
 

Start 

Oracle Health Insurance 

Custom Development for 

Oracle Health Insurance Back Office 
 
version 1.1 

Part number: E54856-01 

July 17, 2014 
 
 

 



 

 
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 

This software and related documentation are provided under a license agreement containing restrictions on use 
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license 
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, 
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, 
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing. 

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf 
of the U.S. Government, the following notice is applicable: 

U.S. GOVERNMENT RIGHTS 
Programs, software, databases, and related documentation and technical data delivered to U.S. Government 
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable 
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, 
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the 
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the 
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). 
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065. 

This software is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications which may 
create a risk of personal injury. If you use this software in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of 
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this 
software in dangerous applications. 

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of 
their respective owners. 

This software and documentation may provide access to or information on content, products, and services from 
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties 
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will 
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, 
products, or services. 

Where an Oracle offering includes third party content or software, we may be required to include related 
notices. For information on third party notices and the software and related documentation in connection with 
which they need to be included, please contact the attorney from the Development and Strategic Initiatives 
Legal Group that supports the development team for the Oracle offering. Contact information can be found on 
the Attorney Contact Chart. 

The information contained in this document is for informational sharing purposes only and should be 
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement 
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in 
making purchasing decisions. The development, release, and timing of any features or functionality described 
in this document remains at the sole discretion of Oracle. 

This document in any form, software or printed matter, contains proprietary information that is the exclusive 
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of 
your Oracle Software License and Service Agreement, which has been executed and with which you agree to 
comply. This document and information contained herein may not be disclosed, copied, reproduced, or 
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your 
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or 
affiliates. 

 
 

 



 

CHANGE HISTORY 
 

Release Version Changes 
   

10.14.1.0.0 1.0 Creation 
10.14.1.0.0 1.1 Minor adjustments 
   
   

 

 

 

 



  

Contents 

1. Introduction ............................................................................................................... 1 

1.1. Audience ............................................................................................................. 1 
1.2. Scope ................................................................................................................... 1 
1.3. Documentation .................................................................................................. 2 
1.4. References ........................................................................................................... 2 

2. Overview ................................................................................................................... 3 

2.1. Business Rules .................................................................................................... 4 
2.2. An Open Database............................................................................................. 4 
2.3. Flex Fields ........................................................................................................... 5 
2.4. Dynamic PL/SQL .............................................................................................. 5 
2.5. Business Event Framework .............................................................................. 6 
2.6. Custom Batch Scripts ........................................................................................ 6 
2.7. HTTP Links ........................................................................................................ 6 
2.8. OHI Back Office Business Services.................................................................. 6 

3. An Open database .................................................................................................... 7 

3.1. Tables and views ............................................................................................... 7 
3.2. Authorization ..................................................................................................... 8 
3.3. Datamodel help ................................................................................................. 9 
3.4. Modification logging ....................................................................................... 11 
3.5. Tracing .............................................................................................................. 18 

4. Flex fields ................................................................................................................. 19 

4.1. Concepts ........................................................................................................... 19 
4.2. Flex Field Characteristics ................................................................................ 20 
4.3. Flex field definition ......................................................................................... 21 
4.4. Flex field maintenance .................................................................................... 23 

5. Dynamic PLSQL ..................................................................................................... 25 

5.1. Hooks for PL/SQL code ................................................................................. 25 
5.2. Dynamic PLSQL Definition ........................................................................... 25 
5.3. Column bound checks .................................................................................... 27 
5.4. Writing custom code ....................................................................................... 32 

6. Business Event Framework ................................................................................... 34 

6.1. Overview .......................................................................................................... 34 
6.2. Signaling Events .............................................................................................. 34 
6.3. Responding to Events ..................................................................................... 35 
6.4. Combining Signaling and Response Types ................................................. 35 
6.5. Framework Components ................................................................................ 36 
6.6. Developing Your Own Business Events ....................................................... 40 
6.7. Processing Business Events ............................................................................ 44 
6.8. Examples ........................................................................................................... 45 

7. Custom Batch Scripts ............................................................................................. 52 

7.1. Approach .......................................................................................................... 52 
7.2. Batch user ......................................................................................................... 53 

Custom Development 
 Introduction ii 
 



  

7.3. Registration ...................................................................................................... 53 
7.4. Export script definition ................................................................................... 55 
7.5. Generator: Bulk Processing Batch - Overview ............................................ 55 
7.6. Generator: Bulk Processing Batch - Details .................................................. 57 
7.7. Generator: CSV Export Batch ......................................................................... 62 
7.8. Generator:  CSV Import Batch ....................................................................... 63 
7.9. Generator:  XML Import batch ...................................................................... 63 
7.10. Other output scripts ........................................................................................ 63 

8. HTTP Links.............................................................................................................. 64 

8.1. Configuration ................................................................................................... 64 

9. OHI Back Office Business Services ....................................................................... 68 

9.1. Architecture ...................................................................................................... 68 
9.2. Implementation................................................................................................ 68 
9.3. Find, Get and Write Services .......................................................................... 69 
9.4. Service consumers ........................................................................................... 69 
9.5. Write Services................................................................................................... 70 
9.6. Error Handling ................................................................................................. 73 

10. Custom Development Practices ............................................................................ 74 

10.1. Create a custom schema ................................................................................. 74 
10.2. Use an abstraction layer .................................................................................. 74 
10.3. Define your transactions................................................................................. 75 
10.4. Locking ............................................................................................................. 76 
10.5. Use Named Parameters .................................................................................. 76 
10.6. Profile your code ............................................................................................. 77 
10.7. Close open cursors .......................................................................................... 77 
10.8. Coding Standards ............................................................................................ 77 

11. Deprecated Interfacing options ............................................................................ 78 

12. Appendix A - Business event framework datamodel .......................................... 1 

13. Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK ....... 4 

14. Appendix C – Tracing .............................................................................................. 2 

14.1. Activation ........................................................................................................... 2 
14.2. How to Access Trace Logs................................................................................ 2 
14.3. Instrumentation of Custom Code .................................................................... 3 

15. Appendix D – What you should know about CDM RuleFrame ........................ 4 

16. Appendix E – Modification Mechanism for Policies and Relations .................. 5 

17. Appendix F – Dynamic PL/SQL Types ................................................................. 6 

Custom Development 
 Introduction iii 
 



  

1. Introduction 
 

One of the strengths of the Oracle Health Insurance Back Office application is the 
possibility to customize the application.  

Much of the behavior of the application can be influenced through configuration 
parameters.  
If this is not enough, the application offers facilities to  

• Extend the standard data model with flex fields; 

• Include custom developed code into the standard processes; 

• Define and process custom-defined events; 

• Develop custom applications to integrate with OHI Back Office through web 
services; or 

• Develop PL/SQL code to directly access OHI Back Office data 

The purpose of this document is to describe these options and help you decide how 
to customize OHI Back Office to your needs. 

1.1.  Audience 
This document is primarily written as a technical reference for anyone who needs to 
integrate with OHI Back Office or to augment the standard process. 

Since this document describes the various options to integrate with OHI Back Office 
it may also be of interest to application managers . 

The document assumes familiarity with: 

• Basic OHI Back Office functionality 

• Relational database concepts 

• SQL and PL/SQL 

Also the document assumes access to the OHI Back Office Online Help. 

1.2. Scope 
Within scope: 

• Best practices for custom development and customization 

• SVL web services 

• How to organize custom code. 

 

Out of scope: 

• Configuration of OHI Back Office 

• Localization (translation, application code for local jurisdiction). 

• Post-processing XML 

• Client applications 

• Interfacing with BI 

• Self-service applications 

Custom Development - Introduction 1 
 



  

• C2B web services 

• Coding standards 

• Version control for custom developed code. 

• How to set up a custom schema and access rights. 

1.3. Documentation 
You may find more detailed documentation at http://docs.oraclecom: 

• Browse http://docs.oracle.com 

• Search ‘Applications > Insurance > Health > Oracle Health Insurance Back Office 
Manuals’ 

Also use OHI Back Office Online Help to get: 

• Functional information about the topics 

• The menu path of the mentioned screens in this document 

1.4. References 

DocRef Document 

Doc[1] Back Office Service Layer Installation & Configuration Manual 
(docs.oracle.com) 

Doc[2] Back Office Service Layer User Manual (docs.oracle.com) 

Doc[3] Oracle Health Insurance Back Office Installation, Configuration & DBA 
Manual (docs.oracle.com) 

 

Custom Development - Introduction 2 
 

http://docs.oraclecom/
http://docs.oracle.com/


  

2. Overview 
OHI Back Office is an ‘all in one’ engine to process claims for health care payers. The 
health care is provided by providers who may be contracted beforehand by the 
health care payer.  
In most cases, the members are policy holders for which they pay premiums. 
So product definition, health care and collection of premiums are core processes as 
well. 

 
Figure 1: OHI Back Office ‘all-in-one’ core processes. 

We call OHI Back Office an ‘all-in-one’ application, because all data, business rules 
and logic to support the core processes reside in a single database. This all-in-one 
approach allows maximum consistency for OHI Back Office data and is instrumental 
for achieving a high ‘straight-through processing’ (STP) ratio. 

The OHI Back Office GUI application allows back office personnel to perform data 
entry, adjudication and run background processes.  Much of the application logic for 
these tasks is implemented in the database.   

 
Figure 2: OHI Back Office GUI components 

Although OHI Back Office is an ‘all-in-one’ application it is by no means a black box. 
To work for a given customer OHI Back Office provides several possibilities for 
customization. To work in an environment with other applications, OHI Back Office 
provides various integration facilities. This chapter gives you an overview of these 
customization and integration facilities. 

Custom Development - Overview 3 
 



  

2.1. Business Rules 

2.1.1. CDM ruleframe 

Business rules are used to keep the OHI Back Office data in a consistent state for 
every DML operation. The OHI Back Office has many thousands of business rules 
which are implemented through CDM RuleFrame. Their execution is largely 
controlled by database triggers. With so many business rules there are bound to be 
many interdependencies, which means that business rules must not be disabled 
except by OHI Back Office personnel. 

Much of the processing of the business rules takes place when the transaction is 
committed to the database. This means that transactions should be defined as logical 
units to prevent that (seemingly) unrelated business rules are triggered by closing a 
transaction. 

Because of their implementation in the database, business rules are tightly integrated 
with the data. This results in optimum performance. And, since the business rules 
apply to every DML operation on OHI Back Office objects, we created an ‘Open 
Database’ which you can access with (virtually) any tool. 

Finally, business rules help to avoid redundant code. Since they are automatically 
applied, most application code does not need to be aware of the underlying business 
rules. This makes it easier for us to maintain and control our application code.  

It also makes it viable for you to create custom code for OHI Back Office. 

2.1.2. How to determine the set of rules on a table 

There are many types of business rules like attribute rules, tuple rules, dynamic rules 
and static rules. 
There are several ways to determine the set of business rules on a given table. 

• When available use the repository object browser on top of Oracle Designer 

• Check the constraint definitions in the data dictonary 

• Look in alg#business_rules for the more complex static business rules, these 
are rules that can be validated at any moment in time 

• Query on the system messages, business rule messages have the following 
format: 

o Start with a three letter application system prefix 

o Followed by _BR_ 

o Followed by the three letter table alias which can be found in the 
column table_alias in ALG_TABELLEN for the given tablename 

o Followed by a three digit sequence number. 

o Followed by the classification of the rule. 

o   SELECT *  
FROM ALG_SYSTEEM_MELDINGEN  
WHERE  CODE like '%\_BR\_%' escape '\‘ 

 

2.2. An Open Database 
You may directly access the OHI Back Office database because the business rules, 
implemented in the database itself, work as a protective shield. 

Custom Development - Overview 4 
 



  

You can either use the PL/SQL API packages direct access to the tables to access the 
OHI BackOffice data, provided that you: 

• Do not use the OHI Back Office schema owner to connect to the database (use a 
custom schema instead). 

• Do not change the table definitions, types, packages or other database objects 
owned by the OHI Back Office schema. 

• Do not create custom grants from OHI Back Office database objects to your own 
schema. 

• Do not disable business rules. 

• Do not insert, update or delete records from technical tables (including log and 
audit tables). 

You can use and access every object which has been granted to you without violating 
the above rules. 

You can use any tool or interface to access the OHI Back Office as long as the 
underlying interface is supported by Oracle (for example OCI, ODBC, JDBC, SQLNet, 
ODP.net). 

2.3. Flex Fields 
As a standard solution for healthcare payers, the OHI Back Office data model cannot 
be altered. However, the OHI Back Office data model can be extended with so-called 
flex fields to register additional customer-specific data, for example to record when 
members had their last health check or to register parameters for interfacing with 
providers. 

These flex fields have the following benefits: 

• The core data model stays unchanged, which means that OHI Back Office can 
support the application as sold to the customer. 

• The customer does not need to create a secundary data model, the data of which 
must be kept in sync with the OHI Back Office database. 

Historically, flex fields were used for claims line processing and to add extra data to 
policies and relation data. Soon after, flex field implementations were created for 
other tables. 

Flex field support will be extended in future releases. 

2.4. Dynamic PL/SQL 
OHI Back Office’s support for dynamic PL/SQL is a powerful mechanism which 
allows the customer to add customer-specific code to the core OHI Back Office 
product. 

OHI Back Office has defined several ‘hooks’ in OHI Back Office where custom code 
can be added: 

• Data entry validation. 

• Address entry and formatting. 

• Trigger conditions for business event framework. 

• Core processes such as claims processing, policy collection and payment 
processing. 

Apart from adding a high level flexibility to the customer our support of dynamic 
PL/SQL  helps to keep the amount of code in the standard product under control. 

Custom Development - Overview 5 
 



  

2.5. Business Event Framework 
With the Business Event Framework you can define customer-specific events and 
event handlers. 
These events can be time-based, triggered by a change or created by your custom-
designed detection mechanism. 

The handlers can be run near real-time or in batch processing mode and are 
implemented  through custom PL/SQL code. 

2.6. Custom Batch Scripts 
OHI Back Office allows you to create your own batch processing scripts and run 
them with the standard batch scheduler. 

You are advised to use the built-in OHI Back Office script generator to generate a 
framework to control the execution of your custom code, especially if you expect to 
be processing large data volumes.  The generated framework helps to process large 
volumes in manageable chunks and provide the same kind of feedback as the 
standard scripts.  

2.7. HTTP Links 
HTTP Links allow users of the OHI Back Office GUI Application to view or process 
related data in an external application. For each HTTP link you can configure a HTTP 
request template to the target application and the OHI screens which will display the 
HTTP link. 

 
Figure 3: Toolbar with HTTP links  

At runtime the HTTP link will open an extra browser window to send a HTTP 
request to the target application, substituting placeholders with runtime values 
derived from the current OHI screen. 

Note that the target application must be an HTTP application! 

2.8. OHI Back Office Business Services 
The OHI Back Office Business Services add integration facilities for use in a service 
oriented environment. The business services are part of a service layer for retrieving 
and updating core OHI Back Office data. 
The ‘Find’ and ‘Get’ services are used to retrieve data from OHI Back Office. ‘Write’ 
services are used to store data in the OHI Back Office database.   

OHI BO Business Services are implemented as PL/SQL services and made available 
through synchronous SOAP/HTTP web services. 

Note that the OHI Back Office Business Services are not related to the older OHI 
Connect2BackOffice (C2B) services. 

Custom Development - Overview 6 
 



  

3. An Open database 
You may directly access the OHI Back Office database because the business rules, 
implemented in the database itself, work as a protective shield. 

You may use DML, PL/SQL API packages, or database views to access the OHI 
BackOffice data, provided that you: 

• Do not use the OHI Back Office schema owner to connect to the database (use a 
custom schema instead); 

• Do not change the table definitions, types, packages or other database objects 
owned by the OHI Back Office schema; 

• Do not create custom grants from OHI Back Office database objects to your own 
schema; 

• Do not disable business rules; 

• Do not insert, update or delete records from technical tables (including log and 
audit tables). 

You can use and access every object which has been granted to you without violating 
the above rules. 

You can use any tool or interface to access the OHI Back Office as long as the 
underlying interface is supported by Oracle (for example OCI, ODBC, JDBC, SQLNet, 
ODP.net). 

3.1. Tables and views 

3.1.1. Tables 

These are the different table types in OHI Back Office: 

• ‘Functional’ tables 

o All DML operations permitted 

o organized by functional area (aka sub system) like ALG, FSA, GEB or 
VER 

• Technical tables: internal use only by OHI Back Office 

• Logging tables:  

o used for tracking changes to the functional tables. 

o No DML operations permitted 

The following naming convention is used to recognize each table type: 

Type Name format DML? Characteristics 
    

Functional <SUB SYSTEM>_<NAME> Yes • Functional 
• Rule layer 
• Column level grants 

Logging <SUB SYSTEM>$<NAME> No  Data changes 
 On demand 

Technical <SUB SYSTEM>#<NAME> No • Process 

 

 

Custom Development - An Open database 7 
 



  

3.1.2. Views 

A similar naming convention is used for the different OHI Back Office view types: 

Type Name format Characteristics 
   

System ALG_<NAME>_SVW  
 

• Fixed column list 
• Customizable from and where clause 

Financial FVS_<NAME>_Sn_VW  
 

 For determination of General Ledger 
data 

 Per financial fact type 
 At least three fixed mandatory 

columns 
 

English <SUB SYSTEM>#<NAME>_  1:1 view on functional table 
 International (English) name and 

column names 
 

English <SUB SYSTEM>#<TABLENAME>$   1:1 view of logging table 
 International (English) name and 

column names 
 

Translation <SUB SYSTEM>_<ALIAS>_VW  Translated values 
 Public synonym to underlying table 

 
 

Tip:  Query the ALG_TABELLEN table to find the international view name for 
each table. 

 

3.2. Authorization 
Authorization and access in OHI Back Office is handled on three different levels 

1. Database level 
Column level grants provide a fine grained authorization for updating data 
in the database of OHI Back Office.  

2. Application level 
Application roles can be used to group a set of modules and provide write 
and/or read access to this set of modules by assigning the application role to 
a user account. 
Multiple application roles can be assigned to one account.  

3. Business level 
Per user the access to a financial unit or administration unit can be granted. 
Per role the access to a brand, broker or group contract can be granted. 

 
 

Note:  The application level and business level access is only enforced through 
the forms application. 

 

3.2.1. Roles 

Within OHI Back Office several database roles are present: 

Name Characteristics 
  

OZG_ROL  Secure application role for user interface 
 May not be directly granted 
 For internal use only 
 OHI_ROLE_ALL is granted to OZG_ROL 

Custom Development - An Open database 8 
 



  

Name Characteristics 
  

OZG_ROLE_ALL  Rights to all objects needed for executing OHI BO 
 May not be directly granted.  
 Accounts /GUI users get temporary elevation when needed 

(arranged by application). 
 For internal use only 

OZG_ROL_DIRECT  Rights directly granted to account 
 Only used for custom interfaces or custom code accounts 
 Not to be used for normal / GUI users 

OZG_ROL_SELECT  Read only/query rights 
 Not used by the application 

3.2.2. Accounts 

Each OHI Back Office environment has a set of accounts: 

Name Characteristics 
  

OZG_OWNER • Owner of all OHI BO objects  
(GUI) USER  Per user 

 Elevated to internal OZG_ROL when using forms application 
BATCH  Used by the batch scheduler 

 Elevated to internal OZG_ROL  
SVL_USER  User used for the service layer webservices  
SVS_OWNER  Used for custom code development 

 Should receive same  grants as for OZG_ROL_DIRECT for stored 
code 

 It is possible to create more than one custom development schema 
OHI_DPS_USER • Used when executing dynamic sql from OHI 

• Has the same grants as OZG_ROL_DIRECT 
Query accounts  Elevated to  OZG_ROL_SELECT  

 

3.3. Datamodel help 
One of the difficulties when starting to write custom code for OHI is the huge 
number of tables and relations between the tables. However, there are a few pointers 
to help you find your way around the data model. 

