

[1] Oracle® AutoVue ISDK
Technical Guide

Release 20.2.3

January 2015

Oracle AutoVue ISDK Technical Guide, Release 20.2.3

Copyright © 1998, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Introduction

2 System Requirements

3 Architecture

3.1 How it Works .. 3-1
3.2 Framework... 3-2
3.3 Sequence Flow... 3-3

4 Integration Design

4.1 VueLink Class.. 4-2
4.2 DMSActions Interface .. 4-3
4.3 ActionGetProperties Interface... 4-3
4.3.1 Single Class (Basic Monolithic) .. 4-3
4.3.2 Multiple Classes (Recommended)... 4-3
4.4 DocID Interface ... 4-4

5 Implementing File View Functionality in your DMS

5.1 Creating Your Main DMS Servlet by Extending the VueLink Class................................... 5-1
5.2 Defining Your Unique Document Identifier by Implementing DocID Interface 5-2
5.3 Creating a GetProperty action to return User Name... 5-2
5.4 Creating a class to implement DMSBackend interface.. 5-3
5.5 Creating an Open Action class that returns your DocID .. 5-3
5.6 Creating a Get Property Action to Return Document Name ... 5-5
5.7 Creating a GetProperty action to return Document Date Last Modified and Size 5-7
5.8 Creating a Download action to return Document Content .. 5-8
5.9 Implementing Remaining Actions and Registering in web.xml.. 5-9

iv

6 Implementing Advanced Integration Functionality in Your DMS

6.1 Handling Document Attributes .. 6-1
6.2 Returning External References (XRefs).. 6-4
6.3 Handling Markups ... 6-6
6.3.1 GUI Response ... 6-6
6.3.2 Markup Response .. 6-8
6.3.2.1 Bundling PROP_GUI and PROP_MARKUP.. 6-9
6.3.2.2 dmsListMarkups() method ... 6-9
6.4 Handling Renditions .. 6-9
6.5 Returning the List of All Properties of the DMS Document.. 6-11
6.6 Implementing File Browse.. 6-13
6.6.1 GUI Request... 6-13
6.6.2 Request for Browse Results ... 6-14
6.7 Implementing File Search ... 6-17
6.7.1 First Request .. 6-17
6.7.2 Request for Search Results .. 6-19
6.8 Handling Versions ... 6-20
6.9 Implementing handler for Default Property.. 6-22
6.10 Implementing File Save Action.. 6-23
6.11 Implementing File Delete Action... 6-26
6.12 Creating Your Context .. 6-27
6.13 Overriding GetProp<CSI Property> classes .. 6-28
6.14 Implementing Read-Only Markups .. 6-31
6.15 Implementing Stamps ... 6-33
6.16 Implementing Redirection.. 6-37
6.16.1 Handling Redirection for Download ... 6-37
6.16.2 Handling Redirection for Save ... 6-39
6.17 Implementing Real-Time Collaboration and Meeting Management 6-41
6.17.1 Launching AutoVue in RTC Mode .. 6-41
6.17.2 Hosts Initiate RTC... 6-41
6.17.3 Guests Join RTC .. 6-42
6.17.4 ISDK APIs for RTC ... 6-42
6.17.5 Summary.. 6-47
6.18 Implementing Oracle Enterprise Visual Framework Support .. 6-48
6.18.1 Most Common Use Cases for OEVF .. 6-48
6.18.2 OEVF Launching URL and Parameters... 6-49
6.18.3 OEVF Customization Page.. 6-50
6.18.4 ISDK APIs for OEVF .. 6-52
6.18.4.1 ActionOpen class ... 6-52
6.18.4.2 GetPropCSI_Markups... 6-53
6.18.4.3 ActionSave.. 6-54
6.18.4.4 ActionDelete... 6-55
6.18.5 DOCID.. 6-55
6.19 Implementing UI Customization... 6-55
6.19.1 Embedded vs. Pop-up Window ... 6-55
6.19.2 Pop-up Blocker.. 6-57
6.19.3 Prompt to Save .. 6-58

v

6.20 Returning DMS Name... 6-58
6.21 Leveraging AutoVue Web Services... 6-59
6.21.1 Configuring AutoVue Web Services to Communicate with Integration SDK 6-60
6.21.2 Utilizing AutoVue Web Services at Front End... 6-61
6.21.2.1 Thumbnail Generation.. 6-61
6.21.2.2 Streaming File Generation.. 6-62
6.21.2.3 Converting Document to Other Formats ... 6-62

A Integration SDK Skeleton

A.1 Integration SDK Skeleton Packages .. A-1
A.2 Integration Steps for Implementing File View Functionality.. A-2
A.3 Integration Steps for Implementing Advanced Functionality .. A-3

B Sample Integration for Filesys

B.1 DMSActions.. B-4
B.2 Backend API ... B-6
B.3 Filesys DMS Backend system Structure.. B-8
B.4 Sample Integration for Filesys DMS Use Cases... B-10
B.4.1 Core Use Cases.. B-11
B.4.1.1 ActionOpen .. B-11
B.4.1.2 ActionDownload ... B-12
B.4.1.3 ActionDelete... B-12
B.4.1.4 ActionSave.. B-13
B.4.1.5 ActionGetProperties.. B-13
B.4.1.6 ActionSetProperties... B-14
B.4.2 Backend use cases ... B-15
B.4.2.1 Get Document Instance... B-15
B.4.2.2 Manage Renditions.. B-15
B.4.2.3 Get XRefs List ... B-16
B.4.2.4 Manage Markups... B-16
B.4.2.5 Get Versions List.. B-17
B.4.2.6 Get Children Instances.. B-18
B.5 Known Limitations .. B-18

C ISDK Web Service Client

C.1 Architecture .. C-1
C.2 How it Works ... C-3
C.3 Web Service Client Package ... C-4
C.4 Sequence.. C-5
C.5 Configuration ... C-5
C.6 WSDL Location .. C-5
C.7 WS-Security... C-6
C.7.1 HTTPS-Basic Profile ... C-6
C.7.2 HTTPS-UserName Token Profile (Metro)... C-6
C.7.3 HTTPS-UserName Token Profile (WebLogic).. C-6
C.7.4 Other WS-Security Profiles.. C-7

vi

C.7.4.1 Extending WSHandler .. C-7
C.8 BluePrint WSDL ... C-9
C.8.1 Web Services Methods ... C-9
C.8.2 BLUEPRINT XSD.. C-17
C.9 Steps for Implementing Basic Integration Based on Web Services C-21
C.10 Steps for Implementing Advanced Integration Based on Web Services C-22
C.11 Sample Approaches to Generate Web Services Provider Artifacts C-22
C.11.1 How to generate Java web services code from ISDK WS WSDL file C-22
C.11.2 How to generate .Net web services code from ISDK WS WSDL file C-22
C.12 BluePrint WSDL and XSD .. C-22

D ISDK Web Services Sample Server

E Upgrading Existing Integration

E.1 Upgrading from the 20.1 Release... E-1
E.2 Upgrading from a pre-20.1 Release... E-1

F Feedback

F.1 General AutoVue Information ... F-1
F.2 Oracle Customer Support ... F-1
F.3 My Oracle Support AutoVue Community... F-1
F.4 Sales Inquiries... F-1

vii

Preface

The AutoVue Integration Software Development Kit Technical Guide describes the technical
details of the AutoVue Integration SDK and how to implement your own integration
based on the SDK Framework.

For the most up-to-date version of this document, go to the AutoVue Documentation
Web site on the Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
This document is intended for Oracle partners and third-party developers (such as
integrators) who want to implement their own integration with AutoVue based on
Web Service technology. If the target system has no Java™ interface (e.g. a .NET or
PHP) then using Web Service is one the reliable ways to communicate with this SDK.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the AutoVue Integration SDK
library:

■ Overview

■ Design Guide

Note: If the target system has any Java API to access the documents,
it is recommended to use the ISDK Skeleton and integrate it directly to
the repository's Java API. The Sample Integration for FileSys package
is an example of Java to Java integration of AutoVue ISDK. For more
information, refer to Appendix B, "Sample Integration for Filesys."

viii

■ Installation and Configuration Guide

■ User Guide

■ Acknowledgments

■ Javadocs

■ Security Guide

■ Oracle AutoVue Integration Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

The AutoVue Integration Software Development Kit (ISDK) is an interface between
Oracle AutoVue and Document Management Systems (DMS)1. It enables users to add
powerful viewing and markup capabilities to the DMS by interfacing AutoVue with a
particular DMS. This interface, or integration process, is composed of several activities:
requirements specification, analysis, design, implementation, testing and maintenance.
The ISDK provides a framework on top of which you can build your own integration
with AutoVue.

The objectives of this document are to help you to understand and familiarize yourself
with the ISDK framework, as well as to help you build your own integration of
AutoVue. To assist you with the integration, an ISDK skeleton package, Web Services
client package and two sample projects (Sample Integration for FileSys and Web
Services Sample Server) are included in this ISDK.

Note: Prior to reading this document, it is strongly recommended
that you first familiarize yourself with the AutoVue Integration
Software Development Kit by reading through the Overview, Design
Guide, Installation and Configuration Guide, Security Guide, and
User Guide. These manuals are located in the /docs directory and can
be accessed from Quick Start.html located in the root folder where you
installed the AutoVue Integration SDK.

1 For the remainder of this document, a DMS/EDM/PDM system is referred to as DMS.

1-2 Oracle AutoVue ISDK Technical Guide

2

System Requirements 2-1

2System Requirements

For a complete list of system requirements specific to your platform, refer the Oracle
AutoVue Integration SDK Installation and Configuration Guide.

2-2 Oracle AutoVue ISDK Technical Guide

3

Architecture 3-1

3Architecture

This chapter describes the typical integration between AutoVue and a DMS.

Figure 3–1 Typical configuration for AutoVue Integration with DMS server

3.1 How it Works
As seen in Figure 3–1, "Typical configuration for AutoVue Integration with DMS
server", the DMS servlet allows the AutoVue server to communicate with a DMS using
standard HTTP/HTTPS protocol.

The following is a description of how the DMS servlet works. Note that the numbered
steps refer to the numbers in Figure 3–1, "Typical configuration for AutoVue
Integration with DMS server".

1. Log into the DMS through a Web browser.

2. With DMS customization in place, the Web browser displays each file stored inside
DMS with an associated View link. This link allows you to view files in the
AutoVue applet viewer.

3. Click View. The AutoVue applet launches inside the Web browser window.

Framework

3-2 Oracle AutoVue ISDK Technical Guide

4. The AutoVue applet communicates with the AutoVue Server through servlet
tunneling for HTTP/HTTPS connection (via the VueServlet).

5. The AutoVue server communicates with the DMS servlet using a standard
HTTP/HTTPS connection.

6. With the DMS extension installed on the server machine, the DMS Servlet is able
to talk to the DMS Server to handle any request made by the AutoVue server, such
as file fetching.

If you try to view a composite file (that is, a file having XRefs or font resource files),
the DMS Servlet retrieves those files and makes them available to the AutoVue server.

Once the file and all its related XRefs and/or resources are fetched out of the DMS,
they are processed by the AutoVue server, which renders the file(s) and streams the file
to the AutoVue applet for display.

Once the file displays in the AutoVue applet, you can redline it, create new markups,
save Markups into the DMS, and open Markups from the DMS.

3.2 Framework
The following figure shows the internal structure of a typical integration with a DMS.
The framework included in the ISDK provides you with the foundation you need to
build your own integration. This framework handles all the plumbing for parsing
XML requests received from the AutoVue Server, as well as constructing XML
responses sent back to the AutoVue server. This framework is provided so that you do
not have to implement your integration from scratch.

Figure 3–2 Internal Structure of the DMS Servlet

Sequence Flow

Architecture 3-3

The AutoVue Integration SDK bundles third-party Java libraries that are needed by the
framework. These libraries are also available for you to call from your own code.

Your integration is responsible for interacting with your DMS. Depending on what
type of SDK your DMS provides, such interaction can be as easy as calling your DMS
Java libraries.

3.3 Sequence Flow
When a user selects a document to view, the AutoVue server makes several requests to
the DMS servlet. The DMS servlet provides a response for each request. The scenario
of the exchanges established between the AutoVue server and the DMS servlet are
outlined in Figure 3–3, "Sequence diagram for file view" and can be summarized as
follows:

■ The AutoVue server asks for the public key (PK). This request is handled by
VueLink core.

■ The AutoVue server asks for the user name (CSI_UserName).

■ The AutoVue server asks for the document ID (DocID) of the selected document.
This is done through the Open action, which obtains the DocID from the DMS.

■ The AutoVue server asks for some properties of the document, such as document
name, document size and date of the last modification. The reason is that the
AutoVue server maintains a cache of the document and needs to know if it already
has the exact save version of the document in its cache. In which case, AutoVue
uses the cached copy rather than downloading the document again.

■ AutoVue fetches the document through the Download action.

Sequence Flow

3-4 Oracle AutoVue ISDK Technical Guide

Figure 3–3 Sequence diagram for file view

4

Integration Design 4-1

4Integration Design

Integration is generally composed of two components: the framework and your
specific integration implementation.

The framework is a set of classes that can be used by your integration implementation.
It provides you with all the needed functionalities to communicate with the AutoVue
server and defines the key concepts to implement your new integration.
Understanding these concepts is important for building accurate integrations. The
following is a list of the most important classes and packages to consider for your
integration design:

■ VueLink Servlet: Base class for your DMS servlet (this is your main class).

■ DMSAction Interface: Represents an execution thread that handles a particular
action (such as open, delete, download, save, and so on).

■ DMSGetPropAction Interface: Represents an execution that handles the request
for a specific property.

■ DocID Interface: Represents a DMS docID.

All these concepts are explained later in this section. For detailed information on these
classes and packages, refer to API Javadocs located in the <AutoVue Installation
Directory>/docs/javadocs folder.

The second component is your specific integration, which is the code you add on the
top of the framework in order to have a working integration. This is the main subject
of this document.

Your integration must create a DMS servlet that extends the VueLink class and
implements some actions and property actions.

Figure 4–1, "Your Integration" shows the minimum components you need to add to
your integration.

■ Your DMS Servlet class (extended from VueLink class)

■ Your DocID class (implements DocID interface)

■ Your ActionOpen class (implements DMSAction interface)

■ Your ActionDownload class (implements DMSAction interface)

■ Your ActionGetProperties class (implements DMSAction interface)

VueLink Class

4-2 Oracle AutoVue ISDK Technical Guide

Figure 4–1 Your Integration

4.1 VueLink Class
The framework provides the com.cimmetry.vuelink.Vuelink class which is an
HttpServlet and is configured through the servlet initialization file. The following lists
important functionalities that establish the dialog between AutoVue and your
integration.

■ It sets up the log manager for enabling logging at runtime without modifying the
application binary (log4j API).

■ It registers the DMS Context action and DMS actions classes provided by your
integration. Refer to Javadocs for more on the context package and the
propsactions package.

■ It parses the HTTP request using the HttpRequestPart class.

■ It uses the DMSXmlRequest class, to parse the XML document that contains the
actual request. Refer to Javadocs for more on the xml package.

■ It builds a query object (for example, DMSQuery object) containing all the
document information and Properties that your integration needs. Refer to
Javadocs for more on the query package.

Note: Your DMS servlet must extend this class.

ActionGetProperties Interface

Integration Design 4-3

■ It also constructs some additional DMSArguments from an HTTP part or from
some special data inside the XML document, such as the file content of a Save
request for example. Refer to Javadocs for more on the arguments package.

■ When DMSQuery is built, it calls the execute() method of the appropriate
DMSAction, and gets the result back or catches a VuelinkException when an error
occurs. Refer to Javadocs for more information on the defs package.

■ Finally, it uses the DMSXmlResponse class to construct the XML part of the HTTP
response before sending it back. Refer to Javadocs for more on the xml package.

4.2 DMSActions Interface
AutoVue sends requests to your integration and expects responses from it through the
framework interface. The framework implements a mechanism that routes requests to
your DMS servlet and constructs responses back to AutoVue. The framework provides
the com.cimmetry.vuelink.propsaction.DMSAction interface, which represents an
execution thread that handles a DMS query. Your integration must define one
DMSAction for each of the following DMS action types:

■ Open

■ Save

■ Delete

■ Download

■ GetProperties

■ SetProperties

4.3 ActionGetProperties Interface
This section provides information on the ActionGetProperties interface.

4.3.1 Single Class (Basic Monolithic)
This implementation handles the GetProperties() request using a single class called
ActionGetProperties that has one monolithic execute() method to handle all the
properties.

This class implements a DMSAction interface and is usually put in the actions
package. You must register this class in the web.xml descriptor file.

This implementation has at least two limitations:

■ Understandability problem: Too much code in one class, which makes it difficult
to understand and to maintain.

■ Extendibility problem: Since the class performs many functions, it is difficult to
extend it with new behavior.

4.3.2 Multiple Classes (Recommended)
One of the main objectives of the AutoVue Integration SDK is that your integration
must handle is GetProperties. This request covers a wide range of items.

One of the main objectives of the AutoVue Integration SDK is to make the framework
open and easy to extend. Accordingly, instead of having a single class that takes care of
the GetProperties() request, individual classes are provided that handle individual

DocID Interface

4-4 Oracle AutoVue ISDK Technical Guide

properties. Each individual class has its own execute() method. When a
GetProperties() request is received, the framework goes through the list of properties.
For each property, the framework checks if there is an appropriate action to handle it.
If such a class is found, its execute() method is called and its return property is saved.
Any properties that do not have a specific handler class is passed to a default class.

The framework provides a class for retrieving the individual classes that handle the
properties contained in the GetProperties() request. This class is called
com.cimmetry.vuelink.propsaction.ActionGetProperties and implements the
DMSAction interface. First, this class retrieves the class handler of the requested
property, then it calls its execute() method, and finally it returns an array of properties
containing the response.

Each individual class you provide to handle a specific property must realize the
DMSGetPropAction interface, then implement the execute() method. The execute()
method must make the request to the DMS, get the response, and then return it as an
array of properties.

The GetPropAction retrieves each property action using the init-parameters
mechanism. If the class is not registered, the framework looks for a property action
defined with a default name GetProp<prop name> in the DMS servlet location. If no
class is found, the GetPropDefault class is called. In this framework, the
GetPropDefault class is treated as any other property action. If GetPropDefault is not
found, an exception is thrown. Also, if the requested property is not handled in the
GetPropDefault class, an exception must be thrown.

4.4 DocID Interface
The DocID in this framework always refers uniquely to a specific document or file in
your DMS. You must be able to ask for the contents of the file by its DocID, and get a
uniquely-identified result. In a typical DMS, this can be a combination of the object ID
of the document that contains the file along with library name where this document is
stored.

For information on the minimum set of steps you need to follow in order to implement
the viewing functionality of files stored in your DMS using AutoVue, refer to
Chapter 5, "Implementing File View Functionality in your DMS."

5

Implementing File View Functionality in your DMS 5-1

5 Implementing File View Functionality in your
DMS

This chapter describes the minimum steps required to add file viewing capabilities
using AutoVue with your DMS. Once you have completed these steps, proceed to
Chapter 6, "Implementing Advanced Integration Functionality in Your DMS" for
information on adding functionality such as searching the DMS, browsing the DMS,
creating markups, performing conversions, and so on.

As mentioned in the AutoVue ISDK Overview, the AutoVue Integration SDK bundles a
sample integration called Sample Integration for Filesys DMS. The purpose of this
sample is to guide you in understanding the integration framework. This sample also
acts as a good starting point for building your own integration between AutoVue and
your DMS.

To learn more about the sample integration, refer to Appendix B, "Sample Integration
for Filesys."

The following sections describe the steps you need to follow in order to implement
basic file viewing functionality using AutoVue and your DMS. Each step includes an
excerpt of code to show how the Sample Integration for Filesys DMS is implemented. It
helps you to understand the sample integration. But for your own implementation of
the Integration SDK, it is highly recommended to follow the coding style in the
Appendix A, "Integration SDK Skeleton."

5.1 Creating Your Main DMS Servlet by Extending the VueLink Class
As discussed in Chapter 4, "Integration Design," the framework provides the VueLink
base class which is a servlet implemented in the com.cimmetry.vuelink package of the
SDK. The VueLink base class provides all the needed services to handle the requests
and responses from the DMS and AutoVue Server. In most cases when implementing
your DMS servlet, just deriving a new class from VueLink class is sufficient.

The following excerpt of code shows the implementation of the FilesysVuelink servlet
in the com.cimmetry.vuelink.filesys package:

Example 5–1 Implementation of the FilesysVuelink servlet

package com.cimmetry.vuelink.filesys;
import com.cimmetry.vuelink.*;
…
public class FilesysVuelink extends Vuelink {
…
}

Defining Your Unique Document Identifier by Implementing DocID Interface

5-2 Oracle AutoVue ISDK Technical Guide

For example, you can override the servlet's init() method to perform additional
initialization or override the doGet() method to return your own HTML code.

5.2 Defining Your Unique Document Identifier by Implementing DocID
Interface

AutoVue and DMS exchange several types of files, such as the base document, XRefs,
markups, renditions, and so on. To keep the correct mapping between the files and
their original copies in the DMS backend system, an identification mechanism is
needed. For this purpose, the framework provides the DocID interface. You must
implement your own class based on the DocID interface and it should be convertible
to a string.

Take note of the different concepts of the unique document identifier in DMS backend
system and the unique document identifier (DocID) in the Integration SDK. Usually,
DocID encapsulates the unique document identifier in DMS backend system and adds
more attributes.

Example 5–2 DocID class

package com.cimmetry.vuelink.defs;
/** */
public abstract class DocID implements java.

In the Sample Integration for Filesys DMS, the FilesysDMSDocID class is coded in the
backend package (com.cimmetry.vuelink.filesys.backend). The FilesysDMSDocID class
extends the DocID abstract class and builds a unique identifier for each file.

Inside the Filesys DMS backend system, the relative path for each file to the repository
root folder is unique and can be used as a document identifier. When constructing a
FilesysDMSDocID object, the m_id member is set to the relative path of a file, for
example, /2D/AutoCAD.dwg/AutoCAD.dwg(1)/AutoCAD.dwg which is relative to
the RootDir defined in web.xml.

Example 5–3 FilesysDMSDocID class

package com.cimmetry.vuelink.filesys.backend;
/** */
public class FilesysDMSDocID extends DocID implements DMSDefs{
…

5.3 Creating a GetProperty action to return User Name
The AutoVue server sends a GetProperties request asking for CSI_UserName. The
implementation of the class is responsible for returning it. It is similar to the

Note: It is helpful to think of the backend class as a wrapper around
your DMS API. Implementing the DMSBackend interface is optional.
To learn more about the backend package, refer to Appendix B,
"Sample Integration for Filesys."

Note: It is recommended that the DocID size should be less than 2KB
and should not contain a variable component.

Creating an Open Action class that returns your DocID

Implementing File View Functionality in your DMS 5-3

implementation of CSI_DocName described in Section 5.6, "Creating a Get Property
Action to Return Document Name."

5.4 Creating a class to implement DMSBackend interface
There is a DMSBackend interface provided by the VueLink core that has a connect()
API that must be implemented. This implementation class is needed in order to avoid
a deployment warning being thrown by the GenericContext class. At the beginning
stage of your integration development, you can provide an empty implementation for
the connect() method in your implementation class and register your DMSBackend
implementation class in the web.xml file.

During the development phase, you can also include methods that handle
communication with the backend DMS in your DMSBackend implementation class.

After you create your own context class as described in Section 6.12, "Creating Your
Context," you must overwrite the getBackendAPI() method of the GenericContext
class in order to retrieve your own DMSBackend implementation class. You must also
overwrite the getBackendSession() method of the GenericContext class in order to use
the connect() method of your DMSBackend implementation class. Overwriting this
method allows AutoVue to re-use existing sessions with your backend DMS system.
For information on how to implement these classes, refer to the following ISDK
Skeleton implementation classes:

com.mycompany.autovueconnector.backend.DMSBackendImp
com.mycompany.autovueconnector.session.DMSBackendSessionImp

5.5 Creating an Open Action class that returns your DocID
When you select a document to view, the first request the AutoVue server sends is an
open request asking for the DocID of this document. You must create the ActionOpen
class in your integration by implementing the DMSAction interface to handle the open
request. The framework automatically finds your class that handles this request and
executes it. You must also implement the execute() method which returns the unique
DocID for the document being viewed.

Usually the unique document identifier for the DMS backend system can be retrieved
from the Original URL of the open request sent by the AutoVue server. However, your
Integration SDK might also need to call DMS backend system's API to get the unique
document identifier or other document attributes in order to construct your
Integration SDK's. The original URL can be any of the following formats:

■ Standard URLs (example: stating by ftp://, http://, https://...).

■ Server protocol (example: server://@1/folder/file).

■ Local file (example: upload://C:\folder\file).

In the Sample Integration for Filesys DMS, as shown in the following excerpt of code,
the ActionOpen class realizes the DMSAction interface and implements the execute()
method. The execute() method returns the DocID obtained from openFile() method of
the DMSBackend class that retrieves and constructs FilesysDMSDocID using relative
file path and other attributes. Although implementing the DMSBackend interface is
optional, the Sample Integration for Filesys implements this interface as an example to
show how you can use it in your own integration.

Example 5–4 Sample Integration for Filesys DMS code snippet

package com.cimmetry.vuelink.filesys.actions;

Creating an Open Action class that returns your DocID

5-4 Oracle AutoVue ISDK Technical Guide

…
public class ActionOpen implements DMSAction<FilesysContext>, DMSDefs{
 …
 public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 …
 // open action returns the DocID
 DocID docID = context.getBackendAPI().openFile
}

If you do not place your DMSAction classes in the same package as your DMS Servlet,
the framework retrieves the ActionOpen class from the web.xml descriptor file. In this
case, each action class should be registered in this file as an init-parameter. The
ActionOpen class has dms.action.Open as a parameter name and its value should be a
fully qualified class name. In the case of the Sample Integration for Filesys DMS, this is
com.cimmetry.vuelink.filesys.actions.ActionOpen as the parameter value. The
FilesysVulinkServlet uses this init parameter to locate, register, and instantiate the
ActionOpen class.

Example 5–5 Parameter dms.action.Open

<init-param>
 <param-name>dms.action.Open</param-name>
 <param-value>com.cimmetry.vuelink.filesys.actions.ActionOpen

For more information on the behavior of ActionOpen class, it is recommend (1) closely
examine the source code and (2) run the Filesys project in IDE in debug mode, set
breakpoint as shown in the following figure, and then follow the execution step by
step. This will give you more insight into the behavior of this class.

Figure 5–1 Set breakpoint

In the Sample Integration for Filesys DMS, the ActionOpen class relies on the
openFile() method of the FilesysDMSBackendImp class to obtain the DocID of a file.
This method has two parameters:

■ The session information to connect to the backend.

■ The information needed to open the file (for example, Filesys DMS backend
system and name of the file).

Example 5–6 Open the file

public DocID openFile(DMSBackendSession session, Hashtable<String, String> _
params)throws VuelinkException {

This method returns the DocID of the file for Filesys. If it fails, it throws a Vuelink
exception.

Creating a Get Property Action to Return Document Name

Implementing File View Functionality in your DMS 5-5

The openFile() method parses the original URL available from the open request to get
the unique document identifier (the relative file path), version and other parameters
necessary to construct the DocID for Filesys DMS. Then it builds the
FilesysDMSDocID to return back to the ActionOpen class. There is additional code in
openFile() method to construct data members that supports Oracle Enterprise Visual
Framework (OEVF_, versioning and rendition. The concept of OEVF, versioning, and
rendition are discussed in Section 6.18, "Implementing Oracle Enterprise Visual
Framework Support."

Example 5–7 openFile() Method

package com.cimmetry.vuelink.filesys.backend;
…
public DocID openFile(DMSBackendSession session, Hashtable<String, String> _
params) throws VuelinkException { // get parameters
 Hashtable<String, String> params = _params;
 FilesysDMSDocID docID = null;
 String oevf = "oevf://";
 String origURL = params.get("origURL");
 String version = params.get("Version");
 …
 String relPath = null; // relative file path
 String aID = DMSUtil.getAssetID(origURL); // aID and wID are for OEVF
 String wID = DMSUtil.getWorkflowID(origURL);
 if(origURL.startsWith(oevf)) {
 …
 }else{
 relPath = origURL;
 }

For more information, examine the code and use the debugger to learn more about the
actual behavior of this class.

5.6 Creating a Get Property Action to Return Document Name
AutoVue sends several GetProperties requests to know if it already has the most recent
copy of the document in its cache. The first request sent is for the name of the file
identified by a DocID. This is done through the CSI_DocName property.

To handle get property requests, you have two options: you can either define a single
class called ActionGetProperties that implements DMSAction or you can have
separate classes that implement the DMSGetPropAction interface. The second
approach is recommended because it reduces code complexity in a single class and
improves readability, but each class needs to be registered in web.xml descriptor file if
it is not named as "GetProp<prop name>" and located in the same package as your
DMS servlet class.

Notice that we need to pass in a type parameter (any context that implements the
DMSContext interface or extends the GenericContext class) when using DMSAction

Note: When the number of the version is not provided, the Filesys
DMS system returns the latest version of this document.

Note: The string value returned for CSI_DocName should include a
file extension.

Creating a Get Property Action to Return Document Name

5-6 Oracle AutoVue ISDK Technical Guide

and DMSGetPropAction interface, before your Integration SDK implements your own
Context class as described in Section 6.12, "Creating Your Context," you can use
GenericContext instead.

If you choose the first approach, use the following excerpt of code to define your own
ActionGetProperties class. You can retrieve the list of properties from the query object
passed as a parameter to the execute() method. You can then loop through the
properties list and retrieve its value from your DMS. For more information refer to
Section 4.3, "ActionGetProperties Interface."

Usually, the ActionGetProperties class is put in the same actions package as other
action classes. Note that you must register this class in the web.xml descriptor file as
long as it is not located in the same package as your DMS servlet class.

Example 5–8 ActionGetProperties class

package com.myisdk.actions;
/** */
public class ActionGetProperties implements DMSAction<GenericContext>, DMSDefs{
 …
 public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 …
 Property[] props = query.getProperties();
 String propName = props[i].getName();

 // GetProperty action returns attribute values
 If (propName.equals(DMSProperty.CSI_DocName) {
 … // return doc name
 } else if(propName.equals(DMSProperty.CSI_IsMultiContent) {
 … // return is multi content
 } else if(propName.equals(DMSProperty.CSI_DocDateLastModified) {
 … // return is date last modified
 } else if(propName.equals(DMSProperty.CSI_DocSize) {
 … // return is doc size
 }
 …

For the second approach, as demonstrated in the Sample Integration for Filesys DMS,
separate classes are used to implement the DMSGetPropAction interface and they are
located in propactions package. Additionally, a GetPropDefault class is implemented
to process properties that are not handled by separate classes.

The following excerpt of code illustrates the implementation of the GetPropCSI_
DocName class in the Sample Integration for Filesys DMS. It gets the document name
from the GetFilesysProperty class, and then returns it to the AutoVue server.

