
Start

Oracle® Documaker

Internet Document
Server SDK Reference
Version 2.6

Part number:E51709_01

 March 2014

Copyright © 2009, 2014, Oracle and/or its affiliates. All rights reserved.
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.
Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)
The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.
Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.
Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.
Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

ix

Contents

Chapter 1, Using the Internet Document Server SDK

4 Queues

5 Finding the Information You Need

7 Using the DSI APIs with C

10 Using Unicode in Attachment Variables

10 Sample Program-DSIEX

12 Writing Processing Rules in C

12 How the System Processes Rules

13 Creating Rules

15 Creating, Accessing, and Destroying Variables
15 Accessing the Attachment

16 Accessing the Queue

16 Using Utility Functions

16 Creating Rules for Reserved Request Types

19 Using the Java Libraries

20 Using the MsgClient Sample Program

21 Writing Processing Rules in Java

21 How the System Processes Rules
21 Developing and Deploying Java Rules

23 Java Rules vs. C Rules

23 Function Signature for Java Rules

25 Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

26 DPRLbyPropFind
28 DPRLbyGet
30 DPRLbyPut
31 DPRLbyLock
32 DPRLbyUnlock
33 DPRLbyDelete
34 DPRLbyOptions
35 DPRLbyCopy

x

36 DPRLbyPropPatch
37 DPRLbyMKCol
38 WebDav Request Types for Library Manager
40 Using File System Rules
42 propFind
44 get
45 put
46 lock
47 unlock
48 delete
49 options
49 copy
50 move
51 propPatch
52 mkCol
53 Using the IDSWebdavServlet

61 Writing Processing Rules in Visual Basic

66 Miscellaneous Notes

68 Samples
68 DSICoTB
69 DSITest
71 DSIDiag
71 DSIDiag.exe
72 Debug.ASP
73 DSICoSAM
74 DSICoExV
75 DSICoEx.cpp
76 DSICoAdm and ADMAsp
76 DSI COM Objects under ASP

78 Referencing Attachment Variables

Chapter 2, DSI C APIs

80 C API Functions

83 DSIAddAttachRec

84 DSIAddAttachVar

85 DSIAddAttachVarEx

86 DSIAddToAttachRec

xi

87 DSIAddToAttachRecEx

89 DSIAddToQueue

90 DSIAttachCursorFirst

92 DSIAttachCursorFirstEx

94 DSIAttachCursorLast

96 DSIAttachCursorLastEx

98 DSIAttachCursorName

100 DSIAttachCursorNext

102 DSIAttachCursorNextEx

104 DSIAttachCursorPrev

106 DSIAttachCursorPrevEx

108 DSIAttachCursorValue

110 DSIAttachCursorValueEx

112 DSIAttachVarLength

113 DSIAttachVarLengthEx

115 DSICacheFile

116 DSICloseAttachCursor

117 DSICopyAttachVars

118 DSICopyQRecord

119 DSICreateValue

120 DSIDeleteAttachVar

121 DSIDestroyValue

122 DSIEncryptValue

123 DSIEncryptValueEx

124 DSIErrorMessage

125 DSIErrorMsg

126 DSIFindInQueue

127 DSIGetFirstFromQueue

128 DSIGetSOAPMessage

129 DSIGetSOAPMessageSize

130 DSIGetQError

131 DSIGetQField

133 DSIGetQFieldLength

134 DSIGetQueueRec

135 DSIGetUniqueString

136 DSIInit

xii

137 DSIInitInstance

138 DSIInitQueue

139 DSILocateAttachVar

140 DSILocateAttachVarEx

141 DSILocateValue

142 DSIOpenAttachCursor

143 DSIParseAttachment

144 DSIQueryEnvOptions

145 DSIQueryValueSize

146 DSIReceiveFile

147 DSIReceiveFileAsBuffer

149 DSIReceiveFileAsBufferSize

151 DSIRowset2XML

152 DSIRowset2XMLSize

153 DSISendBuffer

154 DSISendFile

155 DSISetQField

156 DSIStoreAttachment

157 DSITerm

158 DSITermInstance

159 DSITermQueue

160 LDAPGetErrorCode

161 LDAPGetErrorMessage

162 LDAPInit

167 LDAPSearchDirectory

168 LDAPTerm

Chapter 3, DSI Java APIs

172 Using JavaBean Components

176 Returning a RecordSet Object

178 Using IDSJSP in a JSP Container

178 DSI Bean APIs

179 Using the DSI Java Messaging Library for Client Applications

180 Passing JVM Options to DSILIB

xiii

181 Generating Debug Output for Client Requests

182 Java API Classes

Chapter 4, DSI Processing Rules

184 Server Rules

186 FTPRule

187 Putting and Getting Multiple Files

189 IRLCleanDirectory

191 IRLClearLog

192 IRLCopyAttachment

193 IRLDecryptValue

194 IRLInit

195 IRLFileFTP

202 IRLInitFTP

203 IRLLog

204 IRLPurgeCache

205 IRLSearch

206 IRLSendVersion

208 IRLStatistics

209 AddJobRule
209 setupPool
209 addJob

211 AttachmentFilterRule
211 sendFile
212 receiveFile

213 BLPPurgeRule

214 BLPStatisticsRule

215 CopyDataRule
215 copyData
215 copyMessageVariables

217 FTPRule
218 transferFiles

223 IDSEncryptionRule

224 IDSInitRule

225 IDSTransactionRule

xiv

226 LogTransactionRule
226 logTransaction
226 purgeOldTransactionTables

228 processAttachments

229 Client Rules

230 ATCAppend2Attachment

231 ATCLoadAttachment

232 ATCLogTransaction

233 ATCReceiveFile

236 ATCSendFile

238 ATCSendMultipleFiles

239 ATCUnloadAttachment

241 IRCInit

242 IRCPrint

243 IRCRequest

244 IRCResult

245 IRCSendVersion

247 IRCUnloadPage

Chapter 5, DSI Visual Basic APIs

250 Using the Prototypes and Examples

250 Handling Errors

251 Using the Web Services Example

252 Visual Basic Methods

AddAttachRec 255

AddAttachVar 257

AddToAttachRec 258

AddToQueue 260

AttachCursorFirst 261

AttachCursorLast 262

AttachCursorName 264

AttachCursorNext 265

AttachCursorPrev 266

AttachCursorValue 268

xv

AttachList 269

CacheFile 270

CloseAttachCursor 271

CopyAttachVars 272

CopyQRecord 273

CreateValue 274

CreateValueObj 276

DeleteAttachVar 278

DestroyValue 279

DestroyValueObj 281

DumpDebugInfo 283

ErrorMessage 284

FindInQueue 285

GetAttachment 286

GetAttachmentAll 288

GetAttachRecSet 290

GetAttachVarSet 292

GetPriority 294

GetQField 295

GetQFieldLength 296

GetQueueRec 297

GetReqType 299

GetStatus 300

GetUniqueID 301

GetUniqueIDLength 302

GetUniqueString 303

GetUserID 304

Init 305

InitInstance 306

InitQueue 307

InitSession 308

LocateAttachVar 310

LocateValue 311

LocateValueObj 313

OpenAttachCursor 315

ParseAttachment 316

xvi

QueryValueSize 317

SetAttachment 318

SetPriority 320

SetQField 321

SetReqType 322

SetStatus 323

SetUniqueID 324

SetUserID 325

StoreAttachment 326

Submit 327

Term 329

TermInstance 330

TermQueue 331

TermSession 332

Trace 333

TraceAttach 334

TraceEnableRule 335

TraceList 336

TraceSnapshot 337

Property Instance 338

Property Signature 339

Property TraceEnable 340

Property TracePath 341

343 Index

1

Chapter 1

Using the Internet
Document Server SDK

This chapter tells you how to use the Document Server
Interface (DSI) APIs for creating rules and applications
to interface with Oracle Insurance's Internet Document
Server. The various API functions and processing rules
are described in detail in this manual.

You can use the API C functions, Java methods, Visual
Basic methods, and processing rules to build either a
proprietary client interface or a custom set of rules
which work with the Internet Document Server.

The APIs provide a number of services, including...

• Interprocess communication

• Persistent variables

• Accessible across function calls

• Error reporting

Several general purpose functions are also available.

The DSI API includes interfaces (APIs), for C, Java, and
Visual Basic so you can use these languages to build
custom rules and applications. You will also find
sample clients which you can use as a reference. For
more information, see...

• Finding the Information You Need on page 5

• Using the DSI APIs with C on page 7

• Writing Processing Rules in C on page 12

• Using the Java Libraries on page 19

• Using the IDSWebdav Servlet Client APIs and
DPRLIB Rules on page 25

• Writing Processing Rules in Visual Basic on page
61

The illustration on the following page shows how data
flows within the system and its overall architecture.

Chapter 1
Using the Internet Document Server SDK

2

Web Server

ActiveX-based
Custom Client

Module

JSP or servlet
based Web
Application

Front-end components
talk to IDS via the DSI
API. These components
provide communications
and an interface which
gather client request,
translate those requests
for the Internet
Document Server, and
then translate the results
for the client’s use.

Java-based
Custom Client

Module

DSI API

Request
Queue
(input)

Request
Queue

(output)

Document Processing Server

Internet

Back-End Components

Bridges Processing Rules Data, Document
Sets or Archives

Back-end components
include bridges to other
applications, the rules
which process the data,
the data or archives being
processed, and document
sets. These components
communicate with IDS
via the DSI API.

Front-End (Client) Components

DSI API

Distributed Clients

Document
Server

Custom Client
Module

World Wide Web
or Intranet Client

World Wide Web
or Intranet Client

World Wide Web
or Intranet Client

Local or Batch
Client

3

Two-tier and three-tier models are supported. In the three-tier model, the remote client
can take a variety of forms and paths. The remote can be a web browser using CGI, a
web browser using Java, or stand-alone, fat or thin, Java or C clients. Notice that there are
two paths from the remote client, one through a front-end component, such as CGI, JSP
or servlet, and the other through a Java client. The two paths merge at the DSI API, one
for C the other for Java.

The system includes a CGI client, which supports rules. Because you can write your own
front-end client, the term front-end client applies to both. Discussions about rule
processing in the front-end client, however, refer to a CGI client.

Similarly, the two-tier model can be supported by writing local applications, such as
those that do not use remote communications. You can write these local applications in
either Java or C. These local applications use their own APIs. The DSIEX.C sample
program, discussed in the topic Sample Program-DSIEX on page 10, is an example of a
local application.

Aside from the languages there are these key differences:

• The front-end CGI client supports rules and relies on HTML scripts

• The Java browser applet has a persistent connection with the Java server console
application.

• The CGI script runs on a front-end client on the HTML server; the Java applet
processing is split between the remote web browser and the server.

The general structure of a DSI session depends upon whether you are writing an
executable program or a custom set of rules in C or an applet and application in Java.
An executable program requires additional calls to initialize and terminate the Internet
Document Server and its database access subsystems. To keep things from getting too
confusing, the markers below indicate the steps unique to CGI or Java:

Java 1 The browser makes a request to a web application (JSP or servlet)

CGI 2 The browser loads an HTML page with a reference to a CGI script

Java 3
The web application accepts user input, creates a request and adds the request to the
server’s request queue

4 The client executable on the server (CGI or Java) receives user input.

CGI 5 Based upon data supplied by the user, the rules create an attachment and a queue record

6 The data compiled by the rules is added to the server's request queue.

7
The server retrieves the request from its queue, and, based upon the request, executes its
own set of rules

8
The rules read the attachment record and use the supplied information to create a new
attachment and queue record

9 The data compiled by the server rules is posted to the server's result queue

CGI 10 The client retrieves the results and executes yet another set of rules

Chapter 1
Using the Internet Document Server SDK

4

NOTE: An attachment is a block of information accessed in the form of name/value
pairs. Attachments are used to pass information between the client and the
server rules, as well as the API.

This sequence is greatly simplified, ignoring the details of how rules compile data and
determine what information needs to be provided at each stage of the process. These
details may include database accesses, requests from the user for additional information,
the creation of files, and other tasks.

Queues
Typically, you will have more than one browser active at a time so input and output to
the Internet Document Server is organized around queues. These queues serialize the
requests and process them on a first in, first out basis. The DSI queues also let you
prevent conflicts as several clients perform several tasks at a time.

CGI 11
The rules read the attachment created by the server and use this information to format
output to be provided to the user

Java 12
The information is passed to the web application, which formats a reply and passes the
reply to the browser

CGI 13 An HTML page is formatted and passed to the browser

Finding the Information You Need

5

FINDING THE
INFORMATION

YOU NEED

Depending on how you implement the system, you may not need to install or use all of
the components. Below is a table which shows the order in which you should read the
chapters and appendices in this manual and in the other Internet Document Server
related guides and briefly describes these chapters or appendixes.

To... Read...

Find an overview of the Internet
Document Server

Chapter 1 of the Internet Document Server Guide.

Install and set up the Internet
Document Server.

 Internet Document Server Installation Guide.

Create PDF, HTML, or XML
output

 Internet Document Server Guide.

Once you install the Internet Document Server, you will typically use one of the following
bridges:

Documaker Bridge This bridge lets you retrieve and display form sets stored
in Documaker’s archive module. It also lets you convert
Metacode and AFP output created by the Documerge
system into PDF files used by the Internet Document
Server.
For more information, see Using the Documaker Bridge.

Docuflex Bridge This bridge lets the Internet Document Server use
Docuflex as a composition engine.
For more information, see Using the Docuflex Bridge.

If you plan to customize the Internet Document Server, either by building custom client
modules or by adding processing rules, install the Internet Server SDK and refer to the
appropriate chapters of this manual for additional information.

Install and learn about the
Internet Document Server SDK

Chapter 1, Using the Internet Document Server SDK,
beginning on page 1

Use C to customize the Internet
Document Server

Chapter 2, DSI C APIs on page 79.

Use Java to customize the
Internet Document Server

Chapter 3, DSI Java APIs on page 171

Have the Internet Document
Server run specific processing
rules

Chapter 4, DSI Processing Rules on page 183

Create Visual Basic programs,
Active X components and ASP
components,

Chapter 5, DSI Visual Basic APIs on page 249

For help resolving any errors which may occur:

See a listing of all error messages Appendix B of the Internet Document Server Guide

For information about system files:

See this appendix Appendix A of the Internet Document Server Guide

Chapter 1
Using the Internet Document Server SDK

6

Keep in mind that XML standards, as defined by the W3C, require you to substitute text
characters that are not in XML tags (for example, between <entry> and </entry> tags)
as escape sequences. The characters that require substitution are listed in the following table.
If you cut and paste an XML example from this or other Docupresentment
documentation into an XML configuration file, you will have to manually make these
substitutions.

For this character Use this escape sequence

< (less than) <

> (greater than) >

& (ampersand) &

' (apostrophe) '

“ (quotation mark) "

Using the DSI APIs with C

7

USING THE DSI
APIS WITH C

A front-end client has a number of convenient and powerful features for access to the
Internet Document Server using the DSI C API. Note that access to all of the client
functionality is not provided through the DSI C API.

You must handle memory management, rule processing, HTML formatting, and other
calls to the operating system. The DSI API does, however, handle communication with
the server. You can find prototypes for all of the DSI C API functions in DSILIB.H. For
executable programs, access to the DSIW32.DLL file must be explicitly included in your
link by including the implib DSIW32.lib.

In addition, a number of functions are available expressly for use in custom front-end
clients. If you are writing an executable program, note that the client must call the
DSIInit and DSIInitInstance functions before it calls any of the other DSI functions.

NOTE: You cannot call the DSIInit and DSIInitInstance functions more than once
without an intervening call to the DSITerm and DSITermInstance functions.

The DSIInit function returns a process-level handle used for calls to the DSIInitInstance
function, which in turn returns a thread-level handle. The instance handle is used for all
subsequent calls to DSI functions.

/* for .EXE only */

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

If you are writing rules and not an executable program, the opposite is true. You should
not call the DSIInit and/or DSIInitInstance functions because the program running the
rules has already made those calls. As you will see in the topic Writing Processing Rules
in C on page 12, you will be passed the instance handle every time the rule is called.

NOTE: The functions DSIInit, DSIInitInstance, DSITermInstance, and DSITerm
functions are required for EXEs only. Do not use them when writing rules.

If you are using the queue APIs, the next task is to call DSIInitQueue once for each of
the input and output queues. These calls initialize the communication channels between
a front-end client and server and create the attachment lists.

DSIInitQueue(hInstance, DSI_INPUTQUEUE, “RESULTQ”)

Once the queues have been initialized, you can implement your design. The queue fields
required by the server are:

• the request type (see the table on page 16.) DSIQSET_REQTYPE

• your user ID (your choice) DSIQSET_USERID

• a globally unique identifier, DSIQSET_UNIQUE_ID

Once the rule processing has been completed and the attachment list filled, a front-end
client must fill the appropriate queue fields and add the record to the queue for retrieval
by the server. Additionally, if a front-end client provides attachment data to the Internet
Document Server, you must set the DSIQSET_ATTACHMENT field.

Chapter 1
Using the Internet Document Server SDK

8

NOTE: You set the DSIQSET_ATTACHMENT field to add a single attachment buffer
that the caller maintains. For other situations, you would use the
DSIAddAttachVar and DSIStoreAttachment functions.

Since your process or thread likely will not be the only user of the server, the
DSIQSET_UNIQUE_ID field, which you will use to locate the response, should be
unique to a given request. The easiest way to do this is to use the DSIGetUniqueString
function, as shown here:

/* set the request type */

DSISetQField(hInstance,

 DSI_OUTPUTQUEUE,

 DSIQSET_REQTYPE,

 "SSS",

 sizeof("SSS"));

/* set the user id */

DSISetQField(hInstance,

 DSI_OUTPUTQUEUE,

 DSIQSET_USERID,

 "MyID",

 sizeof("MyID"));

/* set the unique id

first the field length */

DSIGetQFieldLength(hInstance,

 DSI_OUTPUTQUEUE,

 DSIQSET_UNIQUE_ID)

/* next get a unique identifier from DSI */

DSIGetUniqueString(hInstance, szUnique, cbUnique);

/* put unique id into the queue record */

DSISetQField(hInstance,

 DSI_OUTPUTQUEUE,

 DSIQSET_UNIQUE_ID,

 szUnique,

 cbUnique);

Once the above fields have been filled, call the DSIAddToQueue function to post the
message to the server.

DSIAddToQueue(hInstance, DSI_OUTPUTQUEUE);

To use a proprietary attachment format, retrieve each attachment variable in turn,
copying them all into a single buffer in the format desired, and pass the result to the
DSISetQField function. The length of this buffer cannot exceed 64K.

To retrieve results from the Internet Document Server, call the DSIFindInQueue or
DSIGetQueueRec function with the pszId parameter set to the value used for the
DSIQSET_UNIQUE_ID (we recommend that you use the DSIGetUniqueString
function to generate this value).

Using the DSI APIs with C

9

You can then retrieve the attachment from the result record using the DSIGetQField
function and parse it into individual attachment variables. Alternatively, you can use
the DSIParseAttachment function to produce a list of name/value pairs that can be
retrieved using the DSIAttachCursorFirst, DSIAttachCursorNext,
DSIAttachCursorPrev, DSIAttachCursorLast functions, as shown below:

DSIGetQueueRec(hInstance,

 DSI_INPUTQUEUE,

 szUnique,

 1000L,

 10000L);

DSIParseAttachment (hInstance, DSI_INPUTQUEUE);

DSIOpenAttachCursor(hInstance, DSI_INPUTQUEUE);

DSIAttachCursorFirst(hCursor,

 szName,

 sizeof (szName),

 szValue,

 sizeof (szValue));

DSIAttachCursorNext(hCursor,

 szName,

 sizeof (szName),

 szValue,

 sizeof (szValue));

DSICloseAttachCursor(hCursor);

/* for .EXE only*/

if (hInstance != DSINULLHANDLE) {

 DSITermQueue(hInstance, DSI_INPUTQUEUE);

 DSITermQueue(hInstance, DSI_OUTPUTQUEUE);

 DSITermInstance(hInstance);

}

if (hApp != DSINULLHANDLE) {

 DSITerm(hApp);

}

Chapter 1
Using the Internet Document Server SDK

10

USING UNICODE
IN

ATTACHMENT
VARIABLES

IDS now supports Unicode, via UTF-8 encoding, in the setting and retrieving of values
from attachment variables. The support is implemented via new functions and defined
constants in the DSILIB library. The new functions are:

DSIAddAttachVarEx

DSIAddToAttachRecEx

DSILocateAttachVarEx

DSIAttachVarLengthEx

DSIAttachCursorFirstEx

DSIAttachCursorNextEx

DSIAttachCursorPrevEx

DSIAttachCursorLastEx

DSIAttachCursorValueEx

DSIAttachCursorValueLengthEx

DSIEncryptValueEx

These functions are similar to the base versions of the functions, but have an extra
encoding parameter that you can set to either DSIENCODING_SINGLE_BYTE or
DSIENCODING_UTF_8.

For example, when adding an attachment variable a rule writer can either use

DSIAddAttachVar(hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue);

or

DSIAddAttachVarEx(hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_SINGLE_BYTE);

or

DSIAddAttachVarEx(hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_UTF_8);

When using the base versions of these functions, the default encoding is
DSIENCODING_SINGLE_BYTE, so the first two function calls would do the same
thing.

DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, which has a one-to-
one mapping between bytes and Unicode characters between 32 and 255, except from 128
to 159, which maps some Unicode characters down into this range. For example, the
Unicode character for the Euro symbol (hex 20ac) is converted to a 128 (hex 80) and
vice versa. This makes IDS compatible with how Documaker handles the Euro symbol.

DSIENCODING_UTF_8 uses UTF-8 encoding, which is a way to translate Unicode
multibyte characters into a format compatible with null-terminated C language strings
while retaining all the character information.

SAMPLE PROGRAM-DSIEX
As an aid, the Internet Document Server includes a sample program named DSIEX.C
and its executable DSIEXW32.EXE. It is a simple, single-threaded console application,
which opens an input and output queue, requests the server status, and dumps the
results to sysout. It also checks the installation and setup.

To run DSIEXW32.EXE, follow these steps:

1 Start the Internet Document Server in the \DOCSERV directory.

Using Unicode in Attachment Variables

11

2 Run DSIEXW32.EXE.

The DSIEX program will run for a few seconds and stop after producing 30+ lines of
output. If you want to look more closely at the output, which includes a listing of all
the libraries used by Internet Document Server, redirect the output to a file.

Take a look at DSIEX.C and you will see it includes all the steps outlined above,
especially those required for an executable program, such as the calls to the DSIInit,
DSIInitInstance, DSITermInstance, and DSITerm functions.

Chapter 1
Using the Internet Document Server SDK

12

WRITING
PROCESSING
RULES IN C

A rule is an entry point in a DLL that follows a standard parameter set or convention.
You can use rules to customize how your system operates. The processing rules run
either in a front-end client, such as the CGI client, or in the Internet Document Server.

Please refer to Chapter 3 in the Internet Document Server Guide, for a discussion on
configuring the rules in the configuration file. The standard rules you can use are
explained in the topic Server Rules on page 184.

The rules run by the front-end CGI client are contained in DLLs, which the system loads
when it receives a request that requires the use of a rule. Because rules run within the
process address space of the executable program, memory violations within a rule are
memory violations within the server. This is not a result you want to occur so take steps
to prevent them.

The same may be said of memory leaks and performance bottlenecks. For this reason,
you should carefully write and test the rule before you place it in service. There are some
good tools available to help you look for bugs, memory leaks and performance bottle
necks, such as Bounds Checker and Heap Agent. The results are well worth the effort. It
is assumed that you are familiar with the C programming language.

HOW THE SYSTEM PROCESSES RULES

To process the various rules, the system loops through a list of rules and calls each in
turn with this set of messages:

• DSI_MSGINIT

• DSI_MSGRUNF

• DSI_MSGRUNR

• DSI_MSGTERM

DSI_MSGINIT message The DSI_MSGINIT message lets a rule initialize lists and other data structures that will
be used during processing of the following messages or by other rules.

NOTE: This rule list is run in forward order.

DSI_MSGRUNF and
DSI_MSGRUNR

messages

The DSI_MSGRUNF and DSI_MSGRUNR are the actual processing messages. Two
processing messages are provided so rules have a chance to provide additional processing
after other rules have done their work. The rule list is run in forward order during the
processing of the DSI_MSGRUNF message and in reverse order while processing the
DSI_MSGRUNR message.

DSI_MSGTERM
message

Finally, the DSI_MSGTERM message allows rules to release any resources that were
allocated during the previous three stages.

NOTE: This rule list is run in reverse order.

Writing Processing Rules in C

13

The rules processing engine provides no means to abort this processing loop. It is your
responsibility to check at each stage to make sure that prior rules completed successfully,
that necessary data has been provided, and react accordingly.

Used with a front-end CGI client and Internet Document Server, most transactions
involve three runs of the rules processing engine. The first run, by the front-end CGI
client, transforms user input into data usable by the server. The second run of the rules
processing engine by the Internet Document Server performs the actual work of the
transaction. The final run of the rules processing engine is again done by a front-end
CGI client and transforms the server's results into user output.

During each run of the engine, a different set of data is available for use by the rules.
Entering the first run, a front-end client has read and parsed the request, such as a URL
provided by the web browser to the CGI client, as well as the environment variables. In
the CGI client, each element of the URL and each environment variable are added to
the output attachment list to make them available for use by rules.

To provide a front-end client with access to the attachment, be sure the
ATCUnloadAttachment rule is present in the client's rule list. The
ATCUnloadAttachment rule performs its processing during the DSI_MSGRUNR
message. Keep this in mind when you order the rule list. Make sure all necessary
attachment variables are created before the attachment is unloaded.

When the Internet Document Server rules run, certain fields in the Request queue record
are accessible. To make sure the attachment variables provided by a front-end client are
also accessible, include the ATCLoadAttachment rule in the rule list before any rules that
require attachment data.

To provide the result processing loop of the client with access to the attachment
variables created by the server, make sure the ATCUnloadAttachment rule is in the
server's rule list. The ATCUnloadAttachment rule performs its processing during the
DSI_MSGRUNR message. Keep this in mind when ordering the rule list so that all
necessary attachment variables are created before the attachment is unloaded.

NOTE: See also Chapter 3 of the Internet Document Server Guide for more
information.

When a front-end client begins to process results, certain fields of the result queue record
are again available. As with the server run, any necessary attachment data must be made
available with a call to ATCLoadAttachment in the rule list before attempting to access
that data.

CREATING RULES

The rules you write in C for the client or server must follow this prototype:

_DSIEXPORT long _DSIAPI MyRule(DSIHANDLE hInstance,

char *pszParms,

unsigned long ulMsg,

unsigned long ulOptions);

• hInstance is created by a call to the DSIInit function

Chapter 1
Using the Internet Document Server SDK

14

• pszParms contains the rule parameters, as specified in the configuration file

• ulMsg is the current message, as discussed above

• ulOptions is reserved for future use

NOTE: Rules written for use with the front-end CGI client or server must not call the
DSIInit or DSIInitInstance functions. These calls are handled elsewhere.

Each rule will generally have a switch statement with cases for each of the defined
messages. Inside the rule, you can do just about anything you want. Remember, though,
that allocated memory must be freed, and that performance bottlenecks in a rule create
performance bottlenecks for the server.

Rule template Here’s a template for a rule that will help you get started.

_DSIEXPORT long _DSIAPI MyRule (DSIHANDLE hInstance,

 char * pszParms,

 unsigned long ulMsg,

 unsigned long ulOptions)

{

 switch (ulMsg)

 {

 /* ---------------------------

 * Initialization Message

 * Add data initialization here

 */

 case DSI_MSGINIT:

 break;

 /* ---------------------------

 * Run Rule Forward Message

 * Do desired processing

 */

 case DSI_MSGRUNF:

 break;

 /* ---------------------------

 * Run Rule Reverse Message

 * Do desired processing

 */

 case DSI_MSGRUNR:

 break;

 /* ---------------------------

 * Termination Message

 * Clear data, free any memory allocated

 */

 case DSI_MSGTERM:

 break;

 }

 return DSIERR_SUCCESS;

}

Writing Processing Rules in C

15

CREATING, ACCESSING, AND DESTROYING VARIABLES

The DSICreateValue, DSIQueryValueSize, DSILocateValue, and DSIDestroyValue
functions provide easy access to persistent variables you can access from any rule.

NOTE: Variable names are case sensitive and must be unique.

Accessing the Attachment
The attachment is attached to the queue record passed between the client and server.
Attachment variables are similar to those created by the DSICreateValue function,
except attachment variables are passed between processes. If a value does not need to find
its way from the client to the server or vice versa, use the DSICreateValue rule to create
the variable.

The functions you can use to access the attachment are...

• DSIAddAttachVar

• DSILocateAttachVar

• DSIDeleteAttachVar

• DSIOpenAttachCursor

• DSICloseAttachCursor

• DSIAttachCursorFirst

• DSIAttachCursorNext

• DSIAttachCursorPrev

• DSIAttachCursorLast

In addition to these rules, there are several additional functions and rules you can use
to access the attachment:

• The DSIAddAttachRec and DSIAddToAttachRec functions let you create stem
variables, similar to the C language struct type. These stems allow for multiple
records each with members having the same name.

• The HTML formatting rule, IRCUnloadPage, replaces special tags in an HTML
template with the values in these variables. See Chapter 3 of the Internet Document
Server Guide for more information.

• The DSICopyAttachVars function lets you copy an entire attachment from one
queue to another.

• The DSIErrorMessage function lets you send formatted error messages to the user.
The DSIErrorMessage function uses the stem variable capabilities of attachments
and the HTML formatting support of the IRCUnloadPage rule so you can precisely
report errors.

Chapter 1
Using the Internet Document Server SDK

16

ACCESSING THE QUEUE

As a general rule, you should not have to access the queue record, as opposed to the
attachment, from within custom rules. There may be times, however, when you want to
change the request type or priority, or to use a proprietary attachment format. To query
and set queue fields, use the DSIGetQField and DSISetQField functions.

There are several field identifiers you can use with these functions. As queue field lengths
can change, call the DSIGetQFieldLength function before you retrieve the field. Be very
careful when you modify fields, particularly when you use the provided client and server
programs, because these programs rely on certain fields.

It is practically inevitable that a queue error will occur at some point. To get information
regarding the nature of the error, use the DSIGetQError function.

There are additional queue APIs that should only be used when creating an executable.
These APIs will be discussed shortly.

NOTE: The queue names DSI-INPUTQUEUE and DSI-OUTPUTQUEUE are
relative, depending on your perspective. For example, the input queue in a rule is
the output queue in a client.

USING UTILITY FUNCTIONS

At times, you may need to create and later delete temporary files. The DSI SDK includes
two APIs you can use to perform these tasks:

CREATING RULES FOR RESERVED REQUEST TYPES

Several request types are reserved for use within the server and/or client. You cannot use
these request types for transactions. While a default set of rules is provided for these
reserved request types, in some cases you may want to change these defaults.

Here is a list of the reserved requests and a description of each. These requests may or
may not be in use at any given time, and the default processing for these requests is subject
to change.

Reserved request types

To... Use this function...

Generate unique file names and avoid naming conflicts DSIGetUniqueString

Remove temporary files after a specified time period DSICacheFile with the
IRLPurgeCache rule

Request type Description

ADM Reserved

CAD Reserved

Writing Processing Rules in C

17

To extend the existing rules for one of these request types, construct the rule as
discussed. Then insert a call to the rule in the appropriate place in the configuration file
(refer to Using the Documaker Bridge for more information).

For instance, to add MyPeriodicCleanupFunction in the MYDLL.DLL library after the
IRLPurge rule has completed, modify the ReqType:SAR control group as shown here:

< section name=”ReqType:SAR” >

<entry name=”function”>irlw32->IRLPurge</entry>

<entry name=”function”>mydll->MyPeriodicCleanupFunction</entry>

</section>

If you are replacing the functionality provided for one of the reserved request types,
make sure the replacement rule provides adequate functionality. Then, simply remove
(or comment) the existing rules and insert the replacements.

NOTE: The system does not check the status of rules. Processing continues even if your
rule fails. You must make sure the previous steps of the process were completed
without error.

CLF Clear log file

DEFAULT Used if no rules are listed for a request CAD client
administration

ERR Error message

ERS Relay daemon stop

ESS Server stop

INI Initialization/termination rules

THREADINI Initialization/termination rules for threads

RAD Relay daemon administration

RRS Relay daemon restart

RSS Server restart

SAR Server autorun

SCS Client statistics

SSS Server statistics

UNK Unknown

VLF View log file

Messages beginning with a digit Reserved for internal use. Do not override.

Request type Description

Chapter 1
Using the Internet Document Server SDK

18

Using the Java Libraries

19

USING THE
JAVA LIBRARIES

A front-end client has convenient Java libraries available from Oracle for accessing
IDS. The Internet Document Server Java Libraries handle communication with the
server, the bundling of data and formatting the data for sending to the server, in
addition to useful utility functions.

The libraries are available in the DocuCorpUtil.jar and DocucorpMsg.jar files. These
files must be part of the CLASSPATH of the Java client program.

You will also need files for the parsing and writing of XML files, xerces.jar and xalan.jar.
If you are running Java version 1.3 these files will need to be included in your
CLASSPATH. These files are part of the Java runtime version 1.4 and later.

The Internet Document Server Java Libraries provide support for setting up queues for
communicating with IDS. This is done through a queue factory, which creates input and
output queues. The queue factory can be created using the getQueueFactory method of
the class com.docucorp.messaging.DocucorpMsgUtil. Configuration parameters for the
queue factory are passed in using a java.util.Properties object. The queue factory can then
create the needed queues.

DSIMessageQueueFactory queueFactory =
DocucorpMsgUtil.getQueueFactory(props);

DSIMessageQueue inputQueue =
_queueFactory.createMessageQueue(DSIMessageQueueFactory.INPUTQUEUE)
;

DSIMessageQueue outputQueue =
_queueFactory.createMessageQueue(DSIMessageQueueFactory.OUTPUTQUEUE
);

Requests sent and results retrieved from the server are held in instances of the
com.docucorp.messaging.DSIMessage class. This class has methods for storing name/
value pairs called message variables and strings or binary data in attachments. There are also
methods for setting the request type and unique ID of the request.

DSIMessage requestDSIMessage = new DSIMessage();

requestDSIMessage.setRequestType("SSS");

requestDSIMessage.setMsgVar("USERID", "USER");

requestDSIMessage.setMsgVar("PASSWORD", "PASS");

Before the request can be sent the data in the DSIMessage object must be changed to a
format that can be sent through the queues. This process is called marshalling. A Java
object that marshals a DSIMessage can be created using the getMarshaller method of the
class com.docucorp.messaging.DocucorpMsgUtil. The marshaller will read the
information in the DSIMessage and create an object that can be sent through the queues.

DSIMessageMarshaller marshaller =
DocucorpMsgUtil.getMarshaller(props);

Object request = marshaller.marshall(requestDSIMessage);

Since more than one client application can be communicating with the server through
the queues, each message should be sent with a unique identifying string so the client
application can get the correct result record back from the result queue. The Java class
com.docucorp.util.UniqueStringGenerator can be used to make a unique string.

UniqueStringGenerator usg = new UniqueStringGenerator();

String uniqueID = generateUniqueString();

With the marshaled request and unique ID, IDS can send the request to the server.

outputQueue.putMessage(uniqueID, request);

Chapter 1
Using the Internet Document Server SDK

20

The client application now waits for the server to process the request and make a result
that will go in the client’s input queue. The result is marked with the unique ID string
sent with the request.

Object result = inputQueue.getMessage(uniqueID, 1000, 3);

The result is in the same format that the marshaller used to send the request. To get the
data in a usable format, the system uses the same kind of marshaller to unmarshall the
result object into a DSIMessage.

DSIMessage resultDSIMessage = new DSIMessage();

marshaller.unmarshall(result, resultDSIMessage);

You can now use DSIMessage methods to retrieve message variables and any attachments
that the server may have sent back.

