
Start

Oracle Health Insurance Back

Office

Object Authorization within

Oracle Health Insurance Back Office

Version 1.14

Part number: E97070-01

May 28th, 2018

Copyright © 2011-2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If

you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf

of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government

customers are “commercial computer software” or “commercial technical data” pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,

disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the

applicable Government contract, and, to the extent applicable by the terms of the Government contract, the

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).

Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not

developed or intended for use in any inherently dangerous applications, including applications which may

create a risk of personal injury. If you use this software in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of

this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this

software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of

their respective owners.

This software and documentation may provide access to or information on content, products, and services from

third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties

of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will

not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related

notices. For information on third party notices and the software and related documentation in connection with

which they need to be included, please contact the attorney from the Development and Strategic Initiatives

Legal Group that supports the development team for the Oracle offering. Contact information can be found on

the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be

considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in

making purchasing decisions. The development, release, and timing of any features or functionality described

in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions

of your Oracle Software License and Service Agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be disclosed, copied, reproduced, or

distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your

license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or

affiliates.

Change History

Release Version Changes

10.12.2.0.0 1.5  Grants to four views are not dependent anymore on use of General
Ledger

10.12.3.0.0 1.6  Information is added about the ‘with grant option’ grant for custom code
objects used in ‘translation views’.

10.14.2.0.0 1.7  Only minor adjustments

10.15.1.0.0 1.8  The GRANT_OPTION parameter of the OZG_DIRECT.grt script has been
documented.

 Removed reference to the GL objects.

 Made more clear that custom code objects used in OHI views need to be
granted with full DML privileges to the OHI object owner.

10.15.3.0.0 1.9  Some minor textual changes and addition of a list of supplementary
granted pl/sql execute object privileges to a custom code role or schema.

10.16.1.0.0 1.10  Small change in paragraph that describes how to create the actual list of
supplementary granted pl/sql objects.

10.16.2.0.0 1.11  Parameters of the OZG_DIRECT.grt script have changed.

 Litst with supplementary granted (non standard granted) pl/sql objects is
updated.

10.17.1.0.0 1.12  Updated the paragraph containing instructions for granting privileges on
custom code objects.

10.17.2.0.0 1.13  Added description for role OHI_ROLE_EXTRACT and updated some
text because of the VPD implementation.

10.18.1.0.0 1.14  Changed the usage description of script OZG_DIRECT.grt.

 Updated list with additional granted objects

 Exception for VPD related tables is documented

Contents

Change History 3

Introduction 5

Robust database 5

Multiple ‘user groups’ 6

Identification, staff and accounts 6

Custom pl/sql code within OHI software 7

Non-OHI software 8

Points of attention 8

Solution 9

Installation & migration 13

Introduction

This document contains a detailed explanation of the procedure employed for roles,
‘grants’, custom software (including custom code defined within the application as
pl/sql definitions) and accounts used for interfaces.

This is based on the principle that the server component of the application must
ultimately be fully robust and not permit any corrupting modifications (modifications
that do not adhere to the business rules or authorized changes).

Data may therefore only be modified in such a manner that it remains compliant with
the business rules. For this a strict database object authorization mechanism needs to
be maintained and obeyed (assuming database system privileges are well maintained
by the database administrators and they never allow any account to circumvent this
mechanism).

Robust database

One of the main ideas behind the ‘modernization’ of the application, as implemented
during one of the largest application revisions ever, a number of years ago, was the
provision of a ‘robust database’ that may also be manipulated using software other
than the standard reference version. This allows OHI customers to develop their own
(user) interface(s) independently from Oracle. This refers to interfaces that are
specifically geared towards supporting a specific process.

Because this modernization process could not be completed ‘overnight’ in one release
the consequences were published by means of amendments in various releases.
Furthermore, main goal was the database structure to be modernized as part of this
process. The application software remained unchanged for the most part.

Bearing this in mind, the database object authorization is explained in further detail
below.

In this context, we define a ‘robust database’ as follows:

1) The inability to implement modifications (!) that do not comply with the
integrated business rules and standard object privileges.

