The Managed Server may
not belong to a cluster used for deploying the GUI application.

 One deployment can only service one single OHI Back Office environment (it
connects to a specific connection pool which accesses a specific OHI Back
Office ‘instance’).

If the SVL application must be deployed more than once (for servicing different OHI
Back Office environments) each deployment should be on its own Managed Server or
Cluster.

cta13651.doc Installation manual web services & service consumers 16

We expect that you are familiar with the WebLogic concepts like ‘domain’, ‘ Managed
Server’, ‘Cluster’, etc.

3.3.2 Creating a domain

Before creating a Domain, be sure to understand the difference between a “FMW
Infrastructure” and a “Generic” WebLogic installation, and the consequences. Make
sure the environment variable DOMAIN_HOME is not set.

If you create the new Weblogic Domain from the same software home as the Forms
Domain, you have to choose the same “Domain Mode” (Development or Production),
to avoid errors during startup of the new Managed Server(s).

For creating a new WebLogic domain please use the Configuration Wizard (typically
in the common/bin folder of the WebLogic Server home, so for example
$MW_HOME/oracle_common/common/bin/config.sh)

Specify the domain location. This is inside the Weblogic Home by default, but you
can specify a location outside the WebLogic Home. The last part of the location will
be the Domain Name.

When creating a new domain select at least the options as shown below.

cta13651.doc Installation manual web services & service consumers 17

In the next screens, specify the username and password for the domain administrator
account. When prompted for developer or production mode choose production mode
and pick a JDK.

In this documentation we choose to configure only the Administration Server using
the wizard. The Administration Server can be used as the starting point for additional
configuration options you may want to choose later:

cta13651.doc Installation manual web services & service consumers 18

For the Administration Server a free port number must be specified. Enable SSL to
support secure connections. An example using non default ports is shown below.

3.3.3 Creating Managed Server(s)

Start the Administration Server (of the existing or newly created domain) using the
startWebLogic.sh script (this is present in the root folder of the domain folder, which
you created through the Configuration Wizard).

cta13651.doc Installation manual web services & service consumers 19

When it is started logon to the console and choose the Servers option in the left panel:

In the Change Center choose Lock & Edit to get into editing mode.

This enables the New option in the ‘Summary of Servers’ overview:

You need to provide a name and listening port for the Managed Server. For easy
reference you may want to include the domain name in the name of the Managed
Server, for example ‘ms_ohi_svl’.

At this point you should decide whether or not to make the Managed Server part of a
Cluster.

If no Cluster exists you can create one; if there is an existing Cluster you can make the
Managed Server a member of the Cluster.

cta13651.doc Installation manual web services & service consumers 20

3.3.4 Creating a machine definition

It is recommended to create a machine definition to make it easier to start up
Managed Servers:

You can now assign Managed Servers to the new machine definition. In the example
below Managed Server ms_svl_ohi is assigned to Machine1.

If you start a Node Manager you can use the console to start the Managed Servers.

You need to associate the machine with the Node Manager so that the Node Manager
can start the Managed Server within the domain of the machine definition.

Do this in the Node Manager tab for the machine definition like in the example
below:

cta13651.doc Installation manual web services & service consumers 21

Make sure the listen address is the actual listen address that is used by the Node
Manager. This is passed as first parameter to the
$WL_HOME/server/bin/startNodeManager.sh shell script. The correct value
can be found as ListenAddress in the file nodemanager.properties.

This address can be changed in the file nodemanager.properties which is located in
the <domain home>/nodemanager folder. This is necessary when you have a node
manager per domain.

You need to create a boot.properties file for the new Managed Server for the domain
in the domain home Managed Server ../data/nodemanager.

This is done automatically when you start the Managed Server in the console (after
you have started the AdminServer for the domain).

When you are running in Development Mode, a boot.properties file is automatically
created for the AdminServer.

Because you are running in Production Mode, you need to create the file yourself, in
the $DOMAIN_HOME/servers/AdminServer/security folder. This file is used when
the AdminServer is started by the script startWebLogic.sh. If the file is not present,
the script prompts for the username/password. The same goes for the Managed
Servers when you start them through a script.

3.3.5 Creating a data source

The SVL application needs a data source to connect with the OHI Back Office
database.

To create a data source, navigate in the Domain Structure panel on the left to the data
sources option. Choose ‘Lock & Edit’ so you are able to create a new data source.

cta13651.doc Installation manual web services & service consumers 22

Create a new ‘Generic data source’:

Choose a name for the data source to reflect its purpose. For example, you may want
to reference the database name: DS_OHI_prd.

Next specify a JNDI name. The JNDI name will be used in the properties file for
starting the SVL application.

Specify ‘Oracle’ as the database type.

An example:

cta13651.doc Installation manual web services & service consumers 23

Next you need to specify a database driver. Use a “Oracle’s Driver (Thin) for Service
connections; Versions: Any”. If you are using RAC (or considering to use RAC)
choose the thin RAC driver. Do not use the XA driver.

cta13651.doc Installation manual web services & service consumers 24

Choose the following Transaction Options:

 ‘Supports Global Transactions’;

 ‘One-Phase Commit’ (this is why you don’t need the XA driver)

Example:

cta13651.doc Installation manual web services & service consumers 25

Next specify the connection details like the example on the page below. Be sure to use
values which are valid for your environment.

cta13651.doc Installation manual web services & service consumers 26

On the next page the result of your answers will be shown. You can test the
connection with the data shown (the table name is not relevant).

When you navigate to the next page you can select the targets where the data source
should be deployed to. In the example below only the Managed Server shown will be
used for deploying the data source to.

Press Activate Changes to conclude your configuration.

At this point, go back to your data source and re-open the connection pool tab.

Navigate to the ‘Advanced’ part.

cta13651.doc Installation manual web services & service consumers 27

Ensure that the option ‘Wrap Data Types’ is unchecked. This setting is needed for
passing CLOB objects to and from the database and when activated slows down
execution. Press Lock & Edit and uncheck this option and Save and Activate the
change.

Example:

3.4 Security Configuration

All SVL provider web services are configured to use a default security policy
(policy:Wssp1.2-2007-Https-BasicAuth.xml). The default policy enforces basic
authentication and SSL encryption.

The following steps are needed to set up minimal security for the SVL application:

 Set up security realm

 Enable SSL

 Configure JSSE

 Configure key store

 Configure logging level

 Configure user lockout

3.4.1 Set up security realm

Create a security realm if this has not already been done (normally realm ‘myrealm’
will already be present).

The security realm ‘myrealm’ as shown below will be used to configure the security at
application level.

If there are no other security realms, this will be the default security realm.

cta13651.doc Installation manual web services & service consumers 28

3.4.2 Enable SSL

The SVL services are preconfigured to use a default policy which uses SSL. Therefore
you need to enable SSL for every Managed Server to which you deploy the SVL
services application.

Go to the Managed Server configuration and enable SSL in the ‘Configuration >
General’ tab:

3.4.3 Configure JSSE

To use SSL with WebLogic you need to configure the use of Java Secure Socket
Extension (JSSE) as this is the only supported SSL implementation. The RSA JSSE
provider is not installed as part of Weblogic Server since WLS 12.1.1 (a previous
implementaion was in WLS 11g) but needs to be provided by the JVM.

