

Oracle® Agile Product Lifecycle Management for Process

Custom Portal Implementation Guide
Feature Pack 4.1

E64701-01

July 2015

Copyrights and Trademarks
Agile Product Lifecycle Management for Process

Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly

permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,

broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-

free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing

it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,

any programs installed on the hardware, and/or documentation, delivered to U.S. Government end

users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation

and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs

installed on the hardware, and/or documentation, shall be subject to license terms and license

restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management

applications. It is not developed or intended for use in any inherently dangerous applications, including

applications that may create a risk of personal injury. If you use this software or hardware in dangerous

applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and

other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any

damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks

are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,

Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of

Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,

products, and services from third parties. Oracle Corporation and its affiliates are not responsible for

and expressly disclaim all warranties of any kind with respect to third-party content, products, and

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
3

services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages

incurred due to your access to or use of third-party content, products, or services.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
4

Contents

PREFACE .. 6
Audience ... 6

Variability of Installations ... 6

Documentation Accessibility ... 6

Access to Oracle Support .. 6

Software Availability ... 6

CHAPTER 1—INTRODUCTION .. 7

CHAPTER 2—OVERVIEW .. 8
Component Overview ... 8

Data Administration Screens .. 8

Portal Management Screens ... 10

Custom Portal Web Application .. 11

Custom Plugins and Filter Controls ... 11

Technical Overview ... 12

Search Process Overview .. 14

Solution Implementation Overview .. 14

Accessing Data .. 15

Searching Data .. 16

Filtering Data ... 16

Rendering Data ... 17

CHAPTER 3—CONFIGURING PORTAL PAGES AND VIEWS ...18
Data Administration Screens .. 18

SCRM Facility Screen ... 19

Portal Management Screens ... 20

Search Screen .. 22

CHAPTER 4—INSTALLATION ..24
Custom Portal Web Application Setup ... 24

Typical Custom Implementation Setup ... 25

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
5

CHAPTER 5—TECHNICAL IMPLEMENTATION ...26
Architecture Overview .. 26

Class Structure and Interfaces .. 27

Filter Plugin Structure ... 27

Search Plugin Structure ... 30

Rendering Plugin Structure ... 32

CustomPortal Control ... 33

Plugin Data Access Approaches .. 34

Using Web Services ... 34

Using Direct Database Queries ... 35

Configuring Branding .. 36

CHAPTER 6—REFERENCE IMPLEMENTATION ...37
Overview ... 37

Business Requirement .. 37

Contents .. 37

Installation/Set Up .. 38

Installation .. 39

Data Setup ... 39

Custom Portal Profile Setup .. 40

Custom Section Setup ... 41

Web Services Setup ... 41

Verify Results .. 41

Code Walkthrough .. 41

Creating the FilterPlugin ... 41

Creating the AdminFilterPlugin ... 43

Searching and Displaying the Results ... 46

Rendering the Result Data .. 50

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
6

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle

Management for Process. Information about using Oracle Agile PLM for Process resides in application-

specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle

Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not

match your installation. The user interface of Agile PLM for Process applications and the features

included can vary greatly depending on such variables as:

 Which applications your organization has purchased and installed

 Configuration settings that may turn features off or on

 Customization specific to your organization

 Security settings as they apply to the system and your user account

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability

Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core

software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
7

Chapter 1—Introduction
Custom Portal is an extensible web portal framework for customers to build web pages that query for

Agile PLM for Process objects, display the search results, and print the result details in various formats.

This document details the Custom Portal framework, including the administration of portal pages and

views, the technical implementation requirements for extending the portal, and the existing reference

implementation.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
8

Chapter 2—Overview
The Custom Portal is an extension of the Agile PLM for Process (PLM4P) application suite. It allows

customers to implement various integration solutions that leverage the PLM4P data and capabilities

without using the core application. Its primary usage is to provide a framework for searching, filtering,

and displaying PLM4P data, and gives solution implementers the ability to customize each of those

aspects.

Custom Portal pages can be built to give users (who would not typically access PLM4P) very specific

access to certain data. Views of that data can be tailored to meet specific business needs, such as

providing business partners with custom views into their specifications.

Possible Uses:

1. Grant read only access to your individual plants. Plant users are a very different audience
compared to the average GSM specification user. Plant users need to see a read only view of the
entire finished good specification. This could be a combined view of data spanning attributes
from the trade, nutrient profile, formulation and raw materials.

2. Grant read only access to internal departments in a format they are used to seeing the data.
For example, you can grant the Marketing department access to Product Fact Sheet reports for
only approved finished goods. This would allow them to see nutritional fact panels and label
claims pertaining to a particular finished good without granting them access to the entire
Nutrient profile and Trade specifications.

Component Overview

Custom Portal consists of several core PLM4P components, Custom Portal framework components, and

custom code.

Data Administration Screens

Data Admin screens in the core PLM4P application allow for the configuration of the Custom Portal.

Users configure a Portal with a name and status, and then configure the individual Views available in

each Portal.

Each View is a separate web page that provides search, filtering, and display capabilities. Users configure

a View with a name, status, and whether the individual search results should appear in a new pop-up

window or in the same window. Additionally, the search, filtering, and display capabilities of the View

are declared in the configuration by specifying custom Plugins and Filter Controls.

Details of using the Data Admin screens are specified in the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
9

Chapter 3—Configuring Portal Pages and Views section. Technical details of the plugins used by the

Views are specified in the Technical Overview and

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
10

Chapter 5—Technical Implementation sections.

Portal Management Screens

Portal Management screens, accessible in Custom Portal, enable Profiles to be created for each Portal. A

Profile is a way to associate a View to various participants (users) and apply filters to the search results

that the View provides.

For instance, a Profile can be configured to allow users of a certain Facility to search using a

specific View, but only see Approved Specifications as search results, while another Profile could

be granted to one specific user for the same View that would not restrict the search results.

When a user logs into a Portal page, the left navigation is populated by whichever Profiles in that Portal

the user has access to.

Details of configuring Profiles using the Custom Portal Admin screens are specified in the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
11

Chapter 3—Configuring Portal Pages and Views section.

Custom Portal Web Application

CustomPortal is the web application that acts as the host for the portal pages, portal management

screens, and user authentication. User interface customization can be made in the Custom Portal web

application to personalize the branding, header, navigation, and footer sections of the portal pages.

The Custom Portal web application is provided and maintained as an extension by Oracle. Changes made

to this web application should be minimized (primarily stylesheet and UI changes) to avoid maintenance

issues. Clients adding their custom portal pages may do so in their own web application that is then set

up as an IIS virtual directory within Custom Portal.

Custom Plugins and Filter Controls

To create custom portal views which implement the search, filtering, and display behaviors, clients must

create individual Search Plugins, Rendering Plugins, and Filters Plugin controls. These may be located in

the client’s custom web application or assembly under the Custom Portal web application. These

Plugins and controls are then configured for each View in the Data Admin screens. The Profile

Management screens can then be configured to use the filters to limit data results when setting up the

various Profiles, as discussed above.

Details of creating Search, Rendering, and Filter Plugins are discussed in the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
12

Chapter 5—Technical Implementation section below.

Portal Interfaces

Each custom Search, Filter, and Rendering Plugin must implement specific interfaces which are provided

in the CustomPortalInterfaces assembly.

Technical detail of each interface is discussed in the Class Structure and Interfaces section below.

Technical Overview

Custom Portal is a web application that must be installed in an existing Agile PLM for Process

environment. It contains the portal management screens, page layout, security, and the pluggable

framework that is used to develop custom search, filter, and display functionality. It relies on the

Interfaces located in the CustomPortalInterfaces assembly, which define the class structure required

when using the Search, Render, and Filter Plugins.

Client implementations that use the Agile PLM for Process Web Services API will require that the Web

Services API is installed in an accessible environment.