Map messageVariables = resultDSIMessage.getAllMsgVars();

Map attachments = resultDSIMessage.getAllAttachments();

Using the MsgClient Sample Program
As an aid, IDS includes a sample program named MsgClient.java and its compiled form
MsgClient.class. It is a single-threaded console Java program that will fill in a
DSIMessage from a data file, open an output and input queue, send a request, get the
result back and display the result on the screen. for this example, assume...

• IDS is running

• The Docucorp Java Libraries, supporting files, and the MsgClient.class file is in a
subdirectory called lib

• The client configuration file (dsimsgclient.properties) is in the current directory

• The data file (ssstest.txt) is in the current directory

Then you run MsgClient under Windows using this command:

java –cp lib;lib\DocucorpMsg.jar MsgClient ssstest.txt

The MsgClient sample has all the steps outlined above.

Writing Processing Rules in Java

21

WRITING
PROCESSING

RULES IN JAVA

A rule is a method in a Java class that follows a standard parameter set or convention.
The method may be an instance method or a static (class) method. You can use rules to
customize how IDS operates.

How the System Processes Rules
Each request sent to IDS corresponds to a list of rules. Each rule in the list is called with
a set of messages (from the Java class com.docucorp.ids.data.IDSConstants):

• IDSConstants.MSG_INIT

• IDSConstants.MSG_RUNF

• IDSConstants.MSG_RUNR

• IDSConstants.MSG_TERM

MSG_INIT message The MSG_INIT message lets a rule initialize any data that will be used by itself or other
rules during the processing the other messages.

MSG_INIT is run in forward order, starting with the first rule in the request’s list of
rules and proceeding to the last.

MSG_RUNF and
MSG_RUNR messages

These messages are intended for the main data processing the rules have to do. Two
messages are provided so every rule has a chance to run after the rules have been run
once

MSG_RUNF is run in forward order, starting with the first rule in the request’s list of
rules and proceeding to the last. MSG_RUNR is run in reverse order, starting with the
last rule in the request’s list of rules and proceeding to the first.

MSG_TERM message The MSG_TERM message lets the rules release any non-memory related resources
allocated during the run of the other messages.

Developing and Deploying Java Rules
Java rules are methods in Java classes. The Java class should include a no-argument
constructor (unless you are using a static method) and a method that has the rule
function signature, described below.

Java rules are deployed by placing the Java executable code in the rules subdirectory of
the main IDS directory; there is no need to modify the CLASSPATH of IDS to run the
rule. If the executable code is in a .jar file it can be put directly in the rules directory. If
the executable code is separate .class files then it needs to have a directory structure that
matches the package structure of the Java class.

For example, if the Java rule is CustomRule and its package is com.sampco, then the
CustomRule.class file would need to be in the rules/com/sampco directory under the
main IDS directory.

In addition to custom rules, any third party Java libraries needed to run the custom rules
should be put in the rules subdirectory, such as database drivers, communications code,
and so on. Java rules deployed also have access to Java code that is part of IDS. This code
is in the lib subdirectory under the main IDS directory.

Chapter 1
Using the Internet Document Server SDK

22

Every time IDS is restarted the rules subdirectory is checked for rules code. It is not
necessary to shut down IDS and start it again to deploy new or updated Java rules.

Setting up Java rules in
the configuration file

To run a Java rule in a request, add a line to the request as follows:

< entry
name="function">java;classname;objectname;scope;method;arguments</
entry>

Setting up IDS 1.x
Java rules in the
configuration file

Java rules were also implemented in IDS version 1.x but the function signature was
closer to C rules, including the use of a DSI Handle. Although new Java rules should
use the new function signature, mentioned below, version 1.x Java rules will run as-is in
IDS 2.x.

To run an IDS 1.x Java rule in a request, add a line to the request as follows:

<entry name="function">dsijrule-
>JavaRunRule,;classname;objectname;scope;method;arguments</entry>

Parameter Description

classname Name of your Java class, in full package form. For example, if you have class
CustomRule in the com.sampco package, the classname would be
com.sampco.CustomRule

objectname Name used to refer to the object. Required if using global scope. Multiple Java
rules in different requests with global scope and the same object name would
refer to the same Java object.

scope Scope can be one of the following values.
global – The object will remain until IDS is restarted.
transaction – The object will be created during the MSG_INIT message and will
remain until the request has processed all the MSG_INIT, MSG_RUNF,
MSG_RUNR and MSG_TERM messages.
local – The object is created and destroyed for every message run during the
request.
static – No object is created; the method is a static method of the class and will
be run as such.

method Name of the method in the Java class to run as the rule.

arguments Any additional arguments from the configuration line.

Parameter Description

classname Name of your Java class, in full package form, using JNI formatting. For
example, if you have class CustomRule in the com.sampco package, the
classname would be com/sampco/CustomRule. This makes for easier
conversion of IDS 1.x rule lines to IDS 2.

objectname Name used to refer to the object. Required if using global scope. Multiple
Java rules in different requests with global scope and the same object name
would refer to the same Java object.

Writing Processing Rules in Java

23

JAVA RULES VS. C RULES

C rules are functions with no data associated with them. This means that if a C rule
needs data to operate it usually needs to allocate data structures in the DSI_MSGINIT
message, use the data in DSI_MSGRUNF and DSI_MSGRUNR, and free it in
DSI_MSGTERM.

Since the setup of Java rules can include the creation of Java objects from classes, data
can automatically be associated with the Java rule. For example a Java rule run under
transaction scope can allocate data structures it needs in the object’s member variables
at object construction or during the run of the MSG_INIT message. If the resources
allocated by the Java object are only memory resources, the memory will be de-allocated
during garbage collection some time after the object goes out of scope. If the rule
allocates non-memory resources (files, database connections, etc.) then it should follow
the usual convention of allocating resources during MSG_INIT and freeing resources
during MSG_TERM.

FUNCTION SIGNATURE FOR JAVA RULES

The methods for Java rules must follow this function signature:

public int ruleMethod(RequestState requestState, String arg, int msg)

The return code should be either IDSConstants.RET_SUCCESS if the rule ran
successfully, or IDSConstants.RET_FAIL if not.

scope Scope can be one of the following values.
global – The object will remain until IDS is restarted.
transaction – The object will be created during the MSG_INIT message and
will remain until the request has processed all the MSG_INIT, MSG_RUNF,
MSG_RUNR and MSG_TERM messages.
local – The object is created and destroyed for every message run during the
request.
static – No object is created; the method is a static method of the class and
will be run as such.

method Name of the method in the Java class to run as the rule.

arguments Any additional arguments from the configuration line.

Parameter Description

requestState the object that holds the current running state of the request at this point of
execution. This includes a DSIMessage with the input message variables and
attachments, a DSIMessage with the output message variables and
attachments being built, configuration information to read, and so on.

arg the arguments from the rule line of the configuration file.

msg the message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

Parameter Description

Chapter 1
Using the Internet Document Server SDK

24

Example Here is an example of a Java class that can be used as a starting point for rule writing:

import com.docucorp.ids.data.*;

public class SampleRule {

 public SampleRule() {

 /*

 * You may want to do some data setup here.

 */

 }

 public int runRule(RequestState requestState,

 String arg,

 int msg) {

 try {

 switch (msg) {

 case IDSConstants.MSG_INIT:

 /*

 * Do any non-memory related setup here.

 */

 break;

 case IDSConstants.MSG_RUNF:

 /*

 * Do main processing here.

 */

 break;

 case IDSConstants.MSG_RUNR:

 /*

 * Do main processing here.

 */

 break;

 case IDSConstants.MSG_TERM:

 /*

 * Do any non-memory related cleanup here.

 */

 break;

 }

 return IDSConstants.RET_SUCCESS;

 } catch (Exception ex) {

 return IDSConstants.RET_FAIL;

 }

 }

}

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

25

USING THE
IDSWEBDAV

SERVLET CLIENT
APIS AND

DPRLIB RULES

The IDSWebdavServlet client APIs and server side rules let you update libraries or file
systems using these WebDav client commands:

Library management
rules

You can use these DPRLIB rules to update libraries maintained by Library Manager
using WebDav commands.

• DPRLbyGet on page 28

• DPRLbyPut on page 30

• DPRLbyLock on page 31

• DPRLbyUnlock on page 32

• DPRLbyDelete on page 33

• DPRLbyOptions on page 34

• DPRLbyCopy on page 35

• DPRLbyPropPatch on page 36

• DPRLbyMKCol on page 37

File system rules You can also use the following file system rules:

• propFind on page 42

• get on page 44

• put on page 45

• lock on page 46

• unlock on page 47

• delete on page 48

• options on page 49

• copy on page 49

• move on page 50

• propPatch on page 51

• mkCol on page 52

options ls cd

propgetall propfind propget

get put lock

unlock delete copy

move proppatch mkcol

Chapter 1
Using the Internet Document Server SDK

26

DPRLbyPropFind
Use this rule to return:

• The properties for a file if the resource you specify is a file

• A list of files and their properties if the resource you specify is a collection or file
type (FAP, LOG, DDT, DAL, FOR, GRP, BDF)

• A list of collections or file types if the resource you specify is root (/).

This rule supports these WebDav commands by querying Library Manager for the
configuration specified:

Input attachments

Use this command To

ls [path] List the contents of a collection.

cd [path] Change directories.

propget [path] [property] Get a property.

propfind [path] [property] Find a property.

propgetall [path] List all properties for a resource.

Variable Description

RESOURCEURI A resource URI specifying a user ID, config, file type, and resource. Here
are some examples of resource URIs:

/userid/config/filetype/resource/

/userid/config/filetype/

/userid/config/

/userid/

DEPTH Enter a depth of 0ne (1) for collections or file types in Library Manager.
Enter a depth of zero (0) for file resources.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

27

Output attachments
Variable Description

PROPERTIES A rowset of rows that match each of the file resources available
for a particular collection/file type. If DEPTH is one (1) and
RESOURCEURI specifies a collection or file type in Library
Manager, the PROPERTIES rowset returns a row for each
resource available in the collection/file type.
If DEPTH is zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource you specified.
Each row in the PROPERTIES rowset contains the following
properties for a file resource:
supportedlock - If locking is allowed, this XML string appears:

property: <lockentry>

<lockscope>

<exclusive/>

</lockscope>

<locktype>

<write/>

</locktype>

</lockentry>

getContentLanguage - currently returns en_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directory.
displayname - the display name of the resource.
HREF - the resource URL for this resource
getlastmodified - the date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently zero (0) because there is no support
for retrieving the file size of a document stored in Library
Manager (reserved for future use).
If a resource is locked these additional properties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS contains SUCCESS.

RESULTS Success or error

Chapter 1
Using the Internet Document Server SDK

28

INI options Use these options in the DAP.INI file to see a listing of the configurations that support
Library Manager.

< LbyConfigs >

Config = RPEX1

Config = RPEX2

DPRLbyGet
Use this rule to get or check out a resource file from Library Manager. This rule can
retrieve a resource file by version and revision or by name, in which case it retrieves the
latest version and revision for the resource specified. This rule supports these WebDav
commands:

Input attachments

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.

Variable Description

Use this command To

get [path] file Get a resource.

head [path] file Get header info for a resource. (currently works same as get)

Variable Description

RESOURCEURI The resource URI of the resource you want to retrieve from Library
Manager. Here is an example of the format for the resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpex1/ddt/master.ddt

/jdoe/RPEX1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name does not contain version, revision, and archive
effective date information, the DPRLbyGet rule retrieves the last version
and revision for the resource specified. Use the DPRLbyGet rule to get or
check out a resource from Library Manager.

USERID (Optional) The user ID you want to use for the get operation. If you
include this attachment variable, it overrides the user ID provided as part
of the resource URI.
If the user ID is missing as an attachment variable and in the resource
URI, the rule will fail.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

29

Input rule arguments

Output attachments

Argument Description

CHECKOUT If you include this rule argument and set its value to Yes, the rule tries to check
out (get and lock) the resource specified. This is useful for configuring this rule
for a check-out or get request type.

Variable Description

PROPERTIES A rowset with a row for the resource specified in
RESOURCEURI. The row contains the following properties
for a file resource:
supportedlock - If locking is allowed, this XML string appears:

property: <lockentry>

<lockscope>

<exclusive/>

</lockscope>

<locktype>

<write/>

</locktype>

</lockentry>

getContentLanguage - currently returns en_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directory.
displayname - the display name of the resource.
HREF - the resource URL for this resource
getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently zero (0) because there is no
support for retrieving the file size of a document stored in
Library Manager.
If a resource is locked these additional properties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource
locked.
This rowset is only present if RESULTS contains SUCCESS.

RESULTS Success or error

Chapter 1
Using the Internet Document Server SDK

30

DPRLbyPut
Use this rule to add a new resource or to check in (unlock and put) an existing resource
into Library Manager. You can add a new resource or put an existing resource into
Library Manager.

If the resource is new, its version and revision will be 00001. If the resource is an existing
one and it is locked by the same user ID performing the put operation, the resource will
be put into Library Manager with a new version and revision.

This rule supports the following WebDav commands:

Keep in mind that if a put operation is attempted on an existing resource and the
version and revision specified is not the latest one, the put operation will fail. The system
only supports put operations for new documents or for the last existing version and
revision which must be locked prior to the put call.

Input attachments

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked and
the system attempted a check out operation.

Use this command To

put [path] Put a file into Library Manager.

Variable Description

Variable Description

RESOURCEURI A resource URI specifying the resource you want to place into
Library Manager. Here is an example of the format of the URI:

/userid/config/filetype/resource/

Here are some examples:

/cjr/rpex1/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707.DDT

Keep in mind that if the resource file name in RESOURCEURI
does not contain version, revision, and archive effective date
information, the DPRLbyPut rule tries to put the last version and
revision of the file resource you specified.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

31

Output attachments

DPRLbyLock
Use this rule to lock a resource in Library Manager. This rule supports the following
WebDav commands:

USERID (Optional) The user ID you want to use for the put operation. If
this attachment variable is present, it overrides the user ID
provided in the resource URI.
If the user ID is missing from the attachment variable and from
the resource URI, the rule will fail. For put operations with an
existing resource, the user ID must match that of the locked
record or the put operation will fail.

ARCEFFECTIVEDATE (Optional) An archive effective date. Here is the format for this
attachment variable:

MM/DD/YYYY

If this variable is present, its value is used as the archive effective
date for the put operation. If it is missing, the rule uses the current
date as the archive effective date.

Variable Description

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked
under a different user ID.

Use this command To

lock [path] file Locks a resource.

Chapter 1
Using the Internet Document Server SDK

32

Input attachments

Output attachments

DPRLbyUnlock
Use this rule to unlock a resource file in a library maintained by Library Manager. This
rule supports the following WebDav commands:

Variable Description

RESOURCEURI The resource URI of the resource you want to lock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpex1/ddt/master.ddt

/jdoe/RPEX1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain version,
revision, and archive effective date information, the DPRLbyLock rule
tries to lock the last version and revision of the file resource you specified.

USERID (Optional) The user ID you want to use for the lock operation. If this
attachment variable is present, it overrides the user ID provided as part
of the resource URI. If the user ID is omitted from the attachment
variable and from the resource URI, the rule will fail.

Variable Description

LOCKOWNER The user ID that owns the lock.

LOCKSCOPE The scope of the lock (exclusive).

LOCKSUBJECT The name of the resource locked.

LOCKDEPTH The depth of the resource locked (0).

LOCKTYPE The type of lock (write).

LOCKTIMEOUT The time-out value after which the lock will expire (infinity).

LOCKTOKEN A unique ID that identifies the resource locked.

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is already
locked.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

33

Input attachments

Output attachments

DPRLbyDelete
Use this rule to remove a resource or collection from Library Manager. This rule can
remove a resource file by version and revision or by name, in which case the rule
removes the latest version and revision for the resource file you specified.

If the resource you specify is a collection (file type), all resources for the collection will
be removed, provided none are locked. This rule supports these WebDav commands:

Use this command To

unlock [path] file Unlock a resource.

Variable Description

RESOURCEURI The resource URI of the resource you want to unlock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpex1/ddt/master.ddt

/jdoe/RPEX1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain version,
revision, and archive effective date information, the DPRLbyUnlock rule
tries to unlock the last version and revision of the file resource specified.

USERID (Optional) The user ID you want to use for the unlock operation. If this
attachment variable is present, it overrides the user ID provided in the
resource URI.
If the user ID is omitted from the attachment variable and from the
resource URI, the rule fails. If the user ID does not match the one for the
locked record, the rule fails.

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked by
another user.

Use this command To

delete [path] file Delete a resource.

Chapter 1
Using the Internet Document Server SDK

34

Input attachments

Output attachments

DPRLbyOptions
Use this rule to display the WebDav commands supported by Library Manager. This
rule supports these WebDav commands:

Variable Description

RESOURCEURI The resource URI of the resource you want to delete from
Library Manager. Here is an example of the format you should
use:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpex1/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain
version, revision, and archive effective date information, the
DPRLbyDelete rule tries to delete the last version and revision
of the file resource you specified.

RESULTS (Optional) This variable is only generated by the DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.
If this variable exists and is set to ERROR — indicating either
the DPRLbyGet or DPRLbyCopy rule failed — this rule will not
execute.

WEBDAVERRORCODE (Optional) This variable is only generated by DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.
If this variable exists — indicating that either the DPRLbyGet
or DPRLbyCopy rule failed — this rule will not execute.

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

35

This rule displays the following WebDav commands that are supported by Library
Manager:

Input attachments None

Output attachments

DPRLbyCopy
Use this rule to copy a resource from one location to another, such as from one library
to another. Keep in mind...

• The resource and destination file names must match.

• The config value for the resource must differ from the config value for the
destination.

If the resource you are copying does not exist in the destination library, it will be added
as a new resource with a version and revision of 00001. If the resource being copied exists
in the destination, it will be added as a new version and revision; this is true regardless
of what version and revision was specified for the resource or destination file names.
The DPRLbyCopy rule supports these WebDav commands:

Input attachments

Use this command To

options [path / url] Displays the options available for a path or URL.

options get head

propfind propgetall lock

unlock delete copy

move proppatch mkcol

Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by Library
Manager.

RESULTS Success.

Use this command To

copy [source] [destination] Copies a resource from one location to another.

Variable Description

LBYFILE The resource you want to use for the copy operation. A full path
and file name generated by DPRLbyGet rule, which should be run
before this rule in the WEBDAVCOPY request type.

Chapter 1
Using the Internet Document Server SDK

36

Output attachments

DPRLbyPropPatch
Use this rule to set or remove properties defined on the resource identified by the
RESOURCEURI. This rule supports these WebDav commands:

DESTINATIONURI A URI that contains the destination of the resource you want to
copy. Here are some examples of destination URIs:

/cjr/rpex1/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707.DDT

OVERWRITE (Optional) An overwrite flag indicator. A T means to overwrite the
destination if it exists. An F indicates the rule will fail if the
destination exists. Reserved for future use.

USERID (Optional) The user ID you want to use for the copy operation. If
this attachment variable exists, it overrides the user ID provided in
the destination URI. If the user ID is omitted from the attachment
variable and the destination URI, the rule will fail.

ARCEFFECTIVEDATE (Optional) An archive effective date. Here is an example of the
format you should use:

MM/DD/YYYY

If this variable exists, its value is used as the archive effective date
for the copy operation. Otherwise, the rule uses the current date
for the archive effective date.

Variable Description

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
403 (Webdav ’forbidden’ error code) - The source and destination
URIs are the same.
409 (Webdav ’conflict’ error code) - The resource cannot be
created at the destination.
412 (Webdav ’precondition failed’ error code) - The overwrite
header is F and the state of the destination resource is non-null.
420 (Webdav ’method failure’ error code) - An internal error or
memory error occurred.
423 (Webdav ’locked’ error code) - The destination resource was
locked.

Use this command To

proppatch Not supported by Library Manager.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

37

The proppatch command is not supported by Library Manager. You cannot modify the
properties for records in Library Manager. This rule always returns RESULTS set to
ERROR and WEBDAVERRORCODE set to method not allowed.

Input attachments None

Output attachments

DPRLbyMKCol
Use this rule to create a collection in Library Manager. This rule supports these WebDav
commands:

Keep in mind the mkcol command is not supported by Library Manager. You cannot
make new collections (file types) in Library Manager without first adding a resource of
that type.

This rule always returns RESULTS set to ERROR and WEBDAVERRORCODE set to
unsupported media type.

Input attachments None

Output attachments

Variable Description

RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS contains
ERROR, which in this case is always true. It will contain this value:
405 - (WebDav ’method not allowed’ error code) - The server
does not allow or support this method.

Use this command To

mkcol Not supported by Library Manager.

Variable Description

RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR,
which in this case is always true. It contains this value:
415 - (WebDav ’unsupported media type’ error code) - The server
does not support or understand the mkcol request type.

Chapter 1
Using the Internet Document Server SDK

38

WebDav Request Types for Library Manager
You should use the following request types with Library Manager:

<section name="ReqType:WEBDAVOPTIONS">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRLbyOptions</entry>

 </section>

 <section name="ReqType:WEBDAVPROPFIND">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyPropFind</entry>

 </section>

 <section name="ReqType:WEBDAVGET">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyGet</entry>

 <entry name="function">atcw32-
>ATCSendFile,RESOURCE,LBYFILE,BINARY</entry>

 </section>

 <section name="ReqType:WEBDAVHEAD">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyGet</entry>

 <entry name="function">atcw32-
>ATCSendFile,RESOURCE,LBYFILE,BINARY</entry>

 </section>

 <section name="ReqType:WEBDAVPUT">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyPut</entry>

 </section>

 <section name="ReqType:WEBDAVCHECKOUT">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyGet,CheckOut=Yes</entry>

 <entry name="function">atcw32-
>ATCSendFile,RESOURCE,LBYFILE,BINARY</entry>

 </section>

 <section name="ReqType:WEBDAVCHECKIN">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyPut</entry>

 </section>

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

39

 <section name="ReqType:WEBDAVLOCK">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyLock</entry>

 </section>

 <section name="ReqType:WEBDAVUNLOCK">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyUnlock</entry>

 </section>

 <section name="ReqType:WEBDAVDELETE">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyDelete</entry>

 </section>

 <section name="ReqType:WEBDAVCOPY">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyGet</entry>

 <entry name="function">dprw32->DPRLbyCopy</entry>

 </section>

 <section name="ReqType:WEBDAVMOVE">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRSetConfig</entry>

 <entry name="function">dprw32->DPRInitLby</entry>

 <entry name="function">dprw32->DPRLbyGet</entry>

 <entry name="function">dprw32->DPRLbyCopy</entry>

 <entry name="function">dprw32->DPRLbyDelete</entry>

 </section>

 <section name="ReqType:WEBDAVPROPPATCH">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRLbyPropPatch</entry>

 </section>

 <section name="ReqType:WEBDAVMKCOL">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">dprw32->DPRLbyMKCol</entry>

 </section>

Chapter 1
Using the Internet Document Server SDK

40

Using File System Rules
In addition to the DPRLIB Library Manager rules for WebDav support, version 2.0 also
comes with a set of Java rules you can use to perform file system updates on the server
side via WebDav commands submitted by the IDSWebdavServlet client component.

The file system rules include:

• propFind on page 42

• get on page 44

• put on page 45

• lock on page 46

• unlock on page 47

• delete on page 48

• options on page 49

• copy on page 49

• move on page 50

• propPatch on page 51

• mkCol on page 52

File system request
types

To use the file system rules, replace Library Manager request types with the following
file system request types:

<!-- ***Begin WebDav rules for a file system. -->

<section name="ReqType:WEBDAVOPTIONS">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;s
tatic;options;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVPROPFIND">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;propFind;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVGET">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;get;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVPUT">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;put;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVHEAD">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;get;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVLOCK">

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

41

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;lock;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVUNLOCK">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;unlock;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVCOPY">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;copy;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVMOVE">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;move;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVDELETE">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;delete;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVPROPPATCH">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;propPatch;FILE,webdavfilesystem.properties</entry>

</section>

<section name="ReqType:WEBDAVMKCOL">

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule;;t
ransaction;mkCol;FILE,webdavfilesystem.properties</entry>

</section>

You must also create a file system directory on the IDS side. The file system directory
must reside on a location accessible to IDS and should contain the resources that should
be updated via WebDav commands. In addition, each of the Java rules listed above uses
a FILE argument which points to a properties file with settings for the file system. Here
is a sample properties file:

WDROOTNAME=/idswebdav/

WDROOTDIR=c:/ids/idswebdav/

Chapter 1
Using the Internet Document Server SDK

42

propFind
Use this rule to return properties for a resource or collection. This rule supports these
WebDav commands:

Input attachments

Command Description

ls [path] Lists contents of a collection.

cd [path] Changes a directory.

propget [path] [property] Gets a property.

propfind [path] [property] Finds a property.

propgetall [path] Lists all properties for a resource.

Variable Description

RESOURCEURI A resource URI specifying a collection or resource. Here are some
examples:

/collection/resource/

/resource

/collection

/

DEPTH Enter one (1) for collections. Enter zero (0) for file resources.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

43

Output attachments
Variable Description

PROPERTIES A rowset of rows that match each of the file resources available for
a particular collection. If you set DEPTH to one (1) and
RESOURCEURI specifies a collection, the PROPERTIES rowset
returns a row for each resource available in the collection.
If you set DEPTH to zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource specified.
Each row in the PROPERTIES rowset contains the following
properties for a file resource:
supportedlock - If locking is allowed, the following XML string is
displayed for this property:

<lockentry>

<lockscope>

<exclusive/>

</lockscope>

<locktype>

<write/>

</locktype>

</lockentry>

getContentLanguage - currently, the value en_US.
resourcetype - blank if the resource is a file, otherwise collection if the
resource is a file type or directory.
displayname - the display name of the resource.
HREF - the resource URI for this resource.
getlastmodified - a date and time indicating when the resource was
last modified. This is a long value that contains the number of
milliseconds since January 1, 1970.
getContentLength - currently, always zero because there is no
support for retrieving the file size of a document stored in Library
Manager.
If a resource is locked, these additional properties are returned:
LOCKOWNER - The user ID that owns the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS equals SUCCESS.

RESULTS Success or error.

Chapter 1
Using the Internet Document Server SDK

44

get
Use this rule to return a resource from the file system. This rule supports these WebDav
commands:

Input attachments

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

Command Description

get [path] file Gets a resource.

head [path] file Gets header information for a resource. (works same as get)

Variable Description

Variable Description

RESOURCEURI The resource URI of the resource you want to retrieve. Here is an example:

/collection/resource

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

45

Output attachments

put
Use this rule to put a resource into the file system. This rule supports these WebDav
commands:

Variable Description

PROPERTIES A rowset with a row for the resource specified in
RESOURCEURI. The row contains the following properties for
a resource:
supportedlock - If locking is allowed, the following XML string is
displayed for this property:

<lockentry>

<lockscope>

<exclusive/>

</lockscope>

<locktype>

<write/>

</locktype>

</lockentry>

getContentLanguage - currently, the value en_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type or directory.
displayname - the display name of the resource.
HREF - the resource URI for this resource
getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently, always zero because there is no
support for retrieving the file size of a document stored in Library
Manager.
LOCKOWNER -The user ID that owns the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT -The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS equals SUCCESS.

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.

Chapter 1
Using the Internet Document Server SDK

46

If the resource is locked, the put operation will fail.

Input attachments

Output attachments

lock
Use this rule to lock a resource in the file system. This rule supports these WebDav
commands:

Input attachments

Output attachments

Command Description

put [path Puts the specified file into Library Manager.

Variable Description

RESOURCEURI A resource URI that specifies the resource you want to place into the file
system. Here is an example:

/collection/resource/

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is locked.

Command Description

lock [path] file Locks a resource.

Variable Description

RESOURCEURI The resource URI of the resource that should be locked in the file system.
Here is an example:

/collection/resource

Variable Description

LOCKOWNER The user ID that owns the lock.

LOCKSCOPE The scope of the lock (exclusive).

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

47

unlock
Use this rule to unlock a resource in the file system. This rule supports these WebDav
commands:

Input attachments

Output attachments

LOCKSUBJECT The name of the resource locked.

LOCKDEPTH The depth of the resource locked (0).

LOCKTYPE The type of lock (write).

LOCKTIMEOUT The time-out value after which the lock will expire (infinity).

LOCKTOKEN A unique ID that identifies the resource locked.

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is already
locked.

Command Description

unlock [path] file Unlock a resource.

Variable Description

Variable Description

RESOURCEURI The resource URI of the resource that should be unlocked. Here is an
example:

/collection/resource

Variable Description

RESULTS Success or error.

Chapter 1
Using the Internet Document Server SDK

48

delete
Use this rule to remove a resource or collection from the file system. If the resource you
specified is a collection, all resources for the collection will be removed, provided none
are locked. This rule supports these WebDav commands:

Input attachments

Output attachments

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is locked by
another user.

Command Description

delete [path] file Delete a resource.

Variable Description

Variable Description

RESOURCEURI The resource URI of the resource you want to delete. Here are some
examples:

/collection/resource

/collection

The delete operation will fail if the resource is locked or if the resource is
a collection and any of its resources are locked.

DEPTH (Optional) If a depth value is specified for collections, its value must be
set to infinity. If a depth value is omitted, the rule assumes a depth of
infinity. You do not have to provide a depth value for a file resource.

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
404 - (WebDav 'not found' error code) - The RESOURCEURI
cannot be found.
409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method error' error code) - An internal API error
or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is locked.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

49

options
Use this rule to display the WebDav commands supported by the file system. This rule
supports these WebDav commands:

This rule displays these WebDav commands that are supported by the file system:

Input attachments None

Output attachments

copy
Use this rule to copy a resource or collection from one location to another. This rule
supports these WebDav commands:

If any destination resource exists and is locked, the copy operation fails. If any
destination resource exists and the overwrite flag is set to false, the copy operation fails.

Input attachments

Command Description

options [path / url] display options available for path or URL.

options get head

propfind propgetall lock

unlock delete copy

move proppatch mkcol

Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by the file system.

RESULTS Success.

Command Description

copy [source] [destination] Copies a resource.

Variable Description

RESOURCEURI The resource you want to use for the copy operation. Here is an
example:

/collection/resource

DESTINATIONURI A URI containing the destination of the resource you want to copy.
Here is an example:

/collection/destination

Chapter 1
Using the Internet Document Server SDK

50

Output attachments

move
Use this rule to move a resource or collection from one location to another. This rule
supports these WebDav commands:

If any destination or source resource exists and is locked, the move operation fails. If
any destination resource exists and the overwrite flag is set to False, the move operation
fails. If the resource you specify is a collection and its depth value is something other
than infinity, the move operation fails.

Input attachments

DEPTH A depth indicator. Used for copying collections. If you omit the depth
for a collection, the rule assumes a depth of infinity. If you enter
anything other than infinity for a collection, the rule only copies the
collection directory. You do not have to provide a depth value for a
file resource.

OVERWRITE An overwrite flag indicator. If any resource in the destination already
exists and the overwrite flag is set to True, the copy operation
proceeds, otherwise it will fail.

Variable Description

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
403 (WebDav 'forbidden' error code) - The source and
destination URIs are the same.
409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.
420 (WebDav 'method failure' error code) - An internal error or
memory error occurred.
423 (WebDav 'locked' error code) - The destination resource was
locked.

Command Description

move [source] [destination] Moves a resource.

Variable Description

RESOURCEURI The resource you want to use for the move operation. Here is an
example:

/collection/resource

DESTINATIONURI A URI containing the destination of the resource you want to move.
Here is an example:

/collection/destination

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

51

Output attachments

propPatch
Use this rule to set and remove properties defined on the resource identified by
RESOURCEURI. This rule supports these WebDav commands:

The proppatch command is not supported by the file system. The system does not allow
modification of properties for a resource in the file system.

Input attachments None

Output attachments

DEPTH A depth indicator used for moving collections. If you omit the depth
for a collection, the rule assumes a depth of infinity. If you enter
anything other than infinity for a collection, the rule fails. You do not
have to provide a depth value for a file resource.

OVERWRITE An overwrite flag indicator. If any resource in the destination already
exists and the overwrite flag is set to True, the move operation
proceeds, otherwise it fails.

Variable Description

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
403 (WebDav 'forbidden' error code) - The source and
destination URIs are the same.
409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.
420 (WebDav 'method failure' error code) - An internal error or
memory error occurred.
423 (WebDav 'locked' error code) - A source or existing
destination resource was locked.

Command Description

proppatch Not supported by the file system.

Variable Description

RESULTS Error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR,
which in this case is always true. It will contain the following
value:
405 - (WebDav 'method not allowed' error code) - The server
does not allow or support this method.

Chapter 1
Using the Internet Document Server SDK

52

mkCol
Use this rule to creates a collection in the file system. This rule supports these WebDav
commands:

The rule will fail if the collection already exists or if it failed to create the collection
because one or more parents specified in RESOURCEURI does not exist.

Input attachments

Output attachments

Command Description

mkcol Makes a collection.

Variable Description

RESOURCEURI The collection you want to create. Here is an example:

/collection

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.
420 (WebDav 'method failure' error code) - An internal error or
memory error occurred.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

53

Using the IDSWebdavServlet
The IDSWebdavServlet client component is a Java servlet that receives WebDav requests
from WebDav client programs and submits them to IDS for processing.

