

Oracle® Agile Product Lifecycle Management for Process
Extended Attribute Calculation Guide

Feature Pack 4.1
E64698-01

July 2015

Copyrights and Trademarks
Agile Product Lifecycle Management for Process

Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
3

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
4

Contents

PREFACE .. 6
Audience ... 6

Variability of Installations ... 6

Documentation Accessibility ... 6

Access to Oracle Support .. 6

Software Availability ... 6

CHAPTER 1—OVERVIEW .. 7

CHAPTER 2—CALCULATION SCRIPTING ... 8
Script Engines .. 8

Configuration .. 8

Script Results ... 9

JScript Syntax Changes .. 10

Variable Assignment ... 10

Comparison Operators .. 10

Other JScript Syntax .. 11

Available PLM for Process Functions and Properties ... 11

Calculation Warnings and Errors .. 12

Calculation Dependencies ... 13

Processing Results Returned by an Enumerator ... 13

CHAPTER 3—AVAILABLE PROPERTIES AND FUNCTIONS ..14
Variables of Current Business Object .. 14

Nutrient Functions .. 14

Tare Weight Functions .. 15

Tare Weight Properties ... 15

Compliance Functions ... 15

Extended Attribute Functions ... 16

Distinct Extended Attribute Value Functions .. 16

Distinct Extended Attribute Boolean Functions .. 16

Custom Section Functions ... 17

Custom Section Cell Properties ... 17

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
5

Custom Section Cell Retrieval Functions... 17

Cell Object Properties ... 19

Cell Object Value Functions .. 20

CHAPTER 4—CUSTOM CALCULATION CLASSES ...22
JScript Custom Classes (aka Dynamic Script Methods) ... 22

Class Structure .. 22

Example ... 24

Configuration .. 25

Deployment... 25

Determining Calculation Location ... 25

Performance Considerations .. 25

Creating Custom Helper Methods .. 26

APPENDIX A—IN FOODS IDS AND UOM ISO CODES ..28
InFoods IDs .. 28

Unit of Measure ISO Codes ... 29

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
6

Preface

Audience
This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle
Management for Process. Information about using Oracle Agile PLM for Process resides in application-
specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle
Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations
Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not
match your installation. The user interface of Agile PLM for Process applications and the features
included can vary greatly depending on such variables as:

 Which applications your organization has purchased and installed
 Configuration settings that may turn features off or on
 Customization specific to your organization
 Security settings as they apply to the system and your user account

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core
software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
7

Chapter 1—Overview
Calculated Extended Attributes allow you to create a read-only extended attribute (EA) that displays
results of a calculation to the user. The calculation logic, specified in the Data Admin user interface for
Extended Attributes, is written as a script which can access data from other extended attributes, custom
sections, nutrients, and additional data of the owning business object (e.g., specifications). Additionally,
the script can execute calls to custom classes to return additional data to the script.

Calculation scripts are written in a scripting language (such as JavaScript) and executed server-side by a
script interpreter engine.

This document details the process of creating calculation scripts, accessing data from various available
sources, and leveraging custom classes for the calculation.

Reference implementation code is also available in the Extensibility Pack release that provides
guidelines and example implementations of creating custom calculation class extension points.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
8

Chapter 2—Calculation Scripting
All Calculated EAs (Calculated Numeric, Calculated Text, and Calculated Boolean) must implement a
calculation using JScript or JavaScript. However, most calculations require data available on the business
object (specification, sourcing approval, etc.). Therefore, PLM for Process allows for ways to extend the
scripting feature set by exposing many predefined PLM for Process functions and properties that give
access to specific data. Additionally, scripts can execute custom classes and get a return value to aid in
the calculation.

Script Engines
There are two script engines available for calculation scripts.

1. JScript Engine - This is the default scripting engine. Scripts are written in JScript (an interpreted,
object-based scripting language that is the Microsoft implementation of the ECMA 262 language
specification (ECMAScript Edition 3)), and must use a slightly modified syntax for variable
assignment and comparison operators. All examples in this document are using JScript and the
modified syntax.

2. Jint Engine – A new script engine introduced in the 6.2 release allows scripts to be written in
traditional JavaScript, with no need to modify the syntax for variable assignment and
comparison operators. Scripts written for the Jint engine can leverage all of the existing helper
methods and functions defined in this document, and have a more intuitive and effective
management and use of custom classes and methods.

