
[1]Oracle® AutoVue Integration SDK
Design Guide

Release 20.2.3

January 2015

AutoVue Integration SDK Design Guide, Release 20.2.3

Copyright © 1998, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

1 Introduction

2 AutoVue and Repository Integration

2.1 GUI Customization... 2-3
2.2 Repository Extension.. 2-3
2.3 VueLink .. 2-4
2.4 Optional Components .. 2-4
2.4.1 CAD Connector.. 2-4

3 AutoVue Integration SDK

3.1 ISDK Data Model .. 3-1
3.1.1 Document ID .. 3-1
3.1.2 Document Attributes... 3-2
3.1.3 Actions on a Document... 3-2
3.1.4 Security.. 3-3

4 Implementation

4.1 Phase One... 4-2
4.2 Phase Two .. 4-2
4.3 Phase Three .. 4-2

5 Deployment of ISDK-Based Integrations

5.1 Scaling for High Usage over Distributed Environments .. 5-1

A Feedback

A.1 General AutoVue Information ... A-1
A.2 Oracle Customer Support ... A-1
A.3 My Oracle Support AutoVue Community... A-1
A.4 Sales Inquiries... A-1

iv

v

Preface

The AutoVue Integration SDK Design Guide provides a high-level overview of the Oracle
AutoVue Integration Software Development Kit (ISDK)

For the most up-to-date version of this document, go to the AutoVue Documentation
Web site on the Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
This document is intended for Oracle partners and third-party developers (such as
integrators) who want to implement their own integration with AutoVue.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the AutoVue Integration SDK
library:

■ Oracle AutoVue ISDK Overview

■ Oracle AutoVue ISDK Installation and Configuration Guide

■ Oracle AutoVue ISDK User Guide

■ Oracle AutoVue ISDK Technical Guide

■ Oracle AutoVue ISDK Acknowledgments

■ Oracle AutoVue Javadocs

■ Oracle AutoVue ISDK Security Guide

vi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

The Oracle AutoVue Integration Software Development Kit (ISDK) is a software
package that is designed for Oracle partners and third party integrators to develop
new integrations between AutoVue server and enterprise systems such as Document
Management Systems (DMS), Production Lifecycle Management Systems (PLM), and
so on. The goal of the integration is to enable communication between AutoVue and
the enterprise systems as well as to integrate AutoVue's capabilities into their
environments.

This document presents a high-level overview of the components that make up a
typical integration and provides recommendations for features (such as security) when
designing such an integration.

1-2 AutoVue Integration SDK Design Guide

2

AutoVue and Repository Integration 2-1

2AutoVue and Repository Integration

AutoVue is the key component in Oracle's Enterprise Visualization solutions. AutoVue
solutions deliver native document viewing, markup, and real-time collaboration
capabilities that streamline the information flow and collaborative processes across the
global enterprise. AutoVue solutions help organizations in a variety of industries
including Utilities, Industrial Manufacturing, Electronics & High Tech, Engineering
and Construction, Aerospace and Defense, Automotive, and Oil & Gas. AutoVue
streamlines visualization and collaboration across the global enterprise, improves
productivity, reduces errors, and accelerates innovation and time to market. In an
enterprise, AutoVue can be part of many business workflows and use cases such as
collecting comments and annotations during a design review, recording the actions
and results for a maintenance work order, comparing archived documents, and
collaborating with other users.

AutoVue can offer its capabilities to many different enterprise systems/repositories
such as DMS, PLM, Content Management Systems (CMS) and so on. AutoVue needs
to be integrated into these repositories in order to be able to access the documents that
are stored in them. There exist many such integrations. For example, there is an
integration between AutoVue and WebCenter Content (WCC) and AutoVue and
Oracle Agile PLM. The Oracle-developed integration is known as a VueLink. The
VueLink provides an interface that allows communication between the repository and
AutoVue in order to retrieve documents and to store data that is generated by
AutoVue for those documents (such as annotations). The VueLink is a Java Web
application that is hosted on a Java Web application server. The following figure shows
how the communication between AutoVue and the repository is done through a
VueLink.

