
Start

Oracle Health Insurance Back
Office

Oracle Health Insurance Web Services

Installation Guide for WLS

version 1.6

Part number: E54856_01

December 30, 2013

Copyright © 2011, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

This software and documentation may provide access to or information on content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related
notices. For information on third party notices and the software and related documentation in connection with
which they need to be included, please contact the attorney from the Development and Strategic Initiatives
Legal Group that supports the development team for the Oracle offering. Contact information can be found on
the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality described
in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions
of your Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

CHANGE HISTORY

Release Version Changes

10.12.2.0 1.1 • Added Appendix B for functional testing.
10.13.1.0 1.2 • Corrected some small typing errors (especially the minus sign in front of

the –Dlog4j... setting which is not correct and resulted in errors when
copying the line to a WebLogic configuration).

10.13.1.1 1.3 • Adjusted references for FRS11G1 to FRS11G2.
10.13.2.0 1.4 • Added additional information regarding English version
10.13.2.0 1.5 • Added an English example message
10.13.3.0 1.6 • Added small paragraph in Administration chapter about updating an

existing deployment.

RELATED DOCUMENTS

Doc[1]: Oracle Health Insurance Back Office Service Layer Installation & Configuration Manual (CTA13651)

Contents

1. Introduction ..1

1.1. Purpose ..1
1.2. Audience ..1
1.3. Document structure ..1
1.4. Release..2

1.4.1. Dutch versus English... 2
1.5. Software versions ...2

1.5.1. OHI Back Office ... 3
1.5.2. Oracle WebLogic Server .. 3

2. Overview of the OHI Back Office web services ...4

2.1. SOAP/JMS web service ...4
2.1.1. English queue names ... 5

2.2. SOAP/HTTP web service..5

3. Installation preparation ..6

3.1. Verification of required files ...6
3.1.1. Required Files ... 6

3.2. Database preparation ...6
3.2.1. Database objects ... 6
3.2.2. Oracle account to be used ... 6

3.3. WebLogic Preparation ...7
3.3.1. Create domain, managed server, machine ... 7

3.4. Creating JDBC Data Source ...8
3.5. Start the managed server ...10

4. Installation of SIC_OOZCLAIMSDATAS ..11

5. Installation of SIC_OOZWEBSERVICEJ ...12

5.1. Before you start ...12
5.1.1. Alternative implementations .. 13

5.2. Create JMS Server ...14
5.2.1. Target JMS Server .. 14

5.3. Create and configure JMS Module ...14
5.3.1. Create System Module .. 14
5.3.2. Target the JMS module.. 15
5.3.3. Finish JMS Module creation ... 15

5.4. Create subdeployment ...15
5.4.1. Target subdeployment to JMS server .. 16

5.5. Create Connection Factory ..16
5.6. Create Queues ...17
5.7. Create foreign server (only when using OHI Self Service)19
5.8. Deploy the application EAR file ...21

6. Administration ...23

6.1. Logging ..23
6.1.1. Set up directory structure ... 23
6.1.2. Create log4j configuration file .. 23
6.1.3. Configure WebLogic to use log4j ... 24

6.2. Start WLS Node manager ..25

6.3. Start WLS Configuration Wizard ...25
6.4. Update deployment ...25

7. Appendix A - Installation of SIC_OOZWEBSERVICES26

8. Appendix B - Functional Testing ...27

8.1. Test SIC_OOZWEBSERVICEJ ...27
8.1.1. Install HermesJMS ... 27
8.1.2. Create wlfullclient.jar for interacting with Weblogic .. 27
8.1.3. Configure a provider in HermesJMS .. 27
8.1.4. Configure a context in HermesJMS ... 28
8.1.5. Discover the JMS queues for SIC_OOZWEBSERVICEJ 29
8.1.6. Send test message to jms/OOZWebserviceQueue (replace OOZ by C2B if you
use the English version!) ... 29

8.2. Test SIC_OOZWEBSERVICES ..30
8.2.1. Generate WSDL using WebLogic administration console 30
8.2.2. Install SoapUI tool ... 31
8.2.3. Create soapUI project .. 31
8.2.4. Create SOAP request ... 32
8.2.5. Run SOAP request ... 33

8.3. Sample message OOZWebService ...33
8.3.1. Dutch sample message .. 34
8.3.2. English sample message ... 35

1. Introduction

This document describes the installation and configuration of the OHI Connect to
Back Office Web service released by OHI Back Office.

1.1. Purpose

Describes the installation and configuration of the OHI Connect to Back Office web
service in an Oracle Weblogic Server 11G environment (part of Oracle Fusion
Middleware 11g).

1.2. Audience

This document is intended for administrators of Oracle WebLogic Server. Required
knowledge:

• Working knowledge of Oracle WebLogic Server 11g version 10.3.3 or higher.

• The creation of Domain and Managed Server in WebLogic Server.

• The creation of JDBC Data Sources in WebLogic Server

• The creation of JMS queues and connection factories in WebLogic Server

• The deployment for EAR files in WebLogic Server.

Administrators of Oracle10g AS may find the following comparison between
Oracle10g AS and WebLogic Server useful:

http://download.oracle.com/docs/cd/B31017_01/migrate.1013/b31269/compare_
weblogic.htm

1.3. Document structure

This document is organized as follows:

• Overview of the OHI Back Office web services
Describes the SOAP/JMS and SOAP/HTTP web services on a conceptual
level.

• Installation preparation
Applies to both SOAP/JMS and SOAP/HTTP implementations, unless stated
otherwise.