The script engine is selected from the Data Admin Screen:

Configuration
Script Engines are configured in the CustomScriptEvaluationConfig.xml file in the config\Extensions
directory. ScriptEngine entries are nodes within the Usage node for EACalculation. The JScript engine is
configured as the default, but can be changed to the Jint engine using the attribute default. The
ScriptEngines defined here are the ones available in the EA calculation screen in Data Admin.

Each Script Engine can use Script Helper classes to define new helper methods that can be called from
the calculation script. See the Custom Calculation Classes section below for details.

Here is a sample configuration entry for EA Calculation, using an out-of-the-box helper class:

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
9

<ScriptEngine default="false" name="Jint"
FactoryURL="Class:Oracle.PLM4P.ScriptEvaluation.ScriptEngine.JintScriptEngineFactory,ScriptEva
luationLib" LogErrorsToUser="true">

 <ScriptHelper name="CoreHelper" UseInApps="*"
FactoryURL="Class:Xeno.Prodika.ExtendedAttributes.Calculation.Hosts.HostBasedScriptEvaluationF
acadeFactory,ProdikaLib">

 </ScriptHelper>

</ScriptEngine>

Script Results
The basic calculation script requirement is to return a value that can be converted to the relevant .NET
type.

 Calculated Boolean – must return a Boolean, or NULL

 Calculated Numeric – must return an integer, double, or float

 Calculated Text – must return a string.

For example:

var x @ GetNutrientPer100g('PROCNT');
return x/2;

The following screenshot demonstrates a Calculated Text extended attribute that uses JScript to
determine if the daily value for fat is less than 2%. If it is it returns “Less than 2%”, otherwise it returns
the daily value for fat, followed by a % symbol.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
10

JScript Syntax Changes
When creating a JScript calculation script, there are several special syntactical modifications required for
PLM for Process that differ from JScript.

Variable Assignment
You must use the ‘@’ sign for assignment, which will get converted to an equals (=) sign when the script
is being interpreted. For example:

var x @ 3.75; //declare variable x to be 3.75

Comparison Operators
When comparing values, use a single equals (=) sign, which will get converted to a double equals (==)
sign when the script is being interpreted. For example:

if (x = y) //checks to see if x is equal to y
{ \\ do something . . . }

Likewise, use the <@ and @> signs for less than or equal to and greater than or equal to, respectively.

To test inequality, use !@ for not equals (!=). The following table lists the syntax changes required for
JScript scripts.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
11

Operation Use this Instead of this
Variable assignment @ =
Equals = ==
Not equals !@ !=
Less than or equal to <@ <=
Greater than or equal to >@ >=

This sample JScript calculation shows how to do use conditional logic, variable assignment, and
comparison with the required syntax changes for PLM for Process scripts.

var x @ 3; //declare variable x to be 3
var y @ 7; //declare variable y to be 7
var z @ 6; //declare variable z to be 6
var result; //declares a variable called result
result @ GetNutrientPer100g('PROCNT'); //assigned the Protein amount per 100g to result variable
if (x = y) //checks to see if x is equal to y
{
 if (z<y && y>x) //checks to see if z is less than y and y is greater than x
 result@result+1; //adds one to the result
 else
 result@result+2; //adds two to the result

}
else if (x <@ y) //checks to see if x is less than or equal to y
{
 if (z<y || y>x) //checks to see if z is less than y or y is greater than x
 result@result+10; //adds ten to the result
 else
 result@result+12; //adds twelve to the result
}
else // x is greater than y
{
 result @ 100; //set the result to 100
}
return result;

Other JScript Syntax
All other syntax rules can be found in the Microsoft JScript documentation available online:

http://msdn.microsoft.com/en-us/library/z688wt03(VS.80).aspx

Available PLM for Process Functions and Properties
One of the major features available to EA calculation scripts is the ability to access many out of the box
PLM for Process functions and properties. These functions and properties provide access to various data
elements of the business object that the EA is added to, such as nutrition information, compliance
values, custom section and extended attribute values, and more.

Referencing the name of the function or property in the script will allow it to be called.

For example, the following script would return the value of the numeric extended attribute with a
unique attributeID of “HeatIndex.” This is an example of how to set up a calculated attribute that
references another extended attribute.

http://msdn.microsoft.com/en-us/library/z688wt03(VS.80).aspx

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
12

var heat @ GetNumericExtendedAttributeValue('HeatIndex');
return heat;

In the following example, a property called BeginningBatchSize, which returns the beginning batch size
of a formulation specification, is used to evaluate the Protein per Batch calculation. The
GetNutrientPer100g function is passed “PROCNT”, a nutrient id (see InFoods IDs in the Appendix)
representing Protein. This script simply returns the result of dividing the protein amount per 100g by
beginning batch size.

return BeginningBatchSize/GetNutrientPer100g('PROCNT');

A detailed listing of all available functions and properties is available in Available Properties and
Functions.