Follow these steps to use the IDSWebdavServlet:

1 Create an idswebdav directory under the JSP engine webapps directory. Make sure the
name is in lowercase.

2 Add IDSWebDavServlet.jar to the common\lib directory of the JSP engine.

3 Make sure the idswebdav directory contains a sub directory named WEB-INF.
Make sure the name is in uppercase.

4 Add the following web.xml file to the WEB-INF directory.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>idswebdav</servlet-name>

 <servlet-class>com.docucorp.ids.webdav.IDSWebdavServlet</
servlet-class>

 <init-param>

 <param-name>debug</param-name>

 <param-value>0</param-value>

 </init-param>

 <init-param>

 <param-name>listings</param-name>

 <param-value>true</param-value>

 </init-param>

 <!-- Uncomment this to enable read and write access -->

<!--

 <init-param>

 <param-name>readonly</param-name>

 <param-value>false</param-value>

 </init-param>

-->

 <!--load-on-startup>1</load-on-startup-->

 </servlet>

 <!-- The mapping for the webdav servlet -->

 <servlet-mapping>

 <servlet-name>idswebdav</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <!-- Establish the default MIME type mappings -->

 <mime-mapping>

 <extension>txt</extension>

 <mime-type>text/plain</mime-type>

Chapter 1
Using the Internet Document Server SDK

54

 </mime-mapping>

 <mime-mapping>

 <extension>html</extension>

 <mime-type>text/html</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>htm</extension>

 <mime-type>text/html</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>gif</extension>

 <mime-type>image/gif</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>jpg</extension>

 <mime-type>image/jpeg</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>jpe</extension>

 <mime-type>image/jpeg</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>jpeg</extension>

 <mime-type>image/jpeg</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>java</extension>

 <mime-type>text/plain</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>body</extension>

 <mime-type>text/html</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>rtx</extension>

 <mime-type>text/richtext</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>tsv</extension>

 <mime-type>text/tab-separated-values</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>etx</extension>

 <mime-type>text/x-setext</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ps</extension>

 <mime-type>application/x-postscript</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>class</extension>

 <mime-type>application/java</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>csh</extension>

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

55

 <mime-type>application/x-csh</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>sh</extension>

 <mime-type>application/x-sh</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>tcl</extension>

 <mime-type>application/x-tcl</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>tex</extension>

 <mime-type>application/x-tex</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>texinfo</extension>

 <mime-type>application/x-texinfo</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>texi</extension>

 <mime-type>application/x-texinfo</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>t</extension>

 <mime-type>application/x-troff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>tr</extension>

 <mime-type>application/x-troff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>roff</extension>

 <mime-type>application/x-troff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>man</extension>

 <mime-type>application/x-troff-man</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>me</extension>

 <mime-type>application/x-troff-me</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ms</extension>

 <mime-type>application/x-wais-source</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>src</extension>

 <mime-type>application/x-wais-source</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>zip</extension>

 <mime-type>application/zip</mime-type>

 </mime-mapping>

 <mime-mapping>

Chapter 1
Using the Internet Document Server SDK

56

 <extension>bcpio</extension>

 <mime-type>application/x-bcpio</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>cpio</extension>

 <mime-type>application/x-cpio</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>gtar</extension>

 <mime-type>application/x-gtar</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>shar</extension>

 <mime-type>application/x-shar</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>sv4cpio</extension>

 <mime-type>application/x-sv4cpio</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>sv4crc</extension>

 <mime-type>application/x-sv4crc</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>tar</extension>

 <mime-type>application/x-tar</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ustar</extension>

 <mime-type>application/x-ustar</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>dvi</extension>

 <mime-type>application/x-dvi</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>hdf</extension>

 <mime-type>application/x-hdf</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>latex</extension>

 <mime-type>application/x-latex</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>bin</extension>

 <mime-type>application/octet-stream</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>oda</extension>

 <mime-type>application/oda</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>pdf</extension>

 <mime-type>application/pdf</mime-type>

 </mime-mapping>

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

57

 <mime-mapping>

 <extension>ps</extension>

 <mime-type>application/postscript</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>eps</extension>

 <mime-type>application/postscript</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ai</extension>

 <mime-type>application/postscript</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>rtf</extension>

 <mime-type>application/rtf</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>nc</extension>

 <mime-type>application/x-netcdf</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>cdf</extension>

 <mime-type>application/x-netcdf</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>cer</extension>

 <mime-type>application/x-x509-ca-cert</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>exe</extension>

 <mime-type>application/octet-stream</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>gz</extension>

 <mime-type>application/x-gzip</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>Z</extension>

 <mime-type>application/x-compress</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>z</extension>

 <mime-type>application/x-compress</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>hqx</extension>

 <mime-type>application/mac-binhex40</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>mif</extension>

 <mime-type>application/x-mif</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ief</extension>

 <mime-type>image/ief</mime-type>

Chapter 1
Using the Internet Document Server SDK

58

 </mime-mapping>

 <mime-mapping>

 <extension>tiff</extension>

 <mime-type>image/tiff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>tif</extension>

 <mime-type>image/tiff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ras</extension>

 <mime-type>image/x-cmu-raster</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>pnm</extension>

 <mime-type>image/x-portable-anymap</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>pbm</extension>

 <mime-type>image/x-portable-bitmap</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>pgm</extension>

 <mime-type>image/x-portable-graymap</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>ppm</extension>

 <mime-type>image/x-portable-pixmap</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>rgb</extension>

 <mime-type>image/x-rgb</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>xbm</extension>

 <mime-type>image/x-xbitmap</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>xpm</extension>

 <mime-type>image/x-xpixmap</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>xwd</extension>

 <mime-type>image/x-xwindowdump</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>au</extension>

 <mime-type>audio/basic</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>snd</extension>

 <mime-type>audio/basic</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>aif</extension>

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

59

 <mime-type>audio/x-aiff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>aiff</extension>

 <mime-type>audio/x-aiff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>aifc</extension>

 <mime-type>audio/x-aiff</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>wav</extension>

 <mime-type>audio/x-wav</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>mpeg</extension>

 <mime-type>video/mpeg</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>mpg</extension>

 <mime-type>video/mpeg</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>mpe</extension>

 <mime-type>video/mpeg</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>qt</extension>

 <mime-type>video/quicktime</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>mov</extension>

 <mime-type>video/quicktime</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>avi</extension>

 <mime-type>video/x-msvideo</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>movie</extension>

 <mime-type>video/x-sgi-movie</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>avx</extension>

 <mime-type>video/x-rad-screenplay</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>wrl</extension>

 <mime-type>x-world/x-vrml</mime-type>

 </mime-mapping>

 <mime-mapping>

 <extension>mpv2</extension>

 <mime-type>video/mpeg2</mime-type>

 </mime-mapping>

Chapter 1
Using the Internet Document Server SDK

60

 <!-- Establish the default list of welcome files -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 </welcome-file-list>

<!--

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>The Entire Web Application</web-resource-
name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>tomcat</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Tomcat Supported Realm</realm-name>

 </login-config>

 <security-role>

 <description>

 An example role defined in "conf/tomcat-users.xml"

 </description>

 <role-name>tomcat</role-name>

 </security-role>

-->

</web-app>

5 Restart the JSP engine.

6 To send requests to the servlet, use the following URL format:

http://userid@boxname:port#/idswebdav/

where userid is the user ID used for the WebDav operations, boxname is the name of
the box hosting the JSP engine plus the new idswebdav directory plus the port# is
the port number, if any, of the JSP engine.

(An example WebDav client program that can be downloaded and used to send
requests to the IDSWebdavServlet is the Jakarta slide client program.)

You can also use Windows’ Add Network Places wizard and add a new network
place using a URL with the following format:

http://boxname:port#/idswebdav/userid/

Writing Processing Rules in Visual Basic

61

WRITING
PROCESSING

RULES IN
VISUAL BASIC

In this topic, you will learn how to write rules for the Internet Document Server using
Microsoft Visual Basic (VB). Here you will learn how to:

• Use the VB rule wizard

• Add your rule to the DOCSERV configuration file

• Use general debugging techniques

You will also find a general overview of server support for Visual Basic rules.

You can write rules for the Internet Document Server in Visual Basic 5 by building VB
class files into ActiveX DLLs. Using the DSI Visual Basic rule wizard and the steps
outlined below, you can easily put together a rule.

The DSI Visual Basic API includes a project in the samples with a sample rule, Fish.vpb,
which we’ll refer to in the discussion.

This illustration shows the general structure of Visual Basic rule processing. Notice that:

• All VB rule processing is routed through DSICoRul.DLL

• A VB rule DLL can have many rules within multiple classes in a single DLL

Structure An ActiveX DLL created under VB has these naming levels:

DLL name

Class module name

Rule name

VB does not articulate COM interfaces.

Multiple class modules are permitted as are multiple functions within each class
module. As in C++, the function names are valid only when attached to their class—you
can have the same function name in multiple classes.

Visual Basic maps these names to COM in this manner:

ProgID= <DLL name>.<Class Module name>

The COM ProgID appears in the registry and is the most common human-readable
means by which a COM object is identified.

For instance, if you create a VB project Fish, with two classes, IBass and ITrout, each
with two rules, the following will appear in the registry after you run regsvr32.exe
Fish.DLL

ProgID Fish.IBass

IDS DSICoRul
IBASS:: StopFishing

ITrout:: StopTheBoat

IBASS:: GoFish

ITrout:: GoFish

Chapter 1
Using the Internet Document Server SDK

62

Interface: IBass

Methods: GoFish

 StopFishing

ProgID Fish.ITrout

Interface: ITrout

Methods: GoFish

 StopTheBoat

The DLL must be an ActiveX DLL and must contain at least one class module (.cls) with
the public functions to be called by IDS. Continuing the above example, there will be
these files in the ActiveX DLL project:

Installing the DSI VB
rule wizard

To help you create VB rules, the system includes a VB add-in wizard. To install this
wizard, run this command:

addinst.exe

Building rules with the
wizard

The VB rule wizard will either work with an existing project or it can start a new one for
you. Likewise, the wizard will create a new class for you or use one that’s already in an

To use, start the Visual Basic IDE and select Add-Ins, DSI Rule Wizard. The wizard
guides you through the process of creating a template DSI VB rule. After the wizard has
run, you will have at least the following:

• A Visual Basic project (.vbp)

• A Visual Basic workgroup (.vpw)

• A Visual Basic class file (.cls)

The code the rule wizard generates contains references to all possible messages that can
be sent to a DSI rule. Although the VB compiler will drop processing of case statements
that do not have any code, remove the unneeded case statements to make your code
easier to read.

Next, add in your business logic.

Compile your ActiveX DLL. When you compile the project, DLL, LIB, and EXP files
will be created. After you debug the project, you only need to copy the DLL to the IDS
directory and register it—if and only if the server is on a different machine.

File Description

Fish.vpb Fish project

Fish.vpw Fish work space

IBass.cls IBass Class Module

ITrout.cls ITrout Class Module

Writing Processing Rules in Visual Basic

63

NOTE: If you are developing on a system different from IDS, you must move your DLL
into the IDS directory.

If you are developing on the same system that is running IDS you should not
move the DLL without registering it.

Add your rule to the DOCSERV configuration file (see below).

Test your rule under the server using DSICoTB – the DSI Test Bed program.

Troubleshooting If you are getting messages about not being able to find your rule, consider the
following:

DSICoRul may not be able to find your DLL in the IDS directory. ActiveX DLLs must
be registered (they are COM objects). DSICoRul will register your DLL if you have not
already done so but to do this it must be able to find the DLL. If you don’t want your
DLL to be in the IDS directory, register it using this command:

regsvr32.exe <dllname>

DSICoRul first attempts to locate your rule in the system registry which contains a path
to your DLL. When you compile your rule DLL, VB automatically registers it for you.
If you then move the DLL, the registry will not be able to find it, which causes an error.
Therefore, if you are developing on the same system as IDS, do not move your DLL to the
server directory.

If the DLL is in the server directory or you have registered it yourself and DSICoRul is
still complaining that it cannot find it, then it is time to start looking with the
OLEVIEW.EXE program. If you do not already have this program on your system, you
can find it on the MDSN CD or on Microsoft’s web site.

Start the OLEVIEW program and choose the File, View option. Enter Lib and point it
at your DLL. The CoClasses folder will contain the names of your classes and within
those, eventually, your methods (which are your rules). Check the program ID against
the DOCSERV configuration file.

DOCSERV
configuration file

All VB rules will be specified as follows

<entry name=”function”>DSICoRUL->Invoke,COM OBJECT NAME-
>METHOD,OTHERPARMS</entry>

Parameter Description

DSICoRul->Invoke> Invoke provides the interface between the server and Visual Basic.
When a rule is to be executed, IDS calls the Invoke entry point of
DISCoRUL.DLL with the remainder of the line as parameters:

COM_OBJECT_NAME a COM ProgID which flows naturally from VB and is composed of
the name of the name of the DLL and the VB class separated by a
period. The server user must register the COM object before
starting the server.

METHOD your VB rule

OTHERPARMS other parameters in an alphabetic string

Chapter 1
Using the Internet Document Server SDK

64

You must add at least two entries into the configuration file:

In the ReqType:INI control group, initialize DSICoRul by including this reference:

<section name=”ReqType:THREADINI” >

.

.

.

 <entry name=”function”>DSICoRUL->Init</entry>

</section>

Then add the specifications of your rule to the appropriate request. For instance, to add
the TestRule,

<section name=”ReqType:SSS”>

.

.

.

<entry name=”function”>DSICoRul-gt;Invoke,TestRule.ITestRule-
>HelloWorld</entry>

</section>

Interface Each class module must contain at least one Public Function which will be the rule.
Functions must be used as Subs do not support return values, which all rules must
provide.

Each Public Function must conform to the following prototype:

Public Function GoFish(ByRef oDSI As DSICoAPI, _

ByVal hInstance As Long, _

ByVal pszParms As String, _

ByVal ulMsg As Long, _

ByVal ulOptions As Long) As Long

The public function will return the appropriate dsiERR, usually dsiERR_SUCCESS. If
the message is unsupported, then dsiERR_MSGNOTFOUND must be returned to
avoid the overhead of subsequent calls.

Using global data
methods

You can use global methods with DSICo. This lets you store data in one location for use
with multiple IDS Servers. To do this, your configuration files must have identical
settings for the Path option:

Parameter Description

ByRef oDSICoAPI as
DSICoAPI

The DSICoAPI object will provide access to the DSI API
ByVal hInstance as long

ByVal iMsg As Long The server message,
dsiMSG_INIT
dsiMSG_RUNF
dsiMSG_RUNR
dsiMSG_TERM

ByVal sParms As String The parameter string passed in from the configuration file

ByVal ulOptions As Long Reserved for future use

Writing Processing Rules in Visual Basic

65

<section name=”ReqType:SSS”>

.

.

.

<entry name=”function”>DSICoRul-gt;Invoke,TestRule.ITestRule-
>HelloWorld</entry>

</section>

NOTE: All servers that are required to share global data must have access to a single
global data folder.You can use these global methods:

DSI API support The DSICoAPI object is passed into the rule to provide easy access to the DSI API. If
you want to write to the DSI API directly, DSI.bas contains the function prototypes but
the advantages are few and the details that must be managed are many. For instance, VB
strings are not null terminated so all strings must have + Chr(0) at the end.

Error handling When IDS encounters fatal errors it passes those errors to your On Error routine, if
there is one. In general, your error routine should pass the fatal error to DSI for logging.
Errors which your program is normally expected to handle, like dsiERR_NOTFOUND
(ERR.RAISE), will be available as a return value from DSIcoAPI and should not be
passed to the server.

Registration Visual Basic automatically registers your ActiveX DLL when you compile it. DSICoRul
will automatically register your ActiveX DLL if necessary, provided it can find the DLL
and the file name is well formed.

Testing with IDS To test under IDS you must also have the Visual C++ 5.0 debugger. The general
procedure is detailed in Microsoft knowledge base article Q166275 (http://
support.microsoft.com/support/kb/articles/q166/2/75.asp). The following procedure
assumes you have read and understood this article.

Make sure your rule is compiled with Debug Info.

Bring up OLEVIEW.EXE, locate your rule DLL under “All Objects”. Click on the “+”
sign to make OLEVIEW display the supported interfaces. This loads your ActiveX DLL.

Method Description

GlobalDataCreate Lets you create a global entry file which you can retrieve later. The data
is stored in the directory you define in the configuration file.

GlobalDataDestroy Lets you remove the global data entry associated with GUID.

GlobalDataSize Use this method to get the size of the data associated with GUID. You
can use this information to create a buffer before calling the
GlobalDataRead method.

GlobalDataRead Use this method to read the contents of the global data entry.

GlobalDataClean Use this method to remove expired files from the global data directory.

Chapter 1
Using the Internet Document Server SDK

66

Follow the procedure outlined in the knowledge base article. Since this is a DLL you
must specify DSRVW32.EXE as the debug target in the settings. Also take care to set the
working directory to the directory in which DSRVW32.EXE normally runs.

At this point you may use any program you like to initiate the transaction your rule will
process. If you don’t have an application of your own, DSICoTB lets you build an
attachment and hand it off to the server for processing.

Miscellaneous Notes

GUIDs GUIDs are 128-bit values used to identify COM objects globally. IDS handles VB rules
in such a way that you don’t have to worry about GUIDs in spite of the COM
documentation’s warnings that you should never change a GUID once it goes into
production.

State and threads IDS can call your rule on any thread—that’s what the instance handle is for—and the
thread state is held in the server. This means that your rules should be stateless. Stateless
means that you don’t retain any information from one call to the next in the rule itself.
If you want to pass some value from one rule to another or from one thread to another,
use CreateValue and LocateValue.

Sharing violations IDS holds a reference to your ActiveX DLL from the first time it is called until IDS is
shut down. Expect a sharing violation if you try to replace your rule DLL without first
shutting down the server.

Crashing the server Remember, your rule will be running in-process. Loops (polling and bugs) can hang the
server or degrade performance. Memory leaks can exhaust server memory, given enough
time, so be careful.

Check the server log Assuming the server survives the experience, many fatal errors, such as not being able to
load your rule, are logged to DUTTRACE.LOG, found in the IDS directory.

Performance If you are concerned about first-execution performance, such as how long it takes to load
your rule DLL the first time, change the DLL load address in your VB project from the
default. Using the default makes it likely there will be an expensive collision and
relocation at load time.

COM, ProgIDs, and VB The ProgID is a string that shows up in the registry to identify your classes. There are
many Win32 APIs that deal with ProgID and scripting languages, such as VB Script, use
it to locate and load ActiveX DLLs. DSI VB rule processing uses the ProgID you put into
the configuration file.

The ProgID is very important. Unless you get in the way, VB generates a ProgID from
the combination of DLL name and class name and DSI VB rule processing depends on
this convention. Unless you leave it blank, the project description in the VB project
properties will be used by VB to assign your ProgID. Therefore, it is important to leave
the Project Description field blank.

Example This example was created using the DSI rule wizard and can be found in the samples:

' ==

' GoFish - DSI rule

'

Writing Processing Rules in Visual Basic

67

' Arguments

' oDSI - object to access the DSI API

' pszParms - parameter string from the .INI file

' ulMsg - message number from the server. See case statement below

' ulOptions - reserved for future use

'

' Generated by the DSI Rule Wizard version 1.0

' ==

Public Function GoFish(ByRef oDSI As DSICoAPI, _

ByVal hInstance As Long, _

ByVal pszParms As String, _

ByVal ulMsg As DSI_MSG, _

ByVal ulOptions As Long) As Long

ByVal hInstance As Long

 On Error GoTo ErrorHandler

 '

 ' TO DO: for each of the messasges you support, add logic to the

 ' case statement. For the messages you don't support, delete

 ' the entire case statement so processing falls through to the else

 ' TO DO: Include your rule in the docserv.ini. The syntax is

 '

 ' function = DSICoRul->Invoke,Fish.IBass->GoFish

 '

 GoFish = dsiSUCCESS

 Select Case ulMsg

 Case dsiMSGRUNF ' Forward (ie, inbound) logic

 oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "MyStatistics",
"Honest!"

 Dim sRecName As String

 oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "Libraries",
sRecName

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Name", "Fish"

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Date", "date"

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Version", "1.0"

 Case Else ' We don't support the other messages

 GoFish = dsiMSGNOTFOUND

 End Select

 Exit Function

ErrorHandler:

' This error handler will pass the error on to the error handling
routine in the caller

' You should not display messages in a DSICo Rule

Chapter 1
Using the Internet Document Server SDK

68

 Err.Raise Err.Number, "GoFish: " + Err.Source, "Msg=" + Str(ulMsg)
+ " " + Err.Description

 GoFish = dsiRULECRASH

End Function

SAMPLES

The Internet Document Server includes several samples you can use. These include:

• DSICoTB on page 68

• DSITest on page 69

• DSIDiag on page 71

• DSIDiag.exe on page 71

• Debug.ASP on page 72

• DSICoSAM on page 73

• DSICoExV on page 74

• DSICoEx.cpp on page 75

• DSICoAdm and ADMAsp on page 76

• DSI COM Objects under ASP on page 76

DSICoTB
DSICoTB—the Visual Basic Test Bed—lets you test customer rules. In addition to
executing the server administration requests, you can build your own requests and
attachment lists.

To use the custom attachment list, select the Roll Your Own button and then enter the
request code you want.

The grid on the left can be filled with your name/value pairs.

Writing Processing Rules in Visual Basic

69

Click Execute to send your attachment to the server and return to the main form, which
displays the calls to Visual Basic and the results.

This sample includes these files:

DSITest
This version includes the DSITEST program which you can use to test sending files to
IDS and receiving files from IDS.

Usage dsitestw /time /waitonlast / display /nowait /reqtype /msg /notrans
/noattachs /norcvs /atcfile /rcvfile

File Description

DSICoTB.frm VB form

DSICoTTr.frm VB form layout

DSICoTB.frx VB form layout

DSICoTB.vbp VB project

DSICoTB.vbw VB work space

About.frm VB form

About.frx VB form layout

DSICoTB.bas common data

Parameter Description

Time Displays total seconds for all operations.
Do not include NoRCVs, ATCFile, or RCVFile with this parameter because
those parameters contain user prompts that affect the time.

WaitOnLast Waits on the last message before capturing the ending time.

Chapter 1
Using the Internet Document Server SDK

70

Neither the case nor the order of the parameters is important.

You can include these parameters on the command line or place them in an input file
named PARAMS.MSG. On the command line, separate parameters with slashes (/),
dashes (-), or spaces:

DSITESTW /time=yes

DSITESTW -time=yes

DSITESTW time=yes

If you include the parameters in the PARAMS.MSG file, format them as shown in this
example of the PARAMS.MSG file:

time=yes

waitonlast=no

display=yes

nowait=no

reqtype=LGN

notrans=50

msg=prt.msg

noattchs=0

norcvs=0

atcfile=yes

rcvfile=yes

Here is an example of how you could execute this program from the command line:

dsitesw time=yes display=yes notrans=2 reqtype=prt msg=c:\prt.msg

Here is an example of the PRT.MSG file:

Display Displays the resulting DSI Soap XML message that contains the name/value
pairs for each transaction.

NoWait Do not wait for the server before adding next message to queue.

ReqType The IDS request type. The default is SSS.

MSG The name of the file that contains the request name/value pairs.

NoTrans The total number of transactions to process.

NoAttchs The total number of file attachments to send per transaction using the
DSISendFile API. If you include this parameter, the program expects an input
file named SENDFILES.MSG that contains the information for each
attachment to send.

NoRCVs The total number of file attachments to receive per transaction via the
DSIReceiveFile API. If you include this parameter, the program expects an
input file named RECEIVEFILES.MSG that contains the information for each
attachment to receive.

ATCFile A single file attachment to send via the DSISendFile API. The program
prompts the user for the attachment ID, file name, and encoding type.

RCVFile A single file attachment to receive via the DSIReceiveFile API. The program
prompts the user for the attachment ID and file name.

Parameter Description

Writing Processing Rules in Visual Basic

71

USERID=FORMAKER

Arckey=00345A0D5600000008

reqtype=PRT

config=RPEX1

company=1199999

lob=Lee

policynum=Roswell, Ga 30015

rundate=020698

printpath=\10.8.10.137\Websrvr_client\html

If the NoAttchs parameter is greater than zero, the program expects an input file named
SENDFILES.MSG which contains a list of the attachments to send. Use either NoAttchs
or ATCFile, but not both.

Use the ATCFile parameter when you only want to send one file attachment. The
ATCFile parameter uses command line parameters for the attachment ID, file name, and
encoding type.

Here is an example of the ATTACHMENTS.MSG file:

name=RPEX1INI

file=X:\IDS\AddlSrvrs\rpex1.ini

type=TEXT

name=TESTPDF

file=X:\websrvr_client\html\test.pdf

type=BINARY

If the NoCRVs parameter is greater than zero, the program expects an input file named
RECEIVEFILES.MSG, which contains a list of attachments to receive. Include either
NoCRVs or RCVFile, but not both.

Use the RCVFile parameter when you only want to receive one attachment. The RCVFile
parameter uses command line parameters for the attachment ID and file name.

Here is an example of the RECEIVEFILES.MSG file:

name=PDFFILE1

file=X:\\IDS\\AddlSrvrs\\Output\\file1.pdf

name=PDFFILE2

file=X:\\IDS\\AddlSrvrs\\Output\\file2.pdf

If you omit the request type from the command line or the PARAMS.MSG file, the
program uses SSS as the default request type.

DSIDiag
DSIDiag consists of two samples, an application written Visual Basic (VB), DSIDiag.exe,
and an Active Server Page (ASP), Debug.ASP.

DSIDiag.exe
DSIDiag interrogates the DSI diagnostic interface to display key information, including
the current directory and the location of the queue files. You can also print the
information. You do not have to have IDS running to get this information.

The content and layout of the information displayed is context-sensitive and can change
with new system versions and updates. Refer to your latest documentation or read.me
updates for information on how to interpret the content.

Chapter 1
Using the Internet Document Server SDK

72

Setup Run DSIDiag from the same directory as your client application or web server to get
accurate information.

Execution DSIDiag displays diagnostic information as soon as you start it. You can refresh the
information, print it, or copy it to the clipboard.

This sample includes these files:

Debug.ASP
This Active Server Page recovers the same information as DSIDiag using your browser.
Debug.asp references an ASP ActiveX component that makes the necessary calls to the
DSI library.

The content and layout of the information displayed is context-sensitive and can change
with new system versions and updates. Refer to your latest documentation or read.me
updates for information on how to interpret the content.

Setup The IDS setup routine places the DLL and Debug.ASP files in their proper locations.

Execution Select DEBUG.ASP using your browser. First the system PATH appears, followed by the
debug information.

File Description

DSIDiag.frm VB form source file

DSIDiag.frx VB form layout file

DSIDiag.vbp VB IDE project file

DSIDiag.vbw VB IDE work space file

Writing Processing Rules in Visual Basic

73

DSICoSAM
DSICoSAM is a Visual Basic application which contains much of the sample code that
appears in the documentation. This makes it a good source of working code you can
cut-and-paste into applications you build. In addition, you can use it as a guide by taking
a working program and modifying it.

Execution There are two list boxes to choose from before you run the test. The first, Choose Object,
chooses the COM object to test, such as DSICoAPI; the second chooses the individual
method to test.

To execute the test (or all the tests) select the appropriate button. The left pane shows a
log of the activity, the right the output or results. If you want to retain the log or output,
you can copy both panes to the clipboard by pressing their respective Copy To
Clipboard buttons.

Of course, IDS must be running and configured. The IDS setup routine configures IDS
for you, which includes the following:

< ReqType:INI >

 Function = DSICoRul->Init

.< ReqType:ECH >

 Function = atcw32->ATCLoadAttachment

Chapter 1
Using the Internet Document Server SDK

74

 Function = DSICoRul->Invoke,Docucorp_IDS_SAMSupp.CSAMSupp->Echo

 Function = atcw32->ATCUnloadAttachment

This sample includes these files:

DSICoExV
DSICoExV is the Visual Basic version of DSIEx.c, duplicating the functionality of
DSIEx and more-or-less duplicating the logic. Instead of calling the DSI API directly, it
calls the equivalent Visual Basic COM objects.

NOTE: Although there is a simpler way under Visual Basic to accomplish the
functionality using, for instance, InitSession instead of Init, the direct calls were
used to make easier the comparison with DSIEx.c.

The application, after initializing COM, establishes a connection with IDS and places
the selected IDS Server administration command (such as SSS) in the queue. Each Visual
Basic call is logged in the left pane and the output in the right pane.

Execution Run DSICoExV.exe. Select the server administration command to run. SSS, the server
statistics, is set up as the default.

File Description

csamapi.cls Tests class file

csamsupp.cls ECH (Echo) rule class file

csamtobj.cls Test object used in some tests. Has no code.

DSICoSAM.frm DSICoSAM form source code

DSICoSAM.frx DSICoSAM layout

Dsicosam.vbp DSICoSAM VB project

DSICOSAM.VBW DSICoSAM VB work space

samsupp.vbp ECH (Echo) rule VB project

SAMSUPP.VBW CH (Echo) rule VB work space

samtobj.vbp Test object used in some tests; VB project

SAMTOBJ.VBW Test object used in some tests; VB work space

Writing Processing Rules in Visual Basic

75

This sample includes these files:

DSICoEx.cpp
DSICoEx is the Visual Basic version of DSIEx.c. DSICoEx duplicates the functionality
of DSIEx and, essentially, duplicates its logic.

Instead of calling the DSI API directly, DSICoEx calls the equivalent Visual Basic COM
objects. Although there is a simpler way under Visual Basic to accomplish this
functionality—for instance by using InitSession instead of Init—the direct calls were used
to make easier the comparison with DSIEx.c.

The application, after initializing COM, establishes a connection with IDS and places
IDSIDS administration command SSS in the queue. The response attachment is written
in its entirety to stdout.

Setup: Visual Basic must be installed on the system. To use, the VC project file %DSICO%
must point to the head of the DSICo directory tree. To compile, load DSICoEx.dsp into
VC and compile.

Execution: DSICoEx.exe is included in the installation. DSICoEx is a console application and
should be run from the command line. It outputs to sysout. DSICo.dll should be
registered as part of the installation.

This sample includes these files:

File Description

DSICoExV.frm VB form

DSICoExV.frx VB form layout

DSICoExV.vbp VB project

DSICoExV.vbw VB work space

File Description

DSICoEx.cpp source files

Chapter 1
Using the Internet Document Server SDK

76

Visual Basic files used:

DSICoAdm and ADMAsp
DSICoADM and ADMAsp are versions of the same function, which interrogates IDS
Server statistics.

• DSICoADM is a Visual Basic application which interrogates IDS statistics and
presents them in a Visual Basic grid.

• ADMAsp is an Active Server Page which does the same thing through an ActiveX
component and presents IDS statistics on the browser.

These files are included in this sample:

DSI COM Objects under ASP
This sample shows you how to use DSI COM objects and Visual Basic to create ActiveX
DLLs that run under the Microsoft Internet Information Server and Active Server Page
(ASP) to interface with Oracle Insurance's Internet Document Server.

Setup Load the project into the VB IDE and select the Make AdmASP.dll option. You may
have to shut down the IIS and IIS administration to unlock the DLL.

Move the ADMIN.ASP and DOCC.BMP files into the wwwroot directory. Once you
have compiled the project, you do not have to relocate or register the DLL.

DSICoEx.dsp VC project file

File Description

DSICo.hpp Visual Basic specific macros

DSICo.tlb Visual Basic type library created by the Visual Basic MIDL

File Description

DSICoADM.frm VB form

DSICoADM.frx VB form layout

DSICoADM.vbp VB project

DSICoADM.vbw VB work space

ADMAsp.vbp VB project

ADMAsp.vbw VB work space

SSS.cls ASP ActiveX component class

File Description

Writing Processing Rules in Visual Basic

77

Execution Point your web browser to Admin.asp. The server statistics appear. Click Server Statistics
to refresh the display with new values.

This sample includes these files:

File Description

AdmASP.vbp Project

AdmASP.vpw Work space

SSS.cls Class file

Admin.asp ASP script file

docc.bmp Docucorp logo

Chapter 1
Using the Internet Document Server SDK

78

REFERENCING ATTACHMENT VARIABLES

This feature lets you reference the attachment variable from a configuration file. You
can use this technique with the DAP.INI, CONFIG.INI and DOCSERV.XML files.

NOTE: This capability was previously added for the ATCSendFile and ATCReceiveFile
rules. With version 2.0, this capability should work for all requests and rules in
DOCSERV.XML, as well as the other sections imported from a DOCSERV.INI
file.

Here is an example of how you reference an attachment variable via a configuration file
option:

< Group >

Option = ~GetAttach VARNAME,INPUT

To reference a message variable in a configuration XML file use the following syntax:

<section name="Group">

<entry name="Option">~GetAttach VARNAME,INPUT</entry>

</section>

The VARNAME is the name of the variable. INPUT or OUTPUT specify which queue
to search for this value. For example, assume the attachment variable PRINTERTYPE
specifies the printer type to use for output. IDS rules use this configuration XML option
to determine the printer type (<Print>, PrtType =). In this case the XML can be modified
to read:

<section name="Print">

<entry name="PrtType">~GetAttach PRINTERTYPE,INPUT</entry>

</section>

So when the rule gets a configuration option the value will equal the value of the input
queue variable PRINTERTYPE.

When the rule gets a configuration XML option, the value equals the value of
attachment variable PRINTERTYPE.

You can also use this to dynamically specify the file extension for the file created by
ATCReceiveFile rule when you want to import that file into Documanage. You can do
this as shown here in the DOCSERV.XML file:

<entry name="function">atcw32->ATCReceiveFile,IMPORTFILE,V2IMP,*.
~GetAttach FILETYPE,INPUT,KEEP</entry>

The ATCReceiveFile rule finds the attachment variable FILETYPE and uses its value as
the file extension of the generated file name. Note that there are no spaces between the
asterisk and period (*.) and the tilde (~) prefacing GetAttach. If you include a space there,
it will also be in the file extension.

79

Chapter 2

DSI C APIs

Use this chapter as a reference to the DSI C API
functions you can use to create applications to interface
with Oracle Insurance's Internet Document Server.

This information will help you build either a proprietary
client interface or a custom set of rules which will
interact with the Internet Document Server.

The APIs documented on the following pages provide a
large number of services, including...

• Interprocess communication

• Persistent variables

• Accessible across function calls

• Error reporting

Several general purpose utility functions are also
available.

NOTE: The DSI API includes multiple interfaces
(APIs). This lets you use the language you
choose to build custom rules and applications.
You will also find sample clients written in each
language, which you can use as a reference as
you build your own solution.

Chapter 2
DSI C APIs

80

C API
FUNCTIONS

Here is a list of DSI C APIs, grouped by functional area. Following this list is a discussion
of each function, listed in alphabetical order.

Client functions Use these functions for writing a client program:

• DSIAddToQueue on page 89

• DSICopyQRecord on page 118

• DSIFindInQueue on page 126

• DSIGetFirstFromQueue on page 127

• DSIGetSOAPMessage on page 128

• DSIGetSOAPMessageSize on page 129

• DSIGetQError on page 130

• DSIGetQField on page 131

• DSIGetQFieldLength on page 133

• DSISetQField on page 155

• DSIGetQueueRec on page 134

• DSIInit on page 136

• DSIInitInstance on page 137

• DSIInitQueue on page 138

• DSIParseAttachment on page 143

• DSIStoreAttachment on page 156

• DSITerm on page 157

• DSITermInstance on page 158

• DSITermQueue on page 159

• LDAPGetErrorCode on page 160

• LDAPGetErrorMessage on page 161

• LDAPInit on page 162

• LDAPSearchDirectory on page 167

• LDAPTerm on page 168

Server functions Use these functions for writing rules on the server:

• DSIErrorMessage on page 124

• DSIErrorMsg on page 125

Common functions You can use these functions for both a client or a server:

C API Functions

81

• DSIAddAttachRec on page 83

• DSIAddAttachVar on page 84

• DSIAddToAttachRec on page 86

• DSIAddToQueue on page 89

• DSIAttachCursorFirst on page 90

• DSIAttachCursorLast on page 94

• DSIAttachCursorName on page 98

• DSIAttachCursorNext on page 100

• DSIAttachCursorPrev on page 104

• DSIAttachCursorValue on page 108

• DSICacheFile on page 115

• DSICloseAttachCursor on page 116

• DSICopyAttachVars on page 117

• DSICreateValue on page 119

• DSIDeleteAttachVar on page 120

• DSIDestroyValue on page 121

• DSIGetUniqueString on page 135

• DSILocateAttachVar on page 139

• DSILocateValue on page 141

• DSIOpenAttachCursor on page 142

• DSIQueryValueSize on page 145

• DSIReceiveFile on page 146

• DSIReceiveFileAsBuffer on page 147

• DSIReceiveFileAsBufferSize on page 149

• DSIRowset2XML on page 151

• DSIRowset2XMLSize on page 152

• DSISendBuffer on page 153

• DSISendFile on page 154

• DSISetQField on page 155

• DSIStoreAttachment on page 156

• DSITerm on page 157

• DSITermInstance on page 158

Chapter 2
DSI C APIs

82

• DSITermQueue on page 159

DSIAddAttachRec

83

DSIAddAttachRec
Use this function to create a stem variable in the attachment list. This function returns the
new record name with its sequence number.

Syntax long DSIAddAttachRec(DSIHANDLE hInstance, long iQueue, char*
szRecName, char* szRecID, size_t cbRecID);

Parameters

Return values

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE];

DSIAddAttachRec(hInstance,
 DSI_OUTPUTQUEUE,
 "Employee",
 szRecName,
 sizeof(szRecName));
DSIAddToAttachRec(..., szRecName, ...);

See also DSIAddToAttachRec on page 86

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment to which record should be added

szRecName name of stem variable to be added

szRecID buffer in which to store record name with sequence number. The calling
function should pass this to DSIAddToAttachRec

cbRecID size of szRecID parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

84

DSIAddAttachVar
Use this function to add an attachment variable. This function will overwrite the variable,
if one exists, with the new value.

After you use this function, you must next call DSIStoreAttachment.

Syntax long DSIAddAttachVar(DSIHANDLE hInstance, long iQueue, char* szName,
char* szValue);

Parameters

Return values

Example Here is an example:

DSIAddAttachVar(hInstance, DSI_OUTPUTQUEUE, "RESULTS", "SUCCESS”);

See also DSILocateAttachVar on page 139

DSIDeleteAttachVar on page 120

DSIStoreAttachment on page 156

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment to which variable should be added

szName name of the variable to be added

szValue data to be associated with attachment variable

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

DSIAddAttachVarEx

85

DSIAddAttachVarEx
Use this function to add an attachment variable. This function will overwrite the variable,
if one exists, with the new value.

After you use this function, you must next call DSIStoreAttachment.