Example 5–9 GetPropCSI_DocName class

package com.cimmetry.vuelink.filesys.propactions;
/** */
public class GetPropCSI_DocName extends GetFilesysProperty
 implements DMSGetPropAction<FilesysContext> {
 …
 public DMSProperty execute(FilesysContext context, DMSSession session,
 DMSQuery query, DMSArgument[] args, Property property)
 throws VuelinkException {

Creating a GetProperty action to return Document Date Last Modified and Size

Implementing File View Functionality in your DMS 5-7

 final FilesysDMSDocID docID = new
 FilesysDMSDocID().String2DocID(query.getDocID());
 …
 DMSProperty attrs = getAttrs(context.getBackendAPI(),
 context.getBackendSession(session, query),query, docID);
 DMSProperty retProp = new DMSProperty(Property.CSI_DocName,
 attrs.getFirstChildWithName("DocName").getValue());
 m_logger.info("Got doc name: " +
 (String)attrs.getFirstChildValue("DocName"));
 return retProp;
 }
}

As explained in Section 4.3, "ActionGetProperties Interface," each individual property
class realizes the framework interface DMSGetPropAction by implementing the
execute() method. Given a DocID, the getAttrs method returns a Hashtable of
attributes of the corresponding document. One of these attributes is the document
name, which is returned as a DMSProperty object. Refer to Appendix B, "Sample
Integration for Filesys" for information on implementing the GetFilesysProperty class.

To allow the framework to locate the register and instantiate the GetPropCSI_
DocName, we must register the class in the web.xml file. As illustrated in the
following code, this class is registered with the parameter name dms.getprops.CSI_
DocName and the parameter value
com.cimmetry.vuelink.filesys.propactions.GetPropCSI_DocName.

Example 5–10 Registering GetPropCSI_Name class

<init-param>
 <param-name>dms.getprops.CSI_DocName</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_
 DocName</param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

5.7 Creating a GetProperty action to return Document Date Last Modified
and Size

The AutoVue server sends a second GetProperties request asking for the date of the
last modification and the size of the document (for example, CSI_
DocDateLastModified and CSI_DocSize properties). The returned data is formatted by
default as dow mon dd hh:mm:ss zzz yyyy
(http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html#toString
%28%29). The document size is returned in bytes
(http://docs.oracle.com/javase/6/docs/api/java/io/File.html#length%28%29).

Note: For the GetPropCSI_DocName property class, we have chosen
a different name from the one suggested by the framework. The
default name has the format GetProp<property name>. Note that in
this case we decided to name the class GetPropCSI_DocName.

Note: This is an important step and should not be skipped.

Creating a Download action to return Document Content

5-8 Oracle AutoVue ISDK Technical Guide

The implementation of the class responsible for returning these properties is very
similar to the CSI_DocName presented in Section 5.3, "Creating a GetProperty action
to return User Name."

Refer to Section 5.6, "Creating a Get Property Action to Return Document Name" for
information on how to define your own ActionGetProperties class.

5.8 Creating a Download action to return Document Content
The AutoVue server checks its cache to see whether it has a more recent copy of the
document by comparing its time stamp against the properties retrieved in the previous
steps. If the copy in the cache is older than the copy in the DMS, the AutoVue server
tries to fetch the document from the DMS backend system by calling the Download
Action.

You must create the ActionDownload class in your integration by implementing
DMSAction interface. You must also implement the execute() method which returns
FileInputStream object. The framework automatically streams the file content back to
the AutoVue server.

The following excerpt of code from the Sample Integration for Filesys DMS presents
the implementation of the ActionDownload class. Note that like any action class, this
class realizes the DMSAction class and implements the execute() method. Using the
DocID of the document, the execute() method calls the checkout() method, downloads
the file as FileInputStream object, and then returns the stream. The rest is done by the
Vuelink class before passing it back to the AutoVue Server. If the download operation
fails, a VuelinkException is thrown.

Example 5–11 ActionDownload class

package com.cimmetry.vuelink.filesys.actions;
/** */
public class ActionDownload implements DMSAction<FilesysContext>, DMSDefs{
 …
 public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 …
 final DocID docID = new FilesysDMSDocID().String2DocID(query.getDocID());
 // checkout the instance file of the document
 final FileInputStream doc =
…
}

The action download is registered in the web.xml file, as shown in the following
excerpt of code.

Example 5–12 Register ActionDownload class

<init-param>
 <param-name>dms.action.Download</param-name>
 <param-value>com.cimmetry.vuelink.filesys.actions.ActionDownload</param-value>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

Implementing Remaining Actions and Registering in web.xml

Implementing File View Functionality in your DMS 5-9

This checkout() method gets a copy of a file from the DMS backend system by
invoking the Filesys DMS getFile() method. It has two parameters:

■ The session information to connect to the DMS

■ The DocID of the file to be downloaded

Example 5–13 checkout() method

package com.cimmetry.vuelink.filesys.backend;
…
public FileInputStream checkout(DMSBackendSession session, DocID docID) {
 DocInfo fsDocID = buildDocInfo(session,docID);
 FileInputStream fis = null;
 try {
 fis = new FileInputStream(m_filesysInfo.getFile(fsDocID));
 } catch (FileNotFoundException e) {
 System.out.println("File not found" + fsDocID.getName());
 }catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
 }
 return fis;

5.9 Implementing Remaining Actions and Registering in web.xml
This section explains how to implement the DMSAction interface to create a skeleton
for the following action classes in your integration:

■ ActionSave

■ ActionSetProperties

For each action, you must implement the execute() method. At this point, you can
leave the execute() method empty as it does not serve a function at the moment.
Implementing these actions is optional and is explained in more detail in the next
section. For example, if you plan to add delete functionality to your integration, you
can refer to Section 6.11, "Implementing File Delete Action."

Review the following code excerpt:

Example 5–14 ActionDelete class

public class ActionDelete
 implements DMSAction<FilesysContext>, DMSDefs {
 public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 // TODO…
 }
}

As with ActionOpen and ActionDelete, if you place ActionSave/ActionSetProperties
in the same package as your DMS Servlet, the framework automatically finds them.
Otherwise, you need to register them in web.xml. In the case of the sample integration
for Filesys, these actions are under the actions package and therefore has to be
registered in web.xml.

Implementing Remaining Actions and Registering in web.xml

5-10 Oracle AutoVue ISDK Technical Guide

Example 5–15 Register ActionDelete class

<init-param>
 <param-name>dms.action.Delete</param-name>
 <param-value>com.cimmetry.vuelink.filesys.actions.ActionDelete</param-value>
</init-param>

6

Implementing Advanced Integration Functionality in Your DMS 6-1

6 Implementing Advanced Integration
Functionality in Your DMS

This chapter describes optional functionality that you can choose to add to your
integration. Each step includes an excerpt of code to show how the Sample Integration
for Filesys DMS is implemented. It is helpful to understand the sample integration.
However, for your own implementation of Integration SDK, it is highly recommended
to follow the coding style in the Integration SDK Skeleton. For example, the
Integration SDK Skeleton makes it a standard that all property retrieving methods in
the DMSBackendImp class return DMSProperty object instead of the different object
types returned by the FilesysDMSBackendImp class. So that, in most cases, the
property action classes in Skeleton do not need to reprocess the returned objects from
methods in DMSBackendImp class again.

6.1 Handling Document Attributes
One single GetProperties request from the AutoVue server can ask for multiple
properties of a document. As a result, it is recommended to get the whole set of
attributes from the DMS the first time they are needed, and then save it to be reused
for getting other properties in that request.

In the Integration SDK Skeleton, this functionality is included inside the
GetPropDefault class. The listAllProperties() method of the backend implement class is
responsible for retrieving the properties for the first time and then saving it to the
query object for one request.

Example 6–1 GetPropDefault class

package com.mycompany.autovueconnector.propactions;
public class GetPropDefault implements DMSGetPropAction<DMSContextImp>, DMSDefs {
 …
 public DMSProperty execute(…) throws VuelinkException{
 …
 DMSProperty attrs = (DMSProperty)query.getQueryData("attrs");
 ISDKDocID docID = new ISDKDocID().String2DocID(query.getDocID());
 if (attrs == null){
 attrs = be.listAllProperties(beSession, docID); //retrieve for the first
 time
 if(attrs != null){
 query.setQueryData("attrs", attrs); //save to be reused

Note: The following sections assume that you have already
implemented file view functionality in your DMS as outlined in
previous chapter.

Handling Document Attributes

6-2 Oracle AutoVue ISDK Technical Guide

 }
 }
 …
 }
}

Example 6–2 listAllProperties() method

package com.mycompany.autovueconnector.backend;
public DMSProperty listAllProperties(
 DMSBackendSessionImp beSession,
 DocID docID
) throws Exception {
 Vector<DMSProperty> props = new Vector<DMSProperty>();
 // TODO Retrieve all properties's name and value pair;
 // TODO Construct DMSProperty object for each property like
 // new DMSProperty(name, value);
 // For example,
 // new DMSProperty(DMSProperty.CSI_DocName, docName);
 // TODO Add these DMSProperty objects to the vector "props"
 if(props == null || props.isEmpty())
 return null;
 // Need to pass an array (of DMSProperty) for the second parameter when
 // constructing the return DMSProperty
 DMSProperty [] aPL = new DMSProperty[1];
 return new DMSProperty(DMSProperty.CSI_ListAllProperties, props.toArray(aPL));
}

In the Sample Integration for Filesys, a separate GetFilesysProperty class is
implemented to fulfill the same task.

Example 6–3 GetFilesysProperty class

package com.cimmetry.vuelink.filesys.propactions;
/** */
public class GetFilesysProperty implements DMSDefs {
 …
 protected DMSProperty getAttrs(final FilesysDMSBackend be,DMSBackendSession
 beSession,final DMSQuery query, DocID docID) throws VuelinkException {
 …
 DMSProperty attrs = (DMSProperty) query.getQueryData("attrs");
 if (attrs == null) {
 attrs = be.getAttributes(beSession, docID);
 m_logger.info("got document attributes " + attrs);
 query.setQueryData("attrs", attrs);
 }
 return attrs;
 }
}

Handling Document Attributes

Implementing Advanced Integration Functionality in Your DMS 6-3

The getAttributes() method of the Filesys DMS backend class first asks the Filesys
DMS system to give it a Hashtable<String, String> that stores the name and value
pairs of a list of attributes. As shown in Example 6–4, "DMSProperty class", this is
done by calling the m_filesysInfo.getAttributes() method by passing the DocID of the
document.

The list of attributes retrieved by m_filesysInfo.getAttributes() method includes:

■ DocName: The name of the file. The value is a String.

■ DateLastModified: The date the file was last modified. The value is as a
java.util.Date object.

■ DocSize: The size of the file.

■ DocFormat: Document format (for example, "document" or "folder"). The value is
an Integer.

■ Version: The version number of a document. The value is a String.

■ VersionsNumber: The number of versions of a document. The value is a String.

■ path: The absolute path for the file in Filesys DMS. The value is a String.

Then it builds a DMSProperty class for each attribute and puts them into a
Vector<DMSProperty> object.

Finally, it converts the vector to an array and wrap it as a DMSProperty object to
return.

Example 6–4 DMSProperty class

package com.cimmetry.vuelink.filesys.backend;
…
public DMSProperty getAttributes(DMSBackendSession session, DocID docID) {
 DocInfo fsDocID = buildDocInfo(session,docID);
 Vector<DMSProperty> result = new Vector<DMSProperty>();
 try{
 Hashtable<String,String> attrs = m_filesysInfo.getAttributes(fsDocID);
 Enumeration<String> keys = attrs.keys();
 while (keys.hasMoreElements()) {
 String key = keys.nextElement();
 String value = attrs.get(key);
 if (value != null && value.split(";").length > 1) {
 // multi value
 result.add(new DMSProperty(key,value.split(";")));
 }else {
 result.add(new DMSProperty(key,value)); //single value
 }
 }

Note: The GetFilesysProperty class is not a property class and does
not realize the DMSProperty interface or implement the execute()
method. As a result, we do not need to register it in the web.xml file.
This class supports all the property classes that use the document
attributes. This class gets the attributes from the DMS backend system
by means of the () method of the Filesys DMS backend class (for
example, FilesysDMS class). One GetProperties request from AutoVue
server can ask for multiple properties, thus GetFilesysProperty class
saves the retrieved attributes from the DMS to be reused for getting
multiple properties in one request.

Returning External References (XRefs)

6-4 Oracle AutoVue ISDK Technical Guide

 }catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
 }
 DMSProperty[] answer = new DMSProperty[0];
 answer = result.toArray(answer);
 return new DMSProperty(DMSProperty.CSI_ListAllProperties,answer);
}

6.2 Returning External References (XRefs)
Chapter 5, "Implementing File View Functionality in your DMS" discussed the case of
viewing a simple document composed of a single file. Documents, however, are often
compound and may have many associated files or External Reference files (XRefs). In
this case, the AutoVue server asks for XRefs by passing CSI_XREFS within the
GetProperties request. The response to this request is provided by GetPropCSI_XREFS,
the XRefs property class.

In the Sample Integration for Filesys DMS, since GetPropCSI_XREFS is a property
class it realizes the DMSGetPropAction and implements the execute() method. The
following code shows all the imported classes from the AutoVue Integration SDK
framework. All these classes are referenced in the execute() method parameters. Refer
to Appendix B, "Sample Integration for Filesys" for more information on these
parameters.

Example 6–5 GetPropCSI_XREFS property class

package com.cimmetry.vuelink.filesys.propactions;
…
import com.cimmetry.vuelink.defs.DocID;
import com.cimmetry.vuelink.defs.VuelinkException;
import com.cimmetry.vuelink.filesys.FilesysContext;
import com.cimmetry.vuelink.filesys.backend.FilesysDMSBackend;
import com.cimmetry.vuelink.filesys.backend.FilesysDMSDocID;
import com.cimmetry.vuelink.property.Property;
import com.cimmetry.vuelink.propsaction.DMSGetPropAction;
import com.cimmetry.vuelink.propsaction.DMSProperty;
import com.cimmetry.vuelink.propsaction.arguments.DMSArgument;
import com.cimmetry.vuelink.query.DMSQuery;
import com.cimmetry.vuelink.session.DMSBackendSession;
import com.cimmetry.vuelink.session.DMSSession;
public class GetPropCSI_XREFS implements DMSGetPropAction {

The following excerpt of code shows how the execute() method builds a CSI_XREFS
DMSProperty from the list of XRef files returned by calling the method of the
FilesysDMS backend class. The CSI_XREFS DMSProperty is returned to the VueLink
servlet which provides the response to the AutoVue server.

Example 6–6 How execute() method builds a CSI_XREFS DMSProperty

public DMSProperty execute(FilesysContext context, DMSSession session,
 DMSQuery query, DMSArgument[] args, Property property)
 throws VuelinkException {
 final DocID docID = new FilesysDMSDocID().String2DocID(query.getDocID());
 DMSProperty retProp = new DMSProperty(Property.CSI_XREFS,
 buildXREFSProperty(((FilesysDMSBackend)context.getBackendAPI()),
 context.getBackendSession(session, query), docID));
 m_logger.debug("got the xrefs property: " + retProp);
 return retProp;
}

Returning External References (XRefs)

Implementing Advanced Integration Functionality in Your DMS 6-5

The dmsListXRefs() method of the Filesys DMS backend class talks to the Filesys DMS
backend system and gets the list of the XRef file as vector. For each element of the
vector, it builds a DMSProperty as specified in the CORE API specification.

The difference between the Integration SDK skeleton and the Sample Integration for
Filesys DMS is that the dmsListXRefs() method of the Skeleton DMS backend class
returns the final DMSProperty object directly instead of returning a list of DocID and
construct in the GetCSI_XREFS class.

Example 6–7 buildXREFSProperty class

private Property[] buildXREFSProperty(FilesysDMSBackend be, DMSBackendSession
 beSession, DocID docID) {
 // Gets list of xrefs from DMS
 Vector<DocID> xrefsDocIds = be.dmsListXRefs(beSession, docID);
 DMSProperty[] xrefs = new DMSProperty[xrefsDocIds.size()];
 for (int i = 0; i < xrefsDocIds.size(); i++) {
 DMSProperty xrefProp[] = new DMSProperty[2];
 xrefProp[0] = new DMSProperty(Property.CSI_DocID,
 ((FilesysDMSDocID)xrefsDocIds.get(i)).DocID2String());
 xrefProp[1] = new DMSProperty(DMSProperty.PROP_NAME,
 ((FilesysDMSDocID)(xrefsDocIds.get(i))).getName());
 xrefs[i] = new DMSProperty(Property.PROP_XREF,xrefProp);
 }
 m_logger.debug("got the list of xrefs : " + xrefs);
 return xrefs;
}

The GetPropCSI_XREFS is registered in the web.xml file as shown in the following
code excerpt.

Example 6–8 Register GetPropCSI_XREFS

<init-param>
 <param-name>dms.getprops.CSI_XREFS</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_XREFS
 </param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this method.

This method asks the Filesys DMS for the list of XRefs associated with a given
document by providing its DocID. After it receives the vector of XRef files, it builds a
DocID for each XRef. Finally, it returns the list of DocIDs as a vector.

For more information, examine the code and use the debugger to learn more about the
behavior of this method.

Example 6–9 dmsListXRefs() method

public Vector<DocID> dmsListXRefs(DMSBackendSession session, DocID docID)
{
 FilesysDMSDocID fsDocID = (FilesysDMSDocID) docID;
 …
 xrefsInfos = m_filesysInfo.listXRefs(fsDocID);
 xrefs = new Vector<DocID>();
 …
 for (int i = 0 ; i < xrefsInfos.size() ; ++i) {
 xrefs.add(new FilesysDMSDocID((DocInfo)xrefsInfos.get(i)));
 }

Handling Markups

6-6 Oracle AutoVue ISDK Technical Guide

 return xrefs;
}

6.3 Handling Markups
When users view a markup, the AutoVue server asks the DMS for the list of markups
associated with the document. The server does so by sending a GetProperties request
for the CSI_Markups property. The GetPropCSI_Markups class handles the response
for the request. The response consists of two parts: a GUI response and a Markup
response.

6.3.1 GUI Response
When you develop an integration based on ISDK you can control some aspects of the
AutoVue UI such as the Markup Open and Save dialogs. AutoVue constructs UI
elements in these dialogs based on your response to the Markup GUI.

The GUI part is composed of three sections: Display Options, Edit, and Display.

The Display Options specifies whether or not users are allowed to perform particular
operations on markups. In the Sample Integration for Filesys, the following excerpt of
code builds several properties and sets their value to true or false. Each of these
properties is dedicated to a particular operation. For instance, in the property
AllowDelete (which allows users to delete markups), Markups is set to true. The last
line of the code shows how all the properties are grouped in a single property labeled
DisplayOptions.

Example 6–10 Code excerpt that builds several properties

package com.cimmetry.vuelink.filesys.propactions;
public class GetPropCSI_Markups extends GetFilesysProperty implements
 DMSGetPropAction<FilesysContext> {
 …
 private DMSProperty[] buildMarkupGui(FilesysDMSBackend be,
 DMSBackendSession beSession, DocID docID) {
 DMSProperty guiProps[] = new DMSProperty[3];
 DMSProperty DispOptArr[] = new DMSProperty[7];
 DispOptArr[0] = new DMSProperty("AllowDelete","true");
 DispOptArr[1] = new DMSProperty("ShowPreviousVersions","true");
 DispOptArr[2] = new DMSProperty("AllowNew","true");
 DispOptArr[3] = new DMSProperty("AllowImport","false");
 DispOptArr[4] = new DMSProperty("AllowExport","false");
 DispOptArr[5] = new DMSProperty("AllowNewLayers","false");
 DispOptArr[6] = new DMSProperty("AllowModifyLayers","false");
 guiProps[0] = new DMSProperty("DisplayOptions", DispOptArr);

The Edit section specifies the GUI elements we want to use to populate the Save
Markup dialog. The Save Markup dialog contains two GUI elements: an edit box and a
drop-down list.

For example, if you want AutoVue to display the dialog as shown in Figure 6–1, "Save
Markup dialog", you must define the input box and list UI elements.

The label of the edit box is Name and its control ID is CSI_DocName.

The label of the drop-down list is Markup Type and its control ID is CSI_MarkupType.
The drop-down list contains three selections: normal, master and consolidated, with
the default value set to normal. AutoVue sets the default value to the one specified in
GUIElementCombo class.

Handling Markups

Implementing Advanced Integration Functionality in Your DMS 6-7

The label of the second drop-down list is Read-Only and its control ID is CSI_Doc_
ReadOnly. The drop-down list contains two options: false (default value) and true.

Figure 6–1 Save Markup dialog

In the Sample Integration for Filesys, the following excerpt of code builds the
GUIElementCombo property, which specifies a drop-down list that contains three
selections: normal, master and consolidated. The default selection is set to normal.
This is done by passing normal as the third parameter when constructing
GUIElementCombo class. Note that the last line of code attaches the
GUIElementCombo property in a DMSProperty labeled DMSProperty.PROP_GUI_
EDIT.

The code for building the GUIElementCombo property for Ready-Only is similar and
is described in detail in Section 6.14, "Implementing Read-Only Markups."

Example 6–11 Code excerpt to build GUIElementCombo property

String comboVals[] = new String[3];
comboVals[0] = DMSProperty.CSI_MarkupType_Normal;
comboVals[1] = DMSProperty.CSI_MarkupType_Master;
comboVals[2] = DMSProperty.CSI_MarkupType_Consolidated;
EditArr[1] = new GUIElementCombo(DMSProperty.CSI_MarkupType, "Markup Type",
DMSProperty.CSI_MarkupType_Normal, comboVals, false);
…
guiProps[2] = new DMSProperty(DMSProperty.PROP_GUI_EDIT,EditArr);

The Display section specifies properties to be displayed in tabular format inside the
Markup Files dialog when the Open Markups action is selected from the AutoVue
GUI.

Figure 6–2 Markup files dialog

Handling Markups

6-8 Oracle AutoVue ISDK Technical Guide

In the Sample Integration for Filesys, the following code defines five GUI elements
that compose the Markup Files dialog: document name, markup type, document size,
the version of the document, and whether the markup is read-only or can be modified.
Each of these elements is encapsulated as a DMSProperty labeled, CSI_DocName, CSI_
MarkupType, CSI_DocSize, CSI_Version, and Read-Only. Finally all these properties
are attached to a DMSProperty.PROP_GUI_DISPLAY object.

Example 6–12 Code excerpt defining GUI elements for the Markup Files dialog

DMSProperty DispArr[] = new DMSProperty[5];
DispArr[0] = new DMSProperty(Property.CSI_DocName,"20");
DispArr[1] = new DMSProperty(Property.CSI_MarkupType,"15");
DispArr[2] = new DMSProperty(Property.CSI_DocSize,"10");
DispArr[3] = new DMSProperty(Property.CSI_Version,"10");
DispArr[4] = new DMSProperty("Read-Only","6");
guiProps[1] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAY, DispArr);

6.3.2 Markup Response
The Markup response specifies the list of markups associated with the current
document. Each element of the list must be encapsulated in a Markup DMSProperty.
For more information, refer to GetPropCSI_Markups.java class found inside Filesys
package for the actual format of the Markup response. The list of markups is returned
by the method of the FilesysDMSBackendImp class.

In the Sample Integration for Filesys, the following code excerpt of the Markup
response shows all the required information for each markup. This information
includes the DocID, the name, the type and the size of the markup, the version of its
base document and whether it is read-only or not. Each piece of information is built
into its own DMSProperty object, respectively labeled CSI_DocID, CSI_DocName,
CSI_MarkupType, CSI_DocSize, CSI_Version and CSI_DocReadOnly. An additional
DMSProperty object is needed for the Read-Only attribute. Note that a single
DMSProperty property labeled PROP_MARKUP is stored for each markup.

Example 6–13 Code excerpt of the Markup response

private Property[] buildMarkupProperty(FilesysDMSBackend be, DMSBackendSession
 beSession, DMSQuery query) throws VuelinkException{
 final DocID docID = new FilesysDMSDocID().String2DocID(query.getDocID());
 DMSProperty guiProps[] = buildMarkupGui(be, beSession, docID);
 //Gets the list of markups from the DMS
 Vector mrkDocIds = be.dmsListMarkups(beSession, docID);
 DMSProperty markup[] = new DMSProperty[mrkDocIds.size()+1];
 markup[0] = new DMSProperty(Property.PROP_GUI,guiProps);
 for (int i = 0; i < mrkDocIds.size(); i++)
 {
 DMSProperty mrkProp[] = new DMSProperty[7];
 DMSProperty mrkProp[] = new DMSProperty[7];
 mrkProp[0] = new DMSProperty("CSI_DocID",
 be.buildDocID(beSession,mrkDocIds.get(i)).DocID2String());
 mrkProp[1] = new DMSProperty("CSI_DocName", mrkDocIds.get(i).getName());
 …
 mrkProp[2] = new DMSProperty(Property.CSI_MarkupType, mrkType);
 mrkProp[3] = new DMSProperty(Property.CSI_DocSize,

Note: All GUI properties (for example, DisplayOptions, Display and
Edit) must be attached to a DMSProperty object with PROP_GUI
identification.

Handling Renditions

Implementing Advanced Integration Functionality in Your DMS 6-9

 mrkDocIds.get(i).getFile().length()+"");
 DMSProperty attrs = getAttrs(be, beSession,query, docID);
 mrkProp[4] = new DMSProperty(Property.CSI_Version,
 attrs.getFirstChildValue("Version"));
 mrkProp[5] = new DMSProperty(Property.CSI_DocReadOnly,
 new Boolean(bReadOnly).toString()); // This is needed for AutoVue Server
 mrkProp[6] = new DMSProperty("Read-Only",
 new Boolean(bReadOnly).toString());
 markup[i+1] = new DMSProperty(DMSProperty.PROP_MARKUP,mrkProp);
 }
 …
 return markup;
}

6.3.2.1 Bundling PROP_GUI and PROP_MARKUP
Finally, the execute() method bundles the PROP_GUI and PROP_MARKUP properties
in a CSI_Markups property and returns it to the VueLink servlet.

The registration of the GetPropCSI_Markups class is done as indicated below.

Example 6–14 Registration of GetPropCSI_Markups class

<init-param>
 <param-name>dms.getprops.CSI_Markups</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_Markups
 </param-value>

For more information, examine the code and use a debugger to learn more about the
behavior of this method.

6.3.2.2 dmsListMarkups() method
The dmsListMarkups() method in FilesysDMSBackendImp class asks the Filesys DMS
backend system for the list of the Markups associated with a given document by
providing its DocID.

Example 6–15 dmsListMarkups() method

package com.cimmetry.vuelink.filesys.backend;
…
public Vector<DocInfo> dmsListMarkups(DMSBackendSession session, DocID docID) {
 try{
 DocInfo fsDocID = buildDocInfo(session, docID);
 return m_filesysInfo.listMarkups(session,fsDocID);
 }catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
 return null;
 }
}

6.4 Handling Renditions
The AutoVue server allows you to view hundreds of file formats. The viewed files are
often large and time-consuming. To enhance performance, AutoVue generates files in a

Note: For saving and deleting Markups, refer to Section 6.10,
"Implementing File Save Action" and Section 6.11, "Implementing File
Delete Action," respectively.

Handling Renditions

6-10 Oracle AutoVue ISDK Technical Guide

lightweight format called streaming files. Streaming files contain display information
for the native file and are quickly accessed by AutoVue. AutoVue can also generate
renditions such as TIFF, PDF and BMP format.

When a user wants to view a file, the AutoVue server sends several requests to the
DMS through the integration interface. One of these requests is related to streaming
files. The AutoVue server sends a GetProperties request with the CSI_Renditions
property in it. This request asks the DMS if it already has a streaming file associated
with the base document. The response to this question is provided by the GetPropCSI_
Renditions. A description of how this response is built is provided later in this section.
If the response is yes, the AutoVue server sends requests to download the original file
and the streaming file. Next, it verifies if the streaming files is a true replica, in which
case AutoVue displays the streaming file instead the original one.

If the DMS does not have a streaming file, or the streaming file it has out of date, the
client (for example, the applet) makes a request to the AutoVue server to generate a
streaming file of the original file. When the user decides to close the viewed file,
AutoVue sends a request to the DMS to save the generated streaming file. Refer to
Section 6.10, "Implementing File Save Action" for information on how to build the
response for this case.

In the Sample Integration for Filesys, the following excerpt of code shows how the
GetPropCSI_Renditions class how the class encapsulates the DocID returned by the
getMetaRednition() method of the Filesys DMS backend class in the CSI_DocID
DMSProperty object.

Example 6–16 Code excerpt for GetPropCSI_Renditions

package com.cimmetry.vuelink.filesys.propactions;
/** */
public class GetPropCSI_Renditions implements DMSGetPropAction {private
 DMSProperty[] buildRenditionProperty(FilesysDMSBackend be,
 DMSBackendSession beSession, DocID docID) throws VuelinkException{
 FilesysDMSDocID rendDocIds = (FilesysDMSDocID)be.getMetaRendition(beSession,
 docID);
 if (rendDocIds == null) return null;
 DMSProperty[] metaRend = new DMSProperty[1];
 metaRend[0] = new DMSProperty(DMSProperty.CSI_DocID, rendDocIds);
 m_logger.debug("got the docID: " + metaRend);
 return metaRend;
}

As illustrated in the following code, the execute() method builds a CSI_Renditions
DMSProperty and attaches to it an array DMSProperties with the first element to be a
property labeled CSI_DocID for the streaming file rendition. The method then returns
DMSProperty to the VueLink servlet which provides the AutoVue server with the
response. The method also retrieves a list of supported rendition formats by the DMS
backend system which is defined in web.xml. Note that this list of rendition formats is
a subset of the rendition formats supported by the AutoVue server.

Example 6–17 execute() method

public DMSProperty execute(FilesysC … {
 final FilesysDMSDocID docID = new
 FilesysDMSDocID().String2DocID(query.getDocID());
 String sValidateMeta = context.getInitParameter("ValidateStreamingFile");
 String sRendition = context.getInitParameter("RenditionFormats");
 String[] aRenditionList = sRendition.split(";");
 DMSProperty[] rendition = null;

Returning the List of All Properties of the DMS Document

Implementing Advanced Integration Functionality in Your DMS 6-11

 if (sValidateMeta != null && sValidateMeta.equalsIgnoreCase("false")) {
 //no streaming file validation
 m_logger.debug("No StreamingFile Validation: ValidateStreamingFile option is
 set to false in vuelink properties");
 } else {
 rendition = buildRenditionProperty(context.getBackendAPI(),
 context.getBackendSession(session, query), docID);
 }
 return new DMSProperty(DMSProperty.CSI_Renditions, aRenditionList , rendition);
}

The GetPropCSI_Renditions is registered in the web.xml file as indicated in the
following code.

Example 6–18 Registering GetPropCSI_Renditions

<init-param> <param-name>dms.getprops.CSI_Renditions</param-name>
 <param-value> com.cimmetry.vuelink.filesys.propactions.GetPropCSI_Renditions
 </param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

The getMetaRendition() method asks the FilesysDMS backend system for the
streaming file associated with the base document identified by its DocID. After it
receives the streaming file, it builds and returns the DocID.

Example 6–19 getMetaRedition() method

public DocID getMetaRendition(DMSBackendSession session, DocID docID) {
 DocInfo fsDocID = buildDocInfo(session,docID);
 DocInfo metafile = null;
 try{
 metafile = m_filesysInfo.getMetaInstance(fsDocID);
 return buildDocID(session,metafile);
 }
 catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
 return null;
 }
}

6.5 Returning the List of All Properties of the DMS Document
When users select Properties from the File menu and then click the DMS tab (see
Figure 6–3, "Properties dialog"), the AutoVue server asks for some attributes of the
current document by passing the CSI_ListAllProperties property within the
GetProperties request. The response to this request is done through a property class
called GetPropCSI_AllProperties.