• Installation of SIC_OOZCLAIMSDATAS (SOAP/HTTP)

• Installation of SIC_OOZWEBSERVICEJ (SOAP/JMS)
Describes the minimum procedure for configuring the queues needed by
SIC_OOZWEBSERVICEJ.

• Administration

Finally, appendix A describes to deploy the synchronous version of
SIC_OOZWEBSERVICE.

1.4. Release

OHI offers the following web services for OHI Connect To Back Office:

• SIC_OOZClaimsData (synchronous)
Retrieve claims information.

• SIC_OOZWebservice (synchronous and asynchronous)
Multiple services to update / retrieve data in OHI Back Office.

When invoked, the web service connects to the OHI Back Office database to perform
the required action and returns a response message to the calling application.
The action taken by an OHI web service either retrieves data from the OHI Back
Office database or puts data into the OHI Back Office database. In both cases the OHI
Back Office database must be online in order to complete the required action.

In some cases the calling application does not depend on an immediate response from
the web service. In those cases, an asynchronous web service can be used.

The SIC_OOZWebservice has both a synchronous (SOAP/HTTP) and an
asynchronous interface (SOAP/JMS). Apart from the interface, both variants use the
same code.

All OHI web services are released as EAR files. Whether a web service is
asynchronous or synchronous can be derived from the file name:

• asynchronous web service: <WEBSERVICE NAME>J.ear

• synchronous web service: <WEBSERVICE NAME>S.ear

So we have SIC_OOZCLAIMSDATAS.ear for the synchronous web service to retrieve
claims data and we have SIC_OOZWEBSERVICES.ear and
SIC_OOZWEBSERVICEJ.ear as two variants of our general purpose web services.

1.4.1. Dutch versus English

As these web services use Dutch XML messages it is important to know that there are
also English versions of the OOZWEBSERVICE variants. These can be recognized by
having ‘_EN’ just in front of the ...J.ear or ...S.ear, so SIC_OOZWEBSERVICE_ENJ.ear
and SIC_OOZWEBSERVICE_ENS.ear.

Only when needed this documentation distinguishes between the Dutch and English
version. Otherwise simply replace the file names for the Dutch versions in the
instructions by the file names used for the English version.

1.5. Software versions

The following software must be installed before OHI Connect to Back Office web
services can be installed:

• OHI Back Office (including database software)

• Oracle WebLogic Server

Note that this installation assumes that the OHI web services are installed on the
same node as the OHI Back Office application.

1.5.1. OHI Back Office

The interface works with OHI Back Office release 2006.02.4.0000 and above.

1.5.2. Oracle WebLogic Server

Starting with release 2011.01.0.0000 of OHI Back Office, the OHI Connect to Back
Office must be deployed on Oracle WebLogic Server 11g. The version of the web
services in the 2011.01.0.0000 release has been tested with Oracle WebLogic Server
11g version 10.3.3.

2. Overview of the OHI Back Office web services

As indicated before, there are synchronous and asynchronous OHI Back Office web
services.

The diagram below shows the components for a synchronous (SOAP/HTTP) web
service:

J2EE Container
Web service

client
Application

A
pp

lic
at

io
n

S
er

ve
r

JDBC

OHI Back Office web
service

OHI Back Office
database

SOAP/HTTP

In the case of an asynchronous web service, the request is stored in a message queue.
The message remains in the queue until it can be processed by the OHI Back Office
web service. The web service creates a response which is stored in a different queue
until it is processed by the calling application:

J2EE Container

Client
Application

A
pp

lic
at

io
n

S
er

ve
r

JDBC

OHI Back Office web
service

OHI Back Office
database

SOAP/JMS

JMS Queues

JMS

The advantage of asynchronous web services is that the server application can be
offline when the request is created and that the client application can be offline when
the request is processed. The price for this is that all communication between client
and server is temporarily stored in message queues.

2.1. SOAP/JMS web service

The asynchronous web service (SOAP/JMS) is installed within a J2EE container (a
J2EE runtime environment within the application server).

The communication with this web service is handled by JMS queues.

The invocation is triggered by a message on the inbound queue,
jms/OOZWebserviceQueue.

The payload of this message is an XML document. The XML document contains the
data to create PL/SQL calls in OHI BackOffice through a JDBC database connection.

If the request is handled successfully, the response is also an XML document which is
put in a message on the outbound queue, jms/OOZWebserviceResponseQueue.

In case of an error, a message is created in the error queue, jms/oozErrorQueue.

Client
Application

Async
Webservice

jms/OOZWebserviceQueue

jms/OOZWebserviceResponseQueue

jms/oozErrorQueue

The standard queue connection factory for accessing these queues is
jms/oozQueueConnectionFactory.

2.1.1. English queue names

When you use the _EN (English) versions of the OOZWebService the names of the
request and response queue contain ‘C2B’ instead of ‘ooz’.

2.2. SOAP/HTTP web service

The SOAP/HTTP web service (OOZCLAIMSDATAS) is a Stateless Session Bean. This
receives a SOAP message, processes the request to OHI Back Office and returns the
response.

The internals of a SOAP/HTTP service are identical to the SOAP/JMS service.

3. Installation preparation

The installation preparation contains the following steps:

• Verification of required files

• Database preparation

• WebLogic Server Preparation

3.1. Verification of required files

3.1.1. Required Files

Depending on the agreements made, the following files are supplied by Oracle on
Beehive Online (in future eDelivery) as part of a release delivery:

• SIC_OOZWEBSERVICEJ.EAR
(SOAP/JMS web service containing various services for Connect 2 Back
Office)

• SIC_OOZCLAIMSDATAS.EAR
(SOAP/HTTP web service for claims enquiries)

3.2. Database preparation

3.2.1. Database objects

Before the installation the required database objects in the OHI Back Office must be
installed. This task is usually carried out by the OHI Back Office DBA.