It depends on the JDK version whether additional configuration action is required.

cta13651.doc Installation manual web services & service consumers 29

For more generic information about Oracle’s JDK and JRE cryptographic algorithms
please visit: https://www.java.com/en/configure_crypto.html

For more information regarding the changes in the specific JDK 8 releases as
mentioned below:

http://www.oracle.com/technetwork/java/javase/8all-relnotes-2226344.html

..3.4.3.1 JDK 1.8.0_162 and above

No action is needed.

..3.4.3.2 JDK 1.8.0_151 .. 1.8.0_161

Only a small configuration change in your JDK is required.

Uncomment the following line in <JDK_HOME>/jre/lib/security/java.security:

#crypto.policy=unlimited

Remove the hash (#) from this line to enable the RSA JSSE provider.

..3.4.3.3 Below JDK 1.8.0_151

To configure the use of RSA JSSE, follow the instruction at Using the RSA JSSE
Provider in WebLogic Server in paragraph “Using the RSA JSSE Provider in
WebLogic Server”.

The installation means that you have to replace two jar files within the JDK
installation that is used by WebLogic. These files are JDK version specific and contain
the stronger encryption methods that are needed.

As summarized during an OHI presentation:

Typically the name of the downloaded file will be jce_policy-8.zip.

3.4.4 Setting up a key store

For testing purposes you may want to use the built-in keystore as shown below in the
‘Configuration > Keystores’ tab for the Managed Server:

https://www.java.com/en/configure_crypto.html
http://www.oracle.com/technetwork/java/javase/8all-relnotes-2226344.html
https://docs.oracle.com/middleware/1221/wls/SECMG/ssl_jsse_impl.htm#23SECMG662
https://docs.oracle.com/middleware/1221/wls/SECMG/ssl_jsse_impl.htm#23SECMG662

cta13651.doc Installation manual web services & service consumers 30

Note that in a production environment it is not safe to use the demo keystore.

For more information about configuring keystores please read the WebLogic
documentation. As a starter you can use this address:Oracle® Fusion Middleware
Administering Security for Oracle WebLogic Server 12.2.1 - 29 Configuring Keystores

It contains references to pages which describe in more detail how to obtain private
keys, digital certificates, etc.

You should take action and not rely on the demo keystore!

3.4.5 Configure logging level

The standard logging level regarding security issues is intentionally non-informative
to discourage fraudulent users.

A typical security-related error message looks like:

Got ‘Unknown exception, internal system processing error.’

https://docs.oracle.com/middleware/1221/wls/SECMG/identity_trust.htm#23SECMG365
https://docs.oracle.com/middleware/1221/wls/SECMG/identity_trust.htm#23SECMG365

cta13651.doc Installation manual web services & service consumers 31

If you are trying to setup the SVL application to work with SSL and basic
authentication in a non-production environment you can configure verbose logging
with the following start parameter for the Managed Server:

-Dweblogic.wsee.security.debug=true

Depending on the way you start your Managed Servers, this has to be added in the
following locations:

 Using the Admin Console, navigate to the Msanaged Server, Tab "Server
Start", field “Arguments”. Add

-Dweblogic.wsee.security.debug=true

 In the file $DOMAIN_HOME/bin/startManagedWebLogic.sh, find the
first line that starts with JAVA_OPTIONS= . Immediately before that line,
add lines like these:

Custom Setting for ms_ohi_svl to use JSSE and set debug level

for SSL:

JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true"

${JAVA_OPTIONS}"

NOTE: The entries in Server Start field Arguments are used when the server is started
through the Node Manager (they are stored in a startup.properties file stored in the
data/nodemanager subfolder of the Managed Server).
When you implement the changes in the shell script they will only be used when the
Managed Server is started through the startup script which means when you use the
Node Manager you need to make sure the nodemanager.properties contains
weblogic.StartScriptEnabled=true.

Restart the Managed Server to get the new verbose messages later on. After you have
deployed the services and are testing them (through for example soapUI as described
later), you might get a message like this in the Response message:

weblogic.xml.crypto.wss.WSSecurityException: Timestamp validation failed.

(This would indicate that you forgot to add a timestamp when calling the SVL
application)

3.4.6 Set user lockout

While setting up the SVL web services you may want to disable user lockout.
In a production environment you should enable user lockout to discourage
fraudulent use. Navigate to the Security Realm and use the ‘Configuration > User
Lockout’ tab.

cta13651.doc Installation manual web services & service consumers 32

3.5 (Re)deployment of the SVL Application

For deploying the SVL application you need to obtain an EAR file. This file is
typically named SVLBOWS.ear. It should reside in the $OZG_BASE/java directory
on the application server containing the OHI Back Office software release and you
can copy it to another location if required.

Ensure that SVLBOWS.ear is located on the WLS Admin Server host (this is the server
running the WLS Administration Console).

Note that you cannot use an older EAR file with a newer OHI Back Office release and
vice versa.

The following scenarios are discussed:

 Deploy to a single Managed Server

 Deploy to multiple Managed Servers

 Deploy to a cluster

 Deploy for DTAP (development, test, acceptance, production)

3.5.1 Deploy to a single Managed Server

In the Domain Structure pane, select the Deployments branch. This will show the
applications that have already been deployed

If you want to shorten this list, use ‘Customize this table’ to exclude the libraries.

Select ‘Lock & Edit’ to enter editing mode, this will enable the ‘Install’ button which
you need to use next.

In the new window, locate the .ear file on the WLS server, select it and press ‘Next’:

cta13651.doc Installation manual web services & service consumers 33

Select ‘Install this deployment as an application’, press ‘Next’ and select the target(s)
for deployment. In the example below only Managed Server ms_svl_ohi is chosen.

Press ‘Next’ and decide about a deployment name and security model. At this
moment the version of the .ear file is also shown (can contain up to 4 digits like any
application source).

cta13651.doc Installation manual web services & service consumers 34

Select ‘Custom Roles’ if you want to use the default policy and create your own roles
to restrict access to the web services. Select ‘Custom Roles and Policies’ if you want to
overrule the default policy of each web service.

Regarding source accessibility, select ‘Copy this application….’ if you want to remove
the EAR file from its current location.

Finish the configuration.

Beware that – in Production mode - you need to Activate your changes in order to
enable the web services. At that moment the deployment will show status ‘Prepared’.

By selecting the deployment in the Control tab and pressing Start  Servicing all
requests the State will change to ‘Active’ (assuming your Managed Server is in
‘Running’ state).

Before using the web services implement the following actions as described below.
These actions have to be executed only once. There is no need to repeat them when
you update the deployment or delete and install it again.

 Navigate to the Managed Server tab ‘Server Start’ and specify a properties
file in the Arguments field like the first line shown below:

cta13651.doc Installation manual web services & service consumers 35

Example:

-Dapp.properties=/u01/app/oracle/product/OHI/vohi/svl_ws.properties

This example uses a properties file with the custom name svl_ws.properties
which is located in the $OZG_BASE folder of your OHI Back Office
application server environment, but you can also specify the default name:
the $OZG_BASE folder and ohibo.properties.