Returning the List of All Properties of the DMS Document

6-12 Oracle AutoVue ISDK Technical Guide

Figure 6–3 Properties dialog

In the Integration SDK Skeleton, GetPropCSI_ListAllProperties class calls the
listAllProperties() method in the DMSBackendImp class to retrieve all the requested
attributes and wraps them as a DMSProperty object to return.

In the case of the Filesys DMS, GetPropCSI_AllProperties class is derived from the
GetFilesysProperty class and calls the getAttributes() method of the latter class which
in turn calls the getAttributes() method of the FilesysDMSBackendImp class to retrieve
the document attributes and build DMSProperty object to return. This is shown in the
following excerpt of code. After getting the attributes, the getAttributes() method of
the FilesysDMSBackendImp class builds a DMSProperty object for each attribute. For
instance, it builds a DMSProperty named CSI_Version for the number of document
versions. Finally, from this set of properties, a DMSProperty is built with the value set
to CSI_ListAllProperties and is returned.

Example 6–20 GetPropCSI_AllProperties class

package com.cimmetry.vuelink.filesys.propactions;
….
public class GetPropCSI_ListAllProperties extends GetFilesysProperty
 implements DMSGetPropAction {
 …
 private DMSProperty buildListProperties(…) throws VuelinkException {
 DMSProperty attrs = getAttrs(context.getBackendAPI(), beSession, query,
 docID);
 …
 return attrs;
 }

Implementing File Browse

Implementing Advanced Integration Functionality in Your DMS 6-13

Example 6–21 getAttributes() method

package com.cimmetry.vuelink.filesys.backend;
….
public DMSProperty getAttributes(DMSBackendSession session, DocID docID) {
 DocInfo fsDocID = buildDocInfo(session,docID);
 Vector<DMSProperty> result = new Vector<DMSProperty>();
 try{
 Hashtable<String,String> attrs=m_filesysInfo.getAttributes(fsDocID);
 Enumeration<String> keys = attrs.keys();
 while (keys.hasMoreElements()) {
 String key = keys.nextElement();
 String value = attrs.get(key);
 if (value != null && value.split(";").length > 1) {
 result.add(new DMSProperty(key,value.split(";"))); //multi value
 }else {
 result.add(new DMSProperty(key,value));//single value
 }
 }
 }catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
 }
 DMSProperty[] answer = new DMSProperty[0];
 answer = result.toArray(answer);
 return new DMSProperty(DMSProperty.CSI_ListAllProperties,answer);
}

This GetPropCSI_AllProperties class is registered in the web.xml file, as indicated in
the following code excerpt.

Example 6–22 Registering GetPropCSI_AllProperties class

<init-param> <param-name>dms.getprops.CSI_ListAllProperties</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_
 ListAllProperties </param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

6.6 Implementing File Browse
Users may want to browse the DMS backend system to select documents for viewing
or comparison. In this case, the AutoVue Server sends two GetProperties requests. The
first request is for the GUIs that will support the definition of the browse operation.
The second request is for the result of the browse action performed by the user.

6.6.1 GUI Request
In the first request, AutoVue asks for the Browse dialog structure by passing the GUI
property with a value set to Browse within the request. The response to this first
request is done through a property class called GetPropGUI. The GUI section defines
the columns displayed in the Browse dialog.

Implementing File Browse

6-14 Oracle AutoVue ISDK Technical Guide

Figure 6–4 DMS Browse dialog

The excerpt of code in Example 6–23, "Code excerpt for constructing the Browse
dialog" shows how to construct the Browse dialog shown in Figure 6–4, "DMS Browse
dialog".

■ Document name CSI_DocName

■ Document type folder or file SP_TYPE

■ Document version SP_FileVersion

■ Document size CSI_DocSize

You can specify the size for each column. Note that the Name column is a GUI tree
where row values can be either a file or a folder; the folders are nodes that can be
expanded by the user. All these properties are returned as single property labeled
PROP_GUI_DISPLAY.

Example 6–23 Code excerpt for constructing the Browse dialog

package com.cimmetry.vuelink.filesys.propactions;
…
private DMSProperty[] buildBrowseGUI() {
 final String SP_Type = "Type";
 final String SP_FileVersion = "Version";
 DMSProperty[] guiValue = new DMSProperty[4];
 guiValue[0] = new DMSProperty(DMSProperty.CSI_DocName,"35");
 guiValue[1] = new DMSProperty(SP_Type,"10");
 guiValue[2] = new DMSProperty(SP_FileVersion,"6");
 guiValue[3] = new DMSProperty(DMSProperty.CSI_DocSize,"14");
 DMSProperty[] gui = {new DMSProperty(DMSProperty.PROP_GUI_DISPLAY,guiValue)};
 m_logger.info("building GUI for browsing: " + guiValue);
 return gui;
}

6.6.2 Request for Browse Results
The second request sent by the AutoVue server is for the list of browse results. These
results appear as children nodes in the Name tree in Figure 6–4, "DMS Browse dialog".
This request is done by calling GetProperties and passing the CSI_Browse property as

Note: This is the same dialog used in the Sample Integration for
Filesys. Each column is identified with a unique ID and constructed as
DMSProperty object.

Implementing File Browse

Implementing Advanced Integration Functionality in Your DMS 6-15

a parameter. The response to this request is handled by GetProp_ListItems class. This
class returns the data that populates the Browse dialog.

In the Sample Integration for Filesys, all this information is obtained by calling the
method of the FilesysDMS backend class. This method returns a vector of DocIDs of
the expanded document's direct children nodes.

The code snippet in Example 6–24, "GetPropCSI_ListItems" shows how GetProp_
ListItems builds properties for returning a list of documents in the Sample Integration
for Filesys. For each document we build a DMSProperty for each of the following
information and wrap them together in a single DMSProperty labeled CSI_DocID.

■ Type of document folder or file CSI_ItemType

■ Document name CSI_DocName

■ Date of last modification CSI_DocDateLastModified

■ Document size CSI_DocSize

■ Version of the document Version

Finally, the execute() method gathers the built properties for all listed documents in a
single property labeled CSI_ListItems and returns it to the VueLink servlet.

Example 6–24 GetPropCSI_ListItems

package com.cimmetry.vuelink.filesys.propactions;
…
public class GetPropCSI_ListItems implements DMSGetPropAction {
 …
 private DMSProperty[] buildListItems(FilesysDMSBackend be, DMSBackendSession
 beSession,DocID _rootID){
 DocID rootID = _rootID;
 // Gets the of items from the DMS
 Vector<DocID> listItemsInfos = be.dmsListItemsForBrowse(beSession, rootID);
 if (listItemsInfos != null) {
 DMSProperty listItems[] = new DMSProperty[listItemsInfos.size()];
 …
 for (int i = 0 ; i < listItemsInfos.size() ; ++i) {
 DocID instId = listItemsInfos.get(i);
 DMSProperty docAttrs = be.getAttributes(beSession,instId);
 DMSProperty props[] = new DMSProperty[5];
 props[1] = new DMSProperty(DMSProperty.CSI_DocName,
 docAttrs.getFirstChildValue("DocName"));
 if (!docAttrs.getFirstChildValue("DocFormat").equals("folder")) {
 // a file
 props[0] = new DMSProperty(DMSProperty.CSI_ItemType,
 DMSProperty.CSI_Document);
 props[2] = new DMSProperty("Type",
 docAttrs.getFirstChildValue("Extension"));
 props[3] = new DMSProperty("Version",
 docAttrs.getFirstChildValue("Version"));
 props[4] = new DMSProperty(DMSProperty.CSI_DocSize,
 docAttrs.getFirstChildValue("DocSize"));
 }else{ // a folder
 props[0] = new DMSProperty(DMSProperty.CSI_ItemType,
 DMSProperty.CSI_Folder);
 }
 listItems[i]= new DMSProperty(DMSProperty.CSI_DocID,
 instId.DocID2String(),props);
 }
 …

Implementing File Browse

6-16 Oracle AutoVue ISDK Technical Guide

 return listItems;
 }else{
 return null;
 }
}

Example 6–25 execute() method

public DMSProperty execute(…) throws VuelinkException {
 final DocID docID = new FilesysDMSDocID().String2DocID(query.getDocID());
 DMSProperty retProp = new DMSProperty(DMSProperty.CSI_ListItems,
 buildListItems(((FilesysDMSBackend)context.getBackendAPI()),
 context.getBackendSession(session, query), docID));
 return retProp;
}

The classes GetPropGUI and GetPropCSI_ListItems are registered in the web.xml as
indicated in the following examples.

Example 6–26 Registering GetPropGUI

<init-param>
 <param-name>dms.getprops.CSI_GUI</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_
 GUI</param-value>
</init-param>

Example 6–27 Registering GetPropCSI_ListItems

<init-param>
 <param-name>dms.getprops.CSI_ListItems</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_
ListItems</param-value>

For more information, examine the code and use the debugger to learn more about the
real behavior of these classes.

The dmsListItemsForBrowse() method asks the Filesys DMS backend system for the
list of direct children of a node given by its DocID. After it receives the vector of the
direct children of the document, it builds a DocID for each child. Finally, it returns the
list of the DocIDs as a vector.

Example 6–28 dmsListItemsForBrowse() method

package com.cimmetry.vuelink.filesys.backend;
…
public Vector<DocID> dmsListItemsForBrowse(DMSBackendSession session, DocID docID)
 {
 DocInfo fsDocID = buildDocInfo(session,docID);
 Vector<DocInfo> browseItemsIDs = null;
 try{
 browseItemsIDs = m_filesysInfo.listItemsForBrowse(fsDocID);
 }catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR, e);
 }
 if (browseItemsIDs == null) {
 return null;
 }
 Vector<DocID> docIDs = new Vector<DocID>();
 for (int i = 0 ; i < browseItemsIDs.size() ; ++i) {

Implementing File Search

Implementing Advanced Integration Functionality in Your DMS 6-17

 docIDs.add(buildDocID(session,browseItemsIDs.get(i)));
 }
 return docIDs;
}

6.7 Implementing File Search
You may want to search for documents in the DMS backend system for viewing or
comparison. In this case, the AutoVue server sends two GetProperties requests: one is
for the GUI components that support the definition of the search operation and the
other is for the result of the search operation that displays on the GUI.

6.7.1 First Request
There are two dialogs to define. In the first one we define the search criteria elements.
In the second dialog we define the structure where the returned information elements
are displayed. In the first request AutoVue asks for the structures of the two dialogs by
passing the GUI property with a value of Search within the request. The response to
this first request is handled by a property class called GetPropGUI (this class is
presented in Section 6.6.2, "Request for Browse Results").

The response is specified by two parts: EDIT and DISPLAY. The EDIT response
specifies the GUI elements of the search dialog to use when entering the search
criteria. This dialog includes two GUI Elements: Criteria drop-down list and Value
field. The control ID for the Criteria list is CSI_Criteria and it contains two selections:
Name and Type. The default value is Name. The Value field's control ID is CSI_Entry.

Figure 6–5 Search dialog

The following code snippet prepares information for building the first part of the
response in the Sample Integration for Filesys. It builds a GUIElementComboproperty
for specifying the drop down list and a GUIElementEdit property for specifying the
edit box. The two properties are returned in a single property labeled PROP_GUI_
EDIT.

Example 6–29 Building the first part of the response in the Sample Integration for
Filesys

package com.cimmetry.vuelink.filesys.propactions;
…
private DMSProperty addEditForSearch() throws VuelinkException{
 DMSProperty props = null;
 String [] values = {"By name","By type"};
 GUIElementCombo comboForType = new GUIElementCombo("CSI_Criteria",
 "Search criteria", null, values, true);
 GUIElementEdit editForName = new GUIElementEdit("CSI_Entry",
 "Search for", null, false);

Implementing File Search

6-18 Oracle AutoVue ISDK Technical Guide

 Property [] p = new Property[2];
 p[0] = comboForType;
 p[1] = editForName;
 props = new DMSProperty(Property.PROP_GUI_EDIT, p);
 return props;
}

In the second part of the response, DISPLAY specifies columns to be displayed inside
the Search dialog as shown in the following figure.

Figure 6–6 Search results

The following excerpt of the code shows how this dialog is defined in the Sample
Integration for Filesys. It builds properties for the following information:

■ Document name CSI_DocName

■ Document size CSI_DocSize

■ Date of last modification CSI_DocDateLastModified

■ Version of the document CSI_Version

All these properties are returned in a single property labeled PROP_GUI_DISPLAY.

Example 6–30 Defining the Search dialog

private DMSProperty addDisplayForSearch() throws VuelinkException{
 DMSProperty[] props = new DMSProperty[4];
 props[0] = new DMSProperty(DMSProperty.CSI_DocName, "18");
 props[1] = new DMSProperty(DMSProperty.CSI_DocSize, "18");
 props[2] = new DMSProperty(DMSProperty.CSI_DocDateLastModified, "18");
 props[3] = new DMSProperty(DMSProperty.CSI_Version, "4");
 return new DMSProperty(Property.PROP_GUI_DISPLAY, props);
}

The two parts are then combined and returned as a single property labeled as Prop_
GUI.

Example 6–31 Prop_GUI property

package com.cimmetry.vuelink.filesys.propactions;
…
public DMSProperty buildSearchGUI(…) throws VuelinkException{

Implementing File Search

Implementing Advanced Integration Functionality in Your DMS 6-19

 m_logger.debug("***inside getSearchGuiProperty() ");
 // get the GUI property value
 DMSProperty[] props = new DMSProperty[2];
 props[0] = addEditForSearch();
 props[1] = addDisplayForSearch();
 return new DMSProperty(DMSProperty.PROP_GUI, "Search", props);
}

6.7.2 Request for Search Results
The second request sent by the AutoVue server is for the list of items that match the
search criteria. This is done through a GetProperties request containing the CSI_Search
property. The response to this request is handled by the GetProp_Search class. This
class must return the data that populates the Search dialog.

In the Sample Integration for Filesys, the search results are obtained from the
dmsListItemsForSearch() method of the FilesysDMS backend class. The following
excerpt of code shows how the GetProp_Search class builds properties for the returned
document. For each document, we build a DMSProperty for each of the following
information and wrap them together in a single DMSProperty labeled CSI_DocID.

■ Type of document folder or a file CSI_ItemType

■ Document name CSI_DocName

■ Date of last modification CSI_DocDateLastModified

■ Document size CSI_DocSize

■ Version of the document CSI_Version

Example 6–32 GetPropCSI_Search class

package com.cimmetry.vuelink.filesys.propactions;
…
public class GetPropCSI_Search extends GetFilesysProperty implements
 DMSGetPropAction<FilesysContext> {
 private Property[] listItems(…) throws VuelinkException{
 …
 Vector items = be.dmsListItemsForSearch(docID, rootDir, criteria, type);
 DMSProperty[] sItems = new DMSProperty[items.size()];
 for (int i = 0; i < items.size(); i++) {
 DMSProperty sProp[] = new DMSProperty[5];
 docID = items.get(i);
 DMSProperty attrs = (DMSProperty) query.getQueryData("attrs");
 …
 if (attrs.getFirstChildValue("DocFormat").equals("folder")) {
 sProp[0] = new DMSProperty(DMSProperty.CSI_ItemType, \
 DMSProperty.CSI_Folder);
 }else{
 sProp[0] = new DMSProperty(DMSProperty.CSI_ItemType,
 DMSProperty.CSI_Document);
 }
 sProp[1] = new DMSProperty(Property.CSI_DocName,
 attrs.getFirstChildValue("DocName"));
 sProp[2] = new DMSProperty(Property.CSI_DocSize,
 attrs.getFirstChildValue("DocSize"));
 sProp[3] = new DMSProperty(Property.CSI_DocDateLastModified,
 attrs.getFirstChildValue("DateLastModified"));
 sProp[4] = new DMSProperty("CSI_Version",
 attrs.getFirstChildValue("Version"));
 sItems[i] = new DMSProperty(Property.CSI_DocID, docID.DocID2String(),

Handling Versions

6-20 Oracle AutoVue ISDK Technical Guide

 sProp);
 }
 m_logger.info("Get the list of items that match the search creteria :" +
 sItems);
 return sItems;
}

Finally, the execute() method gathers all the built properties in a single property
labeled CSI_Search and returns it to the VueLink servlet.

The GetPropCSI_Search class is registered in the web.xml file as indicated in the
following code excerpt.

Example 6–33 Registering GetPropCSI_Search

<init-param>
 <param-name>dms.getprops.CSI_Search</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_ Search
 </param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

As shown in the following example, the dmsListItemsForSearch() method asks the
Filesys DMS backend system for the list of documents that match the search criteria.
To perform the search, the backend system provides the criteria type, criteria value,
and the backend system root.

Example 6–34 dmsListItemsForSerach() method

public Vector<DocID> dmsListItemsForSearch(DocID docID, String root, String
 creteria, String type) {
 DocInfo fsDocID = buildDocInfo(session,docID);
 // comments
 Vector searchItemsIDs = null;
 …
 searchItemsIDs = m_filesysInfo.listItemsForSearch(fsDocID,root,criteria,type);
 …
 Vector<DocID> docIDs = new Vector<DocID>();
 for (int i = 0 ; i < searchItemsIDs.size() ; ++i) {
 docIDs.add(new FilesysDMSDocID((DocInfo)searchItemsIDs.get(i)));
 }
 return docIDs;
}
When the dmsListItemsForSearch method receives the vector of the files from the DMS
backend system, it builds a DocID for each file and then returns the list of the DocIDs
as a vector.

6.8 Handling Versions
To compare the viewed document with another version of the document, from
AutoVue, you must select Analysis and then Compare to launch File Open dialog. At
this moment, the AutoVue server sends a GetProperties request asking the DMS
backend system for all versions of the current document by passing CSI_Versions
property within it. The response to the request is handled through a property class
called GetPropCSI_Versions.

Handling Versions

Implementing Advanced Integration Functionality in Your DMS 6-21

Figure 6–7 File Open dialog with Document versions for compare

In the Sample Integration for Filesys, to build the response, the GetPropCSI_Versions
class first receives from dmsListVersions() method a vector of DocIDs of all the version
of the document. It then loops through each version and builds CSI_Version property.

The following excerpt of code shows how we build the content of the CSI_Versions
property. For each version of a document we create a PROP_VERSION property and
we attach to it the DocID CSI_DocID, the name CSI_DocName and the version number
CSI_Version properties. Finally, the list of PROP_VERSION properties are attached to
CSI_Versions property and returned to the VueLink servlet.

Example 6–35 Building contents of the CSI_Versions property

private DMSProperty[] buildListProperties(FilesysDMSBackend be, DMSBackendSession
 beSession, DocID docID){
 Vector<DocID> versionsDocIDs = be.dmsListVersions(beSession, docID);
 DMSProperty[] versions = new DMSProperty[versionsDocIDs.size()];
 for (int i = 0; i < versionsDocIDs.size(); i++) {
 DMSProperty[] aVersion = new DMSProperty[3];
 FilesysDMSDocID doc = (FilesysDMSDocID)(versionsDocIDs.get(i)) ;
 aVersion[0] = new DMSProperty(DMSProperty.CSI_DocID, doc.DocID2String());
 aVersion[1] = new DMSProperty(DMSProperty.CSI_DocName,
 ((FilesysDMSDocID)doc).getName());
 aVersion[2] = new DMSProperty(DMSProperty.CSI_Version, doc.getVersion());
 versions[i] = new DMSProperty(DMSProperty.PROP_VERSION, aVersion);
 }
 m_logger.info("Get the list of versions of a document :" + versions);
 return versions;
}

The GetPropCSI_Versions class is registered in the web.xml file as indicated above.

Example 6–36 Registering GetPropCSI_Versions

<init-param> <param-name>dms.getprops.CSI_Versions</param-name>
 <param-value> com.cimmetry.vuelink.filesys.propactions.GetPropCSI_Versions
 </param-value>
</init-param>
For more information, examine the code and use the debugger to learn more about the
real behavior of this class.

The dmsListVersion() method asks the Filesys DMS backend system for the list of
document versions by providing the DocID of the current document.

Example 6–37

public Vector<DocID> getVersions(DMSBackendSession session, DocID docID) {
 Vector<DocID> versions = null;

Implementing handler for Default Property

6-22 Oracle AutoVue ISDK Technical Guide

 Vector<DocInfo> versionsInfos = null;
 try{
 DocInfo fsDocID = buildDocInfo(session,docID);
 versionsInfos = m_filesysInfo.listVersions(fsDocID);
 } catch(Exception e){
 m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
 }
 versions = new Vector<DocID>();
 for (int i = 0; i < versionsInfos.size() ; ++i) {
 versions.add(buildDocID(session,versionsInfos.get(i)));
 }
 return versions;
}

After it receives the vector of the document versions, it builds a DocID for each
element. Finally, it returns the list of the DocIDs as a vector.

6.9 Implementing handler for Default Property
When the AutoVue server sends a GetProperties request with a property that does not
have a class for handling it, the framework runs the GetPropDefault class. The
GetPropDefault class is not dedicated to a particular property and there is no property
called Default, so when you register the web.xml file you must use
dms.getprops.Default as the parameter name. Of course, you can give the class a
different name from the default one. However, if you choose not to register the class,
then you must name it GetPropDefault.

Example 6–38 Registering GetPropDefault

<init-param>
 <param-name>dms.getprops.Default</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropDefault
 </param-value>
</init-param>

Later we will discuss when to use individual classes for handling properties and when
to use GetPropDefault class. Also we will discuss how you can avoid implementing
the GetPropDefault by implementing a class for each request property.

For more information, refer to the source code of this class and run this class in debug
mode for more information on its behavior.

The following figure shows code of the execute() method of the GetPropDefault class
of the Integration SDK Skeleton.

Example 6–39 Code of the execute() method of the GetPropDefault class

package com.mycompany.autovueconnector.propactions;
…
public class GetPropDefault implements DMSGetPropAction<DMSContextImp>, DMSDefs {
 …
 public DMSProperty execute(
 DMSContextImp context,
 DMSSession session,
 DMSQuery query,
 DMSArgument[] args,
 Property property
) throws VuelinkException {
 final String propName = property.getName();

Implementing File Save Action

Implementing Advanced Integration Functionality in Your DMS 6-23

 if ("VueLinkID".equals(property.getName())) {
 return new DMSProperty("VueLinkID", "");
 }
 if ("CSI_MIMETypes".equals(propName)) {
 return new DMSProperty("CSI_MIMETypes", MIME_TYPES);
 }
 DMSProperty prop = null;
 try {
 DMSBackendImp be = (DMSBackendImp)context.getBackendAPI();
 DMSBackendSessionImp beSession =
 (DMSBackendSessionImp)context.getBackendSession(session,query);
 if (DMSProperty.CSI_AllowBrowse.equals(propName)) {
 return new DMSProperty(DMSProperty.CSI_AllowBrowse,
 be.isAllowBrowse(beSession));
 }
 if (DMSProperty.CSI_AllowSearch.equals(propName)) {
 return new DMSProperty(DMSProperty.CSI_AllowBrowse,
 be.isAllowSearch(beSession));
 }
 …
 DMSProperty attrs = (DMSProperty)query.getQueryData("attrs");
 ISDKDocID docID = new ISDKDocID().String2DocID(query.getDocID());
 if(attrs == null){
 attrs = be.listAllProperties(beSession, docID);
 if(attrs != null){
 query.setQueryData("attrs", attrs);
 }
 }
 prop = (DMSProperty)attrs.getFirstChildWithName(propName);
 } catch (Exception e) { … }
 if (prop == null) {
 m_logger.error("Unsupported property: " + propName);
 throw new VuelinkException(DMSDefs.ERROR_CODE_DMS_GETPROPERTIES,
 "Unsupported property: " + propName);
 }
 return prop;
 }
}

6.10 Implementing File Save Action
You can create and modify markups and convert documents to other formats as TIFF
and PDF. When these documents are saved in the DMS backend system by selecting
the Save or Save As actions from AutoVue's File menu, the AutoVue server sends an
Action Save request. The response of this request is done through the ActionSave class.

In saving Markups, there are two cases to handle. The first case is when trying to save
a new Markup file. In this case, and as shown in the following excerpt of code, the
Save action must return a valid DocID of the newly created Markup. The second case
is when trying to save an existing Markup file. In this case the Markup file keeps its
old DocID. For saving Markups, the ActionSave class relies on the service of the
saveMarkup() method of the Filesys DMS backend class.

When performing conversion of a document by selecting the Convert action from the
File menu, AutoVue exhibits the same behavior as for saving Markups. But this time
the ActionSave invokes the saveRendition() method of the Filesys DMS backend class.

When a Real-Time Collaboration session is closed, the chat transcript during the
collaboration session may need to be saved. In this case, ActionSave invokes the
saveChat() method of the Filesys DMS backend class to save the chat content.

Implementing File Save Action

6-24 Oracle AutoVue ISDK Technical Guide

In the Sample Integration for Filesys, the getDMSArgsProperties API is very useful.
This API provides properties about the DocID of the base document, the DocID of the
Rendition or the Markup document if it exists, the Markup and Rendition types, and
the Markups and Renditions files name. This information lets the Filesys DMS
backend system locate where the documents are saved, and is therefore very
important.

Example 6–40 Class ActionSave

package com.cimmetry.vuelink.filesys.propactions;
…
public class ActionSave implements DMSAction<FilesysContext>, DMSDefs{
 … public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 …
 final Property[] props = query.getDMSArgsProperties();
 …
 // Get file name
 final DMSArgument fileArg = args[0];
 String type = fileArg.getType(); …
 String sUploadFile = fileArg.getName(); …
 boolean bSaveChat = false; // "True" if saving chat content for a meeting
 boolean bReadOnly = false; /* true if it is a read-only markup */
 String rendType = null;
 DocID baseID = null; /* if non-null, we're doing a Save-As */
 DocID saveID = null; /* if non-null, we're doing a Save */
 String docName = null; // the value of 'name' for Save, or 'CSI_DocName'
 // for Save-As */
 String markType = null ; /* not null if the mark type is specified */
 if (props != null) {
 … // assign values for the above variables
 }
 …
 /** Upload the file */
 DocID newDocID = null;
 try {
 InputStream fIn = null;
 … // put uploading content in fIn
 if (bSaveChat) { // save collaboration chat transcript
 …
 return be.saveChat(beSession, docName, fIn);
 }
 else
 if(rendType != null) { // save rendtion (new or existing)
 …
 newDocID = be.saveRendition(beSession,baseID, saveID, docName,
 rendType, fIn);
 } else {// save markup (new or existing)
 newDocID = be.saveMarkup(beSession,baseID, saveID, docName,
 markType, bReadOnly, fIn);
 }
 }catch (…) {…}
 return newDocID;
}

In the Sample Integration for Filesys, the saveMarkup() method uploads the Markup
file as an InputStream object and invokes the saveMarkup() method from the

Implementing File Save Action

Implementing Advanced Integration Functionality in Your DMS 6-25

FilesysDMS backend to save the file in the backend system. The parameters are: DocID
of the base document (docID), DocID of the markup (mrkID) which is null for new
markup, the markup file name, the markup type, the markup read-only attribute and
the markup file content as InputStream.

Example 6–41 saveMarkup() method

package com.cimmetry.vuelink.filesys.backend;
…
public DocID saveMarkup(DMSBackendSession session, DocID docID, DocID mrkID,
 String filename, String markupType, boolean bReadOnly, InputStream fIn
 throws FileNotFoundException, IOException, VuelinkException {
 DocInfo fsDocID = null;
 if (mrkID == null) { // save new Markup
 …
 fsDocID = buildDocInfo(session,docID);
 } else { // save existing Markup
 …
 fsDocID = buildDocInfo(session,mrkID);
 }
 return buildDocID(session,
 m_filesysInfo.saveMarkup(fsDocID, markupType, bReadOnly, filename, fIn));
}

It returns the DocID of the saved Markups. If it fails, an exception is thrown.

In the Sample Integration for Filesys, the saveRendition() methods upload the
Rendition file as an InputStream object and invokes the saveRendition() method from
the FilesysDMS backend to save the file in the backend system. The parameters are:
DocID of the base document, DocID of the rendition (renID) which is null for new
rendition, the rendition file name, the rendition type, and the rendition file content as
InputStream.

Example 6–42 saveRendition() method

package com.cimmetry.vuelink.filesys.backend;
…
public DocID saveRendition(DMSBackendSession session, DocID docID, DocID renID,
 String filename, String rendType, InputStream fIn)
 throws FileNotFoundException, IOException, VuelinkException {
 DocInfo fsDocID = null;
 if (renID == null) { //new rendition
 fsDocID = buildDocInfo(session,docID);
 } else { // existing rendtion
 fsDocID = buildDocInfo(session,renID);
 }
 return buildDocID(session,
 m_filesysInfo.saveRendition(fsDocID, rendType, filename, fIn));
 }
}

It returns the DocID of the saved rendition. If it fails, it throws an exception.

For saving Collaboration chat transcript, refer to Section 6.17, "Implementing
Real-Time Collaboration and Meeting Management" for a detailed description.

The SaveAction class is registered in the web.xml file as indicated in the following
code excerpt.

Implementing File Delete Action

6-26 Oracle AutoVue ISDK Technical Guide

Refer to the source code of this class for more information. You can also run this class
in debug, as shown in the following figure to help you learn more about the dynamic
behavior of this class.

Figure 6–8 Running SaveAction class in debug

6.11 Implementing File Delete Action
You have the option of deleting Markups from within the AutoVue applet. When
deleting existing markups, the AutoVue server sends a Delete Action request. The
response to this request is handled by the ActionDelete class. The document to be
deleted is indicated by the DocID parameter.

In the Sample Integration for Filesys, to be deleted effectively from DMS backend
system, this class sends its request through the deleteMarkup() method of FilesysDMS
backend class.

Example 6–43 Class ActionDelete

package com.cimmetry.vuelink.filesys.propactions;
…
public class ActionDelete implements DMSAction<FilesysContext>, DMSDefs{
 …
 public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 …
 final DocID docID = new FilesysDMSDocID().String2DocID(query.getDocID());
 // delete markup document
 if (! context.getBackendAPI().deleteMarkup(
 context.getBackendSession(session,query), docID)) {
 …
 throw new VuelinkException(DMS_ERROR_CODE_ERROR,
 DMS_ERROR_MSG_DELETE);
 }
 return null;
}

In the Sample Integration for Filesys, the deleteMarkup() method sends a request to
the DMS backend system to delete the markups identified by a DocID passed in the
parameter. If the document is deleted, it returns TRUE. Otherwise it returns FALSE.

Example 6–44 deleteMarkup() method

package com.cimmetry.vuelink.filesys.backend;
…
public boolean deleteMarkup(DMSBackendSession session, DocID docID)
 throws VuelinkException{
 DocInfo fsDocID = buildDocInfo(session,docID);
 …

Creating Your Context

Implementing Advanced Integration Functionality in Your DMS 6-27

 boolean deletedDoc = false;
 try{
 deletedDoc = m_filesysInfo.deleteDocument(fsDocID);
 }catch(Exception e){ … }
 return deletedDoc;
}

The ActionDelete class is registered in the web.xml file as shown in the following
excerpt of code.