2) This is regardless of the manner in which the database is accessed, as the check is
executed directly on top of the data within the database.

The consistency and validity of the data can be guaranteed for as long as the DBA
ensures that the database can only be accessed via accounts that have no more than
the permitted rights. This also applies to the parts of the database structure that have
not yet been modernized, provided that the instructions in this document are
observed.

This type of robust database does not contain a data or process authorization function
to establish whether the user may modify the data concerned. Moreover, there is no
access check in relation to the visibility of the data in the database to establish
whether the user may view the data concerned.

An exception to this are the columns that have been identified as ‘sensitive’ and may
not be seen by all users for specific records. For these columns in these records a
technical solution has been implemented with the use of Oracle Virtual Private
Database technology, in short VPD. In the first implementation mainly ‘person

identifying’ columns fall in this category. This functionality is implemented for a
limited set of ‘sensitive’ tables for which this data visibility access rules apply.

Also for this limitation on data access an approach has been implemented which
cannot be circumvented when users do not have the privilege to see values of
sensitive columns in these restricted records.

Multiple ‘user groups’

The application has to support multiple types of users in such a manner that the
robustness of the modernized parts of the database cannot be compromised.

We distinguish the following types of users and processes:

1. Interactive standard application users
These are the users who perform their activities typically via the screens.

2. Standard batch processes
These are processes realized as reference software that run in the background
and can be ‘requested’ by the users.

3. Interface users / accounts
These are essentially indirect users or accounts who interact with the
database via a synchronous or asynchronous customized interface (this is
only permitted in the modernized parts of the database).

This may or may not take place via the API/Service Layer.

4. Customization users
Customized software added to the database structure (only permitted for the
modernized parts of the structure) can in many cases be used to modify data
directly. In effect there is no real difference with respect to interface users,
although interface users will not usually perform their activities via a direct
database account. In principle, customization activities are usually performed
next to activities that access the API/Service Layer.

In actual fact, this distinction in terms of types of users and processes is not yet of
any real benefit. The reason for this distinction will only become clear when these
user groups are examined from a more technical point of view.

Identification, staff and accounts

Users are indicated as staff. Only staff can and may make modifications using the
screens. A staff user must be registered within the application with an application
user definition (an ‘officer’ record) and must be active. Normally these users are
persons and each person has a personal user account.

Function authorization in screens, etc. is also granted based on the condition that the
user is a member of staff. This authorization is done for application user definitions.

The screens require that the user connects to the database using an Oracle database
account linked to a unique active member of staff, so associated with an active
application user definition with the same name.

When a user submits a script request, the batch process concerned will technically log
on using a generic Oracle account (usually Oracle/Unix account ‘batch’), after which
a check will be performed in the batch process to establish whether a registered
member of staff submitted the request.

When a user logs on via a customized part of the system and wishes to perform
modifications, they will also have to do so using/specifying an application user

definition account, so with an account which as an active member of staff has been
registered in the application.

For interface users it may be the case that there is a generic Oracle account for the
sake of optimization, which is used to log on to the database, while it may be
desirable and even necessary that a specific member of staff be specified for specific
modifications. Another option could be for each ‘interface user’ to log on via their
own Oracle account that uses its own member of staff (potential identical to the used
account) if interface users are in fact staff users.

All of these situations must be supported.

Custom pl/sql code within OHI software

In release 2009.03.0.0 (10.9.3.0.0) a first implementation is offered of dynamic pl/sql
code that can be defined by the customer. This code can be called within certain
standard processes of the application.

For this code these restrictions apply:

1. No DDL is allowed.

2. It is only allowed to query data from the database (so only ‘select statements’
are allowed, the update, delete and insert DML statements are not allowed)
except for when the pl/sql definition allows DML.

3. It is not allowed to lock any data when DML is not allowed.

4. It is not allowed to change any package states (i.e. variables within a package)
of standard OHI packages that may only be used by OHI code internally.

5. The code should be very efficient in order to prevent noticeable delays and a
decreased response time (when performance problems are caused by this
code a logged incident will be marked as caused by customer which may
induce additional costs).