The contents of this file is discussed in a separate chapter (‘Configuration files
for provider web services’).

 To disable stack traces in soap faults add a second setting (on the same line!)
like:

-Dcom.sun.xml.ws.fault.SOAPFaultBuilder.disableCaptureStackTrace=false

NOTE: make sure you keep all the arguments in the field on ONE line and keep a
space between the settings; and when you do not use the Node Manager implement
these changes in the startup script (see earlier this chapter as well as a few paragraphs
further the JAVA_OPTIONS discussion).

When completed, (re)start the Managed Server. Check in the <ManagedServer>.out
file in the logs folder of your Managed Server whether the command line contains the
arguments as specified above.

If the file specified by app.properties cannot be read , messages as below will show
up:

ERROR: logfile could not be set because of: null

ATTENTION:

If you want to start up a single Managed Server without using the Node Manager or
the Admin Console (which tries to involve the Node Manager) you will typically use
the script startManagedWebLogic.sh in $DOMAIN_HOME/bin. In order to have the
correct settings for the server enabled you need to set the JAVA_OPTIONS
environment variable before starting the managed server.

An example when the current location is the bin folder of the WLS domain and your
managed server is named ms_svl_ohi:

export JAVA_OPTIONS="-Dapp.properties=/u01/app/oracle/product/OHI/vohi/svl_ws.properties -

Dcom.sun.xml.ws.fault.SOAPFaultBuilder.disableCaptureStackTrace=false"

Now you can start the Managed Server with the command below (assuming your

location is the $DOMAIN_HOME/bin folder):

./startManagedWebLogic.sh ms_svl_ohi http://ol6ohi:7016

The example above contains the Managed Server’s name as first parameter and the
listen address of the Admin Server of the domain as second parameter.

To make these changes permanent, put them in the file
$DOMAIN_HOME/bin/startManagedWebLogic.sh: find the first line that starts
with JAVA_OPTIONS= . Immediately before that line, add these lines:

JAVA_OPTIONS="-

Dapp.properties="/u01/app/oracle/product/OHI/vohi/svl_ws.propertie

s" ${JAVA_OPTIONS}"

cta13651.doc Installation manual web services & service consumers 36

JAVA_OPTIONS="-

Dcom.sun.xml.ws.fault.SOAPFaultBuilder.disableCaptureStackTrace="f

alse" ${JAVA_OPTIONS}"

When startup times of your service calls are important and the security of the
connection is less important you may consider to specify an alternative for retrieving
cryptographically strong random numbers:

decrease startup times

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom"

${JAVA_OPTIONS}"

3.5.2 Deploy to multiple Managed Servers

You may deploy the application to more than one target.

Example: if you choose to target the application to Managed Servers MS1 and MS2,
the application will be available on separate end points. The URLs of these end points
will only differ in port number.

If you choose this rather unlikely scenario, be aware that each Managed Server
should have different startup parameter values (app.properties).

3.5.3 Deploy to cluster

You may deploy the application on all the Managed Servers of a cluster. This may be
needed for better scalability. Be aware to use some form of load balancing to allow
the use of a single end point.

The best way to implement this type of deployment depends on your specific
situation.

If you are planning a load balanced environment with multiple Managed Servers in a
cluster it is vital that the configuration of every Managed Server is aligned with the
others.

If you deploy to the cluster, it is recommended to redirect the logging of all Managed
Servers to a single file.

3.5.4 Deploy for multiple environments (DTAP)

If you use several OHI-related environments to support the various DTAP (Develop-
Test-Accept-Production) stages you may want to have different versions of the SVL
application running at the same time.

To implement this you need to:

 Create a Managed Server for each of the DTAP stages.

 Create a data source from each Managed Server to its corresponding OHI
Back Office database.

 Create an app.properties file for each Managed Server.

 Configure each Managed Server to start up with the appropriate
app.properties.

 Deploy the appropriate version of the SVL application to its corresponding
Managed Server and give it a unique deployment name to identify its
deployment.

cta13651.doc Installation manual web services & service consumers 37

3.5.5 Publishing the deployed services

After you have deployed the web services, perform a small test using the test URL as
provided in the Admin Console (only available for domains that run in Development
Mode). Typically the isAlive request operation can be used for this. If you have not
tested before with security enabled please read on in the following paragraph how to
test with security enabled. When you are sure the deployment succeeded you can
proceed with publishing the WSDL’s.

In case you want to make WSDL’s available to selected users in your organization,
you can find the WSDL for each service with the ‘Test’ tab of each service.

An alternative is to open the web application module for the service and navigate to
the ‘Test’ tab. Here you find the URL to publish the WSDL.

The format of the service URL is <servername>:<port>/<web application name>.

The WSDL will contain the https based address for the service.

..3.5.5.1 Retrieving the WSDL from the EAR file

If necessary you can retrieve the WSDL of a service before the associated EAR file is
deployed:

 Open the SVLBOWS.ear file to find the WAR file of the service you are interested
in.

 Locate the WSDL and XSD files in the WEB-INF/wsdl folder of the WAR archive.

Notes:

 You can extract files from EAR or WAR files with jar (similar parameters as ‘tar’)
or use a zip utility (also on a Windows based platform).

 After patching OHI Back Office, the latest version of SVLBOWS.ear is stored as
$OZG_BASE/java/SVLBOWS.ear.

3.6 Security Aspects

The SVL services provide an additional access channel to retrieve and change OHI
Back Office data.

Your SVL services deployment must be sufficiently secure to prevent exposing
sensitive data or enabling unauthorized changes to the OHI Back Office data.
Therefore, access should be limited to trusted systems and interfaces. Otherwise
people in your organization might be tempted to try to misuse the functionality
provided by the SVL services.

cta13651.doc Installation manual web services & service consumers 38

Please consult the ‘Oracle Health Insurance Security Aspects’ guide for more
information about OHI Back Office security aspects.

As a minimal policy to reduce the risk of unauthorized access and network sniffing,
all SVL provider web services are configured to use a default policy (policy:Wssp1.2-
2007-Https-BasicAuth.xml). This policy requires HTTPS communication and a
username/password combination.

It is your responsibility as an administrator to secure the SVL services within your
organization.

This paragraph provides some pointers to get started:

 Using the default security policy

 Overruling the default policy

 Restricting access with custom roles

 Testing with SoapUI

3.6.1 Using the default security policy

Select ‘Configuration > WS Policy’ for the web service of your choice:

Note that this information is visible only if the SVLBOWS application is active.

View the WSDL to examine the policy:

cta13651.doc Installation manual web services & service consumers 39

This means the default security policy requires you to send a username, password as
well as a timestamp (!) to authenticate a call. When using SoapUI for testing, as
described later, this will become more clear.

3.6.2 Overruling the default policy

You may replace the default policy with a stronger policy.