Calculation Warnings and Errors
When calling some of the predefined functions, warning messages may get generated under certain
conditions. For instance, when trying to retrieve a specific EA that is not on the business object, a
warning is created and would be viewable to the user. Turning calculation warnings off prior to the EA
retrieval would prevent that warning message from being displayed.

You can control calculation warnings and errors using the following techniques:

 TurnWarningsOff() — Turns warnings off in the following lines of code until it is turned back on
or the script ends

 TurnWarningsOn() — Turns warnings on in the following lines of code until it is turned off
explicitly. Warnings are on by default

 AddErrorMessage(<string>) — Displays an error message within quotes
ex: AddErrorMessage('Error in running this script')

For example:

TurnWarningsOff();
var override @ GetNumericExtendedAttributeValue('FPCalciumOverride','ME', -1, -1);
TurnWarningsOn();

var roundedCalciumPerServing @ GetNumericExtendedAttributeValue('FPCalciumRounded', -1234567890, -
1234567890);

if (roundedCalciumPerServing = -1234567890)
{
 AddErrorMessage('Please correct this problem by adding Calcium to the Nutrition Panel.');
}
else
{
 if(override > -1)
 {
 return override;
 }
}
return roundedCalciumPerServing;

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
13

In this example, if the FPCalciumOverride extended attribute is not found it will not display a warning
icon, however if it cannot find FPCalciumRounded it will display the warning. In addition, if
FPCalciumRounded is null (-1234567890) then it will also display the additional error message. You could
also turn warnings off here and just display your added error message.

Calculation Dependencies
If your custom calculation script is leveraging other calculated extended attributes, retrieving their value
will force them to be calculated too, unless they have already been calculated. This occurs regardless of
in which order the extended attributes are located in the UI.

Processing Results Returned by an Enumerator
When results are returned as an enumerator by functions such as GetCells (see Available Properties and
Functions), a loop structure is used to iterate through it in order to access a particular cell data. Two
methods are used to access each item in an enumerator:

Method 1

var item;
var cellsInRow @ GetCells(MyRow,,, 'LEFT');
while(cellsInRow.MoveNext())
{

item @ cellsInRow.Current;
// at this point your item variable is a cell object

}

Method 2

var item;
var cellsInRow @ GetCells(MyRow,,, 'LEFT');
for(;cellsInRow.MoveNext();)
{

item @ cellsInRow.Current;
// at this point your item variable is a cell object

}

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
14

Chapter 3—Available Properties and Functions
Note that example scripts provided in this section are based on the JScript
modified syntax. However, these properties and functions are also available to the
Jint engine (except without the “@”syntax changes).

Variables of Current Business Object
Any variables that are not defined on a business object will return a zero (0).

Variable Name Return value
BeginningPercentTS The beginning % total solids value from the specification
FinalPercentTS The final % total solids value from the specification
TotalSolids The total solids value from the specification
FinalPercentTSOverride The final % total solid override value from the specification
Density The density value from the specification
FinalDensity The final density value from the specification
FinalDensityOverride The final density override value from the specification
AmountPerServing The amount per service value from the specification
ReferenceAmount The reference amount value from the specification
BeginningBatchSize The beginning batch size value from the specification
ApproximateYield The approximate yield value from the specification

Note: All values in the database are stored as % solid values even if your system is configured to display
% moisture.

Nutrient Functions
Function Definition Common Parameters and Definitions

GetNutrientItemRoundedValue Returns the rounded value of
the Nutrient declared.

• <infoodsID>—String value representing the
ID of the nutrient to obtain

• <returnValIfNotDeclared>—Optional,
numeric value to be returned if the nutrient
is not declared

• <returnValIfNotDefined>—Optional,
numeric value to be returned if the nutrient
is not defined

GetNutrientPer100g Returns the declared value
of the Nutrient declared Per
100 grams.

GetNutrientPer100mL Returns the declared value
of the Nutrient declared Per
100 ml.

GetNutrientValuePerServing Returns the per-serving
value of the Nutrient
declared.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
15

Tare Weight Functions
Function Definition Common Parameters and Definitions

GetTareWeight Returns the Tare
Weight information
from the
specification.

• <uomISOCode>—Optional, string value
representing the ISO code of the UOM the
extended attribute is expressed

• <returnValIfNotDefined>—Optional,
numeric value to be returned if the tare
weight additive is not defined GetTareWeightReferenceWeight Returns the

Reference Weight
information from the
specification.