Custom Portal will also host the client’s own web application or assembly in which most of the

customized plugins, forms, and other implementation code should be located.

For more details, see the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
13

Chapter 4—Installation and the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
14

Chapter 5—Technical Implementation sections below.

Search Process Overview

The Custom Portal hosts a View, which is a web page that contains the search criteria and search results.

Once a search is performed and search results are displayed, clicking on a result entry will display the

final detailed results in the chosen output format.

The following diagram illustrates the processes of a custom portal View:

Rendering Plugin

Data

(Database, Web

Services)

Custom Portal

Web Application

Search Plugin

Search results

Search criteria

Search Filters

Selected item

View

Result

Window

Rendering data

Search Filters

1

2

3

4

Search Results

Search Criteria

The numbered steps in the diagram above describe the process as follows:

1. The search criteria are entered and the Search button is clicked. This calls the configured Search
Plugin and passes it the Search Filters that restricts the result set. The Search Plugin queries the
database or calls web services for the needed data.

2. The search results are returned and displayed in the search results section. These results include
information about the columns that should be displayed as part of the result set.

3. A result entry is selected by clicking on it. This calls the configured Rendering Plugin, which will
likely make its own database and/or web service calls to retrieve additional data needed for the
final display. It can also use the filters to restrict any data returned as needed.

4. The Rendering Plugin will then process the results and display them in the desired output
format, such as HTML or PDF, either in the same window or by launching a new window.

Solution Implementation Overview

Implementing a Custom Portal solution will require different strategies depending on the business

requirements and the available integration options.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
15

Solutions will be based on approaches to the following:

 How to access the data used for searches and rendering
 How to allow for search capabilities
 How to filter data to restrict access
 How to render the data results

Accessing Data

Implementing the search and rendering capabilities will require a way to access the Agile PLM4P data.

This may be achieved use existing web services, direct database queries, and/or PLM4P internal data

objects and services.

Web Services API

A common approach to implementing some of the search behavior and retrieving specific data for

rendering is to use the Agile PLM for Process Web Services API. The Web Services API provides over 40

web services that can be used for various data retrieval needs, such as retrieving nutrient profile

information, custom section data, and related specifications information, as well as for performing

searches for GSM specifications or eQuestionnaire items based on specific criteria.

Typically, a Search or Rendering Plugin will call one or more web services to achieve its required

outcome. Each web service is granular in nature, achieving a very specific business need. Therefore it

will be common to compose several web service calls together, using the results of one web service to

call other web services as needed.

For instance, you can call the GetSpecNumbersForCriteria web service to enable a GSM Spec

search for Ingredient Specifications created in the past 30 days that are in an Approved status.

The result specifications can then be used to call the GetNutrientItemsPer100g web service to

get the nutrient items list of each spec, and use those results to find if any of those contain a

specific amount of given Nutrient Item.

Advantages of using the Web Services API include leveraging user authentication, user authorization,

and the existing business logic in the system. Additionally, the Web Service API is supported and

maintained by Oracle.

Details of the Web Services API can be found in the Feature Pack’s Web Services API User Guide,

including a listing of all of the current web services and detailed documentation of each web service.

A further discussion of using web services in the Custom Portal can be found in the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
16

Chapter 5—Technical Implementation section.

Database Queries

Required data that is not available via the current Web Services may be retrieved using custom database

queries. Read access to the database and knowledge of the database structure will be required.

While using direct database queries to access required data will be possible, and at times, the only way

to retrieve the desired data, it does have some drawbacks:

 Implementing user security/permissions checks in the database queries may be complex
 Database schemas may change between releases – requires maintenance

Details of the Agile PLM for Process database schemas can be found in the Feature Pack in the

Docs\DbSchema directory.

Internal Data Objects

Some data may be accessed by using the internal data object and accessing its properties. Typically, the

data object’s primary identifier (the PKID) is required to load the object and access its properties. The

PKID can be returned via database queries (the Web Services typically do not expose the PKID), and then

used to load the data object using internal PLM4P Services.

Searching Data

Setting up a search utility that specific users can utilize will require the use of a Search Plugin. The

Search Plugin will provide the search ability (search fields, predefined search inputs) and determine the

search result format, such as the result columns. It must also implement the actual search, either by

calling one or more of the existing web services, or by using direct database queries, or both. The search

filters configured for the View are used by the Search Plugin to filter the result set (see Filtering Data). A

list of error messages may be populated in the Search Plugin and then displayed to the user.

Filtering Data

Search data returned will likely need to be filtered based on the Portal Profile or the users accessing the

results. Code is used to limit the results or the queries so that only the right data is exposed.

Filtering search result data is done using two filter controls, which are specified in the Data

Administration screens when configuring a View:

1. An Admin Filter control is used in the Profile configuration to automatically filter results for that
view.

2. An “in-search” filter control is used during the search and allows the user to specify the filtering
during the search process.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
17

Rendering Data

Rendering data involves displaying the desired output results once the search results are displayed and a

result item is selected. The Rendering Plugin configured in the Data Admin screen for a View is called to

display the result, either in the same window or in a pop-up.

Rendering Plugins can display the data in whichever format is created, such as HTML, PDF, etc.

Additionally, the Rendering plugin can also access additional data need for the display of the item

selected using the various data access methods specified above.

For instance, if the search results display a list of Ingredient Specifications that contain a specific

Nutrient Item, clicking on one of the specifications returned could display more detail about that

ingredient spec, such as the category, subcategory, and group, the ingredient statement, and

the full list of nutrient items. The Rendering plugin would call specific web services to retrieve

this desired data, and then could display it as a PDF document.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
18

Chapter 3—Configuring Portal Pages and Views

Data Administration Screens

Data Admin screens in the core PLM4P application allow for the configuration of the Custom Portal.

Users configure a Portal with a name and status, and then configure the individual Views available in

each Portal.

Only users with the role “[CP_SYSTEM_ADMIN]” may access the Portal and View screens.

Changes to the Portals or Views are available after a Cache Flush event or IIS reset.

Custom Portals Screen

The Custom Portals screen defines a portal used by the Custom Portal Web application. Each portal is

implemented as a separate page (.aspx) in the Custom Portal.

Each entry has the following fields:

 Name: defines the portal name
 Cache Timeout: the number of minutes that the search results are cached
 Status: status of the portal (Active, Inactive, or Archived)

Custom Portal Views Screen

Each View is a separate web page that provides search, filtering, and display capabilities. Users configure

a View with a name, status, and whether the individual search results should appear in a new pop-up

window or in the same window. Additionally, the search, filtering, and display capabilities of the View

are declared in the configuration by specifying custom Plugins and Filter Controls.

Each entry has the following fields:

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
19

 Name: defines the view name, which is displayed as a page header and left navigation item.
 Search Plugin: the class URI defining the custom search business logic, as implemented by a

custom class implementing an ISearchPlugin interface.
o Ex:

Class:MockCustomPortalPlugins.ProdikaApiPlugins.SpecSearchPlugin,MockCus
tomPortalPlugins

 Rendering Plugin: the class URI defining the custom rendering/display logic, as implemented by
a custom class implementing an IRenderingPlugin interface.

o Ex:
Class:MockCustomPortalPlugins.ProdikaApiPlugins.SpecSummaryRenderingPlug
inFactory,MockCustomPortalPlugins

 Filter Control: there are two filters controls specified here, separated by a semicolon. Each entry
should be the relative path to the filter control (ex:
/DefaultSearchPlugin/DefaultSearchFilter.ascx)

o The first is used in the search control on the default search page
o The second is used in the Custom Portal Management screen to limit results hidden

from end users.
 Open New Window: checkbox value determines if the search result entry, when clicked, is

displayed in a new pop-up window or not.
 Status: status of the view (Active, Inactive, or Archived)

SCRM Facility Screen

UGM users and groups can be associated to SCRM Facility profiles for use in the Custom Portal. If

that Facility is selected in the Profile Participants section, access to the View is granted to these

users. A new section, title Portal Users, is now available in the SCRM Facility screen.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
20

To view the Portal Users section on an SCRM facility profile, make sure the following configuration entry

is set to true: CustomPortal.SCRMFacility.Participants.Enabled

To edit the Portal Users section on an SCRM facility profile, the user must have the

“[SCRM_PRINCIPAL_EDITOR]” role.