Syntax long DSIAddAttachVarEx(DSIHANDLE hdsi, long iQueue, char*
szName,char* szValue, long IEncoding);

Parameters

Return values

Example Here is an example:

DSIAddAttachVarEx(hInstance, DSI_OUTPUTQUEUE, "RESULTS", "SUCCESS”
DSIENCODING_UTF_8);

See also DSILocateAttachVar on page 139

DSIDeleteAttachVar on page 120

DSIStoreAttachment on page 156

Parameter Description

hInstance handle to instance returned by DSIInitInstance

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

iQueue queue attachment to which variable should be added

szName name of the variable to be added

szValue data to be associated with attachment variable

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

86

DSIAddToAttachRec
Use this function to append a value to a stem variable.

Syntax long DSIAddToAttachRec (DSIHANDLE hInstance, long iQueue, char*
szRecName, char* szVarName, char* szValue);

Parameters

Return values

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE];

DSIAddAttachRec(hInstance,
 DSI_OUTPUTQUEUE,
 "Employee",
 szRecName,
 sizeof(szRecName));

DSIAddToAttachRec(hInstance,
 DSI_OUTPUTQUEUE,
 szRecName,
 "Name",
 "H. R. Pufnstuf");

DSIAddToAttachRec(hInstance,
 DSI_OUTPUTQUEUE,
 szRecName,
 "DependentName",
 "Jimmy");

See also DSIAddAttachRec on page 83

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment to which value should be added

szRecName record to which variable should be added, generally returned by the
DSIAddAttachRec function

szVarName name of field within record

szValue data to be associated with variable

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

DSIAddToAttachRecEx

87

DSIAddToAttachRecEx
Use this function to append a value to a stem variable.

Syntax long DSIAddToAttachRecEx (DSIHANDLE hdsi, long iQueue, char*
szRecName, char* szFieldName, char* szValue, long IEncoding);

Parameters

Return values

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE];

DSIAddAttachRec(hInstance,
 DSI_OUTPUTQUEUE,
 "Employee",
 szRecName,
 sizeof(szRecName));

DSIAddToAttachRecEx(hInstance,
 DSI_OUTPUTQUEUE,
 szRecName,
 "Name",
 "H. R. Pufnstuf",

DSIENCODING_UTF_8);

DSIAddToAttachRecEx(hInstance,
 DSI_OUTPUTQUEUE,
 szRecName,
 "DependentName",
 "Jimmy"

DSIENCODING_UTF_8);

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment to which value should be added

szRecName record to which variable should be added, generally returned by the
DSIAddAttachRec function

szVarName name of field within record

szValue data to be associated with variable

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

88

See also DSIAddAttachRec on page 83

DSIAddToQueue

89

DSIAddToQueue
Use this function to add a record to a queue.

Syntax long DSIAddToQueue(DSIHANDLE hInstance, long iQueue);

Parameters

Return values

Example Here is an example:

DSIAddToQueue(hInstance, DSI_OUTPUTQUEUE);

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue Queue on which to post

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Chapter 2
DSI C APIs

90

DSIAttachCursorFirst
Use this function to retrieve the first element from the attachment list and get the
cursor.

Syntax long DSIAttachCursorFirst(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);

Parameter Description

hCursor handle to cursor initialized by prior call to DSIOpenAttchCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIAttachCursorFirst

91

if (DSIAttachCursorFirst(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)) == DSIERR_SUCCESS)
{
printf("The first element is: %s = %s", szName, szValue);
}
 .
 .
 .

See also DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIAttachCursorPrev on page 104

DSICloseAttachCursor on page 116

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

92

DSIAttachCursorFirstEx
Use this function to retrieve the first element from the attachment list and get the
cursor.

Syntax long DSIAttachCursorFirstEx(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue, long IEncoding);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to cursor initialized by prior call to DSIOpenAttchCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIAttachCursorFirstEx

93

if (DSIAttachCursorFirstEx(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)

DSIENCODING_UTF_8) == DSIERR_SUCCESS)
{
printf("The first element is: %s = %s", szName, szValue);
}
 .
 .
 .

See also DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIAttachCursorPrev on page 104

DSICloseAttachCursor on page 116

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

94

DSIAttachCursorLast
Use this function to retrieve the last element from the attachment list.

Syntax long DSIAttachCursorLast(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorPrev on page 104

DSIParseAttachment on page 143

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIERR_UNKNOWN unknown error

DSIAttachCursorLast

95

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLast(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)) == DSIERR_SUCCESS)
 {
 printf("The last element is %s=%s", szName,szValue);
 while(DSIAttachCursorPrev(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue))
 == DSIERR_SUCCESS)
 {
 printf("The previous element is %s=%s", szName,szValue);
 }
 }
}
 .
 .
 .

Chapter 2
DSI C APIs

96

DSIAttachCursorLastEx
Use this function to retrieve the last element from the attachment list.

Syntax long DSIAttachCursorLastEx(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue, long IEncoding);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIERR_UNKNOWN unknown error

DSIAttachCursorLastEx

97

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLastEx(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)

DSIENCODING_UTF_8) == DSIERR_SUCCESS)
 {
 printf("The last element is %s=%s", szName,szValue);
 while(DSIAttachCursorPrev(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)

DSIENCODING_UTF_8)
 == DSIERR_SUCCESS)
 {
 printf("The previous element is %s=%s", szName,szValue);
 }
 }
}
 .
 .
 .

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorPrev on page 104

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

98

DSIAttachCursorName
Use this function to retrieve the name of the current element from the attachment list.

Syntax long DSIAttachCursorName(DSIHANDLE hCursor, char* pszName, size_t
cbName);

Parameters

NOTE: The parameter pszName will be zero-filled to the length specified in cbName.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLast(hCursor,
 NULL,
 0,
 NULL,
 0) == DSIERR_SUCCESS)
 {
 DSIAttachCursorName(hCursor,szName,sizeof(szName));
 DSIAttachCursorValue(hCursor,szValue,sizeof(szValue));
 printf("The last element is %s=%s", szName,szValue);
 }
}
 .
 .
 .

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
and positioned by calls to DSIAttachCursor* call

pszName buffer in which to retrieve the name of the element of the attachment

cbName size of buffer in pszName parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no such element in the list

DSIERR_UNKNOWN unknown error

DSIAttachCursorName

99

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIAttachCursorPrev on page 104

DSIAttachCursorValue on page 108

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

100

DSIAttachCursorNext
Use this function to retrieve the next element from the attachment list.

Syntax long DSIAttachCursorNext(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 142

DSIAttachCursorPrev on page 104

DSIParseAttachment on page 143

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

DSIAttachCursorNext

101

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue));
if(hCursor)
{
 printf("The first element is %s", szValue);
 while(DSIAttachCursorNext(hCursor,
 szName,
 sizeof(szName)
 szValue,
 sizeof(szValue))
 == DSIERR_SUCCESS)
 {
 printf("The next element is %s=%s”, szName,szValue);
 }
}
 .
 .
 .

Chapter 2
DSI C APIs

102

DSIAttachCursorNextEx
Use this function to retrieve the next element from the attachment list.

Syntax long DSIAttachCursorNextEx(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue, long IEncoding);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{

if (DSIAttachCursorFirstEx(hCursor,

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

DSIAttachCursorNextEx

103

 szName,
 sizeof(szName),

 szValue,
 sizeof(szValue),

 DSIENCODING_UTF_8)==DSIERR_SUCCESS)

{
 printf("The first element is %s", szValue);
 while(DSIAttachCursorNextEx(hCursor,
 szName,
 sizeof(szName)
 szValue,
 sizeof(szValue)

 DSIENCODING_UTF_8)
 == DSIERR_SUCCESS)
 {
 printf("The next element is %s=%s”, szName,szValue);
 }

}

 }
 .
 .
 .

See also DSIOpenAttachCursor on page 142

DSIAttachCursorPrev on page 104

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

104

DSIAttachCursorPrev
Use this function to retrieve the previous element from the attachment list.

Syntax long DSIAttachCursorPrev(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIParseAttachment on page 143

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to
DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

DSIAttachCursorPrev

105

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLast(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)) == DSIERR_SUCCESS)
 {
 printf("The last element is %s=%s", szName,szValue);
 while(DSIAttachCursorPrev(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue))
 == DSIERR_SUCCESS)
 {
 printf("The previous element is %s=%s", szName,szValue);
 }
 }
}
 .
 .
 .

Chapter 2
DSI C APIs

106

DSIAttachCursorPrevEx
Use this function to retrieve the previous element from the attachment list.

Syntax long DSIAttachCursorPrevEx(DSIHANDLE hCursor, char* pszName, size_t
cbName, char* pszValue, size_t cbValue, long IEncoding);

Parameters

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and
others. DSIENCODING_UTF_8 translates Unicode into a format
compatible with null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to
DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

DSIAttachCursorPrevEx

107

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLastEx(hCursor,
 szName,
 sizeof(szName),
 szValue,

 sizeof(szValue),

DSIENCODING_UTF_8) == DSIERR_SUCCESS)
 {
 printf("The last element is %s=%s", szName,szValue);
 while(DSIAttachCursorPrev(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue))
 == DSIERR_SUCCESS)
 {
 printf("The previous element is %s=%s", szName,szValue);
 }
 }
}
 .
 .

.

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

108

DSIAttachCursorValue
Use this function to retrieve the value of the current element from the attachment list.

Syntax long DSIAttachCursorValue(DSIHANDLE hCursor, char* pszValue, size_t
cbValue);

Parameters

NOTE: The parameter pszValue will be zero-filled to the length specified in cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLast(hCursor,
 NULL,
 0,
 NULL,
 0) == DSIERR_SUCCESS)
 {
 DSIAttachCursorName(hCursor,szName,sizeof(szName));
 DSIAttachCursorValue(hCursor,szValue,sizeof(szValue));
 printf("The last element is %s=%s”, szName,szValue);
 }
}
 .
 .
 .

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
and positioned by calls to the DSIAttachCursorFirst, Next, Prev, Last calls.

pszValue buffer in which to retrieve the value of the element of the attachment

cbValue size of buffer in pszValue parameter

Description Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND the position of the cursor is invalid

DSIERR_UNKNOWN unknown error

DSIAttachCursorValue

109

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIAttachCursorPrev on page 104

DSIAttachCursorValue on page 108

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

110

DSIAttachCursorValueEx
Use this function to retrieve the value of the current element from the attachment list.

Syntax long DSIAttachCursorValueEx(DSIHANDLE hCursor, char* pszValue,
size_t cbValue, long IEncoding);

Parameters

NOTE: The parameter pszValue will be zero-filled to the length specified in cbValue.

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
and positioned by calls to the DSIAttachCursorFirst, Next, Prev, Last calls.

pszValue buffer in which to retrieve the value of the element of the attachment

cbValue size of buffer in pszValue parameter

Description Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND the position of the cursor is invalid

DSIERR_UNKNOWN unknown error

DSIAttachCursorValueEx

111

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if(hCursor)
{
 if (DSIAttachCursorLast(hCursor,
 NULL,
 0,
 NULL,
 0) == DSIERR_SUCCESS)
 {
 DSIAttachCursorName(hCursor,szName,sizeof(szName));

DSIAttachCursorValueEx(hCursor,szValue,sizeof(szValue),DSIENCODING_
UTF_8);
 printf("The last element is %s=%s”, szName,szValue);
 }
}
 .
 .
 .

See also DSIOpenAttachCursor on page 142

DSICloseAttachCursor on page 116

DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIAttachCursorPrev on page 104

DSIAttachCursorValue on page 108

DSIParseAttachment on page 143

Chapter 2
DSI C APIs

112

DSIAttachVarLength
Locates an attachment variable and returns it’s length. Useful for getting the value when
the size is unknown and can be huge.

Syntax long DSIAttachVarLength(DSIHANDLE hdsi, long iQueue, char* szName,
size_t *pstSize);

Parameters

Return values

Example Here is an example:

char *pszVar;

size_t size;

DSIAttachVarLength(hdsi,
 DSI_INPUTQUEUE,
 "FileName",

 &size);

pszVar = malloc(size);

DSILocateAttachVar(hdsi,

DSI_INPUTQUEUE,

“FileName”,

pszVar,

size);

printf(“File is: %s\n”,pszVar);

free(pszVar);

See also DSIAddAttachVar on page 84

DSIDeleteAttachVar on page 120

DSIParseAttachment on page 143

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment in which variable is to be found

pstSize the size of the value including nul terminator

szName name of the variable to locate

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

DSIAttachVarLengthEx

113

DSIAttachVarLengthEx
Locates an attachment variable and returns it’s length. Useful for getting the value when
the size is unknown and can be huge.

Syntax long DSIAttachVarLengthEx(DSIHANDLE hdsi, long iQueue, char* szName,
size_t *pstSize, long encoding);

Parameters

Return values

Example Here is an example:

char *pszVar;

size_t size;

DSIAttachVarLengthEx(hdsi,
 DSI_INPUTQUEUE,
 "FileName",

 &size

 DSIENCODING_UTF_8);

pszVar = malloc(size);

DSILocateAttachVarEx(hdsi,

DSI_INPUTQUEUE,

“FileName”,

pszVar,

 size,

DSIENCODING_UTF_8);

printf(“File is: %s\n”,pszVar);

free(pszVar);

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment in which variable is to be found

pstSize the size of the value including nul terminator

szName name of the variable to locate

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

114

See also DSIAddAttachVar on page 84

DSIDeleteAttachVar on page 120

DSIParseAttachment on page 143

DSICacheFile

115

DSICacheFile
Use this function to add a file to the cache. You can only use this API from a server rule.

This API adds a row to the table of cached files. The server purges these files as time
expires in the autorun rules. This API only works if you have registered the IRLInit rule
as an INIT rule on the server.

Syntax long DSICacheFile(DSIHANDLE hInstance, char* szFileName, long
lExpire);

Parameters

Return values

Example Here is an example that sets the file to expire in one hour:

DSICacheFile(hInstance, "File.dat", 3600L);

Parameter Description

hInstance handle to instance returned by DSIInitInstance

szFileName full name of file to be added

lExpire time period until file should be purged, in seconds

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

116

DSICloseAttachCursor
Use this function to close an attachment cursor and free the associated memory.

Syntax long DSICloseAttachCursor(DSIHANDLE hCursor);

Parameters

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue));
if(hCursor)
{
 if (DSIAttachCursorFirst(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue))
 == DSIERR_SUCCESS)
 {
 printf("The first element is %s=%s",szName,szValue);
 }

DSICloseAttachCursor(hCursor);

}

See also DSIOpenAttachCursor on page 142

Parameter Description

hCursor handle of the cursor previously created by a call to DSIOpenAttachCursor

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSICopyAttachVars

117

DSICopyAttachVars
Use this function to copy all attachment variables from one queue to another.

Syntax long DSICopyAttachVars(DSIHANDLE hInstance, long iSourceQ);

Parameters

Return values

Example This code copies the attachment variables from the input queue to the output queue.

DSICopyAttachVars(hInstance, DSI_INPUTQUEUE);

See also DSIAddAttachVar on page 84

DSILocateAttachVar on page 139

DSIDeleteAttachVar on page 120

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iSourceQ queue attachment from which variables are to be copied

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

118

DSICopyQRecord
Use this function to copy a queue record from one queue to another.

Syntax long DSICopyQRecord(DSIHANDLE hInstance, long iSrcQ);

Parameters

Return values

Example Here is an example:

DSICopyQRecord(hInstance, DSI_OUTPUTQUEUE); / * copy output to
input */

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iSrcQ queue from which to copy (destination is assumed to be the other queue
belonging to the hInstance parameter)

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_EOF no queue records available

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

DSICreateValue

119

DSICreateValue
Use this function to create a persistent DSI variable. These variables are not part of the
queue records or attachments. They exist so rules can pass information to one another.
You must destroy these persistent variables using a call to the DSIDestroyValue
function.

Syntax long DSICreateValue(DSIHANDLE hInstance, char* szName, void*
pvValue, size_t cbValueSize);

Parameters

Return values

Example Here is an example:

int iCount;

iCount = 123;

DSICreateValue(hInstance,"MY_ICOUNT",&iCount,sizeof(iCount));

See also DSIDestroyValue on page 121

DSILocateValue on page 141

DSIQueryValueSize on page 145

Parameter Description

hInstance handle to instance returned by DSIInitInstance

szName name of the variable

pvValue pointer to the data (may be NULL)

cbValueSize size of data

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

120

DSIDeleteAttachVar
Use this function to remove an attachment variable.

Syntax long DSIDeleteAttachVar(DSIHANDLE hInstance, long iQueue, char*
szName);

Parameters

Return values

Example Here is an example:

DSIDeleteAttachVar(hInstance, DSI_OUTPUTQUEUE, "DonotWantThis");

See also DSIAddAttachVar on page 84

DSILocateAttachVar on page 139

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment from which variable is to be removed

szName name of the variable to be removed

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not known

DSIERR_UNKNOWN unknown error

DSIDestroyValue

121

DSIDestroyValue
Use this function to destroy a persistent DSI variable. To prevent resource leaks, you
must use this function to destroy all variables created with the DSICreateValue function.

Syntax long DSIDestroyValue(DSIHANDLE hInstance, char* szName);

Parameters

Return values

Example Here is an example:

DSIDestroyValue(hInstance, "DISPOSABLE");

See also DSICreateValue on page 119

DSILocateValue on page 141

DSIQueryValueSize on page 145

Parameter Description

hInstance handle to instance returned by DSIInitInstance

szName name of the variable to destroy

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

122

DSIEncryptValue
Encrypt a text value to a unique string. It is useful for encrypting USERID or
PASSWORD, for example.

Syntax long DSIEncryptValue(DSIHANDLE hdsi, char* szName, char *pszValue,
size_t valSize);

Parameters

Return values

Example Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

char outValue ??(DSI_MAXVALUESIZE ??);

hApp=DSIInit();

hInstance=DSIInitInstance(hApp);

DSIEncryptValue(hInstance, inValue, outValue, sizeoff(outValue));

.

.

.

Parameter Description

hdsi handle to instance returned by DSIInitInstance

pszInValue Input buffer of the text string to be encrypted

pszOutValue Output buffer of the encrypted text string

valSize size of the output buffer

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

DSIEncryptValueEx

123

DSIEncryptValueEx
Encrypt a text value to a unique string. It is useful for encrypting USERID or
PASSWORD, for example.

Syntax long DSIEncryptValueEx(DSIHANDLE hdsi, char* szName, char *pszValue,
size_t valSize, long IEncoding);

Parameters

Return values

Example Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

char outValue ??(DSI_MAXVALUESIZE ??);

hApp=DSIInit();

hInstance=DSIInitInstance(hApp);

DSIEncryptValueEx(hInstance, inValue, outValue, sizeoff(outValue),
DSIENCODING_UTF_8);

.

.

.

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and
others. DSIENCODING_UTF_8 translates Unicode into a format
compatible with null-terminated C language strings.

hdsi handle to instance returned by DSIInitInstance

pszInValue Input buffer of the text string to be encrypted

pszOutValue Output buffer of the encrypted text string

valSize size of the output buffer

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

Chapter 2
DSI C APIs

124

DSIErrorMessage
Use this function to add an error message to an attachment.

Syntax long DSIErrorMessage(DSIHANDLE hInstance, long iQueue, char*
pszCode, ...);

Parameters

The variable arguments must be in this format:

<ERR.MSG>,<ParameterName><ParameterValue>

<ParameterName><ParameterValue>

...NULL

Return values

Example Here is an example:

DSIErrorMessage(hInstance,
 DSI_OUTPUTQUEUE,
 "IRL0023", /* error code */
 "FILE", /* error parameter name */
 szFile, /* error parameter value */
 NULL); /* NULL terminator */

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment to which message should be added

pszCode error code

... error parameter name/value pairs, terminated by NULL

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

DSIErrorMsg

125

DSIErrorMsg
Use this function to add an error message to an attachment. This function serves as a
replacement for the DSIErrorMessage function in situations where a variable number of
arguments is not supported, such as with languages other than C and C++.

Syntax long DSIErrorMsg (DSIHANDLE hdsi, long iQueue, long lLevel, char
**pszCode);

Parameters

To add the error message to the attachment, pass to it this array of strings:

"XXX0001", - error code

"FILENAME", - name of the parameter

"C:\docser\file.dat", - name of the file

NULL

Return values

Example Here is an example:

char *err ??(??) =

{

"XXX0023", /* error code

"FILE", /* error parameter name

"C:\\docserv\\file.dat", /* error parameter value

NULL /* NULL terminator

};

DSIErrorMsg(hInstance,

DSI_OUTPUTQUEUE,

err);

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which message should be added

lLevel DSI_ERROPT_ value, level of the error. Valid values are:
DSI_ERROPT_INFO, DSI_ERROPT_WARNING,
DSI_ERROPT_SEVERE (not currently implemented and is ignored).

pszCode pointer to the array of strings, the last string has to be NULL, the first string is the
error code. The strings are in NAME/VALUE pairs.

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_INTERNAL internal error

Chapter 2
DSI C APIs

126

DSIFindInQueue
Use this function to search for a record in a queue.

Syntax long DSIFindInQueue(DSIHANDLE hInstance, long iQueue, char* pszId);

Parameters

Return values

Example Here is an example:

char szId [11];

DSIGetUniqueString(hInstance, szId, sizeof(szId));
DSISetQField(hInstance,
 DSI_OUTPUTQUEUE,
 DSIQSET_UNIQUE_ID,
 szId,
 sizeof(szId));
DSIAddToQueue(hInstance, DSI_OUTPUTQUEUE);

/* wait for server to process */
DosSleep(5000);
DSIFindInQueue(hInstance, DSI_INPUTQUEUE, szId);

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue in which to search

pszId unique record identifier. Use DSISetQField(..., DSIQSET_UNIQUE_ID, ...)
to place this value in the queue record

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_EOF record not found

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

DSIGetFirstFromQueue

127

DSIGetFirstFromQueue
Use this function to get the first record in a queue.

Syntax long DSIGetFirstFromQueue(DSIHANDLE hInstance, long iQueue);

Parameters

Return values

Example Here is an example:

DSIGetFirstFromQueue(hInstance, DSI_INPUTQUEUE);

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue from which to retrieve

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_EOF no elements in the list

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Chapter 2
DSI C APIs

128

DSIGetSOAPMessage
Use this rule to retrieve an IDS message as an XML file in memory.

Syntax long DSIGetSOAPMessage (DSIHANDLE hdsi, long IQueue, long
szXMLBuffer, long szXMLBuffer, long stBuffSize, long IOptions;

Parameters

Returns DSIERR_SUCCESS

DSIERR_INVPARM

Example Here is an example:

char *buf;

size_t size;

DSIGetSOAPMessageSize(hdsi,DSI_INPUT,&size,0);

buf = malloc(size);

DSIGetSOAPMessage(hdsi,DSI_INPUT,buf,size,0);

... use buffer here

free(buf);

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment

szXMLBuffer buffer into which the XML is to be unloaded

stBuffSize size of buffer in szXMLBuffer including the zero (0) terminator

lOptions RFU, currently not used

DSIGetSOAPMessageSize

129

DSIGetSOAPMessageSize
Use this rule to get the size of an IDS message as an XML file in memory.

Syntax long DSIGetSOAPMessageSize (DSIHANDLE hdsi, long IQueue, long
pstBuffSize, long IOptions;

Parameters

Returns DSIERR_SUCCESS

DSIERR_INVPARM

Example Here is an example:

char *buf;

size_t size;

DSIGetSOAPMessageSize(hdsi,DSI_INPUT,&size,0);

buf = malloc(size);

DSIGetSOAPMessage(hdsi,DSI_INPUT,buf,size,0);

... use buffer here

free(buf);

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment

pstBuffSize size of buffer in szXMLBuffer including the zero (0) terminator

lOptions RFU, currently not used

Chapter 2
DSI C APIs

130

DSIGetQError
Use this function to get the last queue error from a queue.

Syntax long DSIGetQError(DSIHANDLE hInstance, long iQueue);

Parameters

Return values

Example Here is an example:

long QErr;

if(DSIGetFirstFromQueue(hInstance, DSI_INPUTQUEUE, 0L)
 != DSIERR_SUCCESS)
{
 QErr = DSIGetQError(hInstance, DSI_INPUTQUEUE);
}

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue from which to retrieve error

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIGetQField

131

DSIGetQField
Use this function to retrieve the value of a queue field.

NOTE: Since each field has a different length which may vary from one release to the
next, the system queries the length before it allocates memory and performs this
function.

Syntax long DSIGetQField(DSIHANDLE hInstance, long iQueue, long iField,
void* pvValue, size_t cbValue);

Parameters

Return values

Example Here is an example:

char szRequest [8];

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue to which operation applies

iField DSIQSET_* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE_ID
ATTACHMENT

pvValue buffer in which the data should be placed

cbValue length of the buffer

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_EOF queue record not found

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Chapter 2
DSI C APIs

132

DSIGetQField(hInstance,
 DSI_INPUTQUEUE,
 DSIQSET_REQTYPE,
 szRequest,
 sizeof(szRequest));
if(!strcmp(szRequest, "LGN"))
{
 .
 .
 .
}

See also DSISetQField on page 155

DSIGetQFieldLength

133

DSIGetQFieldLength
Use this function to get the length of one of the pre-defined fields in a queue.

Syntax long DSIGetQFieldLength(DSIHANDLE hInstance, long iQueue, long
iField);

Parameters

Return values

Example Here is an example:

void *pvAttach;
long cbField;

cbField = DSIGetQFieldLength(hInstance,
 DSI_INPUTQUEUE,
 DSIQSET_ATTACHMENT);
if(cbField > 0)
{
 DosAllocMem((PPVOID)&pvAttach,
 cbField,
 PAG_READ | PAG_WRITE | PAG_COMMIT);
}

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue from which to retrieve data

iField DSIQSET_* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE_ID
ATTACHMENT

Value Description

0 error

0 length of field

Chapter 2
DSI C APIs

134

DSIGetQueueRec
Use this function to search for a record in a queue.

Syntax long DSIGetQueueRec(DSIHANDLE hInstance, long iQueue, char* pszId,
long lWait, long lTimeOut);

Parameters

Return values

Example Here is an example:

char szId [11];

DSIGetUniqueString(hInstance, szId, sizeof(szId));
DSISetQField(hInstance,
 DSI_OUTPUTQUEUE,
 DSIQSET_UNIQUE_ID,
 szId,
 sizeof(szId));
DSIAddToQueue(hInstance, DSI_OUTPUTQUEUE);

/* wait for server to process */
DSIGetQueueRec(hInstance, DSI_INPUTQUEUE, szId, 1000L, 10000L);
/* tries every second for 10 seconds */

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue in which to search

pszId unique record identifier. Use DSISetQField(..., DSIQSET_UNIQUE_ID, ...)
to place this value in the queue record

lWait number of milliseconds to wait between retries, zero (0) is invalid for this
parameter and is replaced with 1000.

lTimeOut number of milliseconds to keep trying, if zero (0) the system does not retry

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_EOF record set not found

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

DSIGetUniqueString

135

DSIGetUniqueString
Use this function to fill the buffer pointed to by pszString with a unique string. You can
use this function to generate unique file names. The buffer is filled with characters of
the size specified by the cbSize parameter less one. So, if you need to generate an 8-
character unique file name, specify a buffer size of 9. The output string is unique for the
current instance of the Internet Document Server.

Syntax long DSIGetUniqueString(DSIHANDLE hInstance, char* pszString, size_t
cbSize);

Parameters

Return values

Example Here is an example:

char szFileName DIM (9);

if (DSIGetUniqueString (hInstance,
 szFileName,
 sizeof(szFileName) != DSIERR_SUCCESS)
{
 Some code to display error message
}

Parameter Description

hInstance handle to instance returned by DSIInitInstance

pszString pointer to the output buffer

cbSize size of buffer in pszString

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM Invalid parameter
hInstance is NULL
pszString is NULL
cbSize is 0

DSIERR_MEMORY memory errors

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

136

DSIInit
Use this function to initialize the systems and structures necessary for DSI calls. This
should be called by the application only once.

This rule loads the DSI.INI file, which you can use to store DSI internal INI options,
such as queue names. If the INI does not exist, no error is given.

Syntax DSIHANDLE DSIInit();

Parameters None

Return values

Example Here is an example:

DSIHANDLE hApp;

if((hApp = DSIInit()) == DSINULLHANDLE)
{
 return(FALSE);
}

See also DSITerm on page 157

Value Description

DSIHANDLE handle to application data to be used for subsequent calls to
DSIInitInstance and DSITerm

DSINULLHANDLE on failure

DSIInitInstance

137

DSIInitInstance
Use this function to initialize the structures necessary for DSI calls. This should be
called once per thread.

Syntax DSIHANDLE DSIInitInstance(DSIHANDLE hApp);

Parameters

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
DoSomeStuff(hInstance, andSomeOtherParameters);
DSITermInstance(hInstance);
DSITerm(hApp);

return(-10368);

See also DSIInit on page 136

DSITermInstance on page 158

Parameter Description

hApp handle of application data returned by a prior call to DSIInit

Value Description

DSIHANDLE hInstance handle to instance data, returns 0 on error

DSINULLHANDLE returns on failure

Chapter 2
DSI C APIs

138

DSIInitQueue
Use this function to initialize a queue.

Syntax long DSIInitQueue(DSIHANDLE hInstance, long iQueue, char* pszQName);

Parameters

The IQueue parameter tells the system whether to initialize the request (REQUESTQ)
or result (RESULTQ) queue. If the pszQName parameter is NULL, the rule uses the
Name INI option in the REQUESTQ or RESULTQ control group. If found, it will use
this name for the output (or input) queue name. These names have default values which
are used when the name passed in is NULL and no INI option is specified in the DSI.INI
file. The default names are REQUESTQ for output and RESULTQ for input queues.

Return values

Example Here is an example:

long rc;

if(DSIInitQueue(hInstance, DSI_INPUTQUEUE, "InputQ")
 != DSIERR_SUCCESS)
 {
 rc = DSIGetQError(hInstance, DSI_INPUTQUEUE);
 }

See also DSITermQueue on page 159

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue to initialize

pszQName name of queue to initialize.

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_EOF record not found

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

DSILocateAttachVar

139

DSILocateAttachVar
Use this function to locate an attachment variable. You must call the
DSIParseAttachment function before you use this function.

Syntax long DSILocateAttachVar(DSIHANDLE hInstance, long iQueue, char*
szName,

char* szValue, size_t cbValSize);

Parameters

Return values

Example Here is an example:

char szVar [32];

DSILocateAttachVar(hInstance,
 DSI_INPUTQUEUE,
 "FileName",
 szVar,
 sizeof(szVar));

See also DSIAddAttachVar on page 84

DSIDeleteAttachVar on page 120

DSIParseAttachment on page 143

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment in which variable is to be found

szName name of the variable to locate

szValue buffer for the variable

cbValSize size of buffer in szValue

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

140

DSILocateAttachVarEx
Use this function to locate an attachment variable. You must call the
DSIParseAttachment function before you use this function.

Syntax long DSILocateAttachVarEx(DSIHANDLE hdsi, long iQueue, char* szName,
char* szValue, size_t cbValSize, long IEncoding);

Parameters

Return values

Example Here is an example:

char szVar [32];

DSILocateAttachVarEx(hInstance,
 DSI_INPUTQUEUE,
 "FileName",
 szVar,
 sizeof(szVar),

 DSIENCODING_UTF_8);

See also DSIAddAttachVar on page 84

DSIDeleteAttachVar on page 120

DSIParseAttachment on page 143

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hInstance handle to instance returned by DSIInitInstance

iQueue queue attachment in which variable is to be found

szName name of the variable to locate

szValue buffer for the variable

cbValSize size of buffer in szValue

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

DSILocateValue

141

DSILocateValue
Use this function to locate a persistent DSI variable.

Syntax long DSILocateValue(DSIHANDLE hInstance, char* szName, void*
pvValue, size_t cbValueSize);

Parameters

Return values

Example Here is an example:

char szFile [CCHMAXPATH];

DSILocateValue(hInstance, "FILENAME", szFile, sizeof(szFile));

See also DSICreateValue on page 119

DSIDestroyValue on page 121

DSIQueryValueSize on page 145

Parameter Description

hInstance handle to instance returned by DSIInitInstance

szName name of the variable to locate

pvValue buffer in which to place to the data

cbValueSize size of buffer

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND named value not found

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

142

DSIOpenAttachCursor
Use this function to open a cursor into the attachment list for the specified queue.

Syntax DSIHANDLE DSIOpenAttachCursor(DSIHANDLE hInstance, long iQ);

Parameters

Return values

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
 DSI_INPUTQUEUE);
if (DSIAttachCursorFirst(hCursor,
 szName,
 sizeof(szName),
 szValue,
 sizeof(szValue)) == DSIERR_SUCCESS)
{
 printf("The first element is: %s = %s“, szName, szValue);
}

See also DSIAttachCursorFirst on page 90

DSIAttachCursorNext on page 100

DSIAttachCursorLast on page 94

DSIAttachCursorPrev on page 104

DSIAttachCursorName on page 98

DSIAttachCursorValue on page 108

DSICloseAttachCursor on page 116

DSIParseAttachment on page 143

Parameter Description

hInstance handle to instance data initialized by a prior call to DSIInitInstance

iQ queue identifier

Value Description

DSIHANDLE handle to cursor which you can use for subsequent calls to the
DSIAttachCursorFirst, DSIAttachCursorNext, DSIAttachCursorPrev
and DSICloseAttachCursor functions.

DSINULLHANDLE on failure

DSIParseAttachment

143

DSIParseAttachment
Use this function to parse the attachment field in the queue record into an internal
attachment list of name/value pairs.

Syntax long DSIParseAttachment(DSIHANDLE hInstance, long iQueue);

Parameters

Return values

Example Here is an example:

DSIParseAttachment(hInstance, DSI_INPUTQUEUE);

See also DSIStoreAttachment on page 156

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue in which the attachment is to be parsed

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Chapter 2
DSI C APIs

144

DSIQueryEnvOptions
Use this function to return DSI-specific environment options via DSIENV_* flags. You
can use this function to determine if a rule is running on the client or on the server.

Syntax _DSIEXPORT long _DSIAPI DSIQueryEnvOptions (DSIHANDLE hInstance,
long *plOptions);

These flags are currently available:

 Parameters

 Return values DSIERR_SUCCESS or an error code

 Example Here is an example:

long lOpt;

if (DSIQueryEnvOptions(hInstance,&lOpt) != DSIERR_SUCCESS) {

... display error message

}

if (lOpt & DSIENV_SERVER)

{

printf("Running on the server\n");

}

if (lOpt & DSIENV_CLIENT)

{

printf("Running on the client\n");

}

Flag Available on the...

DSIENV_SERVER server

DSIENV_CLIENT client

DSIENV_SERVICE server as an NT service

Parameter Description

hInstance handle to instance returned by DSIInitInstance

plOptions pointer to a long for returning the DSIENV_* values.

DSIQueryValueSize

145

DSIQueryValueSize
Use this function to find the length of a persistent DSI variable.

Syntax size_t DSIQueryValueSize(DSIHANDLE hInstance, char* szName);

Parameters

Return values

Example Here is an example:

size_t cbVar;

cbVar = DSIQueryValueSize(hInstance, "FILENAME");

See also DSICreateValue on page 119

DSIDestroyValue on page 121

DSILocateValue on page 141

Parameter Description

hInstance handle to instance returned by DSIInitInstance

szName name of the variable to locate

Value Description

0 error

0 variable size

Chapter 2
DSI C APIs

146

DSIReceiveFile
Use this function to get a file from an attachment and write that file to disk. This
function supports text (such as XML or RTF) and binary files. The size of file is limited
to the queue message size. Use this function with the DSISendFile function.

NOTE: XML files can have very long lines. If the line length is over 1K, use the binary
file send/receive option. The binary send/receive works with any file, including
XML and other text files.