Tare Weight Properties
Function Definition Common Parameters and Definitions

TareWeightPer Returns the value from
the Tare Weight Per field
as described on the
specification.

Compliance Functions
Function Definition Common Parameters and Definitions

GetAdditiveKTCMax100g Returns the declared value
of the Known To Contain
Additive.

• <ComplianceID>—String value
representing the ID of the compliance
item to obtain

• <uomISOCode>—Optional, string value
representing the ISO code of the UOM
the extended attribute is expressed

• <returnValIfNotDeclared>—Optional,
numeric value to be returned if the
compliance item is not declared

• <returnValIfNotDefined>—Optional,
numeric value to be returned if the
compliance item is not defined

GetAdditiveMCMax100g Returns the declared value
of the May Contain
Additive.

GetAllergenKTCMax100g Returns the declared value
of the Known To Contain
Allergen.

GetAllergenMCMax100g Returns the declared value
of the May Contain
Allergen.

GetSensitivityKTCMax100g Returns the declared value
of the Known To Contain
Intolerances/Sensitivity.

GetSensitivityMCMax100g Returns the declared value

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
16

Function Definition Common Parameters and Definitions

of the May Contain
Intolerances/Sensitivity.

Extended Attribute Functions

Distinct Extended Attribute Value Functions
Note that when retrieving EAs by the attribute ID, the EA must be configured as Distinct in Data Admin.

Function Definition Common Parameters and Definitions

GetMaxRangeExtendedAttributeValu
e

Returns the
declared value of
the extended
attribute

 <extAttrID>—String value representing the
Attribute ID of the extended attribute to obtain
for use in the calculation

 <uomISOCode>—Optional, string value
representing the ISO code of the UOM in which
the extended attribute is expressed

 <returnValIfNotDeclared>—Optional, numeric
value to be returned if the extended attribute
is not declared

 <returnValIfNotDefined>—Optional, numeric
value to be returned if the extended attribute
is not defined, or if the extended attribute has
been defined but is not of type Numeric

GetMinRangeExtendedAttributeValu
e

GetNumericExtendedAttributeValue

GetTargetRangeExtendedAttributeV
alue

Distinct Extended Attribute Boolean Functions
Function Definition Common Parameters and Definitions

IsBooleanExtendedAttributeSet Each of these
functions returns
true if the
<extAttrID> exists
and a value is set;
otherwise false.

<extAttrID>—String value representing the
Attribute ID of the extended attribute to obtain for
use in the calculation

IsExtendedAttributeMinValueSet

IsExtendedAttributeMaxValueSet

IsExtendedAttributeTargetValueSe
t

IsNumericExtendedAttributeSet

IsQualitativeExtendedAttributeVa
lueSet

IsQualitativeLookupExtendedAttri
buteSet

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
17

Custom Section Functions

Custom Section Cell Properties
Property Definition Return Value Example

MyCell A property that identifies a
cell of a current extended
attribute.

A cell object value var selfCell @ MyCell;

MyColumn A property that identifies an
Agile handle of a column
that extended attribute is
located on.

String value that
represents column
Agile handle

var currentCollumn @ MyColumn;

MyRow A property that identifies an
Agile handle of a row that
extended attribute is located
on.

String value that
represents row
Agile handle

var currentRow @ MyRow;

Custom Section Cell Retrieval Functions
Function Definition Return

value
Common Parameters and
Definitions

GetCell

Example:
var x @ GetCell(MyRow,MyColumn);

A function that identifies
a cell specified by a row
and a column.

A cell
object

<rowHandle>—An Agile
handle of a row

<columnHandle>—An Agile
handle of a column

GetCells

var typeFilter @ new Array(2);
typeFilter[0] @ 'Boolean';
typeFilter[1] @ 'Numeric';
var allCellsInTestColumn @ GetCells(
 ,'Test',,);
var allFilteredCellsInLeftToMyCell @

 GetCells(MyRow,,typeFilter,'LEFT');

A function that identifies
list of cells specified by a
combination of row,
column, EA type, and
direction. It may include
current cell as a part of
the result. If both
<rowID> and

A list of
cell objects

<rowID>—User-defined row
ID or an Agile handle of a
row. If a null parameter, it
acts as all rows.