Portal Management Screens

Portal Management screens, accessible in Custom Portal, enable Profiles to be created for each Portal. A

Profile is a way to associate a View to various participants (users) and apply filters to the search results

that the View provides.

Only users with the role “[CP_ACCESS_ADMIN]” may access the management screens.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
21

Searching for a Profile

Access the portal management screens via http://<servername>/customPortal/Admin/PortalAdmin.aspx

and select the Portal to configure profiles for from the left navigation menu.

This will display a Profile search screen to search for Profiles for the selected Portal, or create a new

Profile.

Creating/Editing a Profile

Note that to configure a Profile, the relevant View must exist along with the actual Plugins and Filters. In

other words, a Profile cannot be configured until the Plugins are set up in Data Admin.

This page allows users to configure a Profile for a View, the display name, the users/participants, and the

admin filters.

The Profile Information section contains the following fields:

 Name: the name of the profile

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
22

 Label: the name to display on the portal page’s left navigation bar and search title
 Description: optional description
 View: a pop-up selection of all Views
 Portal: a read-only display of the current Portal being configured
 Status: status of the profile (Active, Inactive, Archived)

The Participants section is where permissions are set for the Profile. It contains the following fields:

 Users: selection of individual users
 Groups: selection of user groups
 Facilities: selection of SCRM facilities. UGM users can be associated to SCRM facility profiles.

When you select a facility here it will use the UGM user collection stored on that facility. See
the SCRM Facility Screen section for details.

The Filters section will differ by the selected View, as it will load the admin filter control specified in the

Data Admin configuration screen for that View. The filters section shown above is based on a reference

implementation: it allows the search filter to be restricted to Approved specifications only and to a

particular specification type.

Search Screen

When users access any portal page, they are prompted to log in using the regular PLM4P login screen.

The location (URL) of the particular search screen will depend on the deployment implementation,

namely where the Portal web control is being implemented.

More details can be found in the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
23

Chapter 5—Technical Implementation section.

A web control (CustomerPortal.ascx), provided in the Custom Portal web application, must be defined

for each Portal that is configured. The control defines the appearance and functionality of the Portal.

Each portal page has four sections:

1. Header: contains branding information
2. Navbar: lists any Views available to the user for the given Portal
3. Search Criteria: displays the custom search behavior (as well as the View name and any

warning/error messages)
4. Search Results: displays the custom search results (as well as a page footer placeholder). The

search results are cached for a set time, as configured in the Portal Data Admin screen.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
24

Chapter 4—Installation

Custom Portal Web Application Setup

To install the Custom Portal web application, you must do the following:

1. From the Feature Pack release, copy the CustomPortal web application into your Agile PLM for
Process application’s \web folder.

2. Create a new virtual directory in IIS:
a. Set the name to customPortal (this can be changed to a different name if needed).
b. Set the path to the customPortal directory in the web folder.
c. Add new virtual directories underneath the new customPortal virtual directory. [Be sure

to remove the ApplicationName value from the Virtual Directory tab in the Application
Settings section.]

i. name: css, path: <PLM4P directory>\Web\css
ii. name: images, path: <PLM4P directory>\Web\images

iii. name: WebCommon, path: <PLM4P directory>\Web\WebCommon

Note: If deploying Custom Portal on a 64-bit machine, please remove System.Web.dll and

System.Web.xml from <PLM4P-install-folder>\Web\CustomPortal\bin.

3. If using the Web Services API, please read the Agile Product Lifecycle Management for Process
Web Services Guide on how to install the API and modify the configuration files.

4. Make sure your user has the [CP_SYSTEM_ADMIN] role to configure the Custom Portal in the
data admin menu. See

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
25

Chapter 3—Configuring Portal Pages and Views for details.
5. Restart IIS

Typical Custom Implementation Setup

Your custom implementation code (either packaged as a web application or an assembly) will also need

to be installed. Typically, you will do the following:

1. Place your custom web application or library in the <PLM4P directory>\Web directory.
2. Copy the .dll of your custom library or web application into the CustomPortal\bin directory.
3. Create a new virtual directory within the CustomPortal virtual directory that points to your

custom web application.
More detailed installation procedures can be found in the Chapter 6—Reference Implementation

section.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
26

Chapter 5—Technical Implementation

Architecture Overview

The following diagram presents a simplified model of the architectural components involved in

implementing a Custom Portal solution.

Data

Object Relational Mapping Layer

Services

Core Agile PLM for Process

GSM web app
Integration

web app

Custom Portal

web app

Client

 web app

Web services API

Client’s web application as a virtual

directory inside Custom Portal

Custom Portal

web application

The Custom Portal web application hosts the portal pages, portal management screens,

branding, stylesheets, and user authentication.

The Client web application (or assembly), accessible via a virtual directory in IIS,

implements the search, rendering, and filtering requirements by accessing the Web

Services API, the database through direct queries, and possibly internal PLM4P services

and data objects.

The Integration web application is used to host the Agile PLM for Process Web Services

API.

Each of these modules must be installed and configured into an existing Agile PLM for Process

environment.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
27

Class Structure and Interfaces

This section describes the class structure for the Search and Rendering Plugins, and the Filter controls.

The Plugins adhere to the interfaces defined in the CustomPortalInterfaces.dll, under the namespace

Xeno.Prodika.CustomPortalInterfaces.

Filter Plugin Structure

Filtering search result data is done using two filter plugins, which are specified in the Data

Administration screens when configuring a View:

1. An IAdminFilterPlugin is used in the Profile configuration to automatically filter results for
that view.

2. An IFilterPlugin is used during the search and allows the user to specify the filtering during
the search process.

The search filters set up by these Plugins are then used by the Search Plugin (and possibly the Rendering

Plugin) to limit the search and display results to the specified criteria.

IAdminFilterPlugin

The IAdminFilterPlugin is used in the Profile Management screen to set specific search filters for that

profile. This allows multiple profiles to be set with different search filters for the same views.

The IAdminFilterPlugin is typically implemented as a user control, using data entry fields to set each

ISearchFilter.

Admi Filter Pugin

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
28

The SetProfile method is used to pass in the Custom Portal Profile object, which can then be used to

save the Search Filter values to the Profile via the Profiles.SetSearchFilter method. The Search

and/or Rendering Plugins can later retrieve these Admin Search filters directly from the Profile.

The IsReadOnly property is used to determine when to make the control editable.

The Submission property is used to get and set the search filters. The profile’s current SearchFilters can

be accessed by using the Profiles.GetSearchFilter() method and passing the profile that was

passed in via the SetProfile() method.

An example usage could be to set the allowable specification types for the view’s search results. You

could create a user control that lets the admin user select from multiple spec types, and create a

SpecTypesFilter class that implements ISearchFilter. The Key would simply be some text description to

refer to the filter, such as “SPEC_TYPES_FILTER”, and the Operands would be set with the values of the

spec type(s) selected. When the Search Plugin later executes the Search, it could evaluate each result to

determine if the spec type returned matches the entries in the SpecTypesFilter. (Depending on the

search implementation, the search filters might be used as inputs to the search process, or used to

evaluate the results and apply the filtering to the results, or both. The usage of the search filter may

depend on the filter type itself.)