Select ‘Configuration > WS-Policy’ for the service of your choice:

Select the end point to list the policies which are applied to the end point:

cta13651.doc Installation manual web services & service consumers 40

For testing purposes, on non-production environments only: if you experience
problems in calling your web services, you could use this page to remove the security
policy. That way, you can test if the Web Service works properly without a security
policy enabled. Of course you should only do this temporary and re-enable it again as
soon as possible.

Of course you may also opt for using specialized security solutions like Oracle Web
Services Manager. In such a situation you may of course also disable the policy and
leave the security implementation to such a product.

3.6.3 Restricting access with custom roles

The default policy allows any valid WLS user to access the SVL services. This
includes the ‘weblogic’ user (!).

You can restrict access at the service (or even operation) level by creating and
granting global roles in the WLS console:

 Create one or more global roles in the security realm used for the SVLBOWS
application. For example SvlAccessRole (to be used for all SVL services) or
SvlPxRelationRole (to be used for a single SVL service).

 Grant each service (operation) to the appropriate global role. Decide if you want
to implement fine-grained access (multiple roles, grant at service operation level)
or coarse-grained access (one role, grant at service level) or anything in between.

 Create users for the SVL services.

 Grant the appropriate role(s) to each user.

 Restart the Managed Server to ensure that all changes are processed.

 Verify that the new access rules are now in place (for example using SoapUI).

cta13651.doc Installation manual web services & service consumers 41

3.6.4 Testing with SoapUI

SoapUI is a tool for testing web services which can be downloaded from
http://www.soapui.org.

NOTE:

FMW 12.2.1 has removed the support for the security protocols SSLv3 and TLS
1.1, because they are now considered insecure. This means you have to test and
use the OHI Web Services with a client that uses TLS 1.2.

We found that the latest version of SoapUI (5.2.1) does not enable TLS 1.2 by
default. To fix this, add a line to soapui.bat:

set JAVA_OPTS=%JAVA_OPTS% -Dsoapui.https.protocols="TLSv1.2,TLSv1.1"

And make sure your shortcut uses that soapui.bat file.

SoapUI is not only useful for testing the functionality of the SVL services, but it is also
suitable for testing their security settings.

The following procedure should work if you deployed the SVL application using
default security policies:

 Create a new SOAP project based on the service WSDL.

 Create requests (these should be SSL requests)

 Create an ‘Outgoing’ WS-security configuration at project level to include a
timestamp and a time to live for the timestamp (eg. 1000ms)

 Open request for ‘isAlive’ operation.

 Set the properties in the “Properties” panel in the lower left corner, or in the
“Auth” panel (visible after you have opened the actual request message window,
change Authorization from None to Basic):

o Username= <user defined in weblogic>

o Password= <password defined in weblogic>

o Authentication Type = Preemptive

o WSS-Password Type=PasswordText

o WSS TimeToLive= 10000000

 Send the “isAlive” request. The request should succeed because weblogic is a
valid WLS user.

 If your response is empty and returns within a few milliseconds your calling
configuration is not ok (leaving for example the password empty results in a
HTTP/1.1 200 OK in the raw message)

 If you want to get some HTTPS related information from the SSL requests in the
.out or .log file you need to enable additional debugging (by default only HTTP
requests will show up for example in the access log file). Please add the following
to the Managed Server startup settings (in the console and/or in
startManagedWebLogic.sh depending on your startup method; do not forget to
remove this at a later stage):

http://www.soapui.org/

cta13651.doc Installation manual web services & service consumers 42

-Dssl.debug=true

Example of a WS-security configuration with 1000ms ‘Time To Live’ for the
Timestamp setting (this window is accessed on the SoapUI project level by double
clicking or choosing the right mouse menu ‘Show Project View’):

Testing the isAlive operation with an authorized WLS user (created ‘scott’ and linked
to the Claim service through group ‘AppTesters’):

Note:

 SSL connection

 Preemptive authentication type

 Basic Authentication

 Outgoing WS-security configuration (choose the configuration you created at the
project level)

cta13651.doc Installation manual web services & service consumers 43

 Received a valid response.

Finally, an example with the non-authorized WLS user ‘weblogic’ (we did not assign
‘weblogic’ to the fictitious ‘SvlPxRelationRole’ needed to access the PxRelation
service):

Notes:

 Same authorization but different user credentials as in the example with ‘scott’.

 Error message indicates that access was denied to the service.

cta13651.doc Installation manual web services & service consumers 44

4 Configuration files for provider web services

In the previous chapter a properties file was referenced in the web service application
server deployment description for which more information is provided below.

4.1 Back Office web services properties file

The Back Office properties file for the SVL web services is specified in the startup
options of the Managed Server with:

 -Dapp.properties

The file (suggested name ‘svl_ws.properties’) contains a number of properties. For
specifying logging functionality these values are generic for all web services and
specified only once.

Other settings can be set specific per web service and may differ for a certain web
service (a web service can support several web service operations and typically
references a single WSDL). The properties are named below and you should of course
adapt the values to the needs of your organisation.

You need to set the logging properties only once as they are not specific for each web
service and specify the logging settings for the deployment as a whole (using Java
Util Logging, in short JUL):

1. A value to specify the file where the logging should be written towards.

2. The severity level of which logging should be written. This can be SEVERE,
WARNING, INFO, CONFIG, FINE, FINER or FINEST (not all these levels are
actually used within this web services implementation).

3. The maximum size of the file, in bytes. If this is 0, there is no limit. The
default, when omitted or an invalid value specified, is 1000000 (which is 1
MB). Logs larger than 1MB roll over to the next log file.

4. The number of log files to use in the log file rotation. The default is 1 which
produces a maximum of 1 log file, meaning that when the maximum size is
reached the file is emptied and not saved to a ‘rotation file’ resulting in recent
log information being deleted. We advise to specify a value of 2 or higher for
that reason.

5. A value to specify to append to the logfile or not. This should be filled out
with either True or False (the default is True). A new logfile will be opened
when append is False, when True the existing logfile will be appended.

Additionally you need to set 2 properties for each web service:

1. A value for the application user that will be used when web service
operations are executed. This determines for example under which user
identity the changes are made or which language is used for messages. This is
the ‘usercontext.user.username’ property. The value must be a registered
BackOffice user (in Dutch: “Functionaris”).

2. A value for the data source within WebLogic that will be used for connecting
to the database. This can (and will mostly) be the same data source for all
web services but you can use different data sources. This can be used for
example to implement different availability per web service or even prevent a
web service from being used. The value must be the JNDI name of an existing

cta13651.doc Installation manual web services & service consumers 45

DataSource. You need to specify 2 forward slashes to indicate a forward slash
in the JNDI name.

BEWARE: Be sure you do not add any space after the values, before an end of line
character. This may lead to malfunction of the web services.

So there will be five lines in the properties file like:

common.logging.filename=/u01/app/oracle/product/OHI/vohi/svl_ws.log

common.logging.loglevel=FINEST

common.logging.loglimit=10000000

common.logging.logcount=10

common.logging.logappend=TRUE

And for each web service, there will be two lines in the properties file like:

<web service name>.callcontext.usercontext.user.username=SVL_USER

<web service name>.datasource.jndiname=jdbc//DSvohi

e.g.

procedureauthorization.callcontext.usercontext.user.username=SVL_USER

procedureauthorization.datasource.jndiname=jdbc//DSvohi

If you created a different or additional SVL accounts SVL_USER should be replaced
by the database account you created. Of course the DSVOHI data source name should
be replaced by the name you have chosen.