<columnID>—User-defined
column ID or an Agile handle
of a column. If a null

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
18

Function Definition Return
value

Common Parameters and
Definitions

<columnID> are null
parameters, returns an
empty enumeration.

parameter, it acts as all
columns

<typeFilter>—An array of
string values that represent
extended attribute types that
needs to be filtered. If a null
parameter, it ignores this
filtering. Valid values are:

- Boolean
- Calculated Boolean
- Calculated Numeric
- Calculated Text
- Date
- Free Text
- Numeric
- Qualitative Lookup
- Qualitative
- Quantitative Range
- Quantitative Tolerance
- Referenced Item Collection

<directionFilter>—A string
that represents a location of
cells relative to the current
extended attribute. If a null
parameter, it ignores this
filtering. Valid values are:

- UP
- DOWN
- LEFT
- RIGHT

GetCellInMyColumnByRowID

Example:

var x @ GetCellInMyColumnByRowID
('XY');

A function that identifies
a cell in a current
extended attribute
column specified by a
row. If more than one
cell matches, returns the
first cell in the result.

A cell
object

<rowID>—User-defined row
ID or an Agile handle of a row

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
19

Function Definition Return
value

Common Parameters and
Definitions

GetCellInMyRowByColumnID

Example:

var x @ GetCellInMyRowByColumnID('B');

A function that identifies
a cell in a current
extended attribute row
specified by a column.

A cell
object

<columnID>—User-defined
column ID or an Agile handle
of a column

GetCellsByRow

Example:

var x @ GetCellsByRow(MyRow)

A function that identifies
an enumeration of cells
in a specified row. Can
return cells from
multiple rows if they are
bounded by the same ID.
It may include current
cell as a part of the
result.

A list of
cell objects

<rowID>—User-defined row
ID or an Agile handle of a row

GetCellsByColumn

Example:

var x @ GetCellsByColumn('Test')

A function that identifies
an enumeration of cells
in a specified column. It
may include current cell
as a part of the result.

A list of
cell objects

<columnID>—User-defined
column ID or an Agile handle
of a column

Cell Object Properties
Property Return value
ColumnHandle String value representing a column’s Agile handle
ColumnId String value representing the user-defined column ID
ColumnSequence Integer representing a cell column sequence
RowHandle String value representing a row’s Agile handle
RowId String value representing the user-defined row ID
RowSequence Integer representing a cell row sequence

Type

Extended attribute type. Possible types are:
'Boolean'
'Calculated Boolean'
'Calculated Numeric'
'Calculated Text'
'Date'
'Free Text',
'Numeric'
'Qualitative Lookup'
'Qualitative'
'Quantitative Range'
'Quantitative Tolerance'
'Referenced Item Collection'

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
20

Property Return value

Value

A property that lets you retrieve the extended attribute value of a cell object.

ex: var numValue @
GetCellInMyRowByColumnID('Test').Value.GetNumericValue()

Cell Object Value Functions
Function Definition Return value Parameters and

Definitions
GetBooleanValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetBooleanValue()

Retrieves boolean
value of an
extended attribute.

integer
0 is false,
1 is true,
-1 if not set

none

GetDateValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetDateValue()

Retrieves datetime
value of an
extended attribute.

dateTime none

GetFreeTextExtendedAttributeValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetFreeTextExten
dedAttributeValue()

Retrieves string
value of a free-text
extended attribute.

String none

GetMultipleValues

Example:
var x @ GetCellInMyRowByCol

umnID('Test').Value.GetMultipleValues()

Retrieves selected
qualitative values
that are on an
extended attribute.

Array of strings none

GetNumericValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetNumericValue
()

var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetNumericValue
('KG')

Retrieves numeric
value of an
extended attribute.
Reports an error if it
is unable to convert
to the specified
UOM, returns -
123456789.

numeric <ISOCode>—An
optional parameter,
specifying a UOM. If
specified, the extended
attribute’s value is
firstly converted from
the extended attribute’s
default UOM to this
UOM, then that value is
returned.

GetQualitativeExtendedAttributeValue

Example:
var x @ GetCellInMyRowByCol

umnID('Test').Value.GetQualitativeExten
dedAttributeValue()

Retrieves string
value of a
qualitative extended
attribute.

A comma-
delimited string
that represents
the selected
extended
attribute
value(s)

none

GetQualitativeLookupExtended
AttributeValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value.

Retrieves string
value of a
qualitative-lookup
extended attribute.