3.2.2. Oracle account to be used

Before the start of the installation, determine how the web service should connect
with the OHI Back Office database.

Item Description

Host Host of the TNS listener for the OHI Back Office database runs.

Normally this is the database server.

Port Port number of the TNS listener

Typically this is 1521 or 1526

Sid The ORACLE SID of the OHI Back Office database

Oracle account The Oracle account used to access the OHI Back Office database

Password Password for the Oracle account

These data will be used to create a JDBC data source.

Note: the most obvious scenario would be to use the owner of the database objects as
the oracle account, e.g. ozg_owner.
However, for security reasons it is desirable to use an alternative Oracle account to

which only the most strictly necessary rights have been granted (there is no
standardized grant script available for this).

3.3. WebLogic Preparation

A certified version of the Weblogic application server must be installed prior to this
step.

The Weblogic preparation consists of the following actions

• Create domain, managed server, machine

• Create of data source

3.3.1. Create domain, managed server, machine

Instead of adding the web services to the domain you are already using for OHI Back
Office, we strongly advise to create a new domain for the Connect To Back Office web
services.

We must now create managed server and machine definitions for this new domain.
Note in the diagram below how the existing frs_d1 and new ohi_c2b domain coexist:

Node/Machine

Domain frs_d1

Managed
server

Managed
server

Domain ohi_c2b

Managed
server

The steps for creating domain, managed server and machine are documented in
paragraph 3.2 of Doc[1] but can also be found in the WebLogic documentation.

3.3.1.1. Create domain

Start the configuration wizard for creating a new domain:

• Log in as the UNIX account running WebLogic (eg. oracle)

• . ozg_init.env $OZG_ORATAB_FRS11G2

• $WL_HOME/common/bin/config.sh

Generate a new domain for supporting web services with its own administration
server as per paragraph 3.2.1 of Doc[1].

Do not use port 7001 for the administration server but, for example, port 7070.

Start the administration server for this domain (suppose it is named ohi_c2b):
$WL_HOME/../user_projects/domains/ohi_c2b/startWebLogic.sh

3.3.1.2. Create managed server, machine etc.

The remainder of the procedure is done through the HTML interface of the
administration server.

Follow the steps in chapter 3.2 of Doc[1] to create a new domain with a single
managed server. Ensure that you configure an admin server within the new domain
and that the port number for the admin server has not been used (we chose 7070).

Suggested names:

• Domain: ohi_c2b

• Machine: machine1

• Managed Server: MS1 (we used port 7071)

3.4. Creating JDBC Data Source

In WebLogic Server, you can configure database connectivity in two steps:

• Define a JDBC data source

• ‘Target’ the JDBC data source to the domain or to a managed server.

 Name Value

JNDI Name jdbc/wsapiDS

Database Oracle

Database Driver Oracle’s Driver (Thin) for Instance connection; Version:
9.0.1,9,2,0,10,11

3.4.1.1. Create data source using JNDI name

Create a generic data source.

3.4.1.2. Select database driver

3.4.1.3. Set up connection properties

Define the Connection Properties using the values described in 3.2.2.

3.4.1.4. Test database connection

Repeat previous step until the database connection test is successful.

3.4.1.5. Target the JDBC data source

By ‘targetting’ the JDBC data source you make it available for use.

Select a Managed Server as target.

3.5. Start the managed server

4. Installation of SIC_OOZCLAIMSDATAS

The installation of a SOAP/HTTP web service is relatively straightforward because
the service only depends on the JDBC data source which is used to connect to the OHI
Back Office database.

First, carry out the preparatory activities as described in Ch 3.

Now you can deploy the SIC_OOZCLAIMSDATAS.EAR file.

5. Installation of SIC_OOZWEBSERVICEJ

This chapter describes how to install the SIC_OOZWEBSERVICEJ service. The actual
deployment of the EAR file is a minor step compared to configuring the JMS queues.
For this procedure we tried to simplify the configuration.

The main characteristics are:

• Non-clustered installation

• Native JMS, using in-memory queues.

The installation procedure contains the following steps:

• Create JMS Server
This process will implement the queuing mechanism and persist queue data.

• Create JMS Module
This container will hold the resources (queue connection factory and queues)

• Create queue connection factory
This is used to access the queues handled by the JMS Server

• Create subdeployment
This is a mechanism to link queues to the JMS server

• Create JMS queues

• Deploy application (EAR file).

5.1. Before you start

The following JMS queues must be created:

• jms/OOZWebServiceQueue
(for the English version: jms/C2BWebServiceQueue)

• jms/OOZWebServiceResponseQueue
(for the English version: jms/C2BWebServiceResponseQueue)

• jms/oozErrorQueue

The queues are accessed through a connection factory called
jms/oozQueueConnectionFactory.

In Weblogic, JMS queues and JMS connection factories are called JMS resources.
Resources can only be created within the context of a JMS module. The JMS module
itself must belong to a (managed) server, while its resources are handled by a JMS
server.

The diagram below visualizes how the different components in this configuration
procedure relate to each other (shown as an entity relation diagram). Note that the
numbering of the components corresponds with the paragraphs which describe the
configuration of that particular component. The names used for the components are
indicated in blue:

5.1.1. Alternative implementations

The installation procedure assumes a memory based, non-clustered implementation
of the JMS queues.