IFilterPlugin

Filter Plugins function much like Admin Filter Plugins. Filter Plugins are used in the Search criteria

section, and contain a list of SearchFilters that allow the user to enter values for the search process.

The IFilterPlugin is typically implemented as a user control, using data entry fields to set each

ISearchFilter. The Search Filters entered are passed in as parameters (along with the

AdminSearchFilters) to the SearchPlugin’s Search() method.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
29

The Submission property is used to get and set the search filters. The search filters are retrieved from

the form’s data entry fields, and are then passed into the Search Plugin.

The Enabled property is used to determine when to make the control editable. Because the Filter

Plugins are used in the search process, this is usually set to true.

The AllowBlindSearch can be used to indicate if the search should be allowed without any search

criteria.

The OnReset and OnSearch methods are present to perform any needed event handling, such as

clearing the search filters.

ISearchFilter

Search filters are passed to the Search operation of the Search Plugin. Each search filter contains a Key,

which identifies the type of search criteria, and a list of Operands, which are the values to search by.

A simple example of using a SearchFilter would be to filter the results based on specification

type. Setting the Key=”SPECTYPE” and the Operands to a list of desired spec types (ex:

ingredient, trade). The SearchPlugin would then use the filters and filter out specs that were not

of the correct type.

Note that the OperandNames and Operator properties are currently unused.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
30

Search Plugin Structure

Portal pages display views using Search Plugins. Each View has an ISearchPlugin that specifies what

search criteria to display, performs a search, and returns the result data.

ISearchPlugin

Criteria and result column metadata is returned by the GetMetadata() method. The Search() method

handles the actual data.

Portal pages query Search Plugins for the information to display. They need to know what type of search

Result to offer the user. The pages also need to know what columns to add to the result grid.

The GetMetadata() method takes the current user as an input parameter and returns criteria and result

column metadata as an ISearchMetaData.

The Search() method takes the current user as an input parameter, a list of ISearchFilter objects to

filter the results, and passes an ISearchStatus object which will be populated with overall result of the

operation and a list of error/warning messages. The result of the Search call is a collection of

ISearchResult objects.

ISearchMetaData

The ISearchMetaData interface provides access to the search result columns and the supported item

key types.

The Columns property lists the result columns returned by the search as an IResultColumn.

IResultColumn

Each column (IResultColumn) has a display label for the column header, and a MaxCharCount property

that sets the max column width.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
31

ISearchStatus

A SearchStatus object is passed to the SearchPlugin’s Search method, and is populated with an overall

result of the search, and a list of error messages. The result can be evaluated to determine how to

handle the error messages. The error messages can be as display information to the user.

The Web Services API operations all return a result code and error messages indicating any issues

encountered when calling the web services. For instance, if the input passed in to the web service is in

an invalid format, an error message will be returned. This can be used in the UI to inform the user about

of the error.

The error messages are returned as an array of ISearchErrorMessage objects.

ISearchErrorMessage

Each ISearchErrorMessage object contains a description and a message code.

ISearchResult

The Search Plugin returns a collection of ISearchResult objects. The SearchResult contains a Key

property, which is passed to the Rendering Plugin. This can represent a Spec Number, cross reference,

etc, which the Rendering Plugin will then use to retrieve additional information for display purposes.

The indexer returns the value of the column to display, where the index represents the column index.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
32

The IItemKey interface is a flag interface, with no implementation requirements.

Rendering Plugin Structure

Rendering data involves displaying the desired output results once the search results are displayed and a

result item is selected. The Rendering Plugin configured in the Data Admin screen for a View is called to

display the result, either in the same window or in a pop-up.

For instance, the RenderingPlugin could receive a specification number, call one or more web

services to retrieve certain specification information, such as the list of Allergens, create an XML

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
33

version of the data, and send it to Oracle BI Publisher for PDF rendering and printing.

Alternatively, the renderer could use the data from the web services to create an HTML

representation of the data.

IRenderingPlugin

The IRenderingPlugin interface contains a Render method, which is responsible for display the final

result item, and a GetMetadata() method which returns the support items for that rendered.

The Render() method takes the key passed in from the Search Results selection, the Http Response,

and the Search filters. It is responsible for rendering the final output of the View to a stream. The

HttpResponse object must have the ContentType property set to the desired MIME Type, and the file

extension for the format it is rendering.

IRenderingMetaData

Detailed examples of using the various interfaces described above will be demonstrated in the

Reference Implementation section below.

CustomPortal Control

The CustomPortal.ascx class (user control) is the controller for the entire search process. It delegates to

the Header, Navbar, Search Panel, and Results Panel controls to render the page. It reads Portal

configuration details from the database for the named Portal, loads the Filter Plugin control and the

Search and Rendering Plugins.

Any ASPX file may serve as a portal page by including a CustomerPortal control, and passing it the portal

name, as such:

<form id="form1" runat="server">
 <wc:Portal Portal="Reference Portal" runat="server" >
 <CustomHeaderContent>
 <wc:ApplicationHeader runat="server" ID="ctlApplicationHeader" />
 </CustomHeaderContent>
 <CustomNavbarContent>

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
34

 Some custom nav bar content ...
 </CustomNavbarContent>
 <CustomContent>
 Custom content ...
 </CustomContent>
 </wc:Portal>
</form>

Plugin Data Access Approaches

Implementing the Search, Filtering, and Rendering capabilities will require a way to access the Agile

PLM4P data. This may be achieved use existing web services, direct database queries, using PLM4P

internal data objects and services, or some combination of all three. Please review the Accessing Data

section above for an overview of these approaches.

In this section, we will discuss these approaches in more technical detail.

Using Web Services

The Agile PLM for Process Web Services API provides over 40 web services that can be used for various

data access needs. Incorporating web service calls into the search and rendering process is fairly simple,

but requires some analysis of how to orchestrate the various web service calls.

The web service calls may be used in multiple steps of the search process, namely as part of the search,

and then once a result item is selected, other web services may be called as part of the rendering

process.

Visual Studio .NET version 8 provides simple ways to create web service references. Using the Add

Service Reference feature will create the service reference, and also configure the service endpoint

information in the web.config or app.config of the project.

Calling Multiple Web Services

The results of many of the existing web service calls can (in part) be used as inputs to other web service

calls. Chaining the web service calls in this manner allows for the easy retrieval of various data sets to

compose a desired output.

For example, using the GetSpecForCriteria web service (to search for Approved Ingredient

Specs that have been modified in the last month, for instance) will return a list of specification

numbers (and a list of cross references). The spec numbers can then be used as input

parameters when calling the GetSpecSummary web service to retrieve the spec names for those

specifications.

Note that in Visual Studio .NET, creating a web service client for each service contract will set up a

unique namespace for each service. The common data contracts in these services therefore are not

equivalent objects. To better enable cross client coding, one could modify the classes by adding a shared

interface and program for that interface.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
35

For instance, the tMessage class is returned in a list as part of every web service call. It contains

an error message code and description for any warnings/errors that occurred in the web service

calls. Updating each tMessage class to add the ISearchErrorMessage interface will allow the

use and display of these errors in the Search UI.

Web Service Parameters as Search Criteria

Many of the web service calls that retrieve specification data use input criteria that impact which

specifications are returned. For instance, the AllowApprovedSpecOnly flag, passed into many calls that

retrieve specs, dictates whether the specification(s) returned must be in an Approved workflow status

or not. If this behavior should be user selected during the search process, then this flag could be a

Search Filter that users can select, and its value would then be passed into the web service call.

Web Service User Authentication

The data returned from each web service call may depend on the calling user’s security privileges:

Specifications that the user does not have Read permission, or Business Unit visibility to, will not be

returned; Object Level Security rules are enforced for the calling user for Custom Sections and Extended

Attributes; etc.