A comma-
delimited string
that represents
the selected
extended
attribute
value(s)

none

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
21

Function Definition Return value Parameters and
Definitions

GetRangeValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value. .GetRangeValue(
'max')

var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetRangeValue(
'min','KG')

Retrieves numeric
value of an
extended attribute
based on a property
type provided.
Reports an error if it
is unable to convert
to specified UOM,
returns
-123456789.

numeric <rangeType>—A string
value that specifies type
of property to retrieve;
case insensitive. Valid
values are
 ‘min’, ‘max’, ‘target’.

<ISOCode>—An
optional parameter,
specifying a UOM. If
specified, the extended
attribute’s value is
firstly converted from
the extended attribute’s
default UOM to this
UOM, then that value is
returned.

GetStringValue

Example:
var x @ GetCellInMyRowByCol
 umnID('Test').Value.GetStringValue()

Retrieves the string
value of an
extended attribute.

String
If EA has
multiple
selected values,
returns comma-
delimited string
of those values

none

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
22

Chapter 4—Custom Calculation Classes
Clients wishing to have more control over calculations, consolidate their calculation logic, or access
other data not directly available through the script properties and functions listed above, may call out to
custom classes from their scripts. The custom classes get executed and return a result back to the script.
They may optionally receive parameter data from the script.

JScript Custom Classes (aka Dynamic Script Methods)
Note that while Dynamic Script Methods are fully functional and supported for
JScript, an improved implementation option is available that does not restrict the
helper class to one method. See the Creating Custom Helper Methods section
below for details.

Dynamic script methods allow customers to call to a specific class to invoke a helper method. Customers
create a class, add the class to a configuration to make it accessible to the EA Calculation, and use a
predefined PLM for Process function, called MethodInvoke, to call out the desired class. Most of the
functions that are available in JScript are also available to the custom class, albeit with some slight
differences in naming and parameters required. Additionally, the business object attached to the EA can
be accessed.

The MethodInvoke JScript call takes two parameters:

1. The key that references your custom class. This key/name is added to the
CustomerSettings.config file. See below for more details.

2. An array of data to pass into your custom class. See example below.
For example:

var params @ new Array(1);
params(0) @ GetNumericExtendedAttributeValue('BOX_LENGTH');
var emptyVol @ MethodInvoke('MySampleEmptyVolumeCalculator', params);

Class Structure
A custom calculation class must implement the interface
Xeno.Prodika.ExtendedAttributes.Calculation.IDynamicScriptMethod, referencing the ProdikaLib.dll
assembly.

Figure 1. IDynamicScriptMethod interface

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
23

Your custom business logic is coded in this Invoke method, and must return an object, which can be
used as needed by the script that receives the result. JScript can then convert the returned object to the
required data type.

The Invoke method takes the following arguments:

1. Parameters: an object array that is passed in from the JScript, which clients can use to pass relevant
information to the custom calculation class.

2. Context: an IDynamicScriptMethodContext object. See below.

Figure 2. iDynamicScriptMethodContext object

The IDynamicScriptMethodContext object provides:

• Errors: Access to the Errors collection.
• WarningsOff: A property to allow for turning Warnings on/off.
• AddErrorMessage(): method that only adds an error if Warnings are set to Off
• DynamicScriptVariableResolver: returns a utility class

(IDynamicScriptExtendedAttributeVariableResolver) that provides many of the same method
calls and variables that are available in the JScript functions.

o The Entity property gives access to the in-memory business object that holds the EA
(e.g., a trade specification).

o Note: If your custom calculation class is leveraging other calculated extended
attributes, use the DynamicScriptVariableResolver to retrieve their values, which will
ensure they get calculated. Do not retrieve them from the Entity directly, as they may
not be calculated yet.

• VariableResolver – obsolete – do not use

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
24

Example
The following example demonstrates a simple custom calculation class that calculates the empty volume
in a product package. For illustration purposes, it receives two values directly from the JScript, length
and width, as input parameters. It then retrieves (with Warnings off) extended attribute values for two
EAs, calculates and returns the volume, and adds a warning message if the calculated result is less than
0.

using Xeno.Prodika.ExtendedAttributes.Calculation;

namespace CalculationExtensions.ExtendedAttributes
{
 public class SampleEmptyVolumeCalculator : IDynamicScriptMethod
 {
 public object Invoke(object[] parameters, IDynamicScriptMethodContext context)
 {
 double volume = 0.0;
 double length = double.Parse(parameters[0].ToString());
 double width = double.Parse(parameters[1].ToString());

 context.WarningsOff = true;
 double height = GetExtendedAttribute(context,"BOX_HEIGHT", "IN"); // inches
 double fill = GetExtendedAttribute(context, "FILL", "CI"); //cubic inches
 context.WarningsOff = false;

 volume = (length * width * height) - fill;
 if (volume < 0)
 {
 // this adds errors to the UI when calculation is triggered, if the calculated value is ne
gative.
 context.AddErrorMessage("Empty Volume has returned a negative number");
 }
 return volume;
 }

 private double GetExtendedAttribute(IDynamicScriptMethodContext context
 , string attributeID, string UOM)
 {
 return context.DynamicScriptVariableResolver.GetExtendedAttributeValue(attributeID,
 UOM, -1, -1);
 }
 }
}