Generally speaking, all queues will be (nearly) empty during normal operation. Note
however that if the application server is shut down by force or as a result of a crash,
the contents of the queues are lost, and new requests can not be queued by the calling
application.

To avoid this, you can do the following:

• Use persistent storage for the queue messages (either in the database or in a
File Store).

• Create a multi-node, clustered configuration. This allows you to take an
application server instance down without interrupting the service.

If you choose to take this approach, the following changes apply to the installation
procedure:

• Create Persistent Stores (eg. File Stores) for each managed server and
associate the JMS server of each managed server with its Persistent Store.

• Create Distributed Queues instead of normal queues. Instead of linking the
queues to a subdeployment, you can now use default targeting.

Refer to your Weblogic documentation for more detailed instructions.

5.2. Create JMS Server

Choose in the Domain Structure pane Services > Messaging > JMS Servers and create
a new JMS Server.

5.2.1. Target JMS Server

The JMS server must be targeted to a managed server.

5.3. Create and configure JMS Module

A JMS Module is simply a container to hold JMS resources. Apart from the JMS
queues and connection factory, a JMS Module may also hold a ‘Foreign Server’.

A Foreign Server represents JMS provider that is outside the local WebLogic
Server. It contains information that allows local server instance to reach a remote
JNDI provider.

5.3.1. Create System Module

Choose in the Domain Structure pane Services > Messaging > JMS Modules

5.3.2. Target the JMS module

Next you must ‘target’ the new JMS module to a server. Choose the managed server
of the ohi_c2b domain.

5.3.3. Finish JMS Module creation

Finish the JMS Module creation. There is no need to continue to create the resources
because first we will create a subdeployment first.

5.4. Create subdeployment

According to the Weblogic documentation, standalone queues must be targeted to
JMS servers. Since this cannot be done directly, we use a subdeployment as a go-
between.

More information can be found in:

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13738/basic_config.ht
m#i1151524

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13738/basic_config.htm#i1151524�
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13738/basic_config.htm#i1151524�

Navigate to the JMS Module you just created and choose the Subdeployments tab.

5.4.1. Target subdeployment to JMS server

5.5. Create Connection Factory

In the webservice program, the queue connection factory is used to access the JMS
queues. Create a JMS System Module Resource of type ‘Connection Factory’. For this
select the create JMS Module and use the New button to create a new resource.

Set the JNDI name to jms/oozQueueConnectionFactory. This JNDI name is used by
the webservice program.

Ensure that default targeting is enabled.

5.6. Create Queues

Create JMS queues with the following JNDI names (replace OOZ by C2B if you use the
English version!):

Queue JNDI Name

Request queue jms/OOZWebServiceQueue

Response queue jms/OOZWebServiceResponseQueue

Error queue jms/oozErrorQueue

Create another JMS Module Resource but this time of type ‘queue’:

Enter name and JNDI name. The JNDI name of each queue must correspond with an
entry in the list above.

Finally, link the queue to the subdeployment:

The process for each queue is identical. The procedure below was used to create one
of the queues, repeat this process for the remaining queues.

Finally, check that all queues are created:

5.7. Create foreign server (only when using OHI Self Service)

If you deploy OHI Connect to BackOffice for OHI Self Service you need to configure a
Foreign Server. A Foreign Server represents a JNDI provider that is outside local
WebLogic Server. It contains information that allows a local WebLogic Server
instance to reach a remote JNDI provider.

Create a Foreign Server with the following property values:

Name Value

JNDI Initial
Context Factory

weblogic.jndi.WLInitialContextFactory

This is the default.

JNDI Connection
URL

t3://<host>:<port>,<host>:<port>

The URL that WebLogic Server will use to contact the JNDI
provider.

<host>: DNS name or IP address of the server that hosts the
OHI Self Service.

<port>: the port number from which you want to access the
OHI Self Service server instance.

e.g.: t3://nloz01:8103,nloz01:8105

JNDI Properties
Credential

The credentials that must be set for the JNDI provider.
Specify the secure password for the domain where OHI Self
Service runs. These credentials must be specified along with
the domain username in the JNDI Properties field.

JNDI Properties java.naming.security.principal=<weblogic account>

<weblogic account> is a secure username for the domain where
the OHI Self Service runs, e.g. weblogic

After creating a foreign server, you need to define a foreign connection factory and
foreign destinations.

A Foreign Destination represents a queue that can be found on the remote server.
Create foreign destinations with the following Local JNDI Names (replace OOZ by
C2B if you use the English version!):

Local JNDI Name Remote JNDI Name

jms/OOZWebServiceQueue The JNDI name of the request queue at
the OHI Self Service server.

jms/OOZWebServiceResponseQueue The JNDI name of the response queue
at the OHI Self Service server.

jms/oozErrorQueue The JNDI name of the error queue at
the OHI Self Service server.

You also need to define a foreign connection factory. Create a foreign connection
factory with the following Local JNDI Name:

Local JNDI Name Remote JNDI Name

jms/oozQueueConnectionFactory The JNDI name of the connection
factory in the remote JNDI provider, in
this case the WebLogic instance where
OHI Self Service running.

5.8. Deploy the application EAR file

Ensure that the managed server is running and that the JMS Server is healthy.

Now you can deploy the EAR file. Weblogic assumes that the EAR file can be found
through the file system of the Admin Server host.

In our example, we will deploy the SIC_OOZWEBSERVICEJ.EAR through the GUI.