6. It is in no way at all allowed to circumvent business rules or authorization
rules in the application.

7. Database object access is restricted to the standard (!) object access rights
implemented for custom code and as granted likewise to the role
OZG_ROL_DIRECT (described below). It is strictly prohibited to grant any
additional object privileges or system privileges that provide generic object
access (dynamic code is executed through a special account which may only
receive the standard OHI object privileges and privileges on custom code
objects).

8. Transactions may not be influenced (so no explicit rollback, savepoints,
commits, autonomous transactions or whatsoever may be implemented when
DML is allowed).

These checks will be enforced where possible and may change in strictness over
different application releases. So when you do not follow these rules it may be that in
a future release your code will no longer work. In fact, there is a risk that application
stability is negatively impacted and support may be limited.

Additional rules will be defined here based on experiences with this functionality.

Non-OHI software

Interface and customized software can in some cases consist of database objects
(PL/SQL packages, procedures, tables, views, etc.) incorporated into the same
database as in which the OHI database structure was created. While this is not
permitted using the same framework (OHI schema owner account and view owner
account and accompanying standard accounts for executing dynamic pl/sql code and
batch processes) used to create and use the OHI objects, a different account (custom
code schema) may be used. Moreover, in these custom code objects direct references
may be made to specific (i.e. not all!) OHI objects as long as they are granted through
the standard OHI provided granting routines.

Naturally, this situation must be supported.

Beware, when custom code objects in a custom code owner account need to be used
in ‘translation views’ or ‘system views’, views in OHI that can be defined on a custom
code definition, it is important these custom code objects are granted in the correct
way. They need to be granted to the OHI schema owner account as well as to the OHI
view owner account (typically this applies to custom code tables, views and stand-
alone or packaged functions).

The ‘with grant option’ might be needed when granting privileges on custom code
views used in ‘OHI system views’ or ‘OHI financial translation views’ to the OHI
object owner accounts, in the situation that custom roles or custom code owners have
received privileges on OHI objects with grant option.

When custom code objects are accessed in dynamic OHI pl/sql code, privileges on
these objects need to be granted to the OHI dynamic pl/sql user (OHI_DPS_USER).

There are still some limited situations in OHI where custom code objects can be
accessed from within OHI code without using the OHI dynamic pl/sql user. For this
to work correct privileges need to be granted to the OHI schema owner as well as the
role OHI_ROLE_ALL.

When in doubt where code is used grant privileges on the custom code objects to the
OHI schema owner, view owner, DPS user as well as to the role OHI_ROLE_ALL.

Points of attention

The above-mentioned points mean that there must be a grant structure that complies
with all of the requirements without in any way jeopardizing the robustness of the
application.

For the regular screen (user interface) users, it will be sufficient if all database objects
are granted to a single role, and each Oracle account that must be able to use the
screens is able to activate this role. These screens will be ‘familiar’ and ‘trusted’, as
they are part of the reference software. Measures must also be taken to ensure that the
users can only query and modify the data via the screens. In order to ensure
compatibility with ‘older’ screen based code, the ‘grants’ for the user interface users
provide extensive rights, which essentially facilitate every type of modification. This
includes modifications that cannot be checked by the database side of the application
and normally are not permitted.

For interface and customized software and users we want to utilize a privileges
structure that prevents compromising with the robustness layer. Consequently, a
much more limited, robust ‘grant’ structure is required for this purpose.

Nevertheless, the problem is that certain users (staff) may want to use the database in
a variety of ways (via the regular user interface, but also via customized or other

applications that exchange modifications with the OHI application), in which case we
will have to proportionally enable use of another privileges structure.

Solution

Recognition of multiple roles and their ‘grants’ makes it possible to use different
privileges depending on the purpose.

Consequently, the following roles are used and are mandatory in the database:

1. OHI_ROLE_ALL

2. OZG_ROL

3. OZG_ROL_BATCH

4. OZG_ROL_SELECT

5. OZG_ROL_DIRECT

6. OHI_ROLE_EXTRACT

OHI_ROLE_ALL and OZG_ROL

All OHI object privileges are assigned to the OHI_ROLE_ALL role using the
OZGGRANTS.ins script. The OHI_ROLE_ALL role is granted to the application role
OZG_ROL. This two level role grant mechanism is used as OZG_ROL is a secure
application role which is limited in use.