There are two ways that the PLM4P Web Services authenticate users for web service calls:

1. Using one declared user for all the web service calls. This requires the username be entered in the

environmentvariables.config when setting up the Web Services. The web service client will therefore

not pass in any user information.

2. Passing in the username and password for each and every web service call. This requires the web

service client to create and pass in a UsernameToken.

Details of the configuration of the Web Service API can be found in the Agile Product Lifecycle for

Management for Process Web Services Guide.

The approach used by the web service clients must adhere to the way authentication is configured for

the Web Services API.

Using Direct Database Queries

Required data that is not available via the current Web Services may be retrieved using custom database

queries. Read access to the database and knowledge of the database structure will be required. The

Database Schema documentation available in the Feature Pack provides a thorough view of the many

database tables and their relationships to other tables. It also provides example SQL code to assist query

development.

The following is an example of a direct database query:

public static IList<INutrientProfile> QueryForTradeSpecNutrientProfiles(string specNum, string
issueNum)
{
 List<INutrientProfile> nutrientProfiles = new List<INutrientProfile>();
 IXDataManager manager = AppPlatformHelper.DataManager;

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
36

 string sql =
 @"SELECT distinct bi.pkid, bi.* FROM gsmNutrientProfile bi
 inner join gsmSpecNutrientProfileJoin nj on nj.fkNutrientID = bi.pkid
 inner join gsmBaseTradeSpec ts on ts.pkid = nj.fkSpecID
 inner join specsummary ss on ss.SpecID = ts.pkid
 where ss.specNum = '" +
 specNum + "' and ss.IssueNum = '" + issueNum + "'";
 using (IDataReader r = manager.newQuery().execute(sql))
 {
 while (r.Read())
 {
 INutrientProfile nutrientProfile = (INutrientProfile)
manager.objectFromID(r.GetString(0), r);
 nutrientProfiles.Add(nutrientProfile);
 }
 }

 return nutrientProfiles;
}

However, using direct database queries bypasses all security logic for the user, unless that logic is then

implemented in the query.

See the Reference Implementation code for detailed examples of using direct database queries.

Configuring Branding

User interface branding changes can be made by modifying the default CSS stylesheet

TestCustomPortalControl.css, or by creating a new stylesheet and changing the reference to it from each

portal page.

The CSS classes include:

 cssxCustomerPortalHeader: assigned to the div element enclosing the header. The header
contains an h1 for the title.

 cssxCustomerPortalNavBar: assigned to the navbar element, which is an ul element. Each view
is an li.

 cssxCustomerPortalContent: assigned to the div element enclosing the search criteria and
search results. The view name is an h2, the section titles are h3 elements. Other HTML elements
include links, buttons, selects, and text controls.

 cssxBaseGrid: assigned to the grid containing the search results.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
37

Chapter 6—Reference Implementation
DISCLAIMER:

The reference implementation provided in the Feature Pack, and described herein, is for demonstration

purposes only and is not for use in production systems.

Overview

The existing reference implementation is called MockCustomPortalPlugins and located in the

ReferenceImplementations folder of the Feature Pack.

This reference implementation accomplishes the scenario described the Business Requirement section

below.

Business Requirement

The reference implementation described herein attempts to implement the following scenario:

1. Allow users to search for Trade specifications by selecting one of the following criteria:
o Spec name, or
o Spec number, issue number, or
o Cross reference

2. Allow admin users to configure whether the specs returned should be restricted to Approved
status only.

3. Search results should include:
o SpecID (spec number-issue number)
o Spec Name
o Cross References
o Workflow status

4. Selecting a Trade spec should display a PDF in a new window. The following data should be
returned in the PDF:

o Spec Summary information
o Brand Information
o The Bill Of Materials information for the related ingredient spec (and formulation

context)
o The trade spec’s nutrient profile’s Custom Section data for a specific custom section

See the Code Walkthrough section for implementation details.

Contents

The reference implementation contains the following components:

 A portal page that accesses a portal named “Reference Portal 2” that should be configured in
the PLM4P Data Admin screens for Custom Portal, as described in the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
38

Chapter 3—Configuring Portal Pages and Views section.
The page may be accessed as follows:
http://<servername>/customPortal/MockCustomPortalPlugins/portals/SamplePortal.aspx

 Plugins to fulfill the Business Requirements
o A Search Plugin,
o An Admin Filter Plugin
o A Filter Plugin
o A Rendering Plugin

 Various user controls (.ascx files) used to render the data
 Web Service References – web service clients that connect to the Web Service API

o The web service endpoints are configured in the web.config, and must be modified.
Please see the Installation section below

Installation/Set Up

Be sure to have installed the CustomPortal web application and the Web Services API prior to installing

the reference implementation. See the

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
39

Chapter 4—Installation section above from details.

To set up the MockCustomPortalPlugins reference implementation, you must do the following:

1. Install the MockCustomPortalPlugins library – see the Installation section below.
2. Configure the Portal and a View in the Agile PLM4P Data Admin screens – see the Data Setup

section below.
3. Configure a new Custom Portal Profile for your user – see the Custom Portal Profile Setup

section below.
4. Add a custom section with 3 columns that will be used in the example – see the Custom Section

Setup section below.
5. Update the MockCustomPortalPlugins\web.config file to specify the web service endpoints for

the web services used in the reference implementation.

Installation

The reference implementation code will also need to be installed as follows:

1. Follow the instruction in the Custom Portal Web Application Setup section.
2. Place your custom web application or library (in this case, MockCustomPortalPlugins) in the

<PLM4P directory>\Web directory. (other locations may be applicable).
3. Copy the .dll of your custom library/web application (in this case, MockCustomPortalPlugins .dll)

into the CustomPortal\bin directory.
4. Create a new virtual directory within the CustomPortal virtual directory that points to your

custom web application (in this case, name it MockCustomPortalPlugins).
5. Restart IIS.

Data Setup

You must set up the following configuration in the Data Admin screens:

1. In the Custom Portal screen, add a new Portal as follows:
 Name=”Reference Portal 2”
 Cache Timeout =any value, ex: 30 (minutes).
 Status=Active
Save your changes.

2. In the Custom Portal Views screen, add a new View as follows:
 Name=”Reference View 2”
 Search Plugin =

”Class:MockCustomPortalPlugins.ProdikaApiPlugins.SpecSearchPlugin,MockCusto
mPortalPlugins”

 Rendering Plugin =
“Class:MockCustomPortalPlugins.ProdikaApiPlugins.SpecSummaryRenderingPlugin
Factory,MockCustomPortalPlugins”

 Filter Controls =
“/MockCustomPortalPlugins/FilterPlugins/SpecSearchFilterControl.ascx;/MockC
ustomPortalPlugins/AdminPlugins/DefaultAdminFilterPlugin.ascx”
Note that the filter controls value includes two (2) Filter controls separated by a semicolon.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
40

The first value is the filter control used during the search, and the second value is the
AdminFilter control used in the Profile Management screen.

 Open New Window = checked
 Status=Active
Save your changes

3. Perform a cache flush event, or restart IIS.

Custom Portal Profile Setup

You will need to set up a Portal Profile for your new Portal View

1. Go to the Custom Portal Administration page:
http://<servername>/customPortal/Admin/PortalAdmin.aspx

2. Select your new portal (Reference Portal 2).
3. Add a new profile, using the New Profile button.
4. Set up the profile information by selecting the View named Reference View 2. This will load the

Filters section to allow you to configure the Admin Filters. This will only work if you have set up
your Custom Portal and the MockCustomPortalPlugins correctly.

a. Select a valid user that should have access to this custom portal.
b. Be sure to select trade specification for this scenario.

5. Save & Close the profile.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
41

6. You should now be able to log in to the Custom Portal as the configured user and try the
implementation:
http://<servername>/customPortal/MockCustomPortalPlugins/portals/SamplePortal.aspx

Custom Section Setup

The reference implementation loads a specific custom section for a trade spec’s nutrient profile. In this

implementation, we simply create a new custom section that contains three columns, not including the

row name column.