3.3.1. Forms frontend  

The first help for the programmer are the OHI screens themselves. If there is an item 
in a screen for which you want to know the location in the database, i.e. the table and 
the column, move the cursor to this field and select information from the help menu 
(Menu option: Help → Information), see Figure 4 

 
 

Figure 4: Information in the forms frontend 

Custom Development - An Open database 9 
 



  

In this example the focus is on the policy holder number in the add policy screen, 
which means that you will get specific information about this field. 

In figure x we called up information about a policy product start date. The 
information screen shows information about the screen (e.g. its module code 
ZRG2202F) and the database. But most importantly it shows the table name and the 
column name for the start date, both in Dutch and in English. As a bonus, it shows 
the record ID of the data that is currently shown. This might very useful when 
debugging some code. 

 
Figure 5: Detailed information per forms field 

3.3.2. HTML overview 

A more detailed picture can be created by using a procedure from OHI that creates a 
description of the tables and their columns. The package SYS_GEN_PCK contains the 
procedure write_html_datamodel with the following signature: 

procedure write_html_datamodel 
( pi_file_location       in varchar2 
); 

The parameter pi_file_location must refer to a database directory in which a zip file 
with HTML files will be created: 

 DatamodelOHI_<release_number>.zip 

So calling the procedure on OHI Back Office database for release 10.14.1.0.0 in a way 
like: 

begin 
  sys_gen_pck.write_html_datamodel  
  ( pi_file_location => 'OZG_TMP' 
  ); 
end; 
/ 

will generate the file DatamodelOHI_10.14.1.0.0.zip. The zip file contains hundreds of 
HTML pages showing some simple but often needed information about the OHI 
tables that a programmer may access. 

The pages are accessible through 5 different indexes: 

Custom Development - An Open database 10 
 



  

• Dutch table index 

• English table index 

• Dutch sub systems 

• English sub systems 

• Aliases 

Figure 6 shows a sample page. At the top of the page the indexes are listed. Clicking 
on any one of them will call the corresponding index.  The page furthermore lists the 
columns with their English and Dutch names, any comments (which are currently 
still mostly in Dutch) and, if any, foreign keys. At the bottom of the page is a table 
showing all tables that link to this table. Dutch column names, and any table names 
are hyperlinks calling up another page or showing more detailed information. 

 

 
Figure 6: Example of an html page for a table 

 

3.4. Modification logging 
This chapter describes the operation of the modification logging functionality 
(logging of changes in data) that is available within the OHI BO application. 

3.4.1. Why modification logging? 

There are various reasons and requirements for equipping an application with 
modification logging. These can be summarized as follows: 

• Traceability 
Allows to trace who performed a specific modification and when. 

• Modification reports 
Provides input for simple overviews of the data modified within a specific 
period. This can serve a number of purposes. 

Custom Development - An Open database 11 
 



  

• Interface support 
Save modification details for passing on to other applications in the correct 
sequence and manner. 

Because the application is used by different organizations with varying requirements, 
modification logging within OHI BO is flexible, enabling fulfillment of the various 
requirements by means of configuration. 

3.4.2. Operation summary 

A generic type of modification logging activation has been implemented in the OHI 
Back Office application, which enables management of each individual table. 
Consequently, each OHI Back Office functional table has its own table. Furthermore, 
there is a central log table (ALG_MUTATIE_LOG) in which modifications to specific 
tables can be logged. 

Specific modification logging levels can be activated by means of specific indicators 
that can be configured per table in the ALG_TABELLEN table. 

Modification logging is not activated by default. There is no screen for this activation. 
Consequently, the relevant columns will have to be updated using (PL/)SQL (with 
the aid of the ALG_LOGGING_PCK) if required. 

There are three types of configuration settings: 

1. SOORT_LOGGING 
If modification logging (insert, update and delete operations) must be 
performed in the log table for the table you should set SOORT_LOGGING to: 
N(ot), B(asic), enabling retrieval of all modifications with the minimum of 
additional data storage, or U (for Extensive), such that complete records 
(both new and old values in the event of updates) are placed in the log table. 
 
The latter is used to facilitate easier tracing of who performed which 
transactions. It is very useful and faster/easier to retrieve what kind of 
change has been executed but requires more storage space. 

2. NIVEAU_LOGGING 
If modifications must be logged in the central log table 
ALG_MUTATIE_LOG set NIVEAU_LOGGING to: N(ot), S(tatement) or for 
every R(ecord). As a result,  the central table can be used to immediately 
establish the modification types performed, as well as the sequence, and 
which table(s), without all of the tables having to be examined separately. 

3. NUMMERING_LOGGING 
If sequence numbers must be distributed set NUMMERING_LOGGING to: 
N(ot), database T(ransaction) number per set of changes which are contained 
in one transaction, with a sequence number within transaction per record 
which is changed, or G(lobal). Global means that an overall modification ID 
is distributed per statement (insert, update or delete) in addition to the 
transaction ID and sequence numbers. 
 
A transaction number is used to track a single Oracle transaction (commit) in 
detail, while the global (statement) numbers are used to determine the 
overall sequence of statements executed in different transactions. 

3.4.3. Default auditing columns 

Every  'standard' functional tables has the following set of columns which is also 
important for modification logging: 

Custom Development - An Open database 12 
 



  

Column Characteristics 
  

ID • System generated ID 
• Uniquely identifies a row within the table  
• Lends itself for use in generic queries and interfaces.  

CREATIE_DOOR  The user who created the row 
 Refers to ALG_FUNCTIONARISSEN 

CREATIE_MOMENT  The time when the row was created 
 Precision: one second  

CREATIE_BRON_ID  The system or interface that was used to create row. 
 Refers to ALG_BRONNEN  
 Optional, set by alg_context_pck.set_bron_id 

LAATSTE_MUTATIE_DOOR  The user who last updated the row. 
 Refers to ALG_FUNCTIONARISSEN 

LAATSTE_MUTATIE_MOMENT • The time when the row was last updated 
• Precision: one second 

LAATSTE_MUTATIE_BRON_ID  The system or interface that was last used to update 
the row. 

 Refers to ALG_BRONNEN 
 Optional, set by alg_context_pck.set_bron_id 

 

An example of a table (ALG_BRONNEN, see later) is displayed below (the first 
column and final six columns are the above - mentioned seven columns): 

ID   NOT NULL NUMBER(14) 
CODE   NOT NULL VARCHAR2(10) 
OMS   NOT NULL VARCHAR2(200) 
CREATIE_BRON_ID    NUMBER(14) 
CREATIE_MOMENT    DATE 
CREATIE_DOOR    NUMBER(14) 
LAATSTE_MUTATIE_BRON_ID  NUMBER(14) 
LAATSTE_MUTATIE_MOMENT   DATE 
LAATSTE_MUTATIE_DOOR   NUMBER(14) 

When a row is initially created the ‘last modification’ (LAATSTE_MUTATIE) 
columns have the same values as the corresponding ‘creation’ (CREATIE) columns. 

Because the references to ALG_BRONNEN and ALG_FUNCTIONARISSEN are 
nullable, the parent rows may be deleted even if there are still referenced. 

Implementing a foreign key constraint at this low level would have too much impact 
on the performance. It is therefore the responsibility of the customer to keep the 
ALG_BRONNEN and ALG_FUNCTIONARISSEN tables aligned with the referencing 
tables. 

3.4.4. Configurable modification logging 

Because of the various configuration possibilities, the data model features an entity 
that contains the tables used in the application. This entity also enables entry of 
various settings per table.  

Consequently, modification logging can be configured for each individual table. 

However, this only applies to the regular ‘functional’ data tables (please see the 
paragraph about availability of modification logging later on). There is no 
modification logging for technical tables containing system maintained or temporary 
data, etc. 

In general, it can be assumed that the greater the accessibility of the logging data, the 
higher the required overhead and the greater the storage space required.  

Logging must also enable relatively rapid retrieval of specific modifications for 
disclosure to other parties, for example. 

Custom Development - An Open database 13 
 



  

In the light of the above, an implementation method has been chosen that can meet 
the following configuration requirements which have served as base requirements by 
means of three settings: 

1. Logging? 
Is it necessary to log modifications? 

2. Log including complete record with new(est) values? 
In the event of logging, is it necessary to log only old and modifiable values 
during an update (after all, the current table contains the new values and 
fixed values), or is it necessary to log all of the new values in addition to the 
old values for the purpose of simplicity? 
 
In such cases the records are immediately saved in the logging table with all 
of the new values in the event of inserts. Furthermore, in the event of 
updates, all new values are saved in the same record with the modifiable old 
values. 
 
In the event of updates and deletions, the auditing values from the last 
update or deletion are placed in the modification record, in addition to the 
time stamp of the previous modification, regardless of the setting for logging 
new values. 
 
This can be used to immediately determine the validity of the data (old 
modification timestamp up to and including the new modification 
timestamp). In the event of deletions the record is always saved in its entirety 
if logging is activated to avoid the values being lost. 
 
The unique record ID is always recorded for every logging activity, 
regardless of the DML operation (insert/update/delete). 
 
This approach enables recording of logging information with minimum 
overhead if required. This only applies to the previously modifiable values in 
old columns for which all modifications are traceable. 

3. Log unique sequential modification ID in log record? 
Is it necessary to record a detailed modification ID in the log record that 
determines a unique sequence number for all modifications in the 
application? This number is required additional to a timestamp, as a large 
number of modifications can be performed within the same second. 
 
Consequently, an ID of this type is necessary to determine the sequence of 
modifications over various records and/or tables. 
 
Because this number must be generated for each SQL statement (DML) and 
each record across all tables, the ID generator, although well optimized,  may 
become a 'hot spot', which means it should be used only if necessary. 

4. Log statement ID in central overall modification table? 
Because the modifications performed within a specific period should easily 
be retrieved without the need to scan a lot or all of the tables, it is possible to 
indicate that DML statements that have actually resulted in a modification 
must be recorded in a central transaction log table (in which an entry is made 
stating that a record has been inserted in a specific table, for example). 
 
The type of statement (insert, update, delete), executing user account and 
(optional, see next bullet) involved record are then recorded for the table 
concerned. 

Custom Development - An Open database 14 
 



  

5. Should the modification ID also be logged centrally for all records? 
If the modification flow must be produced in greater detail for passing on 
modifications to another system in exactly the correct sequence, it is possible 
to indicate that the detailed modification ID must also be recorded centrally 
for each record, i.e. in the central table. This may result in a greater number of 
entries in the central table including a record ID. 
 
Consequently, at this stage only the central table can be used to determine 
what record types are required from the modification tables in order to 
reconstruct an outgoing transaction without the various separate log tables 
having to be scanned (that would be very inefficient to reproduce 
transactions that span a set of unknown tables; all log tables would need to 
be scanned for each transaction). 

6. Log commit ID in log table? 
For certain traceability activities (as well as software problems, for example) 
it can be desirable to establish which modifications were performed within a 
specific database transaction and in what sequence. 
 
This can also be desirable in order to make it relatively easy to see by means 
of which transactions a user produced a specific modification. 
 
This functionality can be activated by means of the generation of a commit ID 
(an ID for each transaction being committed) in the log table with a sequence 
number within the commit ID for each modified record (across the various 
tables). 
 
Please note that commit IDs do not necessarily indicate the actual execution 
order (for example if multiple short transactions before a long transaction 
that was started earlier). 

7. Should the commit ID also be logged in the central logging table for all 
records? 
The commit ID (commit ID + sequence number per record) can be included 
in the central table to facilitate easy establishment of the total composition of 
a logical transaction. 

As you see, logging to a log takes place at record level, and not at column level. This 
is because logging at column level is harder to configure, hardly adds value and has a 
worse effect on performance. 

3.4.5. Example 

As an example, let us look at ALG$BRONNEN, the log table for ALG_BRONNEN: 

MUTATIE_OPERATIE       NOT NULL VARCHAR2(1) 
MUTATIE_ID    NUMBER(14) 
COMMIT_ID    NUMBER(14) 
SEQ_IN_COMMIT    NUMBER(10) 
O$OMS     VARCHAR2(200) 
O$LAATSTE_MUTATIE_BRON_ID  NUMBER(14) 
O$LAATSTE_MUTATIE_MOMENT  DATE 
O$LAATSTE_MUTATIE_DOOR   NUMBER(14) 
ID     NUMBER(14) 
CODE     VARCHAR2(10) 
OMS     VARCHAR2(200) 
CREATIE_BRON_ID    NUMBER(14) 
CREATIE_MOMENT    DATE 
CREATIE_DOOR    NUMBER(14) 
LAATSTE_MUTATIE_BRON_ID   NUMBER(14) 

Custom Development - An Open database 15 
 



  

LAATSTE_MUTATIE_MOMENT   DATE 
LAATSTE_MUTATIE_DOOR   NUMBER(14) 

The modification type (Insert, Update or Delete) contains the type of operation that 
led to the creation of the log record.  

The modification ID and the commit ID are given values if so configured. 

The columns in the table that can be modified by the user or by means of the code are 
included twice: once as old columns (the name is based on the column name in the 
original table, prefixed with O$) and again as ‘new’ columns (same column names as 
in the original table). 

Columns that cannot be modified are included as ‘new’ columns, for example the ID 
column. 

When basic logging is activated for the sole reason of traceability, a record containing 
all modifiable columns with the values prior to the record modification (regardless of 
whether the modifiable column concerned has also been modified) is saved in the 
event of a modification to a modifiable column. 

This makes it possible to reconstruct any past situation in combination with the 
current record (uniquely identified by means of its ID). 

The name of a log table can be derived from the original table (see ‘Tables and 
views’). For example ALG$BRONNEN is the log table for ALG_BRONNEN. 
Likewise, ALG#SOURCES$ is the 1:1 view on ALG$BRONNEN. 

When the composition of a transaction, and the sequence in which modifications are 
performed across the various tables, needs to be established without large numbers 
of scans of all log tables, it is possible to use additional logging of references to the log 
tables in the central overall log table. 

The central OHI BO log table ALG_MUTATIE_LOG is structured as follows: 

MUTATIE_OPERATIE  NOT NULL VARCHAR2(1) 
TAB_ID    NOT NULL NUMBER(14) 
RECORD_ID   NUMBER(14) 
COMMIT_ID   NUMBER(14) 
SEQ_IN_COMMIT   NUMBER(14) 
MUTATIE_ID   NUMBER(14) 
MUTATIE_DOOR   NUMBER(14) 
MUTATIE_MOMENT   DATE 

This table contains a reference to the table containing the table names, which 
facilitates easy tracing of the table in which the centrally logged modification was 
performed. The column containing the Record ID refers to the unique number per 
table issued to each record. 

 
 

Note:  The COMMIT_ID is not the same as the SYSTEM COMMIT NUMBER 
(SCN). 

 
 

Note: The ID column contains the unique ID of the row in the original table. 
Note that since many modifications to the same row can be logged, this ID is 
not unique! 

 
 

Note: There are no indexes on log tables. 

 

 

Custom Development - An Open database 16 
 



  

3.4.6. Activation 

The settings for modification logging are maintained in the ALG_TABELLEN table. 

The ALG_LOGGING_PCK package can be used to control the activation and 
deactivation of logging/journaling of functional tables.  
Alternatively, these settings can be set by manually updating the ALG_TABELLEN 
table. 

The ALG_LOGGING_PCK offers the following routines that require a table name as 
parameter value to implement the functionality: 

• DISABLE_LOGGING – disables logging to the central table but leaves 
logging/journaling records to the log table as specified earlier 

• DISABLE_JOURNALLING – completely disables any kind of logging for the 
table, whether it is the central table or the table-specific log table 

• ENABLE_JOURNALLING_BASIC – enable logging to the log table with the 
least amount of details (requires less space than full journaling) 

• ENABLE_JOURNALLING_FULL – enable logging to the log table while 
storing the complete record and old and new values 

• ENABLE_LOGGING_STMT – enables logging of statement executions on a 
table to the central log table with transaction id and modification id sequence 
numbers being assigned 

• ENABLE_LOGGING_ROW – enable logging of each involved row that is 
changed by statement execution to the central log table with transaction id 
and modification id sequence numbers being assigned 

 
 

Note:  When specifying a table name, be sure to use the original table name, 
for example ALG_BRONNEN instead of ALG#SOURCES_ 

If you want to use other combinations, for example logging of statements to the 
central log table but without a global modification id being assigned, you should 
update the ALG_TABELLEN table directly. 

The best way to determine what is suitable for your situation is to just start with 
enabling logging on some tables, enforce some statements that generate logging and 
evaluate the results in the log tables and central log table. 

Note that changes to the modification logging may not immediately effective: 

• Of course you need to commit your changes in order to make them visible for 
other sessions. 

• The settings for modification logging are cached at the session level. In order 
to force a reload, sessions must be restarted. 

The above-mentioned configuration options per table are available for all regular 
functional tables that are directly available for executing inserts, update or deletes. 
These tables implement business rule validation through a series of triggers and 
constraint definitions. The business rule validation mechanism implements also this 
modification logging functionality. 

This means that other tables, which cannot directly be modified, do not offer this 
functionality. Such tables are typically maintained by the application. These 
application-maintained (or code-maintained) tables are often referred as ‘technical’ 
tables in comparison with the user maintainable tables as ‘functional’ tables. The 
technical tables can be recognized as having a ‘#’ sign on the fourth position of their 
name. 

Custom Development - An Open database 17 
 



  

The standardized way of granting insert, update, delete and select privileges makes 
sure only the regular ‘functional’ tables can be changed. 

3.4.7. Impact of release upgrades 

When a new OHI release is installed an important requirement is to minimize the 
required installation time in order to have a minimal downtime of the application. 

For that reason changes in the data structure or in the data as result of an OHI release 
installation (a single patch, a patch set or a major release) are often optimized. These 
optimizations may result in the following consequences for the logging data 
(although they often do not apply): 

• Changes due to a scripted update are not logged 

• The table structure is changed and the current contents are converted in the 
table (by adding for example a default value for a new column) while the 
logging table is not updated 

• A table may be newly (re)created where the existing data is converted to the 
new structure; these changes will not be reflected in the logging table 

• The log table might need to be recreated or dropped; in which situation the 
old contents are dropped 

These consequences do not apply to the central logging table. 

Although these consequences might look severe, the heavier the consequence the less 
often it occurs. And it must be considered that these are completely scripted 
repeatable operations. For a potential impact of these types of unlogged changes we 
advise to determine the ‘delta’ between the situations before and after a release 
installation to judge whether such modifications are relevant for the derived 
functionality. Only when there are consequences these must be implemented on the 
derived environment. 

In the rare situation when traceability is required and a log table is cleared we advise 
to export the table contents before implementing the release installation on the 
production environment. The saved contents can be used for a custom conversion or 
later retrieval when necessary. 

3.5. Tracing 
The application code of OHI Back Office has been instrumented to trace the PL/SQL 
code as it is executed. Both the CAPI packages, batch packages and underlying 
packages of the OHI Back Office Business Services have been instrumented. 

By turning on tracing you get a detailed overview to help you analyze the program 
flow. This is useful if you want to understand a problem or need to send extra 
information to customer support. 

Another use may be to instrument your custom code with trace calls. 

See ‘Appendix C – Tracing’ for details. 

Custom Development - An Open database 18 
 



  

4. Flex fields 
As a standard solution for healthcare payers, the OHI Back Office data model cannot 
be altered. However, the OHI Back Office data model can be extended with so-called 
flex fields to register additional customer-specific data, for example to record when 
members had their last health check or to register parameters for interfacing with 
providers. 

These flex fields have the following benefits: 

• The core data model stays unchanged, which means that OHI Back Office can 
support the application as sold to the customer. 

• The customer does not need to create custom tables, which must be kept in sync 
with the OHI Back Office database. 