As new web services are added in new (patch) releases of OHI BackOffice, you will
be notified of required changes during the installation of patches, with instructions to
add lines to this file.

Web service names starting with “px” are write services (i.e modifying data) based on
new standards for implementing the OHI BO web services. The request message
passed is (part of) a ‘pixel’ photo of how the end situation after the write activity
should look like (the ‘demanded’ situation is described and the service needs to
determine intelligently what changes need to be executed to finally reach the situation
described in the ‘photo’). Pixel photo is abbreviated to ‘px’, to indicate this new type
of services.

4.1.1 10.18.1.0.0 properties

No changes.

4.1.2 10.17.2.2 properties

In release 10.16.2.3.0 five service generic new properties were introduced for
specifying the changed logging functionality in this release.

In the file below the properties are ordered alphabetically, except for the five
properties that specify the logging of informational and debugging messages, these
are listed as a first set of properties.

This properties file includes the latest enhancement for a new Vecozo Authorization
related web service (named ‘Vecozomachtiginge’, a generated name, not to be mixed
up with the already existing ‘Vecozo’).

common.logging.filename=/u01/app/oracle/product/OHI/vohi/svl_ws.log

common.logging.loglevel=FINEST

common.logging.loglimit=10000000

common.logging.logcount=10

common.logging.logappend=TRUE

broker.datasource.jndiname=jdbc//DSprod

broker.callcontext.usercontext.user.username=MANAGER

cta13651.doc Installation manual web services & service consumers 46

debtor.datasource.jndiname=jdbc//DSprod

debtor.callcontext.usercontext.user.username=MANAGER

pxdebtor.datasource.jndiname=jdbc//DSprod

pxdebtor.callcontext.usercontext.user.username=MANAGER

claim.datasource.jndiname=jdbc//DSprod

claim.callcontext.usercontext.user.username=MANAGER

groupcontract.datasource.jndiname=jdbc//DSprod

groupcontract.callcontext.usercontext.user.username=MANAGER

invoice.datasource.jndiname=jdbc//DSprod

invoice.callcontext.usercontext.user.username=MANAGER

payment.datasource.jndiname=jdbc//DSprod

payment.callcontext.usercontext.user.username=MANAGER

paymentscheme.datasource.jndiname=jdbc//DSprod

paymentscheme.callcontext.usercontext.user.username=MANAGER

policy.datasource.jndiname=jdbc//DSprod

policy.callcontext.usercontext.user.username=MANAGER

preauthorization.datasource.jndiname=jdbc//DSprod

preauthorization.callcontext.usercontext.user.username=MANAGER

procedureauthorization.datasource.jndiname=jdbc//DSprod

procedureauthorization.callcontext.usercontext.user.username=MANAGER

provider.datasource.jndiname=jdbc//DSprod

provider.callcontext.usercontext.user.username=MANAGER

providercontract.datasource.jndiname=jdbc//DSprod

providercontract.callcontext.usercontext.user.username=MANAGER

pxclaim.datasource.jndiname=jdbc//DSprod

pxclaim.callcontext.usercontext.user.username=MANAGER

pxpolicy.datasource.jndiname=jdbc//DSprod

pxpolicy.callcontext.usercontext.user.username=MANAGER

pxprocedureauthorization.datasource.jndiname=jdbc//DSprod

pxprocedureauthorization.callcontext.usercontext.user.username=MANAGER

pxprovidercontract.datasource.jndiname=jdbc//DSprod

pxprovidercontract.callcontext.usercontext.user.username=MANAGER

pxrelation.datasource.jndiname=jdbc//DSprod

pxrelation.callcontext.usercontext.user.username=MANAGER

pxydagreement.datasource.jndiname=jdbc//DSprod
pxydagreement.callcontext.usercontext.user.username=MANAGER

quotations.datasource.jndiname=jdbc//DSprod

quotations.callcontext.usercontext.user.username=MANAGER

realtimeclaimfile.datasource.jndiname=jdbc//DSprod

realtimeclaimfile.callcontext.usercontext.user.username=MANAGER

receipt.datasource.jndiname=jdbc//DSprod

receipt.callcontext.usercontext.user.username=MANAGER

receivable.datasource.jndiname=jdbc//DSprod

receivable.callcontext.usercontext.user.username=MANAGER

referencedata.datasource.jndiname=jdbc//DSprod

referencedata.callcontext.usercontext.user.username=MANAGER

cta13651.doc Installation manual web services & service consumers 47

relation.datasource.jndiname=jdbc//DSprod

relation.callcontext.usercontext.user.username=MANAGER

vecozo.datasource.jndiname=jdbc//DSprod

vecozo.callcontext.usercontext.user.username=MANAGER

vecozomachtiginge.datasource.jndiname=jdbc//DSprod

vecozomachtiginge.callcontext.usercontext.user.username=MANAGER

cta13651.doc Installation manual web services & service consumers 48

5 OHI release upgrade and provider web services

When you need to redeploy the provider web services (the .ear file) because a new
version is delivered in an OHI release this is relatively simple. Please follow the steps
below:

 Check your web service properties file (typically ohibo.properties) and
implement necessary changes for your release. For information about the
contents please see the previous Chapter.

 Logon to the Admin Server console of the domain where the web services are
deployed.

 Navigate to the deployments pane.

 Choose the ‘Lock & Edit’ option.

 If you already have a Retired version of the deployment, mark the check box
in front of the retired deployment and delete it.

 Navigate to the deployment that must be updated and mark the check box in
front of it.

 Press the Update button.

 Determine whether the same source path still applies (typically a new version
is delivered in the $OZG_BASE/java folder of your environment but your
organisation may have additional distribution methods implemented). When
the correct .ear file is selected press Next.

 You now have two options for ‘retiring’ the previous version. Because
normally the Back Office application is not available during patching, you
can retire the previous version ‘immediately’, meaning using a timeout of 1
second:

Press Finish to implement this.

 Choose ‘Activate Changes’.

 Refresh the screen a few seconds after having activated the changes. The
previous version should now show a Retired state as in the example below:

 Inform the communities which use the web services of the availability and
publish the WSDL addresses to them, especially when it has changed.

cta13651.doc Installation manual web services & service consumers 49

If the update of the deployment does not succeed delete the deployed application
(first stop with the force option) and deploy it again completely (using the ‘install’
option for deployments). In some cases (depending on the changes) you may need to
repeat the Deployment delete/install when the install results in errors. If the
deployment keeps failing, you may have to restart the Managed Server(s) as a last
resort.

After this the deployment state of the web services should be Active again (be sure
the Managed Server(s) is/are running, otherwise start it/them to get this result).