We use the CustomSectionNumber of 1000381, so you will either need to update your custom Section

number through a database script to this number, or change the SpecSummaryRenderingPlugin.cs

class, by modifying the GetCustomSectionsForNutrientProfile method and altering the custom

section number there. You will need to rebuild/recompile the MockCustomPortalPlugins project if you

do this.

Make sure this custom section is available for Nutrient Profiles, and add this custom section to the

nutrient profile of the trade specification(s) you are testing.

Web Services Setup

The reference implementation calls several web services contained in three separate service contracts.

These service contracts are accessible via three service endpoints, which are specified in the

MockCustomPortalPlugins\web.config file.

The endpoint server name values should be modified to the server name of the server hosting the Web

Services API. Various other settings (such as the timeouts, etc.) are pre-configured, but can be changed

as needed or removed to use the default WCF values.

Verify Results

At this point, you should be able to use the reference implementation to search for trade specs and view

their results. Search for the trade specification that contains a nutrient profile with the custom section

you created, using one of the search criteria. Select a search result entry and verify that a PDF is

rendered with the appropriate data.

Code Walkthrough

To fulfill the above Business Requirement requirements, we will take the following approaches:

Creating the FilterPlugin

To allow the search as indicated in the Business Requirement’s requirement 1 above, we must create a

FilterPlugin that contains three search filters (ISearchFilter), one for each criterion. The FilterPlugin

will be a new user control that will allow users to enter the search values.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
42

SpecSearchFilterControl.ascx:

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="SpecSearchFilterControl.ascx.cs"
Inherits="MockCustomPortalPlugins.FilterPlugins.SpecSearchFilterControl" %>
<table>
 <tr>
 <td><asp:Label ID="lblSpecName" runat="server" />:</td>
 <td><asp:TextBox id="txtSpecName" TextMode="SingleLine" Rows="1" style=" width:150px;
vertical-align:top; overflow:hidden; " runat="server" /> </td>
 <td></td>
 </tr>
 <tr><td colspan = "3"> Or</td></tr>
 <tr>
 <td><asp:Label ID="lblSpecNumber" runat="server" />:</td>
 <td><asp:TextBox id="txtSpecNumber" TextMode="SingleLine" Rows="1" MaxLength="8" style="
width:150px; vertical-align:top; overflow:hidden; " runat="server" /> </td>
 <td></td>
 </tr>
 <tr>
 <td><asp:Label ID="lblSpecIssueNumber" runat="server" />:</td>
 <td><asp:TextBox id="txtSpecIssueNumber" TextMode="SingleLine" Rows="1" MaxLength="3"
style=" width:150px; vertical-align:top; overflow:hidden; " runat="server" /> </td>
 <td></td>
 </tr>
 //… code removed for brevity

The code-behind uses the name of the input fields as the key of the ISearchFilter classes, and the

value(s) of the inputs as the Operand(s). For example, for the Spec#-Issue# search, the spec# value is the

ISearchFilter’s Operand[0] and the issue# value is the Operand[1].

SpecSearchFilterControl.ascx.cs:

public partial class SpecSearchFilterControl : System.Web.UI.UserControl, IFilterPlugin
{
 //… code removed for brevity
 public IEnumerable<ISearchFilter> Submission
 {
 get { return GetSubmittedCriteria(); }
 set { }
 }

 private IEnumerable<ISearchFilter> GetSubmittedCriteria()
 {
 List<ISearchFilter> filters = new List<ISearchFilter>();
 ISearchFilter nameFilter = GetSpecRelatedfilter(lblSpecName.Text,
txtSpecName.Text, null);
 if (nameFilter != null)

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
43

 filters.Add(nameFilter);
 ISearchFilter specNumFilter = GetSpecRelatedfilter(lblSpecNumber.Text,
txtSpecNumber.Text, txtSpecIssueNumber.Text);
 if (specNumFilter != null)
 filters.Add(specNumFilter);
 ISearchFilter crossRefFilter = GetSpecRelatedfilter(lblCrossReference.Text,
txtSystemID.Text, txtEquivalentValue.Text);
 if (crossRefFilter != null)
 filters.Add(crossRefFilter);
 if (filters.Count > 1)
 throw new ArgumentException("Only one of the three criteria (Spec Name,
Spec #, or Cross Reference) allowed to be submitted.");
 foreach (ISearchFilter filter in filters)
 {
 yield return filter;
 }
 }

 private ISearchFilter GetSpecRelatedfilter(string key, string Oprand1, string Oprand2)
 {
 if (StringHelper.IsStringEmpty(Oprand1) && StringHelper.IsStringEmpty(Oprand1))
 return null;
 SearchFilter c = new SearchFilter();
 c.Key = key;
 List<string> oprands = new List<string>();
 oprands.Add(Oprand1);
 if (!StringHelper.IsStringEmpty(Oprand2))
 oprands.Add(Oprand2);
 c.Operands = oprands;
 return c;
 }
//… code removed for brevity

Note that the control enforces a limit of searching on one criterion at a time, but this could be changed

with some changes to how the search process works in Step 3.

Creating the AdminFilterPlugin

To allow the admin search filtering in the Business Requirement’s requirement 2 above, we will create

an AdminFilterPlugin that contains two search filters – one that sets the Spec Type and the second that

sets the Approved Only flag. [Note: we are making the spec type search filter editable even though our

Business Requirement restricts the type to Trade Specs, so that we could reuse this Plugin for some

other View.]

These search filters (combined with the Filter Plugin’s user entered search filters) will be used as input

criteria to two web services that will be used for the search:

1. The GetSpecForCriteria web service can search for specs using criteria, such as spec type, name,
and cross reference, among others. However, it does not contain a searchable criterion for the
spec number, since the spec number is the actual result. We therefore will use the
GetSpecSummary web service.

2. The GetSpecSummary web service returns spec summary information for a given list of spec
numbers. We will use this for searching by spec numbers.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
44

The AdminFilterPlugin will also be a user control that will allow admin users to select from a list of spec

types and a checkbox for the approved only value. It is accessible from the Profile management screen.

DefaultAdminFilterPlugin.ascx:

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="DefaultAdminFilterPlugin.ascx.cs"
 Inherits="MockCustomPortalPlugins.AdminPlugins.DefaultAdminFilterPlugin" %>
<%@ Register TagPrefix="xwc" Namespace="Xeno.Web.UI.Controls" Assembly="XenoWebControls" %>
<table class="cssxBaseList">
 <tr>
 <th><%= Translations["lblApprovedSepc"]%>:</th>
 <td>
 <xwc:BoundCheckBox id="chkApprovedSpec"
 BoundProperty="AllowOnlyApprovedSpec"
 runat="server"
 checkedImageURL="../images/checked.gif"
 uncheckedImageURL="../images/unchecked.gif"
 IsReadOnly='<%# IsReadOnly %>' />
 </td>
 <tr>
 <th><%= Translations["lblSpecType"]%>:</th>
 <td>
 <xwc:BoundDropDownList
 ID="ddSpecTypes"
 BoundProperty="SpecType"
 BoundItemsProperty="SpecTypes"
 BoundItemsValueProperty="Key"
 BoundItemsTextProperty="Value"
 DefaultValue=""
 IsReadOnly='<%# IsReadOnly %>'
 RunAt="server" />
 </td>
 </tr>
</table>

The code-behind retrieves any saved values for the filters from the current Profile, and must save any

changes back to the profile.

The SpecType SearchFilter uses the SearchStrategyFactory.SPEC_TYPE value for the Key and the 4-digit

object type (the key of the specTypes drop down) as the Operand[0] value.