This OHI_ROLE_ALL and OZG_ROL role may not be granted to any account in the
database, with no exceptions, even not the OHI batch scheduler account, for which role
OZG_ROL_BATCH is dedicated.

The OZG_ROL role is (only) dynamically activated when a user logs on via the OHI
screens. Consequently, this is not a default user role, which prevents the user from
performing modifications on the OHI data using other tools (e.g. SQL*Plus or SQL
Developer).

Users cannot activate the OZG_ROL role themselves using the commands “SET ROLE”
or “dbms_session.set_role”. The role can only be activated using the
ALG_SECURITY_PCK package, which contains logic for checking whether the role is
created using a supported (user) interface. Checks are also performed to establish
whether a registered member of the OHI staff is using the package.

This is facilitated by means of the ‘public granting’ of a small number of OHI objects
with very limited privileges. There are two packages and tables for which public
execution and select rights are granted.

The following privileges are granted/updated for the OHI_ROLE_ALL role:

 Select, insert, update and delete privileges are granted for all tables and their
associated 1 to 1 tables (‘translation’ and ‘translated’ views). There are some
exceptions:

o The modification logging ‘shadow’ tables and external tables form
exceptions to this rule, as only select privileges are granted for these
tables.

o For the ‘sensitive data’ containing tables, protected through a VPD
implementation, only the Select privilege is granted to solely the
OHI_ROLE_EXTRACT role. All other access is redirected to the
protecting view layer on top of these tables, no form of direct access
is granted.

 Select privileges are granted for all views, as well as the sequences.

 Execution rights are granted for all stored PL/SQL objects.

 Additional insert, update and delete rights are granted for all views not
directly dependent on the DUAL table.

For the rest, the above only occurs for the objects whose names begin with a
recognized three-letter subsystem acronym.

OZG_ROL_SELECT

The selection rights to the ‘selectable OHI objects’ are granted to the OZG_ROL_SELECT
role using the OZGGRANTS.ins script. This includes all tables, views and sequences
whose names begin with a recognized three-letter acronym and not ‘API’. Tables
which have a data access authorization view are not granted, instead the view on top
of such tables is granted.

This role therefore gives staff the opportunity to perform selections of data outside of
the user interface, if they receive this role.

This role can and may be granted to an interface and/or users of customized
applications who only require, or are only allowed to have query rights. Of course
privacy regulations should be adhered to when granting this role.

OZG_ROL_DIRECT

Selection rights for all directly accessible views, tables or table access replacing views
and modification rights for tables that are robust are granted to OZG_ROL_DIRECT
using the OZGGRANTS.ins script. With regard to modification rights for these tables or
views, column-level inserts and ‘update grants’ are used to prevent unauthorized
column inserts and updates. The table and functional API objects are also granted to
this role. Other database objects are therefore not (!) granted in order to prevent
compromising with the robustness layer.

This role can be granted to interface and/or customization users.

When these ‘direct access grants’ must be allocated directly to an account, typically
when stored pl/sql code objects like packages, etc. have to be created, the
OZG_DIRECT.grt script (e.g. OZG_DIRECT.grt) must be used. This script is created in
the $OZG_BASE directory every time OZGGRANTS.ins is run (which is run during
OHIPATCH step 120).

This can be necessary if a customized owner account is created with customized
stored procedures, functions or packages that use the objects. In such cases, ‘direct’
grants are required, as this type of stored code cannot be created based on ‘volatile
grants’ that only are present when a role is active, which is not the case when a user is
logged out, for example.

The script should be run while connected as the OHI object owner, using sqlplus,
connected through the <ohienv>_install wallet entry or by providing the username
and password (this is a mandatory requirement for a successful run of the script).

To follow what is done enable serveroutput before calling the script. The script will
ask for values for 2 variables, GRANTEE and GRANT_OPTION. The first one is
obvious, typically the name of a custom code owner account should be passed. In
case custom views may be created based on OHI tables or views and these views
need to be granted again, you should specify ‘Y’ for the GRANT_OPTION parameter.