Example 6–45 Registering ActionDelete class

<init-param>
 <param-name>dms.action.Delete</param-name>
 <param-name>com.cimmetry.vuelink.filesys.actions.ActionDelete</param-name>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this method.

6.12 Creating Your Context
Each VueLink has a context that holds various environment settings that remain
constant throughout the VueLink servlet lifetime. This context is initialized during the
VueLink servlet initialization and is passed to actions every time the VueLink handles
a request.

The framework publishes the com.cimmetry.vuelink.context.DMSContext interface
which describes a set behavior that a context handler must exhibit, which includes:

■ Initializing this DMSContext by fetching the appropriate information within the
DMS servlet initialization parameters.

■ Finding, registering, and locating the appropriate backend API class for the
current DMS servlet.

■ Finding the backend session object corresponding to the DMSSession.

■ Creating a new backend session if an existing session cannot be found.

The framework provides the com.cimmetry.vuelink.context.GenericContext class
which is a default implementation of the DMSContext interface. You must provide
your own implementation of the DMSContext interface only if the GenericContext
does not satisfy your needs. It is recommended that you extend your context from
GenericContext class.

For each DMS servlet, the context action is registered during the initialization of the
DMS servlet and loaded by the framework in the following sequence:

1. It fetches the initialization parameters looking for whether a custom action context
(with param-name as "dms.context") is provided.

2. It looks for ActionContext class in the same location as the Integration SDK's DMS
VueLink servlet.

3. It looks for ActionContext class in the same location as the framework DMS
VueLink servlet.

4. It looks for GenericContext in the same location as the framework DMS VueLink
servlet.

Overriding GetProp<CSI Property> classes

6-28 Oracle AutoVue ISDK Technical Guide

5. It throws an exception if it does not succeed in finding a class to handle the
context.

In the Filesys DMS application, a new class FilesysContext is extended from the
GenericContext class to provide a custom context.

Example 6–46 Class FilesysContext

package com.cimmetry.vuelink.filesys;
…
public class FilesysContext extends GenericContext {
 …
 public FilesysDMSBackendImp getBackendAPI() throws VuelinkException {
 if (m_backend == null) {
 throw new VuelinkException(DMS_ERROR_CODE_ERROR,
 "Backend API not registered");
 }
 return (FilesysDMSBackendImp)m_backend;
 }
 public DMSBackendSession getBackendSession(DMSSession session, DMSQuery query)
 throws AuthorizationException {
 …
 // Get BackendSession from DMSSession if it has been put there before
 if (session.getAttribute("backendSession") != null) {
 …
 }
 // No backend session exists yet. Establish new connection to DMS and
 // create new backend session.
 …
 Hashtable<String,Object> connectInfo = new Hashtable<String,Object>();
 …
 FilesysBackendSession backendSession =
 (FilesysBackendSession)m_backend.connect(connectInfo);
 …
 return backendSession;
 }
}

The FilesysContext class is registered in web.xml. If your context is not in the same
location as your DMS VueLink servlet, you have to register it.

Example 6–47 Registering FilesysContext class

<init-param>
 <param-name>dms.actions.Context</param-name>
 <param-value>com.cimmetry.vuelink.filesys.FilesysContext</param-value>
</init-param>

6.13 Overriding GetProp<CSI Property> classes
You may want to extend the response provided by a property class. For instance, you
may add the number of all existing versions of a document to the ListAllProperties
response. There are several ways to implement a mechanism that lets you extend the
behavior of property classes. One mechanism you may consider is inheritance. A
second one may be similar to the mechanism already implemented in the framework,
such as simply implementing a new class that implements the DMSGetPropAction
interface and registers it in the web.xml file.

The inheritance has two limitations. The first limitation is that the new behaviors are
added statically (for example, at compilation time). The second is that for each new

Overriding GetProp<CSI Property> classes

Implementing Advanced Integration Functionality in Your DMS 6-29

behavior, we must derive a new class and we know that the multiplication of the
number of classes can be a maintenance nightmare. The second mechanism consists of
replacing the old class by a new one which implements the new behaviors. A better
solution is to add new behaviors to existing ones since it is not necessary to rewrite
existing code that has been tested and proven to be bug-free.

Figure 6–9 Structure of the DMSGetPropAction interface

An advanced integration mechanism has been designed that allows integrators and
professional services to extend the handling of specific CORE API messages without
recompiling or rebuilding the entire integrations by just adding the overriding code.
As illustrated in Figure 6–9, "Structure of the DMSGetPropAction interface", and in the
excerpt of the following code, a class called
com.cimmetry.vuelink.propsaction.GerPropertyActionWrapper has been designed.
The class implements the com.cimmetry.vuelink.propsaction.DMSGetPropAction
interface and has a variable that references any object that implements this interface.
Note that the wrapper class implements the same interface as the classes it is going to
wrap.

Example 6–48 Class GetPropertyActionWrapper

package com.cimmetry.vuelink.propsaction;
public abstract class GetPropertyActionWrapper implements
 DMSGetPropAction<DMSContext>
{
 //{@link com.cimmetry.vuelink.core.DMSGetPropAction} object instance

 protected DMSGetPropAction propertyAction ;

 //Constructs a decorator from the object to extend
 //@param propAction object to extend

 public GetPropertyActionWrapper(DMSGetPropAction propAction){
 this.propertyAction = propAction;
 }

Overriding GetProp<CSI Property> classes

6-30 Oracle AutoVue ISDK Technical Guide

}
To add a new behavior you just have to add a new class derived from the wrapper
class. This mechanism allows third-party integrators to easily upgrade their solutions.

For example, in the Sample Integration for Filesys, to add the number of versions of a
document to the ListAllProperties class, we can create a new
AllPropsPlusVersionsNumber class that wraps the GetPropCSI_ListAllProperties and
adds to it the number of versions of a document.

Example 6–49 AllPropsPlusVersionsNumber class

public class AllPropsPlusVersionsNumber extends GetPropertyActionWrapper
 implements DMSDefs {
 //Wrap the existing object

 public AllPropsPlusVersionsNumber(){
 super(new GetPropCSI_ListAllProperties());
 }
 public DMSProperty execute(DMSContext context, DMSSession session,
 DMSQuery query, DMSArgument[] args, Property property)
 throws VuelinkException {
 // add the new behavior
 …

Finally, you must register this class as indicated in the following excerpt of code. Note
that the wrapper is still using the services of the object it wraps.

Example 6–50 Registering AllPropsPlusVersionsNumber

<init-param> <param-name>dms.getprops.CSI_ListAllProperties</param-name>
 <param-value> com.cimmetry.vuelink.filesys.propactions.GetPropCSI_
 AllPropsPlusVersionsNumber</param-value>
</init-param>

The major advantage of this mechanism is its capability to dynamically compose
wrapper classes. For example, you may add a new behavior to the same class by
adding the document author property you just have to follow the same steps above.
But in this case, wrap a wrapper class as shown in the following excerpt of code.

Example 6–51 Wrapping a wrapper class

public class AllPropsPlusAuthor extends GetPropertyActionWrapper implements
 DMSDefs {
 public AllPropsPlusAuthor(){ super(new AllPropsPlusVersionsNumber(new
 _ListAllProperties()));
}

You can also decide that a document has two authors. In this case, you need to
compose the new behavior as indicated in the following line of code without adding
any line of code.

Example 6–52 Composing a new behavior

new AllPropsPlusAuthor(new AllPropsPlusAuthor(new AllPropsPlusVersionsNumber(new
 CSI__GetListAllProperties())))

Implementing Read-Only Markups

Implementing Advanced Integration Functionality in Your DMS 6-31

6.14 Implementing Read-Only Markups
In combination with the AutoVue markup type (normal, master and consolidate), a
markup can be created as read-only that cannot be updated after being created. To
support read-only markups, the integration interface should enhance CSI_Markups
and Save requests sent by the AutoVue server described in Section 6.3, "Handling
Markups."

The response to the CSI_Markups request is to specify the markup GUI for the Open
and Save requests. The GUI is enhanced to allow users to choose to save a markup as
read-only and when listing existing markups to display markups with the read-only
attribute.

The response to the Save request sets the markup file as read-only if requested by the
user. It can be either a physical read-only file as with the sample integration for
FileSys, or the ready-only attribute is set in the meta-data.

Figure 6–10 Save Markup File as with Read-Only selection

Figure 6–11 Markup Files dialog with Read-Only attribute

In the Sample Integration for FileSys, the Open and Save requests are handled by the
GetPropCSI_Markups class and ActionSave class. In the GetPropCSI_Markups class,
buildMarkupGui() method generates the heading for the Markup Files dialog and
displays the GUI for the Save Markup File As dialog. The buildMarkupProperty()
method loops through each markup and includes the Read-Only attribute.

The following are code excerpts of the buildMarkupGui() and buildMarkupProperty()
methods, respectively.

Implementing Read-Only Markups

6-32 Oracle AutoVue ISDK Technical Guide

Example 6–53 buildMarkupGui() method

private DMSProperty[] buildMarkupGui(FilesysDMSBackend be, …) {
 //For “Markup Files” dialog
 DMSProperty DispArr[] = new DMSProperty[5];
 …
 DispArr[4] = new DMSProperty("Read-Only","6");
 guiProps[1] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAY, DispArr);
 …
 // For "Save Markup File As" dialog
 Property EditArr[] = new Property[3];
 …
 String [] opts = {"false", "true"};
 EditArr[2] = new GUIElementCombo(DMSProperty.CSI_DocReadOnly, "Read-Only",
 "false", opts, true);
 guiProps[2] = new DMSProperty(DMSProperty.PROP_GUI_EDIT, EditArr);
 …
}

Example 6–54 buildMarkupProperty() method

private Property[] buildMarkupProperty(FilesysDMSBackend be, …) throws
 VuelinkException{
 …
 DMSProperty guiProps[] = buildMarkupGui(be, beSession, docID);
 Vector<DocInfo> mrkDocIds = be.dmsListMarkups(beSession, docID);
 DMSProperty markup[] = new DMSProperty[mrkDocIds.size()+1];
 markup[0] = new DMSProperty(DMSProperty.PROP_GUI ,guiProps);
 for (int i = 0; i < mrkDocIds.size(); i++) {
 DMSProperty mrkProp[] = new DMSProperty[7];
 …
 boolean bReadOnly = false;
 …
 // Special treatment for OEVF markups
 if (!editable) { // default asset markup in non-editable mode
 bReadOnly = true;
 }
 else { // non-oevf markup
 File file = mrkDocIds.get(i).getFile();
 if (file.canWrite() == false) {
 m_logger.info(file.getAbsolutePath() + " is not writable.");
 bReadOnly = true;
 }
 }
 …
 mrkProp[5] = new DMSProperty(Property.CSI_DocReadOnly, new
 Boolean(bReadOnly).toString()); // This is needed for AutoVue Server
 mrkProp[6] = new DMSProperty("Read-Only", new
 Boolean(bReadOnly).toString());
 markup[i+1] = new DMSProperty(DMSProperty.PROP_MARKUP,mrkProp);
 }
 m_logger.debug("got the list of markups: " + markup);
 return markup;
}

In the ActionSave class, the execute() method retrieves the Read-Only attribute and
passes it to the backend saveMarkup() method, as show in the following code excerpt.

Example 6–55 execute() method

public Object execute(final FilesysContext context, …) throws VuelinkException {

Implementing Stamps

Implementing Advanced Integration Functionality in Your DMS 6-33

 …
 boolean bReadOnly = false; /* true if it is a read-only markup */
 …
 if (Property.PROP_DOC_READONLY.equals(name)) {
 try {
 bReadOnly = prop.getValue().equalsIgnoreCase("true");
 } catch (Exception ex) {
 bReadOnly = false;
 }
 }
 …
 // saving markup (new or existing)
 newDocID = be.saveMarkup(beSession,baseID, saveID, docName, markType,
 bReadOnly, fIn);
 …
}

6.15 Implementing Stamps
The Stamp markup entity allows you to create a stamp that includes document and
user information (metadata) pulled directly from the DMS backend system.

Stamps are created with the Design Stamp tool that is included with the AutoVue
installation. Refer to the Oracle AutoVue User's Manual for information on how to create
a Stamp.

An includes a Stamp definition file (dmstamps.ini) and one or more background
image files. The Stamp definition file contains information about its background
images. The default location for dmstamps.ini is located under <AutoVue Installation
Directory>\bin folder.

After a Stamp is created, the Stamp definition file (dmstamps.ini), along with the
background images are stored in a location accessible by your integration application.
They may be accessed through files that have absolute path or relative path to your
integration application or from documents that have been checked into your backend
DMS system. In either case, your integration application should know how to find the
Stamp definition file and its background images. You should define the location of
dmstamps.ini in web.xml file using CSI_IntellistampDefLocation parameter name as
in Oracle AutoVue's demo application. If the locations of underlay images are different
from those at the designing phase, make sure to modify the paths inside the Stamp
definition file (dmstamps.ini).

When adding a Stamp markup entity, the AutoVue server sends a GetProperties
request by passing the CSI_IntelliStamp property in it. The response data that your
integration sends back includes the following:

1. The definition file for a Stamp

■ This is basically the content of dmstamps.ini file which is generated by
stampdlg.exe tool shipped with AutoVue.

2. The background images for the Stamp

■ This is basically the name and DocID of each of the background images for
each Stamp.

The AutoVue server downloads each of the underlying images by invoking the normal
file download request and passing the DocID of the stamp image.

The AutoVue server also sends a GetProperties request to retrieve DMS attributes
defined inside Stamps. These attributes may have values that can be selected from a

Implementing Stamps

6-34 Oracle AutoVue ISDK Technical Guide

Pick List. As illustrated in the following image, the Status attribute can be selected
from a Pick List that has several values. There are four attributes in the Pick List:
Single Valued and Constrained, Single Valued and Non-Constrained, Multi Valued
and Constrained, and Multi Valued and Non-Constrained. Constrained means that
the valid value is restricted to the Pick List and Multi valued means multiple values
can be assigned to an attribute.

Figure 6–12 Stamp DMS Attributes dialog

After modifying the values of Stamp, the AutoVue server sends a SetProperties request
to synchronize metadata in the DMS system through the integration interface.

In the sample Integration for FileSys, GetPropCSI_IntelliStamp class handles the
GetProperties request for CSI_IntelliStamp, GetPropDefault class handles the request
for attributes inside Stamps, and FilesysDMSBackendImp class has methods to be
called from GetPropDefault class for the list property.

As illustrated in the following code, the getImagesDoc() method of GetPropCSI_
IntelliStamp class attaches CSI_DocName and CSI_DocID DMSProperty to CSI_
IntelliStampImage DMSProperty for each background image file.

Example 6–56 getImagesDoc() method

private DMSProperty[] getImagesDoc(Vector<String> imageFiles){
 if(imageFiles.isEmpty()) return null;
 int numOfImage = imageFiles.size();
 DMSProperty [] images = new DMSProperty[numOfImage];
 for(int i = 0; i < numOfImage; i++){
 …
 DMSProperty [] imagePro= new DMSProperty[2];
 imagePro[0] = new DMSProperty(Property.CSI_DocName,
 (String)imageFiles.elementAt(i));
 imagePro[1] = new DMSProperty(Property.CSI_DocID,
 new FilesysDMSDocID (stampImage.getAbsolutePath()).DocID2String());
 images[i] = new DMSProperty(DMSProperty.CSI_IntelliStampImage, imagePro);
 …
 }
 return images;
}

Implementing Stamps

Implementing Advanced Integration Functionality in Your DMS 6-35

Lastly, the execute() method of GetPropCSI_IntelliStamp class attaches CSI_
IntelliStampDefinition and CSI_Intellistamp_Images DMSProperty in a CSI_
IntelliStamp DMSProperty and returns it to the VueLink servlet.

Example 6–57 Class GetPropCSI_Intellistamp

package com.cimmetry.vuelink.filesys.propactions;
….
public class GetPropCSI_IntelliStamp extends GetFilesysProperty
 implements DMSGetPropAction<FilesysContext> {
…
 // Retrieve the content of the Intellistamp Definition file
 String content = getIntelliStampDefinition();
 if(content != null && content.length()!= 0){
 // Construct response CSI_Intellstamp_definition
 DMSProperty ini = new
 DMSProperty(DMSProperty.CSI_IntelliStampDefinition,content);
 // Retrieve the list of underlying images for the Intellistamp
 Vector<String> imageFiles = getImageFiles(content);
 DMSProperty[] imagesInfo = getImagesDoc(imageFiles);
 DMSProperty image = null;
 if(imagesInfo != null && imagesInfo.length != 0) {
 //Construct response CSI_Intellistamp_Images
 image = new DMSProperty(DMSProperty.CSI_IntelliStampImages,
 imagesInfo);
 }
 if(image != null){
 // Intellistamp Definition file and the underlying images
 // are all available
 DMSProperty[] pro = new DMSProperty[2];
 pro[0] = ini; // response CSI_Intellstamp_definition
 pro[1] = image; // response CSI_Intellistamp_Images
 retProps= new DMSProperty(DMSProperty.CSI_IntelliStamp, pro);
 }else{
 // Image files are not available
 retProps= new DMSProperty(DMSProperty.CSI_IntelliStamp, ini);
 }
 }else{
 // Intellistamp Definition file does not exist or is empty
 retProps= new DMSProperty(DMSProperty.CSI_IntelliStamp, "");
 }
 return retProps;
The GetPropCSI_IntelliStamp class is registered in web.xml as indicated in the
following code:

Example 6–58 Registering GetPropCSI_IntelliStamp

<init-param>
 <param-name>dms.getprops.CSI_IntelliStamp</param-name>
 <param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_
 IntelliStamp</param-value>
</init-param>

When the GetProperties request handled by GetPropDefault class gets DMS attributes
for Stamps, at the last stage, it is handled by calling the replaceWithPickListIfApplies()
method of the FilesysDMSBackendImp class.

Example 6–59 Class GetPropDefault

package com.cimmetry.vuelink.filesys.propactions;

Implementing Stamps

6-36 Oracle AutoVue ISDK Technical Guide

..
public class GetPropDefault implements DMSGetPropAction<FilesysContext>, DMSDefs {
 …
 public DMSProperty execute(…) throws VuelinkException {
 …
 DMSProperty retProp=null;
 …
 retProp = context.getBackendAPI().replaceWithPickListIfApplies(
 context.getBackendSession(session, query),retProp);
 return retProp;
 }
}

The replaceWithPickListIfApplies() method checks to see if the DMS attribute is a Pick
List. If it is, the makePickList() method is called first and then a different DMSProperty
labeled with the property name is returned based on whether the Pick List is
single-valued or multi-valued.

Example 6–60 replaceWithPickListIfApplies() method

package com.cimmetry.vuelink.filesys.backend;
…
public DMSProperty replaceWithPickListIfApplies(..){
 try {
 … // Check whether is a PickList
 if (list != null) { // is Pick List
 …
 if (prop.isSingleValue()) { //Single valued
 return new DMSProperty(prop.getName(), prop.getValue(),
 makePickList(options, constrained, multi));
 } else { // Multi valued
 …
 return new DMSProperty(prop.getName(), prop.getObjectValues(),null,
 makePickList(options, constrained, multi),multiValue);
 }
 } else { // no pick list
 return prop;
 }
 } catch (Exception e) {
 …
 return prop;
 }
}

The makePickList() method builds an array of DMSProperty labeled PickValue for each
available option value in the Pick List and attaches this array and additional info about
whether the Pick List is multi-valued and constrained to a DMSProperty labeled
PickList to return.

Example 6–61 makePickList() method

/**
* create a pick list DMSProperty
* @param options a Vector<String> of available option list
* @param constrained if true means options are restricted to the options list
* @param multiValue if true means multiple items from options list can be selected
* @return
*/
public DMSProperty[] makePickList(Vector<String> options, boolean constrained,
 boolean multiValue) {

Implementing Redirection

Implementing Advanced Integration Functionality in Your DMS 6-37

 if (options == null || options.size() == 0) {
 return null;
 }
 DMSProperty[] pickValue = new DMSProperty[options.size()];
 for(int k = 0; k < pickValue.length; k++){
 pickValue[k] = new DMSProperty("PickValue", options.get(k));
 }
 Hashtable<String, Boolean> attrs = new Hashtable<String, Boolean>();
 attrs.put(DMSProperty.ATTRIB_CONSTRAINED, constrained);
 attrs.put(DMSProperty.ATTRIB_MULTI_VALUE, multiValue);
 DMSProperty pickList = new DMSProperty("PickList",null, null,pickValue, attrs);
 DMSProperty[] aPL = new DMSProperty [1];
 aPL[0] = pickList;
 return aPL;
}

For more information, examine the code and use the debugger to learn more about the
real behavior of this class.

6.16 Implementing Redirection
In a distributed environment where several remote content servers are used for storing
files, an ISDK-based integration deployed at a master location (Primary) may redirect
the download/upload requests to another ISDK-based integration deployed at a
remote location (Secondary) where files actually reside. This greatly improves
performance since the AutoVue server is installed in the same location as the remote
content server.

To deal with this use case, ISDK-based integration adds redirection support when
handling Download and Save requests sent by the AutoVue server.

6.16.1 Handling Redirection for Download
When users view a file, the AutoVue server sends a Download request to the primary
integration. The primary integration checks whether the file should be picked up from
a remote location (that is, a redirection is needed). The way to check this is based on
the specific implementation of the backend system that it is integrated for. If
redirection is needed, the primary integration sends back a redirection response with a
ticket authorizing the AutoVue server to download the file directly from the remote
location specified in the response.

In the Demo Integration of Filesys, the Download request is handled by
ActionDownload class. In the execute() method, it checks whether a redirection is
needed based on whether a redirectURL is present in the web.xml and whether a ticket
is available in the Authorization block of the Download request. If redirection is
needed, it constructs the ticket that includes username and password for remote login
and calls the constructRedirectURL() method in the DMSUtil class to generate the
redirect response. Usually the ticket is generated by the backend system mechanism as
shown in the following code snippet.

Example 6–62 execute() method

public Object execute(final FilesysContext context,…) throws VuelinkException {
 …
 //REDIRECT SUPPORT start based on whether web.xml defines Redirect_VL_URL or
 //not
 String ticket = query.getAuthorization().getTicket();
 if (ticket == null) { //try to get from session

Implementing Redirection

6-38 Oracle AutoVue ISDK Technical Guide

 ticket = (String)session.getAttribute("Ticket");
 }
 if (ticket == null) {
 try {
 String redirectURL = FilesysContext.getStaticParameter(
 FilesysContext.PARAM_CSI_REMOTE_VUELINK);
 //Redirect download if URL is provided
 if (!DMSUtil.isNullOrBlank(redirectURL)) {
 String username = (String)session.getAttribute("username");
 String password = (String)session.getAttribute("password");
 if (username != null && username.length() > 0 && password != null) {
 ticket = username.trim()+ "&" + password.trim();
 m_logger.debug("Ticket: " + ticket);
 }
 return DMSUtil.constructRedirectURL(query, redirectURL, ticket);
 }
 }catch (Exception e) {
 m_logger.error("redirecting download faild " + e.toString());
 }
 }
 //REDIRECT SUPPORT finish
 …
}

As shown in the following example, in the constructRedirectURL() method of the
DMSUtil class, the redirect response encapsulates five properties in a single Redirect
property: HTTP URL as redirection type, ticket authorizing download from remote file
cache server, URL to DMS server component located at remote file cache server, the
original FILENAME and the Document ID.

Example 6–63 constructRedirectURL() method

public static DMSProperty constructRedirectURL(final DMSQuery query, String
 redirectURL, String ticket){
 DMSProperty [] redirect = new DMSProperty[5];
 redirect[0] = new DMSProperty(DMSProperty.TYPE, DMSProperty.URL);
 redirect[1] = new DMSProperty(DMSProperty.TICKET, ticket);
 redirect[2] = new DMSProperty(DMSProperty.SERVER, redirectURL);
 redirect[3] = new DMSProperty(DMSProperty.ORIGINALURL, query.getOriginalURL());
 String docID = query.getDocID();
 /* if no docID is returned to AV Server, AV server won't send
 * redirect request to VL at the remote content server.
 * so return one faked docID to AV Server when saving a new markup.
 * */
 if(docID == null || docID.length() == 0){
 docID = "docID";
 }
 redirect[4] = new DMSProperty(DMSProperty.CSI_DocID, docID);
 return new DMSProperty(DMSProperty.REDIRECT, redirect);
}

After the AutoVue server receives this redirection response, it issues another
Download request with the ticket information directly to the secondary integration
deployed at the remote location. The secondary integration uses the ticket to log-in to
the remote backend system and download the file as usual.

Implementing Redirection

Implementing Advanced Integration Functionality in Your DMS 6-39

6.16.2 Handling Redirection for Save
When users want to save a file, prior to the Save request, the AutoVue server sends a
GetProperties request with CSI_Redirected property to the primary integration asking
whether redirection is supported. If supported, the primary integration responds
TRUE for this CSI_Redirected property.

If TRUE is returned, the AutoVue server sends a Save request to the primary
integration without file content. If the primary integration checks that redirection is
needed, it sends a REDIRECT DMSProperty response similar to that for the Download
request above with a ticket authorizing the AutoVue server to upload the file directly
to another location specified in the redirection response.

Upon receiving the ticket, the AutoVue server then sends a second Save request to the
secondary integration located at the remote location by adding the ticket to the
Authorization block of the request and attaches the file to be saved.

Once the uploaded file is checked in successfully, the secondary integration returns a
confirmation in the form of a receipt in place of the returned DocID.

The AutoVue server then issues a third Save request forwarding this receipt to the
primary integration again. Primary integration then returns the DocID of the uploaded
file to finalize the Save process.

The following is a code snippet from the Demo Integration of Filesys.

Example 6–64 Demo Integration of Filesys code snippet

package com.cimmetry.vuelink.filesys.propactions;
…
public class GetPropDefault … {
 …
 public DMSProperty execute(final FilesysContext context,…) throws
 VuelinkException {
 …
 final String propName = property.getName();
 …
 if (DMSProperty.CSI_Redirected.equals(propName)) {
 String redirectURL = FilesysContext.getStaticParameter(
 FilesysContext.PARAM_CSI_REMOTE_VUELINK);
 boolean redirected = false;
 if(redirectURL != null && redirectURL.length() > 0){
 redirected = true;
 }
 return new DMSProperty(DMSProperty.CSI_Redirected,
 new Boolean(redirected));
 }
 …
 }
 …
}

Note: The GetPropDefault class handles responses to GetProperties
requests for CSI_Redirected DMSProperty. Filesys decides that
redirection is supported if PARAM_CSI_REMOTE_VUELINK is
defined in the web.xml file. In your integration, it should be decided
based on communication with the backend system.

Implementing Redirection

6-40 Oracle AutoVue ISDK Technical Guide

ActionSave class handles the response to Save request from the AutoVue server. The
execute() method checks whether redirection is involved.

■ If redirection is involved, it checks whether it has Receipt property in the request.

■ If not, it means that this is the first Save request and it generates a ticket for
remote login and responses back with a Redirect property similar to that for
handling Download request.

■ If yes, it means that this is the third Save request and it responds with a CSI_
DocID DMSProperty.

■ If no redirection is involved, this can be the second Save request at the secondary
site or a normal Save request at the primary site. In either case, it should check in
the file. If the check-in happens at the secondary location, a receipt for the saved
file is returned. If the check-in happens at the primary location, a valid DocID for
the saved file is returned.

Example 6–65 ActionSave class

package com.cimmetry.vuelink.filesys.actions;
…
public class ActionSave … {
 …
 public Object execute(final FilesysContext context,…) throws VuelinkException {
 …
 // REDIRECT SUPPORT start based on whether web.xml defines Redirect_VL_URL
 //or not
 String ticket = (String)session.getAttribute("Ticket");
 if (ticket == null && args == null) {
 try {
 String redirectURL = FilesysContext.getStaticParameter(
 FilesysContext.PARAM_CSI_REMOTE_VUELINK);
 if (!DMSUtil.isNullOrBlank(redirectURL)) {
 // Redirect is involved
 String receipt = getReceipt(props);
 if (receipt != null && receipt.length()!= 0) {
 // There is Receipt in the Save request
 return new DMSProperty(Property.CSI_DocID, receipt);
 }
 … //Generate ticket using username and password
 m_logger.debug("Ticket: " + ticket);
 return DMSUtil.constructRedirectURL(query, redirectURL,
 ticket);
 }
 }catch (Exception e) {
 m_logger.error("redirecting save failed " + e.toString());
 }
 }
 …
 // The following is psuedo code
 if checkin file at the redirected site {
 String receipt = secondaryCheckIn(); // Save file
 return receipt;
 }
 else {
 String docID = primaryCheckIn(); // Save file
 return docID;
 }
 }
 …

Implementing Real-Time Collaboration and Meeting Management

Implementing Advanced Integration Functionality in Your DMS 6-41

}

6.17 Implementing Real-Time Collaboration and Meeting Management
Oracle AutoVue provides real-time collaboration functionality that enables multiple
users to review files interactively and simultaneously. ISDK-based integration can
integrate AutoVue Real-Time Collaboration (RTC) functionality with third-party
meeting management systems.

The steps for RTC and meeting management integrations include:

■ Customizing UI to provide links for launching AutoVue in RTC mode by hosts
and guests

■ Implementing ISDK APIs for handling backend communication

6.17.1 Launching AutoVue in RTC Mode
When creating a third-party AutoVue RTC meeting, the meeting creators (hosts) can
invite a list of attendees (guests) to attend the meeting and add list of documents to
review during the meeting. From the third-party meeting management GUI, hosts can
click to start the meeting that launches AutoVue, displays a meeting document, enters
RTC mode, and presents a default collaboration markup. Guests can click to join a
meeting which then launches AutoVue into RTC mode and are presented in the same
AutoVue GUI as that on the host side.

6.17.2 Hosts Initiate RTC
The following information is needed for hosts to launch AutoVue to initiate a RTC.

■ DMS is the URL for the DMS servlet (main class) of your ISDK-based integration

■ MEETINGID is a number identifying the RTC meeting and holds the same value
as CSI_ClbSessionID mentioned below.

■ CSI_ClbSessionData can hold more information in addition to the CSI_
ClbSessionID (MEETINGID), but your integration should know how to parse the
CSI_ClbSessionData to retrieve the CSI_ClbSessionID.

■ CLBUSERS are comma separated strings that represent the list of attendees who
have been invited to the RTC by AutoVue.

■ FILENAME is a file among the list of documents intended to be reviewed during
the RTC meeting.

Example 6–66 Initiating Real-Time Collaboration

var session = "CSI_ClbDMS=" + DMS + ";" +
 "CSI_ClbSessionData=" + MEETINGID + ";" +
 "CSI_ClbSessionSubject=DemoRealTimeCollaboration;" +
 "CSI_ClbSessionType=public;" +
 "CSI_ClbUsers=" + CLBUSERS + ";";

When creating an AutoVue applet to initiate a RTC for the first time, the following
parameters should be provided:

Note: This value is not supported by the current AutoVue server.

Implementing Real-Time Collaboration and Meeting Management

6-42 Oracle AutoVue ISDK Technical Guide

Example 6–67 Required parameters when creating an AutoVue applet to initiate a RTC

<PARAM NAME="FILENAME" VALUE="' + FILENAME +'">
<PARAM NAME="COLLABORATION" VALUE="INIT:' + session + '”>
When reusing an AutoVue applet for RTC, the following needs to be set using
AutoVue applet APIs. The FILENAME is the new file to collaborate on.