2-2 AutoVue Integration SDK Design Guide

Figure 2–1 Communication between AutoVue and repository/backend system through a
VueLink

Once AutoVue gets access to a document and other related data from the repository, it
then streams the view of the document to the AutoVue client via the VueServlet. The
AutoVue client is a lightweight Java Applet that interacts with the end user through a
Web browser.

As shown in the diagram, the repository contains two important components: the
repository extension and the GUI customization.

In order for the VueLink to communicate with the repository there needs to be a
component on the backend-side whose interface the VueLink understands. This
component is known as the repository extension. For more information, refer to
Section 2.2, "Repository Extension."

In a complete integration, the AutoVue client should be launched from inside the
repository user interface. The GUI Customization is applied to the repository user
interface. For more information, refer to Section 2.1, "GUI Customization."

The application server component of the diagram includes the VueServlet and the
VueLink. The VueServlet is a Java Servlet that acts as a tunnel between the AutoVue
server and the AutoVue client. The client makes requests using the HTTP/HTTPS
protocol to the VueServlet and the VueServlet communicates with AutoVue using
AutoVue's socket ports. All the communication between the AutoVue client and the
AutoVue server goes through the VueServlet. The VueServlet is available out of the
box with AutoVue and can be easily deployed. Information on the VueLink is
provided in Section 2.3, "VueLink."

Note:

■ AutoVue sends a request to the VueLink.

■ VueLink forwards the request to the repository.

■ The repository sends a response back to the VueLink.

■ VueLink forwards the response to the AutoVue server.

Repository Extension

AutoVue and Repository Integration 2-3

2.1 GUI Customization
AutoVue provides the option of customizing your graphical user interface (GUI). The
objective of the GUI customization is to launch the AutoVue client from inside the
repository user interface. The AutoVue client can be embedded into the repository GUI
or it can be launched in a separate window. In either case, an action must be defined in
the repository GUI that invokes the AutoVue client. This action can be assigned to a
user interface (UI) button, an icon, or a menu item inside the repository UI.

Depending on the underlying technology, the implementation of the GUI
customization can vary from one environment to another. For example, a very simple
implementation may be a hyperlink to an HTML page that loads the AutoVue client. A
more sophisticated implementation may involve a repository-based scripting language
or APIs. In both cases, you must refer to the repository's documentation for
information on how to modify its UI and the available capabilities.

Since the customization can be applied to different places in the repository GUI, its
implementation should be looked at from a usability point of view as well as from a
technical point of view. A good example is customizing the search results page in the
repository GUI. In this example, each document in the Search Results page is
associated with a menu item or icon that launches the AutoVue client to view that
particular document. A sample GUI customization is shown in the following
screenshot. The Search Results page in Oracle Content Server GUI is customized to
launch the AutoVue client.

Figure 2–2 Sample GUI Customization

2.2 Repository Extension
The repository extension is the layer on the repository that the VueLink communicates
with. It allows the VueLink to access the repository the same way the end-user
accesses the repository through the GUI.

VueLink

2-4 AutoVue Integration SDK Design Guide

If this interface is not available, then a custom extension must be created using a
technology that the repository supports. The extension must support the different
requests that come from the VueLink. That is, the VueLink requests are related to
retrieving and storing documents and their related data inside the repository. The
extension can be built as a Web service or a Java Application Programming Interface
(API). A Java API is the preferred approach as the performance is generally better and
the overhead is lower in a Java to Java integration than in a Web service integration.
This is because once the interface is provided by the repository then a VueLink-type
component should be implemented to connect and communicate with it. The Web
services should be used when a Java API cannot be provided (such as when
integrating with a .NET environment). For more details about the required interface
refer to Chapter 4, "Implementation."