Historically, flex fields were used for claims line processing and to add extra data to 
policies and relation data. Soon after, flex field implementations were created for 
other tables as well. 

Flex field support will be extended in future releases. 

4.1. Concepts 
At this moment (release 10.14.1.0.0) there are two implementations: 

• The historic flex field implementation for policies and relations, supported by 
the ‘modification mechanism’ described in ‘Appendix E – Modification 
Mechanism for Policies and Relatio’. 
These flex fields can be accessed in the GUI application through separate tabs 
in the maintenance screens for relations and policies. 

• The current generic flex field implementation, introduced in release 10.13.1.0. 
These flex fields can be accessed in the GUI application through the key 
combination CTRL-SHIFT-F2. 

Current support for flex fields: 

 Historic Generic 

Included in XML output X - 

Included in CSV output - - 

Access through GUI X X 

Query through GUI - - 

Create or drop flex fields through GUI Y Y 

TAPI support for on-cascade delete of flex fields Y Y 

PLSQL supplied packages to support queries on flex 
fields and flex field values 

- - 

PLSQL supplied packages to support to perform 
DML on flex fields and flex field values 

- - 

PLSQL supplied packages to support to create or - - 

Custom Development - Flex fields 19 
 



  

drop flex fields and flex field values 

Access through (SVL) web services X X 

Allow dynamic SQL to validate flex fields - - 

In time both flex field implementations will be consolidated into a single solution. 

4.1.1. Related 

The claims processing code uses a specific flex field mechanism which is used to add 
context-specific data to the claims calculations. In time this mechanism may be 
migrated to the current generic flex field implementation.  

4.2. Flex Field Characteristics 
These characteristics apply to the current generic implementation. 

4.2.1. Flex field Types 

In practice there are two flex field types: 

• attributes 
A number, character string or date value, which may be restricted to a range 
or set of values. 

• key references 
The value contains a reference to an existing row in the OHI Back Office 
database.  

• care role 
Key reference to a care provider. 

• relation role 
Key reference to a relation 

Both ‘care role’ and ‘relation role’ are precursors of the new key reference 
implementation and may be migrated to a key reference in due course. 

4.2.2. Filters 

There are two types of filters for flex fields: 

• Flex field scope 
Indicates in which context a flex field value can be used (core processing). 

• Flex field group 
Evaluates whether a group of flex fields can be set at all.  

4.2.3. Flex Field Scope 

Indicates for which context a flex field value can be used.  

Possible contexts are: 

• Benefit extent 

• Benefit threshold 

• Premium amount 

• Registered 

• Yearly deductible amount 

Custom Development - Flex fields 20 
 



  

A flex field may have multiple scope records. 
Note also that flex field scope records are temporal (time-valid). 

4.2.4. Flex Field Groups 

The flex field group definition can be used to restrict the use of a group of flex fields 
for a given row in the master table. 
In that case, a dynamic PL/SQL unit, configured for this group definition, is 
evaluated to decide whether the group of flex fields can be set. 

This evaluation takes place:  

• When selecting from the REF_EWE_VW view (for example in the flex field 
maintenance screen (ZRG7205F)) 

• When inserting flex field values for the given master table (for example 
through PL/SQL or web services). 

Note: 

• This is a much more restrictive filter than the flex field scope (which allows 
the flex field to be set and allows its use in a given context). 

• The dynamic PL/SQL code can access the columns of the master row 
through tbl_rec.<column_name>. 

• Since the evaluation of the PL/SQLdefinition is done dynamically, a later 
evaluation may be more restrictive. In that case previously defined flex fields 
will still apply. 

The flex field group definition is also used to display the flex fields in a group in 
ZRG7205F. 

4.3. Flex field definition 
Screens: 

• ZRG7027F – Maintaining Entity Flex Fields 

• ZRG7019F – Flex Field 

• ZRG7206F – Flex field Group 

Typically you would start with ZRG7027F: 

Custom Development - Flex fields 21 
 



  

 
Figure 7: Maintain Entity Flex Fields 

4.3.1. Candidate tables for flex fields 

Run the following query which will list all tables for which flex fields can be defined 
by their English view name: 

select english_name, name from alg#tables_  
where flex_fields_ind = 'J' order by 1; 

4.3.2. Allowed values 

You may specify the criteria for the value of a flex field, for example using ranges 
(lower + upper boundary) or allowed values (low value + description). 

If you do not specify any allowed values, any valid value for the given data type is 
acceptable. 

 
Figure 8: Specify allowed values 

Custom Development - Flex fields 22 
 



  

4.3.3. Time-valid flex fields 

If you define a flex field to be time-valid, you should also specify the overlap scenario 
(automatic, permitted, non-permitted). 

 
Do not confuse the validity of the flex field value with the validity of the flex field 
definition. 

4.3.4. Multi-value flex fields 

A multi-value flex field is used to hold a set (or array) of values valid at the same 
point in time.   

For example, for registering multiple parameters when registering details to connect 
with an interface. 

4.3.5. Key Reference 

The flex field value refers to a record in another table.  

Use ‘List of Values’ to select a LOV query to present the runtime user with a LOV 
screen from which to select the FK reference. 

Think about setting ‘cascade delete’: 

• N : the deletion process for the parent of the key reference will only succeed 
if there are no flex field values referencing to it. 

• Y : the deletion process for the parent will remove the flex field values 
referencing to it.   

You may want the context menu to start the List Of Values Definitions Screen 
(SYS1152F):  

 
Figure 9: Set up a list of values 

4.4. Flex field maintenance 
Flex fields for the current generic implementation are maintained with ZRG7205F 
which is invoked through the CTRL-SHIFT-F2  key combination: 

Custom Development - Flex fields 23 
 



  

 
Figure 10: Entering values for Entity Flex Fields 

Custom Development - Flex fields 24 
 



  

5. Dynamic PLSQL 
OHI Back Office’s support for dynamic PL/SQL is a powerful mechanism which 
allows the customer to add customer-specific code to the core OHI Back Office 
product. 

OHI Back Office has defined several ‘hooks’ in OHI Back Office where custom code 
can be added e.g. for: 

• Data entry validation 

• Address entry and formatting 

• Trigger conditions for business event framework 

• Core processes such as claims processing, policy collection and payment 
processing. 

Apart from adding a high level of flexibility to the customer our support of dynamic 
PL/SQL  helps to keep the amount of code in the standard product under control.  

5.1. Hooks for PL/SQL code 
OHI Back Office has defined several ‘hooks’ in OHI Back Office where custom code 
can be added: 

• Column value validation 

• Commission calculation 

• Claims Processing 

• Policy Creation 

• Policy Collection 

• Population Register Check 

• XML Processing 

• Address Entry 

• Address Display 

• Trigger conditions for the business event framework 

• Payment Processing 

•  .. 

It is expected that this list will grow in time. 

5.2. Dynamic PLSQL Definition 
The process of adding dynamic PL/SQL boils down to this: 

• Select the hook or ‘scope’ where you want to insert custom code. 

• Create the custom code in the format required by the ‘subtype’ associated 
with the scope.  

• Extend the application to specific tables or columns if you are adding a 
column validation. 

• After testing, revise the debug level. 

Custom Development - Dynamic PLSQL 25 
 



  

5.2.1. Setup 

The PLSQL definition is maintained in the screen “Dynamic PL/SQL Definition” 
(SYS1139F) 

 
Figure 11: Dynamic PL/SQL definition 

In addition to the online help for the SYS1139F screen, note: 

• When making changes, ensure that ‘Active’ is unchecked. 

• The upper part of the screen is used to define the custom PL/SQL code and 
in which context (scope/subtype) it is used. 

• Make sure that the ‘name’ and ‘explanation’ clarify the purpose of your 
custom code. 

• The ‘body’ attribute is initialized with sample PL/SQL code when you select 
the scope for the first time. 

• The attribute ‘column bound type’ as well as the ‘tables’ and ‘columns’ tabs 
in the bottom part of the screen are meaningful only if you have selected the 
‘column bound’ scope, ie. if you are going to validate database column 
values. 

5.2.2. Scope and subtype 

Dynamic PL/SQL is executed at runtime by the OHI Back Office code. 

The ‘scope’ defines WHEN the PL/SQL code is executed. 

The ‘subtype’ defines HOW the PL/SQL code should look like, i.e. the input and 
output parameters. 

The scope and the sub type of a scope together constitute a Dynamic PL/SQL Usage 
Type or ‘usage type’ for short.  

You cannot create new usage types, but you can query the predefined usage types in 
the SYS1138F screen (Dynamic PL/SQL Usage Type). 

Custom Development - Dynamic PLSQL 26 
 



  

The SYS1138F screen is particularly useful to find the possible bind variables and 
output types. 

 
Figure 12: Dynamic PL/SQL Usage Type 

 
 

Note:  bind variables 
Some pieces of dynamic PL/SQL are defined to use bind variables. If you 
want to omit a bind variable from your code, OHI will fail to bind a value to 
your code at runtime and abort with an error. This means that the bind 
variable must be in the code, even if it is just in comments. 

Please find a more detailed list with hooks in ‘Appendix F – Dynamic PL/SQL 
Types’. 

5.3. Column bound checks 
Column-bound checks are executed when inserting, updating or updating records.  

Many of these column-bound checks have been implemented by OHI Back Office, so 
you will only need to create additional checks. 

Examples of column-bound checks: 

• Syntax check of dynamic PL/SQL code 

• Check whether an IBAN number is valid 

• Validate that the end date of a record must be at least 14 days after the start 
date. 

• .. 

A column-bound check evaluates to ‘true’ or ‘false’. There is no ‘somewhat true’. 
If all column values for a given row are evaluated to ‘true’,  the DML operation 
(insert, update, delete) will continue. 
If one or more checks evaluate to ‘false’ the DML operation will abort and the error 
message defined for the failed column check will be shown.  

Custom Development - Dynamic PLSQL 27 
 



  

Note that a single column-bound check can be applied to more than one table, 
provided that each column is of the same type and name as the column in your 
custom PL/SQL code. 

5.3.1. Single column checks 

A single column bound check uses one column to check. A typical example of a single 
column bound check is the validation of a format mask for the given column. 
  
Let’s use the following example in which a telephone number must always begin 
with a “+” sign. The telephone number is stored with a relation, so it is a check on a 
column in the relation screen. If the telephone number does not start with a “+” an 
error will be presented to the user. 

5.3.1.1. Error message definition 

Custom error messages must be defined using the screen “System Messages” (Menu 
option: System / Management / General / System Messages”), as shown in Figure x. 

We will not discuss message creation here in depth, but will only mention a few 
points:  

• Custom messages can have any code, but it is good practice to start them 
with the code “SVS”. Although not enforced for messages most of the custom 
code(s) in OHI must start with SVS. 

• Custom messages must belong to the subsystem “External batches”. 

 
Figure 13: shows the definition of an error message for our example. 

5.3.1.2. PL/SQL definition 

Next step is creating the Dynamic PL/SQL definition. This is done in four steps: 

1. Create a Dynamic PL/SQL definition. This means we need to choose a Name 
(or Code), a Description, the Scope (“column bound” in this case), a Column 
Bound Type (“Single-Column” in this case) and the System Message that we 
defined in the previous paragraph.  
 
Note that the Active check box must be unchecked. The reason for this is that 
the record must be saved before we can add Tables and Columns in the lower 
section. But saving the record with the Active flag checked will cause OHI to 

Custom Development - Dynamic PLSQL 28 
 



  

check the syntax of the PL/SQL code which needs a reference to the tables 
and columns, which in turn have not been added yet. (See Figure 14). 
 

 
 
Figure 14:  step of creation of a Column Bound check. 

2. Add the tables and columns in the lower block, in the “single column” tab. In 
our case this means that we have to provide the Relations table and two 
columns, because there are two telephone numbers that can be stored in the 
Relations table. 
 
Currently only the Dutch table and column names are accepted as input.  
In our example we only need to check the value upon insertion or update of 
the telephone number, so only the Insert and Update check boxes are 
checked. See Figure 15. 
 

 
 

Figure 15: Adding table and columns to PL/SQL definition. 
 

3. Create the actual PL/SQL. See below for the code for our example. 
 
 -- declaration section  
-- bind variable: :COLUMN_VALUE 
   l_retval boolean := true; 
begin 
  -- body section 
  if :COLUMN_VALUE is not null 
  then 
    l_retval := substr(:COLUMN_VALUE,1,1) = '+'; 

Custom Development - Dynamic PLSQL 29 
 



  

  end if; 
  return l_retval; 
end; 
 
Note: 

a. The code can use three variables: 
 
 The bind variable - :COLUMN_VALUE, which contains the new 
value of the column.  
 
The variables OLD_REC and NEW_REC which contain the old and 
new record for the same row. When inserting, the OLD_REC 
contains only null values.  When deleting, NEW_REC is empty. Only 
in case of an update do both OLD_REC and NEW_REC have values. 

b. The code must return a boolean value. If the new value passes the test 
TRUE must be returned, in which case the new value will be 
committed to the database (if no other error occurs!). If FALSE is 
returned the message provided in the Dynamic PL/SQL definition 
will be displayed to the user, and the new value will not be 
committed to the database. 

c. :COLUMN_VALUE is a read-only value. You cannot change this to fix 
a problem. 

d. Be aware of NULL values. When activated the column bound check is 
performed always regardless whether the column has a value or not, 
or whether it changed or not. Hence the check on the NULL value in 
the code in Figure x. 

4.  Activate the Dynamic PL/SQL (Figure x). 
 

 
Figure 16: Activating the dynamic PL/SQL definition. 

5.3.2. Multi column checks 

A multi column bound check uses more than one column for its check, but is in all 
regards similar to a single column bound check.  
 
Let’s use the following example: an organization must have a web site. An 
organization is stored in the same Relations table as a regular person. There is, 
however, a column indicating whether a relation is an organization or a person. This 
column needs to be checked together with the field for the URL. 

5.3.2.1. Message definition 

Just as for the single column check we need an appropriate error message. Figure 17 
shows our message. Again we have the code of the message start with SVS. 

  

Custom Development - Dynamic PLSQL 30 
 



  

Figure 17: Error message for multi column bound check example. 

5.3.2.2. PL/SQL Definition 

The PL/SQL definition differs in only one field with a single column bound check. 
The Column Bound Type must be set to Multi-Column. See Figure 18. 

Again we need to make sure that the check is not activated yet, in order to prevent 
OHI from checking the PL/SQL code syntax. 

The message we provide is the one from the previous paragraph. 

 
Figure 18: Dynamic PL/SQL definition for Multi Column Bound Check. 

Next is the selection of tables and columns, on the second tab in the bottom of the 
screen (Figure 19). The table name must be provided in Dutch, as must the column 
names. The table is RBH_RELATIES and the columns we are interested in are 
SUB_TYPE and URL. 

 
Figure 19: Table and column definitions for multi column bound checks. 

Now for the PL/SQL code. This is shown in Figure x. Note that it is not needed to 
check new_rec.sub_type for a null value as this field is mandatory in OHI. If the 
sub_type is equal to ‘O’, which means the relation is an organization, the return value 
is determined by checking the URL column for null. If it is not null a url has been 
provided for the organization and true will be returned, otherwise false. 

Note that the bind variable :COLUMN_VALUE cannot be used as OHI does not 
know which of the specified column values should be used. Only the variables 
OLD_REC and NEW_REC can be used. But even though the bind variable cannot be 
used it still must be mentioned in the code. So put it in the comments (which, by the 
way, is done by default). 

Example code 

-- declaration section  
-- bind variable: :COLUMN_VALUE 
   l_retval boolean := true; 
begin 

Custom Development - Dynamic PLSQL 31 
 



  

  -- body section 
  if new_rec.sub_type = 'O' 
  then 
    l_retval := new_rec.url is not null; 
  end if; 
  return l_retval; 
end; 
 
After saving the dynamic PL/SQL definition can be activated in the same way as for 
single column bound checks, see Figure 16. 

5.3.3. Activating and deactivating column bound checks 

When unexpected code errors occur on screen, these may be related to the use of 
column bound checks, both single and multi column. To quickly determine whether 
such a column bound check is responsible for the error there are two ways: 

1. Deactivate the dynamic PL/SQL definition. This will prevent the execution of 
the check. The disadvantage of this approach is that the check will be 
disabled for all tables and columns it is applied to. 

2. Use the screen “Tables” (Menu option: System / Management / General / 
Tables, tab: Column bound checks). This enables the developer to selectively 
disable the check for a single column bound check. Furthermore, the table 
provides an overview over all checks that were put in place on a table. Figure 
20 shows the list of custom checks that were defined for the relations table. 

 
Figure 20: Listing of all column bound checks for table RBH_RELATIES. 

5.4. Writing custom code 
It is advisable to create a PL/SQL package in your custom schema and limit your 
Dynamic PL/SQL code to packaged function calls. 

Example: 

Suppose you have currently your Dynamic PL/SQL body like this: 
-- :COLUMN_VALUE  
  l_retval boolean := true;  
begin  
  if api_rbh_util_pck.get_rns_vrij_tekstveld(pi_rsn_id => new_rec.rsn_id) = 
'IBAN CONTROLE' 
  then  

Custom Development - Dynamic PLSQL 32 
 



  

    l_retval := api_rbh_util_pck.check_iban(pi_rekeninggegeven => 
new_rec.rekeninggegeven);  
  end if;  
  
  return l_retval;  
end; 

You can create your own validation function and limit the dynamic PL/SQL code to: 
-- :COLUMN_VALUE – reference to bind variable 
begin 
  return custom.validate_pck.check_iban(pi_erk => new_rec); 
end; 

The advantages: 

• You can keep all your custom validations in one place. 

• It is easier to move your code from one environment to another.  

• You can use your favorite tools to develop and test your code. 

Custom Development - Dynamic PLSQL 33 
 



  

6. Business Event Framework 
With the Business Event Framework you can define customer-specific events and 
event handlers. 
These events can be time-based, triggered by a change or created by your custom-
designed detection mechanism. 

The handlers can be run near real-time or in batch processing mode and are 
implemented through custom PL/SQL code. 

6.1. Overview 
Specific hooks are required in the OHI Back Office application for customers to 
develop custom event handling using the OHI Back Office database. The Business 
Event Framework can be used to signal specific events in the OHI Back Office 
application. These events can arise from creating or modifying data or by the passing 
of time. The framework is also used to define how an event should be handled. 

Since the majority of custom development for OHI Back Office implementations is 
PL/SQL based, the framework is implemented in PL/SQL. 

The Business Event Framework provides two options both for signaling and 
responding. These options can be combined for each business event to create the 
most suitable environment for handling the event. 

An example of how the Business Event Framework can be used is when a member 
supplies the health care payer with their change of address after relocating. The 
health care payer has an integrated customer relationship management (CRM) 
system and uses the change of address event to automatically trigger an update to the 
CRM database. 

6.2. Signaling Events 
The Business Event Framework offers two options for signaling events and both are 
described in this section. 

6.2.1. Detected Events 

Detected events are events that are signaled by querying the data in one or more 
tables. A decision to register the event is based on the results of the query. The event 
is registered based on the data that was found at the moment the data was queried. 
This moment can be controlled by scheduling Process Business Events (SYS5001S) 
batch (see Starting Business Event). 

For example, a relation record is updated at 08.30, 11.15 and 14.50 hours. When the 
batch is scheduled to run at 15.00, the data from the last modification (14.50) will be 
evaluated. The data for the record as at 09.00 or 12.00 cannot be signaled by a 
detected event. 

Detected events are best used in situations where the intermediate modifications are 
not important or where the passing of time is the trigger for the event. 

6.2.2. Triggered Events 

Triggered events are signaled the moment they occur. Using database triggers an 
event is evaluated and registered. Unlike the detected events, intermediate changes 
can be signaled. In the relation record example, which is updated at 08.30, 11.15 and 
14.50, a triggered event can be registered for all three updates. 