The JScript for the EA would look like the following:

var result;
var params @ new Array(2);

params(0) @ GetNumericExtendedAttributeValue('BOX_LENGTH');
params(1) @ GetNumericExtendedAttributeValue('BOX_WIDTH');

result @ MethodInvoke('MySampleEmptyVolumeCalculator', params);

return result;

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
25

Configuration
To enable your custom class for EA calculations, you must add it to the CustomerSettings.config file:

Find the <Extended Attributes><DynamicScriptMethods> section and add a new entry for your custom
class:

<add key="YourCustomFunctionName"
 value="Class:<Fully qualified namespace.classname>,<DLLName>" />

Example:

<add key="MySampleEmptyVolumeCalculator"
value="Class:CalculationExtensions.ExtendedAttributes.SampleEmptyVolumeCalculator,CalculationE
xtensions" />

Deployment
Build your class library and copy the DLL to the bin folders of each module that will need to access it.

 {PRODIKA_HOME}\Web\gsm\bin (For GSM)

 {PRODIKA_HOME}\Web\scrm\bin (For SCRM)

 {PRODIKA_HOME}\Web\pqm\bin (For PQM)

 {PRODIKA_HOME}\Web\reg\bin (For ADMIN)

Reset IIS for configuration changes to take effect.

Determining Calculation Location
Calculation scripts must be tested in Data Admin as well as when on an actual business object. However,
when running the script in Data Admin, you will not have access to other EAs that may be required in
when on the business object. This may lead your script to return an invalid result in Data Admin, but a
valid result on a specification. Therefore, you can determine in your script whether or not you are
executing the script on a real business object or not, and modify the script, if needed. For instance, you
could turn warnings off when the script is running in Data Admin.

The following code will return true if you are running this for an actual business object, or false if
running this in Data Admin:

if (context.DynamicScriptVariableResolver.Entity is IXUniqueObject) {…}

Performance Considerations
Be aware that having a large number of calculated EAs on a business object may have a negative effect
on performance. If utilizing many custom classes to perform calculations, try to limit their impact as
much as possible by minimizing the scope of their work, using caching (if applicable), and consolidating
classes if possible.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
26

Creating Custom Helper Methods
Customer script helper classes can be used to provide multiple methods and properties to the
calculation script. These helper classes are specified in the
config\extensions\CustomScriptEvaluationConfig.xml configuration file. The helper class is specified as a
ScriptHelper node to the /ScriptEvaluationUsages/Usage[name="EACalculation"]/ScriptEngine element.

<ScriptEvaluationUsages configChildKey="name">

 <Usage name="EACalculation" configChildKey="name">

 <ScriptEngine name="Jint"
FactoryURL="Class:Oracle.PLM4P.ScriptEvaluation.ScriptEngine.JintScriptEngineFactory,ScriptEva
luationLib" LogErrorsToUser="true">

 <ScriptHelper name="CoreFacade" UseInApps="*"
FactoryURL="Class:Oracle.PLM4P.ScriptEvaluation.ScriptEvaluationHelpers.CoreScriptEvaluationHe
lperFacadeFactory,ScriptEvaluationLib"></ScriptHelper>

 <ScriptHelper name="MyCustomScriptHelper" UseInApps="*"
FactoryURL="Class:Examples.ScriptEvaluationHelpers.EACalculation.EvaluationHelperFacadeFactory
,MyCustomUtils"></ScriptHelper>

 <ScriptHelper name="MyGSMCustomScriptHelper" UseInApps="GSM"
FactoryURL="Class:Examples.ScriptEvaluationHelpers.EACalculation.GSMEvaluationHelperFacadeFact
ory,MyCustomUtils"></ScriptHelper>

 </ScriptEngine>

 </Usage>

The name attribute is used to refer to the helper class inside your scripts (e.g.,
MyGSMCustomScriptHelper.IsSpecApproved()).

The UseInApps attribute specifies which application (or comma delimited a list of applications) this
helper is available for (e.g., “GSM,SCRM,NPD”). The asterisk (*) is used to indicate that it is available to
all applications.