The AllowApprovedSpecOnly SearchFilter uses the SearchStrategyFactory.APPROVED_SPEC_ONLY value

for the Key and the checked status of the checkbox for the Operand[0] value.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
45

DefaultAdminFilterPlugin.ascx.cs:

//… code removed for brevity
/// <summary>
/// push the updated filter data to the profile
/// </summary>
private void PushData()
{
 Profiles.SetSearchFilter(m_profile, GetFilters());
}

/// <summary>
/// get the current filters
/// </summary>
/// <returns></returns>
private IEnumerable<ISearchFilter> GetFilters()
{
 IList<ISearchFilter> list = new List<ISearchFilter>();
 if (SpecTypeFilter != null)
 list.Add(SpecTypeFilter);
 if (AllowApprovedSpecOnlyFilter != null)
 list.Add(AllowApprovedSpecOnlyFilter);
 foreach (ISearchFilter filter in list)
 {
 yield return filter;
 }
}

public ISearchFilter AllowApprovedSpecOnlyFilter
{
 get
 {
 if (m_allowApprovedSpecOnlyFilter ==null)
 m_allowApprovedSpecOnlyFilter =
GetProfileFilter(SearchStrategyFactory.APPROVED_SPEC_ONLY);
 return m_allowApprovedSpecOnlyFilter;
 }
 set { m_allowApprovedSpecOnlyFilter = value; }
}

public ISearchFilter SpecTypeFilter
{
 get
 {
 if (m_specTypeFilter == null)
 m_specTypeFilter = GetProfileFilter(SearchStrategyFactory.SPEC_TYPE);
 return m_specTypeFilter;
 }
 set { m_specTypeFilter = value; }
}

private ISearchFilter GetProfileFilter(string type)
{
 foreach (ISearchFilter filter in Submission)
 {
 if (filter != null && filter.Key.Equals(type))
 return filter;
 }
 return null;
}

public IEnumerable<ISearchFilter> Submission
{
 get
 {
 if (m_submission == null)
 {
 m_submission = Profiles.GetSearchFilter(m_profile);

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
46

 }
 return m_submission;
 }
 set { m_submission = value; }
}

public bool AllowOnlyApprovedSpec
{
 get
 {
 if (AllowApprovedSpecOnlyFilter != null)
 return bool.Parse(AllowApprovedSpecOnlyFilter.Operands[0]);
 else
 return false;
 }
 set
 {
 if (AllowApprovedSpecOnlyFilter != null)
 AllowApprovedSpecOnlyFilter.Operands = GetOperands(value.ToString());
 else
 {
 AllowApprovedSpecOnlyFilter = new SearchFilter();
 AllowApprovedSpecOnlyFilter.Key =
SearchStrategyFactory.APPROVED_SPEC_ONLY;
 AllowApprovedSpecOnlyFilter.Operands = GetOperands(value.ToString());
 }
 PushData();
 }
}
//… code removed for brevity
public void SetProfile(object profile)
{
 m_profile = (ICPProfile) profile;
}
…

The SetProfile method is called by the framework when loading the Profile Management screen. It is

used to pass the profile to the admin filter control, so that the search filters can be retrieved and saved.

The Submission property’s get accessor retrieves the search filters from the profile.

Searching and Displaying the Results

The following Web Service clients/references are set up in the reference implementation project, and

are available using the WebServiceTools class:

 GeneralSpecServices (used for GetSpecSummary and GetSpecNumbersForCriteria)
 CustomDataServices (used for the GetSpecCustomSections)
 BillOfMaterialsServices (used for GetOutputBOM)

Important: These web service references must be altered slightly for this reference implementation:

tResponseHeader classes must implement the IResponseHeader interface and the tMessage classes

must implement the ISearchErrorMessage interface.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
47

Searching

We will use the GetSpecNumbersForCriteria and the GetSpecSummary web service calls to perform

the search. The results of GetSpecNumbersForCriteria web service call will be used to retrieve the

spec name, cross references, and status to fulfill the Business Requirement’s requirement 3 above from

the GetSpecSummary web service.

The SpecSearchPlugin delegates the Search process to a Search Strategy class, which uses the

SearchStrategyFactory to create a Search Strategy based on the ISearchFilter list being passed in. For

example, if the search filter used is the spec number, it will create a GeneralSpecSearchStrategy,

while if the search filter is the spec name, it will create a SpecTypeSearchStrategy.

The GeneralSpecSearchStrategy’s search process uses the web service transfer objects for the input,

and converts the results into individual SpecSummaryResult objects used for display.

internal class GeneralSpecSearchStrategy : ISearchStrategy
 {

… code removed for brevity …

protected ICollection<ISearchResult>
SearchSpecSummaryByCriteria(MockCustomPortalPlugins.GeneralSpecServices.tSpecIdentifierCriterion[]
list, out ISearchStatus searchResult)
 {
 //setup input params for web service call
 MockCustomPortalPlugins.GeneralSpecServices.tSpecInputCriteria c = new
MockCustomPortalPlugins.GeneralSpecServices.tSpecInputCriteria();
 c.AllowOnlyApprovedSpec = _allowOnlyApprovedSpec;
 c.specIdentifierCriterion = list;

 //setup ouput params for web service call
 MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummaryWrapper[] summaries =
new MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummaryWrapper[] { };
 MockCustomPortalPlugins.GeneralSpecServices.tResponseHeader response =
WebServiceTools.GetgeneralSpecServicesClient().GetSpecSummary(c, out summaries);

 if (summaries == null)
 {
 summaries = new
MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummaryWrapper[0];
 }

 searchResult = DataTools.GetSearchStatus(response);

 return
Array.ConvertAll<MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummaryWrapper,
SpecSummaryResult>(
 summaries,
 delegate(MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummaryWrapper
input)
 {
 SpecSummaryResult output = new SpecSummaryResult();
 if(!StringHelper.IsStringEmpty(SpecType)&& input.SpecSummary.SpecType !=
int.Parse(SpecType))
 {
 return null;
 }
 output.SummaryWrapper = input;
 return output;
 }
);
 }

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
48

The web service’s tResponseHeader contains the overall result of the operation and a list of messages.

The DataTools.GetSearchStatus() method maps this response to the ISearchStatus output

parameter searchResult. Note that this method will only work if you have modified the web service

client’s tResponseHeader to implement the IResponseHeader interface and the tMessage to

implement the ISearchErrorMessage interface.

The return code converts the tSpecificationSummaryWrapper array to a SpecSummaryResult array by

passing in a delegate method to the Array.ConvertAll() method.

Calls to the SpecTypeSearchStrategy class perform a spec search using the spec name. This class extends

the GeneralSearchStrategy class, uses the GetSpecNumbersForCriteria, then passes the result to the

GeneralSearchStrategy.

Displaying the Results

Our SearchPlugin defines the columns that will be used in the results through the GetMetadata

method.

public sealed class SpecSearchPlugin : IFactory<ISearchPlugin>, ISearchPlugin
{

 /// ... code removed for brevity ...

 public ISearchMetadata GetMetadata(IPlatformUserDO user)
 {
 return new MyMetadata();
 }

 /// <summary>
 /// SearchResult's Meta data: column and key type
 /// </summary>
 private sealed class MyMetadata : ISearchMetadata
 {

 public ICollection<IResultColumn> Columns
 {
 get { return SpecSummaryResult.GetColumns(); }
 }

 public ICollection<Type> SupportedItemKeyTypes
 {
 get { return new Type[] { typeof(SpecSummaryResult) }; }
 }
 }

}

The SpecSummaryResult class will provide access to the result columns and the values for each row. It

implements the ISearchResult interface, which provides a Key property (which will pass the ItemKey

to the RenderingPlugin) and an indexer (which provides access to the column values).

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
49

The SummaryWrapper property contains the actual results of the GetSpecSummary web service call.