2.3 VueLink
The VueLink is the integration component that acts as the gateway between AutoVue
and the repository. The name VueLink is reserved for these types of Oracle-developed
gateway components. Third-party integrators and partners should choose their own
trademarks or preferred name for this piece of integration. However, regardless of its
name, VueLink-type components enable AutoVue to access documents that are stored
inside the repository. It also enables AutoVue to retrieve any data related to these
documents from the repository. In addition, any data generated by AutoVue (for
example, markups and renditions) can be stored into the repository using this
component.

The VueLink is the center piece of an AutoVue integration with a repository. It is able
to communicate with AutoVue and with the repository, thereby acting as a translator
for each end and isolating AutoVue and the repository from each other's complexity. It
is a Java Web application and needs to be deployed on a Java Web application server
(such as WebLogic, GlassFish, Tomcat, and so on). In case of a Web service-based
integration, the application server must support Java Web service technology. For
more information, refer to Chapter 5, "Deployment of ISDK-Based Integrations."

Since the interface between the VueLink and AutoVue is the same for all VueLinks
(regardless of the repository they are built for), it is good practice to have an
integration framework that has built-in communication with AutoVue and is ready to
be used as a starting point for building new integrations with any repository. The
AutoVue Integration SDK is designed to fulfill this requirement. For more information,
refer to Chapter 3, "AutoVue Integration SDK."

2.4 Optional Components
Before discussing the AutoVue Integration SDK, the optional components to be used in
conjunction with building an integration are presented.

2.4.1 CAD Connector
One of the characteristics of CAD models is that often they are not stored in one
document. For example, an airplane CAD model consists of many parts (such as

Note: If the repository already provides a programming interface
that gives access to all documents and related data required by the
VueLink, then there is no need to develop a custom extension on the
repository side for an AutoVue integration.

Optional Components

AutoVue and Repository Integration 2-5

wings, wheels, and so on) which in turn have their own subparts. Each part or subpart
might be designed and stored in a separate document and referenced in the airplane
CAD model document directly or hierarchically. In order to view that airplane CAD
model, all parts must be loaded and put together. These separate parts and subparts
files are known as external references (XRefs). AutoVue supports loading and viewing
documents along with their XRefs documents. However, in an integration, the XRefs
support should also be provided at the repository level since they are all stored inside
the repository. If the repository provides a mechanism to link documents to each other
as references, then this mechanism can be used to provide XRefs support.

The storing and linking of references in a repository should not be done manually. In
order to properly support the XRefs, some software tools should be provided that can
import related documents from the CAD authoring software into the repository. An
example is a CAD connector. A CAD connector is a software tool that integrates the
repository with a CAD authoring software package (such as AutoCAD). It can
check-in/check-out a set of related CAD files into/out-of the repository while
preserving their relations and linkage.

Note: This software tool is not an AutoVue integration requirement.
It is a facilitator for the repository to organize the XRefs.

Optional Components

2-6 AutoVue Integration SDK Design Guide

3

AutoVue Integration SDK 3-1

3AutoVue Integration SDK

The AutoVue Integration SDK (ISDK) is a framework designed to help third-party
integrators to develop and implement an integration between AutoVue and their
repository. It saves time and effort in developing a new integration since it already has
the necessary code to talk to AutoVue. It defines a data model and an interface for
communicating with the repository extension. Integrators must understand this data
model and implement the code for communication between the ISDK and the
repository.

3.1 ISDK Data Model
This section provides an overview of the ISDK data model. More details can be found
in the AutoVue Integration SDK Technical Guide.