If not, check whether your OHI database environment and deployed version are
correct, meaning that their version levels correspond with each other.

cta13651.doc Installation manual web services & service consumers 50

6 Installing and deploying web service consumers

This chapter describes how to install and configure your environment for
implementing web service consumers. The major part of the activities has to be
executed only once

The web service consumers are implemented by means of the “Web Services Call-
Out” feature as provided for the database. This feature enables the publishing of a
WSDL into a database plsql package. A java based web services client proxy is
created as well as a pl/sql wrapper for this client proxy.

6.1 Preparation of your database environment

In order to enable the web service call-out functionality the database has to be
configured to support this. The installation and configuration manual describes this
in paragraph “Creating an OHI Back Office database”.

The following subparagraphs in that paragraph describe this:

Install/check database component Oracle JVM

Prepare the OHI owner account for using the Oracle JVM

Install the DBWS callout utility in the OHI schema owner account

6.2 Prepare a secure setup

The code for consuming web services, as implemented within OHI Back Office,
executes calls originating from the database server. This means these calls must be
able to access a certain endpoint (an URL) accessible from the database server.

It is strongly advised and in fact in most situations required to setup an application
server tier which acts as endpoint, processes the request, passes it on to the target
environment, processes the response message and passes this back to the web service
consumer.

This kind of functionality is typically implemented using a service bus.

For most web service consumers this is a requirement in order to map the OHI
specific WSDL to an outside world WSDL. This kind of transformation can easily be
implemented through service bus functionality.

Also other (security!) requirements can/should (security!) be implemented in or
provided by the intermediate middleware including the service bus.

It is outside the scope of this document to describe the middleware setup but these
kinds of requirements and functionalities are typically standard for a service oriented
environment.

6.3 Deployment of web service consumers

Deployment of a web service consumer typically means:

 the .jar file as provided in the OHI release should be loaded into the database

cta13651.doc Installation manual web services & service consumers 51

 the related object types and pl/sql wrapper package need to be created

These actions are automated and executed during the database installation step of the
release installation.

cta13651.doc Installation manual web services & service consumers 52

7 Appendix A – Removing a WLS domain

In case you want to restructure your environment or recreate a domain you can
remove an existing domain.

In order to do this make sure all servers for the domain are stopped and make sure
there is no Node Manager process running which ‘guards’ this domain.

Next perform the following actions:

 Completely remove your domain directory including all contents.

 Remove any reference in start and stop scripts to this domain.

 Remove, if present, the domain from the <WebLogic
home>\oracle_common\common\nodemanager\nodemanager.domains.

 Remove the domain from the domain-registry.xml file which is located in the
Middleware home folder (where your WebLogic home folder resides in).

For more information please use the standard WebLogic documentation.

cta13651.doc Installation manual web services & service consumers 53

8 Appendix B – Compare version information in EAR files

As of release 10.14.2.0.0,OHI Back Office versions the SVL webservices operations,
not the XML Schema Definitions or the web services.

The SVLCMPRV.pl script compares two EAR files and lists version differences
between web service operations.

The script can be used from release 10.14.2.0.0 onwards.

8.1 Invocation

SVLCMPRV.pl resides in the $OZG_BASE/sh directory

SVLCMPRV.pl should be run from the command prompt. The script requires two .ear
files as parameters.

For example, to compare versions 10.15.1.3.0 and 10.15.3.0.0:

perl $OZG_BASE/sh/SVLCMPRV.pl \

$OZG_PATCH/10.15.1.3.0/java/SVLBOWS.ear \

$OZG_PATCH/10.15.3.0.0/java/SVLBOWS.ear

8.2 Operation

SVLCMPRV.pl extracts each EAR file to a temporary folder before comparing the
version numbers of the operations defined in the WSDL files.

A higher version number means that at least one definition in the type hierarchy used
by the operation has changed since the previous version.

Example:

 Assume that for release 10.15.3.0.0 a region code has been added to the
PxAddressType. The PxAddressType is part of the type hierarchy for
PxAbstractRelationType, used in the request message for the
PxRelationService.WriteRelation operation.

 If the previous version for PxRelationService.WriteRelation was ‘v1’
(10.15.1.3.0 SVLBOWS.ear), then the new version will be ‘v2’.

 If we compare the SVLBOWS.ear files for these two versions we should see
that PxRelationService.WriteRelation has ‘v1’ for 10.15.1.3.0 and ‘v2’ for
10.15.3.0.0

A comparison between web service operations may yield the following results:

 An operation is present in the 10.15.1.3.0 SVLBOWS.ear but not in the
10.15.3.0.0 SVLBOWS.ear file. This may mean the operation has been
removed or renamed.

 An operation is present in the 10.15.3.0.0 SVLBOWS.ear but not in the
10.15.1.3.0 SVLBOWS.ear. This may mean the operation has been added or
renamed.

 A change in revision number is reported. This may mean that the message or
the underlying XML schema definition has changed.

 If no change has been made to the operations and/or revision numbers the
message: INFO: No differences found will be given.

cta13651.doc Installation manual web services & service consumers 54

8.3 Output

The output is written to console. Sample output:

INFO: BrokerService.findBrokerRequestTypeMessage(v1) only occurs

in [$OZG_OPL/10.15.3.0.0/java/SVLBOWS.ear].brokerservice.wsdl

INFO: BrokerService.findBrokerResponseTypeMessage(v1) only occurs

in [$OZG_OPL/10.15.1.3.0/java/SVLBOWS.ear].brokerservice.wsdl

INFO: BrokerService.getBrokerDetailsByBrokerCodeRequestTypeMessage

[$OZG_OPL/10.15.1.3.0/java/SVLBOWS.ear].brokerservice.wsdl:v1

[$OZG_OPL/10.15.3.0.0/java/SVLBOWS.ear].brokerservice.wsdl:v2

cta13651.doc Installation manual web services & service consumers 55

9 Appendix C - Managing security policies using WSLT

All web services in the SVLBOWS application are configured with a default security
policy (policy:Wssp1.2-2007-Https-BasicAuth.xml).

OHI BO administrators can use the WLS console to manage the security policies on a
per service basis.

Since there are currently over 20 web services in the SVLBOWS ear application,
managing the security policies for the SVL web services manually is a burden if you
have a DTAP landscape with many environments for development and testing.

To automate the administration of WLS environments, WebLogic Scripting Tool
(WLST) can be used.

This chapter aims to help you manage the SVL service policies through WSLT and
explains some of the restrictions that apply.

9.1 Relevant WLST commands

Generally, an administrator records a manual session to generate a WLST script for
later editing.

This is not possible for managing web service policies, so you need the WLS
documentation to find the required WLST commands.

The relevant commands are:

 listWebServices(application, detail=true)
Lists the web services and security policies of an application.

 listWebServicePolicies
Lists the service policies attached to a given service of an application.

 attachWebServicePolicy
Attach a service policy to a given service of an application.

 detachWebServicePolicyDetach a service policy from a given service of an
application.

9.2 Requirements

9.2.1 WLS version

The WLST commands for listing, detaching and attaching web service security
policies are available by default in the WebLogic 12 Infrastructure installation. See
Oracle® Fusion Middleware WLST Command Reference for Infrastructure
Components for documentation.