Events can be signaled separately based how the data is modified, for example insert, 
update or delete. 

Custom Development - Business Event Framework 34 
 



  

Triggered events are used to signal data modifications immediately. 

 

6.3. Responding to Events 
The Business Event Framework offers two options for responding to events and both 
are described in this section. 

6.3.1. Batch Response 

To process signaled events in a batch the signaled events must be stored in an OHI 
Back Office table. The moment the event is signaled, either through a detected event 
or a triggered event, the event is saved to table ALG#EVENTS. The Process Business 
Events (SYS5001S) batch handles the events. The batch can be scheduled to run at the 
correct intervals (see Starting Business Event). 

 
 

Note: No duplicate events 

Duplicate events will not be stored when saving events to a table. In case a 
relation or policy is signaled multiple times for the same event, the table will 
hold only one occurrence of the event. If the same data manipulation type is 
performed twice for an event on a table and record, only the first will result in 
an event. 

After successful processing the event, the same event could be detected again. 

6.3.2. Near Real Time 

When an event should be signaled the moment it occurs, events can be stored to a 
queue. An OHI Back Office background process is continuously listening to the 
queue. Events are taken from the queue and processed immediately. 

 
 

Note:  Queued events are processed by a separate process (with its own 
database session). This may result in locking issues if the handler and the 
originating process both want to update the same record. 

6.4. Combining Signaling and Response Types 
Four definitions result from the two types of events together with two storage 
options. This section describes the situations where each definition can be used. 

 
Figure 21: Flows of an event process 

Custom Development - Business Event Framework 35 
 



  

6.4.1. Detected Events, Storing to a Table 

This event definition is suitable when there is no urgency to act on specific events and 
individual data changes are not important. For example, there is an event that 
produces an overview of all policies modified in the previous week. A record of all 
the individual modifications does not have to be kept. A check on the last date the 
record was updated is sufficient in this example. 

Detected events are also the only events able to act on situations not triggered by data 
manipulation but the passing of time. For example, a member reaches 18 years of age 
or a record having a specific status for a number of days. Triggered events are not 
suitable for this since no data is changed and therefore no database trigger will signal 
the event. 

6.4.2.  Triggered Events, Storing to a Table 

This event definition is suitable when the action of the event has no urgency but the 
individual data modifications are important. For example, a triggered event can be 
used when an event should be registered when a policy reaches the final status. A 
detected event is less suitable for this because at the time the detection batch is 
running the policy could have been updated to another status. This results in the 
policy being skipped by the detection run and no event is registered. 

6.4.3. Detected Events, Storing to the Queue 

Although technically possible, this type of event is not practical. Detected events are 
processed in the same batch run. There is not much difference between the moment 
an event is registered and the moment it is processed. Therefore processing these 
events using the queue will not provide much of an advantage. The queue will have a 
large load to process when lots of events are detected. 

When multiple occurrences of the same event are required storing to the queue 
should also be used. 

6.4.4. Triggered Events, Storing to the Queue 

This event type is best suited when individual updates are important and immediate 
action is required. For example, the member should receive a welcome email when 
their policy reaches the final status. 

 

6.5. Framework Components 
This chapter describes all the components within the OHI Back Office application for 
setup, registering and responding to business events. 

6.5.1. Event Definition 

The Event Definition (SYS1149F) window is used for defining an event in OHI Back 
Office. 

Custom Development - Business Event Framework 36 
 



  

 
Figure 22: Maintain Event Definitions 

Data in Event definitions 

Field Description 
  

Name  The name of the event, maximum length 30 characters.  
Description  The description of the event, maximum length 100 characters.  
Type  How the event is signaled, allowable values Detected and Triggered.  
Detector  The (package) procedure for registering this event. Only applicable for 

detected events.  
Last Detection  The timestamp of the last processing run. Only applicable for detected 

events.  
Storage  Where are signaled events stored, allowed values Table and Queue.  
Status  The status of a processing run. Only applicable for detected events.  
Run Number  The last number of the processing run. Only applicable for detected events.  
Begin Handler  The (package) procedure for the begin handler. Only applicable for events 

with storage set to Table.  
Handler  The (package) procedure for handling the event. Applicable for all events.  
End Handler  The (package) procedure for the end handler. Only applicable for events 

with storage set to Table.  
Active  Indicates whether the event is active or not.  
Purge Interval Success  The purge interval for events that have been successfully processed. Only 

applicable for events with storage set to Table.  
Purge Interval Failure  The purge interval for events that have failed. Only applicable for events 

with storage set to Table.  

 

Data in Tables 

Field Description 
  

Table  Holds the name of the table the event is designed for.  
Insert  Indicates whether events should be signaled when a new record in this 

table is created.  
Evaluation function  The name of the dynamic PL/SQL definition used to evaluate the event. 

Only allowed in case the Insert indication is checked.  
Update  Indicates whether events should be signaled when a record in this table is 

updated.  
Evaluation function  The name of the dynamic PL/SQL definition used to evaluate the event. 

Only allowed in case the Update indication is checked.  
Delete  Indication whether events should be signaled when a record in this table is 

deleted.  

Custom Development - Business Event Framework 37 
 



  

Field Description 
  

Evaluation function  The name of the dynamic PL/SQL definition used to evaluate the event. 
Only allowed in case the Delete indication is checked.  

The event tables block is only applicable for triggered events. 

The event can be fine-tuned with the evaluation functions to only signal the desired 
situation. See the next section for a more detailed description of these functions. 

6.5.2. Dynamic PLSQL Definition 

The Dynamic PLSQL Definition (SYS1139F) window is used to maintain the dynamic 
PLSQL functions that are used to fine-tune the registering of a specific event. 

 
Figure 23: Add a trigger condition for an event 

The Scope must be set to Event for PL/SQL definitions used within the Business 
Event Framework. This window is also used to maintain PL/SQL definitions used 
elsewhere within OHI Back Office. Only the fields applicable for the Business Event 
Framework are described. 

 

Field Description 
  

Name  The name of the PL/SQL definition, maximum length 20 characters.  
Description  The description of the PL/SQL definition, maximum length 50 characters.  
Scope  Should be set to Event to be able to select the definition in the Event Definition 

(SYS1149F) window.  
Body  The actual code of the PL/SQL definition. The event will be registered when the 

function returns a true value.  

The PLSQL Body contains the actual code used to evaluate whether an event should 
be registered. The code must return a Boolean value to indicate this. In case true is 
returned the event will be signaled. In case the function returns false, it will not. Two 
record variables are available for the old and new values (old_rec and new_rec). 

Custom Development - Business Event Framework 38 
 



  

These can be used to evaluate a specific situation, for instance only signal events in 
case the new status is equal to D.  

The two tabs are not applicable for the Business Event Framework. 

 
 

Note:  ‘Active’ indication  

When committing a dynamic PL/SQL definition with the indication ‘Active’ 
checked, OHI Back Office will try to validate the code of the Body section. 
When creating a new PL/SQL definition the table that will be used is 
unknown to OHI Back Office. Therefore the ‘Active’ indication should not be 
checked when first creating the PL/SQL definition. After linking it to a table in 
the Event Definition (SYS1149F) window it can be turned on.   

6.5.3. Event Definition Package 

The ALG_EVENT_INTERFACE_PCK can be used to define event definitions. This 
offers the same functionality as the OHI Back Office Event Definition window with 
the exception of defining the tables for a Triggered event. The functionality for 
installing and de-installing an event is available for backward compatibility. 

The package also holds procedures that are used for event handling and several 
utilities. 

See Appendix IV for a full description of the parameters for each procedure and 
function in the package. 

 Event Definition 

• Install: Available as a procedure and a function returning the ID of the event. 
This can be used for the event definition. When the given event already exists 
(based on the name of the event) it will update the event definition, otherwise 
a new event definition will be registered with the values supplied. 

• De-install: This procedure is available twice. Once to remove an event with a 
given name and once to remove it based on the ID of the event definition. 

 Event Handling 

• Add_event Three procedures are available to store an event to the table. One 
receives the name of the event as a parameter, the second the ID of the event 
definition. The parameter code holds the identification of the record in OHI 
Back Office that caused the event. The third procedure stores an event to the 
Business Event Framework queue. It receives one parameter of type: 
 
ALG_EDE_PAYLOAD_TP 
 
To be able to change the storage clause of an event from table to queue the 
code should be a string with the following format: 
table_id##record_id##dml_type, where dml_type can be ‘I’(Insert), ‘U’ 
(Update) or ‘D’ (Delete) 

• purge_all_events Available twice, based on the name of the event definition 
and based on the ID of the event definition. It will remove all events and 
event errors for the given event. 

• reapply_failed_event Available twice, based on the name of the event 
definition and based on the ID of the event definition. It will change the 
status of a event stored in the table from ‘Failed’ to ‘New’. This procedure 
should be called from within the detector plugin. Providing a specific event 

Custom Development - Business Event Framework 39 
 



  

will reset only the provided event for the given event definition. When no 
event is provided all failed events for the given definition will be reset. 

Utility 

• type_payload_to_code Can be used to transform object type 
alg_ede_payload_tp to the code parameter of the add_event procedure. 

• code_payload_to_type Available twice, used to convert the code parameter 
of the add_event procedure to object type alg_ede_payload_tp. Available 
with the name and the ID of the event definition. 

6.5.4. Event Handling Package 

Events are handled by the framework package ALG_EVENT_PCK. This is an internal 
OHI Back Office package and is therefore not available for custom development. It 
contains the same functions and procedures as the ALG_EVENT_INTERFACE_PCK. 

6.5.5. Process Business Event Batch 

The Process Business Events (SYS5001S) batch has been developed to support starting 
the Business Event Framework by the OHI Back Office batch scheduler. The batch is 
needed to signal Detected events and to process events which are stored in the 
ALG#EVENTS table. The batch can be scheduled using OHI Back Office Submit 
Batch Request (SYSS003F) window. It has the name of the event as a parameter 
allowing for different run intervals per defined event. 

6.5.6. Background Process 

Background process OHI_EVENT_JOB_x is used to handle events with storage set to 
queue. The process is started and stopped simultaneously with the OHI Back Office 
batch process. 

The process monitors the Business Event Framework queue. Events are taken from 
the queue and processed using the ALG_EVENT_PCK package. 

With the Back Office parameter ‘No. of processes for event framework’ the number of 
processes listing to the event queue can be set. 

 

6.6. Developing Your Own Business Events 
First the business event should be analyzed to determine the best suited registering 
and handling types. Triggered events are best suited when the event signals data 
manipulation and it is important to signal each individual action. Detected events can 
be used for end-of-day status reports or for events not caused by data changes but by 
the passing of time. 

The storage of the event should be set to Queue when, as soon as the event is 
signaled, immediate action is required. It can be set to Table when the action to the 
event is less urgent and can occur at a scheduled times. 

6.6.1. Detected events 

In the Event Definition window set the Type to Detected. The Detector field is 
mandatory for this type of event. 

6.6.1.1. Detector 

The field holds the (package) procedure, which is used to register the business event. 
The procedure receives the timestamp of the last time it was started and the name of 

Custom Development - Business Event Framework 40 
 



  

the business event. The Business Event Framework will commit after executing the 
detector. 

For example where an event should count the number of policies, the detector in the 
event definition could be: 

my_event_pck.detect_nr_policies 

The procedure definition could look like: 

procedure detect_nr_policies 
( pi_event_name in alg_event_definities.naam%type 
, pi_start_date in date 
); 

Each event occurrence can be stored using the add_event procedure in the 
ALG_EVENT_INTERFACE_PCK package. 

6.6.1.2. Adding events 

Detected events should either be saved to the ALG#EVENTS table or to the Business 
Event Framework queue. This can be done by calling the add_event procedure in the 
ALG_EVENT_INTERFACE_PCK package. 

Dependent on the storage clause for the event the appropriate add_event can be 
called. For events stored in the table this would be: 

alg_event_interface_pck.add_event 
( pi_name in alg_event_definities.naam%type 
, pi_code in alg#events.code 
, pi_date in alg#events.master_date%type 
); 

Or:  
alg_event_interface_pck.add_event 
( pi_ede_id in alg_event_definities.id%type 
, pi_code in alg#events.code 
, pi_date in alg#events.master_date%type 
); 

For events stored in the queue this is: 

alg_event_interface_pck.add_event 
( pi_ede_payload in alg_ede_payload_tp 
); 

If the storage type of an event is modified in the Event Definition (SYS1149F) window 
the add_event will continue to work and the received parameters will be converted to 
match the storage type. Although it can have a (minor) impact on performance it is 
not necessary to change the detector-program code. 

6.6.1.3. Example 

The following code shows an example of an event to signal all new relations created 
since the last time this event was processed. 

procedure my_detector 
( pi_event_name in alg_event_definities.naam%type 
, pi_start_date in date 
) is 
  cursor c_events 
  ( vi_date_from date 
  ) is 
    select rel.id 
    from rbh_relaties rel 
    where rel.creatie_moment >= c_events.vi_date_from 
  ; 

Custom Development - Business Event Framework 41 
 



  

  l_tab_id alg_tabellen.id%type; 
  l_dml_type varchar2(1) := 'I'; 
begin 
  -- Determine table id 
  l_tab_id := rbh_rel_capi.g_tab_id; 
  for r_rec in c_events ( pi_start_date ) 
  loop 
    -- Store to a table 
    alg_event_interface_pck.add_event 
    ( pi_name => pi_event_name 
    , pi_code => r_rec.id 
    ); 
  end loop; 
end my_detector; 

6.6.2. Triggered events 

In the Event Definition window set the Type to Triggered. For events of this type the 
Detector field is not available since the event is signaled using OHI Back Office 
database triggers. 

6.6.2.1. Tables 

The second block is only available for triggered events. The table of the event can be 
defined and the action on the table can be set using the Insert, Update or Delete 
indications. 

6.6.2.2. Evaluation 

Evaluation functions are available for defining additional criteria for registering an 
event. These functions can be set up in the Dynamic PL/SQL Definition window. 

6.6.2.3. Example 

A triggered event can be set up to signal all policies that reach a final status. Since 
policies cannot be created with the final status, the only action to monitor is update. 
To prevent registering other updates to the policy the following dynamic PL/SQL 
can be created, the scope of the dynamic PL/SQL should be set to Event. The body 
can hold: 

-- declaration section: define cursors and variables here 
  l_retval boolean := true; 
begin 
-- body section: 
-- return boolean value -- 
return new_rec.status = 'D'  
   and new_rec.status <> old_rec.status; 
end; 

Since this PL/SQL definition will be linked to the VER_POLISSEN table in the event 
definition window the new_rec and old_rec variables will hold all fields available in 
that table. 

6.6.3. Batch Handled Events 

Events with storage clause set to table will be handled by the Process Business Events 
batch. 

6.6.3.1. Begin Handler 

The (package) procedure defined for the begin handler in the event definition is 
called once. This can be used for example to open a file for writing log messages. The 
framework will commit after executing the begin handler. 

Custom Development - Business Event Framework 42 
 



  

The (package) procedure receives the following parameters: 

• The name of the event 

• The run number of the process 

• The date of the last processed run 

my_event_pck.begin_handler 
( pi_name in varchar2 
, pi_run_nr in number 
, pi_date_detection in date 
); 

6.6.3.2. Handler 

The handler is called for each instance of the event. The framework will commit after 
executing the handler. The handler (package) procedure receives the following 
parameters: 

• The code of the event 

• The date that was passed when registering the event 

• The date the event was registered 

my_event_pck.handler 
( pi_name in varchar2 
, pi_date_source in date 
, pi_date_detection in date 
); 

6.6.3.3. End handler 

The end handler is called once after processing all events. For example this can be 
used to save information about the process run such as the total number of events 
processed, the number of failed events or close the file opened in the begin handler. 
The framework will commit after executing the end handler. 

my_event_pck.end_handler 
( pi_name in varchar2 
, pi_run_nr in number 
, pi_date_detection in date 
); 

6.6.3.4. Purge intervals 

Purging old event records is a batch function. It is possible to set up the intervals in 
the Event Definition window. It is possible to have different values for failed events 
since investigation may take longer than successful events. 

The batch will remove records from the ALG#EVENTS tables at the end of the run. 

6.6.4. Near Real Time Events 

Events stored to a queue are processed by a continuous Background Process. Since 
each event is processed individually no begin handler or end handler is available for 
these events. Only the handler is applicable. 

6.6.4.1. Handler 

The OHI Back Office event package will take an event from the queue and call the 
handler defined in Event Definition window. The (package) procedure for this 
handler receives an object as parameter. This object contains the following 
information. 

• The ID of the event definition 

Custom Development - Business Event Framework 43 
 



  

• The ID of the table the signaled record is stored in 

• The record ID 

• The DML type that caused the event 

The handler can be defined as: 

my_event_pck.queued_event_handler 
( pi_load in alg_ede_payload_tp 
); 

6.6.5. Custom Plug-ins 

The event tables and event framework are pre-installed in the OHI Back Office 
database. The custom plug-ins for the detector and handlers of the events must be 
implemented in a separate database schema. 

The following is assumed for the purpose of this installation procedure: 

• The event definition is called my_event 

• The custom components are combined in a single package called 
my_event_pck 

• The my_event_pck.install procedure creates and configures an event 
definition for my_event 

• The OHI components are owned by database schema ozg_owner 

• The database schema for bespoke software is called my_schema 

• The business event framework is started by the ozg_batch schema. 

The installation consists of the following steps: 

• Ensure that public synonyms and access privileges are created for the 
ozg_owner components that are accessed by the my_event_pck package (you 
may only use the objects granted by 
$OZG_ADMIN/OZG_DIRECT.grt.<sid> sqlplus script for this) 

• Ensure that my_schema has execute privileges for 
ozg_owner.alg_event_interface_pck (should be taken care of in the previous 
step but in previous releases the grant was missing) 

• Compile the package specification and package body for my_event_pck 
under the database schema my_schema 

• Create a public synonym my_event_interface_pck for 
my_schema.my_event_pck 

• Grant execute privileges for my_schema.my_event_pck to the ozg_owner 
schema. 

• Run my_event_interface_pck.install under my_schema to install the 
definition for my_event or set up the event definition using the Event 
Definition window. 

6.7. Processing Business Events 
Processing business events is dependent of the business event definition. Detected 
events are registered by the Process Business Events batch. Triggered events are 
started by database triggers. 

Custom Development - Business Event Framework 44 
 



  

6.7.1. Process Business Events Batch 

The Process Business Events (SYS5001S) batch has been developed to start up a 
business event processing run. The batch can be scheduled using the Submit Batch 
Request (SYSS003F) window. 

 
Figure 24: Sample of scheduling Process Business Events (SYS5001S) batch 

In the screenshot business event ‘AZR_MOD_PRT’ will start every hour. 

The batch serves two purposes and is only needed for these types of events: 

1. Signal Detected events. For detected events the program code defined by the 
Detector is executed once. See Detector for a more detailed description of the 
detector. This step is skipped for triggered events. 

2. Process events stored in a table. Events stored in the table are processed. First 
the specified Begin Handler is called once. Per event the Handler is called to 
process the event. After processing all events the End Handler is called once. 
After the end handler the batch purges old events. This step is skipped for 
events stored in the queue. 

 
 

Note:  Detection and Processing in one run 

For Detected events storing the events to a table and registering and 
processing the events happen in the same processing run. 

6.7.2. Queued Events 

Events stored to the queue are processed by a dedicated process monitoring the 
business event queue. Events are taken from the queue and the handler is called to 
process the event. 

The dedicated process is started and stopped together with the OHI Back Office batch 
scheduler. 

6.8. Examples 
This chapter contains examples of how to set up events to be handled by the Business 
Event Framework. 

Custom Development - Business Event Framework 45 
 



  

6.8.1. Detected Event, Store to a Table 

This example shows an event to signal all relations that have been updated since the 
last time the event was run. It writes the identification of the relations to a file. Since 
there is no need to act on individual updates and no immediate action is required 
upon the change, a detected event storing to a table will suffice. 