Go to ‘deployments’ and select the EAR file to be deployed:

Install the EAR file as an application and target the EAR file to a managed server:

Do not change the ‘optional settings’.

Finally start the newly deployed EAR file (start the server process).

If you receive a warning during start up, check the following:

• Is the JMS Server OK?

• Do you have a subdeployment targeted at the JMS Server?

• Have you used the correct JNDI names?

• Are the queues linked to the subdeployment?

• Has the connection factory been configured for default targeting?

6. Administration

6.1. Logging

The Connect to Back Office web services are set up for logging through log4j. The use
of log4j is a widespread open source solution. More information can be found on

• http://logging.apache.org/log4j

• http://en.wikipedia.org/wiki/Log4j

To set up logging, the following steps must be performed:

• Set up directory structure

• Create log4j configuration file

• Configure WebLogic to use log4j

6.1.1. Set up directory structure

It may be convenient to retain the $OZG_BASE/$OZG_ADMIN structure to support
the Connect to Back Office Web Services:

• $OZG_BASE/java: used to locate EAR files

• $OZG_ADMIN: log4j.properties, output files for web services logging.

In the remainder of this chapter we will assume that

• $OZG_ADMIN will be used for locating log configuration and log output
files.

• $OZG_ADMIN is located at /u01/app/oracle/product/OHI/admin

• $OZG_ADMIN does not include symbolic links

Beware that in an environment with multiple OHI Back Office installations sharing
the same $OZG_ADMIN folder it may be convenient to use $OZG_BASE instead of
$OZG_ADMIN for the log4j configuration and output files.

6.1.2. Create log4j configuration file

Below is an example of a configuration file.

Console appender

log4j.appender.C=org.apache.log4j.ConsoleAppender
log4j.appender.C.target=System.out
log4j.appender.C.layout=org.apache.log4j.PatternLayout
log4j.appender.C.layout.ConversionPattern=%-5p %d [%t] %c: %m%n

File appender; this should be a RollingFileAppender to prevent it
from becoming to large because only in that case MaxFileSize etc.
will be interpreted.

http://logging.apache.org/log4j�

log4j.appender.F=org.apache.log4j.RollingFileAppender
log4j.appender.F.File=/u01/app/oracle/product/OHI/admin/SIC_OOZ_Webservices.log
log4j.appender.F.MaxFileSize=50000KB
log4j.appender.F.MaxBackupIndex=1
log4j.appender.F.layout=org.apache.log4j.PatternLayout
log4j.appender.F.layout.ConversionPattern=%-5p %d [%t] %c: %m%n

Log settings:

log4j.rootCategory=INFO,F
log4j.logger.com.oracle.ohi.c2b.sicoozwebservicej=INFO,F

Note that for each web service you need to specify a logger entry like:
log4j.logger.com.oracle.ohi.c2b.sicoozwebservicej=INFO,F

In the above example, the logger name is the package associated with the web service.
In this case com.oracle.ohi.c2b.sicoozwebservicej was used for the
SIC_OOZ_WEBSERVICEJ web service

Finally, ensure that the file permissions of log4j.properties restrict access to
authorised users only. In our test set up, we applied ‘chmod 640’ on log4j.properties.

6.1.3. Configure WebLogic to use log4j

Start the WebLogic administration console.

• Select the managed server for which you want to set up logging.

• Select Logging/Advanced

• Change the Logging Implementation from JDK to Log4j

• Select Server Start/Arguments and add
-Dlog4j.configuration=file:/u01/app/oracle/product/OHI/admin/log4j.properties

• Copy $WL_HOME/server/lib/wllog4.jar to $DOMAIN/lib
($WL_HOME/../user_projects/domains/<domain>/lib

• Download log4j.jar (for example from http://logging.apache.org/log4j/) to
$DOMAIN/lib

• Stop and start the managed server

• Check the managed server log to verify that log4j is being used.

Verify the output and log file which where created during startup of the managed
server. Warnings like this:

log4j: WARN no appenders could be found for logger XYZ

indicate that log4j.properties is not properly configured. Possible errors are:

• Log4j.properties cannot be located. Verify that the location specified in
log4j.configuration matches with the location of the actual file.

• The logger for the service XYZ has not been configured.

Once log4j.properties is configured, these messages will go away and you will see
messages in the designated log file.

http://logging.apache.org/log4j/�

6.2. Start WLS Node manager

. ozg_init.env $OZG_ORATAB_FRS11G2

cd $WL_HOME/server/bin

. setWLSEnv.sh

./startNodeManager.sh

6.3. Start WLS Configuration Wizard

. ozg_init.env $OZG_ORATAB_FRS11G2

Start $WL_HOME/common/bin/config.sh

You might run into the errors below:

Could not reserve enough space for object heap

Could not create the Java virtual machine.

In that case run the same command after issuing the following command:

export _JAVA_OPTIONS=-XX:MaxPermSize=512m

6.4. Update deployment

When a new version of the .ear file is delivered make sure you update the
deployment:

• Make sure the Admin Server process as well as the Managed Server process
are running.

• Start the WebLogic console for the domain.

• Navigate to the deployment you need to update, and when running in
‘Production Mode’, activate ‘Lock & Edit’.

• Select the checkbox in front of the existing deployment and use the ‘Update’
button to update the deployment.

7. Appendix A - Installation of SIC_OOZWEBSERVICES

It is possible to use a synchronous version of the SIC_OOZWEBSERVICEJ web
service.

The EAR file for the synchronous version is SIC_OOZWEBSERVICES.ear

The installation does NOT require setting up JMS queues.