Passing the SpecSummaryResult object (as the IItemKey) to the RenderingPlugin allows the

RenderingPlugin to access that data directly for rendering or for use in other web service calls.

SpecSummaryResult also contains internal classes for each column: each implements the

IResultColumn interface, providing the Label property for the column name, and the MaxCharCount for

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
50

the length. Additionally, each internal ResultColumn class implements a GetValue() method from a

new interface called IValueExtractor that provides the value to display for each result.

Rendering the Result Data

Rendering the final output data indicated in the Business Requirement’s requirement 4 involves several

steps. To retrieve the data required, we will be calling a combination of web services and direct

database queries.

The SpecSummaryRenderingPluginFactory class is used to render the required data to XSL-FO and then

renders the FO into PDF.

The Render method takes an IItemKey as the object key, which is passed in as a SpecSummaryResult

from the search results as discussed above. The Render also takes the HttpResponse and the list of

search filters, which can then be used to filter out any other data retrieved.

public class SpecSummaryRenderingPluginFactory : IFactory<IRenderingPlugin>, IRenderingPlugin,
IRenderingMetadata
{
 ///...code removed for brevity...
 public void Render(IItemKey key, HttpResponse response, IEnumerable<ISearchFilter>
filters)
 {
 SpecSummaryResult summary = (SpecSummaryResult) key;
 MemoryStream foBuffer = new MemoryStream();
 RenderFO(foBuffer, summary.SummaryWrapper.SpecSummary, filters);

 ConvertFoToPdf(foBuffer, response.OutputStream);
 response.ContentType = MimeType;
 }

 public ICollection<Type> SupportedItemKeyTypes
 {
 get { return new Type[] { typeof(SpecSummaryResult) }; }
 }
...

The RenderFO method creates a new Container instance, which is a subclass of Page.

 private static void RenderFO(Stream buffer,
MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummary summary,
IEnumerable<ISearchFilter> filters)
 {
 HtmlTextWriter writer = new HtmlTextWriter(new StreamWriter(buffer));
 StringBuilder sb = new StringBuilder();
 Page container = new Container(summary, filters);
 container.DataBind();
 container.RenderControl(writer);
 writer.Flush();
 }

It is the Container class that then makes several other data access calls to retrieve all of the required

data, adds the SummaryFO.ascx user control, and sets its properties with the resulting data.

private sealed class Container : Page

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
51

{
 public Container(MockCustomPortalPlugins.GeneralSpecServices.tSpecificationSummary
summary, IEnumerable<ISearchFilter> filters)
 {
 bool allowOnlyApprovedSpec = GetAllowOnlyApprovedSpecFlag(filters);

 //set Spec summary info
 Control summaryFOControl = LoadControl(
"~/MockCustomPortalPlugins/ProdikaApiPlugins/SummaryFO.ascx");
 ReflectionHelper.SetPropObject(summaryFOControl, "Summary", summary);

 ICollection<ISearchResult> billOfMaterialsResults =
GetBillOfMaterialsResults(summary, allowOnlyApprovedSpec);
 if (billOfMaterialsResults != null)
 ReflectionHelper.SetPropObject(summaryFOControl, "BillOfMaterials",
billOfMaterialsResults);

 //find the brand information for trade spec
 IList<IBrandInformation> brands =
DataTools.QueryForTradeSpecBrands(summary.specificationIdentifier.SpecificationNumber.SpecNumber,
summary.specificationIdentifier.SpecificationNumber.IssueNumber);
 if (brands != null && brands.Count > 0)
 ReflectionHelper.SetPropObject(summaryFOControl, "BrandInfo", brands[0]);

 ICollection<ISearchResult> customSections =
GetCustomSectionsForNutrientProfile(summary, allowOnlyApprovedSpec);
 if (customSections != null && customSections.Count > 0)
 ReflectionHelper.SetPropObject(summaryFOControl, "CustomSections",
customSections);

 Controls.Add(summaryFOControl);
 }

The GetBillOfMaterialsResults method finds the Trade Spec’s ingredient specification and the

formulation that created it using a direct database query, and then calls the GetOutputBOM web service

to get the Bill of Materials information. Note that the database query could actually be replaced by one

of the operations in the SpecRelationshipServices web services.

The Trade Spec’s brand information is retrieved via a direct database query.

Then, a specific custom section is retrieved for the Trade spec’s nutrient profile.

This reference implementation uses the custom section with customsectionnumber 1000381,

and the results that are later rendered are expecting that information, including the specific

columns. See the Custom Section Setup section for details.

The nutrient profile is retrieved through a direct database query (it, too, could also be replaced by one

of the operations in the SpecRelationshipServices web services). The GetSpecCustomSection web service

is then called for that nutrient profile and custom section number.

Note that error handling from the web services is not handled here, but ideally, any errors that result

from the web services should be bubbled up to the user. For web service error handling examples, see

the Search Plugin and how it returns messages to the user.

The SummaryFO.ascx control includes four other user controls that contain FO tags to render the

required data as FO.

Agile Product Lifecycle Management for Process – Custom Portal Implementation

© 2015 Oracle Corporation
52

Once the FO rendering is complete, a PDF can be generated from the FO results. In this reference

implementation, we use an internal PDF renderer, called Apoc, to generate the PDF.

private static void ConvertFoToPdf(Stream foInput, Stream pdfOutput)
{
 foInput.Seek(0, SeekOrigin.Begin);
 ApocDriver driver = ApocDriver.Make();
 driver.Options = new PdfRendererOptions();
 driver.Render(foInput, pdfOutput);
}

However, other tools, such as Oracle’s BI Publisher, could easily be used to render the PDF instead.

At this point, the PDF should be rendering to the user, and the Business Requirement is fulfilled.

Further coding details can be found in the MockCustomPortalPlugins project.

	Oracle® Agile Product Lifecycle Management for Process Custom Portal Implementation Guide
	Copyrights and Trademarks
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Access to Oracle Support
	Software Availability

	Chapter 1—Introduction
	Chapter 2—Overview
	Component Overview
	Data Administration Screens
	Portal Management Screens
	Custom Portal Web Application
	Custom Plugins and Filter Controls
	Portal Interfaces

	Technical Overview
	Search Process Overview

	Solution Implementation Overview
	Accessing Data
	Web Services API
	Database Queries
	Internal Data Objects

	Searching Data
	Filtering Data
	Rendering Data

	Chapter 3—Configuring Portal Pages and Views
	Data Administration Screens
	Custom Portals Screen
	Custom Portal Views Screen

	SCRM Facility Screen
	Portal Management Screens
	Searching for a Profile
	Creating/Editing a Profile

	Search Screen

	Chapter 4—Installation
	Custom Portal Web Application Setup
	Typical Custom Implementation Setup

	Chapter 5—Technical Implementation
	Architecture Overview
	Class Structure and Interfaces
	Filter Plugin Structure
	IAdminFilterPlugin
	IFilterPlugin
	ISearchFilter

	Search Plugin Structure
	ISearchPlugin
	ISearchMetaData
	IResultColumn
	ISearchStatus
	ISearchErrorMessage
	ISearchResult

	Rendering Plugin Structure
	IRenderingPlugin
	IRenderingMetaData

	CustomPortal Control
	Plugin Data Access Approaches
	Using Web Services
	Calling Multiple Web Services
	Web Service Parameters as Search Criteria
	Web Service User Authentication

	Using Direct Database Queries

	Configuring Branding

	Chapter 6—Reference Implementation
	Overview
	Business Requirement
	Contents

	Installation/Set Up
	Installation
	Data Setup
	Custom Portal Profile Setup
	Custom Section Setup
	Web Services Setup
	Verify Results

	Code Walkthrough
	Creating the FilterPlugin
	Creating the AdminFilterPlugin
	Searching and Displaying the Results
	Searching
	Displaying the Results

	Rendering the Result Data