Syntax DSIReceiveFile(hdsi, iQueue, pszFileName, pszAttachName, iOptions);

Parameters

Return values DSIERR_SUCCESS

DSIERR_INVPARM

DSIERR_IOERR

Example Here is an example:

DSIReceiveFile(hdsi,

 DSI_INPUTQUEUE,

 "c:\\docserv\\a.txt", /* file name

 "FILESEND", /* attachment variable name

 DSIFILE_TEXT); /* option, file is text file

Parameter Description

hdsi The handle to the instance returned by DSIInitInstance.

iQueue The queue attachment to which the file was added by the DSISendFile
function.

pszFileName The full name of the output file you want to create.

pszAttachName The name of the attachment variable to find file data.

lOptions Currently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive. This value
should be the same as was used with the DSISendFile function.

DSIReceiveFileAsBuffer

147

DSIReceiveFileAsBuffer
Use this function to get a file from an attachment and copy it into a passed in buffer.
This function supports both text and binary files. The size of file is limited to the one
queue message size. You must use this function with the DSISendFile function.

Syntax DSIReceiveFileAsBuffer (hdsi, iQueue, pszFileName, pszAttachName,
pBuffer, cbSize, iOptions);

Parameters

Return values DSIERR_SUCCESS

DSIERR_INVPARM

Example Here is an example:

size_t size;

char *buffer;

if (DSIReceiveFileAsBufferSize(hdsi,

DSI_INPUTQUEUE,

"FILESEND",

&size,

0) != DSIERR_SUCCESS)

{

printf("Error in DSIReceiveFileAsBufferSize\n");

return -1;

}

buffer = malloc(size); /* allocate the right size

if (buffer == NULL)

{

printf("Cannot allocate buffer\n");

}

if (DSIReceiveFileAsBuffer(hdsi,

DSI_INPUTQUEUE,

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which the file was added by DSISendFile

pszAttachName name of the attachment variable to find file data

pBuffer output, the buffer to receive file data, buffer should be large enough to
hold the whole file data. Use the DSIReceiveFileAsBufferSize function to
determine the size.

cbSize allocated size of buffer in pBuffer

iOptions RFU, currently not used

Chapter 2
DSI C APIs

148

"FILESEND",

buffer,

size,

0) != DSIERR_SUCCESS)

{

printf("ReceiveFile failed\n");

}

.. here application can do whatever is needed with the buffer ..

free(buffer); /* free the buffer

DSIReceiveFileAsBufferSize

149

DSIReceiveFileAsBufferSize
Use this function to get the actual size of file from an attachment. This function
supports both text and binary files. The size of file is limited to the one queue message
size. You must use this function with the DSISendFile function.

Syntax DSIReceiveFileAsBufferSize(hdsi, iQueue, pszAttachName, pstSize,
iOptions);

Parameters

Return values DSIERR_SUCCESS

DSIERR_INVPARM

Example Here is an example:

size_t size;

char *buffer;

if (DSIReceiveFileAsBufferSize(hdsi,

DSI_INPUTQUEUE,

"FILESEND",

&size,

0) != DSIERR_SUCCESS)

{

printf("Error in DSIReceiveFileAsBufferSize\n");

return -1;

}

buffer = malloc(size); /* allocate the right size

if (buffer == NULL)

{

printf("Cannot allocate buffer\n");

}

if (DSIReceiveFileAsBuffer(hdsi,

DSI_INPUTQUEUE,

"FILESEND",

buffer,

size,

0) != DSIERR_SUCCESS)

{

printf("ReceiveFile failed\n");

}

.. here application can do whatever is needed with the buffer ..

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which the file was added by DSISendFile

pszAttachName name of the attachment variable to find file data,

pstSize output, the size of file data in attachment

lOptions RFU, currently not used

Chapter 2
DSI C APIs

150

free(buffer); /* free the buffer

On the ASP side, you can use this code:

buff = DSI.ReceiveFileAsBuffer ("ZZLPDF")

Response.ContentType = "application/PDF"

Response.BinaryWrite buff

Where ZZLPDF is the name used in the ATCSendFile rule in DOCSERV configuration
file.

DSIRowset2XML

151

DSIRowset2XML
Use this function to get a row set back as XML in memory. A row set is a collection of
attachment variables created using the DSIAddRecord and DSIAddToRecord functions.

Syntax DSIRowset2XML(hdsi, iQueue, pszRowset, szXMLBuffer stBuffSize,
iOptions);

Parameters

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

DSIERR_INVPARM

Example Here is an example:

char *buf;

size_t size;

DSIRowset2XMLSize(hdsi,DSI_INPUT,"LIBRARIES",&size,0);

buf = malloc(size);

DSIRowset2XML(hdsi,DSI_INPUT,"LIBRARIES",buf,size,0);

... use buffer here

free(buf);

See also DSIRowset2XMLSize on page 152

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which the row set was added by DSIAddRecord

pszRowset name of the row set to get

szXMLBuffer buffer into which the XML is to be unloaded

stBuffSize size of buffer in szXMLBuffer including the zero terminator

lOptions RFU, currently not used

Chapter 2
DSI C APIs

152

DSIRowset2XMLSize
Use this function to get the size of row set back as XML in memory. A row set is a
collection of attachment variables created using the DSIAddRecord and
DSIAddToRecord functions.

Syntax DSIRowset2XMLSize(hdsi, iQueue, pszRowset, pstSize, iOptions);

Parameters

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

DSIERR_INVPARM

Example Here is an example:

char *buf;

size_t size;

DSIRowset2XMLSize(hdsi,DSI_INPUT,"LIBRARIES",&size,0);

buf = malloc(size);

DSIRowset2XML(hdsi,DSI_INPUT,"LIBRARIES",buf,size,0);

... use buffer here

free(buf);

See also DSIRowset2XML on page 151

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which the row set was added by DSIAddRecord

pszRowset name of the row set to get

pstSize output, the size of row set in XML format

lOptions RFU, currently not used

DSISendBuffer

153

DSISendBuffer
Use this function to add a file to an attachment so it can be received on the other end.
This function supports text and binary files. The size of file is limited to the one queue
message size.

The file being sent is provided to this API as a buffer in memory. It can be used when
the data is in memory to eliminate unnecessary IO operation.

When text buffer is used, the new line character is the delimiter for each line. For text,
send the lines delimited only by the new line character. Do not use carriage returns. If
the line is longer than 1024 bytes, use the binary send method.

Syntax DSISendBuffer(hdsi, iQueue, pszAttachName, pBuffer, cbsize, iOptions
);

Parameters

Returns DSIERR_SUCCESS

DSIERR_INVPARM

DSIERR_MEMORY

Example Here is an example:

DSISendBuffer(hdsi,

DSI_OUTPUTQUEUE,

"FILESEND", /* attachment variable name

buffer, /* file data

strlen(buffer), /* length of file data

DSIFILE_TEXT); /* option, file is text file

Parameter Description

hdsi The handle to the instance returned by DSIInitInstance.

iQueue The queue attachment to which the file should be added, usually output.

pszAttachName The name of the attachment variable to use for the file data. This name is
used on the receiving end to retrieve file data from the queue.

pBuffer The buffer with file data.

cbSize The size of data in pBuffer, if text is being sent the size does not need to
include the null terminator character.

lOptions Currently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive.

Chapter 2
DSI C APIs

154

DSISendFile
Use this function to add a file to an attachment so it can be received on the other end.
This function supports text (such as XML or RTF) and binary files. The size of file is
limited to the queue message size.

NOTE: XML files can have very long lines. If the line length is over 1K, use the binary
file send/receive option. The binary send/receive works with any file, including
XML and other text files.

Syntax DSISendFile(hdsi, iQueue, pszFileName, pszAttachName, iOptions);

Parameters

Return values DSIERR_SUCCESS

DSIERR_INVPARM

DSIERR_IOERR

Example Here is an example:

DSISendFile(hdsi,

 DSI_OUTPUTQUEUE,

 "c:\\docserv\\a.txt", /* file name

 "FILESEND", /* attachment variable name

 DSIFILE_TEXT); /* option, file is text file

Parameter Description

hdsi The handle to the instance returned by DSIInitInstance.

iQueue The queue attachment to which the file should be added.

pszFileName The full name of the output file you want to send.

pszAttachName The name of the attachment variable to use for file data. You must use this
same name in the DSIReceiveFile rule to get the file.

lOptions Currently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive.

DSISetQField

155

DSISetQField
Use this function to set a queue field. The system includes several pre-defined queue
fields (see IQueue in the table below) which you can set and retrieve. These fields are
used by the standard rules and the rule engine.

Syntax long DSISetQField(DSIHANDLE hInstance, long iQueue, long iField,
void* pvValue, size_t cbValue);

Parameters

Return values

Example Here is an example:

DSISetQField(hInstance,
 DSI_OUTPUTQUEUE,
 DSIQSET_REQTYPE,
 "LGN",
 sizeof("LGN"));

See also DSIGetQField on page 131

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue to which operation applies

iField DSIQSET_* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE_ID

pvValue data to copy into queue field

cbValue length of pvValue parameter (including the trailing null)

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSIERR_MEMORY out of memory

DSIERR_EOF record not found

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Chapter 2
DSI C APIs

156

DSIStoreAttachment
Use this function to update the attachment field in the queue record from the internal
attachment list. The system does not clear the internal attachment list.

Use this function after you use the DSIAddAttachVar function to move your additions
to the attachment list.

Syntax long DSIStoreAttachment(DSIHANDLE hInstance, long iQueue);

Parameters

Return values

Example Here is an example:

DSIStoreAttachment(hInstance, DSI_OUTPUTQUEUE);

See also DSIParseAttachment on page 143

DSIAddAttachVar on page 84

DSIAddAttachRec on page 83

DSIAddToAttachRec on page 86

DSISetQField on page 155

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue in which the attachment is to be updated

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

DSITerm

157

DSITerm
Use this function to terminate DSI use. This should be called by the application only
once.

Syntax long DSITerm(DSIHANDLE hApp);

Parameters

Return values DSIERR_SUCCESS

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
DoSomeStuff(hInstance, andSomeOtherParameters);
DSITermInstance(hInstance);
DSITerm(hApp);

return(-10368);

See also DSIInit on page 136

Parameter Description

hApp handle to application data returned by a prior call to DSIInit

Chapter 2
DSI C APIs

158

DSITermInstance
Use this function to terminate instance data.

Syntax long DSITermInstance(DSIHANDLE hInstance);

Parameters

Return values

Example Here is an example:

DSIHANDLE hApp = DSIInit();
DSIHANDLE hInstance = DSIInitInstance(hApp);

DoSomeStuff(hApp, SomeOtherParameters);

DSITermInstance(hInstance);
DSITerm(hApp);

return(22);

See also DSIInitInstance on page 137

Parameter Description

hInstance handle of instance data previously initialized by a call to DSIInitInstance

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSITermQueue

159

DSITermQueue
Use this function to terminate the usage of a queue.

Syntax long DSITermQueue(DSIHANDLE hInstance, long iQueue);

Parameters

Return values

Example Here is an example:

DSITermQueue(hInstance, DSI_INPUTQUEUE);

See also DSIInitQueue on page 138

Parameter Description

hInstance handle to instance returned by DSIInitInstance

iQueue queue to terminate

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSIERR_MEMORY out of memory

DSIERR_EOF record not found

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Chapter 2
DSI C APIs

160

LDAPGetErrorCode
Use this function to return the last LDAP error code.

Returns An integer value that represents the last LDAP error code.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file = "c:\\docserv\\openldap.properties");

char *userid = "demo1";

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap = NULL;

if ((ldap = LDAPInit(args,

 file)) != NULL){

 listH = LDAPSearchDirectory(userid,

 ldap);

 if (listH == VMMNULLHANDLE ||

 VMMCountList(listH) == 0){

 UTLLogTrace("LDAP Error Code: %d\n" \

 "LDAP Error Message: %s",

 LDAPGetErrorCode(ldap),

 LDAPGetErrorMessage(ldap));

 LDAPTerm(ldap);

 }

 LDAPTerm(ldap);

}

See also LDAPGetErrorMessage on page 161

LDAPGetErrorMessage

161

LDAPGetErrorMessage
Use this function to return the last error message.

Returns A character pointer to the last LDAP error message.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file = "c:\\docserv\\openldap.properties");

char *userid = "demo1";

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap = NULL;

if ((ldap = LDAPInit(args,

 file)) != NULL){

 listH = LDAPSearchDirectory(userid,

 ldap);

 if (listH == VMMNULLHANDLE ||

 VMMCountList(listH) == 0){

 UTLLogTrace("LDAP Error Code: %d\n" \

 "LDAP Error Message: %s",

 LDAPGetErrorCode(ldap),

 LDAPGetErrorMessage(ldap));

 LDAPTerm(ldap);

 }

 LDAPTerm(ldap);

}

See also LDAPGetErrorCode on page 160

Chapter 2
DSI C APIs

162

LDAPInit
Use this function to initialize and start an SSL or non-SSL connection to an LDAP
server.

This function reads the connection and search options from a comma-delimited list of
arguments, a properties file, an INI file, or from input message variables/GVMs, in that
order.

The options found in more than one location override the previous one. Option names
are not case sensitive. This function supports option values encrypted through the
cryrun program. Precede encrypted option values with the keyword ~ENCRYPTED
and a space.

Be sure to call this function before calling the LDAPSearchDirectory function to set the
connection and search options and to establish a connection session to an LDAP server.

Properties
Property Description

LDAP.HOST (Optional) The host name or IP address of the LDAP server.
The default is localhost.

 LDAP.PORT (Optional) The port in which the LDAP server is listening on.
The default is 389 when SSL is not used, 636 otherwise (see
the LDAP.USE.SSL option).

LDAP.URL (Optional) The URL the LDAP server is listening on. If a
value is specified for this property, it overrides the values
specified for LDAP.HOST and LDAP.PORT.

LDAP.UID (Optional) The user ID for logging onto the LDAP server. If
this value is provided and LDAP.USER is not provided, the
user ID is derived from this value and the value provided for
LDAP.DOMAIN option, such as Administrator@pd.com.

LDAP.USER (Optional) An explicit value to use for the user ID for the
purpose of login into the LDAP server. Define this option to
override the behavior used to determine the user ID when
LDAP.UID and LDAP.DOMAIN are defined - see
LDAP.DOMAIN.

LDAP.PWD (Optional) The password used to login into the LDAP server.

LDAP.AUTHENTICATION.
MODE

(Optional) The method of authentication used to login into
the LDAP server. Acceptable values are (simple) which
provides clear-text password authentication and (none) which
provides anonymous authentication. The default is (simple).

LDAP.TIMEOUT (Optional) The amount of time (in milliseconds) after which a
connection attempt or query should expire. The default is
10000 (10 seconds).

LDAP.SEARCH.BASE (Optional) The base of the search in the DIT (Directory
Information Tree). This is the starting point (node location) of
a search in the DIT. If you omit this property, the system
looks for the LDAP.DOMAIN option and builds a search
base from it.

LDAPInit

163

LDAP.DOMAIN (Optional) This is the domain of the LDAP server. It is used
to build the user ID for login into the LDAP server by
appending the at symbol (@) plus the value of this option to
the LDAP.UID value. The value of LDAP.DOMAIN is
further parsed into domain components which are used as the
default value for LDAP.SEARCH.BASE, if not already
defined.

LDAP.OBJECTS (Optional) A semicolon-delimited filter list of object classes to
search in the LDAP server. If defined, it overrides the default
filter list of object classes to search: group and
groupOfNames.

LDAP.OBJECTS.SEARCH.
STRING

(Optional) An explicit string value used as the filter of object
classes to search. If defined, it overrides any value provided
for LDAP.OBJECTS option. The value provided for this
option must be specified in the appropriate LDAP protocol
filter format. Also, if the search filter contains a question mark
(?), the system replaces it with the user ID passed in as an
argument to this function. Here are some examples:

(|(objectClass=group)(objectClass=groupO
fNames)).

Cn=?

LDAP.OBJECT.
ATTRIBUTES

(Optional) The name of the attributes to retrieve for each
object class which contain a value used to determine a match
for USERID specified. The default values are member and cn
(cn is always included).

LDAP.MATCH.
ATTRIBUTES

(Optional) The name of one or more attributes contained
within the value returned by a search for the
LDAP.OBJECT.ATTRIBUTES option. This is the name of
an attribute whose value is used to compare as opposed to the
USERID specified to determine a match.
For example, if LDAP.OBJECTS contains a value of
groupOfUniqueNames and LDAP.OBJECT.ATTRIBUTES
contains a value of uniqueMember and the value returned for
the uniqueMember attribute of groupOfUniqueNames object
class is uid=admin,ou=people, dc=mycompany,dc=com and
you want to match the USERID value with the value for uid,
you would supply a value of uid for this option. The default is
cn.

LDAP.SEARCH.
SCOPE

(Optional) The scope of the search. Acceptable values are:
(base) - search only the named context
(one) - search one level below the named context but not the
named context
(sub) - search the entire subtree, including the named context.
The default is (sub).

LDAP.DEREF.LINK (Optional) Enter Yes or No to indicate whether or not to
remove reference links to other nodes during a search. The
default is No.

Property Description

Chapter 2
DSI C APIs

164

 LDAP.VERSION (Optional) An integer value that indicates the LDAP protocol
version to use. You can choose from:
2 - Version 2
3 - Version 3
The default is three (3).

LDAP.SEARCH.LEVEL (Optional) An integer value that indicates the search level. You
can choose from:
1 - User type objects
2 - Group type objects
3 - Any objects
 The default is one (1), user type objects.

LDAP.DN.IDENTIFIER (Optional) The value for this property is used in the following
ways:
1)-In cases were LDAP.SEARCH.LEVEL is equal to 1
(USER) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter of the format
identifier=userid, where identifier is the value of this property
and userid is the user ID passed in as an argument to this
function.
2)-In cases were LDAP.SEARCH.LEVEL is equal to 2
(GROUPS) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter from LDAP.OBJECTS
and LDAP.OBJECT.ATTRIBUTES, where each attribute
value in the search filter is an asterisk (*), which tells the
system to match any value for the attributes specified. If the
LDAP.RDNDS property is also provided, the asterisk (*) is
replaced with identifer=userid, followed by a comma and the
LDAP.RDNS value to fine tune the search, where identifier is
the value for this property and userid is the user ID passed in
as an argument to this function. Here is an example of a
default search filter:

(&((objectClass=groupOfNames)(member=*))
)

If a value of
'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM' is
specified for LDAP.RDNS and this property contains a value
of 'CN', the search filter generated would look like this:

(&((objectClass=groupOfNames)(member=CN=
Administrator,

CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM))).

3)-The default is 'CN'.

Property Description

LDAPInit

165

Here is an example of a properties file:

ldap.host=localhost

ldap.port=389

ldap.timeout=5000

ldap.uid=cn=Administrator, dc=pdldap, dc=com

ldap.pwd=marks99

ldap.authentication.mode=simple

ldap.objects=groupOfNames;group

ldap.search.base=dc=pdldap, dc=com

ldap.object.attributes=member

ldap.match.attributes=cn

ldap.search.scope=sub

ldap.version=3

ldap.deref.link=Yes

ldap.debug=yes

Here is an example of an INI file:

< LDAP >

ldap.host=PDDC.pd.com

ldap.port=389

ldap.timeout=5000

LDAP.RDNS (Optional) This property is only used when
LDAP.SEARCH.LEVEL is equal to 2 (GROUPS) and when
LDAP.OBJECTS.SEARCH.STRING is not specified. In this
situation, the system builds a default search filter from
LDAP.OBJECTS and LDAP.OBJECT.ATTRIBUTES.
Attribute values specified in the default search filter contain an
asterisk (*), which tells the system to match any value for the
attributes specified. When you specify this property, the
system uses the value along with the value for
LDAP.DN.IDENTIFIER to replace the asterisk and fine
tune the search, thereby speeding the process. Here is an
example of a default search filter:

(&((objectClass=groupOfNames)(member=*))
)

In a case were a value of
'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM' is
specified for this property and LDAP.DN.IDENTIFIER
contains a value of 'CN', the search filter generated would look
like this:

(&((objectClass=groupOfNames)(member=CN=
Administrator,

CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM))).

LDAP.USE.SSL (Optional) Enter Yes to enable encrypted communication
through an SSL channel. For SSL connections to work, the
LDAP server must be configured for SSL with a certificate
from a trusted certification authority. This configuration is
vendor specific — please consult your vendor documentation.

LDAP.DEBUG (Optional) Enter Yes to log debugging information to a trace
file.

Property Description

Chapter 2
DSI C APIs

166

ldap.uid=jroberts

ldap.pwd=~ENCRYPTED 25lUOjhIgWhSGnr7o2Yq5A000

ldap.authentication.mode=simple

ldap.domain=PDDC.pd.com

ldap.objects=group

ldap.debug=yes

ldap.object.attributes=member

ldap.match.attributes=cn

Returns An LDAP error code.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file = "c:\\docserv\\openldap.properties");

char *userid = "demo1";

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap = NULL;

if ((ldap = LDAPInit(args,

 file)) != NULL){

 listH = LDAPSearchDirectory(userid,

 ldap);

 if (listH == VMMNULLHANDLE ||

 VMMCountList(listH) == 0){

 UTLLogTrace("LDAP Error Code: %d\n" \

 "LDAP Error Message: %s",

 LDAPGetErrorCode(ldap),

 LDAPGetErrorMessage(ldap));

 LDAPTerm(ldap);

 }

 LDAPTerm(ldap);

}

See also LDAPTerm on page 168

LDAPSearchDirectory on page 167

LDAPSearchDirectory

167

LDAPSearchDirectory
Use this function to search a user ID for group or role membership in an LDAP server
DIT (Directory Information Tree).

Call this function after the LDAPInit function, followed by the LDAPTerm function
when the session is no longer needed. This function supports encrypted
communications through an SSL channel (see the LDAP.USE.SSL property in the
LDAPInit function) and encrypted option values.

Returns A VMMHANDLE to a VMMList of string values corresponding to each group or role
the user ID belongs to.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file = "c:\\docserv\\openldap.properties");

char *userid = "demo1";

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap = NULL;

if ((ldap = LDAPInit(args,

 file)) != NULL){

 listH = LDAPSearchDirectory(userid,

 ldap);

 if (listH == VMMNULLHANDLE ||

 VMMCountList(listH) == 0){

 UTLLogTrace("LDAP Error Code: %d\n" \

 "LDAP Error Message: %s",

 LDAPGetErrorCode(ldap),

 LDAPGetErrorMessage(ldap));

 LDAPTerm(ldap);

 }

 LDAPTerm(ldap);

}

See also LDAPTerm on page 168

LDAPInit on page 162

Chapter 2
DSI C APIs

168

LDAPTerm
Use this function to terminate a connection to an LDAP server.

Example Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file = "c:\\docserv\\openldap.properties");

char *userid = "demo1";

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap = NULL;

if ((ldap = LDAPInit(args,

 file)) != NULL){

 listH = LDAPSearchDirectory(userid,

 ldap);

 if (listH == VMMNULLHANDLE ||

 VMMCountList(listH) == 0){

 UTLLogTrace("LDAP Error Code: %d\n" \

 "LDAP Error Message: %s",

 LDAPGetErrorCode(ldap),

 LDAPGetErrorMessage(ldap));

 LDAPTerm(ldap);

 }

 LDAPTerm(ldap);

}

See also LDAPInit on page 162

LDAPSearchDirectory on page 167

LDAPTerm

169

Chapter 2
DSI C APIs

170

171

Chapter 3

DSI Java APIs

This chapter provides a reference to the Document
Server Interface (DSI) Java APIs you can use to create
applications to interface with Oracle Insurance's
Internet Document Server.

This information will help you build either a
proprietary client interface or a custom set of rules
which will interact with the Internet Document Server.

The DSI Java API provides the DSI API. Since Java is an
object-oriented language, the API is implemented as
three classes:

• Class DSIJSession

• Class DSIJException

• Class DSIJQueue

These classes provide access to the Internet Document
Server. All three classes are in a single package,
com.Docucorp.DIS.util, which should be imported
into any Java source file.

NOTE: The DSI API includes multiple interfaces
(APIs). This lets you choose the language to
build custom rules and applications. You will
also find sample clients written in each
language, which serve as a reference when
building your own solution.

The topic, Java API Classes on page 182 provides a list
of all Java methods, grouped by class. Each method is
then discussed in alphabetical order, by class.

You will also find information on using the included
JavaBean component in the topic, Using JavaBean
Components on page 172.

Chapter 3
DSI Java APIs

172

USING
JAVABEAN

COMPONENTS

com.docucorp.ids.jsp.dsi is a JavaBean component which lets you create an interface
between Java server pages (JSPs) and IDS rules.

The request name/value string from the browser is passed to JavaBean using these
methods:

• AddRequest(Object name, Object value)

• AddAllRequest(javax.servlet.ServletRequest request)

AddRequest adds one request name/value at a time. AddAllRequest adds all name/values
from the http request object.

This illustration shows how it works:

Browser

Java Web Server

(Jakarta-Tomcat or IIS with the Tomcat plugin)

JSP

Java Beans

(com.docucorp.ids.jsp.dsi)

Rules

IDS

(DSIJava)

Using JavaBean Components

173

The name REQTYPE is reserved for the request type to the IDS rule. Once the request
name/value has been passed to the dsi JavaBean, ProcessRequest is called to send the
name/value and request type to the IDS rules.

After the IDS rule is processed, ProcessRequest returns the name/value records from the
IDS rules as a HashMap object. setWaittime() sets the retry time to read the return records
from IDS. setTimeout() sets the timeout period to read the return records from IDS.

debug_on(javax.servlet.ServletResponse response) sets a flag to send the request name/value and
return name/value from IDS to the passing response object and then calls the
AddRequest and ProcessRequest methods.

AddAllRequest

Request typeRequestAddRequest

GetResultClearRequest

Result

IDS

Request

Send output to response Obj

HashMap

Debug_on

Debug_off

Response Obj

setWaittime

getWaittime

setTimeout

getTimeout

ProcessRequest

Timeout

Waittime

Debug flag

dsi JavaBean

Chapter 3
DSI Java APIs

174

Here is a summary of how the methods work:

Step Method Description

1

void
debug_on(javax.servlet.Ser
vletResponse response)

Sets the flag to send the request name/value and return
name/value from IDS to the passing response object.
Then calls the AddRequest and ProcessRequest
methods.

void debug_off() Clears the debug flag.

2
int getWaittime() Gets the amount of retry time to read the IDS return

record.

3
int setWaittime(int
waittime)

Sets the retry time (in milliseconds) to read the IDS
return record.

4 int getTimeout() Gets the timeout to read the IDS return record.

5
int setTimeout(int timeout) Sets the timeout (in milliseconds) to read the IDS return

record.

6
void AddRequest(Object
key, Object value)

Adds the name/value field to the record to send to the
IDS rule.

7

void
AddAllRequest(javax.servl
et.ServletResponse
request)

Adds all name/value fields from the request object to
the records to send to the IDS rule.

8

HashMap
ProcessRequest()

Sends all name/values and request types to the IDS
rules. Processes the IDS rule and gets the return records
from the IDS rule. Returns the record as type HashMap.

9
String GetResult(Object
key)

Gets the return record value from the IDS rule index
using the key from internal result.

10 void ClearRequest() Clears the JavaBean internal request object.

11 void ClearResult() Clears the JavaBean internal result object.

Using JavaBean Components

175

echotest.jsp Here is an example:

<html>

<!--

 Copyright (c) 2001 Docucorp International. All rights reserved.

-->

<%@ page language="java"%>

<body bgcolor="white">

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>

<%

 dsi.setTimeout(20000); //Set Timeout

%>

WaitTime: is <jsp:getProperty name="dsi" property="waittime"/>

TimeOut: is <jsp:getProperty name="dsi" property="timeout"/>

<%

 //dsi.debug_on(response);

 dsi.AddRequest("Reqtype","ECH"); //Set IDS rule to Echo

 dsi.AddRequest("Name1","Value1"); //Pass name value

 dsi.AddRequest("Name2","Value2");

 java.util.HashMap Rst = dsi.ProcessRequest(); //Process the rule

 //dsi.debug_off();

 java.util.Set st = Rst.entrySet();

 java.util.Iterator it = st.iterator();

 //Loop thorugh the return HashMap

 while (it.hasNext())

 {

 java.util.Map.Entry me = (java.util.Map.Entry) it.next();

%>

 <%=(String) me.getKey()%> =

 <%=(String) Rst.get(me.getKey())%>

<%

 }

%>

</body>

</html>

This JSP calls an echo rule in IDS and pass two name/value pairs.

Chapter 3
DSI Java APIs

176

RETURNING A RECORDSET OBJECT

The processRequest method in dsimsg class returns a user-defined RecordSet object for
requests that execute SQL queries through the SQLQueryDB rule. The RecordSet object
is built from the output message XML rowsets: RECORDS and SELECTIONFIELDS.

Use this capability with the SQLQueryDB rule, which adds the rowsets RECORDS and
SELECTIONFIELDS to the result message. This lets you process queries with dsimsg
class instead of using idssql package — and a RecordSet object can still be returned. The
RecordSet object is identical to the idsrs object in the idssql package, so all method
definitions and calls are the same.

Here is a sample JSP page:

<%@ page language="java" import="java.util.*,

java.net.*,

java.io.*" %>

<jsp:useBean id='dsi' scope='page'
class='com.docucorp.ids.jsp.dsimsg'/>

<jsp:useBean id='rs' scope='page'
class='com.docucorp.ids.jsp.RecordSet'/>

<%

/***always call at the beginning of a jsp page

***when calling processRequest more than

***once with the same dsimsg bean instance.

*/

dsi.initInstance();

for (int x = 0; x < 20; x++){

dsi.setTimeOut(30000);

//dsi.debugOn(response);

dsi.addRequest("REQTYPE", "TEST3");

dsi.addRequest("USERID", "FORMAKER");

dsi.addRequest("PASSWORD", "FORMAKER");

dsi.addRequest("PROCNAME", "YYZ ");

dsi.addRequest("INSTANCE", String.valueOf(x));

String record = "SQLPARAMETERS";

String rec = dsi.addAttachRec(record);

if (rec != null){

dsi.addToAttachRec(rec, "PARAM1", "PASSWORD");

dsi.addToAttachRec(rec, "PARAM2", "USERID ");

dsi.addToAttachRec(rec, "PARAM3", "SERVERTIMESPENT");

dsi.addToAttachRec(rec, "PARAM4", "TRANLOG20030602");

dsi.addToAttachRec(rec, "PARAM5", "FORMAKER");

dsi.addToAttachRec(rec, "PARAM6", "FORMAKER");

}

rs = dsi.processRequest();

Using JavaBean Components

177

if (rs == null){

out.println("rs == null");

}

else{

out.println("
INSTANCE:" + String.valueOf(x) + "
");

for(int i=1; i<= rs.getRecordCount();i++){

out.println("===========" + "
");

out.println("RECORD " + i + ":" + "
");

out.println("===========" + "
");

for (int j=1;j<= rs.getColumnCount();j++){

out.println(rs.getColumn(j) + ":" + rs.getString(j) + "
");

}

rs.next();

}

}

/***always call in between requests to reset / clear the messages in
the

***queues.

*/

dsi.resetInstance();

}

/***always call at the end of a jsp page

***when calling processRequest more than

***once with the same dsimsg bean instance.

*/

dsi.termInstance();

%>

Chapter 3
DSI Java APIs

178

USING IDSJSP IN A JSP CONTAINER

Here is an example JSP page that uses IDSJSP to send an SSS request type using the
message bus properties in the dsimsgclient.properties file:

<%@ page language="java" import="java.util.*,
 java.net.*,
 java.io.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<%

 dsi.setTimeout(30000);
 dsi.debugOn(response);

 dsi.AddRequest("REQTYPE", "SSS");

HashMap Rst = dsi.ProcessRequest();
 if (Rst.get("RESULTS") == null){

 out.println("No response from server");
 }
%>

Alternatively, you can specify the properties in the JSP page, in which case the
dsimsgclient.properties file is not needed. Here is an example JSP page that uses the
HTTP message bus properties to send an SSS request type to IDS:

<%@ page language="java" import="java.util.*,
 java.net.*,
 java.io.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<%
 Properties props = new Properties();
 props.put("queuefactory.class",
"com.docucorp.messaging.http.DSIHTTPMessageQueueFactory");

 props.put("marshaller.class",
"com.docucorp.messaging.data.marshaller.SOAPMIMEDSIMessageMarshalle
r");

 props.put("http.url", "http://localhost:49152");

dsi.debugOn(response);

 dsi.AddRequest("REQTYPE", "SSS");

HashMap Rst = dsi.ProcessRequest(props);
 if (Rst.get("RESULTS") == null){
 out.println("No response from server");
 }
%>

DSI BEAN APIS
Please refer to the docs/com/docucorp/ids/jsp/dsi.html documentation that is shipped
with the Java SDK for a description of the methods available in the dsi bean.

Using the DSI Java Messaging Library for Client Applications

179

USING THE DSI
JAVA

MESSAGING
LIBRARY FOR

CLIENT
APPLICATIONS

If you are deploying a Java client application you can use the DSI Java messaging library,
DSIJavaMsg.jar. This library provides the same functionality as the DSI Java APIs but
uses only Java code. The DSI Java APIs use native code related to the DSI C APIs.

NOTE: This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

By using only Java code, the DSI Java messaging library lets you have Java client
applications wherever you have a Java runtime so you do not need to port Document
Server Interface code to your target platform.

The DSI Java messaging library only works with IBM's MQSeries as the messaging
service. It cannot be used with Java rules for the Internet Document Server.

NOTE: If you are running the DSI Java Messaging Library inside a Java 2 Enterprise
Edition (J2EE) Application Server, such as IBM's WebSphere or BEA's
WebLogic, the JavaMail API and Javabeans Activation Framework are already
installed as a part of the application server.

The DSI Java messaging library also requires XML processing libraries from the Apache
group, xerces.jar and xalan.jar. These libraries are included. Copy these libraries into the
same directory as DocucorpMsg.jar.

http://www.apache.org/

180

PASSING JVM
OPTIONS TO

DSILIB

DSILIB uses Java through JNI (Java Native Interface) and as such it creates a Java Virtual
Machine (JVM) at runtime. DSILIB lets you pass JVM options before the JVM is created,
so you can fine-tune what is created.

For instance, you can specify the size of memory for the JVM. This is helpful, for example,
if you need to set memory higher to handle large files transmitted via the message bus
(queue).

To pass JVM options, use the dsi_extended_properties environment variable. This
environment variable should contain a comma-delimited list of additional JVM options to
pass during creation of a JVM.

Here is an example of how you would set the environment variable from a command
prompt:

Windows set dsi_extended_properties=-Xmx256m,-
Dlog4j.configuration=logclientconf.xml

UNIX export dsi_extended_properties=-Xmx256m,-
Dlog4j.configuration=logclientconf.xml

Examples of client-based applications that use DSILIB include:

• ASP pages using IDSASP.DLL

• JSP pages using IDSJSP.jar

• DSIJava.jar files, which use the C code (DSILIB)

• The DSICOTB.EXE, DSITEST.EXE, and DSIEX.EXE test programs

Generating Debug Output for Client Requests

181

GENERATING
DEBUG OUTPUT

FOR CLIENT
REQUESTS

IDS supports the following log4j categories and appenders which you can use in a log4j
client configuration file to produce debugging output for client requests:

<category name="Receive-Message">

<priority value="DEBUG"/>

<appender-ref ref="receive-message"/>

</category>

<category name="Send-Message">

<priority value="DEBUG"/>

<appender-ref ref="send-message"/>

</category>

<appender class="com.docucorp.util.logging.IDSFileAppender"
name="receive-message">

<param value="false" name="Append"/>

<param value="client-receive.msg" name="File"/>

<param value="true" name="Close"/>

<param value="ISO-8859-1" name="Encoding"/>

<layout class="org.apache.log4j.PatternLayout">

<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

<appender class="com.docucorp.util.logging.IDSFileAppender"
name="send-message">

<param value="false" name="Append"/>

<param value="client-send.msg" name="File"/>

<param value="true" name="Close"/>

<param value="ISO-8859-1" name="Encoding"/>

<layout class="org.apache.log4j.PatternLayout">

<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

NOTE: See the logclientconf.xml file for an example.