When you have run the script without specifying a value for the GRANT_OPTION
parameter and later on you do need the grant option privileges, please first revoke
the grants from the custom code owner account before calling the script again.

An example for using this in sqlplus:

connect /@<ohienv>_install

set serveroutput on

start $OZG_BASE/OZG_DIRECT.grt SVS_OWNER3 Y

Output of the script will be spooled to a file named OZG_DIRECT.grt.<env> where
<env> is determined by the value set for $TWO_TASK, usually set by running
ozg_init.env.

A more detailed description of the rights granted:

 Select privileges for all tables whose names begin with API.

 Execution privileges for all packages whose names begin with API, SVL (can
be granted separately) or DOM.

 Supplementary execution privileges for objects used in function based
indexes and some general use objects.

 Select privileges like the privileges granted to OZG_ROL_SELECT role for all of
the remaining tables, views and sequences.

 Delete grants, column-level inserts and ‘column-level update grants’ to all
regular application tables (and associated 1 to 1 views, as mentioned before)
modernized in line with a ‘robust’ structure (so ‘sensitive data’ containing
tables are excluded). The ‘column-level grants’ help prevent columns that
may no longer be modified as the result of an application from being
modified (in certain cases the column may be modified as the result of
business rules). When such columns are still assigned a (modified) value via
the corresponding API (table), the value is ignored.

The supplementary objects which are referenced in the third bullet are listed below:

API, Domain (DOM) and Service Layer (SVL) objects are granted execute

privileges by default.

Object type Object name Allowed grant(s)