Example 6–68 Reusing AutoVue applet for RTC

japplet.setFileThreaded(FILENAME);
japplet.collaborationInit(session);

6.17.3 Guests Join RTC
The following information is needed for guests to launch AutoVue to join a RTC. Note
that only CSI_ClbDMS and CSI_ClbSessionData are needed.

Example 6–69 Required information for guests to join RTC

var session = "CSI_ClbDMS=" + DMS + ";" +
 "CSI_ClbSessionData=" + MEETINGID + ";";

When creating an AutoVue applet for joining a RTC for the first time, the
COLLABORATION parameter should be provided. There is no need for FILENAME
parameter.

Example 6–70 COLLABORATION parameter

<PARAM NAME="COLLABORATION" VALUE="INIT:' + session + '”>

Refer to RTCDemo.jsp, RTCDemo_init.jsp and RTCDemo_join.jsp in the RTC Sample
for detailed implementation.

6.17.4 ISDK APIs for RTC
To support RTC, ISDK-based integration needs to support a series of requests sent by
the AutoVue server.

When the host initiates a RTC meeting or guests join a RTC, the first request sent by
the AutoVue server is CSI_ClbSessionID. In response, the integration retrieves the
session ID by passing CSI_ClbSessionData sent in the request. In the Sample
Integration for Filesys, this request is handled by GetPropCSI_ClbSessionID class. In
Filesys, ClbSessionData simply comprises ClbSessionID. Following is the sample code.

Example 6–71 Class GetPropCSI_ClbSessionID sample code

public class GetPropCSI_ClbSessionID … {
 …
 public DMSProperty execute(…) throws VuelinkException {
 …
 String sClbSessionData = query.getClbSessionData();
 m_logger.debug("ClbSessionData : " + sClbSessionData);
 String sClbSessionID = sClbSessionData;
 m_logger.debug("ClbSessionID : " + sClbSessionID);
 return new DMSProperty(DMSProperty.CSI_ClbSessionID, sClbSessionID);
 }
}

One important request sent by the AutoVue server for Real-Time Collaboration is the
GetProperties request for CSI_Collaboration property. When users select an AutoVue

Implementing Real-Time Collaboration and Meeting Management

Implementing Advanced Integration Functionality in Your DMS 6-43

Collaboration action Invite, Session Information, or Close Collaboration Session, the
AutoVue server sends this request to retrieve information. ISDK integration responds
with a single CSI_Collaboration DMSProperty that includes the following
DMSProperties:

■ PROP_GUI:DMSProperty with an array of children:

– PROP_GUI_DISPLAYOPTS: DMSProperty having multiple child
DMSProperties for enabling/disabling GUI items in the Invitation dialog.

– PROP_GUI_DISPLAY: DMSProperty having multiple child DMSProperties
listing attributes to be displayed in the Session selection dialog along with the
width (number of characters) to reserve for the attributes display.

– CSI_ClbInvitation: DMSProperty wrapping a List identified as CSI_ClbUsers:
These users are displayed in the left side of AutoVue Collaboration's Invitation
dialog. Users on this list can be invited to attend a RTC by AutoVue.Note: This
value is not supported by the current AutoVue server.

– CSI_ClbUsers:DMSProperty listing users that have already been invited to a
RTC. The list of users will be shown in the User section of the AutoVue
Collaboration Session Information dialog.Note: This value is not supported by
the current the AutoVue Server.

– CSI_ClbSession: DMSProperty having multiple child DMSProperties that
show session information such as session title, id, type, subject, duration, start
time, and so on. It includes also a CSI_ClbSaveChat indicates whether the
backend system component supports saving chat transcript. By default, CSI_
ClbSaveChat is set to FALSE.

In the Sample Integration for Filesys, CSI_Collaboration is handled by GetPropCSI_
Collaboration class. The buildProperty() method in this class is responsible for
generating the CSI_Collaboration DMSProperty to return.

Example 6–72 buildProperty() method

private DMSProperty buildProperty(…) throws VuelinkException {
 DMSProperty clbProps[] = new DMSProperty[3];
 /* GUI section */
 DMSProperty guiProps[] = new DMSProperty[3];
 /* DisplayOptions sub-section */
 // For enabling/disabling GUI items in Invitation dialog
 DMSProperty dispOptArr[] = new DMSProperty[4];
 dispOptArr[0] = new DMSProperty("AllowAdd","true");
 dispOptArr[1] = new DMSProperty("AllowAddNew","true");
 dispOptArr[2] = new DMSProperty("AllowRemove","true");
 dispOptArr[3] = new DMSProperty("AllowLayerColor","true");
 guiProps[0] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAYOPTS, dispOptArr);
 // Lists the attributes to be displayed in the Session selection dialog
 // along with the width to reserve for the attributes display.
 // The property names match those defined in the following "Session" Section.
 // For example, dispArr[i] = new DMSProperty(attr_name, attr_width);
 DMSProperty[] dispArr = new DMSProperty[2];
 dispArr[0] = new DMSProperty("Originator", "14");
 dispArr[1] = new DMSProperty("Meeting Duration", "14");
 guiProps[1] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAY, dispArr);
 /* Invitation sub-section */
 // Lists users who can be invited to the collaboration session
 Property[] invitationArr = new Property[1];
 String defaultUser = null;
 String[] users = null;

Implementing Real-Time Collaboration and Meeting Management

6-44 Oracle AutoVue ISDK Technical Guide

 boolean readOnly = false;
 users = be.clbUsers(beSession, sClbSessionID);
 invitationArr[0] = new GUIElementList(DMSProperty.CSI_ClbUsers, "user",
 defaultUser, users, readOnly);
 guiProps[2] = new DMSProperty(DMSProperty.CSI_ClbInvitation, invitationArr);
 clbProps[0] = new DMSProperty(DMSProperty.PROP_GUI, guiProps);
 /* End of GUI section */
 /* ClbUser Section */
 String[] invitedUsers = be.clbInvitedUsers(beSession, sClbSessionID);
 clbProps[1] = new DMSProperty(DMSProperty.CSI_ClbUsers, invitedUsers);
 /* Session Section */
 // The current collaboration session information:
 Vector<DMSProperty> sessionAttr = new Vector<DMSProperty>();
 sessionAttr.add(new DMSProperty(DMSProperty.CSI_ClbSessionID, sClbSessionID));
 String sClbSessionType = "public"; // It can be private
 sessionAttr.add(new DMSProperty(DMSProperty.CSI_ClbSessionType,
 sClbSessionType)); String sClbSaveChat = "true";
 sessionAttr.add(new DMSProperty(DMSProperty.CSI_ClbSaveChat, sClbSaveChat));
 // Here are sample meeting attributes for RTC demo. In real implementation,
 // they might be retrieved from the backend system.
 sessionAttr.add(new DMSProperty("Originator", "rtc"));
 sessionAttr.add(new DMSProperty("Meeting Duration", "60 minutes"));
 DMSProperty[] arr = new DMSProperty[sessionAttr.size()];
 clbProps[2] = new DMSProperty(DMSProperty.CSI_ClbSession,
 sessionAttr.toArray(arr));
 /* End of all sections */
 m_logger.debug("Got the Collaboration GUI elements: " + clbProps);
 return new DMSProperty(DMSProperty.CSI_Collaboration, clbProps);
}

Based on the above implementation, during a RTC meeting, the collaboration's Session
Information dialog is similar to the following figure.

Implementing Real-Time Collaboration and Meeting Management

Implementing Advanced Integration Functionality in Your DMS 6-45

Figure 6–13 Session Information dialog

If CSI_ClbSaveChat is set to true in your integration's CSI_Collaboration response, and
when the RTC is closed by selecting Collaboration from the Close Collaboration
Session menu of the AutoVue GUI, the AutoVue server sends a Save request with
CSI_ClbDocType property set to value chat and attaches the chat content during the
RTC session for saving. In this case, ISDK integration communicates with the backend
system to save the chat transcript at a desired location. In the Sample Integration for
Filesys, ActionSave class handles the saving of the chat transcript.

Example 6–73 ActionSave class

public class ActionSave … { …
 public Object execute(…) throws VuelinkException { …
 final Property[] props = query.getDMSArgsProperties(); …
 boolean bSaveChat = false; …
 if (props != null) {
 for (int i = 0; i < props.length; i++) { …
 if (Property.CSI_ClbDocType.equals(name)) {
 if (prop.getValue() != null &&
 prop.getValue().equalsIgnoreCase("chat")) {
 bSaveChat = true;
 }
 } …
 } …
 InputStream fIn = null;
 … // Put chat file content in a fIn
 …
 if (bSaveChat) {
 String clbData = query.getClbSessionData();
 String clbSessionID = clbData;
 docName = context.getInitParameter("RootDir") + File.separator + "chat_"
 + clbSessionID + ".txt";
 m_logger.debug(" for session " + clbSessionID + " to: " + docName);

Implementing Real-Time Collaboration and Meeting Management

6-46 Oracle AutoVue ISDK Technical Guide

 return be.saveChat(beSession, docName, fIn);
 } …
 } …
}
During a RTC session, the AutoVue server sends notifications as a part of
SetPropertiesrequest to notify that certain actions have been completed by AutoVue.
For example, a notification is sent if a RTC is initialized or closed, users join or leave a
session, or when a new file is opened in which to collaborate. These actions
correspond to CSI_ClbInitSession, CSI_ClbCloseSession, CSI_UserJoined, CSI_
UserLeft and CSI_DocumentSet property.

In the Sample Integration for Filesys, these notifications are handled by the
ActionSetProperties class that mainly generates debug information when receiving
these notifications. In the case of CSI_DocumentSet, a notification is sent when
collaboration users switch documents to collaborate on in the middle of a RTC
meeting. Filesys adds newly viewed document information to a text file,
meetingfiles.txt, that holds all the meeting documents information by
clbDocumentSet() method in FilesysDMSBackendImp class.

Example 6–74 ActionSetProperties class

public class ActionSetProperties … { …
 public Object execute(…) throws VuelinkException { …
 Property[] props = query.getProperties(); …
 for (int i = 0; i < props.length; i++) {
 String value = props[i].getValue(); …
 if (props[i].getName().equalsIgnoreCase(Property.CSI_ClbCloseSession)) {
 m_logger.debug("CSI_ClbCloseSession : " + sClbSessionID);
 continue;
 }
 if (props[i].getName().equalsIgnoreCase(Property.CSI_ClbInitSession)) {
 m_logger.debug("CSI_ClbInitSession : " + value);
 continue;
 }
 if (props[i].getName().equalsIgnoreCase(Property.CSI_UserJoined)) {
 m_logger.debug("User Joined : " + value);
 continue;
 }
 if (props[i].getName().equalsIgnoreCase(Property.CSI_UserLeft)) {
 m_logger.debug("User Left : " + value);
 continue;
 }
 if (props[i].getName().equalsIgnoreCase(Property.CSI_DocumentSet)) {
 m_logger.debug("Document Set = " + value);
 context.getBackendAPI().clbDocumentSet(
 context.getBackendSession(session, query), value);
 continue;
 } …
 } …
 } …
}

During a RTC meeting, the document to be reviewed can be changed by using DMS
Browse or DMS Search. From the AutoVue menu bar, select File, Open URL, and then
DMS Browse. The File Open dialog appears. The AutoVue server sends CSI_ListItems
request to retrieve the DMS Browse result. As a part of handing this request, the
ISDK-based integration should allow users to browse the list of documents to be
reviewed during the meeting by communicating with the backend system to retrieve
the list. In Filesys-based RTC demo, a text file meetingfiles.txt holds the list of meeting

Implementing Real-Time Collaboration and Meeting Management

Implementing Advanced Integration Functionality in Your DMS 6-47

documents. The GetPropCSI_ListItems class handles the response for CSI_ListItems
request and it finally calls the getInstanceIDs() method in Browse class to retrieve this
list. In the sample dialog from Filesys shown below, three meeting documents are
listed under the Meeting folder. Meeting users can select documents listed under
Meeting to review. Additionally, they can open documents under other folders to
review. When a new document is opened, a CSI_DocumentSet notification is sent by
the AutoVue server. By handling this notification, the ISDK-based integration can add
the new document information to the existing meeting document list by
communicating with the backend system.

Figure 6–14 DMS: File Open dialog

Example 6–75 Browse class code snippet

package com.cimmetry.vuelink.filesys.dms.domain;
class Browse{ …
 public Vector<DocInfo> getInstanceIDs() throws Exception{
 Vector<DocInfo> v = new Vector<DocInfo>();
 File browseFile = (File)m_docID.getFile();
 … //list meeting files from "Meeting/meetingfile.txt"
 … //list elements from other folders
}

Example 6–76 FilesysDMSBackendImp class code snippet

public class FilesysDMSBackendImp … { …
 public void clbDocumentSet(DMSBackendSession session, String sDocID) … { …
 if (sDocID == null) return;
 … // Add document name to the meetingfiles.txt if this is a new document
 }
 …
}

6.17.5 Summary
In order to support RTC and meeting management, ISDK-based integration should be
able to gather information and launch the AutoVue applet to enter Real-Time
Collaboration mode when the host starts a meeting and when guests join meeting
from a third-party meeting management system. The integration should implement
responses to CSI_CollaborationID, CSI_Collaboration, SetProperties with different

Implementing Oracle Enterprise Visual Framework Support

6-48 Oracle AutoVue ISDK Technical Guide

notifications, CSI_ListItems and Save requests sent by the AutoVue server to handle
RTC-specific tasks. To accomplish the above response, it needs to communicate with
the backend system to perform the following:

■ Retrieve a list of users who have been added to the meeting's attendees when
hosts create a meeting from the third-party meeting management system.

■ Retrieve a list of documents to collaborate on when hosts create a meeting from
the third-party meeting management system.

■ Save chat content during RTC when hosts close a collaboration session.

■ Perform additional processes for notification messages. For example, user joined
and left, document change, collaboration session initialized and closed.

6.18 Implementing Oracle Enterprise Visual Framework Support
Oracle Enterprise Visual Framework (OEVF) is designed to add Enterprise
Visualization capabilities to enterprise applications and to provide a generic structure
for accessing documents stored in the backend system through the concepts of Asset
ID and Workflow ID. Both concepts are defined in enterprise application systems rather
than the document ID of the document in the backend system. Asset ID and Workflow
ID are unique identifiers associated to an asset and an enterprise workflow (such as a
service request or work order), respectively, in the backend system.

Using internal mapping, a document in the backend system can be connected to
multiple assets and/or multiple workflows in an enterprise application system so that
the document can be retrieved using the Asset/Workflow IDs. Usually the mapping is
stored as part of the document's record inside the backend system. As a result, some
custom attributes should be added to the backend system. For example, the
document's record can have an OEVF AssetID attribute that holds a set of AssetIDs
and an OEVF WorkflowID attribute that holds a set of WorkflowIDs. In the Sample
Integration for Filesys, this relationship is represented in an XML file.

In OEVF, each AssetID/WorkflowID can be associated with its own set of
asset/workflow markups and each has a default asset/workflow markup. The
markups viewable in AutoVue should be in the context of the certain asset and/or
workflow.

6.18.1 Most Common Use Cases for OEVF
The following are the most common use cases for OEVF.

1. Administrator logs into Enterprise Application:

– Administrator navigates to Asset info page and chooses to Edit asset using
AutoVue.

– AutoVue applet opens the associated file either as popup or embedded.

– AutoVue automatically opens the asset markup if already exists or creates a
new one if does not exist:

* Administrator is able to modify and save the asset markup.

* Administrator is not able to rename asset markup.

* Administrator is not able to open or save any markups other than asset
markup.

* Only one asset markup is allowed per asset.

Implementing Oracle Enterprise Visual Framework Support

Implementing Advanced Integration Functionality in Your DMS 6-49

2. End user logs into Enterprise Application:

– User navigates to Asset info page and selects to View asset using AutoVue.

– AutoVue applet opens the associated file either as popup or embedded.

– AutoVue will automatically open the asset markup if exists:

* User will not be able to modify or save the asset markup.

* User will not be able to create/open/delete any markups.

3. End user logs into Enterprise Application:

■ User navigates to workflow info page and selects to View the related asset in
AutoVue.

■ AutoVue applet opens the asset file and asset markup if exists (read only) and
default workflow markup (edit mode).

■ When user tries to list the markups, only markups related to given asset and
workflow are listed.

■ User can open, edit and save any workflow related markup.

6.18.2 OEVF Launching URL and Parameters
The OEVF launching URL is dynamically constructed and invoked from the enterprise
application system to launch AutoVue within the context of an asset or a workflow.
This URL passes OEVF parameters to a customized page (as with frmApplet.jsp in the
following OEVF launching URL sample) that is part of your ISDK customization
component on the enterprise application side.

The following parameters can be passed in an OEVF launching URL:

Asset ID: ID that uniquely identifies an Asset in the enterprise application system that
has been mapped to a document in the backend system through the OEVF Asset ID
attribute.

Workflow ID: ID that uniquely identifies a Workflow in the enterprise application
system that has been mapped to a document in the backend system through the OEVF
Workflow ID attribute. When launching OEVF with Workflow ID, if the default
workflow markup does not exist, it is created automatically and markup entities can
be added to it. Besides the default workflow markup, any number of workflow
markups can be created for the workflow represented by the Workflow ID. The default
workflow markup cannot be deleted. However, other workflow markups can be
deleted. If Workflow ID parameter is present, then the EditMode parameter is ignored.

■ Embedded (optional): This parameter decides if the AutoVue applet should be
launched in the same window (Embedded =1) or a new window (Embedded is not
equal to 1 or not presented).

■ GuiFile (optional): This parameter decides if the default GUI should be
overwritten. If not present, the default GUI is use. Otherwise the value indicated
by this parameter (the name of the GUI file) is used by AutoVue for the applet
interface. The actual GUI file is located in the AutoVue server's work directory.

Note: In all use cases if file has any XRefs they are loaded.
Additionally, users can view and/or include UCM Properties of a
document in the print output.

Implementing Oracle Enterprise Visual Framework Support

6-50 Oracle AutoVue ISDK Technical Guide

Document ID (optional): This is the document ID that is mapped to Assets or
Workflows. This option is needed only when a particular revision of a document is
required (for example, if a workflow is mapped to earlier version of an Asset). If the
document ID is not provided, then the Asset ID is used to locate the latest revision of
the mapped document.

EditMode: If EditMode=1, the AutoVue applet is launched in Asset Editing mode and
a customized assetEdit.gui should be in use. This overrides the GuiFile parameter. In
this mode, the asset markup can be edited, modified and saved to the backend system.
The New Markup and Save As options should be disabled in this mode. If the asset
markup exists, it loads automatically. If no asset markup exists, it is created
automatically and markup entities can be added to it. Asset markup is unique per
asset and cannot be deleted.

If EditMode=0 or not presented, assetView.gui will be in use. The asset markup, if it
exists, loads automatically in read-only mode and no activity related to markup can be
performed except viewing it.

The assetEdit.gui and assetView.gui files should be put in the <jVue_
home>/bin/Profiles directory.

Edit Mode parameter control only the behavior of Asset markup.

The following are some OEVF launching URL samples assuming that the backend
system is deployed on a Web server with appserver:port and if frmApplet.jsp is the
customized page responsible for constructing and launching AutoVue applet.

Example 6–77 Sample OEVF launching URLs

http://appserver:port/jsp/frmApplet.jsp?aID=<Asset
 ID>&EditMode=<Mode>&embedded=<Option>
http://appserver:port/jsp/frmApplet.jsp?wID=<Workflow
 ID>&guiFile=<CustomizedGuiFilename>
http://appserver:port/jsp/frmApplet.jsp?wID=<Workflow ID>&aID=<AssetID>
http://appserver:port/jsp/frmApplet.jsp?dID=<Document ID>&aID=<AssetID>
http://appserver:port/jsp/frmApplet.jsp?dID=<Document ID>&wID=<WorkflowID>

6.18.3 OEVF Customization Page
As mentioned above, a customized page residing on the enterprise application side is
responsible for constructing and launching the AutoVue applet in the context of an
OEVF object. The frmApplet.jsp file in the Demo Integration for Filesys is serves this
purpose. The code excerpt from frmApplet.jsp that is related to OEVF is shown in the
following figure.

Note: The special case of Filesys, the variable DocID in
frmApplet.jsp is used only for constructing OEVF document ID to
open a file in AutoVue and the file to be opened for non-OEVF is
passed in by calling setFile() of frmApplet.jsp in ListDirServlet class
when users browse the filesys file tree structure. Generally, your ISDK
implementation might need to handle both cases in the same jsp file
using the document ID passed in the URL parameter. Refer to
CreateReusableApplet() function of frmApplet.jsp for code sample to
set the GUI file and OEVF document ID in order to reuse the pop up
AutoVue applet.

Implementing Oracle Enterprise Visual Framework Support

Implementing Advanced Integration Functionality in Your DMS 6-51

Example 6–78 Code excerpt from frmApplet.jsp related to OEVF

<%@ page … %>
<% …
 String docID = request.getParameter("docID");
 String assetID = request.getParameter("aID");
 String workflowID = request.getParameter("wID");
 …
 String sEmbedded = request.getParameter("embedded");
 boolean embedded = true; // By default, launch AutoVue applet in embedded mode
 if (sEmbedded != null && sEmbedded.length() > 0 &&
 sEmbedded.equalsIgnoreCase("0")) {
 embedded = false; // Launch AutoVue applet in pop up window
 }
 …
 String guiFile = request.getParameter("guiFile");
 String DocID = null; // OEVF DocID
 if((assetID != null && assetID.length() > 0)||(workflowID != null &&
 workflowID.length() > 0)){
 DocID = "oevf://dID=" + docID+ "&aID=" + assetID + "&wID=" + workflowID;
 }
 String EditMode = request.getParameter("EditMode");
 if ((assetID != null && assetID.length()>0)
 && (workflowID == null || workflowID.length()<1)) {
 if ("1".equalsIgnoreCase(EditMode)) {
 guiFile="assetEdit.gui";
 } else {
 guiFile="assetView.gui";
 }
 }
 if(EditMode != null && EditMode.length() > 0){
 DocID +="&EditMode=" + EditMode;
 }
%>
<html> <head> …
<script> <!--
…
var DOCUMENT_ID = '<%=DocID%>'; // OEVF Document ID
var GUIFILE = '<%=guiFile%>';
var EMBEDDED = '<%=embedded%>';
…
// -->
</script></head>
<body>
<script language="JavaScript">
<!--
 …
 var jvapp = '<HTML>…' + … +
 '\n<PARAM NAME="EMBEDDED" VALUE="TRUE">' + …;
 if (DOCUMENT_ID != 'null') {
 jvapp += '\n<PARAM NAME="FILENAME" VALUE="' + DOCUMENT_ID + '">';
 }
 if (GUIFILE != 'null') {
 jvapp += "\n<PARAM NAME=\"GUIFILE\" VALUE=\"" + GUIFILE + "\">";
 } else …
 …
 if (EMBEDDED == 'true') {
 CreateApplet(); // Create embedded AutoVue applet
 } else {
 if (validatePopups() == true) {
 CreateReusableApplet(); // Create pop up AutoVue applet

Implementing Oracle Enterprise Visual Framework Support

6-52 Oracle AutoVue ISDK Technical Guide

 } …
 }
 …
// end script hiding from old browsers -->
</script>
</body></html>

6.18.4 ISDK APIs for OEVF
To support OEVF, ISDK needs to enhance its implementation corresponding to the
AutoVue server's Open, Save, Delete requests and GetProperties request for CSI_
Markups.

These requests are handled by classes ActionOpen, ActionSave, ActionDelete and
GetPropCSI_Markups in the Sample Integration for Filesys.

6.18.4.1 ActionOpen class
When opening a document, ISDK needs to distinguish between the OEVF cases,
regular cases, and constructs to return a unique DocID for the document to open.

In the case of OEVF involvement, if the OEVF launching URL only has an AssetID
and/or Workflow ID without Document ID, then ISDK communicates with the
backend system to find out the Document ID to which the Asset ID and/or Workflow
ID is connected to and check the consistency, if necessary. If there is a Document ID
passed in addition to AssetID and/or Workflow ID, then IDSK needs to verify the
consistency.

In the Sample Integration for Filesys, ActionOpen class calls the openFile() method of
FilesysDMSBackendImp class to get the Document ID and the openFile() calls
findByOEVF() method of FilesysDMSFacade class to parse the mapping of Document
IDs between Asset IDs and Workflow IDs. Your ISDK should communicate with your
backend system to find the Document ID.

Example 6–79 openFile() method

public DocID openFile(…)…{
 …
 FilesysDMSDocID docID = null;
 String origURL = params.get("origURL");
 String aID = DMSUtil.getAssetID(origURL); // Get Asset ID parameter
 String wID = DMSUtil.getWorkflowID(origURL); // Get Workflow ID parameter
 String dID = DMSUtil.getUrlValue(origURL, "dID"); // Get Document ID parameter
 String relPath = null; …
 if (!DMSUtil.isNullOrBlank(aID)) { // If Asset ID parameter presents
 // Find OEVF document using Asset ID
 String filePath = m_filesysInfo.findByOEVF(dID, aID, ASSETID);
 … // Find out OEVF file real path or return error message if not found
 } else if(!DMSUtil.isNullOrBlank(wID)){ // If Workflow ID parameter presents
 // Find OEVF document using Workflow ID
 String filePath = m_filesysInfo.findByOEVF(dID, wID, WORKFLOWID);
 … // Find out OEVF file real path or return error message if not found
 }
 …
 // Construct Filesys DocID to return
 docID = new FilesysDMSDocID(relPath, null, version,aID, wID);
 return docID;
}

Implementing Oracle Enterprise Visual Framework Support

Implementing Advanced Integration Functionality in Your DMS 6-53

Example 6–80 findByOEVF() method

public String findByOEVF(String dID, String oevfID, String oevfField){
 try{
 return OevfParser.parseOevfXml(dID, oevfID,oevfField);
 }catch(Exception e){
 m_logger.error("Failed to parse OEVF info xml . " + e.getMessage());
 }
 return null;
}

6.18.4.2 GetPropCSI_Markups
The GetPropCSI_Markups implementation to handle GetProperties request for CSI_
Markups will be enhanced to add the following functionalities.

■ It handles Asset Edit mode by loading asset markups as a master and editable
markup if in Asset Edit mode, or as master and read-only markup in other cases.

– In Asset Edit mode, it generates an empty asset markup if such a markup does
not exist for the given Asset ID before returning markup list. It loads the
default asset markup as a master markup.

■ It will generate an empty default workflow markup if such a markup does not
exist for the given Workflow ID before returning markup list. It loads the default
workflow markup and all existing workflow markups as a master and editable
markup all the time.

■ It only list markups related to the given Asset and Workflow IDs. No other
markup can be listed. If both Asset and Workflow IDs are given, the default
Workflow markup opens after the Asset markup is opened (make the former the
active one).

The following code is extracted from the GetPropCSI_Markups class of the Sample
Integration of Filesys. It treats asset and workflow markups as master markups and
checks whether they should be read-only. The getInstanceIDs() method in Markup
class is responsible for retrieving the markup list that includes only OEVF markups in
the context and, if needed, creates default asset and workflow markups. The default
markup is created by copying an existing empty markup BlankMarkup.mrk
distributed with the Sample Integration of Filesys. Your ISDK integration can make
use of it also.

Example 6–81 GetPropCSI_Markups class

public class GetPropCSI_Markups … { …
 private Property[] buildMarkupProperty(FilesysDMSBackend be,…) … { …
 //Gets the list of markups from the DMS
 Vector<DocInfo> mrkDocIds = be.dmsListMarkups(beSession, docID);
 …
 for (int i = 0; i < mrkDocIds.size(); i++) {
 // Treat asset markup as master and read-only if not in Asset Edit mode
 // Treat workflow markup as master markup and editable all the time
 boolean bReadOnly = false;
 boolean editable = true;
 if (…) { // If markup is Asset or Workflow markup
 mrkType = "master";
 String oevfType = … ; // Get OEFV markup type
 if (oevfType.equalsIgnoreCase(Markup.ASSETS)){ // If asset markup
 if (!(Boolean)beSession.getAttribute("EditMode")
 // Not Asset EditMode
 || ((Boolean)beSession.getAttribute("EditMode") &&

Implementing Oracle Enterprise Visual Framework Support

6-54 Oracle AutoVue ISDK Technical Guide

 !DMSUtil.isNullOrBlank(docID.getWorkflowID()))
){
 editable = false;
 }
 }
 }
 if (!editable) { // default asset markup in non-editable mode
 bReadOnly = true;
 } …
 } …
 } …
}

Example 6–82 Markup class

public class Markup{ …
 public Vector<DocInfo> getInstanceIDs(DMSSession session) … { …
 String aID = m_docID.getAssetID();
 String wID = m_docID.getWorkflowID();
 Vector<DocInfo> vector = new Vector<DocInfo>();
 if(DMSUtil.isNullOrBlank(aID) && DMSUtil.isNullOrBlank(wID)){
 … // Non OEFV handling
 } else{
 if (!DMSUtil.isNullOrBlank(aID)){
 File assetMarkup[] = …; // Retrieve asset markup
 if (assetMarkup != null && assetMarkup.length > 0){
 // Asset markup exists
 … // There should only be one asset markup for a given asset ID.
 … // Add the asset markup to the return vector
 } else // Asset markup does not exist
 if ((Boolean)session.getAttribute("EditMode") &&
 DMSUtil.isNullOrBlank(wID)){
 // If in Asset EditMode and no Workflow ID presents in the OEVF
 // launching URL
 … // create and add default asset markup to the return vector
 }
 }
 if (!DMSUtil.isNullOrBlank(wID)){
 File workflowMarkups [] = …; // Retrieve workflow markups
 if(workflowMarkups != null){ // Workflow markups exist
 … // Add the workflow markups to the return vector
 }else{ // No workflow markup related to the Workflow ID exist yet
 … // create and add default workflow markup to the return vector
 }
 }
 return vector;
 } …
}

6.18.4.3 ActionSave
If your ISDK implementation has a special naming convention for automatically
generated OEVF default asset markups or default workflow markups during the
ActionOpen process, then ActionSave implementation should prevent new saving
markups from overwriting these default OEVF markups. An alert should notify users
to use an alternative name. For example, in the Sample Integration of Filesys, it uses
the name of the Asset ID or Workflow ID as the default asset or workflow markup
name.

Implementing UI Customization

Implementing Advanced Integration Functionality in Your DMS 6-55

If your ISDK wants to save OEVF markups to a special location or do any extra work,
they all should be added to your implementation of ActionSave. For example, the
Sample Integration of Filesys saves asset markups to assets folder and saves workflow
markups to workflows folder inside the related document's markups folder. This is
done by saveInstance() method of Markup class.

6.18.4.4 ActionDelete
ActionDelete implementation should prevent users from deleting default asset
markup and default workflow markup. An alert should notify users when they try to
do so.

6.18.5 DOCID
To support OEVF, the DocID in your ISDK will be replaced with a new structure that
includes Asset ID and Workflow ID in addition to your existing DocID structure.