Installation:

• Ensure you have completed the installation of the WebLogic domain as
described in Ch 3.

• Deploy the SIC_OOZWEBSERVICES.ear, target to a managed server and
start the web service

8. Appendix B - Functional Testing

8.1. Test SIC_OOZWEBSERVICEJ

It is possible to functionally test the SOAP/JMS interface with

Steps:

• Install HermesJMS

• Configure a session with the WebLogic host (config file needed)

• Select the jms/OOZWebServiceQueue

• Select Messages>Send Text Message and send an XML file with a request for
SIC_OOZWEBSERVICEJ to jms/OOZWebServiceQueue

• Verify that the web service is responding by looking into the
jms/OOZWebServiceResponseQueue and jms/oozErrorQueue.

Beware for the instructions above: replace OOZ by C2B if you use the English
version!

8.1.1. Install HermesJMS

HermesJMS is a free tool to interact with JMS providers. It allows you to play back
prepared SOAP messages to functionally test the SOAP/JMS interface.

For more information and to download the tool go to
http://www.hermesjms.com/confluence/display/HJMS/Home

Note that prior to installing HermesJMS you must create an environment variable
JAVA_HOME which points to a JVM (version 1.5 or higher).

8.1.2. Create wlfullclient.jar for interacting with Weblogic

You will need client library files for testing the web service. The easiest solution is to
create the client libraries on the web logic server.

• Go to $WL_HOME/server/lib on the weblogic server.

• Issue the following command to create a full client JAR file for interacting
with WebLogic:

java –jar wljarbuilder.jar

• Copy wlfullclient.jar to the computer running HermesJMS.

8.1.3. Configure a provider in HermesJMS

Start HermesJMS and open the preferences dialog.

Select the ‘Providers’ tab and add a classpath group named ‘weblogic’.

Add the wlfullclient.jar file to the library.

http://www.hermesjms.com/confluence/display/HJMS/Home�

8.1.4. Configure a context in HermesJMS

Open the ‘Sessions’ tab in the preferences dialog.

• Enter a session name, eg. ‘vm’ or whatever has your fancy.

• Select the ‘weblogic’ loader.

• Select the BEA WebLogic plugin

• Select the hermes.JNDIConnectionFactory class

• Set the properties as indicated below:

Name Value

providerURL T3://<hostname><port>

Hostname: managed server host

Port number: managed server port number

initialContextFactory weblogic.jndi.WLInitialContextFactory

Binding javax/jms/QueueConnectionFactory

securityAuthentication Weblogic

securityPrincipal <administrator>, eg. weblogic

securityCredentials <administrator_password>, eg. openzorg99

At this point the screen should look like this:

8.1.5. Discover the JMS queues for SIC_OOZWEBSERVICEJ

Right-click on the session and select ‘Discover’.

At this stage you will see the 3 queues which were set up for
SIC_OOZWEBSERVICEJ.

8.1.6. Send test message to jms/OOZWebserviceQueue (replace OOZ by C2B if you use the English
version!)

• Create an XML file containing a test message. You may use the sample
message for this.

• Choose ‘Send Text Message’ in HermesJMS and select the file containing the
test message. Once you click the ‘Send’ button, the message is sent to the
SOAP/JMS service.

• Now double-click on the OOZWebServiceResponseQueue.

• Refresh the contents of this queue, until a message arrives from the web
service.

• If no message arrives you may need to check the oozErrorQueue.

The screendump below shows a functional error message returned by
SIC_OOZWEBSERVICEJ after processing the sample message:

8.2. Test SIC_OOZWEBSERVICES

You can functionally test the SOAP/HTTP variant of the SIC_OOZWEBSERVICEJ
web service by taking the OozEnvelope part of an existing SOAP/JMS message and
inserting it in a SOAP/HTTP request.

The whole process consists of the following steps:

• Generate WSDL using WebLogic administration console

• Install SoapUI tool

• Create SoapUI project

• Create SOAP request

• Run SOAP request

8.2.1. Generate WSDL using WebLogic administration console

Start the WebLogic administration console.

Select the SIC_OOZWEBSERVICES web service in the deployments page.

Select the web service as shown below:

Click on the SicOozwebserviceS web service and choose the ‘Testing’ tab. Within this
tab, expand SicOozwebserviceS like below:

Click on WSDL to generate the WSDL file.

Save as SicOozWebserviceS.wsdl.

8.2.2. Install SoapUI tool

soapUI is an open source tool for functional testing. You can download it from
www.soapui.org.

We have used version 3.5.1.

8.2.3. Create soapUI project

Start the soapUI tool, ignore timeout warnings.

Perform the following steps:

• Create a new project.

• Enter a project name (eg. C2B)

• Include the previously created WSDL file using ‘Browse’

• Ensure that ‘create request’ and ‘create testsuite’ are checked.

• Click OK to create the soapUI project.

http://www.soapui.org/�

For the generation of the test suite, ensure to create empty requests:

Click OK to generate the project and test suite.

8.2.4. Create SOAP request

Use a text editor to view a SOAP/JMS message suitable for testing the SOAP/JMS
variant of SIC_OOZWEBSERVICE. An example is given in the remainder of this
chapter.

Select the contents of <OozEnvelope>, including the open and close tag for
<OozEnvelope>:

<OozEnvelope>Contents</OozEnvelope>

Now wrap the selection in a CDATA fragment:

<![CDATA[<OozEnvelope>Contents</OozEnvelope>]]>

Open the C2B project in soapUI and right-click on Request 1 to start the request
editor.