9.2.2 OWSM needed to attach policies using WLST

If you use WLST to attach a security policy to a web service you will use the
attachWebServicePolicy command. For this command you must have OWSM
installed (and have a license to use OWSM).

Notes:

 this requirement does not apply to detaching security policies.

https://docs.oracle.com/middleware/1221/core/FCCCR/custom_webservices.htm#FCCCR2815
https://docs.oracle.com/middleware/1221/core/FCCCR/custom_webservices.htm#FCCCR2815

cta13651.doc Installation manual web services & service consumers 56

 you can only attach OWSM security policies with WLST

 you can manually attach (Weblogic) security policies using the WLS console.

9.3 Restrictions in WLST

The WLST command for attaching a security policy to a web service is
attachWebServicePolicy.

Unfortunately it can only attach OWSM policies. This was a design decision by the
WebLogic development team.

It has the following implications:

 You can detach the default WLS security policy (policy:Wssp1.2-2007-Https-
BasicAuth.xml) using WLST.

 You cannot re-attach policy:Wssp1.2-2007-Https-BasicAuth.xml or any WLS
policy using WLST.

 If you want to attach any policy using WLST you must configure OWSM into
your domain and select a valid OWSM policy.

Note that you can re-attach policy:Wssp1.2-2007-Https-BasicAuth.xml and other non-
OWSM policies manually using the WLS console.

9.4 Tips and Tricks

9.4.1 Capturing listWebServices output

The listWebServices command lists the web services and their current policies.
Unfortunately you cannot assign the listWebServices objects to a variable for further
processing. The next best solution is to capture the output to a file for further
processing. We found that it is not possible to redirect the output of listWebServices
from within WLST. The best option is to write a WLST script and use ‘tee’ to capture
its output to a file like below:

wlst.sh myscript.py | tee myoutput.txt

9.4.2 Listing available OWSM policies

If you have OWSM configured, use the following steps for an overview of OWSM
policies from the WLS console (example PxProviderContractService)

 Lock & Edit

 Select Deployments > SVLBOWSvnnnn

 Select PxProviderContractService > Configuration > WS-Policy

 Select PxProviderContractPort

 Select Configure .. OWSM

 Select Next

The OWSM policies are now displayed:

cta13651.doc Installation manual web services & service consumers 57

9.4.3 Activate application before running WLST commands

Be aware that WLST can only access a running application.

This requires that:

 The AdminServer process is running

 The Managed Server process for is running

 The SVLBOWS application is active Remove temp directories

The following WLST commands create temporary directories which are not removed
afterwards:

 listWebServices(detail=true)

 listWebServicePolicies

 attachWebServicePolicy

 detachWebServicePolicy

Each time one of these commands is run, a temporary directory is created with
approximately 1GB of data.

This is a known bug (see bug 19295696 for more details).

cta13651.doc Installation manual web services & service consumers 58

If you need to free up disk space , the following commands should help:

$. ozg_init.env FRS11G2

$ cd $WL_HOME/../user_projects/domains

$ cd domain

$ cd servers/AdminServer/tmp

$ rm –rf .appmergegen*

9.5 Example WLST script (polman.py)

The WLST script ‘polman.py’ was created as an example for managing policies using
a CSV file.

The polman.py script supports the following operations:

 ‘list’ is used to create an ASCII file with the output of the listWebServices
command.

 ‘csv’ is used to create a CSV file from the ‘list’ output.

 ‘detach’ is used to detach security policies using a CSV file.

 ‘attach’ is used to attach security policies using a CSV file.

The idea is that:

1. The administrator uses polman.py to create a CSV file to list the current security
policies. This file may be called ‘detach.csv’.

2. The file ‘detach.py’ is then edited to replace the current security policies with the
desired policies. The resulting file may be called ‘attach.csv’.

3. Finally, the administrator uses polman.py to detach the policies in
‘detach.csv’and to attach the policies in ‘attach.csv’.

This way it is possible to efficiently manage the security policies of SVL services on a
number of environments.

Example of how polman.py is used to support the above steps:

$. ozg_init.env FRS12212

$ WLST=$WL_HOME/../oracle_common/common/bin/wlst.sh

1a. List security policies in text format.

$ $WLST polman.py --username=weblogic --password=welcome1 --host=t3://localhost:7016 --

appName=/ohi_svl/ms_svl_ohi/SVLBOWS --operation=list | tee list.txt

1b. Convert text contents to csv file with current policies.

$ $WLST polman.py --appName=/ohi_svl/ms_svl_ohi/SVLBOWSv4_236 --txtFile=list.txt --

csvFile=detach.csv --operation=csv

3a. Detach policies listed in detach.csv

$ $WLST polman.py --username=weblogic --password=welcome1 --host=t3://localhost:7016 --

appName=/ohi_svl/ms_svl_ohi/SVLBOWS --csvFile=detach.csv --operation=detach

3b. Attach policies listed in attach.csv

$ $WLST polman.py --username=weblogic --password=welcome1 --host=t3://localhost:7016 --

appName=/ohi_svl/ms_svl_ohi/SVLBOWS --csvFile=attach.csv --operation=attach

9.5.1 CSV format

The CSV format used by polman.py for detaching and attaching policies is as follows:

module_name, module_type, service_name, subject_name, policy_name

/ohi_svl/ms_svl_ohi/SVLBOWSv4_236,SVLBOWSv4_236#1!ClaimService,wls,ClaimService,Clai

mPort,oracle/no_authentication_service_policy

/ohi_svl/ms_svl_ohi/SVLBOWSv4_236,SVLBOWSv4_236#1!BrokerService,wls,BrokerService,Br

okerPort,oracle/no_authentication_service_policy

/ohi_svl/ms_svl_ohi/SVLBOWSv4_236,SVLBOWSv4_236#1!VecozoService,wls,VecozoService,Ve

cozoPort,oracle/no_authentication_service_policy

cta13651.doc Installation manual web services & service consumers 59

When editing the CSV file, use the module_name to locate the service, then change
the policy_name to a valid policy.

9.5.2 Script source

The source of polman.py is given in Appendix D.

cta13651.doc Installation manual web services & service consumers 60

10 Appendix D – polman.py

This is an example.

File : polman.py

Purpose : Configure security policies using WLST

Commands in relevant order.

1.list : list policies for application (redirect to file!)

2.csv : Convert output of 'list' command to a CSV file

3.detach : Detach policies in CSV file

4.attach : Attach (OWSM) policies in CSV file (requires OWSM)

Author : Hubert Bakker (Oracle)

Note : This is an example, no maintenance is provided.