6.8.1.1. Event definition 

 
Figure 25: Example event definition named OHI_DEMO_D_T 

Example OHI_DEMO_D_T is a detected event (Type is set to Detected) and it will 
store events to the ALG#EVENTS table (Storage set to Table). 

6.8.1.2. Detector 

The detector of the event in this example is 
OHI_EVENT_DEMO_PCK.DETECTOR_T. Typically the code of a detector consists of 
a query to select the records to be registered and a call the 
ALG_EVENT_INTERFACE_PCK package to save the identification of the selected 
records: 

procedure detector_t 
( pi_name      in varchar2 
, pi_date_from in date 
) is 
begin 
  for l_rec in ( select rel.id 
                 ,      rel.laatste_mutatie_moment 
                 from   rbh_relaties rel 
                 where  rel.laatste_mutatie_moment >= 
pi_date_from 
               ) 
  loop 
    alg_event_interface_pck.add_event 
    (pi_name => pi_name 
    ,pi_code => to_char(l_rec.id) 
    ,pi_date => l_rec.laatste_mutatie_moment 
    ); 
  end loop; 
end detector_t; 

 

Custom Development - Business Event Framework 46 
 



  

6.8.1.3. Begin handler 

The begin handler OHI_EVENT_DEMO_PCK.START_HANDLER_T in this example 
is used to open the file for writing the identifications of the relations. 

procedure start_handler_t 
( pi_name           in varchar2 
, pi_run_nr         in number 
, pi_date_detection in date 
) is 
  l_filename     varchar2(100); 
  l_location     varchar2(100) := 'OZG_TMP'; 
  l_max_linesize constant binary_integer := 32767; 
begin 
  l_filename := i_name|| 
                '_'|| 
                to_char(pi_run_nr)|| 
                '_'|| 
                to_char(pi_date_detection,'YYYYMMDDHH24MISS')|| 
                '.txt'; 
  a_file_handle := utl_file.fopen 
                   ( l_location 
                   , l_filename 
                   , 'w' 
                   , l_max_linesize 
                   ); 
end start_handler_t; 

 

6.8.1.4. Handler 

The handler OHI_EVENT_DEMO_PCK.HANDLER_T of the example writes the data 
to the opened file. The code parameter contains the identification of the relation 
record. It could be used to select more detailed information from the relation record. 
For instance who and when the last modification was made. Since this is a detected 
event the data would however only reflect the last modification. 

procedure handler_t 
( pi_code           in varchar2 
, pi_date_source    in date 
, pi_date_detection in date 
) is 
begin 
  utl_file.put_line 
  ( a_file_handle 
  , pi_code|| 
    ' -> '|| 
    to_char(pi_date_detection,'YYYY-MM-DD HH24:MI:SS')|| 
    ' -> '|| 
    to_char(pi_date_source,'YYYY-MM-DD HH24:MI:SS') 
  ); 
end handler_t; 

 

6.8.1.5. End handler 

The end handler OHI_EVENT_DEMO_PCK.END_HANDLER_T in this example is used 
to close the file. 

procedure end_handler_t 
( pi_name           in varchar2 
, pi_run_nr         in number 
, pi_date_detection in date 

Custom Development - Business Event Framework 47 
 



  

) is 
begin 
  if utl_file.is_open(a_file_handle) 
  then 
    utl_file.fclose(a_file_handle); 
  end if; 
end end_handler_t; 

 

6.8.1.6. Scheduling the event 

All steps for the detected event have finished. The event can be scheduled to run 
using Submit Batch Request (SYSS003F) window. 

 
Figure 26: Submit a batch request to run event OHI_DEMO_D_T 

6.8.2. Triggered Event, Store to the Queue 

This example shows how to define an event that will be registered when a new 
record is created. 

6.8.2.1. Evaluation Function 

First step is creating the evaluation function which will be used in the event 
definition. OHI Back Office will validate the entered PL/SQL code when it is saved. 
Since the PL/SQL Definition has not yet been linked to a table this validation will fail. 
Therefore the indicator ‘Active’ should not be checked. In that case the PL/SQL code 
is disabled and will not be validated. 

Custom Development - Business Event Framework 48 
 



  

 
Figure 27: Event evaluation function activation 

The complete Body of the PL/SQL definition is not visible, it contains: 

  cursor c_rel 
  ( v_rel_nr in rbh_relaties.nr%type 
  ) is 
    select rel.n_geslacht gender 
    from   rbh_relaties rel 
    where  rel.nr = c_rel.v_rel_nr 
  ; 
  l_rel_gender rbh_relaties.n_geslacht%type; 
  l_retval     boolean := true; 
begin 
  open  c_rel( v_rel_nr => new_rec.rel_nr ); 
  fetch c_rel 
  into  l_rel_gender; 
  close c_rel; 
  l_retval :=     l_rel_gender = 1  
              and new_rec.code = '40' 
  return l_retval; 
end; 

The example shows that when a record is created for a male relation and the code is 
equal to ‘40’ the function will return true and an event will be registered. 

Since it is linked to the RBH_DERDEN_CODERINGEN table in the event definition, 
the new_rec will hold all the new values of the record. It can be used for more 
sophisticated evaluation than this example. 

6.8.2.2. Event definition 

The screenshot shows example event definition named OHI_DEMO_T_Q. It is a 
triggered event (Type is set to Triggered) and it will store events to Business Event 
Framework queue (Storage set to Queue). This type of event will be signaled by 
database triggers so a separate Detector is not needed. A begin handler and end 
handler are not required when the storage clause is set to Queue as the events will be 
handled. 

Custom Development - Business Event Framework 49 
 



  

 
Figure 28: Add a table and evaluation function to a triggered event 

The event will be signaled by the creation of a record in the 
RBH_DERDEN_CODERINGEN table when the dynamic PL/SQL definition 
EVT_CK_40 returns true. 

 
 

Note:  ‘Active’ indication 

After the PL/SQL Definition has been linked to a table the ‘Active’ indication 
in the Dynamic PL/SQL Definition window must be checked to validate and 
enable the code. 

6.8.2.3. Handler 

The events are handled by OHI_EVENT_DEMO_PCK.HANDLER_Q. It takes the 
identification of the record from the object type it receives as parameter and sends an 
email to notify another department for instance. 

procedure handler_q 
( pi_load in alg_ede_payload_tp 
) is 
  l_conn utl_smtp.connection; 
  l_code varchar2(100); 
   
  procedure send_header 
  ( pi_name   in varchar2 
  , pi_header in varchar2 
  ) is 
  begin 
    ult_smtp.write_data 
    ( l_conn 
    , pi_name || ': '|| 
      pi_header || UTL_TCP.CRLF 
    ); 
  end send_header; 
begin 
  l_code := alg_event_interface_pck.type_payload_to_code 
            ( pi_ede_payload => pi_load 
            ); 

  l_conn := utl_smtp.open_connection('smtpsrv.mycompany.com'); 
  utl_smtp.helo( l_conn, 'mycompany.com'); 

Custom Development - Business Event Framework 50 
 



  

  utl_smtp.mail( l_conn, 'sender@mycompany.com'); 
  utl_smtp.rcpt( l_conn, 'recipient@mycompany.com'); 
  utl_smtp.open_data(l_conn); 
 
  send_header('From', '”Sender” <sender@mycompany.com>'); 
  send_header('To', '”Recipient” <recipient@mycompany.com>'); 
  send_header('Subject', 'Relation created'); 
   
  utl_smtp.write_date( l_conn 
                     , UTL_TCP.CRLF || 
                       'Relation with code '||l_code|| 
                       ' has been created. ' 
                     ); 
  utl_smtp.close_data( l_conn ); 
  utl_smtp.quit( l_conn ); 
end; 

 

Custom Development - Business Event Framework 51 
 



  

7. Custom Batch Scripts 
OHI Back Office allows you to create your own batch processing scripts and run 
them with the standard batch scheduler. Batches can be purely PL/SQL or they can 
be Perl or OS Shell scripts. They can be scheduled to run immediately or at a 
predetermined time. 

For PL/SQL batches you are advised to use the built-in OHI Back Office script 
generator to generate a framework to control the execution of your custom code, 
especially if you expect to be processing large data volumes.  The generated 
framework helps to process large volumes in manageable chunks and provide the 
same kind of feedback as the standard scripts. 

7.1. Approach 
A custom batch script is handled in the same way as a standard script. 

This means that: 

• Most batch scripts process a large amount of data, and report results, often 
after performing DML operations on the selected data. 

• A custom batch script must be registered as a script 

• A custom batch script is run under the BATCH account 

• While creating a request for a custom batch script, the end user may enter 
script parameters. 

• At runtime the custom batch script may evaluate the script parameters. 

• When a custom batch script completes or aborts it must register its end state 
in the batch requests table. 

• A script must be created to export the batch definition from the test database 
to the production database. 

The typical flow for a batch script looks like this: 

PROCESS ROWSELECT ROWS

CHECK 
REQUEST 

PARAMETERS

 
Figure 29: Typical process for a batch script 

7.1.1. Create or generate? 

Although you may want to manually create all code for your batch script, you are 
strongly advised to start with a template created by the generator built into OHI Back 
Office and modify this to your needs. 

The generator (SYS_GEN_PCK) creates a framework to process the data in small 
chunks with multiple parallel processes. 

Custom Development - Custom Batch Scripts 52 
 



  

The framework helps you to define the data to be processed by defining the selection 
of the data, the so called process units, and process the data chunk by chunk which 
usually is record by record over multiple threads. 

Note that the custom batch scripts based on these templates provide the same 
throughput statistics as standard batch scripts created by OHI Back Office. 

The generator supports the following batch types:  

• Bulk DML processing batches with support for parallel execution 

• CSV file export 

• CSV file import 

• XML file import 

7.2. Batch user 
Note that the batch scheduler connects to the OHI Back Office database with the 
database user BATCH. This is not the user who created the batch request!  

The user BATCH must be able to access all database objects needed to process the 
batch request.  
The database objects for custom batches reside in a custom schema, for example 
SVS_OWNER. The BATCH user must be granted access to these database objects.  

 

7.3. Registration 

7.3.1. Batch 

The definition of a batch is maintained in the screen “Batch” (SYS1008F). In this 
screen you can define or check the main batch characteristics, like the batch code, 
whether it can spawn parallel processes, whether it is a PL/SQL, Perl or OS shell 
script etc. 

 
Figure 30: Batch definition 

Also the batch parameters can be defined or checked here. Parameter definitions can 
be shared between different batches, which means that if one is to use an already 
defined parameter, care has to be taken that the definition of the parameter is not 
inadvertently changed. 

Custom Development - Custom Batch Scripts 53 
 



  

Parameters are always grouped in parameter sets. E.g. the location of a file might be 
specified by two grouped parameters: the directory and the file name. Most of the 
time, however, a parameter set will contain just one parameter. 

Parameter sets have a few checks. If provided the values may only be chosen from a 
list of values, maybe with additional restrictions. They can also be checked using a 
parameter set validation. 

Also a list of values can be set to be used. The restriction on the list of values depends 
on the particular list of values. It is best to look for the use of an actual list of values to 
see how it is used and how it can be restricted. Besides the predefined lists of values 
also a dynamic list of values can be used. 

 
 

Note:  The LOV for the dynamic value list is SYS2019L and the LOV restriction 
should contain the name of the dynamic value list. The column field at last 
contains the sequence number of the column in the dynamic value list.. 

 

Figure 31 shows the screen for defining parameter set validations. It defines a 
validation as it might be used for selecting relations that are physical persons.  

 
Figure 31: Defining a validation on the type of relation. 

Relations in OHI can be either persons or organizations. Both are stored in the same 
table and are distinguished based on the sub type. The parameter set validation here 
is called SVSPERS. The checkmark tells OHI that it is based on a table, which is given 
in the field Table. To make sure that the relation is a person (the actual validation) a 
where clause is specified, that checks the sub_type which must be ‘N’ for (natural) 
persons. 

7.3.2. Dynamic List of values 

In the screen “List of Values” (SYS1152F) a custom list of values can be defined. This 
list of values uses tables of OHI Back Office. If the use of a custom table is required 

Custom Development - Custom Batch Scripts 54 
 



  

than this table should be used in a “System view” (SYS4001F). This system view can 
be used as the “table” of the list of values. 

 
 

Note:  The table or (system) view used as table source in the list of values 
should also have one numeric column named ID. It is not required to use the 
ID column as a column in the list of values. 

7.3.3. Batch Settings 

For batches created with SYS_GEN_PCK a couple of settings are imported. 

• Code and description: The code is the identifier of the batch and should start 
with SVS 

• Batch type: defines the type of batch and should be 

o     SQL*Plus for standard mutating batches and CSV report files 

o     CSV for incoming CSV files 

o     XML for incoming XML files 

• New Standard? Indicator must be activated 

• Required parameters: Some batch scripts do have a set of required 
parameters.  See SYS_GEN_PCK for the required set of parameters per type 
of script. 

• The value of the field “Name in script” at the parameter set component 
should be the same as used in the definition of the parameter in the call to 
SYS_GEN_PCK 

7.4. Export script definition 
The definition of a batch as defined in the screen “Batch” (SYS1008F) can be extracted 
to an installation script that can be used to install this definition in other OHI 
environments, e.g. test or production. 

The procedure write_module_ins_file in SYS_GEN_PCK takes care of this. 
Sys_gen_pck.write_module_ins_file 
( pi_module        => 'SVS0001S' 
, pi_file_location => 'OZG_TMP' 
); 

The file will be placed in the database directory provided at the parameter 
pi_file_location and is called the provided module code (pi_module) with the 
extension .ins. 

Besides the batch module also the system message will be present in the file as long 
as the message(s) starts with the module code. 

7.5. Generator: Bulk Processing Batch - Overview 
The procedure SYS_GEN_PCK.BATCH_SOURCES can be used to generate pre-
defined templates for batch processing.  

The generation results in a couple of files 

• MODULE.sql 

• MODULE.ins 

• MODULE_PCK.pck 

• MODULE_CUST_PCK.pck 

Custom Development - Custom Batch Scripts 55 
 



  

7.5.1. MODULE.sql 

The sql file will be called by the batch scheduler when a batch request is created for 
this module. It will start the batch by executing the run procedure in the 
MODULE_PCK package. This file should not be changed and be placed in the sql 
directory of the application server of the environment. 

7.5.2. MODULE.ins 

The ins file contains data that is used by some system messages and should be 
executed in a sql session in the database. 

7.5.3. MODULE_PCK.pck 

This package contains all the generic code to run a batch. This file should not be 
modified and should be compiled in the database. 

This package takes care of the initialization of the batch, the transaction and 
exception handling and makes callouts the MODULE_CUST_PCK package. 

7.5.4. MODULE_CUST_PCK.pck 

This package contains all the custom code of the batch and is the one source that must 
be provided with the required business logic for this batch. 

7.5.5. Basic PL/SQL Batch flow 

A PL/SQL batch generated with SYS_GEN_PCK typically follows the flow as shown 
in figure x 

 

Initialize

Check parameters

Before processing 
hook

Query units

Start process(es)

After processing 
hook

End request

Before processing 
units

Get next unit

Initialize

After processing 
units

Monitor process(es)

Get unit

Process unit

Process succes Process failure

End request

 
Figure 32: batch process flow 

Custom Development - Custom Batch Scripts 56 
 



  

The green blocks contain the batch specific code and have to be implemented. These 
units are present in the MODULE_CUST_PCK. The red units contain the generic 
batch code and are present in the MODULE_PCK. 

7.6. Generator: Bulk Processing Batch - Details 

7.6.1. Define the batch definition 

A (bulk) processing batch first selects rows for processing and then processes each 
row: 

PROCESS ROWSELECT ROWS

CHECK 
REQUEST 

PARAMETERS

 
Figure 33: Select and process rows 

Before designing the batch you should decide: 

What operation should be performed on which data? 

The 'which data' determines your selection criteria, the 'what operation' determines 
the processing. 

Note: 

• The simplest version is a selection of rows on which you directly perform the 
DML. 

• It may also be that the DML action triggers an update to a master record. In 
that case you would like to handle all the details for the same master in the 
same session/sub-process to avoid locking issues. In this second case, you 
also have to ask whether you want that is committed when all details are 
processed or that you want to commit per detail itself. 

• A variation on this is that you want to perform two different actions with the 
same master. The second action is determined by the result of the first action. 

• A variant of 1 and 2 together is a cursor which is executed per row from the 
selection. 

 

Custom Development - Custom Batch Scripts 57 
 



  

Selection unit Selection unit = 
processing unit?

One processing unit?

N

Base module
(selection and 
processing)

Y
<LEVEL>

BASE

Processing based on the 
same (master) row?

2-n 
selection 

unit
N

Base module
(selection only)

Commit on selected row?

N

Y

<LEVEL>
LOOKUP

Y

N

Lookup module
(processing)

Y

Lookup module
(processing)

2-n
 

Figure 34: Determine the batch definition setup  

The batch template consists of several parts in one call. An example call is available in 
the package specification of the package SYS_GEN_PCK. 

The different parts are: 

• The batch module 

• 0-n batch parameters 

• 1-n batch groups 

1-n batch units per group 

7.6.1.1. Define the batch module 

The batch is the actual module as defined in the screen “Batch” (SYS1008F). 
sys_gen_pck.batch_sources 
( pi_file_location       => 'OZG_TMP' 
, pi_module_name         => 'SVS0001S' 
, pi_ind_count_processed => true 
, pi_parameter_tab       => sys_gen_pck.batch_parameter_tabtype 
                            ( sys_gen_pck.batch_parameter_rec 
                              ( pi_name => . . . 

Provide a valid database directory for the parameter pi_file_location. This is the 
directory the files will be created in. The parameter pi_module_name contains the 
code of the batch module as defined in the screen “Batch”.  With the parameter 
pi_ind_count_processed set to true a couple of system messages will be created to 
report when the batch request is completed about: 

• the total amount of workunits 

• the amount of successful processed units  

• the amount of work units with an error 

7.6.1.2. Define the batch parameters 

The batch parameters are used to influence the behavior of the batch based on the 
input provided by the user when creating the batch request.  

Each batch parameter should be added to the call of BATCH_SOURCES 
sys_gen_pck.batch_parameter_rec 
( pi_name           => 'P_MER_CODE' 
, pi_table_name     => 'VER#POLICIES_' 
, pi_column_name    => 'MER_CODE' 
, pi_data_type      => 'VARCHAR2' 

Custom Development - Custom Batch Scripts 58 
 



  

, pi_data_length    => 5 
, pi_data_precision => 0 
, pi_comment        => 'The code of the brand' 
) 

The parameter pi_name must have the same name/code as defined in the screen 
“Batch” in the field “Name in script”. 

7.6.1.3. Define the processing unit(s) 

The processing unit has two components, the “group” defines the selection and the 
“unit “ defines the processing unit. 
, pi_group_tab => sys_gen_pck.batch_group_tabtype 
                  ( sys_gen_pck.batch_group_rec 
                    ( pi_table_name      => 'VER#POLICIES_' 
        , pi_alias           => 'POL' 
        , pi_label           => 'Policies' 
        , pi_identification  => 'NUM' 
        , pi_level           => 'BASE' 
        , pi_alias_fu        => 'POL' 
        , pi_unit_tab        => sys_gen_pck.batch_unit_tabtype 

The group implements the selection part of the batch. The provided table and column 
are used to create a basic query which can be adjusted later on. The alias (parameter 
pi_alias) is used to identify the group throughout the batch and should be unique 
within the batch. The parameter pi_level can have one of the two values “BASE” or 
“LOOKUP” and is used for the transaction level. The label (pi_label) is used in the 
messages created by the batch to report on the processed amount of work. 