Chapter 3
DSI Java APIs

182

JAVA API
CLASSES

Here are the methods you can use with Java, grouped into these classes:

• DSIJession

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

• DSIJQueue

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

• DSIJException

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

183

Chapter 4

DSI Processing Rules

The Internet Document Server includes processing rules
you can use to control what happens to data. These rules
are divided into the following groups and explained in
this chapter.

• Server Rules on page 184

• Client Rules on page 229

Within each group, the rules are listed in alphabetical
order.

These rules run on all supported platforms except where
noted.

NOTE: The rule names are case sensitive.

Chapter 4
DSI Processing Rules

184

SERVER RULES These rules may only be run on the Internet Document Server.

With version 2.0, the built-in server rules in IDS were replaced with Java rules. When IDS
finds a mention of an IDS 1.x server rule, it is automatically replaced with the
corresponding IDS Java rule.

Here is a list of the IDS 1.x rules that have Java substitutes. All Java classes mentioned are
in the com.docucorp.ids.rules package.

NOTE: Both the old and new rules are discussed in this chapter. In future releases,
documentation on the old rules will be removed.

You can run these rules in IDS:

• AttachmentFilerRule

• BLPPurgeRule

• BLPStatisticsRule

Version 1.x rule Version 2.x rule

ATCSendFile on page 236 AttachmentFilterRule on page 211

ATCReceiveFile on page 233 AttachmentFilterRule on page 211

ATCLogTransaction on page 232 LogTransactionRule on page 226

ATCUnloadAttachment on page 239 IDSTransactionRule on page 225

IRLInitFTP on page 202 FTPRule on page 217

IRLFileFTP on page 195 FTPRule on page 217

IRLCleanDirectory on page 189

IRLClearLog on page 191 LogTransactionRule on page 226

IRLCopyAttachment on page 192 CopyDataRule on page 215

IRLInit on page 194 IDSInitRule on page 224

IRLLog on page 203

IRLPurgeCache on page 204 BLPPurgeRule on page 213

IRLSearch on page 205

IRLSendVersion on page 206

IRLStatistics on page 208 BLPStatisticsRule on page 214

IRLDecryptValue on page 193 IDSEncryptionRule on page 223

processAttachments on page 228

185

• CopyDataRule

• FTPRule

• IDSEncryptionRule

• IDSInitRule

• IDSTransactionRule

• LogTransactionRule

Chapter 4
DSI Processing Rules

186

FTPRule
Use this rule to handle FTP file transfers. This rule is a Java class that implements an IDS
rule for this purpose. The FTPRule rule is a server rule which runs on both Windows and
Solaris, as opposed to the IRLInitFTP and IRLFileFTP rules which run only on
Windows.

Because the FTPRule rule tracks all FTP connections made across transactions, you
should run it using global scope.

There are two methods in FTPRule you must use:

• setupMethod

• transferMethod

setupMethod Use this method in the INI request type. This method creates the data needed to run
multiple FTP transfers in the DSI_MSGINIT message and destroys the data in the
DSI_MSGTERM message.

Add these lines into your INI request group:

function = dsijrule->JavaInitRule

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
FTPRule;JAVAFTP;global;setupMethod;

Like all Java rules, the FTPRule rule requires that JavaInitRule be run first in the INI
request group. In the second function description, you have these parameters:

In the JavaRule control group in DOCSERV configuration file, make sure the following
Java Archive (JAR) files are in your class path via the UserClassPath option:

• DSIJava.jar

• NetComponents.jar

• DocucorpUtil.jar

• IDSRules.jar

Parameter Description

com/docucorp/ids/
rules/FTPRule

Identifies the FTPRule class with full package naming required for JNI
loading.

JAVAFTP An example name for a named object with global scope; any name would
suffice here.

global Indicates that JavaRunRule will create an object with global scope and
that can be used in other transactions.

FTPRule

187

transferMethod Use this method in your transaction control group to do the actual file transfer via FTP.
It gets files from the FTP server in the DSI_MSGRUNF message and puts them onto the
FTP server in the DSI_MSGRUNR message.

Add these lines into your transaction's request group:

function = irlw32->IRLJavaFTPSetup

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
FTPRule;JAVAFTP;global;transferMethod;FTPRRCFILE->FTPRRCLOCALFILE,

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
FTPRule;JAVAFTP;global;transferMethod;,FTPUTLOCALFILE->FTPRRC2FILE

The IRLJavaFTPSetup rule must be run before JavaRunRule with FTPRule.
IRLJavaFTPSetup reads the INI settings for the IRLFileFTP rule and creates attachment
variables that can be understood by FTPRule. For more information on which
parameters, attachment variables and INI options to use with the FTPRule rule, see
IRLFileFTP on page 195.

In addition to the options for IRLFileFTP, you can use the JavaLogFileName option in
the FTP control group to specify a file for logging FTPRule's debugging messages when
the Debug option is set to Yes. If you omit this option, the system uses the name,
FTPRULE.LOG.

PUTTING AND GETTING MULTIPLE FILES

Before version 2.1, FTPRule used a message variable to hold the name of a file to get or
put, such as GETFILEREMOTE. In version 2.1 and later, if the message variable listed
ends with an asterisk (*), IDS scans all message variables for variables that begin with that
name. For example, if you set up FTPRule with these parameters:

<entry name="function">irlw32->IRLFileFTP,GETFILEREMOTE*-
>GETFILELOCAL*,</entry>

IDS matches the message variables GETFILEREMOTEA, GETFILEREMOTEB,
GETRFILEREMOTEC, and so on.

When a match is found on the first parameter, IDS looks for a corresponding match on
the second parameter with the same suffix. For example, for GETFILEREMOTEA,
GETFILEREMOTE is the matching prefix and A is the suffix, so IDS will look for a
message variable named GETFILELOCALA.

Parameter Description

com/docucorp/ids/
rules/FTPRule

Identifies the FTPRule class with full package naming required for JNI
loading.

JAVAFTP An example name for a named object with global scope; use the same
name for the object that you used with setupMethod.

global Indicates that this rule is using an object with global scope, the same
object used when running setupMethod.

transferMethod The method in the FTPRule class that does the actual file transfers. The
argument after the method name follows the same convention as the
arguments for the IRLFileFTP rule. For more information, see
IRLFileFTP on page 195.

Chapter 4
DSI Processing Rules

188

Assuming all the message variables are there, this would be the same as running the
FTPRule three times, as shown here:

GETFILEREMOTEA->GETFILELOCALA

GETFILEREMOTEB->GETFILELOCALB

GETFILEREMOTEC->GETFILELOCALC

This also works when you are putting files. Here is an example:

<entry name="function">irlw32->IRLFileFTP,,PUTFILELOCAL*-
>PUTFILEREMOTE*</entry>

This would be the same as (with the message variables set up):

PUTFILELOCALA->PUTFILEREMOTEA

PUTFILELOCALB->PUTFILEREMOTEB

PUTFILELOCALC->PUTFILEREMOTEC

If a variable for a second parameter is missing, a unique name is generated and stored in
that variable, as happened previously.

The FTPRule now also reports its own results in the output, separate from the RESULTS
variable. If FTPRule is getting files from a remote FTP site, the results are placed in the
FTPGETRESULTS variable; for putting to a remote site, the results are placed in the
FTPPUTRESULTS variable. The variable will have either success or error. Error messages
in the output can be checked for specific errors. For multiple file rule setups, all files
must be successfully gotten or put to be reported as SUCCESS.

IRLCleanDirectory

189

IRLCleanDirectory
Use the IRLCleanDirectory rule to remove expired files from a directory. To determine
if a file has expired, the operating system’s local time is compared against a file's last
modified time plus the expiration time supplied.

Syntax long _DSIAPI IRLCleanDirectory (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Attachment inputs The input attachment variables for this rule are:

Attachment outputs The output message variables are:

Parameters The rule parameters are:

Variable Description

DIR (Optional) The name of the directory you want cleaned up. If this attachment
variable is present, it overrides any value specified as a rule argument. If a DIR
value is omitted as an attachment variable or as a rule argument, the rule sets the
RESULTS output attachment variable with a value of FAILURE and then exits.

EXPTIME (Optional) The expiration time in minutes after which files should be removed.
If this attachment variable is present, it overrides any value specified as a rule
argument. If an EXPTIME value is omitted as an attachment variable or rule
argument, the rule sets the RESULTS output attachment variable with a value of
FAILURE and then exits.

DEBUG (Optional) Enter Yes if you want the rule to output debug information. If this
attachment variable is present, it overrides any value specified as a rule argument.

Variable Description

RESULTS Contains SUCCESS or FAILURE.

Parameter Description

DIR (Optional) The name of the directory you want to clean up. If a DIR value is
neither specified as a rule argument nor present as an attachment variable, the
rule sets the RESULTS output attachment variable with a value of FAILURE
and then exits.

EXPTIME (Optional) The expiration time in minutes after which files should be removed.
If an EXPTIME value is neither specified as a rule argument nor present as an
attachment variable, the rule sets the RESULTS output attachment variable with
a value of FAILURE and then exits.

DEBUG (Optional) Enter Yes if you want the rule to output debug information.

Chapter 4
DSI Processing Rules

190

Example Here is an example of a request type:

<section name="ReqType:TEST_REMOVE">

 <entry name="function">atcw32->ATCLoadAttachment</entry>

 <entry name="function">atcw32->ATCUnloadAttachment</entry>

 <entry name="function">irlw32->
;IRLCleanDirectory,DIR=c:\temp,EXPTIME=10,DEBUG=T</entry>

</section>

IRLClearLog

191

IRLClearLog
Use this rule to remove all records from the server access log or error log files.

Syntax long _DSIAPI IRLClearLog (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The default DOCSERV configuration file sets this rule with these INI settings.

< ReqType:CLF >

Function = irlw32->IRLClearLog

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

192

IRLCopyAttachment
Use this rule to copy attachment variables from the input queue to the output queue on
the DSI_MSGRUNR message.

Syntax long _DSIAPI IRLCopyAttachment (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

IRLDecryptValue

193

IRLDecryptValue
Use this rule to encrypt the attachment variables for use in the web browser and decrypt
them back for IDS on the next request.

For example, on initial login request you can use this rule to encrypt the POLICYNUM
in the output attachment. On the subsequent requests this rule will decrypt the
POLICYNUM value in the input attachment so any other IDS rule that needs this value
will be able to access it.

On the client side, POLICYNUM will be encrypted and not easy to change to point to
some other policy in archive. If the system cannot locate the attachment variable, or if the
encryption process fails, processing continues and no error is generated.

Syntax long _DSIAPI IRLDecryptValue (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The system supports wild cards, such as

abc*xyz, *xyz, or abc*

This rule works with attachment variables in a case insensitive manner.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

194

IRLInit
Use this rule to initialize the server file cache and access log tables on the DSI_MSGINIT
message. This rule also terminates them on the DSI_MSGTERM message. This rule is
used on the REQTYPE INI, which means it has to run every time you start the server.

Syntax long _DSIAPI IRLInit (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Uses the following INI values to specify the locations (full file name) of the server cache
and access log tables.

< DocSrvr >

CacheTbl = SRVCACHE

LogTable = SRVLOG

The default DOCSERV configuration file sets this rule with these INI settings.

< ReqType:INI >

Function = irlw32->IRLInit

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

IRLFileFTP

195

IRLFileFTP
Use this rule to get a file from the remote FTP server on the DSI_MSGRUNF and put
another file back on the DSI_MSGRUNR.

NOTE: To use the IRLFileFTP rule, you must first run the IRLInitFTP rule. Be sure to
place the IRLInitFTP rule on the INI rules list to run it.

Syntax long _DSIAPI IRLFileFTP (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

You must register this rule using an INI request. Here is an example:

< ReqType:INI >

 function = irlw32->IRLInitFTP

< ReqType:FTPTest >

 function = irlw32->IRLFileFTP,GetFileRemote->GetFileLocal,
PutFileLocal ->PutFileRemote

The following rule arguments are used in the following way:

• GetFileRemote and GetFileLocal rule arguments are used to look up the path and
file name of the remote and local files for the GET operation. They are looked up
in the following manner:

Look first in the input attachment and if not found look in the output attachment.

The rule argument names are just a representation and could be any other user
defined names, but there must be matching names in the input or output
attachment.

• PutFileLocal and PutFileRemote rule arguments are used to look up the path and
file name of the local and remote put files for the PUT operation. They are looked
up in the following manner:

Look first in the output attachment and if not found look in the input attachment.

The rule argument names are just a representation and could be any other user-
defined names, but there must be matching names in the input or output
attachment.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

196

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple IRLFileFTP rules on the same request type if you need to FTP
multiple files. This rule maintains the list of open FTP connections and reuses
connections when possible.

Here is an example:

To transfer a file named FILE.DAT from the incoming directory on the FTP server to
the d:/temp directory and rename it to MYFILE.DAT on the IDS server, you could set
up the IRLFileFTP rule on a rules list in the DOCSERV configuration file as follows:

Function = irlw32->IRLFileFTP,GetRem->GetLoc,

Parameter Description

GetFileRemote The name of the attachment variable which contains the name of the file to
get via FTP from the FTP server. This name is not a URL, it is the name of
a file and, optionally, an FTP directory name. For instance, for ftp://
servername/incoming/file.dat you would enter the name incoming/file.dat.

GetFileLocal The name of the attachment variable which contains the name of the
destination file (to be written locally to the IDS machine).
If this value is not found, the rule generates a unique name and sets the value
of the variable to the generated name.
See FTPGetFilePath, below, for information on how to prefix this name
with a path. The generated name is a long file name, so your file system has
to support long file names.
If the file exists when the GET operation is executed, it is overwritten. If
the GET operation is successful and a unique file name is generated, the file
name is added an output attachment variable.

PutFileLocal The name of the attachment variable which contains the name of the local
(to IDS) source file to be put via FTP onto the FTP server.

PutFileRemote The name of the attachment variable which contains the name under which
the destination file is to be written to the FTP server. If you supply this
variable, bear in mind that the name it holds is not a URL, it is the name of
a file and, optionally, an FTP directory name.
For instance, for

ftp://servername/incoming/file.dat

you would enter
incoming/file.dat

If this value is not found, this rule generates a unique name and sets the
value of the variable to the generated name.
See FTPPutFilePath, below, for information on how to prefix this name
with an FTP directory. The generated name is a long file name, so your file
system has to support long file names.
If the file exists when the PUT operation is executed, the file will be
overwritten. If the PUT operation is successful and a unique file name is
generated, the file name is added an output attachment variable.

IRLFileFTP

197

In this case, you put two variables on the input attachment: one named GETREM with
the value INCOMING/FILE.DAT, and one named GETLOC with the value d:/temp/
MYFILE.DAT. Notice that parameters for putting a file are omitted, so no PUT
operation occurs for this call to the IRLFileFTP rule.

Here is another example:

To transfer a file named FILE.DAT from the d:/temp directory on the IDS server, and
let the IRLFileFTP rule generate the name under which it will be written to the FTP
server, you could set up the IRLFileFTP rule on a rules list in the DOCSERV
configuration file as follows:

Function = irlw32->IRLFileFTP,,PutLoc->PutRem,

In this case, you would put one variable named PUTLOC with the value d:/temp/
FILE.DAT on the output attachment. You would not create a variable named PUTREM.
The IRLFileFTP rule would automatically generate a file name, write the file to the FTP
server using that name, create a variable named PutRem on the output attachment, and put
the generated file name into the variable. Notice that since the parameters for getting a
file were omitted, no GET operation occurs for this call to the IRLFileFTP rule.

NOTE: Keep in mind the FTP directories do not have drive letters.

If a connection is dropped, this rule reopens it. The default timeout value on an FTP
server is 900 seconds, so the connection will stay open for at least this amount of time
before it is dropped.

Input options These options are looked up in the following manner:

GET OPERATIONS. Look for each option in the input attachment and then in the
output attachment using the value FTP value prefixed to the option name, such as
FTPDEBUG. Then look for the options in the FTP:ReqType control group, where
ReqType is the value of the REQTYPE input attachment variable and in the FTP control
group. Each search occurs in the order listed and stops when an option is found. GET
operations do not look up or use the RemoveOnPut or PutFilePath options.

PUT OPERATIONS. Look for each option in the output attachment and then in the
input attachment using the value FTP value prefixed to the option name, such as
FTPDEBUG. Then look for the options in the FTP:ReqType control group, where
ReqType is the value of the REQTYPE input attachment variable and in the FTP control
group. Each search occurs in the order listed and stops when an option is found. PUT
operations do not look up or use the RemoveOnGet, GetFilePath, or CacheGetFile
options.

Variable Description

Server The server name or IP address for the FTP connection.

UserID The user ID for the FTP connection.

Password The password for the FTP connection.

Port The server port for the FTP connection.

Chapter 4
DSI Processing Rules

198

Here is an example of the INI options:

< FTP:ReqType>

Server =

UserID =

Password =

Port =

GetFilePath =

PutFilePath =

< FTP >

Server =

UserID =

Password =

Port =

GetFilePath =

PutFilePath =

RemoveOnGet =

RemoveOnPut =

Debug =

CacheGetFile =

< Attachment >

Path =

GetFilePath The path to be prefixed to the unique name IRLFileFTP generates when the
variable for GetFileLocal is not found as an attachment variable. For
example, d:\temp causes local names such as d:\temp\0abcdefg.ext to be
generated.

PutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the
unique name IRLFileFTP generates when the variable for PutFileRemote is
not found as an attachment variable For example, incoming\datafiles causes
FTP names such as incoming\datafiles\0abcdefg.ext to be generated.

RemoveOnGet If set to Yes, the rule issues the FTP command to remove the remote source
file after getting it—if the user ID used can remove files from the FTP site.
This is done to allow clean up activities. The default is No, which helps when
you are debugging.

RemoveOnPut If set to Yes, the local source file is removed as soon as the Put operation is
complete. This reduces the number of temporary files. The file is removed
even if the Put operation failed. The default is No, which helps when you are
debugging.

Debug Determines if the rule logs its actions to the DSRVTRC.LOG file. Set this
option to Yes for debugging purposes, but be sure to change the option to
No when you are ready to use the system in a production environment. The
default is No. See the Sample debug log on page 200 for an example.

CacheGetFile Enter the number of seconds the rule should store the file it got from the
remote FTP server using the IDS file cache. The default is 3600 (1 hour).
See also IRLPurgeCache on page 204.

Variable Description

IRLFileFTP

199

If you omit the user ID and password in either the attachment or in the configuration file,
the system makes an anonymous connection. Keep in mind that if you set up your FTP
server to allow anonymous connections, anyone can FTP in and see your files and anyone
can put files in. You can solve this problem by setting the FTP server to refuse all
connections except those from specified IP addresses.

Both the configuration file options and the attachment variables can provide all of the
needed information for FTP operations (server address, user ID, password, port), so the
same IDS setup can FTP to different FTP servers, if needed.

The web application is responsible for removing any file sent to it via FTP. For example,
when IDS FTPs the file to the web application, IDS removes the local file it created. The
web application must remove the file it got via FTP from IDS. IDS can also remove the
remote file it got via the FTP using the RemoveOnGet option.

NOTE: You can use multiple IRLFileFTP rules on the same request type with different
rule parameters if necessary for getting or putting multiple files.

Here is another example:

In this example, on DSI_MSGRUNR, you want to transfer a file called MYFILE.DOC
from the incoming directory on an FTP server called testftp into the local directory called
e:\temp and you want IRLFileFTP to generate a name for the local destination file.

Additionally, on DS_MSGRUNR, you want to transfer a file called MYFILE.PDF from
the local directory called e:\temp into the incoming directory on the FTP server and you
want IRLFileFTP to generate a name for the remote destination file. Assume you are
using anonymous FTP. Here's one way you would could set this up:

First, add these INI options in your DOCSERV configuration file:

< ReqType:PRT >

…

Function = irlw32->IRLFileFTP,GETREM->GETLOC,PUTLOC->PUTREM

…

< FTP:PRT >

GetFilePath = e:\temp

< FTP >

Server = testftp

Option Description

In the Attachment control group

Path Use this option to specify a path prefix for the file names this rule generates
when the names are not provided in the attachment (same as the attachment
variables FTPGetFilePath and FTPPutFilePath).
Since the value of this option can be used for a local or for an FTP file path,
you can experience problems results if the generated file names for both local
and FTP files depend on it.
For example, if you set this option to d:\temp, it would be unsuitable as a path
for generating a file name for an FTP PUT operation. In that case, you need
to supply the variable for PutFileRemote or set the path via the
FTPPutFilePath attachment variable or the PutFilePath INI option.

Chapter 4
DSI Processing Rules

200

PutFilePath = incoming

Debug = Yes

Then set these attachment variables:

• Input attachment: GETREM = incoming\myfile.doc

• Output attachment: PUTLOC = e:\temp\myfile.pdf

When running a transaction with these settings, IRLFileFTP creates the variable
GETLOC on the input attachment and will fill it with a temporary name such as
e:\temp\E0A79110D30D11D2AA2600104BD359C8.doc. It also creates the variable
PUTREM on the output attachment and fills it with a temporary name such as
incoming\E0A79111D30D11D2AA2600104BD359C8.pdf.

See the sample debug log for the results of running a transaction with the settings in this
example.

Attachment outputs

Returns Success or failure

Sample debug log Here is a sample debug log produced if you use the Debug option in the FTP control
group. This debug log is based on the example above.

1. IRLFileFTP after parsing using: <GETREM> for GetFileRemote,
<GETLOC> for GetFileLocal, <PUTLOC> for PutFileLocal, <PUTREM> for
PutFileRemote

2. Attachment value FTPUSERID is not found. Looking for INI value
<FTP:PRT> UserID =

3. INI value is not found. Looking for INI value <FTP> UserID =

4. USERID is not found.

5. Attachment value FTPPASSWORD is not found. Looking for INI value
<FTP:PRT> Password =

6. INI value is not found. Looking for INI value <FTP> Password =

7. PASSWORD is not found.

8. Attachment value FTPSERVER is not found. Looking for INI value
<FTP:PRT> Server =

9. INI value is not found. Looking for INI value <FTP> Server =

10. Attachment value FTPSERVERPORT is not found. Looking for INI
value <FTP:PRT> Port =

11. INI value is not found. Looking for INI value <FTP> Port =

Variable Description

FTPGETRESULTS A value of SUCCESS or ERROR.

FTPPUTRESULTS A value of SUCCESS or ERROR.

RESULTS A value of SUCCESS, if the GET and PUT operations succeeded,
otherwise the last error code returned.

RemotePutFile Where RemotePutFile represents the rule argument name for the remote
put file. This is only present if the rule generated a unique file name for
the remote file in a PUT operation.

LocalGetFile Where LocalGetFile represents the rule argument name for the local get
file. This is only present if the rule generated a unique file name for the
local file in a PUT operation.

IRLFileFTP

201

12. Using FTP UserID <>.

13. Using FTP Password <>.

14. Using FTP Server <testftp>.

15. Using FTP port <21>.

16. Created new FTP connection

17. Succesful get current directory </>

18. Did not find <GETLOC> in the attachment. Generated name:
e:\temp\E0A79110D30D11D2AA2600104BD359C8.DOC>

19. Did not find <PUTREM> in the attachment. Generated name:
<e:\temp\incoming\E0A79111D30D11D2AA2600104BD359C8.PDF>

20. Successful GetFile

21. IRLFileFTP after parsing using: <GETREM> for GetFileRemote,
<GETLOC> for GetFileLocal, <PUTLOC> for PutFileLocal, <PUTREM> for
PutFileRemote

22. Attachment value FTPUSERID is not found. Looking for INI value
<FTP:PRT> UserID =

23. INI value is not found. Looking for INI value <FTP> UserID =

24. USERID is not found.

25. Attachment value FTPPASSWORD is not found. Looking for INI value
<FTP:PRT> Password =

26. INI value is not found. Looking for INI value <FTP> Password =

27. PASSWORD is not found.

28. Attachment value FTPSERVER is not found. Looking for INI value
<FTP:PRT> Server =

29. INI value is not found. Looking for INI value <FTP> Server =

30. Attachment value FTPSERVERPORT is not found. Looking for INI
value <FTP:PRT> Port =

31. INI value is not found. Looking for INI value <FTP> Port =

32. Using FTP UserID <>.

33. Using FTP Password <>.

34. Using FTP Server <testftp>.

35. Using FTP port <21>.

36. Found existing FTP connection

37. Successful get current directory </>

38. Successful PutFile.

Chapter 4
DSI Processing Rules

202

IRLInitFTP
Use this rule to create and destroy an InternetSession object. This rule creates and
destroys two global DSI variables: INTERNETSESSION and FTPCONNECTIONS.

Syntax long _DSIAPI IRLInitFTP (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

You must register this rule using an INI request. Here is an example:

< ReqType:INI >

Function = irlw32->IRLInitFTP

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

IRLLog

203

IRLLog
Use this rule to return records from server access log or error log files.

Syntax long _DSIAPI IRLLog (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The error log report is created in this format:

REQTYPE

TIME

USERID

RESULT

REASON

AREA

The access log includes these fields:

• USERID

• REM_ADDR

• REQTYPE

• STATUS

• RESULT

• INTIME

The default DOCSERV configuration file sets this rule with this INI option:

< ReqType:VLF >

Function = irlw32->IRLLog

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

204

IRLPurgeCache
Use this rule to remove expired files. The rule runs on the timer (SAR) request and
removes all files registered in the server cache table after the specified time has expired.

Syntax long _DSIAPI IRLPurgeCache (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule uses the following INI option to remove records from the result queue which
where not picked up by a front-end client.

< DOCSRVR >

ExpireTransactions = 86400

The default value is 86400 seconds, which is 24 hours. With this setting, all records in
the result queue with an in time older than 24 hours will be removed.

The default DOCSERV configuration file sets this rule with these INI settings.

< ReqType:SAR >

Function = irlw32->IRLPurgeCache

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

IRLSearch

205

IRLSearch
Use this rule to return a list of matching table records.

Syntax long _DSIAPI IRLSearch (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

You can use this INI option with this rule:

< ArcRet >

MaxRecords = 100

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

206

IRLSendVersion
Use this rule to report DLL version information.

Syntax long _DSIAPI IRLSendVersion (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

For each of the following DLLs, this rule creates attachment variables on the
DSI_MSGRUNF message.

• IRL

• IRP

• DQM

• IBASE

• DCB

• ATC

• DSIJ

Here is a list of the variables:

These values only change when you upgrade to a newer version.

The default DOCSERV configuration file sets this rule with this INI option.

< ReqType:SSS >

Function = irlw32->IRLSendVersion

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Tells you the...

NAME name of the DLL

VERSION version of the DLL, such as 100.012.XXX

DATE date of the last compile in MMM DD YYYY format

TIME time of the last compile in HH:MM:SS format

IRLSendVersion

207

See also IRCSendVersion on page 245

Chapter 4
DSI Processing Rules

208

IRLStatistics
Use this rule to compile server statistics.

Syntax long _DSIAPI IRLStatistics (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule creates the following values in the attachment:

The default DOCSERV configuration file sets this rule with these INI settings.

< ReqType:SSS >

Function = irlw32->IRLStatistics

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Value Tells you the...

UPTIME time the server started, in this format: Mon Dec 22 15:37:31 1999

SUCCESSCOUNT number of successful transactions

ERRORCOUNT number of transactions in error

ALLOCCOUNT number of memory allocations—used for debugging purposes

RESTARTCOUNT number of times the Internet Document Server been restarted

LASTRESTART time of the last restart, in this format: Mon Dec 22 15:37:31 1999

FREECOUNT number of memory deallocations—used for debugging purposes

AddJobRule

209

AddJobRule
public class com.docucorp.ids.rules.AddJobRule

This class extends com.docucorp.ids.rules.AbstractIDSJavaRule. Use the rules in this
class to help Documaker Interactive set up database information when adding a
transaction. This class contains these methods:

• setupPool

• addJob

Constructors public AddJobRule()

setupPool
Use this method to set up a pool of database connections which can be used by the
addJob method. This helps you manage resources and improve performance.

Methods public static int setupPool(RequestState requestState, String arg,
int msg)

Place this method in the REQTYPE:INI control group of your configuration and set it
up as a static method.

The rule creates a pool of database connections in the MSG_INIT message. Then the
addJob rule adds connections to the pool. In the MSG_TERM message, the connections
in the pool are closed.

No arguments are expected.

Here is an example from a configuration file:

 <entry
name="function">java;com.docucorp.ids.rules.AddJobRule;;static;setu
pPool;</entry>

Parameters

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

addJob
This method adds support for the DPRAddWipRecord rule. It adds a row to the Jobs
table and passes an identifier for the row on to the DPRAddWipRecord rule.

Methods public int addJob(RequestState requestState, String arg, int msg)

No arguments are expected from the function line.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT,
MSG_RUNF,MSG_RUNR or MSG_TERM.

Chapter 4
DSI Processing Rules

210

Example Here is an example from a configuration file:

function=
java;com.docucorp.ids.rules.AddJobRule;aj;transaction;addJob;

Parameter

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT,
MSG_RUNF,MSG_RUNR or MSG_TERM.

AttachmentFilterRule

211

AttachmentFilterRule
public class com.docucorp.ids.rules.AttachmentFilerRule

This class contains rule functions that send and receive files through attachments in
DSIMessages. The files can be binary or text. Create objects of this class with transaction
scope since receiveFile uses information in the object in both the MSG_RUNF and
MSG_RUNR messages.

This class implements the substitution for these IDS 1.x rules:

• ATCSendFile

• ATCReceiveFile

sendFile

Constructors public AttachmentFilerRule()

Methods public int sendFile(
RequestState requestState,
String arg,
int msg)

Use this method to read a file from disk in binary or text format and put it in an
attachment in the output DSIMessage to be sent back to the client application.

In the MSG_RUNR message this rule will read three parameters from arg, separated by
commas. The three parameters are attachment name, file name message variable, and file
type.

Attachment name is the name that the file data is stored in the output DSIMessage's
attachments.

File name message variable is the name of the message variable that has the file name in
it. The file type is either TEXT or BINARY, specifying the type of file to be read. For
example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.AttachmentFilerRule;;transaction;sendFi
le;ZZZ,IMPORTFILE,TEXT

and the message variable IMPORTFILE contains '/home/docserv/client/test.txt,' then
the file 'test.txt' is added to the DSIMessage in a text attachment named 'ZZZ'.

Parameters

Returns RET_SUCCESS if successful, else RET_FAIL, usually caused by the file not being found,
missing message variable, and so on.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

Chapter 4
DSI Processing Rules

212

receiveFile

Methods public int receiveFile(
RequestState requestState,
String arg,
int msg)

Use this method to write a file to disk in binary or text format from an attachment in
the input DSIMessage, usually sent from a client application.

In the MSG_RUNF message this rule reads these parameters from arg: attachment name,
file name attachment variable, file name, and disposition. The parameters should be
separated by commas.

Attachment name is the name that the file data is stored in the input DSIMessage's
attachments. The file type, text or binary, is stored in the attachment and the file is
written in the proper mode.

File name message variable is the name of the message variable that will have the file
name stored in it.

File name is the name of the file to write. If it is a regular file name the file is overwritten
each time the rule is run. If the file name has an asterisk (*) in it, the asterisk is replaced
with a unique string, causing different files to be written each time the rule is run. In
either case the file name that is used is stored in the file name message variable.

Disposition determines if the file is erased during the MSG_RUNR message. If
disposition is set to KEEP then the file is kept, otherwise it is erased.

For example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.AttachmentFilerRule;;transaction;receiv
eFile;ZZZ,IMPORTFILE,/home/docserv/client/test.txt,KEEP

then the file named test.txt is written to disk with data in the ZZZ attachment and the
file name is stored in the message variable IMPORTFILE.

If the file name was instead /home/docserv/client/*.txt, then a unique file name ending
with .txt would be generated and that would be stored in IMPORTFILE.

In the MSG_RUNR message the rule will erase the file written in the MSG_RUNF
message, unless the disposition was set to KEEP.

Parameters

Returns RET_SUCCESS if successful, else RET_FAIL, an invalid or empty parameter in arg.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

BLPPurgeRule

213

BLPPurgeRule
public class com.docucorp.ids.rules.BLPPurgeRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use this class to delete files in the file cache when the file’s expiration time has passed.
This class implements the substitution for the IDS 1.x rule IRLPurgeCache.

Constructors public BLPPurgeRule()

Methods public int purge(
RequestState requestState,
String arg,
int msg)

During the MSG_RUNR message this rule calls a function that checks the files that have
been cached to see if any of the file lifetimes have expired, and if they have then deletes
the files. No arguments are expected from the function line.

Parameters

Returns RET_SUCCESS.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

Chapter 4
DSI Processing Rules

214

BLPStatisticsRule
public class com.docucorp.ids.rules.BLPStatisticsRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to add statistical information to the output attachment. This
is usually called as part of a SSS request.

This class implements the substitution of the IDS 1.x rule IRLStatistics.

Constructors public BLPStatisticsRule()

Methods public int addStatistics(
RequestState requestState,
String arg,
int msg)

During the MSG_RUNF message add statistical information to the output DSIMesage.
Currently includes number of successful transactions, number of errors, number of
restarts, time when BLP was started and time of the last restart. No arguments are
expected from the function line.

Parameters

Returns RET_SUCCESS if successful, else RET_FAIL.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

CopyDataRule

215

CopyDataRule
public class com.docucorp.ids.rules.CopyDataRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to copy message variables and attachments from the input
DSIMessage to the output DSIMessage.

copyData
This class implements the substitution of the IDS 1.x rule IRLCopyAttachment.

Constructors public CopyDataRule()

Methods public int copyData(
RequestState requestState,
String arg,
int msg)

During the MSG_RUNR message copy all message variables and attachments from the
input DSIMessage to the output DSIMessage. No arguments are expected from the
function line.

Parameters

Returns RET_SUCCESS if successful, else RET_FAIL.

copyMessageVariables
Use this method to copy variables from the input queue to the output queue.

Constructors public class com.docucorp.ids.rules.CopyDataRule

Methods public int copyMessageVariables(RequestState requestState, String
arg, int msg)

During the MSG_RUNR message, this method copies the listed message variables from
the input queue to the output queue.

This method is only for non-rowset message variables, meaning variables that were not
added with the DSIAddRecord function or the DSIMessage.addMsgRec method.

Arguments from the function line are a comma-delimited list of message variables to
copy. If the message variable does not exist, the variable is not copied and no error
appears.

Here is an example from a configuration file:

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

Chapter 4
DSI Processing Rules

216

function= java;com.docucorp.ids.rules.CopyDataRule;copyit;
transaction;copyMessageVariables;TAG_AND_FOLLOW,CONFIG

This example copies the message variables TAG_AND_FOLLOW and CONFIG from
the input queue to the output queue, if they exist in the input queue.

Parameters

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT,
MSG_RUNF,MSG_RUNR or MSG_TERM.

FTPRule

217

FTPRule
public class com.docucorp.ids.rules.FTPRule

Extends com.docucorp.ids.rules.AbstractIDSRule

Use the rules in this class to transfer files back and forth over FTP connections. There
are two sets of rules in the class. One set is used in IDS 2.x, the other is used for IDS 1.x
Java rule compatibility. Each method is marked as to how it should be used.

There is a method that is run in the INI request that stores and caches FTP connections
and a method that does the actual file transfer. This class implements the substitution
for these IDS 1.x rules:

• IRLInitFTP

• IRLFileFTP

Constructors public FTPRule()

Methods All of these methods are used for IDS 1.x compatibility.

public int setupMethod(
int dsih,
String arg,
int ulMsg,
int ulOptions)

public int convertParameter=Description(
RequestState requestState,
String arg,
int msg)

public int transferMethod(
int dsih,
String arg,
int ulMsg,
int ulOptions)

public int setupConnections(
RequestState requestState,
String arg,
int msg)

Use these methods to create data to run multiple FTP transfers in the MSG_INIT
message and destroy the data in the MSG_TERM message. Use this rule in the INI
request type.

Parameters

Returns RET_SUCCESS if successful, otherwise RET_FAIL

Parameter Description

requestState Object that holds the current running state of the request.

arg Arguments from the rule line of the configuration file.

msg Message currently being run, either MSG_INIT, MSG_RUNF, MSG_RUNR,
or MSG_TERM.