3.1.1 Document ID
In the ISDK every document is represented with a document ID (DocID) object which
is a unique identifier for each file. This representation is chosen because unlike files in
a file system (represented by path) or internet resources (represented by URI), objects
in a repository are addressed by IDs. Since the architecture and data structure of each
repository is different, no universal structure for a DocID can be defined. For this
reason, the ISDK provides a flexible data model through an abstract class that allows
integrators to define their own custom structure for DocIDs and register it into the
ISDK framework. An important factor to consider is that the DocID should be defined
in a way that it can uniquely identify each version (revision), attachment or any other
entity in the repository that holds a file. For example, if there are multiple versions of a
repository object, and each version holds multiple files as attachments, then the
attachment of each version should have a unique DocID. This is displayed in the
following figure.

Note: It is recommended that the DocID size should be less than 512
bytes and should not contain any variables. That is, it should not have
any information that changes when multiple calls are made (for
example, a session object).

ISDK Data Model

3-2 AutoVue Integration SDK Design Guide

Figure 3–1 Attachments in multiple versions of a repository object

It is good practice to begin an integration by first defining a DocID structure. It is
recommended to have a field in the DocID structure that displays the version of the
document this ID is referring to.

If your repository has a hierarchical structure (for example, folders/directories) it is
recommended to extend the DocID structure to cover them as well (that is, each folder
or directory should have its own unique DocID). In this case, it is helpful to add
another field in the DocID structure that displays its type (for example, whether it is a
file, folder, list, and so on).

In a simple case, the DocID can be just a number that represents a single document in
the repository. In other cases it can be a combination of some parameters that together
locate the document inside the repository (for example, site:1,list:3,item:25,version:2).

3.1.2 Document Attributes
The ISDK provides a data structure for holding attributes of documents. It is used for
any attribute that the repository assigns to a document. Attributes can be single-value
or multi-value (for example, when multiple options are selected from a list). They can
also be associated with a list of pre-defined values (for example, a drop-down list).
Some examples of attributes are document's title, size, last modified date, status,
owner, and so on.

3.1.3 Actions on a Document
In the ISDK, a set of actions are defined that are to be performed on documents. The
actions in the ISDK are Open, Download, GetProperties, SetProperties, Save and
Delete. These actions are described in detail in the AutoVue Integration SDK Technical
Guide. Each action requires a handler class that has to be registered in the ISDK
framework. The GetProperties action is divided into a set of smaller actions (sub

Note: This is useful in certain AutoVue functions that deal with all
versions of a document.

Note: You should also consider that every AutoVue markup
(annotation) or rendition that is being stored in the repository should
have a unique DocID.

ISDK Data Model

AutoVue Integration SDK 3-3

actions) that each has its own handler class (examples of properties to get are:
document size, last modified date, and so on).

All action handler classes register themselves into the framework. The ISDK defines an
interface that all actions should implement in order to register themselves into the
framework. Once the ISDK initializes, it instantiates all registered actions.

3.1.4 Security
To perform their tasks, action objects have to communicate with the repository. Since
most of the repositories are controlled by some authentication and authorization
mechanism, the integration needs to provide the authentication/authorization
information to the action.

The ISDK is designed to accommodate any security mechanism that the repository has
in place. By default, no particular security mechanism is enforced in the ISDK
framework. It is up to the repository to define how the ISDK-based VueLink should
communicate with it in a secure fashion. Using security credentials, there are two ways
for the VueLink to communicate with the repository:

■ Have a persistent connection

■ Connect/disconnect when performing each action

In either case, the VueLink holds a session object for each user and the security
credentials are stored in this session object for later use as long as the session is valid.

Another security related issue is the Single-Sign-On (SSO) versus the non-SSO, as
demonstrated in the following figure.

Figure 3–2 SSO vs non-SSO

If the repository supports SSO (either through an external Identity/Access
Management System or on its own) then it would be possible to use it. In this case, the
SSO information can be passed from the AutoVue client to the ISDK-based VueLink so
that it can log in to the repository automatically. In a non-SSO environment the
repository will block VueLink from logging in by returning an authorization error (as
shown in section B in figure above). In this case, VueLink propagates the error back to
the AutoVue client and the AutoVue client asks the user to provide the credentials.
These credentials are then passed to the VueLink in order to log in to the repository.
Once the VueLink connects to the repository, the action can be completed.