The FactoryURL attribute specifies the class you will be using, using the ObjectLoaderURL syntax. See
the Extensibility Guide Appendix for more details.

The script helper class must be designed as follows:

A factory class that implements
Oracle.PLM4P.ScriptEvaluation.ScriptEvaluationHelpers.IScriptEvaluationHelperFacadeFactory from the
ScriptEvaluationLib.dll, and implements a simple Property for the ReferenceName and a Create method
that returns a ScriptEvaluatrionHelperFacade class.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
27

The Create method receives a scriptEvaluationContext as a parameter, which contains
IScriptEvaluationContext interface which contains a list of Results (for EA Calculation, this represents the
list of calculation errors) and TargetObject which holds the current object being validated.

The implementation of IScriptEvaluationHelperFacade is the class that will be providing your helper
methods.

Extending the existing CoreScriptEvaluationFacade will simplify you class, as you will not have to
implement the Properties and Methods defined above. This lets your class focus on the helper methods
you want to add.

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
28

Appendix A—In Foods IDs and UOM ISO Codes

InFoods IDs
Run the following SQL query to retrieve the list of InFoods IDs:

select ml.Name, p.InFoodsID, p.UNID, p.SequenceNumber
from
 comStandardNutrientProperties p
 inner join comStdNutrientPropertiesML ml
 on ml.fkStandardNutrientProperties = p.pkid

 and langID = 0 and Status = 1
order by ml.name

Some common InFoods IDs:

Name InFoods ID UNID Sequence

Calcium CA CA 350

Calories ENERC_KCAL ENERC_KCAL 10

Carbohydrate (Available) CHOAVL CHOAVL 45

Carbohydrates CHOCDF CHOCDF 40

Cholesterol CHOLE CHOLE 190

Dietary Fiber FIBTS FIBTS 50

Energy kJ ENERC_KJ ENERC_KJ 20

Iron FE FE 370

Polyunsaturated Fat FAPU FAPU 150

Potassium K K 400

Protein PROCNT PROCNT 30

Protein (Nx6.25) PROCNT_NX625 PROCNTx625 32

Saturated Fat FASAT FASAT 130

Sodium NA NA 410

Total Fat FAT FAT 120

Total solids TTLSOLID TTLSOLID 205

Total Sugar SUGAR SUGAR 70

Trans Fatty Acid FATRN FATRN 180

Vitamin A - IU VITA_IU VITA_IU 223

Vitamin A - Total VITA- VITA- 220

Vitamin C VITC VITC 290

Vitamin D VITD- VITD- 300

Vitamin E VITE VITE 310

Vitamin K VITK VITK 330

Zinc ZN ZN 420

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
29

Unit of Measure ISO Codes
Run the following SQL query to retrieve the list of UOMs:

SELECT Name, Abbreviation, id, ISOCode, Status
FROM UOM a INNER JOIN UOMML ml
 ON ml.fkUOM = a.pkid AND ml.langID = 0
ORDER BY name

Agile Product Lifecycle Management for Process – Extended Attribute Calculation

© 2015 Oracle Corporation
30

	Oracle® Agile Product Lifecycle Management for Process Extended Attribute Calculation Guide
	Copyrights and Trademarks
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Access to Oracle Support

	Software Availability

	Chapter 1—Overview
	Chapter 2—Calculation Scripting
	Script Engines
	Configuration

	Script Results
	JScript Syntax Changes
	Variable Assignment
	Comparison Operators

	Other JScript Syntax
	Available PLM for Process Functions and Properties
	Calculation Warnings and Errors
	Calculation Dependencies
	Processing Results Returned by an Enumerator

	Chapter 3—Available Properties and Functions
	Variables of Current Business Object
	Nutrient Functions
	Tare Weight Functions
	Tare Weight Properties
	Compliance Functions
	Extended Attribute Functions
	Distinct Extended Attribute Value Functions
	Distinct Extended Attribute Boolean Functions

	Custom Section Functions
	Custom Section Cell Properties
	Custom Section Cell Retrieval Functions
	Cell Object Properties
	Cell Object Value Functions

	Chapter 4—Custom Calculation Classes
	JScript Custom Classes (aka Dynamic Script Methods)
	Class Structure
	Example
	Configuration
	Deployment
	Determining Calculation Location
	Performance Considerations

	Creating Custom Helper Methods

	Appendix A—In Foods IDs and UOM ISO Codes
	InFoods IDs
	Unit of Measure ISO Codes