6.19 Implementing UI Customization
When designing DMS Extension to launch the AutoVue applet, the following
functionalities can be supported by using JavaScript code at UI level for your
integration:

■ Embedded vs. Pop-up Window for displaying AutoVue applet

■ Pop-up Blocker detecting

■ Prompt to save markups when exiting AutoVue by closing Web browser window

6.19.1 Embedded vs. Pop-up Window
This controls the window used for hosting the AutoVue applet. It focuses on two
options:

■ Displaying AutoVue applet in a pop-up window which could then be re-used for
subsequent file view.

■ Displaying AutoVue applet embedded inside the caller's browser window (could
be a specific size / frame, and so on).

AutoVue applet can be created in a JSP or a HTML file using JavaScript code. In the
Sample Integration for Filesys, it is created by frmApplet.jsp. The following jvapp
string in frmApplet.jsp contains code that can be used to create the AutoVue applet in
either of the above two options.

Example 6–83 jvapp string in frmApplet.jsp

var jvapp = '<HTML><HEAD><TITLE>Powered by AutoVue</TITLE>' +
 '<META HTTP-EQUIV="content-type" CONTENT="text/html;charset=UTF-8">' +
 '\n<Script' +' language="JavaScript">' +
 …
 '\n</Script' + '>\n</HEAD>'+
 '<BODY …>\n' +
 '\n<APPLET NAME="JVue" CODE="com.cimmetry.jvue.JVue.class"' +
 ' ARCHIVE="jvue.jar,jogl.jar,gluegen-rt.jar"' +
 ' CODEBASE="' + CODEBASE + '"' +
 ' HSPACE="0" VSPACE="0" WIDTH=100% HEIGHT=100% MAYSCRIPT>' +
 '\n<PARAM NAME="JVUESERVER" VALUE="'+ JVUESERVER + '">' +
 '\n<PARAM NAME="DMS" VALUE="' + DMS + '">' +
 …

Implementing UI Customization

6-56 Oracle AutoVue ISDK Technical Guide

 '\n</APPLET></BODY></HTML>';

The function CreateReusableApplet() creates the AutoVue applet in a pop-up window
which can be re-used while CreateApplet() creates the AutoVue applet in embedded
mode. Inside CreateReusableApplet(), if you want the same user to reuse the same
pop-up window, you can name the applet window in a way so that it is specific for
one user. When reusing an existing AutoVue applet, you will need to use the public
API of the AutoVue applet to set the current file in order to view it.

Example 6–84

// Create reusable AutoVue applet in a pop-up window
function CreateReusableApplet()
{
 var appletWnd = self;
 …
 appletWnd = window.open("",NAME_OF_THE_POPUP_WINDOW, 'resizable=1,width=770,
 height=630,location=0,toolbar=0,menubar=0,status=0,left=400,top=150');
 if (appletWnd != null) {
 appletWnd.focus();
 var doc = appletWnd.document;
 var japplet = doc.applets["JVue"];
 if (japplet != null) { // AutoVue Applet exists already, reuse it
 …
 japplet.setFileThreaded(FILE_TO_VIEW); // set the file to view
 } else {
 // Fix for Java Plugin on IE only
 if (doc.readyState != null) {
 var i = 0;
 while (i < 100 && doc.readyState != "complete") {
 appletWnd.setTimeout('dummy()', 1000);
 i++;
 }
 }
 if(!appletWnd.closed) {
 doc.open();
 doc.writeln(jvapp); // write to create an AutoVue applet
 doc.close();
 }
 }
 appletWnd.focus();
 }
 …
}

Example 6–85 Function CreateApplet()

// Create AutoVue applet embedded in the caller’s browser window
function CreateApplet()
{
 var appletWnd = self;
 var doc = appletWnd.document;
 doc.writeln(jvapp);
 doc.close();
}

Example 6–86 Code to set file in the AutoVue applet

/*
** Sets a file (URL) in the Applet

Implementing UI Customization

Implementing Advanced Integration Functionality in Your DMS 6-57

*/
function setFile(fileURL)
{
 var appletWnd = self; // Use the same window if embedded
 if (EMBEDDED != 'true') { // For pop-up window
 appletWnd = window.open("",NAME_OF_THE_POPUP_WINDOW,"");
 }
 if (appletWnd.jVueLoaded) {
 // Load file on a separate thread.
 appletWnd.document.applets["JVue"].setFileThreaded(fileURL);
 appletWnd.focus();
 } else {
 …;
 }
}

By default, the Sample Integration of Filesys embeds the AutoVue applet in the caller's
browser window unless an embedded request parameter is passed in to the
frmApplet.jsp. If your URL contains frmApplet.jsp?embedded=0, then Filesys creates
the AutoVue applet in a separate pop-up window. In your ISDK implementation, you
can set your default option and choose the way to detect another option.

Example 6–87 Embed the AutoVue applet in the caller’s browser window

String sEmbedded = request.getParameter("embedded");
boolean embedded = true;
if(sEmbedded != null && sEmbedded.length() > 0 && sEmbedded.equalsIgnoreCase("0"))
{
 embedded = false;
}

6.19.2 Pop-up Blocker
The implementation of the following Javascript code can determine whether a Web
browser has a pop-up blocker enabled.

In frmApplet.html of the Sample Integration of Filesys, the function validatePopups()
detects whether a pop-up window can be created.

Example 6–88

… <html>
<head>
 <title>AutoVue Web Edition</title>
<script>
…
<!-- //Hide script from old browsers
function validatePopups()
{
 var tinyWindow = null;
 try {
 tinyWindow = window.open("popup.html", "PopupTest", "width=10, height=10,
 left=2000, top=2000 ");
 }
 catch (e) {
 return false;
 }
 window.focus();
 if (tinyWindow) {
 try {

Returning DMS Name

6-58 Oracle AutoVue ISDK Technical Guide

 tinyWindow.close();
 }
 catch (e){;}
 return true;
 }
 return false;
} // end validatePopups()
// -->
</script>
</head>
…

Before launching AutoVue in a pop-up window, validatePopups() is called:

Example 6–89 Calling validatePopups()

if (validatePopups() == true) {
CreateReusableApplet();
}
else {
alert("Please set your pop-up blocker to allow launching AutoVue.");
}

6.19.3 Prompt to Save
In order to prompt for saving changes made to markups when exiting AutoVue by
closing a Web browser window, AutoVue applet's saveModifiedMarkups() and
waitForLastMethod() methods should be called. For example, when onBeforeUnLoad
event is fired before the hosting windows closes.

Here is code excerpt from frmApplet.html of the Sample Integration of Filesys.

Example 6–90 frmApplet.html code excerpt

<script language="JavaScript">
<!-- //hide script from old browsers
…
var jvapp = '<HTML><HEAD><TITLE>Powered by AutoVue</TITLE>' +
 …
 '\n<Script' +' language="JavaScript">' +
 '\n <!-' + '- hide script from old browsers' + '\n function SaveMarkups() { ' +
 '\n window.document.applets["JVue"].saveModifiedMarkups(); ' +
 '\n window.document.applets["JVue"].waitForLastMethod(); ' +
 '\n }' +
 '\n //-' + '-> ' +
 …
 '<BODY marginheight="3" marginwidth="3" leftmargin="0" topmargin="0"
 scroll="no" onBeforeUnLoad="SaveMarkups();">\n' +
 …
// end script hiding from old browsers -->
</script>

6.20 Returning DMS Name
The latest AutoVue server allows browsing and searching multiple DMS backend
system through multiple Integration SDKs. Your Integration SDK should handle
GetProperties request for property GUI with value DMS to return the right name for
the DMS backend system.

Leveraging AutoVue Web Services

Implementing Advanced Integration Functionality in Your DMS 6-59

Here is a sample of the AutoVue server's File Open dialog that displays the DMS name
filesys for the Sample Integration of Filesys.

Figure 6–15 File Open dialog

The Integration SDK handles the request in GetPropGUI class. Here is the
implementation provided in the Sample Integration of FileSys. You need to replace
filesys with your own DMS name.

Example 6–91 GetPropGUI class

package com.cimmetry.vuelink.filesys.propactions;
…
public class GetPropGUI implements … {
 …
 public DMSProperty execute(…) throws VuelinkException {
 DMSProperty retProp = null;
 if (property.getValue().equalsIgnoreCase(“DMS”)) {
 retProp = new DMSProperty(DMSProperty.PROP_GUI, "filesys");
 } else if …
 }
 …
}

6.21 Leveraging AutoVue Web Services
The AutoVue Web Services package provides a standard interface for developers to
take advantage of AutoVue functionalities such as thumbnail generation, streaming
file generation, print, convert, text extraction, and so on. Refer to AutoVue Web
Services documentation for detailed description.

Leveraging AutoVue Web Services

6-60 Oracle AutoVue ISDK Technical Guide

Figure 6–16 AutoVue Web Services implementation

6.21.1 Configuring AutoVue Web Services to Communicate with Integration SDK
In order to enable the AutoVue Web Services to communicate with the Integration
SDK, the following configurations need to be done on AutoVue Web Services side.

■ Update vuelinkProtocol in the web.xml file

Suppose that vuelinkISDK is the vuelinkProtocol for your Integration SDK then it
needs to be added to <AutoVue_Web_Services_Install_Dir>\ autovue_
webservices\AutoVueWS\WEB-INF\web.xml.

Example 6–92 Update vuelinkProtocol in the web.xml file

<env-entry>
 <env-entry-name>vuelinkProtocol</env-entry-name>
 …
 <env-entry-value>vuelinkISDK</env-entry-value>
 <injection-target>
 …
 <injection-target-name>vuelinkProtocol</injection-target-name>
 </injection-target>
</env-entry>

You may need to update destinationDIR, initialJVueServer, vuelinkPropsDir, and
so on. Refer to the AutoVue Web Services Developer’s Guide for detailed description.

■ Create a properties file naming with the vuelinkProtocol defined.

If vuelinkISDK is the vuelinkProtocol for your Integration SDK, then a
vuelinkISDK.properties file should be created and put in the vuelinkPropsDir folder
defined the web.xml (for example, %AutoVue_Web_Services_Install_Dir%\autovue_
webservices\sample_config folder).

Example 6–93 Sample configuration file for the Sample Integration for Filesys

#Integration SDK connection info
DMS=http://FilesysHost:7001/ISDK/servlet/FilesysVuelink
#example: DMS=http://localhost:8080/webtop/com.cimmetry.vuelink.documentum.DMS
#if any DMSArgs is needed add like this
#DMSArgs=someArg1;someArg2
#someArg1=some value
#someArg2=some other value

The DMS value, http://FilesysHost:7001/ISDK/servlet/FilesysVuelink in the
above sample, should be accessible in the Web browser. It refers to your Integration
SDK's main DMS Servlet that extends the VueLink class and is defined in the web.xml
file of your Integration SDK.

Leveraging AutoVue Web Services

Implementing Advanced Integration Functionality in Your DMS 6-61

6.21.2 Utilizing AutoVue Web Services at Front End
Your front end can consume AutoVue Web Services using Java Client and .Net Client.
You can refer to the "How to use AutoVue Web Services" section in the AutoVue Web
Services Developer Guide for information on how to generate AutoVue Web Services
client.

The following sections describe how AutoVue Web Services APIs should be used in
order to generate thumbnails and streaming files, as well as how to convert documents
to TIFF, BMP and PDF format. For more samples on how to use AutoVue Web Services
API to retrieve printer information, print document, retrieve document properties, text
and external reference information, refer to the "Appendix A - Sample Client Code in
Java" section in the AutoVue Web Services Developer Guide.

6.21.2.1 Thumbnail Generation
■ Provide authorization information using

com.oracle.autovue.services.AuthorizationProxy class

Example 6–94 Authorization information used by Sample Integration for Filesys

AuthorizationProxy authorizationProxy;
authorizationProxy = new AuthorizationProxy();
authorizationProxy.setUsername("demo");
authorizationProxy.setPassword("demo");

■ Define URI

The value for URI starts with the vuelinkProtocol for your Integration SDK,
followed by :// and by the original URL used to address document of your
Integration SDK. That is: vuelinkProtocol://OriginalURLForYourISDK. This
original URL is the same as what is being used to set FILENAME when creating
AutoVue applet to view a file, for example, inside frmApplet.jsp file of the Sample
Integration for Filesys.

Example 6–95 Sample URI for the Sample Integration for Filesys

String URI = "vuelinkISDK:///2D/AutoCAD.dwg/ AutoCAD.dwg(1)/ AutoCAD.dwg";

■ Set Convert Options

Set convert options using com.oracle.autovue.services.options.ConvertOption
class. For example, for thumbnail generation, you can set conversion format to be
Format.JPG or Format.PNG. For more options that can be set, refer to the
ConvertOptions class API in the JavaDocs.

Example 6–96 Set Convert Options

ConvertOption convertOption = new ConvertOption();
convertOption.setFormat(Format.JPG);
convertOption.setScaleFactor(100);
convertOption.setHeight(640);
convertOption.setWidth(480);
convertOption.setPage(1);

■ Do Conversion

Call VueBeanWS's convert() method to do conversion. The converted thumbnail
file content is returned and can be written to a file. For this to work, your ISDK
should have fulfilled the tasks described in Section 6.4, "Handling Renditions."

Leveraging AutoVue Web Services

6-62 Oracle AutoVue ISDK Technical Guide

Example 6–97 Do conversion

VueBeanWS_Service service = new VueBeanWS_Service();
VueBeanWS proxy = service.getVueBeanWSPort();
boolean openAllMarkups = false;
byte[] file = proxy.convert(URI, convertOption, authorizationProxy,
openAllMarkups);
FileOutputStream fos = new FileOutputStream("C:/temp/AutoCAD.jpg");
fos.write(file);
fos.close();

Since the AutoVue server does not support JPG or PNG conversion, when the
conversion format is set to Format.JPG or Format.PNG, the VueBeanWS class of
AutoVue Web Services internally passes Format.BMP to the AutoVue server and
then converts the returned BMP file to JPG or PNG format.

If you want the JPG or PNG file to be checked into DMS automatically when
AutoVue Web Service convert() method is called, you need to enhance your
Integration SDK's rendition handing. If BMP rendition type is detected when
handling rendition, you can add extra code to convert the BMP rendition to a JPG
or PNG format with desired thumbnail size like AutoVue Web Services does and
checked it into DMS so that your application can display a thumbnail for your
document.

6.21.2.2 Streaming File Generation
Whenever a VueBeanWS method that has a URI parameter is called, the streaming file
for the document in DMS addressed by this URI is generated and checked into DMS
automatically.

6.21.2.3 Converting Document to Other Formats
Using AutoVue Web Services, a document can also be converted to TIFF, BMP and
PDF format. These renditions are checked into DMS automatically if your Integration
SDK implements rendition handling.

The conversion steps are almost the same as steps for Thumbnail Generation, except
that you set the conversionOption format to Format.BMP, Format.TIF or Format.PDF.

A

Integration SDK Skeleton A-1

AIntegration SDK Skeleton

The Integration SDK skeleton code acts as a guideline to facilitate custom integration
of SDK. It contains all necessary features for an integration (the integration developer
must perform the TODO tasks inside the skeleton code. As a sample implementation,
the Integration SDK Web Services Client is implemented based on the Integration SDK
skeleton code.

A.1 Integration SDK Skeleton Packages
The following packages and classes are included in the ISDK Skeleton:

■ VueLink package

■ DMS.java

■ actions folder

■ ActionDelete.java

■ ActionDownload.java

■ ActionOpen.java

■ ActionSave.java

■ ActionSetProperties.java

■ propactions package

■ GetPropCSI_ClbSessionID.java

■ GetPropCSI_Collaboration.java

■ GetPropCSI_DocDateLastModified.java

■ GetPropCSI_DocName.java

■ GetPropCSI_DocSize.java

■ GetPropCSI_IntelliStamp.java

■ GetPropCSI_IsMultiContent.java

■ GetPropCSI_ListAllProperties.java

■ GetPropCSI_ListItems.java

■ GetPropCSI_Markups.java

■ GetPropCSI_Renditions.java

■ GetPropCSI_Search.java

Integration Steps for Implementing File View Functionality

A-2 Oracle AutoVue ISDK Technical Guide

■ GetPropCSI_UserName.java

■ GetPropCSI_Versions.java

■ GetPropCSI_XREFS.java

■ GetPropDefault.java

■ GetPropGUI.java

■ backend package

■ DMSBackendImp.java

■ context package

■ DMSContextImp.java

■ defs package

■ ISDKDocID

■ session package

■ DMSBackendSessionImp

A.2 Integration Steps for Implementing File View Functionality
The first stage of integration is to implement basic view functionality stated in
Chapter 6, "Implementing Advanced Integration Functionality in Your DMS." It
includes the following:

■ Fulfill TODO list in DMS class - the Main DMS Servlet class

■ Fulfill TODO list in ISDKDocID class to defining a unique document identifier

■ Fulfill TODO list in GetPropCSI_UserName and in related getProperty() method
of DMSBackendImp class to return user name

■ Fulfill TODO list in ActionOpen class to return the DocID

■ Go through GetPropCSI_IsMultiContent method and fulfill TODO list in related
getProperty() method of DMSBackendImp class to return multi-content value

■ Fulfill TODO list in GetPropCSI_DocName and in related getProperty() method of
DMSBackendImp class to return document name

■ Go through GetPropCSI_DocDateLastModified and fulfill TODO list in related
getProperty() method of DMSBackendImp class to return document date last
modified

■ Go through GetPropCSI_DocSize and fulfill TODO list in related getProperty()
method of DMSBackendImp class to return document size

■ Fulfill TODO list in ActionDownload class to return document content

■ Go through DMSContextImp class and fulfill TODO list in connect() method of
DMSBackendImp class to connect to backend DMS. Connection info such as
username and password can be hard-coded at this stage in order to connect to
DMS.

Refer to Chapter 4, "Integration Design" and Chapter 5, "Implementing File View
Functionality in your DMS" to assist your implementation of the above classes.

Integration SDK includes a sample csiApplet.jsp in the applet folder for launching
AutoVue. To test file viewing after implementing the classes, do the following:

Integration Steps for Implementing Advanced Functionality

Integration SDK Skeleton A-3

■ Provide the FILENAME variable with your unique document identifier

■ Open a browser with URL http://host:port/IntegrationSDKSkeleton_
context/ to launch AutoVue and view file

A.3 Integration Steps for Implementing Advanced Functionality
The next stage of integration is to implement more advanced functionality such as
XRefs, markups, compare, renditions, DMS Search & browse and more as stated in
Chapter 6, "Implementing Advanced Integration Functionality in Your DMS." It
includes the following:

■ Go through GetPropCSI_GetPropDefault class and fulfill TODO list in related
listAllProperties() method of DMSBackendImp class to handle document
attributes.

■ Go through GetProCSI_XREFS class and in related listXRefs() method of
DMSBackendImp class to return external references (XREFS).

■ Fulfill TODO list in GetPropCSI_Markups class and in related methods, for
example, listMarkups() method of DMSBackendImp class to handle Markups.

■ Fulfill TODO list in GetPropCSI_Rendition class and in related listRenditions()
method of DMSBackendImp class to handle renditions.

■ Go through GetPropCSI_ListAllProperties class to return the list of all properties
of the DMS document.

■ Go through GetPropCSI_ListItems class and fulfill TODO list in related listItems()
method of DMSBackendImp class and in buildBrowseGUIProperty() method in
GetPropGUI class to implement DMS Browse.

■ Fulfill TODO list in GetPropCSI_Search class, related listSearchResults() method of
DMSBackendImp class and buildSearchGUIProperty() method in GetPropGUI
class to implement DMS Search.

■ Go through GetPropCSI_Versions class and fulfill TODO list in related
listVersions() method of DMSBackendImp class to handle document versions.

■ Fulfill TODO list in ActionSave class and in related saveChat(), saveMarkup() and
saveRendition() methods of DMSBackendImp class to implement file save action

■ Go through ActionDelete class and fulfill TODO list in related deleteMarkup()
method of DMSBackendImp class to implement file delete action

■ Go through GetPropCSI_Intellistamp class and fulfill TODO list in related
getIntelliStamp() method of DMSBackendImp class to support Stamp in Markup.
GetPropDefault class needs to be enhanced to handle a pick list for Stamp.

■ Go through GetPropCSI_MarkupPolicy class and fulfill TODO list in related
getIntelliStamp() method of DMSBackendImp class to support Stamp in Markup.

Refer to Chapter 6, "Implementing Advanced Integration Functionality in Your DMS"
to assist your implementation of the above advanced functionally.

Integration Steps for Implementing Advanced Functionality

A-4 Oracle AutoVue ISDK Technical Guide

B

Sample Integration for Filesys B-1

BSample Integration for Filesys

The Sample Integration for Filesys DMS included in the AutoVue Integration SDK acts
as an example and for getting familiar with the integration framework. The following
figure shows the use case diagrams of possible actions available from within the
AutoVue interface. A user logs into FilesysDMS through a Web browser and selects a
file to view in AutoVue. Once the file is loaded in AutoVue, the user can perform other
actions such as markup, conversion, compare, search, browse, and so on.

Figure B–1 Use cases diagram for the FilesysDMS sample

The VueLink servlet class and three packages for the FilesysDMS integration has been
designed as follows:

1. The first package is called com.cimmetry.vuelink.filesys.actions and contains all
action classes. The common characteristic of these classes is that they all
implement the DMSAction<AnyContext extends DMSContext> interface.

2. The second package is called propactions and contains a set of classes that all
implement the DMSGetPropAction interface.

B-2 Oracle AutoVue ISDK Technical Guide

3. The third package is called backend and has three classes: the FilesysDMSBackend
class that implements the DMSBackend interface, the FilesysDMS class which is
the backend API that talks to FilesysDMS backend system, and the FilesysDocID
class which implements the DocID interface and defines the document ID.

Refer to Chapter 4, "Integration Design" and Chapter 5, "Implementing File View
Functionality in your DMS" for more information on the design of the Sample
Integration for Filesys DMS.

■ actions

■ ActionDelete.java

■ ActionDownload

■ ActionGetProperties

■ ActionOpen

■ ActionSave

■ ActionSetProperties

■ backend

■ FilesysDMSBackend

■ FilesysDMSBackendImp

■ FilesysDMSDocID

■ propactions

■ GetFilesysProperty

■ GetPropCSI_ClbSesssionID

■ GetPropCSI_Collaboration

■ GetPropCSI_DocDateLastModified

■ GetPropCSI_DocName

■ GetPropCSI_DocSize

■ GetPropCSI_IntelliStamp

■ GetPropCSI_IsMultiContent

■ GetPropCSI_ListAllProperties

■ GetPropCSI_ListItems

■ GetPropCSI_MarkupPolicy

■ GetPropCSI_Markups

■ GetPropCSI_Renditions

■ GetPropCSI_Search

■ GetPropCSI_UserName

■ GetPropCSI_Versions

■ GetPropCSI_XREFS

■ GetPropDefault

■ GetPropGUI

■ session

Sample Integration for Filesys B-3

■ FilesysBackendSession

■ util

■ Credentials

■ ListParser

■ OevfParser

■ vuelink

■ FilesysVuelink

■ FilesysContext

The data used by the sample integration is based on a simple file system that has a
simple data structure to store and retrieve files. The data structure is described in
Section B.1, "DMSActions." The file system includes three packages: domain, Util, and
Gui.

■ domain

■ Version

■ Browse

■ Markup

■ XRef

■ DocInfo

■ FolderObj

■ Search

■ IFilesysDMSInfo

■ DocumentObj

■ DocInfoImpl

■ Rendition

■ FilesysDMSFacade

■ Util

■ FilesysDataStructureCreator

■ FilesysDataStructureDefs

■ FilesysDataStructureInfos

■ Gui

■ ListDirServlet

1. The first package is called domain and contains all the classes dedicated to
managing the data backend system. When we implemented our actions to retrieve
and store files in the backend system, we did it through the
com.cimmetry.vuelink.filesys.dms.domain.IFilesysDMSInfo interface. This interface
is our plug-in point to the FilesysDMS backend system manager.

Note: The propactions package does not list all the classes in the
package.

DMSActions

B-4 Oracle AutoVue ISDK Technical Guide

2. The second package is called util and allows us to add new data to the backend
system. The instructions on how to add new data are described in the User Guide.

3. The last package is called gui and it contains a servlet which allows us to navigate
the sample files through a dynamic HTML page and a servlet to manage user
login.

B.1 DMSActions
A DMSAction has only one method to implement: execute(). It takes four parameters:

■ AnyContext that implements DMSContext: Represents the context of execution
of a DMSAction and holds various environment settings.

■ DMSSession: Represents the session of execution of a DMSAction for an arbitrary
set of DMS queries.

■ DMSQuery: Represents a query that a DMSAction must handle and holds
parameters such as the original document URL (FILENAME param passed in the
AutoVue applet page), the document ID, the collaboration session ID, the
collaboration session data, the Authorization and a set of Properties.

■ DMSArgument: Represents list of objects used to hold special arguments specific
to a given DMS action type.

The execute() method returns an object instance (the type of the instance depends on
the DMS action but it is generally either null, a DocID, a File or a Property list). To
report failures, execute can throw a VuelinkException containing the error code and
error message (defined in the DMSDefs public interface) that the VueLink servlet uses
to build the <ERROR> HTTP response.

One important goal of the AutoVue Integration SDK is to make the integration open to
extensions and modifications. We achieved that by registering the action classes in the
web.xml file in init-parameters. The VueLink servlet checks the init-parameters and
registers the actions. Each action parameter name has the prefix dms.action followed
by the name of the action as dms.action.open (for example, for Open Action). The
value parameter specifies the action name and its location (for example,
com.cimmetry.vuelink.filesys.actions.ActionOpen). This mechanism allows us to drop
any obsolete class and replace it by a new one simply by updating the init-parameter.

DMSActions

Sample Integration for Filesys B-5

Figure B–2 Action classes

In the Filesys DMS, we designed the com.cimmetry.Vuelink.filesys.actions package
which implements all the needed actions. In this section we discuss the Open,
Download, Save, and Delete actions. The SetProperties and GetProperties are
discussed in the following sections.

Each individual class must be registered in the web.xml (web descriptor for your J2EE
web application) file init parameters. The name of the parameter has the format
dms.getprops.<property name> (for example, dms.getprops.CSI_Markups). The value
of the parameter contains the full qualification of the class and has the format
"com.<yourCompany>.<package>.<class name>". You can choose the class name you
want. Also, if you prefer, you can choose the default name proposed by framework
"GetProp<prop name>" (for example, GetPropCSI_Markups).

This makes the code easier to maintain and, more importantly, makes customization a
lot easier. If changes to markup handling are required, the GetPropCSI_Markups class
can be re-implemented without affecting the handling of any of the other properties.
This will make the customization easier in the first place, and the customizations will
be easier to update when the framework is updated. This will also allow the easy
mix-and-match of functionality. For example, if a customized markup handler is done
for Customer A, and later Customer B needs similar functionality, the class written for
A can be dropped into B's install without impacting any other customizations done for
B.

For the Filesys DMS, we designed the com.cimmetry.vuelink.filesys.propactions which
contains the following property action classes:

■ GetFilesysProperty: Returns all document attributes and saves to reuse. It serves
as support to some of the following classes.

■ GetPropCSI_ClbSessionID: Handles the CSI_ClbSessionID property and returns
the session ID for a AutoVue Real-Time Collaboration session.

■ GetPropCSI_Collaboration: Handles the CSI_Collaboration property and returns
the GUI for an AutoVue Real-Time Collaboration session.

■ GetPropCSI_DocDateLastModified: Handles the CSI_DocDateLastModified
property and returns the date of the last modification of a document.

Backend API

B-6 Oracle AutoVue ISDK Technical Guide

■ GetPropCSI_DocName: Handles the CSI_DocName property and returns the
name of a document.

■ GetPropCSI_DocSize: Handles the CSI_DocSize property and returns the size of a
document.

■ GetPropCSI_IntelliStamp: Handles the CSI_Intellistamp property and returns the
Stamp definition file and underlying images if available.

■ GetPropCSI_IsMultiContent: Handles the CSI_IsMultiContent property.

■ GetPropCSI_ListAllProperties: Handles the CSI_ListAllProperties property and
returns an array of DMS properties.

■ GetPropCSI_ListItems: Handles the CSI_ListItems and returns an array of items
to be displayed in the browse GUI.

■ GetPropCSI_MarkupPolicy: Handles the CSI_MarkupPolicy property and
returns the content of MarkupPolicy file if available.

■ GetPropCSI_Markups: Handles the CSI_Markups property and returns an array
of properties concerning markups documents.

■ GetPropCSI_Renditions: Handles the CSI_Renditions property and returns an
array of properties concerning renditions documents.

■ GetPropCSI_Search: Handles the CSI_Search property and returns an array of
properties of documents that match the criteria search.

■ GetPropCSI_UserName: Handles the CSI_UserName property and returns the
username.

■ GetPropCSI_Versions: Handles the CSI_Versions property and returns an array of
document versions properties.

■ GetPropCSI_XREFS: Handles the CSI_XREFS property and return an array of
properties concerning the XRefs documents.

■ GetPropDefault: Handles the properties that do not have dedicated individual
classes.

■ GetPropGUI: Handles the GUI property and returns an array of properties for
building the browse GUI or the search GUI or returns a property with proper DMS
name.

B.2 Backend API

The backend API allows the integration interface to properly talk with the DMS. This
API is intended to gather all the custom code for handling communication with the
DMS. Our backend class that implemented the DMSBackend interface also
implemented the connect method which allows AutoVue to reuse existing user
sessions with the DMS.

The framework locates the object that implements the backend API for an integration
inside the com.cimmetry.vuelink.context.DMSContext object. During the initialization

Note: DMSBackend interface is optional. It is intended as an entry
point to your custom code for handling communication with your
DMS/PLM system. You can think of the Backend class as a wrapper
around your DMS API.

Backend API

Sample Integration for Filesys B-7

of the VueLink servlet, a DMSContext object is created which in turn initializes and
registers the backend object. This allows you to get a reference to the backend API
from a DMSContext object. This is always possible since all the DMSAction objects and
com.cimmetry.vuelink.propsaction.DMSGetPropAction objects hold a DMSContext
object. If custom registration, saving and loading of the backend API object are
needed, you must derive the GenericContext class and implement the new overriding
methods.

Figure B–3 Backend classes

First the framework fetches the init parameters for dms.backend, the name of the init
parameter, and then instantiates the class specified in the value parameter. If it fails,
then it looks for the DMSBackendImp class as the default name in the current package
(That is, in the same location where your DMS servlet is located).

In the Filesys DMS application, the backend API is registered as shown in the
following excerpt of code.

<init-param>
 <param-name>dms.backend</param-name>
 <param-value>com.cimmetry.vuelink.filesys.backend.FilesysDMS</param-value>
</init-param>

The following excerpt of the code shows how to get an instance of the plug-in point to
Filesys DMS backend system.

/** Instance of FilesysDMS object (singleton) responsible for communicating and
providing Vuelink with the required information */

private static final IFilesysDMSInfo m_filesysInfo =

Filesys DMS Backend system Structure

B-8 Oracle AutoVue ISDK Technical Guide

FilesysDMSFacade.getFilesysInstance();

B.3 Filesys DMS Backend system Structure
The data used by this sample is based on a file system. This system has a simple
structure to store and retrieve files. This structure consists of folders and document
objects. Folder objects represent directories and document objects represent files.
Folder objects can contain a list of document objects and a list of folder objects (the
subfolders).