Replace the ? in <arg0>?</arg0> with the CDATA fragment. The request will now
look like this:

The request (in the left window of the request editor) will look like this:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sic="http://sicoozwebservices.c2b.ohi.oracle.com/">
 <soapenv:Header/>
 <soapenv:Body>
 <sic:oOZWebService>
 <!--Optional:-->
 <arg0>
<![CDATA[<OozEnvelope>Contents</OozEnvelope>]]>
 </arg0>
 </sic:oOZWebService>
 </soapenv:Body>
</soapenv:Envelope>

8.2.5. Run SOAP request

Click the PLAY button in the top left of the request editor window to submit the
request. Once the response is received, it will be shown in the right window of the
request editor.

The response is a SOAP message which may contain a :

1. Confirmation from Oracle Health Back Office.
Action: no action required.

2. Functional error message from Oracle Health Back Office
Action: no action required.

3. Technical error message from Oracle Health Back Office
Action: verify that the web version is compatible with the version of Oracle
Health Back Office.

4. Technical error message indicating that the web service could not be reached
Action: ensure that the web service is up and running at the host and port
number which were specified in the WSDL.

5. Technical error message regarding the contents of the request.
Action: edit the message until it is accepted as a valid request.

8.3. Sample message OOZWebService

The definition of the OOZWebService message payload itself that can be exchanged is
documented in an XSD file.

The XSD files for the OHI Connect to Back Office web services can be found on the
application server when the application server OHI software is installed.

In folder $OZG_BASE/xml the files SIC_OOZWEBSERVICE.xsd and
SIC_OOZWEBSERVICE_EN.xsd define the structure of the messages for the Dutch
respectively English version of the OOZWebService service.

8.3.1. Dutch sample message

Below a sample Dutch message is given.

<?xml version="1.0" encoding="ISO-8859-1"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<soap:Body>
<OozEnvelope>
 <OozMetadata>
 <MsgType>OOZOPVOERENPOLIS</MsgType>
 <ConversationId>700094</ConversationId><!--wijzig-->
 <MsgSequenceNumber>1</MsgSequenceNumber>
 <MsgCreationTimestamp>21129975</MsgCreationTimestamp>
 </OozMetadata>
 <OozData>
 <WebService>
 <OOZOpvoerenPolis>
 <BerichtKenmerken>
 <DatumIngang>2011-04-01</DatumIngang>
 <Merk>PBSTD</Merk>
 <Functionaris>RSULING</Functionaris>
 <Brondocument>7094</Brondocument><!--wijzig-->
 <Mutatiebron>AANM</Mutatiebron>
 <IndGereedMelden>N</IndGereedMelden>
 <InMutatieToegestaan>N</InMutatieToegestaan>
 <IndMutatieWooneenheid>N</IndMutatieWooneenheid>
 <IndAanpassenRelAdres>J</IndAanpassenRelAdres>
 </BerichtKenmerken>
 <Relatie>
 <Relid>
 <RelVolgNr>1</RelVolgNr>
 <BSNNr>700000161</BSNNr><!--wijzig-->
 <GebDatum>1994-05-14</GebDatum>
 </Relid>
 <VestAdres>
 <Adres>
 <Land>NL</Land>
 <PCNr>1112</PCNr>
 <PCLetter>XH</PCLetter>
 <HuisNrPostb>4</HuisNrPostb>
 <HuisNrToev/>
 </Adres>
 </VestAdres>
 <Naam>Volumetest1</Naam>
 <Vrltrs>T</Vrltrs>
 <Geslacht>1</Geslacht>
 <GebDatum>1994-05-14</GebDatum>
 <BSNNr>700000161</BSNNr><!--wijzig-->
 </Relatie>
 <Polis>
 <VerzNmr>
 <RelID>
 <RelVolgNr>1</RelVolgNr>
 </RelID>
 </VerzNmr>
 <FinInfo>
 <OntvWijzePrem>2</OntvWijzePrem>
 <OntvWijzeDecl>2</OntvWijzeDecl>

 <IncFreq>1</IncFreq>
 </FinInfo>
 <OvereenkDatum>2011-04-01</OvereenkDatum>
 <Contract>
 <CollNrExt>274</CollNrExt>
 </Contract>
 </Polis>
 <Dekkingen>
 <Verzekerden>
 <Relid>
 <RelVolgNr>1</RelVolgNr>
 </Relid>
 <DatumIngang>2011-04-01</DatumIngang>
 <DatumAanm>2011-03-02</DatumAanm>
 </Verzekerden>
 <MPEId>181</MPEId>
 </Dekkingen>
 <RedenToetr>005</RedenToetr>
 </OOZOpvoerenPolis>
 <Transactie>OOZOPVOERENPOLIS</Transactie>
 </WebService>
 </OozData>
</OozEnvelope>
</soap:Body></soap:Envelope>

8.3.2. English sample message

Below a sample English message is given.
<?xml version="1.0" encoding="ISO-8859-1"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<soap:Body>
<OozEnvelope>
 <OozMetadata>
 <MsgType>C2BADDPOLICY</MsgType>
 <ConversationId>0-1611433041</ConversationId>
 <MsgSequenceNumber>1</MsgSequenceNumber>
 <MsgCreationTimestamp>1157707483046</MsgCreationTimestamp>
 </OozMetadata>
 <OozData>
 <WebService>
 <C2BAddPolicy>
 <MessageProperties>
 <StartDate>2012-01-01</StartDate>
 <Brand>PBSTD</Brand>
 <Officer>MSMALLEN</Officer>
 <IndApplyMod>N</IndApplyMod>
 <IndModHousehold>N</IndModHousehold>
 </MessageProperties>
 <Party>
 <PartyId>
 <PartySeqNo>1</PartySeqNo>
 <BSNNo>104949612</BSNNo>
 <DateOfBirth>1970-11-11</DateOfBirth>
 </PartyId>
 <Residence>
 <Address>
 <PCNo>2571</PCNo>