The parameter pi_alias_fu needs some explanation, sometimes the workload defined 
in either the group or the unit is not the actual workload to be reported, e.g. when the 
batch uses a grouping of data to be processed. A function will be provided to record 
the actual amount of data per group of unit when applicable. To use this option the 
alias of the parameter pi_alias_fu should be a different one than the alias of the group 
of unit.  

 
 

Note:  The group expects a unique single numeric value per processing unit, 
e.g. a record id, a policy number or a relation  number (parameter 
pi_identification). 

 
, pi_unit_tab => sys_gen_pck.batch_unit_tabtype 
                     ( sys_gen_pck.batch_unit_rec 
                               ( pi_table_name     => 'VER#POLICIES_' 
                       , pi_alias                  => 'POL' 
                       , pi_label                 => 'Policies' 
                       , pi_alias_fu            => 'POL' 
                       ) 
                              ) 

The unit implements the worker process. It can be the same unit as defined at the 
group or another unit when within the defined group a more detailed processing is 
needed. If a unit is based on another alias (pi_alias) a second query will be generated 
to transform the selected record from the group into a more detailed record structure 
for the unit. 

 
 

Note:  One batch can exists of one or more groups and each group exists of one 
or more units. Although one group with one unit is the most common type. 

Custom Development - Custom Batch Scripts 59 
 



  

7.6.2. Implementation 

When the sources are generated the actual implementation can be done. The 
<MODULE>_CUST_PCK custom package is the only source that needs to be 
modified for the implementation. 

The custom package has several functions and procedures. For "_xyz" the alias you 
defined for your batch group or unit should be substituted when reading this. 

 
 

Note:  Don’t add transaction code like rollback or commit in your custom 
implementation as well as a “when others” exception handler as this is dealt 
by the main package. 

See Figure 32 for a schematic flow of the different functions and procedures and their 
place in the process 

7.6.2.1. Function get_revision 

This function determines the revision of the batch as it is shown in the .out file 
produced by the batch request.  

It is called once in the main batch request 

7.6.2.2. Function parameters_ok 

In the function parameters_ok the script parameters can be validated. 

Using batch request validation is preferred over implementing validation here as it 
prevents the batch request from being submitted. If any value is not correct a 
message can be written and the boolean value "false" is returned. This causes the 
batch to stop and the status "Error" is recorded. 

It is called once in the main batch request 

7.6.2.3. procedure before_processing 

The purpose of this procedure is to execute specific actions once when the batch is 
started. For example initialization or creating a master record to be referred to by 
details that are generated during batch processing. 

It is called once in the main batch request 

7.6.2.4. function query_xyz 

The query_<alias> function prepares the processing units. 

The parameter pi_volgnr in the procedure alg_batch_pck.ins_svh_bulk determines 
the order in which the units are processed. 

If more than one subprocess is started process (1) will handle row 1 and process 2 
will handle row 2 etc. 

 
 

Note:  Implementing an 'DUP_VAL_ON_INDEX' exception handler will not 
work as the inserts in the table will be done in bulk and the last set will be 
done post processing the function 'query_xyz'. When, in the exceptional case 
you need to trap the 'DUP_VAL_ON_INDEX' please add a call at the start of 
the function to 'ALG_BATCH_PCK.SET_IGNORE_DUPVAL'.   

It is called once in the main batch request 

 

Custom Development - Custom Batch Scripts 60 
 



  

7.6.2.5. procedure after_processing 

The purpose of this procedure is to execute specific actions once when the batch is 
finished. For example cleaning up temporary data, generating a message based on 
the manual counts, etc. 

It is called once in the main batch request 

7.6.2.6. cursor a_c_xyz 

In the package specification a cursor can be defined. This will be the case if a 
Structure is provided with a different unit compared to the group. 

The query_xyz function queries the rows from the base usage and during processing 
a single row is presented to this cursor (v_record_id). 

Using this cursor the selection from the lookup usage can be performed. Each row 
from the resulting set will be presented to the process_xyz procedure. The order of 
the query result is the order of the rows processed by the process_xyz procedure. 

It is called once per record from the group selection in the subprocess batch request. 

7.6.2.7. procedure update_shg 

The procedure update_shg is meant to customize recording of the number of records 
that was processed successfully or with errors using manual messages.  

Using the procedure alg_batch_pck.toevoegen_shg the message is initialized. 
Updating the number of processed records must be coded manually. 

An update is chosen because otherwise too many records would be created causing 
trouble when purging batch requests. 

Updating is done using an autonomous transaction and does not influence 
processing. 

 

7.6.2.8. procedure before_process_xyz 

The purpose of this procedure is to execute specific actions once when the group is 
started. For example initialization of a package variable. 

It is called once per group in the subprocess batch request 

 

7.6.2.9. procedure after_process_xyz 

The purpose of this procedure is to execute specific actions once when the group is 
finished. For example cleaning up temporary data, generating a message based on 
the manual counts, etc.  

It is called once per group in the subprocess batch request 

 

7.6.2.10. procedure process_success_xyz 

This procedure can be used to write a message saying that processing was successful 
or to maintain a specific counter. 

Sometimes an indicator needs to be updated when the transaction was successful. 
Such an action can be performed here too. 

It is called once per record (unit) in the subprocess batch request 

Custom Development - Custom Batch Scripts 61 
 



  

7.6.2.11. procedure process_error_xyz 

This procedure can be used to write a message saying that processing was not 
successful or to maintain a specific counter. 

Transactions are not allowed. Recording or updating manual messages is allowed 
provided procedure update_shg en alg_batch_pck.toevoegen_shg are used. These 
messages are processed using an autonomous transaction. 

It is called once per record in the subprocess batch request in case of an error. 

 

7.6.2.12. procedure process_xyz 

The procedure process_<alias> carries out the 'real' processing per processing unit. 

In the process_<alias> procedure each row can be validated if it is suited for 
processing. If it is not, an error message can be written. In that case processing the 
row will be stopped. 

It is called once per record (unit) in the subprocess batch request 

7.6.3. Messages 

Per record an system message can be created for informational purpose or to record 
an error. In case of an error the current record is skipped from being processed and 
the next record will be processed. 

An example error message will look like 
sys_message_handling_pck.give_error 
( pi_msg_code          => 'SVS0001S004' 
, pi_msg_default_text  => 'Record #1# does not comply to the specifications.' 
, pi_msg_parmvalue_tab => sys_message_handling_pck.msg_parmvalue_tabtype 
     ( sys_message_handling_pck.parmvalue 
    ( pi_sequence_nr  => 1 
    , pi_value_number => pi_record_id 
    ) 
     , sys_message_handling_pck.parmvalue 
    ( pi_sequence_nr  => 2 
    , pi_value_char   => 'CHECK001A' 
    ) 
     ) 
, pi_raise_exception   => true 
, pi_table_id          => 123 
, pi_record_id         => pi_record_id 
); 

Be sure to register the system message in the screen “System messages” (SYS1002F). 
Also note that each parameter value cannot exceed a length of 120 characters and the 
total length of a message with the parameters substituted cannot exceed a length of 
2000 characters. 

7.7. Generator: CSV Export Batch 
The procedure sys_gen_pck.export_csv_sources creates a template for a script to 
write the result of a query into a CSV (comma separated value) file. 
sys_gen_pck.export_csv_sources 
( pi_file_location       => 'OZG_TMP' 
, pi_module_name         => 'SVS0004R' 
, pi_schema_owner        => 'SVS_OWNER' 
, pi_ind_utf8            => 'Y' 
, pi_table_name          => 'RBH#RELATIONS_' 
, pi_alias               => 'REL' 
, pi_label               => 'Relations' 
, pi_item_tab            => sys_gen_pck.report_item_tabtype 

With the parameter pi_ind_utf8 set the output will use the UTF-8 characterset. 
Otherwise the characterset of the database will be used. 

Custom Development - Custom Batch Scripts 62 
 



  

sys_gen_pck.report_item_tabtype 
( sys_gen_pck.report_item_rec 
  ( pi_name           => 'NUM' 
  , pi_table_name     => 'RBH#RELATIONS_' 
  , pi_column_name    => 'NUM' 
  , pi_data_type      => 'NUMBER' 
  , pi_data_length    => 10  
  , pi_data_precision => 0 
  , pi_prompt         => 'relation number' 
  ) 
, sys_gen_pck.report_item_rec 
  ( pi_name           => 'NAME' 
  , pi_table_name     => 'RBH#RELATIONS_' 

The report_item_rec function defines each column in the CSV report. 

 

7.8. Generator:  CSV Import Batch 
The procedure sys_gen_pck.import_csv_sources creates a template to import and 
process a CSV file into the OHI Back Office database. 

A maximum of twenty columns can be processed. The process_row procedure 
processes row by row the CSV file.  

7.9. Generator:  XML Import batch 
The procedure sys_gen_pck.import_xml_sources creates a template to import and 
process a XML file. It uses XQuery to process the data stored in an XMLTYPE 
datatype. 

7.10. Other output scripts 
It is possible to write your own scripts without using the template generator. 

 

Custom Development - Custom Batch Scripts 63 
 



  

8. HTTP Links 
HTTP Links allow users of the OHI Back Office GUI Application to view or process 
related data in an external application. For each HTTP link you can configure a HTTP 
request template to the target application and the OHI screens which will display the 
HTTP link. 

 
Figure 35: HTTP link buttons 

At runtime the HTTP link will open an extra browser window to send a HTTP 
request to the target application, substituting placeholders with runtime values 
derived from the current OHI screen. 

Note that the target application must be an HTTP application! 

Up to nine HTTP links can be defined per screen. 

8.1. Configuration 
Configuration of an HTTP link in OHI is done using two configuration screens, one 
for defining the URL and its parameters (HTTP-Link) and one for assigning a link to 
a menu button for an OHI screen (Module HTTP-Links). 

8.1.1. HTTP-Link 

The HTTP-Link screen (Menu option: System / Management / General / HTTP-
Link) is used to define the URL and an optional tooltip and or icon (see Figure x: 
HTTP Link definition screen). 

To specify a link the following parameters must be supplied: 

Parameter Description Mandatory 
   

Description The name of the link. This name will be used in the next screen 
to identify the link 

Yes 

Tooltip A short name for the link that will be shown when the user 
hovers with the mouse over the button 

No 

Icon An alternative icon No 
URL The URL to link to. When using parameters some syntax rules 

apply.  
Yes 

Active An indicator for activating or deactivating the link.  Yes 

 

If the Active indicator is not checked the link is disabled in any screen where it is 
used. If the Active indicator is checked it depends on the Active indicator for the 
particular screen where the link is used whether or not the link is enabled. 

When using parameters some extra syntax rules are applicable for the URL. See the 
description for the next screen below for the correct formatting of the URL. 

Custom Development - HTTP Links 64 
 



  

 
Figure 36: Link definition screen 

It is recommended to specify a tooltip. If no tooltip is specified an ugly “N/A” 
appears when hovering over the button, instead of a useful description (See Figure 
37), especially when no alternative icon is used. When more than one link is specified 
without custom icons or tooltips one needs to know by heart what the correct button 
is. 

 
Figure 37: without and with tooltip 

Adding an alternative icon for a link is little bit more laborious. It I described in the 
“Installation, Configuration and DBA Manual”. 

8.1.2. Module HTTP-Links 

In the previous screen the HTTP-link was defined, but the link was not attached to a 
screen. This attachment is done through the screen “Module HTTP-Links” 

(Menu option: System / Management / General / Module HTTP-Links). The screen 
is shown in Figure 38 

Custom Development - HTTP Links 65 
 



  

. 

Figure 38: Linking HTTP-links to screens and defining variables 

In the upper block of the screen the actual linking between an HTTP-Link and a 
screen (module) is done. These parameters are described in the table below. There 
should be no surprises. 

Parameter Description Mandatory? 
   

Module The code of the module. Yes 
Button A number from 1 to ?? Yes 
Description The name of the link as specified in the screen HTTP-Link Yes 
Active Indicator enabling or disabling the link for the Module. Yes 

 

The Lower block of the screen is the really interesting part. Here the possible 
parameters are defined that can be used in the HTTP request when clicking on the 
button for the link. Every row in the lower block specifies a single parameter for the 
selected link in the upper block: 

 

Parameter Description Mandatory? 
   

Module Variable The Dutch name of the variable in the OHI screen Yes 
Request Variable The request variable as it occurs in the URL specified in the 

screen HTTP-Link 
No 

Parameter The request parameter as it appears in the URL Yes 
Format An optional formatting step before the data is inserted in the 

URL. 
No 

 

8.1.3. Example 

Let’s use an (admittedly unrealistic) example: suppose we set up an HTTP-Link as in 
Figure x. It is a link to a well known website and we will use it to search for videos 
that a relation registered in OHI has posted. Who knows, maybe he has posted videos 
of him or herself participating in dangerous sports? 

Custom Development - HTTP Links 66 
 



  

 
Figure 39: Example HTTP Link 

We will then attach the link to the Maintain Relation screen, which is module 
REL1001F. Also the family name and first name(s) have to be included in the URL. 
Figure 39 shows how to do it. 

 
Figure 40: Example set up for a link 

Note that when specifying the URL and the request variables the angular brackets (< 
and >) are not optional. 

Now when entering a saving a relation with, say, last name Doe and first name John 
and clicking on the button that holds our link then the values will be substituted: 
http://www.youtube.com/results?search_query=<first_name>%20<last_name> 

becomes: 
http://www.youtube.com/results?search_query=John%20Doe 

The browser will link to this URL in a new page. 

Custom Development - HTTP Links 67 
 



  

9. OHI Back Office Business Services 
The OHI Back Office Business Services add integration facilities for a service oriented 
environment. The business services are part of a service layer for retrieving and 
updating core OHI Back Office data. 
The ‘Find’ and ‘Get’ services are used to retrieve data from OHI Back Office. ‘Write’ 
services are used to store data in the OHI Back Office database.   

OHI BO Business Services are implemented as PL/SQL services and made available 
through synchronous SOAP/HTTP web services. 

 
Figure 41: OHI Business Services 

9.1. Architecture 
The OHI Back Office Business Services share the following characteristics: 

• Segmentation into ‘Find’, ‘Get’, ‘Write’ and miscellaneous services to keep 
the complexity of each service within bounds. 

• Each business service is implemented as a web service operation. 

• Each web service is based on a WSDL which references versioned XSD files. 

• Each web service is implemented as a  SOAP 1.1/HTTP, document-style web 
service. 

• Each business service is atomic and stateless (‘fire and forget’) 

• Each ‘Write’ business service must be idempotent, which means that the 
response and effect must be the same for different calls with the same data. 

• The actual work is carried by a PL/SQL ‘service’.  The web service acts as an 
interface between the caller and the PL/SQL service. 

A more complete set of characteristics can be found in Doc[2]. 

9.2. Implementation 
The starting point is a WSDL designed by OHI Back Office. The WSDL defines each 
operation with its inbound and outbound messages. The messages and underlying 

Custom Development - OHI Back Office Business Services 68 
 



  

XSD types are defined in versioned XSD files. Where appropriate, XSD types use 
enumerations to translate OHI domain values to meaningful values. 

SVL web services consist of the following components: 

• A Java web service (WAR file) based on a WSDL designed by OHI Back 
Office. For each WSDL operation, the Java web service maps the inbound and 
outbound objects to SQL types which are processed by;  

• a PL/SQL web service package which contains the business logic to 
transform and process the;  

• SQL types which hold the content of the inbound and outbound objects. 

9.2.1. Difference with C2B architecture 

The C2B services were generated from data derived from Designer to call existing 
PL/SQL packages. Although this ‘inside out approach’ lent itself well for 100% code 
generation, the resulting web services were rigid and required application developers 
to transform objects to the format used internally by OHI and vice versa. 

The SVL services are designed ‘outside in’ which means that every component can be 
derived to an XSD definition. This allows greater flexibility and contributes to a more 
user friendly XML content. 

9.2.2. The PL/SQL Service 

The development of a business service starts with an XSD. Once the XSD for a web 
service is completed, the SQL type for holding element data are generated as well the 
Java classes to process XML content to object instances and vice versa. 

The PL/SQL part of the web service is handled by a ‘PL/SQL service’ : a PL/SQL 
package which implements  each business service as a packaged function, using SQL 
types for processing content. 

9.3. Find, Get and Write Services 
There are four types of service: 

• Find services 
These are typically for retrieving a list of objects to select from: many objects, 
few details. 

• Get services 
A ‘get’ service returns a single object with detailed information. 

• Write services 
Write an object to the OHI Back Office database. 

• Miscellaneous services 
Examples: a service to get the next free relation number or a service which 
acts as a ‘service consumer’  to an external web service. 

With these different service types it should be possible to build a client application 
and keep the complexity of each service within bounds. 

9.4. Service consumers 
A small number of the OHI Back Office business services are called ‘service 
consumers’, which means that these services are used as a proxy for calling external 
services. 
Examples: Vecozo service, procedure authorization. 

 

Custom Development - OHI Back Office Business Services 69 
 



  

9.5. Write Services 
The current, second-generation of write services supports idempotent behavior, 
selective updates and processes time-valid data. The first service of this new breed is 
the WriteRelation service. 

The existing first-generation ‘write’ services will be migrated to the new paradigm 
over time. 

9.5.1. Idempotent behavior 

‘Write’ services should have idempotent behavior to ensure that each subsequent call 
to a business service with the same data will return the same response and have the 
same effect as the first call. 

Note that this requirement does not apply for ‘Find’ and ‘Read’ services, because the 
contents of the data base may have changed between subsequent service calls. 

9.5.2. Selective updates 

‘Write’ services are used both for inserting and updating data into the OHI Back 
Office data base. When updating, ´write´ services support selective updates to allow 
the caller to send a partial message. The advantage is that the calling application only 
needs to know a subset of the data which can be processed by the business message. 
For example a self-service application only needs to have very little data to allow an 
end user to update his residential address. 

In the example below, the name and phone number are set for relation 1864856800: 

<v11:Person> 
  <v11:relationNumber>1864856800</v11:relationNumber> 
  <v11:name>Bakker</v11:name> 
  <v11:phoneNumber>06-51227410</v11:phoneNumber> 
</v11:Person> 

If we want to change the name, we can simply pass the new name:  

<v11:Person> 
  <v11:relationNumber>1864856800</v11:relationNumber> 
  <v11:name>Slager</v11:name> 
</v11:Person> 

We can also wipe the contents of a column, for example the phone number: 

 <v11:Person> 
  <v11:relationNumber>1864856800</v11:relationNumber> 
  <v11:phoneNumber></v11:phoneNumber> 
</v11:Person> 
 

9.5.2.1. ‘Zero’ update 

Leaving out a tag means that its related data is left untouched. This is the cornerstone 
for selective updates. 

9.5.2.2. Use xsi:nil to remove existing values 

With empty tags you can wipe lists and simple string values. If you want to wipe 
values which are enumerations or other data types, you should use the nil attribute, 
like below: 

<v11:startDate xsi:nil=”true”/> 

Note that the xsi namespace should refer to http://www.w3.org/2001/XMLSchema-
instance. 

Custom Development - OHI Back Office Business Services 70 
 



  

9.5.2.3. Lists 

Lists can have 0 or more elements which together are enclosed in a list-tag, like in the 
example below: 

<v11:Person> 
  <v11:relationNumber>1864856800</v11:relationNumber> 
  <v11:bankAccountList> 
    <v11:bankAccount> 
      <v11:accountNumber> 
        NL42RABO0111750768 
      </v11:accountNumber> 
      <v11:bankRelationNumber> 
        1525725800 
      </v11:bankRelationNumber> 
      <v11:bankAccountType>IBANAccount</v11:bankAccountType> 
      <v11:countryCode>NL</v11:countryCode> 
      <v11:currencyCode>EUR</v11:currencyCode> 
    </v11:bankAccount> 
  </v11:bankAccountList> 
</v11:Person> 

To support selective updates, lists are optional. If you do not want to update a list of 
details, just omit the list and its surrounding list tag: 

<v11:Person> 
  <v11:relationNumber>1527308300</v11:relationNumber> 
  <!--<v11:bankAccountList/> --> 
</v11:Person> 

Likewise , if you want to delete the list, use an empty list tag: 

<v11:Person> 
  <v11:relationNumber>1527308300</v11:relationNumber> 
  <v11:bankAccountList/> 
</v11:Person> 

 

 
 

Note: if you add a list to the request you must include all elements. You 
cannot add a list with a single element just to update the single element. In 
that case all other elements will be deleted. 