ISDK Data Model

3-4 AutoVue Integration SDK Design Guide

4

Implementation 4-1

4Implementation

To speed up the integration and provide the integrators with a starting point, the ISDK
includes a skeleton package and a Web service package.

The ISDK Java skeleton package has the structure for building a new VueLink. The
skeleton comes with a set of TODO comments in places where the integrators need to
add their code. The ISDK Java skeleton implementation means adding code to the
skeleton codebase so that it can communicate with the repository's Java API as shown
in the following figure.

Figure 4–1 Adding code to the skeleton codebase

The Web service package includes a Web Services Description Language (WSDL) file
that describes an interface for a Web service to be implemented by the repository. The
package includes a client-side implementation of this WSDL. This client package itself
is built using the ISDK Java skeleton. With the ISDK Web service package, the
implementation means building a proper Web service provider based on the defined
WSDL on the repository as shown in the following figure. This means more flexibility
since the Web service provider can be implemented on any platform and with any
programming language.

Figure 4–2 Web service provider based on the defined WSDL

Phase One

4-2 AutoVue Integration SDK Design Guide

The ISDK Java skeleton should be used when a Java API is available in the repository.
The reason is the ISDK is written in Java and a Java-to-Java integration with a
repository (if possible) performs better with less overhead than a Web service-based
integration.

On the other hand, if Java API is not available on the repository (or the flexibility in
implementation is more important and/or all other parties in the enterprise are using
Web services to communicate), then the ISDK Web service package is more suitable for
building the AutoVue integration.

The implementation steps are dependent on whether the ISDK Java skeleton or the
Web service package is being used. However, the expected functionality of the
integration can be understood in three phases that range from the most basic (phase
one) to the more advanced (phase three) capabilities. The following sections discuss
these integration phases.

4.1 Phase One
The requirement for phase one is viewing the document. To view the document, the
integration should cover the Open and Download actions and a subset of
GetProperties (get name, size, last modified date and multi-content values) actions.

4.2 Phase Two
Phase two of the integration adds the following capabilities:

■ Save, update and delete markups (annotations) inside the repository

■ Compare a document with other versions of the same document

■ Download the external references (XRefs) of a document from the repository (if
applicable)

■ Save (and reuse) the renditions of a document into the repository

■ Add the repository attributes to the print output in the header/footer sections

For this to happen, the integrators should add implementation for the Save and Delete
and a subset of GetProperties related to listing versions, listing markups, listing XRefs,
listing renditions and listing all attributes of a document.

As mentioned in Section 2.4, "Optional Components" the repository should support
XRefs and the development of a CAD connector for the repository may be required.

4.3 Phase Three
Phase three of the integration adds the following capabilities:

■ Search and browse the repository through the AutoVue client UI

■ Use the AutoVue Intellistamp with the repository attributes

AutoVue Intellistamp is one of the AutoVue advanced markup features. For more
information, refer to the Oracle AutoVue User's Manual.

For these features, integrators must add an implementation for SetProperties and the
remaining subset of GetProperties that are defined to retrieve these information:
search/browse UI, search/browse query results, and the collaboration-related data
from the repository.

5

Deployment of ISDK-Based Integrations 5-1

5Deployment of ISDK-Based Integrations

Once the development of an ISDK-based component is complete, it should be
deployed on a Java Web application server. If the integration is done using the ISDK
Web services package, then deployment should be done on an application server that
supports Java Web services (that is, Java EE5 or higher).

The deployment may involve some configuration depending on its complexity. For
example, if multiple instances of integrations are being used in a server farm, the
deployment must be scaled for high usage. For more information, refer to Section 5.1,
"Scaling for High Usage over Distributed Environments." Additionally, it may be
required to support proper failover when deploying in a distributed environment.