The access to the root of the FilesysDMS system structure is done through a given
specific path. Inside the FilesysDMS structure we categorize the documents to allow
flexible and easy document management. Each category is simply represented by an
access path. Thus, the FilesysDMS system structure contains all the categories of
documents to manage. For example, in Figure 9-7, filesysDatabase is the root directory
which contains two documents categories: 2DRepository and 3DRepository.

Inside a category one finds several folders (one folder per document). Each folder has
the same name as the base document that it represents, and contains all the versions of
this document. Each version is represented by a folder which has the same name as its
base document concatenated to the number of the version enclosed between
parentheses. For example, in figure 9-7, the category 2DRepository contains three
folders which correspond to the base documents bike.dgn, main.dgn and myacad12.dgn.
The folder myacad12.dgn contains three versions of the base document and
myacad12.dgn(3) represents its third version.

Figure B–4 FilesysDMS data structure

Each version folder contains all related information (XRefs, markups, renditions, and
so on). For example, as illustrated in Figure 9-8, under the folder representing version
2 of the document myacade12.dgn, there is the base document and the folders which
contain the external references (for example, in the case of a composite document), the
markups, and renditions. The XRefs folder contains all files which constitute external
references. The markups folder contains three subfolders which correspond to the
different types of markups supported by AutoVue: normal, master and consolidated
(see figure 9-9). It might also contain two additional subfolders if OEVF is supported:
assets and workflows. Each of the normal, master and consolidated subfolders contain
all corresponding markups. Each of the assets and workflows subfolders contain
subfolders named by the assetID and workflowID that contain the corresponding asset

Filesys DMS Backend system Structure

Sample Integration for Filesys B-9

and workflow markup. Finally, the renditions folder contains all conversions
supported by AutoVue and the streaming files. For example, the tiff in Figure 9-9
folder contains the TIFF rendition. Note that the rendition subfolders have the same
names as the rendition types.

Figure B–5 A document version structure

Figure B–6 Content of version subfolders

This simple structure represents a good starting point when building your own
integration based on the integration framework. Managing documents in this structure
requires creating folders and copying files.

Sample Integration for Filesys DMS Use Cases

B-10 Oracle AutoVue ISDK Technical Guide

Figure B–7 Filesys DMS backend system structure

B.4 Sample Integration for Filesys DMS Use Cases
The implementation of the Sample Integration for Filesys DMS involves the
implementation of the following functionalities:

■ Implementing DMSAction<AnyContext entends DMSContext> interface for
open/download/save/getproperties, and so on.

Sample Integration for Filesys DMS Use Cases

Sample Integration for Filesys B-11

■ Implementing the backend interface for communicating with the Filesys DMS
system.

The requirements for the DMSAction interface are presented in Section B.4.1, "Core
Use Cases" and those for the backend interface are presented in Section B.4.2, "Backend
use cases."

B.4.1 Core Use Cases
The following six classes implement the DMSAction interface:

■ ActionOpen

■ ActionDownload

■ ActionGetProperties

■ ActionSetProperties

■ ActionSave

■ ActionDelete

Figure B–8 DMSAction interface for FilesysDMS and functionalities provided by the
Filesys DMS

B.4.1.1 ActionOpen
The exchanged documents between the sample integration and the AutoVue server
must have unique identifiers. This is why sample integration must build a unique
DocID for each document sent to the AutoVue server.

Use case: Get unique document identification.

Description: The get unique identification use case builds a unique identification for
each different document (for example, base document and XRefs documents, and so
on) sent to AutoVue server.

Precondition: Sample integration receives an open document request from the
AutoVue server.

Deployment constraints: None

Normal flow of events:

■ Sample integration builds a unique identification for each different document
returned by FilesysDMS and sends it to the AutoVue server.

Activity diagram: None

Nonfunctional requirements: None

Sample Integration for Filesys DMS Use Cases

B-12 Oracle AutoVue ISDK Technical Guide

Open issues: None

B.4.1.2 ActionDownload
Sample integration processes the download request when FilesysDMS user wants to
view a file from filesysDMS backend system.

Use case: Download document

Description: The download document use case communicates to FilesysDMS the
document to download.

Precondition: Vuelink receives a download document request from AutoVue Server

Deployment constraints: None

Normal flow of events:

■ Sample integration sends a download request to FilesysDMS system specified by a
unique identifier

■ Sample integration returns to AutoVue Server the downloaded document

Exception flow of events:

1. Sample integration receives the message indicating that the document cannot be
downloaded

2. Sample integration sends the message to AutoVue Server

■ Add the exception to a log

Activity diagram: none

Nonfunctional requirements: None

Open issues: None

B.4.1.3 ActionDelete
Sample integration processes the delete request when FilesysDMS user wants to delete
markups. The use case below describes this functionality.

Use case: Delete document

Description: The delete document use case communicates to FilesysDMS the
document to delete.

Precondition:Sample integration receives a delete document request from AutoVue
Server

Deployment constraints: Only markups documents can be deleted.

Normal flow of events:

■ Sample integration send a request to FilesysDMS system to delete the document
specified by a unique identifier

Exception flow of events:

■ Sample integration receives a message indicating that the document cannot be
deleted

■ Sample integration sends the message to AutoVue Server

■ Add the exception to a log

Activity diagram: none

Sample Integration for Filesys DMS Use Cases

Sample Integration for Filesys B-13

Nonfunctional requirements: None

Open issues: None

B.4.1.4 ActionSave
Sample integration processes the save request when FilesysDMS user wants to save
markups or creates a rendition. When user saves document, AutoVue Server sends a
request to integration servlet which relays this request to FilesysDMS to save the
document. The following use case describes this functionality.

Use case: Save document

Description: The save document use case communicates to FilesysDMS system the
document to save.

Precondition:Sample integration receives a save document request from AutoVue Server

Deployment constraints: Only markups, renditions (including streaming files) and
chat transcript during a Real-Time Collaboration Session can be saved

Normal flow of events:

■ Sample integration sends a request to FilesysDMS system asking to save a document
specified by a unique identifier

Exception flow of events:

1. Sample integration receives a message indicating that the document cannot be saved

2. Add the exception to a log

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.4.1.5 ActionGetProperties
Sample integration processes the get properties request when FilesysDMS user wants to
view a file. In this case, the AutoVue Server sends several requests to Sample
integration asking for information about markups, XRefs, renditions, document
properties, and so on. The use case below describes these functionalities.

Use Case: Get properties

Description: The get properties use case takes in charge of multiple requests of Sample
Integration. The requests concern a set of predefined properties that Sample integration
must return to AutoVue Server. These requests are about XRefs, markups, renditions,
GUIs and other information concerning the base document (for example, name, size,
and so on.)

Precondition: AutoVue Server sends to Sample integration request about:

■ Base document properties:

■ Unique identifier

■ Last modification date

■ Size

■ Name

■ Author

■ Type document (for example, folder or file)

Sample Integration for Filesys DMS Use Cases

B-14 Oracle AutoVue ISDK Technical Guide

■ Multi content document

■ XRefs properties

■ Documents unique identifiers of the external references in case of a composite
document

■ Markups Properties

■ Documents unique identifiers and types (normal, master, consolidated) of
markups

■ Markups for all revisions

■ Renditions properties

■ Unique document identifier when returning a streaming file

■ A converted document and its type (for example, type rendition)

■ Versions properties

■ Document Identifier, name, size and version number of the document

■ GetAllProperties property action: a set of properties that characterize a base
document (for example, name, size and last modification date, and so on.)

■ GUI properties

■ The properties that composes the browsing GUI and the search GUI respectively:
(1) name, type (folder or file), size and last modification date and (2) document
name and extension type.

■ The property that allow browse functionality

■ The property that allows search functionality

■ Search result: get documents that match the search criteria

■ Browse result: the content of the root backend system folder and the content of the
expanded folder until reaching the base document

Deployment constraints: None.

Normal flow of events:

The flow depends on the request of AutoVue Server. For each one of the above property
request Sample integration must provide a response.

Exception flow of events:

■ Sample integration is unable to process the request

■ Add the exception to a log

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.4.1.6 ActionSetProperties
Sample integration processes the set properties request when FilesysDMS user wants to
print a file. In this case, AutoVue Server sends notification messages when each printed
page and when whole document is done printing.

Use Case: Set properties

Sample Integration for Filesys DMS Use Cases

Sample Integration for Filesys B-15

Description: The set properties use case sends notification messages to Sample
integration.

Precondition: AutoVue Server sends to Sample integration notifications about printing.

Deployment constraints: None

Normal flow of events:

Exception flow of events:

Activity diagram: None

Nonfunctional requirements: None

Open issues: CSI_Notifications problem in the AutoVue Server request is not specified
according to the CORE API XML document.

B.4.2 Backend use cases
To provide responses to the AutoVue Server, the integration servlet interacts with
FilesysDMS which must provide integration servlet with appropriate information.

B.4.2.1 Get Document Instance
To view a document, FilesysDMS must be able to return an instance of the document to
Sample integration. The use case below describes this functionality.

Use Case: Get document instance

Description: The get document instance use case returns the file instance of a
document.

Precondition: Sample integration sends to FilesysDMS a get document request

Deployment constraints: None

Normal flow of events:

■ FilesysDMS finds the document.

■ FilesysDMS returns the document to Sample integration

Exception flow of events:

■ FilesysDMS is unable to find the document

■ Add the exception to a log.

Activity diagram: none

Nonfunctional requirements: None

Open issues: None

B.4.2.2 Manage Renditions
FilesysDMS must be able to manage conversion operations done by the user. It must be
able to save a converted documents and streaming files. This functionality is described
by the manage renditions use case.

Use case: Manage Renditions

Description: The manage renditions use case manages all operations concerning
renditions (for example, (1) save conversions and (2) save and return streaming files).

Precondition: Sample integration sends to FilesysDMS one of the following renditions
requests:

Sample Integration for Filesys DMS Use Cases

B-16 Oracle AutoVue ISDK Technical Guide

■ Get streaming file instance or

■ Save rendition instance (for example, converted file or streaming file)

Deployment constraints: None

Normal flow of events:

1. FilesysDMS finds and returns the streaming file document.

Alternate flow of events:

1. FilesysDMS saves the rendition document (streaming file or converted file).

Exception flow of events:

1. FilesysDMS is unable to find the streaming file document.

2. FilesysDMS is unable to save the rendition document.

■ Add the exceptions to a log.

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.4.2.3 Get XRefs List
In the case of composite document, FilesysDMS must provide Sample integration with
the list of its external references. The use case below describes this functionality.

Use case: Get XRefs list

Description: The get XRefs use case returns a list of external references of a composite
document.

Precondition: Sample integration sends a request to FilesysDMS asking for XRefs list
documents.

Deployment constraints: None

Normal flow of events:

1. FilesysDMS returns the list of XRefs documents.

Exception flow of events:

1. FilesysDMS is unable to find the XRefs.

2. Add the exception to a log.

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.4.2.4 Manage Markups
FilesysDMS must be able to provide responses all the requests about markups (for
example, return markups list of a document, return markups list of all revisions
document, save and delete markups). All these functionalities are described in the
following use case.

Use case: Manage markups

Description: The manage markups use case manages all the operations concerning
markups.

Sample Integration for Filesys DMS Use Cases

Sample Integration for Filesys B-17

Precondition: Sample integration sends to FilesysDMS one of the following requests:

■ Get list of markups

■ Get list of markups for all revisions

■ Save a markup

■ Delete a markup

Deployment constraints: none

Normal flow of events:

1. FilesysDMS returns the list of markups.

Alternate flow of events:

1. FilesysDMS returns the list of markups for all revisions

Alternate flow of events:

1. FilesysDMS saves a markup

Alternate flow of events:

1. FilesysDMS deletes a markup

Exception flow of events:

■ FilesysDMS is unable to build the list of markups.

■ FilesysDMS is unable to build the list of markups of all revisions.

■ FilesysDMS is unable to save markup.

■ FilesysDMS is unable to delete markup.

■ Add the exceptions to a log.

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.4.2.5 Get Versions List
FilesysDMS must be able to return all the versions of a document when a user needs
them to perform a comparison operation. The use case below describes this
functionality.

Use case: Get versions list

Description: The get versions list use case returns the list of different versions of a
document.

Precondition: Sample integration sends a request to FilesysDMS asking for the list of
versions:

Deployment constraints: none

Normal flow of events:

1. FilesysDMS returns a list of items representing the different versions of the base
document.

Exception flow of events:

1. FilesysDMS is unable to return the list of versions.

Known Limitations

B-18 Oracle AutoVue ISDK Technical Guide

2. Add the exception to a log.

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.4.2.6 Get Children Instances
The user must be able to browse the FilesysDMS data structure by expanding folders.
This is why it must provide Sample Integration by the children documents of each
expanded folder. The use case Get children instances describes this functionality.

Use case: Get children instances

Description: The get children instances returns a list of items contained in a folder. The
user browses the FilesysDMS database structure by expanding folders.

Precondition: Sample integration sends a request to FilesysDMS asking for the list of
items contained in the selected folder.

Normal flow of events:

1. Get List of items contained in the specified folder.

Deployment constraints: None

Normal flow of events:

■ FilesysDMS returns the list items contained in a specified folder.

Exception flow of events:

■ FilesysDMS is unable to return the list of items.

■ Add the exceptions to a log.

Activity diagram: None

Nonfunctional requirements: None

Open issues: None

B.5 Known Limitations
The following are known limitations for the Sample Integration for Filesys DMS:

■ Redirect: The main server and remote server should use the same FileSys
repository. The main server configures one directory as the FileSys repository (for
example, c:\temp\Repository). As a result, there should be one drive on the
remote server machine mapping to the directory of the FileSys repository of the
main server.

■ OEVF: When saving a new workflow markup, the values of Markup Type and
Read-Only in the Markup Save dialog do not take effect.

■ For Oracle WebLogic versions 10.3.1.0 and 10.3.2.0, users must re-enter login
credentials in the Authorization dialog even if they already entered the login
credentials in the FileSys DMS home page.

C

ISDK Web Service Client C-1

CISDK Web Service Client

This appendix focuses on the Blue Print Web Service Definition Language (WSDL), the
Web Service Client package that is built using that WSDL, and the requirements for
deploying and connecting the WSDL to your Web Service implementation of Blue
Print WSDL file. WS-Security extensions/mechanisms (which are already supported
by our client package) and how you can replace them and plug-in other security
extensions according to your WS-Security requirement are discussed.

C.1 Architecture
The ISDK Web Service Client is a package built on top of the ISDK Skeleton. It is
designed to communicate out of the box with any Web Service (WS) provider that is
implementing the BluePrint.wsdl file.

Once the communication between Web Service and the WS Client is established, the
rest of the communication (between WS client and the AutoVue server) is already in
place.

Architecture

C-2 Oracle AutoVue ISDK Technical Guide

Figure C–1 ISDK Web Service and Web Service client architecture

The benefit of using ISDK Web Service client is that it enables non-Java integration into
AutoVue since Web Service communication is a standard XML based protocol. The
internal implementation of the Web Service provider on the Repository side can be
virtually in any language and on any platform.

The communication between ISDK Web Service Client and Web Service is based on
SOAP (Simple Object Access Protocol), which is a standard protocol.

Note: If the repository provides any Java API, then it is
recommended to use ISDK Skeleton package to build the integration.
However, if you are integrating with platforms such as .NET, then it is
recommended to use the Web Service client package.

How it Works

ISDK Web Service Client C-3

As a Web Service integrator, the only focus should be on the SOAP channel between
your repository and ISDK Web Service client. The blueprint.wsdl and the data model
blueprint.xsd are described later in this chapter.

If the repository has security features in place, then it needs to be implemented both
on the Web Service and the ISDK Web Service Client package.

By default Web Service Client package has built-in support for two WS-Security
policies: HTTPS Basic and HTTPS UserName Token Policy. If your Web Service
provider is using one of these two access mechanisms, then communication can be
established by enabling proper handler inside the Web Service client package.

If the service provider is using other security mechanisms (for example, certificate,
SAML, and so on) then a new handler must be developed and plugged into the Web
Service client package.

Web Service client packages provide a flexible mechanism in order to register a new
security handler and replace the default behavior. Refer to section "WS-Security" for
more information.

C.2 How it Works
As with the Filesys sample, the AutoVue server communicates with the DMS Servlet
when accessing the repository. However, the difference is that DMS Servlet relies on
ISDK Web Service client to establish communication with the repository using SOAP
protocol.

The sequence of activities is similar to what is described in FileSys Technical Guide,
except that in this case customization needs to be implemented on the repository-side.
An example of a simple customization is included in the ISDK Web Service client
package (wsfrmApplet.jsp) which is fairly similar to one included with Filesys
(frmApplet.jsp).

For applet parameters in the JSP file, notice that FileName parameter is empty. This id
because the parameter must be defined based on what is defined in your repository.
For example, it can be an ID number or similar to Filesys they might be a relative path.
The bottom line it the FileName parameter is used to find the document on the
repository side and construct its proper document ID.

Assuming the customization is in place and FileName parameters are set, the
following is a brief description of how the DMS Servlet works:

1. The client logs into the repository Web Interface and launches AutoVue applet
through customization inside the Web browser.

■ AutoVue Applet communicates with the AutoVue server through Servlet
Tunneling (VueServlet) over an HTTP connection (as defined in the
JVUESERVER parameter)

2. The AutoVue server then communicates to the DMS Servlet using a standard
HTTP connection (as defined in DMS parameter).

3. The DMS Servlet then uses the ISDK Web Service client package to convert
requests to proper Web Service calls. As well, it invokes the Web Service provider

Note: The FileName parameter is empty in the wsfrmApplet.jsp file.
This is because the parameter is set by what is defined in the
repository. For example, the parameter may be an ID number or a
relative path to Filesys.

Web Service Client Package

C-4 Oracle AutoVue ISDK Technical Guide

on the repository server to handle any request made by the AutoVue Server (such
as file fetching).

4. If you try to view a composite file (that is, a file having external references to other
files), then DMS Servlet retrieves those files and makes them available to the
AutoVue server.

5. Once the file and all related XRefs and/or resources are fetched out of the DMS,
they are processed by the AutoVue Server which renders the files and streams the
viewable to the AutoVue applet for display.

6. Once the file displays in the AutoVue applet, you can create new Markups, save
Markups into the DMS, and open Markups from the DMS.

C.3 Web Service Client Package
The following diagram shows the internal structure of a Web Service client package.
This package includes the ISDK core, third-party libraries, and a layer on top of the
core that implements the client side for the Blue Print WSDL.

Figure C–2 Internal Structure of the Web Service Client package

As shown in the figure, the package must be deployed on top of a Java EE 5
application server since the ISDK Web Service client layer depends on the Web Service
annotations and JAX-WS (which are part of Java EE 5). Note that Java Standard 6 (JDK
1.6) supports the same Web Service annotations and includes JAX-WS. Unlike the
Filesys package, the custom code on the ISDK side is already in place (WS client layer).
Additionally, custom code on the repository side is required in order to implement the
provider side of Blue Print Web service (blueprint.wsdl).

Note: To implement the custom code you must use the Blue Print
WSDL that is described later in this document.

WSDL Location

ISDK Web Service Client C-5

C.4 Sequence
The sequence described here is the same of the section described in Filesys technical
document. When a user selects a document to view, the AutoVue server makes several
requests to the DMS Servlet. The DMS Servlet provides a response for each request.
The scenario of the exchanges established between the AutoVue server and the ISDK
package are sketched in the following figure and can be summarized as follows:

■ The AutoVue server asks for the docID of the selected document. This is done
through the Action Open, which obtains the docID from the ISDK.

■ The AutoVue server asks for some properties of the document, such as document
name, document size and date of the last modification (e.g., sequences 2 and 3 in
the following figure). The reason is that the AutoVue server maintains a cache
repository of the document and needs to know if it already has the most recent
copy of the document. In which case AutoVue uses the most recent copy rather
than downloading the document.

■ AutoVue fetches the document through the Download Action.

The following sequence diagram shows the flow of communication between AutoVue
and your integration, for a typical case of viewing a file from your Repository. As you
can see from this diagram, viewing a file triggers many calls to your integration.

Please note the "Your Integration" layer is the combination of Web Service client
consumer layer (already included in the package) plus the Web Service provider layer
that needs to be done on Repository (e.g. DMS) side.

As you can see by using ISDK web service client package, you are half way through of
a SOAP-based integration that has already defined the web service interface, the web
methods and the input/output data model.

The above actions are the basic set requests and responses between AutoVue and
ISDK.

There are several other requests/responses that are needed to cover functionalities
such as annotation (markups) and collaboration that normally follows the basic set.

C.5 Configuration
Before deploying Web Service Client package (WAR or the open folder) on a JAVA EE5
compliant Application Server you need to update some parameters inside web.xml
inside the package.

C.6 WSDL Location
You can create a project in Eclipse or JDeveloper by importing the Web Service Client
package. Once the project is prepared, open the web.xml file and locate the entry
named WSDL (that is, <param-name>WSDL</param-name>) then change its
associated value (the value inside the <param-value> tag to the actual URL location of
web service provider (for example: http://...some sever.../BluePrint?wsdl).

By setting this value, the Web service client package knows where to find the Web
service provider.

Note: If your Application Server is using Java 1.6_14 or higher, then
the required runtime libraries (JAX-WS 2.1.3+) are already provided
by JVM and deployment could be possible on a non EE5 Application
Server as long as it is certified to work with Java standard 1.6.

WS-Security

C-6 Oracle AutoVue ISDK Technical Guide

C.7 WS-Security
Another location to be modified inside web.xml is related to WS-Security. There are
several WS security standards defined by the Organization for the Advancement of
Structured Information Standards (OASIS). ISDK Web service client package provides
out of the box support for two of these standards: HTTPS- Basic Profile and
HTTPS-UserName Token Profile.

While it is easy to enable any of them, none of these two is selected as default in the
package because it has to be defined based on the environment. The default setting
assumes web service provider is available without any security. Since ISDK is
development package it is better test the functionalities first and then enable the
security if service provider permits.

C.7.1 HTTPS-Basic Profile
To enable HTTPS- Basic security, first make sure the web service provider is
implementing this policy, then locate
<param-name>wsclient.WSHandler</param-name> inside web.xml and replace its
associated value (the value inside its <param-value> tag) to
com.cimmetry.vuelink.wsclient.backend.HTTPBasicHandler

This is the name of the handler class inside the Web Service Client package that will
add authentication information to the header of web service requests. The
authentication information can be obtained in runtime from the applet.

C.7.2 HTTPS-UserName Token Profile (Metro)
To enable HTTPS-UserName Token, after making sure that the Web service provider is
implementing this policy, locate <param-name>wsclient.WSHandler</param-name>
inside web.xml and replace its associated value (the value inside its <param-value>
tag) to

com.cimmetry.vuelink.wsclient.backend.UserNameTokenHandler

This is the name of the handler class inside the Web Service Client package that adds
authentication information to the SOAP message requests. The authentication
information can be obtained in runtime from the applet.

C.7.3 HTTPS-UserName Token Profile (WebLogic)
If the Web service client package is being deployed on a WebLogic application server,
the original class for UserName Token Profile may not work properly. WebLogic server
provides some packages that can be used to implement handler for UserName Token
Profile.

Web Service Client package comes with a Java class that is designed to use WebLogic
API.

The class is called WeblogicUserNameTokenHandler and it is located in the same
package as two above classes. Since the class does not work on other application
servers (because of WebLogic dependency) it is renamed to
WeblogicUserNameTokenHandler.java.excluded by default in order to avoid any
compilation and runtime error on other application servers.

If you choose to deploy your Web service client on WebLogic, and the security profile
between client and Web service provider is UserName Token Profile, then you must
rename this class back to Java (by removing .excluded from the filename) and making
sure WebLogic runtime libraries are available during the compilation. Once there is no

WS-Security

ISDK Web Service Client C-7

compile error, open the web.xml and locate
<param-name>wsclient.WSHandler</param-name> inside web.xml and replace its
associated value (the value inside its <param-value> tag) to

com.cimmetry.vuelink.wsclient.backend.WeblogicUserNameTokenHandler

By doing so, the WeblogicUserNameTokenHandler is registered as the handler class
for UserName Token profile. Its handling is the same as UserNameTokenHandler but
instead it directly uses WebLogic API.

C.7.4 Other WS-Security Profiles
If any other type of WS-Security profile is being implemented on Web Service provider
(for example, certificate, SAML, and so on) you must write a client side handler and
register it into Web Service Client package. The registration is similar to what
described above, by setting the class name into wsclient.WSHandler parameter. The
important note is that any implementation will require extending WSHandler class
that is provided by Web Service Client package. This is true for all three classes that are
discussed above.

C.7.4.1 Extending WSHandler
WSHandler class is provided in the same package
(com.cimmetry.vuelink.wsclient.backend).

By creating a new class that extends this class, you must replace the implementation of
one of the two methods that are provided in WSHandler (depending on where the
authentication data is supposed to be).

In most cases the authentication data should be included inside the SOAP message. If
this is the case, then the following method should be implemented in your custom
handler.

public boolean handleMessage(SOAPMessageContext context)

Since the input parameter is SOAPMessageContext, any part of the SOAP message can
be accessed and modified before it is sent to the server.

The following code snippet shows how this is done in the UserNameTokenHandler
class.

Example C–1 UserNameTokenHandler class code snippet

public boolean handleMessage(SOAPMessageContext context) {
 m_logger.debug("UserNameTokenHandler handleMessage() called");
 Boolean outboundProperty =
 (Boolean)context.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 SOAPMessage message =context.getMessage();
 if (outboundProperty.booleanValue()) {
 m_logger.debug("\n (client protocol handler) Outbound message:");
 try {
 String user = (String)connectInfo.get("username");
 if (user != null) {
 SOAPEnvelope envelope =
 context.getMessage().getSOAPPart().getEnvelope();
 SOAPHeader header = envelope.getHeader();
 if (header == null) {
 header = envelope.addHeader();
 }
 SOAPElement security = header.addChildElement("Security", "wsse",

WS-Security

C-8 Oracle AutoVue ISDK Technical Guide

 WSSE_NAMESPACE);
 SOAPElement usernameToken =
 security.addChildElement("UsernameToken", "wsse");
 usernameToken.addAttribute(new QName("xmlns:wsu"),
 WSU_NAMESPACE);
 SOAPElement username = usernameToken.addChildElement("Username",
 "wsse");
 username.addTextNode(user);
 String pass = (String)connectInfo.get("password");
 if (pass != null) {
 SOAPElement password =
 usernameToken.addChildElement("Password", "wsse");
 password.addTextNode(pass);
 }
 }
 } catch (Exception e) {
 m_logger.error("Failed to add username token profile security", e);
 }
 } else {
 m_logger.debug("\n (client protocol handler) Inbound message:");
 }
 if (m_logger.isDebugEnabled()) {
 try {
 //message.writeTo(System.out); // for testing
 System.out.println(""); // just to add a newline
 } catch (Exception e) {
 m_logger.warn("Exception in soap handler: " , e);
 }
 }
return true;
}}

If the authentication data should be added to the header of HTTP request (not be
confused with SOAP header) then implementing following method should be
considered in your custom handler.

public void handleProxyRequest()

This method has no input parameter, but you have access to request objects through
the Web service proxy object. By obtaining access to request objects you can add
authentication information into the request header.

The handlerProxyRequest() method is called inside the connect method of the backend
implementation class right after the handler is set into the chain of handlers.

This should guarantee whatever is defined in this method is executed before the Web
service call is made.

The following code snippet shows how this method is implemented in is done in the
HTTPBasicHandler class:

Example C–2 HTTPBasicHandler class code snippet

public void handleProxyRequest() {
 m_logger.debug("HTTPBasicHandler , handleProxyRequest called");
 if (connectInfo.get("username") == null || connectInfo.get("password") == null)
 {
 return;
 }
 Map<String, Object> request = ((BindingProvider) proxy).getRequestContext();
 if (connectInfo.get("username") != null) {

BluePrint WSDL

ISDK Web Service Client C-9

 request.put(BindingProvider.USERNAME_PROPERTY,
 (String)connectInfo.get("username"));
 }
 if (connectInfo.get("password") != null) {
 request.put(BindingProvider.PASSWORD_PROPERTY,
 (String)connectInfo.get("password"));
 }
 // this is to maintain any session initiated by server
 request.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
}

C.8 BluePrint WSDL
This section describes BluePrint WSDL. This WSDL is provided in the Web Service
Client package and the client package implementation is based on this WSDL
(blueprint.wsdl) and the XSD file (blueprint.xsd) that accompanies it. These two files
should be used for implementing the Web Service provider that the Web Service
package communicates with.

C.8.1 Web Services Methods
This section provides a review of the available Web Services methods inside WSDL file

In following Web Services method description, if Parameters and Returns are an array,
they could be List in some implementation.

Note: Every time web.xml is modified, the application should be
redeployed inside the application server for the changes to take effect.

Note: For information on non-standard data structure refer to
Section C.8.2, "BLUEPRINT XSD."

Table C–1 Web Services methods

Web Services methods Description

delete Delete a markup document in backend repository

Parameters:

arg0: WsDocID - A unique identifier of a markup in your
integration.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

boolean: Returns TRUE if deletion successfully, otherwise
FALSE.

BluePrint WSDL

C-10 Oracle AutoVue ISDK Technical Guide

download Download original file, markup file, supported file (for example,
XRefs), and so on from backend repository.

Parameters:

arg0: WsDocID - A unique identifier of a downloading
document in your integration.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

byte[]: Content of the file.

openFile Get a document ID for a given document.

Parameters:

arg0: String - Information to identify a document in backend
repository.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

WsDocID: A unique document identifier in your integration.

setAttributes Set a given document or collaboration properties in backend
repository.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: Attribute[] - An array of Attribute objects. Each element
contains name and value(s) per attribute which will be modified
in backend repository.

arg2: SessionData - Session information used to connect to
backend repository

Returns:

boolean: Returns TRUE if set properties successfully, otherwise
FALSE.

getUserName (Deprecated
in Release 20.2.3)

Get current user name who connects to backend repository

Parameters:

arg0: SessionData - Session information used to connect to
backend repository

Returns:

String: Current user name.

getAllAttributes Get all available properties of a given document in backend
repository.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

A DocAttribute object that contains all the properties of a
document in backend repository.

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

ISDK Web Service Client C-11

getDmsConfig Get all basic settings of backend repository.

Parameters:

Returns:

A DmsConfig object that contains basic settings for backend
repository: the function of Browse repository supported or not,
the function of Search repository supported or not, the function
of Redirect supported or not, and a String value used for
customizing Browse and Search button

getBasicAttributes Get basic properties of a given document in backend repository.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration

arg1: SessionData - Session information used to connect to
backend repository

Returns:

A BasicAttribute object that contains basic properties for a
document in backend repository (for example, document ID,
name, size, last modified date, and so on)

getRevisions Return all other revisions for a given document in backend
repository.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

Return an array of RelatedDocument objects. One element
represents a revision for a given document.

getXrefs Get external reference files for a given document.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

An array of RelatedDocument objects. One element represents
an external reference file.

getRendition Get all supported rendition formats and streaming file
document ID if it exists in backend repository.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: SessionData - Session information used to connect to
backend repository

Returns:

An Rendition object that contains a list supported rendition
formats and document ID of the streaming file

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

C-12 Oracle AutoVue ISDK Technical Guide

isBrowseEnabled Return whether backend repository supports browse function or
not.

Parameters:

Returns:

TRUE if backend repository supports browse function,
otherwise FALSE.

isSearchEnabled Return whether backend repository supports search function or
not.