9.5.2.4. Time-valid lists 

Time-valid lists are used to create and update data with a start and end date, such as 
addresses, marital statuses etc. 

They share some characteristics with ordinary lists: 

• Time valid lists are optional: the list related data in the OHI Back Office 
database are not updated if you omit the list tag altogether. 

• All list-related data in the OHI Back Office are deleted if you specify an 
empty list tag. 

The difference is that you can use time-valid lists to update the current situation 
without removing past data.  

Consider the following example to register that Peter is no longer married since 1 
January 2013: 

<v11:maritalStatusList> 
  <v11:maritalStatus> 
    <v11:startDate>2013-01-01</v11:startDate> 
    <v11:maritalStatus> 

Custom Development - OHI Back Office Business Services 71 
 



  

     dissolved marriage / dissolved registered partnership 
    </v11:maritalStatus> 
  </v11:maritalStatus> 
</v11:maritalStatusList> 

This information is processed as follows: 

• The start date of 1 January 2013 is used as a reference date. 

• Peter’s previous marital status record (married) is ended by 31 December 
2012 

• Peter’s marital status records starting after the reference date are deleted (if 
they exist) 

• A new marital status record to indicate Peter’s current status is created with a 
start date of 1 January 2013.  

9.5.2.5. Segmented time-valid lists 

The mechanism described above is too coarse for processing time-valid information 
like addresses, since you may have different home and postal addresses at any point 
in time. 
This is solved with segmented time-valid lists: this means that the list is processed 
once for every segment, for example ‘address type’. 

Consider the following example where John’s home address is updated: 

<v11:addressList> 
  <v11:address> 
    <v11:startDate>2010-06-04</v11:startDate> 
    <v11:addressType>Home</v11:addressType> 
    <v11:street>Haverstraat</v11:street> 
    <v11:houseNumber>41</v11:houseNumber> 
    <v11:postalCode>3511NB</v11:postalCode> 
    <v11:countryCode>NL</v11:countryCode> 
  </v11:address> 
</v11:addressList> 

This information is processed as follows: 

• The start date of 4 June 2010 is used a reference date for John’s home 
addresses 

• John’s previous home address is ended at 3 June 2010 

• John’s home addresses starting after the reference date are deleted. 

• A new home address is registered starting 4 June 2010 

• John’s postal addresses remain untouched. 

We can update John’s home addresses and postal addresses in one go: 

 <v11:addressList> 
  <v11:address> 
    <v11:startDate>2010-06-04</v11:startDate> 
    <v11:addressType>Home</v11:addressType> 
    <v11:street>Haverstraat</v11:street> 
    <v11:houseNumber>41</v11:houseNumber> 
    <v11:postalCode>3511NB</v11:postalCode> 
    <v11:countryCode>NL</v11:countryCode> 
  </v11:address> 
  <v11:address> 
    <v11:startDate>2010-07-01</v11:startDate> 
    <v11:addressType>Postal</v11:addressType> 
    <v11:street>Postbus</v11:street> 

Custom Development - OHI Back Office Business Services 72 
 



  

    <v11:houseNumber>306</v11:houseNumber> 
    <v11:postalCode>3300AH</v11:postalCode> 
    <v11:countryCode>NL</v11:countryCode> 
  </v11:address> 
</v11:addressList> 

Note that an empty address list will delete all John’s addresses: 

<v11:addressList> 
</v11:addressList> 

 
 

Note: segmentation is not necessarily restricted to a single element (like 
address type in this case) 

 
 

Note: consult the functional specification to find out whether a time-valid list 
is segmented and which elements are used for segmentation. 

 

9.5.2.6. XSD types for Write services. 

When examining an XSD for a web service with ‘Write’ operations you will find that 
the complex types used by Write Services are prefixed with ‘PX’.  

You will also find that these complex types largely consist of optional elements. This 
is needed to support selective updates. 

There is a downside to this optionality: if you leave out many elements when 
entering new data, your inbound XML will still validate correctly against the XSD. 

However when sending the request, the OHI Back Office business rules come into 
play and raise exceptions if your data is incomplete or incorrect. 

It would be too complex to document which business rules you may encounter. 

Our advice for validating a client application using a ‘Write’ service would be to 
always include various tests with new data. 

9.6. Error Handling 
Two types of SOAP faults when running a web service operation: 

• Functional SOAP fault: indicates an error which occurred in the PL/SQL 
service. 
In many cases the functional SOAP fault will contain CDM Rule Frame error 
messages rather than error messages created specifically for the business 
services. 

• Technical SOAP fault: any other fault except a functional SOAP fault. 

 

 

Custom Development - OHI Back Office Business Services 73 
 



  

10. Custom Development Practices 
By giving you an ‘open database’, OHI Back Office gives you great freedom to 
develop your own code. 

With freedom comes responsibility. 

As we explained in the ‘Overview’ chapter, OHI Back Office is an ‘all in one’ engine 
to process claims and policies for health care payers. 

A badly written piece of custom code can slow down the core processes for which it 
is intended or even block the operation of other, unrelated processes. 

What follows here is a minimum of tips to prevent these risks. 

10.1. Create a custom schema 
You should create a custom schema because you are not allowed to connect to the 
OHI Back Office schema, let alone create your own database objects in the OHI Back 
Office schema.  

10.1.1. How many schema’s do you need? 

You may have multiple custom applications which interface with OHI Back Office, 
for example a self-service portal, custom batch processing scripts, and an interface 
which processes CRM data into OHI Back Office.  
Each of these applications may be created by a different team and have a different 
release schedule. 

In that case, a custom schema per application makes it easier to manage these 
different applications and split the post-installation work and testing efforts 
whenever a new OHI Back Office release is installed. 

10.2. Use an abstraction layer 
We cannot stop progress, so OHI Back Office will keep evolving with every new 
release. This means many smaller or larger changes to the OHI Back Office data 
model and PL/SQL packages. 

Adapting your custom code to the new release should be as little work as possible . 

Using an abstraction layer for your custom code helps you to reduce the amount of 
code and more importantly, the number of references to the OHI Back Office data 
model and PL/SQL functions.  

This is what your abstraction layer should do: 

• Make your code DRY 

• Encapsulate business logic with packaged procedures. 

• Create custom views to query OHI Back Office data. 

• Use the OHI Back Office TAPI’s for DML operations. 

• Call custom packaged functions from Dynamic PLSQL hooks 

10.2.1. Make your code DRY 

DRY means Don’t Repeat Yourself. It is all about replacing duplicate code with your 
own functions and function calls until you arrive at the minimum amount of code 
which can still be easily understood and maintained. This has nothing to do with 
OHI Back Office, it is just good programming practice. 

Custom Development - Custom Development Practices 74 
 



  

10.2.2. Encapsulate business logic with packaged procedures 

The purpose here is to reduce the amount of code which directly depends on OHI 
Back Office. 
If you have large chunks of custom PL/SQL code, split each chunk in ‘control’ code 
(the part which evaluates parameters etc.) and functional code (the part which does 
the processing). Put the processing part in one or more packaged procedures, so that 
your controlling code does not do much more than call packaged procedures. 
Now review your packaged procedures to separate business logic from DML logic  
(the code which refers directly to OHI Back Office database objects). Put the DML 
logic in packaged functions. 

Caveat: when defining parameters for your custom packaged functions, do not refer 
to the OHI Back Office tables to keep the dependency of OHI Back Office code to a 
minimum. 

10.2.3. Create custom views 

Whenever the OHI Back Office data model changes, it is much less work to revise a 
small number of views than to repair many individual queries, because views create 
another abstraction level. 

When defining these views it may be attractive to ‘stack’ views on top of each other 
and reach an even higher abstraction level. However, this may hurt the performance 
of your custom code.  

As soon as you need to improve the performance of your custom development code, 
replace ‘stacked’ views with individual views based directly on the OHI Back Office 
tables. 

10.2.4. Call custom packaged functions from Dynamic PLSQL hooks 

Create your own custom packaged procedures to be called by the Dynamic PLSQL 
hooks in OHI Back Office.  

10.3. Define your transactions 
The simplest definition of a transaction is ‘everything that happens between two 
commits’. 

A better definition (Wikipedia) is ‘A database transaction, by definition, must be 
atomic, consistent, isolated and durable (ACID)’.  In order to comply with this 
definition you should design your transactions as the smallest unit of work can be 
committed or rolled back.  

The notion of the smallest unit of work is important because the longer the duration 
of a transaction, the more tables and rows are locked which cannot be updated by 
other processes at the same time.  

The notion of a ‘unit’ of work is important as well: a well-designed transaction 
ensures that each time the same actions are performed. If a transaction is defined as a 
limited set of operations it is easier to debug and reduce side-effects. The limited set 
of operations also makes it easier to predict the duration of the transaction.  

General rules: 

• Long sessions will keep tables and rows locked and will hinder other 
processes. 

• Do not put transaction control statements in lower-level routines. 

• If you anticipate to process hundreds of thousands of rows within a single 
transaction it may be wise to create multiple transactions. 

Custom Development - Custom Development Practices 75 
 



  

10.3.1. Transactions and CDM RuleFrame 

OHI Back Office uses CDM RuleFrame to enforce business rules, many of which are 
only evaluated when the transaction is closed or committed. 

You may use  

• Api_algemeen_pck.start_api_transactie 
Calls qms_transaction.open_transaction to open a CDM Rule Frame 
transaction. 

• Api_algemeen_pck.einde_api_transactie 
Calls qms_transaction_mgt.close_transaction to close the CDM Rule Frame 
transaction. 

Structuring your transaction is important to avoid confusing results when the rules 
on the Rule Stack are finally evaluated. 

More information about CDM RuleFrame in ‘Appendix D – What you should know 
about CDM RuleFrame’. 

10.4. Locking 
If your code does not explicitly lock database rows, the locks in your session will be 
implicit locks resulting from updates on individual rows. These locks will be released 
when you commit or roll back your transaction. 

This strategy would be OK if the application does not have long running transactions. 

Since OHI Back Office is batch oriented, your code should always take into account 
that: 

• a long running process may have locked the same data that your code tries to 
update. 

• another process may be waiting for you to release the locks you have 
(implicitly) set in your transaction. 

• a worst case scenario may evolve if your code waits to lock a row while other 
processes are waiting to lock the rows already locked by your code. 

The safest advice is to: 

• do not use ‘lock table’ statements 

• use ‘select for update nowait’ cursors if you intend to update data.  

If one of the selected rows is already locked by another transaction, the ‘select for 
update nowait’ cursor will raise a ‘resource_busy’ exception.  

It is then up to you to process the ‘resource_busy’ exception. By default your 
transaction will be rolled back and control will be handed to the calling program. 

10.5. Use Named Parameters 
When calling an OHI Back Office function or procedure, you can choose to make the 
call with ‘positional’ or ‘named’ parameters. 
l_rel_no := api_en_relation_details.adjudicate_manually 
    ( 1234567800 
    , 'D' 
    , 'Approved by management' 
    ); 

Figure x: call with positional parameters 
l_rel_no := api_en_relation_details.adjudicate_manually 
    ( p_no   => 123467800 
    , p_new_status  => 'D'  

Custom Development - Custom Development Practices 76 
 



  

    , p_explanation  => 'Approved by management' 
    ); 

Figure x: call with parameters 

Using named parameters makes your code easier to understand and maintain. It also 
makes your code less dependent of a specific version of OHI Back Office because as 
long as no mandatory parameters are added to the OHI Back Office function, it will 
compile. On the other hand, if Oracle adds mandatory parameters, the compilation 
will raise a syntax error which tells you which function call failed to compile. 

10.6. Profile your code 
As a whole, OHI Back Office works best if there are no long running transactions. 
Your custom code may hinder other processes if it takes too long to run due to badly 
performing queries. 
You should ensure that your uses the database resources efficiently: 

• Open SQLDeveloper 

• Connect to a non-production OHI database with production-like volumes 

• Copy each query to the workspace 

• Select ‘explain’ to explain your query 

• Iteratively refine your query 

 If you don’t use SQLDeveloper, use EXPLAIN PLAN (See SQL Reference for details). 

10.7. Close open cursors 
When possible use cursor-for loops. Apart from requiring less code, cursor-for loops 
automatically close their cursors. This is important to avoid the ‘ora-01000 maximum 
open cursors exceeded’ exception. 

If you explicitly open a cursor, for example to fetch a single row, you should close the 
cursor as soon as possible. If an exception is raised before the cursor is closed, the 
cursor remains open and must be explicitly closed (test with %ISOPEN).  

10.8. Coding Standards 
We did not include any naming or formatting conventions because we felt these 
would confuse the issues discussed. 

Custom Development - Custom Development Practices 77 
 



  

11. Deprecated Interfacing options 
The following interfacing options are still available but will be obsolete in a future 
release: 

• API layer (PL/SQL Functional API) 

• API views (if these still exist) 

• Connect 2 Backoffice (C2B) web services 

 

Custom Development - Deprecated Interfacing options 78 
 



  

12. Appendix A - Business event framework datamodel 
 

ALG_EVENT_DEFINITIES  

This table holds the event definitions 
  

NAAM (Name) This is a logical name for the event type, for example: AZR_MODIFY_PARTY. 
OMS (Description) For example: Export updates to parties to the XYZ system. 
DETECTOR A custom plug-in procedure which is called to detect events for this event definition. Example: 

azr_mod_prt_pck.detector. 
BEGIN_HANDLER A plug-in procedure that must be called once before processing events for this type, for example to create a 

.csv file to which all event data will be written. 
HANDLER A plug-in procedure which is called for every event that must be processed. Example: my_event_pck.handler. 
END_HANDLER A plug-in procedure which is called once after all events have been processed, for example to close a .csv file 

to which all event data were written. 
LAATSTE_DETECTIE_DATUM 
(last_detection_date) 

Used by the framework to record the last date when the detection mechanism was used. 

STATUS Updated by the framework to avoid multiple starts of the framework for this event definition. The status can 
be: ‘K’ (ready) or ‘L’ (running). 

RUN_NR Managed by the framework. All events that were detected in a single run are given the same run number for 
later processing and reporting. 

SCHONINGSINTERVAL_VERWERKT 
(Purge interval processed) 

Defines when (successfully) processed events for this definition may be purged. The default interval is 7 days. 

SCHONINGSINTERVAL_MISLUKT 
(Purge interval failed) 

Defines when failed events for this definition may be purged. The default interval is 27 days. 

IND_ACTIEF (Active indicator) Indicates whether the event is currently active. 

 

 

ALG_EVENT_INIT_WIJZIGINGEN  

This table holds the tables which are monitored by the event for triggered events. 
  

EDE_ID Foreign key to ALG_EVENT_DEFINITIES. 
TAB_ID Foreign key to ALG_TABELLEN. 
IND_INSERT Indicates whether insert actions on the table should be signaled. 
DPS_ID_INSERT Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the insert trigger. 
IND_UPDATE Indicates whether update actions on the table should be signaled. 
DPS_ID_UPDATE Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the update trigger. 
IND_DELETE Indicates whether delete actions on the table should be signaled. 
DPS_ID_DELETE Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the delete trigger. 

Custom Development - Appendix A - Business event framework datamodel 1 
 



  

ALG_EVENT_INIT_WIJZIGINGEN  

This table holds the tables which are monitored by the event for triggered events. 
  

IND_ACTIEF (Active indicator) Indicates whether the event is currently active. 

 

 

ALG#EVENTS  

This table stores events with storage clause set to Table. 
  

EDE_ID Foreign key to the ALG_EVENT_DEFINITIES table for the event definition that signaled this event. 
EDE_RUN_NR Set by the framework to group event occurrences. The highest run number is stored in the event definition. 
CODE Code retrieved by the detection plug-in for use as a key to process the event. In most cases this will be the 

primary key that can be used to find the data with which the event is to be processed. To be compatible with 
storing the event to the queue this should be in format table_id##record_id##DML-type. 

STATUS Records the processing status of an event occurrence. Possible values: ‘N’ (new), ‘O’ (pending), ‘V’ 
(processed), ‘M’ (failed). 

DATUM_ORIGINEEL (original date) An optional column that can be used to determine the processing order. 
CREATIE_MOMENT (creation date) This standard column is used for processing in the correct order if the DATUM_ORIGINEEL has not been set. 

 

 

ALG#EVENT_ERRORS  

This table holds errors during the handling of an event 
  

EDE_ID Refers to the event definition that detected this event. 
TAB_ID Foreign key to ALG_TABELLEN, source table of the record 
RECORD_ID Refers to the record of the changed record. Together with TAB_ID this uniquely identifies the record in OHI 

Back Office. 
DML_TYPE What DML action caused the event 
EET_ID Refers to the event in ALG#EVENTS table. 
CODE Code for event processing. 
CREATIE_MOMENT (creation date) Timestamp when the error occurred 
FOUTCODE (Error code) The code of the error occurred. 
FOUTMELDING (Error message) The error message for the error that occurred. 

 

 
Custom Development - Appendix A - Business event framework datamodel 2 
 



  

ALG_EDE_PAYLOAD_TP  

The object for storing events to the queue 
  

EDE_ID Refers to the event definition that detected this event. 
TAB_ID Foreign key to ALG_TABELLEN, source table of the record 
RECORD_ID Refers to the record of the changed record. Together with TAB_ID this uniquely identifies the record in OHI 

Back Office. 
DML_TYPE What DML action caused the event 

 

 

Custom Development - Appendix A - Business event framework datamodel 3 
 



  

13. Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK 

Procedures  Parameters   

Name Description Name Type Description 
     

Install Creates an event definition in the database.  
Also available as function returning 
alg_event_definities.id%type.  

pi_name  
 

alg_event_definities.naam%type  
 

The name of the event definition.  
 

pi_description  alg_event_definities.oms%type  The description of the event definition.  
pi_event_type  alg_event_definities.type_signalering% type  Indicates how the event is signaled. 