Chapter 4
DSI Processing Rules

218

transferFiles

Methods public int transferFiles(
RequestState requestState,
String arg,
int msg)

Use this method to do the actual file transfers through FTP. Files are retrieved during
the MSG_RUNF message and sent during the MSG_RUNR message. For example, if
the rule is specified in the configuration as:

java;com.docucorp.ids.rules.FTPRule;;transaction;transferFiles;GetF
ileRemote- PutFileRemote

GetFileRemote is the name of the message variable which contains the name of the file
to get via FTP from the FTP server. This variable must be in the input attachment. This
name is not a URL, it is the name of a file and, optionally, an FTP directory name. For
instance, for

ftp://servername/incoming/file.dat

you would enter the name

incoming/file.dat

GetFileLocal is the name of the message variable which contains the name of the
destination file (to be written locally to the IDS machine). If this variable exists, it must
be in the input DSIMessage. If this variable is not found, the rule generates a unique
name, adds the message variable to the input attachment, and sets the value of the
variable to the generated name. See FTPGetFilePath, below, for information on how to
prefix this name with a path. If the file exists when the GET operation is executed, it is
overwritten.

PutFileLocal is the name of the message variable which contains the name of the local
(to IDS) source file to be put via FTP onto the FTP server. This variable must be in the
output DSIMessage.

PutFileRemote The name of the message variable which contains the name under which
the destination file is to be written to the FTP server. If this variable exists, it must be in
the output DSIMessage. If you supply this variable, bear in mind that the name it holds
is not a URL, it is the name of a file and, optionally, an FTP directory name. For
instance, for ftp://servername/incoming/file.dat you would enter incoming/file.dat If
this variable is not found in the output DSIMessage, this rule generates a unique name,
adds the variable to the output DSIMessage, and sets the value of the variable to the
generated name. See FTPPutFilePath, below, for information on how to prefix this name
with an FTP directory. If the file exists when the PUT operation is executed, the file is
overwritten.

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple FTPRule rules on the same request type if you need more than
one file FTP. This rule maintains the list of open FTP connections and reuses
connections when possible. For example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.FTPRule;;transaction;transferFiles;GetF
ileRemote->GetFileLocal,PutFileLocal->PutFileRemote

FTPRule

219

GetFileRemote is the name of the message variable that contains the name of the file to
get via FTP from the FTP server. This variable must be in the input attachment. This
name is not a URL, it is the name of a file and, optionally, an FTP directory name.

For instance, for

ftp://servername/incoming/file.dat

you would enter the name

incoming/file.dat.

GetFileLocal is the name of the message variable that contains the name of the
destination file (to be written locally to the IDS machine). If this variable exists, it must
be in the input DSIMessage. If this variable is not found, the rule generates a unique
name, adds the message variable to the input attachment, and sets the value of the
variable to the generated name. See below, for information on how to prefix this name
with a path. If the file exists when the GET operation is executed, it is overwritten.

PutFileLocal is the name of the message variable that contains the name of the local (to
IDS) source file to be put via FTP onto the FTP server. This variable must be in the
output DSIMessage.

PutFileRemote is the name of the message variable that contains the name under which
the destination file is to be written to the FTP server. If this variable exists, it must be in
the output DSIMessage. If you supply this variable, bear in mind that the name it holds
is not a URL, it is the name of a file and, optionally, an FTP directory name.

For instance, for

ftp://servername/incoming/file.dat

you would enter

incoming/file.dat

If this variable is not found in the output DSIMessage, this rule generates a unique
name, adds the variable to the output DSIMessage, and sets the value of the variable to
the generated name. See below, for information on how to prefix this name with an FTP
directory. If the file exists when the PUT operation is executed, the file is overwritten.

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple FTPRule rules on the same request type if you need more than
one file FTP. This rule maintains the list of open FTP connections and reuses
connections when possible.

If a connection is dropped, this rule reopens it. The default timeout value on an FTP
server is 900 seconds, so the connection will stay open for at least this amount of time
before it is dropped.

There are several FTP setup parameters required to transfer files, for example the Internet
address of the remote machine. There are multiple ways to specify these parameters, first
through message variables then through configuration options. This is also the order in
which the parameters are searched. For example, if the remote machine is specified
through a message variable this overrides any parameters in the configuration.

Chapter 4
DSI Processing Rules

220

There are several optional message variables which you can use with this rule. For
instance, you can set the values represented by these message variables in the
configuration. If, however, the message variable is present, its value will override any
corresponding value in the configuration.

You must specify the server through the FTPServer attachment variable or by using a
configuration option. You can omit any of the variables you do not need.

You must specify the server through the FTPServer message variable or by using a
configuration option. You can omit any configuration option you do not need. The
transferFiles rule searches for each value that can be specified in the optional message
variables in this order:

First search the input DSIMessage for a message variable that contains the value

If not found, search the FTP:ReqType section for the corresponding value

If not found, search the FTP control section for the corresponding value

For get and put paths, if not found search the Attachment section

This search order lets you have unique values for a given transaction and unique values
for any given request type, or have the same values for all transactions and request types.
For example, you may have several request types that use the transferFiles rule. One
request type could be set up with a section that provides unique values, while all other
request types could use the values defined in the FTP section.

Here is an example of the configuration options:

<section name="FTP:ReqType">

 <entry name="Server">ftp.yourcompany.com</entry>

 <entry name="UserID">customer</entry>

 <entry name="Password">password</entry>

 <entry name="RemoveOnGet">No</entry>

 <entry name="RemoveOnPut">No</entry>

 <entry name="CacheGetFile">10</entry>

Variable Description

FTPServer The server name or IP address for the FTP connection.

FTPUserID The user ID for the FTP connection.

FTPPassword The password for the FTP Connection

FTPServerPort The server’s FTP port.

FTPGetFilePath The path to be prefixed to the unique name transferFiles generates
when the variable for GetFileLocal does not exist on the input
attachment. For example, /home/temp causes local names such as /
home/temp/0abcdefg.ext to be generated.

FTPPutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the
unique name transferFiles generates when the variable for
PutFileRemote does not exist on the output attachment. For example,
incoming/datafiles causes FTP names such as incoming/datafiles/
0abcdefg.ext to be generated.

FTPRule

221

</section>

<section name="FTP">

 <entry name="Server">ftp.yourcompany.com</entry>

 <entry name="UserID">guest</entry>

 <entry name="Password">guestpassword</entry>

 <entry name="RemoveOnGet">No</entry>

 <entry name="RemoveOnPut">No</entry>

 <entry name="CacheGetFile">10</entry>

</section>

<section name="Attachment">

 <entry name="Path">ftpdir</entry>

</section>

The options for the FTP:ReqType section are:

The options for the FTP section are:

The options for the Attachment section are:

Option Description

Server The server name or IP address for the FTP connection. Corresponds to message
variable FTPServer.

UserID The user ID for the FTP connection. Corresponds to message variable
FTPUserID.

Password The password for the FTP Connection. Corresponds to message variable
FTPPassword.

ServerPort The server’s FTP port. Corresponds to message variable FTPServerPort.

GetFilePath The path to be prefixed to the unique name transferFiles generates when the
variable for GetFileLocal does not exist on the input attachment. Corresponds
to message variable FTPGetFilePath.

PutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the unique
name transferFiles generates when the variable for PutFileRemote does not exist
on the output attachment. Corresponds to message variable FTPServer.

Option Description

RemoveOnGet If set to Yes, the rule issues the FTP command to remove the remote source
file after getting it, if the user ID used can remove files from the FTP site.
This is done to allow clean up activities. The default is Yes. Enter No for
debugging purposes.

RemoveOnPut If set to Yes, the local source file is removed as soon as the Put operation is
complete. This reduces the number of temporary files.The default is Yes.
The file is removed even if the Put operation failed. Enter No for debugging
purposes.

CacheGetFile Enter the number of seconds the rule should store the file it got from the
remote FTP server using the IDS file cache. The default is 3600 (1 hour). See
also BLPPurgeRule.purge.

Chapter 4
DSI Processing Rules

222

If you omit the user ID and password in either the message variable or in the
configuration, the system makes an anonymous connection. Keep in mind that if you
set up your FTP server to allow anonymous connections, anyone can FTP in and see
your files and anyone can put files in. You can solve this problem by setting the FTP
server to refuse all connections except those from specified IP addresses. Both the
configuration options and the message variables can provide all of the needed
information for FTP operations (server address, user ID, password, port), so the same
IDS setup can FTP to different FTP servers, if needed.

The web application is responsible for removing any file sent to it via FTP. For example,
when IDS FTPs the file to the web application, IDS removes the local file it created. The
web application must remove the file it got via FTP from IDS. IDS can also remove the
remote file it got via the FTP using the RemoveOnGet option.

Parameters

Returns RET_SUCCESS if successful, else RET_FAIL.

Option Description

Path Use this option to specify a path prefix for the file names this rule generates
when the names are not provided in the attachment (same as the attachment
variables FTPGetFilePath and FTPPutFilePath).
Since the value of this option can be used for a local or for an FTP file path, you
can experience problems results if the generated file names for both local and
FTP files depend on it.
For example, if you set this option to d:\temp, it would be unsuitable as a path
for generating a file name for an FTP PUT operation. In that case, you need to
supply the variable for PutFileRemote or set the path via the FTPPutFilePath
attachment variable or the PutFilePath INI option.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

IDSEncryptionRule

223

IDSEncryptionRule
public class com.docucor.ids.rules.IDSEncryptionRule

Use the rule in this class to decrypt and encrypt message variables. All of the functions
in the class are static, so invoke the rule with static scope. All functions are thread-safe.
This class implements the substitution for the IDS 1.x IRLDecryptValue rule.

Constructors public IDSEncryptionRule()

Methods public static int cryptVariables(
RequestState requestState,
String arg,
int msg)

Use this rule to decrypt and encrypt message variables. The argument is a comma-
delimited list of message variables to work on.

On MSG_RUNF the variables are taken from the input message, decrypted, and put
back in the input message.

On MSG_RUNR the variables are taken from the output message, encrypted, and put
back in the output message.

If a message variable is not found in the message a warning is generated but processing
continues on the other variables.

The rule also supports wildcard message variable names by putting an asterisk (*) in the
message variable name. The asterisk can go at the beginning, middle, or end of a message
variable name.

Chapter 4
DSI Processing Rules

224

IDSInitRule
public class com.docucorp.ids.rules.IDSInitRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to start IDS server utilities, such as those used for purging files
and logging transactions. This class implements the substitution for the IDS 1.x IRLInit
rule.

Constructors public IDSInitRule()

Methods public int init(
RequestState requestState,
String arg,
int msg)

Use this rule to initialize and terminate IDS server-wide utilities.

In the MSG_INIT message this rule will do initialization for the server-wide file cache
and transaction log. In the MSG_TERM message this rule will terminate the file cache
and transaction log.

Parameters

Returns RET_SUCCESS

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

IDSTransactionRule

225

IDSTransactionRule
public class com.docucorp.ids.rules.IDSTransactionRule

Use the rule in this class to report transaction times to IDS clients.

This class implements the substitution of the non-attachment part of the IDS 1.x rule
ATCUnloadAttachment.

Constructors public IDSTransactionRule()

Methods public static int reportTimes(
RequestState requestState,
String arg,
int msg)

Use this rule to report the amount of time a request takes to run on the server. The IDS
1.x rule ATCUnloadAttachment would do this in addition to other functions now built
into IDS.

In the MSG_RUNR message this rule adds a message variable SERVERTIMESPENT to
the output DSIMessage listing the time spent on the transaction in seconds. If the
argument is INCLUDEMS then this rule also adds a message variable
SERVERTIMESPENTMS which lists the time in milliseconds.
SERVERTIMESPENTMS is useful if IDS is logging transactions since it is easier to sort
by time spent in this format.

If using this rule it should be the first rule in the request, or the second if also logging
transactions.

Parameters

Returns RET_SUCCESS

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

Chapter 4
DSI Processing Rules

226

LogTransactionRule
public class com.docucorp.ids.rules.LogTransactionRule

Use the rules in this class to control the logging of transactions in databases. The rules
log message variables in a database specified in the configuration and purge expired
database tables.

All rule methods in this class should be called with static scope.

This class implements the substitution of the non-attachment part of these IDS 1.x rules:

• ATCLogTransaction

• IRLClearLog

logTransaction

Constructors public LogTransactionRule()

Methods public static int logTransaction(
RequestState requestState,
String arg,
int msg)

Use this rule to store message variables in a database table set up in the IDS
configuration. In the MSG_RUNR message this rule will add a message variables from
the output DSIMessage to a database that can be browsed by other applications.

If using this rule it should be the first rule in the request.

Parameters

Returns RET_SUCCESS

purgeOldTransactionTables

Methods public static int purgeOldTransactionTables(
RequestState requestState,
String arg,
int msg)

Use this method to delete database tables that have expired. The expiration time is set
up in the IDS configuration. In the MSG_RUNR message this rule will drop database
tables that are no longer needed.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

LogTransactionRule

227

Parameters

Returns RET_SUCCESS.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,
MSG_RUNR or MSG_TERM.

Chapter 4
DSI Processing Rules

228

processAttachments
public class oracle.documaker.ids.rules.ucm.UCMRules

This rule extends the oracle.documaker.ids.rules.BaseIDSJavaRuleUtils class. The rules
in this class are used for Docupresentment to communicate with an Oracle WebCenter
Content server (formerly known as Oracle Universal Content Management or UCM).

Methods public int processAttachments(RequestState requestState, String arg,
int msg)

This rule takes a list of attachments from the input queue, retrieves the attachments
from the Oracle WebCenter Content server, and writes them to files for further
processing.

Here is an example from a configuration file:

function =
java;oracle.documaker.ids.rules.ucm.UCMRules;;transaction;processAt
tachments;parm

Parameters

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

Parameter Description

requestState Object that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT,
MSG_RUNF,MSG_RUNR or MSG_TERM.

Client Rules

229

CLIENT RULES These rules may only be run in the front-end client. The rules are listed in alphabetical
order, as shown below:

• ATCAppend2Attachment on page 230

• ATCLoadAttachment on page 231

• ATCLogTransaction on page 232

• ATCReceiveFile on page 233

• ATCSendFile on page 236

• ATCSendMultipleFiles on page 238

• ATCUnloadAttachment on page 239

• IRCInit on page 241

• IRCPrint on page 242

• IRCRequest on page 243

• IRCResult on page 244

• IRLSendVersion on page 206

• IRCUnloadPage on page 247

Chapter 4
DSI Processing Rules

230

ATCAppend2Attachment
Use this rule to append values from an INI file to the queue attachment.

Syntax long _DSIAPI ATCAppend2Attachment (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Use these optional INI control groups when REQTYPE is the REQUEST type.

< ATTACH:Default >

< ATTACH:REQTYPE >

All of the VALUE=OPTION pairs from the ATTACH:REQTYPE control group are
appended to the input queue attachment, followed by the ATTACH:Default control
group.

The default DOCCLNT.INI file sets this rule with these INI settings.

< ResType:Default >

Function = atcw32->ATCAppend2Attachment

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

ATCLoadAttachment

231

ATCLoadAttachment
Use this rule to parse the attachment from the input queue into the internal format of
the DSI_MSGRUNF message. You can then access the attachment via DSI APIs, such as
DSILocateAttachVar. This rule frees allocated memory for the internal format in the
input queue on the DSI_MSGTERM message.

Syntax long _DSIAPI ATCLoadAttachment (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Use these INI settings to specify the location of the attachments.

< RequestQ >

AttachmentPath =

The default DOCCLNT.INI file sets this rule with these INI settings.

< ResType:Default >

Function = atcw32->ATCLoadAttachment

The default DOCSERV configuration file sets this rule with these INI settings.

< ReqType:SSS >

Function = atcw32->ATCLoadAttachment

Returns Success or failure

See also ATCUnloadAttachment on page 239

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Chapter 4
DSI Processing Rules

232

ATCLogTransaction
Use this rule to write transaction information to log file.

Syntax long _DSIAPI ATCLogTransaction (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The default DOCSERV configuration file sets this rule with these INI settings:

< ReqType:SSS >

Function = atcw32->ATCLogTransaction

The layout of the server log file is as follows:

This rule runs on the RUNR message. It looks looking in the input attachment to get
these values. The rule locates the values with the same name as field name in the
attachment and puts those values into the record in the LOG table.

The Intime field is supplied by the rule. The Sloginfo field is available for application
use. If you want to use it, just add the value to the attachment using the name Sloginfo.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Field Type Size

Userid Character 127

Rem_addr Character 15

Rem_host Character 127

Rem_user Character 32

Reqtype Character 25

Status Character 1

Result Character 8

Intime Numeric 10

Sloginfo Character 127

ATCReceiveFile

233

ATCReceiveFile
Use this rule to merge a series of attachment variables into a file and write that file to
disk. Generally, this rule is used to re-assemble a file that has been posted in segments
to an IDS queue by the ATCSendFile rule. The file that is received can be either a binary
or text file.

Syntax long _DSIAPI ATCReceiveFile (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule accepts four parameters (Prefix, AttachmentVariable, FileName, and
Disposition) delimited with commas and specified immediately after the rule in the INI
file.

The file name you specified (see note below) is opened in write mode in the appropriate
manner (binary or text).

After the data is written into the file, the file is closed and the name of the disk file is
saved into the attachment variable indicated by the AttachmentVariable parameter. To
keep the file on disk after the IDS rules for this transaction have terminated, specify Keep
in the Disposition parameter. Otherwise, the file is deleted.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

234

NOTE: The file name used in the FileName parameter can be specified as a constant file
name or as a dynamically generated file name. To use a constant file name, use
a name such as:

c:\docserv\testr.txt

With a constant file name, each time the ATCReceiveFile rule runs, it will
replace the contents of this file with the file that is re-assembled from the
attachments. This approach is useful when developing or debugging.

To indicate that you want the rule to generate a unique name each time the rule
is run, specify an asterisk (*) in the path name. The rule then generates a 45-
character unique name and replaces the asterisk with that name. For example,
if you specify a dynamically generated file name such as this:

c:\docserv*.txt

the ATCReceiveFile rule generates a file name similar to this:

c:\docserv\01ypCmGu3koAfeD7E-is_8yYxgfB1aybcSBIYihTqManZ.txt

To debug the receiving of files as attachments, use this INI option:

< Debug >

Attachments = Yes

The debug or trace information produced by specifying the Attachment option looks
something like this:

...

286. ATCReceiveFile: entered,
pszParms=<ZZZ,IMPORTFILE,c:\docserv\testr.txt,keep>

287. ATCReceiveFile: Constructed filename=<c:\docserv\testr.txt>

288. ATCAttachment2File: entered,
pszFileName=<c:\docserv\testr.txt>, pszAttachName=<ZZZ>,
ulOptions=<TEXT>

289. ATCAttachment2File: For attachment <ZZZ>,szFileType=<TEXT>,
szNumRecs=<3>

290. ATCAttachment2File: Successful, created <c:\docserv\testr.txt>

291. ATCReceiveFile: Successful, Attachment
<IMPORTFILE=c:\docserv\testr.txt> added to Attachment List.

...

Because it degrades performance, be sure to turn off the Attachments option after you
finish debugging attachment processing.

Example Here is an example:

< ReqType:T1 >

 function = atcw32-
>ATCReceiveFile,ZZZ,IMPORTFILE,c:\docserv\testr.txt,KEEP

The specified file name (c:\docserv\testr.txt) is opened for write mode and text format.
Once the rule writes the contents of the three attachment variables to the file, it closes
the file.

ATCReceiveFile

235

Additionally, the file name is placed into the attachment variable you specified in the
AttachmentVariable parameter. If you specify the Disposition parameter Keep, the file is
kept on disk even after the rules for this transaction have terminated. This option can
be useful for debugging.

Returns Success or fail

See also ATCSendFile on page 236

Chapter 4
DSI Processing Rules

236

ATCSendFile
Use this rule to post a file in segments to the output attachment and send it over the
IDS queue. The ATCReceiveFile rule or the DSIReceiveFile API can then re-assemble the
file from the input attachment and save it. The file can be binary or text.

NOTE: Each IDS rule has a run forward and a run reverse step. The run forward step
usually contains most of the functionality. The run reverse step usually re-
initializes variables in preparation for the next request. The ATCSendFIle
function, however, does more in its reverse run than in its forward run,
including sending the file.

When a request is used in IDS, all the forward run code runs (from the first rule
in the list until the last); then, the reverse run takes place — all functions are
considered again for any back out procedures. So, the reverse run for the
ATCSendFile takes place after the forward run or RunRP rules

Syntax long _DSIAPI ATCSendFile (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule accepts three parameters (Prefix, Attachment Variable, and FileType), delimited
with commas, and specified immediately following the rule in the INI file.

The file name indicated in the Attachment Variable parameter is opened in read mode
based on the FileType parameter (text or binary).

You can use the ATCReceiveFile rule to write the file to disk.

Keep in mind that this rule removes the attachment variable named in its second
parameter and does not work with the default queues.

The prefix name is an important parameter and it has to match when the file is being
received. The format of the message and how the file data is stored in the message is
described in the message layout chapter.

If you need to debug the sending of files as attachments, include this INI option:

< Debug >

 Attachments = Yes

The debug or trace information produced by the Attachments option will look
something like this:

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG message, such as DSI_MSGRUNF

unsigned long ulOptions Options

ATCSendFile

237

...

 9. ATCSendFile: entered, pszParms=<ZZZ,IMPORTFILE,TEXT>

10. ATCFile2Attachment: entered,
pszFileName=<c:\docserv\client\test.txt>, pszAttachName=<ZZZ>,
ulOptions=<TEXT>

11. ATCFile2Attachment: Successful, added Attachment Variable
<ZZZ=;TEXT;3;>

12. ATCSendFile: Successful, Attachment Variable <IMPORTFILE>
removed from Attachment List.

...

Because it degrades performance, be sure to turn off the Attachments option after you
finish debugging attachment processing.

Example < ReqType:T1 >

 function = atcw32->ATCSendFile,ZZZ,IMPORTFILE,TEXT

In this example, suppose the attachment variable named IMPORTFILE contains this
value:

c:\docserv\client\test.txt

This file is added to the IDS message for later use for posting to the IDS queue.

Returns Success or fail

See also ATCReceiveFile on page 233

Chapter 4
DSI Processing Rules

238

ATCSendMultipleFiles
Use the ATCSendMultipleFiles rule to send multiple files as queue attachments.

Syntax long _DSIAPI ATCSendMultipleFiles (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule accepts the name of the attachment variable that contains the name of the file
you want to send. The system uses partial name matching so if this parameter is provides
as FILETOSEND, the following attachment variables will be used to find the file names
to send:

FILETOSEND, FILETOSEND1, FILETOSENDABC

The name of the file without an extension and path is used as the attachment delimiter.

The rule also accepts the type (binary or text) to use for sending all files. No individual
file type can be provided, as all are handled as the same type. The default is binary
because this rule is used to send multiple PNG/JPG files created during HTML
generation.

This rule does not remove the attachment variables with original file names.

This rule is executed on the RUNR message.

Example Here is an example:

function=atcw32->ATCSendMultipleFiles,FILETOSEND

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

ATCUnloadAttachment

239

ATCUnloadAttachment
Use this rule to convert the attachment from internal format into the queue attachment
format in the output queue on the DSI_MSGRUNR message. This rule makes sure the
attachment name is present in the queue record. If this name is empty, this rule fills it
in with the unique name on the DSI_MSGINIT message. Use this rule to free allocated
memory for the internal format in the output queue on the DSI_MSGTERM message.
The reserved request type DEFAULT sets this rule.

Syntax long _DSIAPI ATCUnloadAttachment (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule uses these INI options to determine the location of attachments:

< ResultQ >

AttachmentPath =

The default DOCCLNT.INI file sets this rule with these INI options:

< ReqType: Default >

Function = atcw32->ATCUnloadAttachment

The default DOC:

< ReqType: SCS >

Function = atcw32->ATCUnloadAttachment

The default DOCSERV configuration file sets this rule with these INI options:.

< ReqType:SSS >

Function = atcw32->ATCLoadAttachment

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

240

NOTE: To calculate the time spent in the queue, IDS returns the ServerTimeSpent
attachment variable on every transaction. The value returned is in a form of
seconds.milliseconds.

The difference between this value and the TotalTimeSpent attachment variable
created by the client is the queuing latency, which gives you an indication of how
much time a transaction spent in the queue.

The ATCUnloadAttachment rule creates the attachment to be sent back, so the
ServerTimeSpent value is put into that attachment. If there are any rules in the
list executed after the ATCUnloadAttachment rule on RUNR message, their
time is not included. Nor is the time spent on the TERM message included. The
rules executed after the ATCUnloadAttachment rule on the RUNR message are
the rules listed before this rule in the DOCSERE configuration file.

Returns Success or failure

See also ATCLoadAttachment on page 231

IRCInit

241

IRCInit
Use this rule to initialize a client.

Syntax long _DSIAPI IRCInit (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The default DOCCNT.INI file sets this rule with this INI option.

< ReqType:INI >

Function = ircltw32->IRCInit

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

242

IRCPrint
Use this rule to locate the print file created by the Internet Document Server.

Syntax long _DSIAPI IRCPrint (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule gets the REMOTEPRINTFILE attachment variable and creates a PRINTFILE
attachment variable. The rule mainly translates the file name from the file name on the
server, to the file name for a front-end client.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

IRCRequest

243

IRCRequest
Use this rule to prepare a request for the Internet Document Server.

Syntax long _DSIAPI IRCRequest (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule checks for the REQTYPE and USERID in the attachment and sets the fields
into the request (output) queue. This rule also fills in the unique name in the request
queue.

This rule only responds to the DSI_MSGRUNF message.

The default DOCCNT.INI file sets this rule with these INI settings.

< ReqType: Default >

Function = ircltw32->IRCRequest

Returns Success or failure

See also IRCResult on page 244

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

244

IRCResult
Use this rule to retrieve a result for the Internet Document Server and prepares the result
for the client.

Syntax long _DSIAPI IRCResult (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule checks results returned by the server. It checks for the RESULTS attachment
value in the result (input) queue attachment. If this value is not found or is not equal
to SUCCESS, the rule creates an attachment variable called ERROR and a value that
matches the value of the RESULTS variable. This lets you work with the ERRORS.HTM
template.

NOTE: If you have created your own rules and are using only the IRCUnloadPage base
rule, which processes the HTML template, you do not need this rule in the rule
list.

This rule only responds to the DSI_MSGRUNF message.

The default DOCCNT.INI file sets this rule with these INI settings.

< ResType:Default >

Function = ircltw32->IRCResult

Returns Success or failure

See also IRCRequest on page 243

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

IRCSendVersion

245

IRCSendVersion
Use this rule to report DLL version information.

Syntax long _DSIAPI IRCSendVersion (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

For each of the following DLLs, this rule creates attachment variables on the
DSI_MSGRUNF message.

• ATC

• DCB

• IRP

• DQM

• IBASE

• DSI

• DSIJ

Here is a list of the variables:

These values only change when you upgrade to a newer version.

The default DOCCNT.INI file sets this rule with these INI settings.

< ReqType:SCS >

Function = ircltw32->IRCSendVersion

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Tells you the...

NAME name of the DLL

VERSION version of the DLL, such as 100.012.XXX

DATE date of the last compile in MMM DD YYYY format

TIME time of the last compile in HH:MM:SS format

Chapter 4
DSI Processing Rules

246

See also IRLSendVersion on page 206

IRCUnloadPage

247

IRCUnloadPage
Use this rule to unload an HTML page.

Syntax long _DSIAPI IRCUnloadPage (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Uses HTML setting in DOCCLNT.INI file for configuration settings. Refer to Chapter
3 in the Internet Document Server Guide for an explanation of template variables and
their replacement by attachment variables.

The default DOCCNT.INI file sets this rule with these INI settings.

< ResType:Default >

Function = ircltw32->IRCUnloadPage

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Chapter 4
DSI Processing Rules

248

 249

Chapter 5

DSI Visual Basic APIs

Users of the DSI Visual Basic (VB) API are expected to
fall into one of these groups:

• Fat client applications written in VB or VBA

• ASP ActiveX components

• VB rules

Fat clients should start with a call to InitSession and end
with a call to TermSession. The general work flow will
be to build a request into one or more attachment lists
which are submitted to IDS by a call to Submit.

When the server has completed its work the results will
be processed with calls to GetAttachmentAll,
GetAttachRecSet, GetAttachVarSet, or (occasionally)
LocateAttachVar. Testing and debugging will be easier
with DSICoTB than the IDE because the attachment
lists can be changed with the click of a mouse and the
edit/compile/test cycle is minimized.

ASP ActiveX components are structured differently.
The Visual Basic object should be created in a
GLOBAL.ASA file and not be new’d in the ActiveX
component. InitSession either should be called in
OnStartPage and the instance handle returned by
InitSession, either...

• Kept in the Session object or

• TermSession called in OnEndPage.

The instance handle should not be kept in the application
object as IIS multi-threads every session and the
instance handle must be thread-specific.

VB rules are subject to the same conditions as other
rules. Certain methods should not be called, such as
InitSession, and the rules should be stateless.

Chapter 5
DSI Visual Basic APIs

250

USING THE
PROTOTYPES

AND EXAMPLES

NOTE: COM and ActiveX are designed to be language independent—the VB API class
can be called from Visual Basic, Visual J++, C, C++, VBA (Visual Basic for
Applications), or VBScript.

Nonetheless, it is expected that most, if not all users, will be using Visual Basic.
With that in mind, prototypes and examples are targeted toward these languages.

Developers using other languages such as C++ are most likely used to this kind of
discrimination and know how to adapt. For instance, COM always returns an HRESULT
but VB handles this silently. If there is value returned from a method, VB silently extracts
it from the argument list; C++ users must handle this explicitly.

Here are some examples:

In VB Dim lRet as long

lRet = oDSI.FindInQueue (hInstance,dsiINPUTQUEUE,"TROUT")

In C++ HRESULT hr;

long lRet;

hr = spDSI->FindInQueue

(hInstance,dsiINPUTQUEUE,BSTR(L"TROUT"),&lRet);

HANDLING ERRORS

in VB For subs, an error may be raised for any condition that prevents normal completion, so
On Error routines are very important.

For methods, the return code usually indicates a not found (dsiERR_NOTFOUND) or
end-of-file (dsiERR_EOF) condition and should always be checked. But for fatal errors
or any condition that prevents normal completion, an error will be raised, so On Error
routines are also very important.

in C++ Exceptions are not passed across COM interfaces: the HRESULT will tell you if
IErrorInfo should be interrogated. If the method provides a return code, it will generally
indicate an algorithmic error, such as dsiERR_NOTFOUND; in this case, the HRESULT
will also have the DSI error code in the lower two bytes.

251

USING THE WEB SERVICES EXAMPLE

The system includes a web services example which uses VB 6.0 DLL (DP018.dll) to
communicate with a remote IDS via MQSeries APIs and SOAP attachments built with
Microsoft's Imessage Interface.

There are two versions of this DLL file, a server version for MQSeries Server and a client
version for MQSeries Client.

The MQSeries and XML APIs will work on Windows NT 4.0 and Windows 2000 Server.
The SOAP APIs will only work on Windows 2000 since Microsoft's Imessage interface is
only supported on Windows 2000 at this time. The demo resides on a Windows 2000
Server.

Chapter 5
DSI Visual Basic APIs

252

VISUAL BASIC
METHODS

Here is a list of Visual Basic methods, grouped by functional area. Following this list is a
discussion of each method, listed in alphabetical order.

NOTE: These methods are only available on Windows 32-bit platforms.

Client methods Use these methods for writing a client program:

• AddToQueue on page 260

• AttachList on page 269

• CopyQRecord on page 273

• FindInQueue on page 285

• GetAttachment on page 286

• GetAttachmentAll on page 288

• GetAttachRecSet on page 290

• GetAttachVarSet on page 292

• GetQField on page 295

• GetQFieldLength on page 296

• GetQueueRec on page 297

• Init on page 305

• InitInstance on page 306

• InitQueue on page 307

• InitSession on page 308

• ParseAttachment on page 316

• SetAttachment on page 318

• SetQField on page 321

• StoreAttachment on page 326

• Submit on page 327

• Term on page 329

• TermInstance on page 330

• TermQueue on page 331

• TermSession on page 332

• Trace on page 333

• TraceAttach on page 334

253

Server methods Use these methods for writing rules on the server:

• ErrorMessage on page 284

• GetUserID on page 304

Common methods Use these methods for both the client and server:

• AddAttachRec on page 255

• AddAttachVar on page 257

• AttachCursorFirst on page 261

• AttachCursorLast on page 262

• AttachCursorName on page 264

• AttachCursorNext on page 265

• AttachCursorPrev on page 266

• AttachCursorValue on page 268

• CacheFile on page 270

• CloseAttachCursor on page 271

• CopyAttachVars on page 272

• CreateValue on page 274

• CreateValueObj on page 276

• DeleteAttachVar on page 278

• DestroyValue on page 279

• DestroyValueObj on page 281

• DumpDebugInfo on page 283

• GetPriority on page 294

• GetReqType on page 299

• GetStatus on page 300

• GetUniqueID on page 301

• GetUniqueIDLength on page 302

• GetUniqueString on page 303

• LocateAttachVar on page 310

• LocateValue on page 311

• LocateValueObj on page 313

• OpenAttachCursor on page 315

• QueryValueSize on page 317

Chapter 5
DSI Visual Basic APIs

254

• SetPriority on page 320

• SetReqType on page 322

• SetStatus on page 323

• SetUniqueID on page 324

• SetUserID on page 325

• TraceEnableRule on page 335

• TraceList on page 336

• TraceSnapshot on page 337

Properties You can also use these properties:

• Property Signature on page 339

• Property TraceEnable on page 340

• Property TracePath on page 341

AddAttachRec

255

AddAttachRec
Use this method to create a stem variable in the attachment list.

Syntax AddAttachRec(hInstance as Long,DSIQUEUE QueueID, RecName as String,
NewVarName as String)

IDS supports records within an attachment. For instance, the following might be returned
from a rule:

FISH1.TYPE BASS

FISH1.SIZE LARGE

FISH1.STATUS CAUGHT

FISH1.LOCATION BOAT

Using AddAttachRec, the stem variable that can be created by this call is FISH. FISH1 is
returned because it is the first FISH record in the attachment. You do not have to do
anything else to create a stem variable. The output of an SSS request is a stem variable.

Arguments

See also AddToAttachRec on page 258

GetAttachRecSet on page 290

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "FISH", sBuf

’ Next we want to supply the values. To do this we use the

’ add to attach record functionality. We supply the buffer

’ returned from or earlier add attach record call.

’ Add name of my DLL SBuf should be "FISH1" at this point

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TYPE", "BASS"

’ Add date DLL was built

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "SIZE",
"LARGE"

’ Add time DLL was built

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "STATUS",
"CAUGHT"

’ Add my DLL version number

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "LOCATION",
"BOAT"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

RecName The record to add the stem variable.

RecID The record ID with a variable number, such as RECORD2.

Chapter 5
DSI Visual Basic APIs

256

’ Put the attachment into the queue record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

AddAttachVar

257

AddAttachVar
Use this method to add name/value pair to an attachment.

Syntax AddAttachVar(hInstance as Long,QueueID as DSIQUEUE, Name as String,
Value as String)

NOTE: An empty Value is allowed. An empty Name is not.

Arguments

See also LocateAttachVar on page 310

DeleteAttachVar on page 278

GetAttachmentAll on page 288

GetAttachVarSet on page 292

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.AddAttachVar hInstance, _

 dsiOUTPUTQUEUE, _

 "Hello", _

 "Hello World!"

 oDSI.AddAttachVar hInstance, _

 dsiOUTPUTQUEUE, _

 "Good-bye", _

 "Good-bye World!"

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Name A variable name.

Value A variable value.