Parameters:

Returns:

TRUE if backend repository supports search function, otherwise
FALSE.

isRedirect Return whether backend repository is a distributed environment
that can redirect AutoVue Download/Save requests to another
ISDK-based integration deployed on remote server.

Parameters:

Returns:

TRUE if backend repository supports redirect function,
otherwise false.

listMarkup Return all markup documents associated with a given document
in backend repository.

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: Field [] - An array of Field objects. Each element represents
one attribute displayed in Markup Open dialog. Each item in the
return array should include the values for the attributes
specified by this argument.

arg2: SessionData - Session information used to connect to
backend repository

Returns:

An array of MarkupList objects. Each element represents a
markup document.

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

ISDK Web Service Client C-13

saveMarkup Save a markup for a given document to backend repository

Parameters:

arg0: byte [] - Markup file content

arg1: WsDocID - A unique identifier of a base document in your
integration.

arg2: WsDocID - A unique identifier of a markup document in
your integration.

arg3: String - Name of markup file

arg4: String - Type of markup file (for example, normal, master,
consolidated)

arg5: Field[] - An array of Field objects. One element represents
one property (name/values) of the markup file.

arg6: SessionData - Session information used to connect to
backend repository.

Returns:

The newly saved markup document ID.

saveRendition Save rendition file for a given document to backend repository

Parameters:

arg0: byte [] - Rendition file content

arg1: WsDocID - Unique identifier of a base document in your
integration.

arg3: String - The type of rendition file (for example, PCRS_TIF)

arg4: SessionData - Session information used to connect to
backend repository

Returns:

The newly saved rendition document ID.

saveChat Save chat content created during real-time collaboration meeting
to backend repository.

Parameters:

arg0: byte [] - Chat content

arg1: String - Real-time collaboration session data

arg2: SessionData - Session information used to connect to
backend repository

Returns:

The newly saved chat document ID.

getIntellistamp Get Stamp definition file and background image files inside the
definition file

Parameters:

arg0: SessionData - Session information used to connect to
backend repository

Returns:

A Stamp object that contains Stamp definition file and an array
of RelatedDocument objects, each element represents one
background image

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

C-14 Oracle AutoVue ISDK Technical Guide

getMarkupPolicy Get markup policy file that controls the markup creation,
modification and deletion.

Parameters:

arg0: SessionData - Session information used to connect to
backend repository

Returns:

A string that contains markup policy file.

getClbSessionID Get real-time collaboration meeting session ID from
collaboration data.

Parameters:

arg0: String - Real-time collaboration data

arg1: SessionData - Session information used to connect to
backend repository

Returns:

A string that represents real-time collaboration session ID.

clbCloseMeeting Process information in backend repository when real-time
collaboration meeting is finished.

Parameters:

arg0: String - Real-time collaboration data

arg1: String - Value to be processed.

arg2: SessionData - session information used to connect to
backend repository

Returns:

True if successfully, otherwise false.

clbDocumentSet Process information in backend repository when collaboration
users switch documents to collaborate on in the middle of a RTC
meeting.

Parameters:

arg0: String - Real-time collaboration data

arg1: String - S string represents document ID.

arg2: SessionData - Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

clbInitSession Process information in backend repository when real-time
collaboration meeting is started

Parameters:

arg0: String - Real-time collaboration session data

arg1: String - Value to be processed in backend repository.

arg2: SessionData - Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

ISDK Web Service Client C-15

clbGui Specify real-time collaboration GUI properties.

Parameters:

arg0: String - real-time collaboration session data

arg1: SessionData - session information used to connect to
backend repository

Returns:

A RtcGui object that contains a RtcDisplayOption object used for
enabling/disabling GUI items in Invitation dialog and an array
of Field objects used for listing attributes to be displayed in
Session Information dialog.

getRtcCollaboration Get real-time collaboration information (i.e. the users to be
invited, invited user, and collaboration session information)

Parameters:

arg0: String - Real-time collaboration session data

arg1: Field [] - An array of Field objects. One element represents
one attribute to be displayed in Session Information dialog. Each
RtcSession in the return should get the values for the attributes
specified by this argument.

arg2: SessionData - Session information used to connect to
backend repository

Returns:

A RtcCollaboration object that contains a list of users to be
invited, a list of already invited users, and an array of
collaboration session information.

clbUserJoined Process information in backend repository when a user joins the
real-time collaboration meeting.

Parameters:

arg0: String -Real-time collaboration session data

arg1: String - Value (name of joined user)

arg2: SessionData - Session information used to connect to
backend repository

Returns:

True if successfully, otherwise false.

clbUserLeft Process information in backend repository when a user leaves
the real-time collaboration meeting.

Parameters:

arg0: String - Real-time collaboration session data

arg1: String - Value (the name of left user)

arg2: SessionData - Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

C-16 Oracle AutoVue ISDK Technical Guide

clbMarkupSaved Process information in backend repository when host saves
markup for the collaboration session.

Parameters:

arg0: String - Real-time collaboration session data

arg1: String - Value (markup name)

arg2: SessionData - Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

getGUIDMS Get the value used for customizing Browse and Search button.

Parameters:

Returns:

A String.

dmsBrowse Return all the items that are direct children of a node (e.g. folder)

Parameters:

arg0: WsDocID - A unique identifier of a parent folder in your
integration.

arg1: Field [] - An array of Field objects. Each element represents
an attribute displayed in Browse dialog. Each item in the return
array should get the values for the attributes specified by this
argument.

arg2: SessionData - Session information used to connect to
backend repository

Returns:

An array of DocList objects. Each element represents a child
node (for example, a folder or document).

getSearchCriteria Specify search criteria.

Parameters:

Returns:

An array of Attribute objects. Each element represents one
search criteria (for example, Name and possible values) in
Search dialog.

dmsSearch Return all the items that meet search criteria

Parameters:

arg0: WsDocID - A unique identifier of a document in your
integration.

arg1: Field [] - An array of Field objects. Each element represents
an attribute displayed in Search dialog. Each item in the return
array should get the values for the attributes specified by this
argument.

arg2: Attribute [] - An array of Attribute objects. Each element
contains one name and value(s) per search criteria

arg3: SessionData - Session information used to connect to
backend repository

Returns:

An array of DocList objects. Each element represents

a child node (for example, a folder or document).

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

ISDK Web Service Client C-17

C.8.2 BLUEPRINT XSD
This section provides a review of all classes that represent custom outputs and custom
inputs for different Web Services methods.

getSearchGui Specify the attributes that are displayed in Search dialog

Parameters:

arg0: SessionData - Session information used to connect to
backend repository

Returns:

An array of Field objects. Each element holds a property's name
displayed on Search dialog and display length for the property.

getBrowseGui Specify the attributes that are displayed in Browse dialog

Parameters:

arg0: SessionData - Session information used to connect to
backend repository

Returns:

An array of Field objects. Each element holds a property's name
displayed in Browse dialog and display length for the property.

getMarkupGui Specify the attributes that are displayed in Markup Open dialog
and Markup Save dialog.

Parameters:

arg0: SessionData - Session information used to connect to
backend repository

Returns:

A markup object that contains the information used Markup
Open dialog and Markup Save dialog.

Note: In following description for custom data structures, if attribute
is an array, they could be List in some implementation.

Table C–2 Classes that represent custom outputs and custom inputs for different Web
Services methods

Web Services methods Description

Attribute A property of a document in backend repository.

Attributes:

name: String - Property name

values: String [] - Values for the properties

isMultiValues: boolean - Is multi-value property or not

optionList: OptionList - A object contains predefined values that
user can select.

Table C–1 (Cont.) Web Services methods

Web Services methods Description

BluePrint WSDL

C-18 Oracle AutoVue ISDK Technical Guide

BasicAttribute Basic properties about a document in backend repository.

Attributes:

docID: WsDocID - A unique identifier of a document in your
integration.

name: String - Document name

size: String - Document size

lastModifiedDate: String - Last modified date of the document

multiContent: String - How many files are contained in the
document.

folder: String - Folder name of the document.

DmsConfig Basic settings for a backend repository.

Attributes:

isBrowseEnabled: boolean - Backend repository supports browse
function or not;

isSearchEnabled: boolean - Backend repository supports search
function or not;

isRedirect: boolean - Whether backend repository is a distributed
environment that can redirect AutoVue Download/Save
requests to another ISDK-based integration deployed on remote
server or not.

dmsGui: String - Text used for customizing Search/Browse
button

DocAttribute It is a subclass of BasicAttribute. It holds all properties of a
document.

Attributes:

optionalFields: Attribute [] - An array of Attribute objects. Each
element holds one property other than basic properties (for
example, name, size) of a document.

DocList It contains information about a document in backend repository
and is used as return type of the methods dmsSearch and
dmsBrowse.

Attributes:

docID: WsDocID - An identifier of a document in your
integration.

name: String - Document's name

optionField: Field [] - An array of objects. Each element
represent one property (for example, name/value) of a
document.

Field Represent one property object with name/value.

Attributes:

name: String - Property name

value: String - Property value

Table C–2 (Cont.) Classes that represent custom outputs and custom inputs for
different Web Services methods

Web Services methods Description

BluePrint WSDL

ISDK Web Service Client C-19

Intellistamp Represents the return type of the method of getIntellistamp()

Attributes:

definition: String - The content of Stamp definition file.

image: RelatedDocument []: An array of RelatedDocument
objects. Each element represents a background image inside
Stamp definition file.

MarkupDisplayOption It is used by the method getMarkupGui(). It specifies whether or
not users are allowed to perform some operations on markups in
Markup Open dialog.

Attributes:

allowDelete: boolean -- Can delete markup or not?

showPreviousVersions: boolean - Can display the markups from
other version of the document or not?

allowNew: boolean - Can create a new markup or not?

allowImport: boolean - Can import a markup or not?

allowExport: boolean - Can export a markup or not?

allowNewLayers: boolean - Can create a new layer for a markup
or not?

allowModifyLayers: boolean - Can modify a layer of a markup
or not?

MarkupGui It is used as return type of the method getMarkupGui(). It
specifies the structure of the GUIs for markup with which the
user will interact. The GUI part itself is composed of three
sections: Display Options, Edit, and Display.

Attributes:

displayOption: MarkupDisplayOption - Specifies whether or not
users are allowed to perform some operations on markups in
Markup Open dialog;

displayLabel: Field [] - An array of Field objects. Each element
holds a property's name displayed in Markup Open dialog and
display length for the property.

editAttribute Attribute [] - An array of Attribute objects. Each
element represents an attribute whose value user should specify
in Markup Save dialog;

MarkupList It is a subclass of class DocList and used as return type of the
method listMarkup(). It contains the properties about a markup
document.

Attributes:

readOnly: boolean - Is a markup read-only?

baseRevision: String - Version of the base document to which a
markup is attached

markupType: String - Normal/master/consolidated

Table C–2 (Cont.) Classes that represent custom outputs and custom inputs for
different Web Services methods

Web Services methods Description

BluePrint WSDL

C-20 Oracle AutoVue ISDK Technical Guide

OptionList It is used to specify predefined values for a property of a
document in backend repository.

Attributes:

isFixed: boolean - If it is TRUE, cannot add other value to the
predefined list? Otherwise FALSE.

options: String [] - An array of String. Each element represents a
value in predefined list.

RelatedDocument It is mainly used as return for the methods getRevisions() and
getXrefs().

Attributes:

docName: String - Document name

WsDocID docID - A unique identifier of a document in your
integration.

Rendition It is used as return type of the method getRendition().

Attributes:

supportedRenditions: rendType [] - An array of objects. Each
element represents one rendition format (for example, CSI_
META, PCRS_TIF)

wsDocID: WsDocID - the identifier of a streaming file in your
integration.

RtcCollaboration It is used for the method getRtcCollaboration() and contains the
information about a real-time collaboration meeting.

Attributes:

userToBeInvited: String [] - List of users to be invited to the
meeting.

userInvited: String [] - List of users are already in the meeting.

rtcSession: RtcSession [] - An array of objects. Each element
represents the information per real-time collaboration meeting;

RtcDisplayOption It is used for enabling/disabling GUI items in Invitation dialog.

Attributes:

allowAdd: boolean - Can add a user?

allowAddNew: boolean - Can add a new user?

allowRemove: boolean - Can remove a user?

allowLayerColor: boolean - Can modify layer's color?

RtcGui It is used as return type of the method clbGui().

Attributes:

displayOption: RtcDisplayOption - Enable /disable real-time
collaboration meeting in Invitation dialog;

displayLabel: Field [] - An array of objects. Each element holds a
property's name displayed in Session Information dialog and
display length for the property.

Table C–2 (Cont.) Classes that represent custom outputs and custom inputs for
different Web Services methods

Web Services methods Description

Steps for Implementing Basic Integration Based on Web Services

ISDK Web Service Client C-21

C.9 Steps for Implementing Basic Integration Based on Web Services
This section outlines the minimum Web Services methods which are defined in
BluePrint.wsdl that should be implemented on Web Services provider side in order to
add file view capabilities using Web Service package with AutoVue.

■ getDmsConfig()

■ openFile()

■ getBasicAttributes()

■ download()

Other Web Services methods are not necessary to be implemented and you can just
provide null as the return value for them.

Integration SDK Web Service Client project includes a sample backend extension file
(wsfrmApplet.jsp) in the applet folder for launching AutoVue. You should modify it or
create your own backend extension file (for example, a .asp file) and put it in correct
location according to your backend system. The user can click a button in backend
system UI to launch the file in the AutoVue applet.

In the backend extension file, do the following:

■ Provide the FILENAME variable with your unique document identifier.

RtcSession It represents session information such as session title, id, type,
subject, duration, start time, and so on.

Attributes:

clbSessionId: String - real-time collaboration session ID;

clbSessionTypeIsPublic: boolean - TRUE if it is public, otherwise
FALSE.

clbSaveChat: boolean - TRUE if the backend system component
supports saving chat transcript.

label: Field[]- An array of Field objects. Each element represents
a property's name and its value displayed in Session
Information dialog.

SessionData It represents session information needed to connect to backend
repository.

Attributes:

expired: boolean - TRUE if it is invalid.

data: Field[] - An array of Field objects that are needed to
connect to backend repository.

WsDocID An unique identifier of a document in your integration

Attributes:

id: String - A unique identifier of a document in your backend
repository

version: String - Version number

assetID: String - Asset ID associated with the document

workflowID: String - Workflow ID associated with the document

isFolder: boolean - Document is folder?

Table C–2 (Cont.) Classes that represent custom outputs and custom inputs for
different Web Services methods

Web Services methods Description

Steps for Implementing Advanced Integration Based on Web Services

C-22 Oracle AutoVue ISDK Technical Guide

■ Provide the JVUESERVER variable with your VueServlet (for example.
http://hostname:port/servlet/VueServlet).

■ Provide the DMS variable with your Web Services client DMS (for example,
http://hostname:port/servlet/DMS).

C.10 Steps for Implementing Advanced Integration Based on Web
Services

To implement additional functionality such as XRefs, markups, compare, renditions,
DMS Search/Browse, and so on you should implement the rest of the methods listed
in Section C.8.1, "Web Services Methods." It is assumed that you have already
implemented the file view functionality in your backend system as outlined in
previous section.

C.11 Sample Approaches to Generate Web Services Provider Artifacts
The following section provide sample approaches to generated Web Services provider
artifacts.

C.11.1 How to generate Java web services code from ISDK WS WSDL file
To generate Java Web services code, call wsimport from the command line with the
-keep option and pass the WSDL's file: wsimport -keep wsd_file-location

For example: wsimport -keep L:\temp\WebServiceClient\WSDL\BluePrint.wsdl

C.11.2 How to generate .Net web services code from ISDK WS WSDL file
Enter the following command line:

wsdl.exe /Language:CS /si wsdl_location xsd_location

Then open the file that you just generated, locate the following line and then change
Name from BluePrintBinding to BluePrint.

System.Web.Services.WebServiceBindingAttribute(Name="BluePrintBinding",
Namespace="artifact.wsclient.vuelink.cimmetry.com")]

After you generate the Web services server artifacts using either of the above
approaches, you should create a class to implement each Web services method.

C.12 BluePrint WSDL and XSD
You can access the BluePrint.wsdl and BluePrint.xsl files from the <ISDK install
folder>WebServiceClient\WSDL directory. Refer to the "Installation" section of the
Oracle AutoVue Integration SDK Installation and Configuration Guide for more
information on the location of the files.

D

ISDK Web Services Sample Server D-1

DISDK Web Services Sample Server

The Web Services Sample Server project is a sample implementation of the Web
Services provider in the C# language and uses the Filesys repository as the backend
DMS. For general information on implementing integrations with the Web Services
provider, refer Section C.9, "Steps for Implementing Basic Integration Based on Web
Services" to and Section C.10, "Steps for Implementing Advanced Integration Based on
Web Services."

This sample server implements the Web Services methods defined in the BluePrint
WSDL file. For more information, refer to Section C.8, "BluePrint WSDL."

The ISDK Web Services Sample Server project is located under the
WebServiceIntegration/WebSserviceSampleFolder folder. Refer to the ISDK Installation
and Configuration Guide for more information.

Source code for implementing the Web Services sample server, Service1.asmx.cs, is
provided in the <ISDK Installation
Directory>\WebServicesIntegration\WebServicesSampleServer\C# directory.

D-2 Oracle AutoVue ISDK Technical Guide

E

Upgrading Existing Integration E-1

EUpgrading Existing Integration

This section is intended for anyone who has built an integration based on a pre-20.2
version AutoVue Integration SDK and is going to upgrade the existing integration to
work with AutoVue release 20.2 and the AutoVue Integration SDK framework of this
release (vuelinkcore.jar).

E.1 Upgrading from the 20.1 Release
1. Replace vuelinkcore.jar in WEB-IN/lib folder with the new one.

2. Replace vueservlet.jar in WEB-IN/lib folder with the vueservlet.jar in AutoVue
20.2 bin folder.

3. Replace jvue.jar, jogl.jar and gluegen-rt.jar in the jvue folder with the files of the
same names in AutoVue 20.2 bin folder.

4. Run the ISDK 20.2 installer to a different installation folder than your pre 20.2
installation.

5. Copy the esapi-2.0.1.jar file from the <ISDK 20.2 Installation Directory>\
ISDKSkeleton\WebApplication\isdk_skeleton\WEB-INF\lib to your integration's
WEB-INF\lib directory.

6. Note that file path names are case-sensitive. As a result, you must make sure that
the file paths defined in the web.xml file are correct.

7. Copy and configure the ESAPI property files as described in the ISDK Security
Guide.

E.2 Upgrading from a pre-20.1 Release
1. Replace vuelinkcore.jar in WEB-IN/lib folder with the new one.

2. Replace vueservlet.jar in WEB-IN/lib folder with the vueservlet.jar in AutoVue
20.2 bin folder.

3. Replace jvue.jar, jogl.jar and gluegen-rt.jar in the jvue folder with the files of the
same names in AutoVue 20.2 bin folder.

4. Update your own DocID implementation class (for example, FilesysDMSDocID in
the Sample Integration for Filesys and ISDKDocID in the SDK Skeleton):

■ Changing the class declaration from implementing the DocID interface to
extending the DocID abstract class.

public class MyDocID extends DocID implements DMSDefs { …}
■ Overwrite two new methods:

Upgrading from a pre-20.1 Release

E-2 Oracle AutoVue ISDK Technical Guide

public String DocID2String();
public FilesysDMSDocID String2DocID(String docid);

Example E–1 The Integration SDK Skeleton has the following implementation in
com.mycompany.autovueconnector.defs.ISDKDocID.

public String DocID2String() {
 // TODO Return all fields information as a string with separator
 return m_sDocID;
}

public ISDKDocID String2DocID(String sDocID) {
 if (sDocID == null) {
 return null;
 }
 ISDKDocID docID = new ISDKDocID(sDocID);
 return docID;
}

5. Replace all method calls to query.getDocID() in your integration to new
MyDocID().String2DocID(query.getDocID()). It is because the query.getDocID()
method returns a String representation of the DocID instead of the DocID object in
the DMSQueryImp class of the new framework. Here MyDocID is your own
DocID implementation. These replacements are located in actions and propactions
packages.

6. (Optional) In actions and propactions package, replace all class declaration and the
first parameters of the execute() method to eliminate casting of context in your
code.

The com.cimmetry.vuelink.propaction.DMSAction and the
com.cimmetry.vuelink.propaction.DMSGetPropAction interface in the new
framework use generic class declarations and new signature for execute() method
as below. A covariat parameter type AnyContext is used instead of the original
DMSContext parameter in the execute() method.

Example E–2 DMSAction() method

package com.cimmetry.vuelink.propsaction;
…
public interface DMSAction<AnyContext extends DMSContext> {
 …
 public Object execute(final AnyContext context, //covariat parameter type
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException;
}

Example E–3 DMSGetPropAction() method

package com.cimmetry.vuelink.propsaction;
…
public interface DMSGetPropAction<AnyContext extends DMSContext> {
 …
 public Object execute(final AnyContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args,

Upgrading from a pre-20.1 Release

Upgrading Existing Integration E-3

 final Property property
) throws VuelinkException;
}

You can change your code to make use of this new functionality. If you do not
make this change, your original code still compiles.

If you change your code, it should be similar to the following code snippet from
the Integration SDK Skeleton and you can use your own context class instead of
the DMSContextImp of the Skeleton.

Example E–4 Integration SDK Skeleton code snippet for DMSAction() method

public class ActionDelete implements DMSAction<DMSContextImp>, DMSDefs {
 private static final Logger m_logger = LogManager.getLogger(ActionDelete.class);
 @Override
 public Object execute(
 final DMSContextImp context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 … // use of the context variable directly without casting to DMSContextImp
 }
}

Example E–5 Integration SDK Skeleton code snippet for DMSGetPropAction() method

public class GetPropCSI_DocName implements DMSGetPropAction<DMSContextImp>,
 DMSDefs {
 private static final Logger m_logger = LogManager.getLogger(ActionDelete.class);
 @Override
 public DMSProperty execute(
 DMSContextImp context,
 DMSSession session,
 DMSQuery query,
 DMSArgument[] args,
 Property property
) throws VuelinkException {
 … // use of the context variable directly without casting to DMSContextImp
 }
}
7. The framework in this release drops support for the vuelink.properties file. You

need to do the following:

■ Move all the properties defined in your vuelink.properties to web.xml as
init-param for your servlet.

Example E–6 You can add an initial parameter MyPropertyMoved in web.xml that is
originally defined in vuelink.properties.

<servlet id="csi_servlet_1">
 <servlet-name>DMS</servlet-name>
 <servlet-class>com.mycompany.autovueconnector.DMS</servlet-class>
 …
 <init-param>
 <param-name>MyPropertyMoved</param-name>
 <param-value>MyPropertyValue</param-value>
 </init-param>
 …
</servlet>

Upgrading from a pre-20.1 Release

E-4 Oracle AutoVue ISDK Technical Guide

■ Any call of getVuelinkPropByName(String name) method in your code should be
replaced with getInitParameter(String paramName) method of the your context
class.

All the initial parameters defined in web.xml for your main servlet are
automatically picked up by the framework and are saved in a hash table of your
context designated to hold all the initial parameters of your context, for example,
in the com.cimmetry.vuelink.context.GenericContext class, it is the m_
initParamters variable. This hash table can be retrieved and set through method
calls of the context class. To save your effort, your context class should extend the
GenericContext class.

Example E–7 Sample method call to get the value of the RootDir parameter defined in
web.xml

package com.cimmetry.vuelink.filesys.actions;
…
public class ActionOpen implements DMSAction<FilesysContext>, DMSDefs { …
 public Object execute(final FilesysContext context,
 final DMSSession session,
 final DMSQuery query,
 final DMSArgument[] args
) throws VuelinkException {
 …
 String rootDir = context.getInitParameter("RootDir");
 …
 }
}

■ Any reference to the vuelinkProp variable (defined by the framework Vuelink
servlet previously) should be replaced since this variable is no longer
available.

Thus any call of vuelinkProp.setProperty(String name, String Value) method
should be replaced if you had code in your existing integration to update the
vuelinkProp variable after the properties has been retrieved.

■ You can call context.setInitParameter(String name, String value) method if
your context object is available.

■ If you have to modify it during the main servlet initialization stage, you can
realize the same functionality by overwriting the saveInitParameter(String
name, String value) method in your Context class. For example, if you need to
update the value of MyPropertyMoved parameter previously in the init()
method of your main servlet code, you can do it now in your context class
similar to the follow code:

Example E–8 If you need to update the value of MyPropertyMoved parameter previously
in the init() method of your main servlet code, you can do it now in your context class
similar to the follow code

package com.mycompany.autovueconnector.context;
…
public class DMSContextImp extends GenericContext {
 …
 public void saveInitParams(ServletConfig config, ServletContext context) {
 super.saveInitParams(config, context);
 String value = getInitParameter("MyPropertyMoved"));
 String newValue = …; // Process the value
 if (newValue != null) {
 setInitParameter("MyPropertyMoved ", newValue);

Upgrading from a pre-20.1 Release

Upgrading Existing Integration E-5

 }
 }
 …
}

Upgrading from a pre-20.1 Release

E-6 Oracle AutoVue ISDK Technical Guide

F

Feedback F-1

FFeedback

If you have any questions or require support for AutoVue, please contact your system
administrator. If the administrator is unable to resolve your issue, please contact us
using the links below.

F.1 General AutoVue Information

F.2 Oracle Customer Support

F.3 My Oracle Support AutoVue Community

F.4 Sales Inquiries

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

Web Site http://www.oracle.com/support/index.html

Web Site https://communities.oracle.com/portal/server.pt

E-mail autovuesales_ww@oracle.com

Sales Inquiries

F-2 Oracle AutoVue ISDK Technical Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	2 System Requirements
	3 Architecture
	3.1 How it Works
	3.2 Framework
	3.3 Sequence Flow

	4 Integration Design
	4.1 VueLink Class
	4.2 DMSActions Interface
	4.3 ActionGetProperties Interface
	4.3.1 Single Class (Basic Monolithic)
	4.3.2 Multiple Classes (Recommended)

	4.4 DocID Interface

	5 Implementing File View Functionality in your DMS
	5.1 Creating Your Main DMS Servlet by Extending the VueLink Class
	5.2 Defining Your Unique Document Identifier by Implementing DocID Interface
	5.3 Creating a GetProperty action to return User Name
	5.4 Creating a class to implement DMSBackend interface
	5.5 Creating an Open Action class that returns your DocID
	5.6 Creating a Get Property Action to Return Document Name
	5.7 Creating a GetProperty action to return Document Date Last Modified and Size
	5.8 Creating a Download action to return Document Content
	5.9 Implementing Remaining Actions and Registering in web.xml

	6 Implementing Advanced Integration Functionality in Your DMS
	6.1 Handling Document Attributes
	6.2 Returning External References (XRefs)
	6.3 Handling Markups
	6.3.1 GUI Response
	6.3.2 Markup Response
	6.3.2.1 Bundling PROP_GUI and PROP_MARKUP
	6.3.2.2 dmsListMarkups() method

	6.4 Handling Renditions
	6.5 Returning the List of All Properties of the DMS Document
	6.6 Implementing File Browse
	6.6.1 GUI Request
	6.6.2 Request for Browse Results

	6.7 Implementing File Search
	6.7.1 First Request
	6.7.2 Request for Search Results

	6.8 Handling Versions
	6.9 Implementing handler for Default Property
	6.10 Implementing File Save Action
	6.11 Implementing File Delete Action
	6.12 Creating Your Context
	6.13 Overriding GetProp<CSI Property> classes
	6.14 Implementing Read-Only Markups
	6.15 Implementing Stamps
	6.16 Implementing Redirection
	6.16.1 Handling Redirection for Download
	6.16.2 Handling Redirection for Save

	6.17 Implementing Real-Time Collaboration and Meeting Management
	6.17.1 Launching AutoVue in RTC Mode
	6.17.2 Hosts Initiate RTC
	6.17.3 Guests Join RTC
	6.17.4 ISDK APIs for RTC
	6.17.5 Summary

	6.18 Implementing Oracle Enterprise Visual Framework Support
	6.18.1 Most Common Use Cases for OEVF
	6.18.2 OEVF Launching URL and Parameters
	6.18.3 OEVF Customization Page
	6.18.4 ISDK APIs for OEVF
	6.18.4.1 ActionOpen class
	6.18.4.2 GetPropCSI_Markups
	6.18.4.3 ActionSave
	6.18.4.4 ActionDelete

	6.18.5 DOCID

	6.19 Implementing UI Customization
	6.19.1 Embedded vs. Pop-up Window
	6.19.2 Pop-up Blocker
	6.19.3 Prompt to Save

	6.20 Returning DMS Name
	6.21 Leveraging AutoVue Web Services
	6.21.1 Configuring AutoVue Web Services to Communicate with Integration SDK
	6.21.2 Utilizing AutoVue Web Services at Front End
	6.21.2.1 Thumbnail Generation
	6.21.2.2 Streaming File Generation
	6.21.2.3 Converting Document to Other Formats

	A Integration SDK Skeleton
	A.1 Integration SDK Skeleton Packages
	A.2 Integration Steps for Implementing File View Functionality
	A.3 Integration Steps for Implementing Advanced Functionality

	B Sample Integration for Filesys
	B.1 DMSActions
	B.2 Backend API
	B.3 Filesys DMS Backend system Structure
	B.4 Sample Integration for Filesys DMS Use Cases
	B.4.1 Core Use Cases
	B.4.1.1 ActionOpen
	B.4.1.2 ActionDownload
	B.4.1.3 ActionDelete
	B.4.1.4 ActionSave
	B.4.1.5 ActionGetProperties
	B.4.1.6 ActionSetProperties

	B.4.2 Backend use cases
	B.4.2.1 Get Document Instance
	B.4.2.2 Manage Renditions
	B.4.2.3 Get XRefs List
	B.4.2.4 Manage Markups
	B.4.2.5 Get Versions List
	B.4.2.6 Get Children Instances

	B.5 Known Limitations

	C ISDK Web Service Client
	C.1 Architecture
	C.2 How it Works
	C.3 Web Service Client Package
	C.4 Sequence
	C.5 Configuration
	C.6 WSDL Location
	C.7 WS-Security
	C.7.1 HTTPS-Basic Profile
	C.7.2 HTTPS-UserName Token Profile (Metro)
	C.7.3 HTTPS-UserName Token Profile (WebLogic)
	C.7.4 Other WS-Security Profiles
	C.7.4.1 Extending WSHandler

	C.8 BluePrint WSDL
	C.8.1 Web Services Methods
	C.8.2 BLUEPRINT XSD

	C.9 Steps for Implementing Basic Integration Based on Web Services
	C.10 Steps for Implementing Advanced Integration Based on Web Services
	C.11 Sample Approaches to Generate Web Services Provider Artifacts
	C.11.1 How to generate Java web services code from ISDK WS WSDL file
	C.11.2 How to generate .Net web services code from ISDK WS WSDL file

	C.12 BluePrint WSDL and XSD

	D ISDK Web Services Sample Server
	E Upgrading Existing Integration
	E.1 Upgrading from the 20.1 Release
	E.2 Upgrading from a pre-20.1 Release

	F Feedback
	F.1 General AutoVue Information
	F.2 Oracle Customer Support
	F.3 My Oracle Support AutoVue Community
	F.4 Sales Inquiries