FUNCTION ALG_EET_INDEX_EDE EXECUTE

FUNCTION ALG_EET_INDEX_EET EXECUTE

FUNCTION FSA_VDG_INDEX_COUR EXECUTE

FUNCTION FSA_VDG_INDEX_SALDRN EXECUTE

FUNCTION FSA_VDG_INDEX_TUP_ST EXECUTE

FUNCTION FSA_VDG_INDEX_VERREK EXECUTE

FUNCTION FSA_VPG_INDEX_COUR EXECUTE

FUNCTION FSA_VPG_INDEX_SALDRN EXECUTE

FUNCTION FSA_VPG_INDEX_TUP_ST EXECUTE

FUNCTION GEB_DCR_INDEX_GRP_CODE_STATUS EXECUTE

FUNCTION GEB_DED_INDEX_MER_CODE_SPEC EXECUTE

FUNCTION GEB_DED_IND_MER_CODE_SPEC_DERI EXECUTE

FUNCTION GEB_DRC_INDEX_KENMERK EXECUTE

FUNCTION GEB_LHL_INDEX_AANL EXECUTE

FUNCTION INT_PBT_INDEX_BOEKINGSNOTA EXECUTE

FUNCTION INT_PBT_INDEX_BORDEREL EXECUTE

FUNCTION RBH_ERK_INDEX_REK EXECUTE

FUNCTION RBH_REL_INDEX_CONCAT_NAAM EXECUTE

FUNCTION RBH_REL_INDEX_STATUS EXECUTE

FUNCTION REF_DPE_INDEX_DBC EXECUTE

FUNCTION REF_EWE_INDEX_CHAR EXECUTE

FUNCTION REF_EWE_INDEX_EGE EXECUTE

FUNCTION REF_EWE_INDEX_NUM EXECUTE

FUNCTION VER_PMN_INDEX_REG EXECUTE

FUNCTION VER_PMU_IDX_BEEINDIGINGSBRIEF EXECUTE

FUNCTION VER_PMU_INDEX_MERK EXECUTE

FUNCTION VER_PMU_INDEX_POL_TE_VWK EXECUTE

FUNCTION VER_PMU_INDEX_TE_VWK EXECUTE

FUNCTION VER_POL_INDEX_STATUS EXECUTE

FUNCTION VER_PTL_INDEX_DATUM_INGANG EXECUTE

FUNCTION VER_PTL_INDEX_PLT_ID EXECUTE

FUNCTION VER_PTL_INDEX_TE_UPD EXECUTE

PACKAGE ALG_BATCH_PCK EXECUTE

PACKAGE ALG_BOP_PCK EXECUTE

PACKAGE ALG_BOP_S% EXECUTE

PACKAGE ALG_BOP_U% EXECUTE

PACKAGE ALG_BOP_W% EXECUTE

PACKAGE ALG_CONTEXT_PCK EXECUTE

PACKAGE ALG_CSV_PARSER_PCK EXECUTE

PACKAGE ALG_DPS_INSTALL_PCK EXECUTE

TYPE ALG_EDE_PAYLOAD_TP EXECUTE

PACKAGE ALG_EVENT_INTERFACE_PCK EXECUTE

PACKAGE ALG_LOGGING_PCK EXECUTE

PACKAGE ALG_MAF_PCK EXECUTE

PACKAGE ALG_OHI_SERVICES_PCK EXECUTE

PACKAGE ALG_OUTPUT_PCK EXECUTE

PACKAGE ALG_SAV_CAPI EXECUTE

PACKAGE ALG_SCRIPT_PCK EXECUTE

PACKAGE ALG_SUD_PCK EXECUTE

PACKAGE ALG_TAB_PCK EXECUTE

PACKAGE ALG_TRACE_PCK EXECUTE

PACKAGE ALG_TRANSLATE_PCK EXECUTE

PACKAGE CG$ALG_SCRIPT_AANVRAGEN EXECUTE

PACKAGE COM_DPS_INTERFACE_PCK EXECUTE

PACKAGE FIN_FPM_VARS_PCK EXECUTE

PACKAGE FSA_BUR_UTIL_PCK EXECUTE

TYPE RBH_ADRESVELDEN_TP EXECUTE

PACKAGE RBH_RPM_VARS_PCK EXECUTE

PACKAGE SDM_ADM_DRV_PCK EXECUTE

TYPE SIC_OBJECT_PCK EXECUTE

PACKAGE SYS_ALG_EI_PCK EXECUTE

PACKAGE SYS_BEP_PAD_PCK EXECUTE

PACKAGE SYS_DML_PCK EXECUTE

PACKAGE SYS_GEN_PCK EXECUTE

PACKAGE SYS_MESSAGE_HANDLING_PCK EXECUTE

PACKAGE VER_CONTEXT_PCK EXECUTE

PACKAGE VER_GBA_PCK EXECUTE

PACKAGE ZRG_AUR_PCK EXECUTE

PACKAGE ZRG_DML_INTERFACE_PCK EXECUTE

PACKAGE ZRG_FORMULE_BEDRAG EXECUTE

PACKAGE ZRG_ZPM_VARS_PCK EXECUTE

This is a momentarily list.

For creating a current list please execute the stored procedure
SYS_GEN_PCK.WRITE_HTML_GRANTABLES and provide a writable database
directory name for the single parameter for this procedure. This will create a .zip file
in that folder. The .zip file contains an HTML file with the current list of
supplementary granted objects.

Beware, currently execute privilege on ALG_SAV_CAPI is still granted but this will
be revoked in a future release as this implies a stability risk for the batch scheduler.
So prevent use of routines in this package whenever possible.

OHI_ROLE_EXTRACT

Selection rights directly for all tables, in order to circumvent the view layer which is
implemented for some tables to potential hide sensitive data that may not be
accessed, by the querying account.

This role should be used very carefully as it does bypass the data authorization for
sensitive data containing columns implemented in the database by means of Virtual
Private Database technology.

Installation & migration

Installation

See the OZGI001S.sql script for instructions on how to create the above-mentioned
four roles.

Migration

When an environment is not utilizing the *** ORACLE-REQUIRED *** secured role
OZG_ROL and wishes to activate this role, the role must be modified as follows under
SYS:

 alter role ozg_rol identified using <OHI Back Office

owner>.alg_set_gui_role_prc;

 e.g.

 alter role ozg_rol identified using ozg_owner.alg_set_gui_role_prc;

The OZG_ROL role must subsequently be revoked by means of a revocation for all
database accounts.