History

03/04/2015 H. Bakker M-4210: Create

import sys

import getopt

import re

Attach policy (requires OWSM)

def attachPolicy(application, module_name, module_type, service_name, subject_name, policy_name):

 print 'Attaching policy ' + policy_name

 print "application : " + application

 print "subject_name: " + subject_name

 try:

 attachWebServicePolicy(application, module_name, module_type, service_name, subject_name,

policy_name)

 listWebServicePolicies(application, module_name, module_type, service_name, subject_name)

 except Exception, e:

 print "Could not detach:"

 print e

Detach policy

def detachPolicy(application, module_name, module_type, service_name, subject_name, policy_name):

 print 'Detaching policy ' + policy_name

 print "application : " + application

 print "subject_name: " + subject_name

 try:

 detachWebServicePolicy(application, module_name, module_type, service_name, subject_name,

policy_name)

 listWebServicePolicies(application, module_name, module_type, service_name, subject_name)

 except Exception, e:

 print "Could not detach:"

 print e

process CSV files to detach/attach policies

def processCsv(fileName, operation):

 print('Reading File \"' + fileName + '\"')

 f = open(fileName)

 try:

 for line in f.readlines():

 if line.strip().startswith('#'):

 continue

 else:

 items = line.split(',')

 items = [item.strip() for item in items]

 if len(items) != 6:

 print "==>Bad line: %s" % line

 print "==>Syntax: application, module_name, module_type, service_name, subject_name,

policy_name"

 else:

 (application, module_name, module_type, service_name, subject_name, policy_name) = items

 if operation == 'detach':

 print '==> Detaching '+ policy_name + ' from ' + application + '.' + service_name

 detachPolicy(application, module_name, module_type, service_name, subject_name, policy_name)

 else:

 print '==> Attaching '+ policy_name + ' to ' + application + '.' + service_name

 attachPolicy(application, module_name, module_type, service_name, subject_name, policy_name)

 except Exception, e:

 print "==>Error Occurred"

 print e

 exit()

write a single line to a csv file

cta13651.doc Installation manual web services & service consumers 61

def writeCsv(fout, application, moduleName, moduleType, serviceName, subjectName, policyName):

 fout.write(application + ',' + moduleName + ',' + moduleType + ',' + serviceName + ',' + subjectName +

',' + policyName + "\n")

convert output of listWebServices() into CSV file for further processing.

def createCsv(appName, txt_file, csv_file):

 process = 0

 moduleName = ''

 moduleType = ''

 serviceName = ''

 subjectName = ''

 policyName = ''

 print('Reading file ' + txt_file + ' looking for ' + appName)

 fin = open(txt_file)

 fout = open(csv_file, 'w')

 try:

 for line in fin.readlines():

 line = line.rstrip()

 if re.match(r'/', line):

 process = 0

 if re.match(appName, line):

 process = 1

 if process == 1:

 # look for module data

 m = re.search(r'moduleName=([^,]+),\s+moduleType=([^,]+),\s+serviceName=([^,]+)', line)

 if m != None:

 # print line to CSV if we have sufficient data

 if (moduleName != ''):

 writeCsv(fout, appName, moduleName, moduleType, serviceName, subjectName, policyName)

 g = m.groups()

 (moduleName, moduleType, serviceName) = m.groups()

 subjectName = ''

 policyName = ''

 # look for port daa

 m = re.match(r'\s+(\w+Port)$', line)

 if m != None:

 subjectName = m.groups()[0]

 # look for policy data, retain only the last policy.

 m = re.match(r'\s+ws-policy\s*:\s*(policy:[^\s]+)', line)

 if m != None:

 policyName = m.groups()[0]

 if (moduleName != ''):

 writeCsv(fout, appName, moduleName, moduleType, serviceName, subjectName, policyName)

 fin.close()

 fout.close()

 print "CSV data written to " + csv_file

 except Exception, e:

 print "==>Error Occurred"

 print e

 exit()

def usage(msg = ''):

 print msg

 print "Usage:\n\tpolman.py"

 print "\t--operation=list"

 print "\t--username=<username> (eg. weblogic)"

 print "\t--password=<password> (eg. secret)"

 print "\t--host=<host> (eg. t3://localhost:7016)"

 print "\t--appName=<application> (eg. /ohi_svl/ms_svl_ohi/SVLBOWSv4)"

 print

 print "\t--operation=csv"

 print "\t--appName=<application> (eg. /ohi_svl/ms_svl_ohi/SVLBOWSv4)"

 print "\t--txtFile=<txt_file> (eg. test.txt)"

 print "\t--csvFile=<csv_file> (eg. test.csv)"

 print

 print "\t--operation=detach"

 print "\t--username=<username> (eg. weblogic)"

 print "\t--password=<password> (eg. secret)"

 print "\t--host=<host> (eg. t3://localhost:7016)"

 print "\t--appName=<application> (eg. /ohi_svl/ms_svl_ohi/SVLBOWSv4)"

 print "\t--csvFile=<csv_file> (eg. test.csv)"

 print

 print "\t--operation=attach"

 print "\t--username=<username> (eg. weblogic)"

 print "\t--password=<password> (eg. secret)"

 print "\t--host=<host> (eg. t3://localhost:7016)"

 print "\t--appName=<application> (eg. /ohi_svl/ms_svl_ohi/SVLBOWSv4)"

 print "\t--csvFile=<csv_file> (eg. test.csv)"

 exit()

cta13651.doc Installation manual web services & service consumers 62

main program starts here.

username = 'weblogic'

password = 'wlPwd77xx'

host = 't3://localhost:7016'

csvFile = ''

operation = ''

txtFile = '/media/sf_shared/test.out'

appName = '/ohi_svl/ms_svl_ohi/SVLBOWSv4_236'

long_opts = ['operation=', 'appName=', 'username=', 'password=', 'host=', 'csvFile=', 'txtFile=']

try:

 opts, args = getopt.getopt(sys.argv[1:], "", long_opts)

except getopt.GetoptError, err:

 print str(err)

 usage()

 sys.exit(2)

#===== Handling get options ===============

operations = { 'list' : 1, 'detach' : 1, 'attach' : 1, 'csv' : 1 }

for opt, arg in opts:

 if opt == "--username":

 username = arg

 elif opt == "--password":

 password = arg

 elif opt == "--host":

 host = arg

 elif opt == "--csvFile":

 csvFile = arg

 elif opt == "--txtFile":

 txtFile = arg

 elif opt == "--operation":

 operation = arg

 elif opt == "--appName":

 appName = arg

if operation.strip() == '':

 usage('No operation specified')

try:

 a = operations[operation]

except KeyError:

 usage('Invalid operation: ' + operation)

if (operation == 'attach' or operation == 'detach') and csvFile.strip() == '':

 usage('no csvFile specified')

if operation == 'list' and appName.strip() == '':

 usage('no appName specified')

if operation == 'csv' and txtFile.strip() == '':

 usage('no txtFile specified')

if operation == 'csv' and csvFile.strip() == '':

 usage('no csvFile specified')

print "Parameters:"

print "appName : " + appName

print 'username :' + username

print 'password :' + password

print 'host :' + host

print 'csvFile :' + csvFile

print 'txtFile :' + txtFile

print 'operation:' + operation

if operation == 'list':

 connect(username, password, host)

 listWebServices(appName, detail=true)

 print "Use polman.py --operation=csv to convert output to a csv file."

 exit()

elif (operation == 'detach' or operation == 'attach'):

 connect(username, password, host)

 processCsv(csvFile, operation)

elif operation == 'csv':

 createCsv(appName, txtFile, csvFile)