For technical information on deploying the ISDK and supported Web application
servers, refer to the AutoVue Integration SDK Technical Guide.

5.1 Scaling for High Usage over Distributed Environments
Depending on the number of concurrent users, the type and size of documents that
users typically view, and whether files are to be loaded natively or from streaming
files, it may be required to deploy your ISDK-based integration in a server farm.
Additionally, it may be required to deploy it in distributed environments. In order to
support proper failover in a distributed environment, the HTTP session needs to be
replicated across all cluster nodes. In the event that a node fails, a second cluster node
takes over and continues to process the requests. Seamless failover is when the user's
actions are not disrupted and no authorization dialog is requested during this process.

Depending on the type of DMS integration and connection, login or session
information may need to be remembered. For the information to be replicated across
nodes, the objects attached to the HTTP session need to be serializable.

For example, in the FileSys sample integration, the
com.cimmetry.vuelink.filesys.FilesysContext class manages this aspect. The back-end
session objects may not always be serializable. The FilesysContext stores the username
and password strings in the session. This allows the node that is taking over another
session to reinitialize the connection with the back-end. The DMSSession class is
provided by the ISDK to wrap the HTTP session variable. It provides the setAttribute()
and getAttribute() methods to handle the storing of serializable objects to be saved and
replicated. For more information, refer to the ISDK Technical Guide.

Consider the following when serializing objects:

■ The DMS provides a session ID: If the back-end DMS provides a session ID, this
session ID can be serialized into the DMSSession object. This way when a cluster
node fails, the new node can pick up the replicated DMSSession and use the stored
session ID to continue communicating with the back-end DMS.

Scaling for High Usage over Distributed Environments

5-2 AutoVue Integration SDK Design Guide

■ The DMS connection object is not serializable: If the connection object cannot be
serialized into the DMSSession, the information needed for recreating this object
should be serialized and replicated. This way, when the active node fails, the
second node retrieves this information and recreates the DMS connection object.

If seamless failover is not possible, an authorization exception can be thrown to
request the user login information. This way, the user retains the ability to save any
markups that they have created provided that they can enter a valid username and
password.

Non-serializable objects should be added to the DMSSession to increase performance
and allow caching of data between requests. However, they need to be declared as
transient in order not to break the session replication during failover. These transient
objects will need to be regenerated once the session was migrated to a different cluster
node.

For information on scaling AutoVue servers for high usage and seamless failover, refer
to the "Scaling AutoVue for High Usage" section of the Oracle AutoVue Client/Server
Deployment Planning Guide.

A

Feedback A-1

AFeedback

If you have any questions or require support for AutoVue, please contact your system
administrator. If the administrator is unable to resolve your issue, please contact us
using the links below.

A.1 General AutoVue Information

A.2 Oracle Customer Support

A.3 My Oracle Support AutoVue Community

A.4 Sales Inquiries

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

Web Site http://www.oracle.com/support/index.html

Web Site https://communities.oracle.com/portal/server.pt

E-mail autovuesales_ww@oracle.com

Sales Inquiries

A-2 AutoVue Integration SDK Design Guide

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	2 AutoVue and Repository Integration
	2.1 GUI Customization
	2.2 Repository Extension
	2.3 VueLink
	2.4 Optional Components
	2.4.1 CAD Connector

	3 AutoVue Integration SDK
	3.1 ISDK Data Model
	3.1.1 Document ID
	3.1.2 Document Attributes
	3.1.3 Actions on a Document
	3.1.4 Security

	4 Implementation
	4.1 Phase One
	4.2 Phase Two
	4.3 Phase Three

	5 Deployment of ISDK-Based Integrations
	5.1 Scaling for High Usage over Distributed Environments

	A Feedback
	A.1 General AutoVue Information
	A.2 Oracle Customer Support
	A.3 My Oracle Support AutoVue Community
	A.4 Sales Inquiries