Allowable values:  
D for Detected events  
T for Triggered events  

pi_storage  alg_event_definities.type_opslag%type  Indicates how events are stored. 
Allowable values:  
T for Table  
Q for Queued  

pi_handler  alg_event_definities.handler%type  The (package) procedure for the handler 
of the event.  

pi_detector  alg_event_definities.detector%type  The (package) procedure for the detector 
of the event.  

pi_begin_handler  alg_event_definities.begin_handler% type  The (package) procedure for the begin 
handler of the event.  

pi_end_handler  alg_event_definities.end_handler%type  The (package) procedure for the end 
handler of the event.  

pi_purge_processed  alg_event_definities.schoningsinterval_ 
verwerkt%type  

Determines after how many days 
successfully processed events can be 
deleted from the event table.  

pi_purge_failed  alg_event_definities.schoningsinvterval_ 
mislukt%type  

Determines after how many days failed 
events can be deleted from the event 
table.  

deinstall  Removes an event definition form the 
database. When events still exist for this 
definition an error is given.  

pi_name  alg_event_definities.naam%type  The name of the event definition to be 
removed from the database.  

deinstall  Removes an event definition form the 
database. When events still exist for this 
definition an error is given.  

pi_ede_id  alg_event_definities.id%type  The ID of the event definition to be 
removed from the database.  

purge_all_events  Removes all events for the given event 
definition from the database. Can be used 
prior to the deinstall procedure to remove all 
events.  

pi_name  alg_event_definities.naam%type  The name of the event for which all the 
event occurrences will be removed.  

purge_all_events  Removes all events for the given event 
definition from the database. Can be used 
prior to the deinstall procedure to remove all 
events.  

pi_ede_id  alg_event_definities.id%type  The ID of the event definition for which 
all the event occurrences will be removed  

reapply_failed_ event  Reset events with the status 'Failed' from a pi_name  alg_event_definities.naam%type  the unique name of the event definition  

Custom Development - Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK 4 
 



  

Procedures  Parameters   

Name Description Name Type Description 
     

previous run.  pi_code  alg#events.code%type  the identifying code of the event  
reapply_failed_ event  Reset events with the status 'Failed' from a 

previous run.  
pi_ede_id  alg_event_definities.id%type  the unique identifier of the event 

definition  
pi_code  alg#events.code%type  the identifying code of the event  

add_event  This procedure must be called by the detector 
of an event to add an occurrence of the event 
to the event table or queue.  
When the storage type of the event is set to 
Table, the event is only created in case there is 
no existing event with the given code for the 
event definition with a status N(ew).  
When the storage type of the event is set to 
Queue, the event is always placed on the 
queue.  

pi_name  alg_event_definities.naam%type  The name of the event definition.  
pi_code  alg#events.code%type  The identifying code of the event. Must 

be in format:  
Table_id##record_id##dml_type. E.g. 
1234##876##U.  

pi_date  alg#events.master_date%type  Optional timestamp for ordering event 
handling.  

add_event  This procedure must be called by the detector 
of an event to add an occurrence of the event 
to the event table of queue.  
When the storage type of the event is set to 
Table, the event is only created in case there is 
no existing event with the given code for the 
event definition with a status N(ew).  
When the storage type of the event is set to 
Queue, the event is always placed on the 
queue.  

pi_ede_id  alg_event_definities.id%type  The ID of the event definition.  
pi_code  alg#events.code%type  The identifying code of the event. Must 

be in format:  
Table_id##record_id##dml_type. E.g. 
1234##876##U.  

pi_date  alg#events.master_date%type  Optional timestamp for ordering event 
handling.  

add_event  This procedure must be called by the detector 
of an event to add an occurrence of the event 
to the event table or queue.  
In case the storage type of the event is set to 
Table, the event is only created when there is 
no existing event with the given code for the 
event definition with a status N(ew).  
In case the storage type of the event is set to 
Queue, the event is always placed on the 
queue.  

pi_ede_payload  alg_ede_payload_tp  The object type containing the data of the 
event.  

type_payload_to_ 
code  

Function which converts a storage type Queue 
payload type to a storage type Table format.  
Returns alg#events.code in the format 
table_id##record_id##dml_type. E.g. 
1234##876##U  

pi_ede_payload  alg_ede_payload_tp  The object type containing the data of the 
event.  

code_payload_to_ 
type  

Function which converts a storage type Queue 
payload type to a storage type Table format.  
Returns alg_ede_payload_tp.  

pi_name  alg_event_definities.naam%type  The name of the event definition.  
pi_code  alg#events.code%type  The identifying code of the event. Must 

be in format:  
Table_id##record_id##dml_type. E.g. 
1234##876##U.  

Custom Development - Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK 5 
 



  

Procedures  Parameters   

Name Description Name Type Description 
     

code_payload_to_ 
type  

Function which converts a storage type Queue 
payload type to a storage type Table format.  
Returns alg_ede_payload_tp.  

pi_ede_id  alg_event_definities.id%type  The id of the event definition.  
pi_code  alg#events.code%type  The identifying code of the event. Must 

be in format:  
Table_id##record_id##dml_type. E.g. 
1234##876##U.  

 

 

Custom Development - Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK 6 
 



  

14. Appendix C – Tracing 
The application code of OHI Back Office has been instrumented to trace the PL/SQL code as it is executed. Both the CAPI 
packages, batch packages and underlying packages of the OHI Back Office Business Services have been instrumented. 

By turning on tracing you get a detailed overview to help you analyze the program flow. This is useful if you want to debug or 
understand a problem. 

You can also instrument your custom code with trace calls. 

 

14.1. Activation 

14.1.1. Tracing a Batch Request 

You can trace a batch request by activating the indicator “Debug” when creating the request. 

 

14.1.2. Tracing a Forms Session 

You can trace a form by setting the indicator “Debug” in screen SYS1017F: 

 

14.2. How to Access Trace Logs 
The log information is written into two tables: 

Custom Development - Appendix C – Tracing 2 
 



  

• ALG#TRACE_SESSION: This table contains session information per debug session, like the session id, the user and 
module code in case of a forms session. 

• ALG#TRACE_LOG: This table contains all the data of a trace per session. It also records the PL/SQL object and the 
procedure stack of the call to the trace package (ALG_TRACE_LOG). 

With the OHI Back Office parameter “DebugLines” the maximum amount of trace records per session can be set as a session can 
create a huge set or records. 

Records in ALG#TRACE_SESSION and ALG#TRACE_LOG will be purged automatically after a certain threshold. This 
threshold can be set with the BackOffice parameter “RetentieTLG”. 

14.3. Instrumentation of Custom Code 
You can instrument your own code using the various procedures of the ALG_TRACE_PCK package: 

Procedure Description 
  

Enable Activate a debug session 
Disable De-activate the debug session 
Enter Should be called at the start of a function or procedure. Helps following the flow 
Leave Should be called at the end of a function or procedure. 
Log Provide extra logging 
Force_write Force writing of debug information from memory to the table 

 

 
 

Note:  Avoid the use of disable / enable in low level code. 

 

 

Custom Development - Appendix C – Tracing 3 
 



  

15. Appendix D – What you should know about CDM RuleFrame 
If you develop custom code to work with OHI Back Office you should know a few things about CDM RuleFrame: 

• CDM RuleFrame was developed by Oracle Consulting around 1999. 

• CDM RuleFrame uses Oracle Designer as its repository.  

• OHI Back Office uses CDM RuleFrame to enforce business rules. 

• In 2004-2005, the OHI Back Office team revised parts of CDM RuleFrame to solve performance issues. 

• CDM RuleFrame has its own concept of a transaction to add functionality to the standard Oracle transaction. 

• During the CDM RuleFrame transaction, rules are pushed to the ‘Rule Stack’: when a DML action is performed on a row in a 
table, the generated database trigger code calls the appropriate function in the table-specific TAPI package. This function  
puts those rules which cannot be evaluated immediately on Rule Stack for later evaluation. 

• The rules that were pushed on the Rule Stack will be evaluated only when the CDM Rule Frame transaction is closed. 

• You can avoid building a ‘random’ Rule Stack by explicitly defining your CDM Rule Frame transaction. 

• You can start a CDM Rule Frame transaction in your custom code by calling api_algemeen_pck.start_api_transactie 

• You can end a CDM Rule Frame transaction by calling api_algemeen_pck.einde_api_transactie or calling COMMIT 

Custom Development - Appendix D – What you should know about CDM RuleFrame 4 
 



  

16. Appendix E – Modification Mechanism for Policies and Relations 
OHI Back Office has a ‘modification mechanism’ to allow changes to policies and relations without hindering the core processes 
like claims processing. 

OHI Back Office can be configured to allow direct DML on relations or to use the modification mechanism. 

If the mechanism is used, the policy or relation that is to be updated is cloned, together with related child tables, for example 
addresses, discounts etc. 

The cloned rows have negative ID’s which are the negative value of the original (positive) ID. As the clone is being updated, the 
original rows are untouched, which allows the core processes to continue. 

The cloning of a policy can be done with the API_EN_POLICY_AND_DETAILS.MODIFY function. The equivalent function for a 
relation is API_EN_RELATION_DETAILS.MODIFY. 

The cloned policy or relation can be updated at will. However a delete on an already existing row in the original version cannot 
be deleted. If it is required to remove such record the column “MODIFICATION_STATUS” (“mutatie_status”)  should be set 
with the capital letter “V”. 

Once the user has completed the updates to the cloned policy or relation, the status of the clone is set to ‘READY’. The clone must 
then be approved manually or by a batch process (ZRG4021S). 

Once the changed version has been approved, the clone data is merged with the original data and the clone is removed. 

To merge the clone with the original policy use the function API_EN_POLICY_AND_DETAILS.APPLY. 

The set of functions to manipulate a policy in the api API_EN_POLICY_AND_DETAILS are:  

Function Description 
  

Modify Make a copy of a policy 
Apply Merge the modified copy with the original 
Remodify In case of issues when applying the copy go back to the “Pending modification” status 
Cancel Purge the copy policy 
Modification_pending Check if there is already a copy of the policy 

 

Custom Development - Appendix E – Modification Mechanism for Policies and Relations 5 
 



  

17. Appendix F – Dynamic PL/SQL Types 
The following dynamic PL/SQL types are available in the given processed. Column bound checks are available on every 
functional table.  

Name Type Purpose 
   

Adresveld (Address field) Check Validate the data of an address field against a address reference table 

Adresveld bepaling () Text 
procedure 

Determine address components based on e.g. the postal code in the 
OHI Back Office screens 

Back Office parameter () Check Provide a validation on the values entered in the Back Office 
parameter values 

Betaalactie (Payment) Text Provide a payment description used by the XML output for payments 

Betalingsverkeerregel (Payment matching 
detail) 

Text 
procedure 

Determine the correct source (payment or collection) for this payment 
detail. 

Commissieberekening (Commission calculation) Text 
procedure 

Calculate commission  

Commissieberekeningdatum (Commission 
calculation date) 

Text 
procedure 

Set the calculation date 

Commissieberekeningverzoek (Commission 
calculation request) 

Text 
procedure 

Request a commission calculation 

Commissieregelevaluatie (Commission rule 
evaluation) 

Text 
procedure 

Evaluate a commission rule 

Declaratieregel (Claimline) Check Validate a claimline 

Event (Event) Check Provide a trigger condition for the triggered events in the Business 
event framework 

GBA-controle (Population register check) Check Perform a check for a relation against a population register 

Incassoactie (Collection) Text Provide a payment description used by the XML output for collections 

Kolomgebonden (Column bound) Check Perform a custom column bound check 

Naamcomponent (Name component) Check Validate the data of a name component 

Polis (Policy) Check Perform a policy acceptance check 

Poliscompleteerstap (Complete policy) Text 
procedure 

Add additional data to a policy in the apply policy process (complete 
policy) 

Restrictie (Restriction) Check Can be used to check if an entity flexfield is allowed on a subset of the 
data for the entity 

Standaardantwoord op dekkingsvraag (Default 
answer to benefit question) 

Text Provide a default answer for a benefit question 

XML (XML) Text Add custom data on a record when performing an import of a XML 
file 

Custom Development - Appendix F – Dynamic PL/SQL Types 6 
 



  

Name Type Purpose 
   

Zorgvoornemenperiode (Pre-authorization 
period) 

Check  

 

 

 

Custom Development - Appendix F – Dynamic PL/SQL Types 7 
 


	Start
	Oracle Health Insurance
	Custom Development for
	Oracle Health Insurance Back Office
	Part number: E54856-01
	U.S. GOVERNMENT RIGHTS
	Change History
	Contents
	1. Introduction
	1.1.  Audience
	1.2. Scope
	1.3. Documentation
	1.4. References

	2. Overview

	Although OHI Back Office is an ‘all-in-one’ application it is by no means a black box. To work for a given customer OHI Back Office provides several possibilities for customization. To work in an environment with other applications, OHI Back Office pr...
	2.1. Business Rules
	2.1.1. CDM ruleframe
	2.1.2. How to determine the set of rules on a table

	2.2. An Open Database
	2.3. Flex Fields
	2.4. Dynamic PL/SQL
	2.5. Business Event Framework
	2.6. Custom Batch Scripts
	2.7. HTTP Links
	2.8. OHI Back Office Business Services
	3. An Open database
	3.1. Tables and views
	3.1.1. Tables
	3.1.2. Views

	3.2. Authorization
	3.2.1. Roles
	3.2.2. Accounts

	3.3. Datamodel help
	3.3.1. Forms frontend
	3.3.2. HTML overview

	3.4. Modification logging
	3.4.1. Why modification logging?
	3.4.2. Operation summary
	3.4.3. Default auditing columns
	3.4.4. Configurable modification logging
	3.4.5. Example
	3.4.6. Activation
	3.4.7. Impact of release upgrades

	3.5. Tracing

	4. Flex fields
	4.1. Concepts
	4.1.1. Related

	4.2. Flex Field Characteristics
	4.2.1. Flex field Types
	4.2.2. Filters
	4.2.3. Flex Field Scope
	4.2.4. Flex Field Groups

	4.3. Flex field definition
	4.3.1. Candidate tables for flex fields
	4.3.2. Allowed values
	4.3.3. Time-valid flex fields
	4.3.4. Multi-value flex fields
	4.3.5. Key Reference

	4.4. Flex field maintenance

	5. Dynamic PLSQL
	5.1. Hooks for PL/SQL code
	5.2. Dynamic PLSQL Definition
	5.2.1. Setup
	5.2.2. Scope and subtype

	5.3. Column bound checks
	5.3.1. Single column checks
	5.3.1.1. Error message definition
	5.3.1.2. PL/SQL definition

	5.3.2. Multi column checks
	5.3.2.1. Message definition
	5.3.2.2. PL/SQL Definition

	5.3.3. Activating and deactivating column bound checks

	5.4. Writing custom code

	6. Business Event Framework
	6.1. Overview
	6.2. Signaling Events
	6.2.1. Detected Events
	6.2.2. Triggered Events

	6.3. Responding to Events
	6.3.1. Batch Response
	6.3.2. Near Real Time

	6.4. Combining Signaling and Response Types
	6.4.1. Detected Events, Storing to a Table
	6.4.2.  Triggered Events, Storing to a Table
	6.4.3. Detected Events, Storing to the Queue
	6.4.4. Triggered Events, Storing to the Queue

	6.5. Framework Components
	6.5.1. Event Definition



	Data in Event definitions
	Data in Tables
	6.5.2. Dynamic PLSQL Definition
	6.5.3. Event Definition Package

	Event Definition
	Event Handling
	Utility
	6.5.4. Event Handling Package
	6.5.5. Process Business Event Batch
	6.5.6. Background Process
	6.6. Developing Your Own Business Events
	6.6.1. Detected events
	6.6.1.1. Detector
	6.6.1.2. Adding events
	6.6.1.3. Example

	6.6.2. Triggered events
	6.6.2.1. Tables
	6.6.2.2. Evaluation
	6.6.2.3. Example

	6.6.3. Batch Handled Events
	6.6.3.1. Begin Handler
	6.6.3.2. Handler
	6.6.3.3. End handler
	6.6.3.4. Purge intervals

	6.6.4. Near Real Time Events
	6.6.4.1. Handler

	6.6.5. Custom Plug-ins

	6.7. Processing Business Events
	6.7.1. Process Business Events Batch
	6.7.2. Queued Events

	6.8. Examples
	6.8.1. Detected Event, Store to a Table
	6.8.1.1. Event definition
	6.8.1.2. Detector
	6.8.1.3. Begin handler
	6.8.1.4. Handler
	6.8.1.5. End handler
	6.8.1.6. Scheduling the event

	6.8.2. Triggered Event, Store to the Queue
	6.8.2.1. Evaluation Function
	6.8.2.2. Event definition
	6.8.2.3. Handler


	7. Custom Batch Scripts
	7.1. Approach
	7.1.1. Create or generate?



	The generator (SYS_GEN_PCK) creates a framework to process the data in small chunks with multiple parallel processes.
	The framework helps you to define the data to be processed by defining the selection of the data, the so called process units, and process the data chunk by chunk which usually is record by record over multiple threads.
	Note that the custom batch scripts based on these templates provide the same throughput statistics as standard batch scripts created by OHI Back Office.
	7.2. Batch user

	Note that the batch scheduler connects to the OHI Back Office database with the database user BATCH. This is not the user who created the batch request!
	The user BATCH must be able to access all database objects needed to process the batch request.  The database objects for custom batches reside in a custom schema, for example SVS_OWNER. The BATCH user must be granted access to these database objects.
	7.3. Registration
	7.3.1. Batch
	7.3.2. Dynamic List of values
	7.3.3. Batch Settings

	7.4. Export script definition
	7.5. Generator: Bulk Processing Batch - Overview

	The procedure SYS_GEN_PCK.BATCH_SOURCES can be used to generate pre-defined templates for batch processing.
	The generation results in a couple of files
	 MODULE.sql
	 MODULE.ins
	 MODULE_PCK.pck
	 MODULE_CUST_PCK.pck
	7.5.1. MODULE.sql
	7.5.2. MODULE.ins
	7.5.3. MODULE_PCK.pck
	7.5.4. MODULE_CUST_PCK.pck

	This package contains all the custom code of the batch and is the one source that must be provided with the required business logic for this batch.
	7.5.5. Basic PL/SQL Batch flow
	7.6. Generator: Bulk Processing Batch - Details
	7.6.1. Define the batch definition
	7.6.1.1. Define the batch module
	7.6.1.2. Define the batch parameters
	7.6.1.3. Define the processing unit(s)

	7.6.2. Implementation
	7.6.2.1. Function get_revision
	7.6.2.2. Function parameters_ok
	7.6.2.3. procedure before_processing
	7.6.2.4. function query_xyz
	7.6.2.5. procedure after_processing
	7.6.2.6. cursor a_c_xyz
	7.6.2.7. procedure update_shg
	7.6.2.8. procedure before_process_xyz
	7.6.2.9. procedure after_process_xyz
	7.6.2.10. procedure process_success_xyz
	7.6.2.11. procedure process_error_xyz
	7.6.2.12. procedure process_xyz

	7.6.3. Messages

	7.7. Generator: CSV Export Batch
	7.8. Generator:  CSV Import Batch
	7.9. Generator:  XML Import batch
	7.10. Other output scripts
	8. HTTP Links
	8.1. Configuration
	8.1.1. HTTP-Link
	8.1.2. Module HTTP-Links
	8.1.3. Example


	9. OHI Back Office Business Services
	9.1. Architecture
	9.2. Implementation


	The starting point is a WSDL designed by OHI Back Office. The WSDL defines each operation with its inbound and outbound messages. The messages and underlying XSD types are defined in versioned XSD files. Where appropriate, XSD types use enumerations t...
	9.2.1. Difference with C2B architecture
	9.2.2. The PL/SQL Service
	9.3. Find, Get and Write Services
	9.4. Service consumers
	9.5. Write Services
	9.5.1. Idempotent behavior
	9.5.2. Selective updates
	9.5.2.1. ‘Zero’ update
	9.5.2.2. Use xsi:nil to remove existing values
	9.5.2.3. Lists
	9.5.2.4. Time-valid lists
	9.5.2.5. Segmented time-valid lists
	9.5.2.6. XSD types for Write services.


	9.6. Error Handling
	10. Custom Development Practices
	10.1. Create a custom schema
	10.1.1. How many schema’s do you need?

	10.2. Use an abstraction layer
	10.2.1. Make your code DRY
	10.2.2. Encapsulate business logic with packaged procedures
	10.2.3. Create custom views
	10.2.4. Call custom packaged functions from Dynamic PLSQL hooks

	10.3. Define your transactions
	10.3.1. Transactions and CDM RuleFrame

	10.4. Locking
	10.5. Use Named Parameters
	10.6. Profile your code
	10.7. Close open cursors
	10.8. Coding Standards

	11. Deprecated Interfacing options
	12. Appendix A - Business event framework datamodel
	13. Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK
	14. Appendix C – Tracing
	14.1. Activation
	14.1.1. Tracing a Batch Request
	14.1.2. Tracing a Forms Session

	14.2. How to Access Trace Logs
	14.3. Instrumentation of Custom Code

	15. Appendix D – What you should know about CDM RuleFrame
	16. Appendix E – Modification Mechanism for Policies and Relations
	17. Appendix F – Dynamic PL/SQL Types