 <PCLetter>WG</PCLetter>
 <HouseNoPOBox>168</HouseNoPOBox>
 </Address>
 </Residence>
 <CodeType>
 <TypeCodeType>19</TypeCodeType>
 <CodeType>104949612</CodeType>
 <StartDate>2008-01-01</StartDate>
 </CodeType>
 <Name>M-1914 Verzekeringnemer 1</Name>
 <BSNNo>104949612</BSNNo>
 <Initials>B</Initials>
 <NameOrder>1</NameOrder>
 <Gender>1</Gender>
 <DoB>1970-11-11+01:00 </DoB>
 <MaritalStatus>2</MaritalStatus>
 <Origin>ZRG</Origin>
 </Party>
 <Policy>
 <PolicyHolder>
 <PartyId>
 <PartySeqNo>1</PartySeqNo>
 </PartyId>
 </PolicyHolder>
 <FinInfo>
 <PremiumAccount>
 <Account>
 <AccountNo>366718428</AccountNo>
 </Account>
 </PremiumAccount>
 <PremiumReceiptMethod>1</PremiumReceiptMethod>
 <ClaimsReceiptMethod>1</ClaimsReceiptMethod>
 <ColFreq>1</ColFreq>
 </FinInfo>
 <StartDate>2012-01-01</StartDate>
 </Policy>
 <Coverage>
 <Member>
 <PartyId>
 <PartySeqNo>1</PartySeqNo>
 </PartyId>
 </Member>
 <MPRStartDate>2006-01-01</MPRStartDate>
 <Package>PBSTD</Package>
 <PremStruc>STDPC</PremStruc>
 <CovStruc>STDDC</CovStruc>
 <YDStruc>STDER</YDStruc>
 <YDStep>ER0</YDStep>
 <ContrCare>PBNAT</ContrCare>
 </Coverage>
 <EntryReason>007</EntryReason>
 <PreviousInsurer>0701</PreviousInsurer>
 </C2BAddPolicy>
 <Transaction>C2BADDPOLICY</Transaction>
 </WebService>
 </OozData>
</OozEnvelope>
</soap:Body></soap:Envelope>

	1. Introduction
	1.1. Purpose
	1.2. Audience
	1.3. Document structure
	1.4. Release
	1.4.1. Dutch versus English

	1.5. Software versions
	1.5.1. OHI Back Office
	1.5.2. Oracle WebLogic Server

	2. Overview of the OHI Back Office web services
	2.1. SOAP/JMS web service
	2.1.1. English queue names

	2.2. SOAP/HTTP web service

	3. Installation preparation
	3.1. Verification of required files
	3.1.1. Required Files

	3.2. Database preparation
	3.2.1. Database objects
	3.2.2. Oracle account to be used

	3.3. WebLogic Preparation
	3.3.1. Create domain, managed server, machine
	3.3.1.1. Create domain
	3.3.1.2. Create managed server, machine etc.

	3.4. Creating JDBC Data Source
	3.4.1.1. Create data source using JNDI name
	3.4.1.2. Select database driver
	3.4.1.3. Set up connection properties
	3.4.1.4. Test database connection
	3.4.1.5. Target the JDBC data source

	3.5. Start the managed server

	4. Installation of SIC_OOZCLAIMSDATAS
	5. Installation of SIC_OOZWEBSERVICEJ
	5.1. Before you start
	5.1.1. Alternative implementations

	5.2. Create JMS Server
	5.2.1. Target JMS Server

	5.3. Create and configure JMS Module
	5.3.1. Create System Module
	5.3.2. Target the JMS module
	5.3.3. Finish JMS Module creation

	5.4. Create subdeployment
	5.4.1. Target subdeployment to JMS server

	5.5. Create Connection Factory
	5.6. Create Queues
	5.7. Create foreign server (only when using OHI Self Service)
	5.8. Deploy the application EAR file

	6. Administration
	6.1. Logging
	6.1.1. Set up directory structure
	6.1.2. Create log4j configuration file
	6.1.3. Configure WebLogic to use log4j

	6.2. Start WLS Node manager
	6.3. Start WLS Configuration Wizard
	6.4. Update deployment

	7. Appendix A - Installation of SIC_OOZWEBSERVICES
	8. Appendix B - Functional Testing
	8.1. Test SIC_OOZWEBSERVICEJ
	8.1.1. Install HermesJMS
	8.1.2. Create wlfullclient.jar for interacting with Weblogic
	8.1.3. Configure a provider in HermesJMS
	8.1.4. Configure a context in HermesJMS
	8.1.5. Discover the JMS queues for SIC_OOZWEBSERVICEJ
	8.1.6. Send test message to jms/OOZWebserviceQueue (replace OOZ by C2B if you use the English version!)

	8.2. Test SIC_OOZWEBSERVICES
	8.2.1. Generate WSDL using WebLogic administration console
	8.2.2. Install SoapUI tool
	8.2.3. Create soapUI project
	8.2.4. Create SOAP request
	8.2.5. Run SOAP request

	8.3. Sample message OOZWebService
	8.3.2. English sample message