Chapter 5
DSI Visual Basic APIs

258

AddToAttachRec
Use this method to append a value to a stem variable

Syntax AddToAttachRec(hInstance as Long,QueueID as DSIQUEUE,RecName as
String, Name as String, Value as String)

IDS supports records within an attachment. For instance, the following might be returned
from a rule:

 FISH1.TYPE BASS

 FISH1.SIZE LARGE

 FISH1.STATUS CAUGHT

 FISH1.LOCATION BOAT

 To add to the FISH1 record,

AddToAttachRec (hInstance,dsiOUTPUTQUEUE,"ANGLER","Mom")

FISH1.TYPE BASS

FISH1.SIZE LARGE

FISH1.STATUS CAUGHT

FISH1.LOCATION BOAT

FISH1.ANGLER Mom

Arguments

See also AddAttachRec on page 255

GetAttachRecSet on page 290

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "LIBRARIES", sBuf

’ Next we want to supply the values. To do this we use the

’ add to attach record functionality. We supply the buffer

’ returned from or earlier add attach record call.

’ Add name of my DLL

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "NAME",
"DSRVRLVB"

’ Add date DLL was built

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "DATE", "date"

’ Add time DLL was built

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

RecName The record to which variable should be added.

Name The name of the field within the record.

Value The data associated with the variable.

AddToAttachRec

259

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TIME", "time"

’ Add my DLL version number

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "VERSION",
"1.0"

’ Put the attachment into the queue record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

Chapter 5
DSI Visual Basic APIs

260

AddToQueue
Use this method to release a record into the queue for processing. Nothing happens on
the server until you make this call—or instead use the Submit method.

Syntax AddToQueue(hInstance as Long,QueueID as DSIQUEUE)

Arguments

See also GetQueueRec on page 297

StoreAttachment on page 326

Submit on page 327

Example From the CSamAPI.cls file in the DSICoSAM example:

’ put in our attachment

 oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

’ move our attachment from the buffer into the record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ set the echo request type

 oDSI.SetQField hInstance, dsiOUTPUTQUEUE, dsiQSET_REQTYPE, "ECH"

 oDSI.UserID = "DocExample"

’ if sUnique is empty, SetUniqueID will fill it in for us

 oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ release the queue record for processing

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

AttachCursorFirst

261

AttachCursorFirst
Use this method to recover the first name/value pair in the attachment and position the
cursor on the next pair.

Syntax AttachCursorFirst(hCursor as Long, Name as String, Value as String)
as Long

Arguments

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AttachCursorLast on page 262

AttachCursorName on page 264

AttachCursorNext on page 265

AttachCursorPrev on page 266

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful

 lRet = oDSI.AttachCursorNext(hCursor, sName, sValue)

 Wend

’ close out the cursor to free the resources

 oDSI.CloseAttachCursor hCursor

Argument Description

hCursor the cursor obtained from OpenAttachCursor

Name returned name

Value returned value

Chapter 5
DSI Visual Basic APIs

262

AttachCursorLast
Use this method to recover the last name/value pair in the attachment and retard the
cursor to previous name/value pair.

Syntax AttachCursorLast(hCursor as Long, Name as String, Value as String)
as Long

Arguments

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AttachCursorFirst on page 261

AttachCursorName on page 264

AttachCursorNext on page 265

AttachCursorPrev on page 266

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

’ Parse and present our results.

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the last element of the attachment

 Dim sName As String, sValue As String

 Dim lRet

 lRet = oDSI.AttachCursorLast(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful ...

 lRet = oDSI.AttachCursorPrev(hCursor, sName, sValue)

 Wend

Argument Description

hCursor cursor pointing into the attachment list

Name returned name

Value returned value

AttachCursorLast

263

’ Close the attachment cursor’

 oDSI.CloseAttachCursor hCursor

Chapter 5
DSI Visual Basic APIs

264

AttachCursorName
Use this method to get the name value for the current position of the cursor.

Syntax AttachCursorName(hCursor as Long,Name as String) as Long

Arguments

Returns: DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorNext on page 265

AttachCursorPrev on page 266

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

’ Parse the attachment in the current record

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ obtain an attachment cursor

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ get the first name/value pair

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ get just the name from the name/value pair

 lRet = oDSI.AttachCursorName(hCursor, sName)

’ get the value from the name/value pair

 lRet = oDSI.AttachCursorValue(hCursor, sValue)

’ drop the attachment cursor

 oDSI.CloseAttachCursor hCursor

Argument Description

hCursor the cursor obtained from the OpenAttachCursor method

Name returned Name

AttachCursorNext

265

AttachCursorNext
Use this method to retrieve the next name/value pair from the attachment list.

Syntax AttachCursorNext(hCursor as Long, Name as String, Value as String)
as Long

Arguments

Returns: DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorName on page 264

AttachCursorPrev on page 266

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful

 lRet = oDSI.AttachCursorNext(hCursor, sName, sValue)

 Wend

’ close out the cursor to free the resources

 oDSI.CloseAttachCursor hCursor

Argument Description

hCursor cursor pointing into the attachment list

Name returned name

Value returned value

Chapter 5
DSI Visual Basic APIs

266

AttachCursorPrev
Use this method to retrieve the next name/value pair from the attachment list.

Syntax AttachCursorPrev(hCursor as Long, Name as String, Value as String)
as Long

Arguments

Returns: DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorName on page 264

AttachCursorNext on page 265

AttachCursorValue on page 268

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

’ Parse and present our results.

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the last element of the attachment

 Dim sName As String, sValue As String

 Dim lRet

 lRet = oDSI.AttachCursorLast(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful ...

 lRet = oDSI.AttachCursorPrev(hCursor, sName, sValue)

 Wend

’ Close the attachment cursor’

Argument Description

hCursor cursor pointing into the attachment list

Name returned name

Value returned value

AttachCursorPrev

267

 oDSI.CloseAttachCursor hCursor

Chapter 5
DSI Visual Basic APIs

268

AttachCursorValue
Use this method to get the value of the attachment at the current cursor position.

Syntax AttachCursorValue(hCursor as Long, Value as String)

Arguments

See also AttachCursorFirst on page 261

AttachCursorNext on page 265

AttachCursorLast on page 262

AttachCursorPrev on page 266

CloseAttachCursor on page 271

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

’ Parse the attachment in the current record

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ obtain an attachment cursor

 hCursor - oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ get the first name/value pair

 lRet - oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ get just the name from the name/value pair

 lRet - oDSI.AttachCursorName(hCursor, sName)

’ get the value from the name/value pair

 lRet - oDSI.AttachCursorValue(hCursor, sValue)

’ drop the attachment cursor

 oDSI.CloseAttachCursor hCursor

Argument Description

hCursor the cursor obtained from the OpenAttachCursor method

Value returned value

AttachList

269

AttachList
Use this method to attach the array of name/value pairs to the queue record.

Syntax AttachList(hInstance as Long,QueueID as DSIQUEUE,List() as String)

Arguments

See also AddAttachVar on page 257

GetAttachmentAll on page 288

GetAttachVarSet on page 292

GetAttachRecSet on page 290

Example From the CSamAPI.cls file in the DSICoSAM example:

sAttach(0, 0) = "Name0"

sAttach(0, 1) = "Value0"

sAttach(1, 0) = "Name1"

sAttach(1, 1) = "Value1"

sAttach(2, 0) = "Name2"

sAttach(2, 1) = "Value2"

sAttach(3, 0) = "Name3"

sAttach(3, 1) = "Value3"

sAttach(4, 0) = "Name4"

sAttach(4, 1) = "Value4"

’ Add the list to the attachment

 oDSI.AttachList hInstance, dsiOUTPUTQUEUE, sAttach

’ every queue record must have a request

 oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, sRequest

 sUnique = "" ’ make sure we get a new one this time

 oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ move the attachment from the local buffer to the record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ release queue record to the queue for processing

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The session/thread handle.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

List() A two-dimensional string array with a set of name/value pairs.

Chapter 5
DSI Visual Basic APIs

270

CacheFile
Use this method to add a file name to the cache.

Syntax CacheFile(hInstance as Long,FileName as String,Expire as long)

NOTE: Only for use in rules.

Arguments

Example oDSI.CacheFile hInstance,"temp.html",20000

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

FileName the name and path of the file

Expire the life of the file, in seconds

CloseAttachCursor

271

CloseAttachCursor
Use this method to close an attachment cursor and free the associated resources.

Syntax CloseAttachCursor(hCursor as Long)

Arguments

See also AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorName on page 264

AttachCursorNext on page 265

AttachCursorPrev on page 266

AttachCursorValue on page 268

OpenAttachCursor on page 315

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful

 lRet = oDSI.AttachCursorNext(hCursor, sName, sValue)

 Wend

’ close out the cursor to free the resources

 oDSI.CloseAttachCursor hCursor

Argument Description

hCursor The cursor obtained from the OpenAttachCursor method

Chapter 5
DSI Visual Basic APIs

272

CopyAttachVars
Use this method to copy all attachment variables from one queue to the other.

Syntax CopyAttachVars(hInstance as Long,QueueID as DSIQUEUE)

Arguments

See also AddAttachVar on page 257

AttachList on page 269

LocateAttachVar on page 310

DeleteAttachVar on page 278

Example From the CSamSupp.cls file in the DSICoSAM example:

Echo = dsiERR_SUCCESS

 Select Case ulMsg

 Case dsiMSG_RUNF ’ Forward (ie, inbound) logic

 oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "RESULTS",
"SUCCESS"

 oDSI.CopyAttachVars hInstance, dsiINPUTQUEUE

 Case Else ’ We don’t support the other messages

 Echo = dsiERR_MSGNOTFOUND

 End Select

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

CopyQRecord

273

CopyQRecord
Use this method to copy a queue record from one queue to another.

Syntax CopyQRecord(hInstance as Long,QueueID as DSIQUEUE)

Arguments

Example oDSI.CopyQueueRecord hInstance,dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Chapter 5
DSI Visual Basic APIs

274

CreateValue
Use this method to create a DSI persistent variable.

Syntax CreateValue(hInstance as Long,Name as String,Value as VARIANT)

These variables are persistent and must be destroyed by a call to DestroyValue. They are
not associated with the queues or attachments and exist to aid communication or provide
state information between rules and calls to rules.

Keep in mind:

• SAFEARRAY’s are not supported

• Use the CreateValueObj method with objects

Arguments

See also CreateValueObj on page 276

LocateValue on page 311

DestroyValue on page 279

QueryValueSize on page 317

Example From the CSamAPI.cls file in the DSICoSAM example:

’ save our string

 sTestValue = "Hello World"

 oDSI.CreateValue hInstance, sSTRING_TAG, sTestValue

’ now get it back

 Dim lRet

 lRet = oDSI.LocateValue(hInstance, sSTRING_TAG, sReturnedValue)

 If lRet <> dsiERR_SUCCESS _

 Or sReturnedValue <> sTestValue Then

 MsgBox ("Failed")

 Else

 MsgBox ("Success")

 End If

’ we’re through with it so we destroy it

 oDSI.DestroyValue hInstance, sSTRING_TAG

’ now lets see how integers fare

 iTestValue = 234

 oDSI.CreateValue hInstance, sINT_TAG, iTestValue

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the variable to be created

Value the variable to create (can be NULL)

CreateValue

275

 lRet = oDSI.LocateValue(hInstance, sINT_TAG, iReturnedValue)

 If lRet <> dsiERR_SUCCESS _

 Or iTestValue <> iReturnedValue Then

 MsgBox ("Failed")

 Else

 MsgBox ("Success")

 End If

’ we’re through with it so we destroy it

 oDSI.DestroyValue hInstance, sINT_TAG

Chapter 5
DSI Visual Basic APIs

276

CreateValueObj
Use this method to create a DSI persistent variable that refers to an object (ActiveX
component).

Syntax CreateValueObj(hInstance as Long,Name as String,Value as Object)

These variables are persistent and must be destroyed by a call to DestroyValueObj. They
are not associated with the queues or attachments and exist to aid communication or
provide state information between rules and calls to rules.

NOTE: ActiveX components are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, even in On Error handlers,
you can leave a dangling reference which can tie up resources unnecessarily and
even lead to a server crash.

Arguments

See also CreateValue on page 274

DestroyValueObj on page 281

LocateValueObj on page 313

Example From the CSamAPI.cls file in the DSICoSAM example:

’ Test with early bound object

 oDSI.CreateValueObj hInstance, "MY_OBJECT", oTestValue

’ clear our reference

 Set oTestValue = Nothing

’ get it back

 lRet = oDSI.LocateValueObj(hInstance, "MY_OBJECT",
oOtherTestValue)

’ use the object to make sure we got back what we sent out

 MsgBox (oOtherTestValue.TestReturn("Hello World"))

’ clear our reference

 Set oOtherTestValue = Nothing

’ we don’t want a dangling reference

 oDSI.DestroyValueObj hInstance, "MY_OBJECT"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the variable to be created

Value the object reference to save

CreateValueObj

277

’ Test with late bound object

 Dim oObject As Object

 Dim oOtherObject As Object

 Set oObject = CreateObject("Docucorp_IDS_SamTObj.CSamTObj")

 oDSI.CreateValueObj hInstance, "MY_OBJECT", oObject

’ clear our reference

 Set oObject = Nothing

’ get it back

 lRet = oDSI.LocateValueObj(hInstance, "MY_OBJECT", oOtherObject)

’ use the object to make sure we got back what we sent out

 MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn("Hello
World")

’ clear our reference

 Set oOtherObject = Nothing

’ we don’t want a dangling reference

 oDSI.DestroyValueObj hInstance, "MY_OBJECT"

Chapter 5
DSI Visual Basic APIs

278

DeleteAttachVar
Use this method to remove an attachment variable.

Syntax DeleteAttachVar(hInstance as Long,QueueID as DSIQUEUE, Name as
String)

Arguments

See also LocateAttachVar on page 310

AddAttachVar on page 257

GetAttachmentAll on page 288

GetAttachVarSet on page 292

GetAttachRecSet on page 290

Example From the CSamAPI.cls file in the DSICoSAM example:

’ parse the attachment into local storage

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ delete what we do not like

 oDSI.DeleteAttachVar hInstance, dsiINPUTQUEUE, "Name0"

’ make sure it worked

 lRet = oDSI.LocateAttachVar(hInstance, dsiINPUTQUEUE, "Name0",
sValue)

 If lRet <> dsiERR_SUCCESS Then

 MsgBox ("Success: didn’t find Name0")

 Else

 MsgBox ("Failure: " + Hex(lRet), "data found")

 End If

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Name The name of the variable you want to delete.

DestroyValue

279

DestroyValue
Use this method to destroy a DSI persistent variable.

Syntax DestroyValue(hInstance as Long,Name as String)

These variables are persistent and must be destroyed by a call to this method. They are
not associated with the queues or attachments and exist to aid communication or retain
state between rules and calls to rules.

NOTE: If you do not call this routine for each call to CreateValue you will create memory
leaks.

Arguments

See also CreateValue on page 274

LocateValue on page 311

DestroyValueObj on page 281

QueryValueSize on page 317

Example From the CSamAPI.cls file in the DSICoSAM example:

’ save our string

 sTestValue = "Hello World"

 oDSI.CreateValue hInstance, sSTRING_TAG, sTestValue

’ now get it back

 Dim lRet

 lRet = oDSI.LocateValue(hInstance, sSTRING_TAG, sReturnedValue)

 If lRet <> dsiERR_SUCCESS _

 Or sReturnedValue <> sTestValue Then

 MsgBox ("Failed")

 Else

 MsgBox ("Success")

 End If

’ we’re through with it so we destroy it

 oDSI.DestroyValue hInstance, sSTRING_TAG

’ now lets see how integers fare

 iTestValue = 234

 oDSI.CreateValue hInstance, sINT_TAG, iTestValue

 lRet = oDSI.LocateValue(hInstance, sINT_TAG, iReturnedValue)

 If lRet <> dsiERR_SUCCESS _

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the persistent variable to be destroyed

Chapter 5
DSI Visual Basic APIs

280

 Or iTestValue <> iReturnedValue Then

 MsgBox ("Failed")

 Else

 MsgBox ("Success")

 End If

’ we’re through with it so we destroy it

 oDSI.DestroyValue hInstance, sINT_TAG

DestroyValueObj

281

DestroyValueObj
Use this method to destroy a DSI persistent variable that is an object (ActiveX
component).

Syntax DestroyValueObj(hInstance as Long,Name as String)

These variables are persistent and must be destroyed by a call to this method. They are
not associated with the queues or attachments and exist to aid communication or retain
state between rules and calls to rules.

NOTE: ActiveX and VB objects are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, even in On Error handlers,
you can leave a dangling reference which can tie up resources unnecessarily and
perhaps even crash the server.

Arguments

See also CreateValueObj on page 276

LocateValueObj on page 313

DestroyValue on page 279

Example From the CSamAPI.cls file in the DSICoSAM example:

’ Test with early bound object

 oDSI.CreateValueObj hInstance, "MY_OBJECT", oTestValue

’ clear our reference

 Set oTestValue = Nothing

’ get it back

 lRet = oDSI.LocateValueObj(hInstance, "MY_OBJECT",
oOtherTestValue)

’ use the object to make sure we got back what we sent out

 MsgBox (oOtherTestValue.TestReturn("Hello World"))

’ clear our reference

 Set oOtherTestValue = Nothing

’ we don’t want a dangling reference

 oDSI.DestroyValueObj hInstance, "MY_OBJECT"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the persistent variable to be destroyed

Chapter 5
DSI Visual Basic APIs

282

’ Test with late bound object

 Dim oObject As Object

 Dim oOtherObject As Object

 Set oObject = CreateObject("Docucorp_IDS_SamTObj.CSamTObj")

 oDSI.CreateValueObj hInstance, "MY_OBJECT", oObject

’ clear our reference

 Set oObject = Nothing

’ get it back

 lRet = oDSI.LocateValueObj(hInstance, "MY_OBJECT", oOtherObject)

’ use the object to make sure we got back what we sent out

 MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn("Hello
World")

’ clear our reference

 Set oOtherObject = Nothing

’ we don’t want a dangling reference

 oDSI.DestroyValueObj hInstance, "MY_OBJECT"

DumpDebugInfo

283

DumpDebugInfo
Use this method to get the debug information as text for diagnostic purposes. This
information is also placed at various locations in the VB trace file and can be forced into
the VB trace file by a call to TraceSnapshot.

Syntax DumpDebugInfo(hInstance as Long,DebugInfo () as String)

To see the output run the DSICoDiag sample project or run DEBUG.ASP from your
browser.

This method is not dependent on TraceEnable.

NOTE: The information returned by this method is subject to change in both content
and format without notice. This information is provided to aid debugging only.
If you build a program around the returned contents, you will eventually get a
program that does not work.

Arguments

See also TraceSnapshot on page 337

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim sInfo() as String

 oDSI.DumpDebugInfo hInstance, sInfo

 dim i

 For i = 0 To UBound(sInfo, 1)

 ListBox1.Add (sInfo(i))

 Next i

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

DebugInfo () a one-dimensional string array which contains diagnostic text

Chapter 5
DSI Visual Basic APIs

284

ErrorMessage
Use this method to add an error message to an attachment. It is expected that the first
element will be the error number followed by the details as name/value pairs.

Syntax ErrorMessage(hInstance as Long,QueueID as DSIQUEUE,ErrorMsg () as
String)

This method is most commonly called in rules.

Arguments

See also StoreAttachment on page 326

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim sMsg(0 To 2) As String

 sMsg(0) = "SAM001"

 sMsg(1) = "FileName"

 sMsg(2) = "lostinspace.dat"

’ put our error into the queue

 oDSI.ErrorMessage hInstance, dsiOUTPUTQUEUE, sMsg

’ this is not necessary in a rule

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by
a rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

ErrorMessage () A one-dimensional array which consists of the error message followed by
name/value pairs.

FindInQueue

285

FindInQueue
Use this method to search for a record in a queue. FindInQueue is the same as
GetQueueRec except that FindInQueue does not wait.

Syntax FindInQueue(hInstance as Long,QueueID as DSIQUEUE,UniqueID as
String) as Long

If the queue record is not immediately available it will return DSIERR_NOTFOUND
and you can try again at a later time.

Arguments

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

See also GetQueueRec on page 297

Example Dim ctLook

 lRet = dsiERR_NOTFOUND

 While lRet <> dsiERR_SUCCESS _

 And ctLook < 10000

 lRet = oDSI.FindInQueue(hInstance, dsiINPUTQUEUE, sUnique)

 DoEvents

 ctLook = ctLook + 1

 Wend

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniqueID The search target.

Chapter 5
DSI Visual Basic APIs

286

GetAttachment
Use this method to get the unparsed attachment for the current queue record. Since
attachments can be quite large, expect a very long string.

Syntax GetAttachment(hInstance as Long,QueueID as DSIQUEUE,Attachment as
String)

Arguments

See also DeleteAttachVar on page 278

GetAttachmentAll on page 288

GetAttachVarSet on page 292

GetAttachRecSet on page 290

LocateAttachVar on page 310

ParseAttachment on page 316

Example Dim sAttach(0 To 4, 0 To 1) As String

sAttach(0, 0) = "Name0"

sAttach(0, 1) = "Value0"

sAttach(1, 0) = "Name1"

sAttach(1, 1) = "Value1"

sAttach(2, 0) = "Name2"

sAttach(2, 1) = "Value2"

sAttach(3, 0) = "Name3"

sAttach(3, 1) = "Value3"

sAttach(4, 0) = "Name4"

sAttach(4, 1) = "Value4"

’ put all of these name/value pairs in the attachment

 oDSI.AttachList hInstance, dsiOUTPUTQUEUE, sAttach

’ set up the echo requrest

 oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

 oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ move the attachment from local storage to the queue record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ release the record to the queue

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

’ recover the attachment echoed back to us

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attachment The returned attachment.

GetAttachment

287

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

’ get the unparsed attachment

 oDSI.GetAttachment hInstance, dsiINPUTQUEUE, sAttach

 text.Caption = sAttach

Chapter 5
DSI Visual Basic APIs

288

GetAttachmentAll
Use this method to return the entire parsed attachment as a two-dimensioned array of
name/value pairs.

Syntax GetAttachmentAll(hInstance as Long,QueueID as DSIQUEUE,Attach() as
String)

NOTE: Do not call the ParseAttachment method before you call this method.

Arguments

See also DeleteAttachVar on page 278

GetAttachment on page 286

GetAttachRecSet on page 290

GetAttachVarSet on page 292

LocateAttachVar on page 310

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

sAttach1(0, 0) = "Name0"

sAttach1(0, 1) = "Value0"

sAttach1(1, 0) = "Name1"

sAttach1(1, 1) = "Value1"

sAttach1(2, 0) = "Name2"

sAttach1(2, 1) = "Value2"

sAttach1(3, 0) = "Name3"

sAttach1(3, 1) = "Value3"

sAttach1(4, 0) = "Name4"

sAttach1(4, 1) = "Value4"

sAttach2(0, 0) = "Name20"

sAttach2(0, 1) = "Value20"

sAttach2(1, 0) = "Name21"

sAttach2(1, 1) = "Value21"

sAttach2(2, 0) = "Name22"

sAttach2(2, 1) = "Value22"

sAttach2(3, 0) = "Name23"

sAttach2(3, 1) = "Value23"

sAttach2(4, 0) = "Name24"

sAttach2(4, 1) = "Value24"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attach () A two-dimensional array with the attachment name/value pairs.

GetAttachmentAll

289

’ send the attachment to the server with the request it be echoed back

 sUnique = "" ’ to get us a new UniqueID

 oDSI.Submit hInstance, "ECH", sUnique, sAttach1, sAttach2

’ wait for the server to return the attachment

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique, 1000, nTIMEOUT

’ get the attachment into an array

 oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

 For i = LBound(sAttachIn, 1) To UBound(sAttachIn, 1)

 MsgBox (sAttachIn(i, 0) +": " + sAttachIn(i, 1))

 Next i

Chapter 5
DSI Visual Basic APIs

290

GetAttachRecSet
Use this method for attachments which consist of a series of variables (RECORD1,
RECORD2, and so on) with stem variables. The paradigm is that of a series of structures
or records so this method recovers the record set as a matrix. The top row in the matrix
contains the variable names, like in a spreadsheet.

Syntax GetAttachRecSet (hInstance as Long,QueueID as DSIQUEUE,RecBase as
String,Vars() as String, _

Optional Headings as Boolean, _

Optional FirstRec as Long,Optional LastRec as Long)

IDS supports records within an attachment. For instance, the following might be returned
from a rule:

FISH1.TYPE BASS

FISH1.SIZE LARGE

FISH1.STATUS CAUGHT

FISH1.LOCATION BOAT

FISH2.TYPE GUPPY

FISH2.SIZE TINY

FISH2.STATUS RETURNED

FISH2.LOCATION LAKE

FISH3.TYPE SHARK

FISH3.SIZE LARGE

FISH3.STATUS APPROACHING

FISH3.LOCATION CLOSE!

Calling this method will return:

TYPE SIZE STATUS LOCATION

BASS LARGE CAUGHT BOAT

GUPPY TINY RETURNED LAKE

SHARK LARGE APPROACHING CLOSE!

NOTE: You must use the ParseAttachment method before you call this method. You can
optionally specify the range of records to be extracted from the attachment.

Arguments
Argument Description

hInstance The thread instance handle (from the server if invoked by a rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

RecBase The record identification string (such as FISH).

Vars The output array.

Titles (Optional) Include record names as column headings. The default is TRUE.

FirstRec (Optional) The first record to recover. The default is one (1).

GetAttachRecSet

291

Returns: DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AddToAttachRec on page 258

AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorNext on page 265

AttachCursorPrev on page 266

GetAttachmentAll on page 288

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

’ wait for the server to return the attachment

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

’ parse the attachment

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

 oDSI.GetAttachRecSet hInstance, dsiINPUTQUEUE, sRecID, sRecSet

’ show results

 For i = 0 To UBound(sRecSet, 1)

 MsgBox (sRecSet(i, 0) + " " + sRecSet(i, 1))

 Next i

LastRec (Optional) The last record to recover. The default is zero (0), which is translated
to LONG_MAX.

Argument Description

Chapter 5
DSI Visual Basic APIs

292

GetAttachVarSet
Use this method to help locate a set of variables in an attachment. This method lets you
pass in an array of the names you are looking for and get back the values associated with
those names.

Syntax GetAttachVarSet(hInstance as Long,QueueID as DSIQUEUE, Names() as
String,Values() as String) as Long

You will get back a dsiERR_NOTFOUND if and only if none of the names are found.

Arguments

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AddToAttachRec on page 258

AttachCursorFirst on page 261

AttachCursorLast on page 262

AttachCursorNext on page 265

AttachCursorPrev on page 266

GetAttachmentAll on page 288

LocateAttachVar on page 310

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

 Dim sDummy1() as String

 Dim sDummy2() as String

 Dim sUnique as String

’ there is no attachment for SSS, so we use empty arrays.

’ sUnique is empty so we will get back the unique ID we can use to

’ recover the server response

 oDSI.Submit hInstance, "SSS", sUnique, sDummy1(), sDummy2()

’ get the server status record

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Names The vector that contains the names you want to look for.

Values The array that contains the matching values, if any. The value can be a pointer
to an empty array, in which case the system dimensions it as a vector with the
same length as the name array.
If the array is defined before you call this method, it must be a two-dimensional
array and the method will append a column to it.

GetAttachVarSet

293

 DoEvents

’ parse the attachment

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

 sNames(0) = "UPTIME"

 sNames(1) = "LASTRESTART"

 sNames(2) = "RESTARTCOUNT"

 sNames(3) = "SUCCESSCOUNT"

 sNames(4) = "ERRORCOUNT"

 sNames(5) = "ALLOCCOUNT"

 sNames(6) = "FREECOUNT"

’ Get the current statistics from IDS

 lRet = oDSI.GetAttachVarSet(hInstance, dsiINPUTQUEUE, sNames,
asStats)

 If lRet = dsiERR_EOF Then

 MsgBox ("FAILED. Code = ", Val(lRet))

 Else

 Dim i

 Dim L, U

 L = LBound(sNames)

 U = UBound(sNames)

 For i = L To U

 MsgBox (sNames(i) + ": " + asStats(i))

 Next i

 End If

Chapter 5
DSI Visual Basic APIs

294

GetPriority
Use this method to get the priority of the current queue record.

Syntax GetPriority(hInstance as Long,QueueID as DSIQUEUE) as String

Arguments

See also GetQFieldLength on page 296

GetUniqueID on page 301

GetReqType on page 299

GetStatus on page 300

SetPriority on page 320

SetQField on page 321

Example Dim sPri as String

sPri = oDSI.GetPriority (hInstance, dsiINPUTQUEUE)

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Priority The priority as a string.

GetQField

295

GetQField
Use this method to retrieve the value of a queue field.

Syntax GetQField(hInstance as Long,QueueID as DSIQUEUE, FieldID as
long,Field as String)

Arguments

See also GetQFieldLength on page 296

GetPriority on page 294

GetUniqueID on page 301

GetReqType on page 299

GetStatus on page 300

SetPriority on page 320

SetQField on page 321

SetUserID on page 325

SetReqType on page 322

SetStatus on page 323

SetUniqueID on page 324

Example oDSI.GetQField (hInstance,dsiINPUTQUEUE,dsiQSET_REQTYPE,sReq)

MsgBox ("The request was " + sReq

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_INTIME, dsiQSET_OUTTIME, dsiQSET_USERID,
dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

Field The returned field value as a string.

Chapter 5
DSI Visual Basic APIs

296

GetQFieldLength
Use this method to get the field length of a field in a queue.

Syntax GetQFieldLength(hInstance as Long,QueueID as DSIQUEUE,FieldID as
Long) as Long

NOTE: This length can change from one release to the next so it is a good practice to
interrogate the length at least once at run time rather than rely on hard-coded
values.

Arguments

Returns FieldLen, which provides the length of the requested queue field.

See also GetQField on page 295

Example dim cbUniqueID

cbUniqueID = GetQFieldLength
(hInstance,dsiINPUTQUEUE,dsiQSET_UNIQUE_ID)

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_INTIME, dsiQSET_OUTTIME, dsiQSET_USERID,
dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

GetQueueRec

297

GetQueueRec
Use this method to look for a specific record in the queue.

Syntax GetQueueRec(hInstance as Long,QueueID as DSIQUEUE,UniqueID as
String, _ Optional Wait as Long,Optional TimeOut as Long)

Please note:

• Oracle supplies timing defaults of 1000 and 15000 in one millisecond ticks

• If the queue record fails to appear in the specified time, dsiERR_EOF is returned

• A time-out usually indicates the server is down or unreachable

Arguments

See also FindInQueue on page 285

Example From the CSamAPI.cls file in the DSICoSAM example:

sAttach(0, 0) = "Name0"

sAttach(0, 1) = "Value0"

sAttach(1, 0) = "Name1"

sAttach(1, 1) = "Value1"

sAttach(2, 0) = "Name2"

sAttach(2, 1) = "Value2"

sAttach(3, 0) = "Name3"

sAttach(3, 1) = "Value3"

sAttach(4, 0) = "Name4"

sAttach(4, 1) = "Value4"

 dim sDummy() as String

’ send the attachment to the server with the request it be echoed back

 sUnique = "" ’ to get us a new UniqueID

 oDSI.Submit hInstance, "ECH", sUnique, sAttach1, sDummy

’ Look for the result.

’ The DSI Document server will process our request and put the

’ result in our result queue. We look for it in our result queue

’ providing wait and lock timeout.

’ If OnError gets invoked here, one of the error returns could

’ be time out.

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniqueID The record name.

Wait The retry wait period in milliseconds.

TimeOut The timeout in milliseconds.

Chapter 5
DSI Visual Basic APIs

298

’ Parse and present our results.

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 MsgBox (sName + ":" + sValue)

 lRet = oDSI.AttachCursorNext(hCursor, sName, sValue)

 Wend

’ Close the attachment cursor’

 oDSI.CloseAttachCursor hCursor

GetReqType

299

GetReqType
Use this method to get the DSI request type, such as SSS or IMP, from the current queue
record.

Syntax GetReqType(hInstance as Long,QueueID as DSIQUEUE) as String

Arguments

Returns ReqType, which provides the request type.

See also GetQFieldLength on page 296

GetPriority on page 294

GetUniqueID on page 301

GetStatus on page 300

Example MsgBox ("Request type was " + oDSI.GetReqType(hInstance,
dsiINPUTQUEUE))

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Chapter 5
DSI Visual Basic APIs

300

GetStatus
Use this method to get the status byte from the current queue record.

Syntax GetStatus(hInstance as Long,QueueID as DSIQUEUE) as String

Arguments

Returns Status, which provides the status byte from the queue record.

See also GetQFieldLength on page 296

GetPriority on page 294

GetUniqueID on page 301

GetReqType on page 299

Example Dim sStatus as String

sStatus = oDSI.GetStatus (hInstance,dsiINPUTQUEUE)

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

GetUniqueID

301

GetUniqueID
Use this method to get the unique ID from a queue record.

Syntax GetUniqueID(hInstance as Long,QueueID as DSIQUEUE) as String

Arguments

Returns UniqueID, which provides the unique ID for this record.

See also GetQFieldLength on page 296

GetPriority on page 294

GetReqType on page 299

Example From the CSamAPI.cls file in the DSICoSAM example:

MsgBox ("UniqueID is " + oDSI.GetUniqueID(hInstance, dsiINPUTQUEUE))

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Chapter 5
DSI Visual Basic APIs

302

GetUniqueIDLength
Use this method to get the length of the unique ID field the queue is expecting.

Syntax GetUniqueIDLength(hInstance as Long,QueueID as DSIQUEUE) as Long

NOTE: This length can change from release to release.

Arguments

Returns UniqueLen, which provides the returned length of the dsiQSET_UNIQUE_ID field.

See also GetQField on page 295

GetQFieldLength on page 296

GetPriority on page 294

GetReqType on page 299

GetUniqueID on page 301

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim cbField as Long

cbField = oDSI.GetUniqueIDLength(hInstance, dsiINPUTQUEUE)

MsgBox ("Unique ID field length is " + cbField)

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

GetUniqueString

303

GetUniqueString
Use this method to fill Unique with a unique string. You can, for instance, use this method
to generate unique file names.

Syntax GetUniqueString(hInstance as Long,Unique as String,Optional Long
LengthRequested)

If LengthRequested is zero, the length of the UniqueID field in the queue record will be
used. The GetUniqueID method is better suited for this purpose.

Arguments

See also GetPriority on page 294

GetQField on page 295

GetQFieldLength on page 296

GetReqType on page 299

GetUniqueID on page 301

Example Dim sUnique as String

GetUniqueString hInstance,sUnique,8

MsgBox ("Here’s your unique filename: " + sUnique + ".dat")

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked
by a rule.

Unique returned unique ID. Unique will be space filled beyond 32 bytes.

LengthRequested length of string requested. If the result is zero, the default, then the
dsiQSET_UNIQUE_ID length is used.

Chapter 5
DSI Visual Basic APIs

304

GetUserID
Use this method to get the user ID from the current queue record.

Syntax GetUserID(hInstance as Long,QueueID as DSIQUEUE) as String

Arguments

Returns UserID, which provides the user ID returned as a string.

See also GetPriority on page 294

GetQField on page 295

GetQFieldLength on page 296

GetReqType on page 299

GetUniqueID on page 301

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim sField as String

sField = oDSI.GetUserID(hInstance, dsiINPUTQUEUE)

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Init

305

Init
Use this method to make an API call to initialize an IDS session. It is also called by
InitSession, which is the preferred way to link up with IDS. Unless you want to administer
the session directly, there is no need to call this method.

Syntax Init() as Long

NOTE: This method should be called only once per process—without an intervening call
to the Term method. You cannot use this method in a rule.

Arguments None

Returns phApp, which provides the DSI session handle (not instance).

See also Term on page 329

InitSession on page 308

TermSession on page 332

Example From the CSamAPI.cls file in the DSICoSAM example:

hApp = oDSI.Init()

hInstance = oDSI.InitInstance(hApp)

’ init the queues but use DSI.INI by passing in "" as the path

 oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""

 oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down

 oDSI.TermQueue hInstance, dsiINPUTQUEUE

 oDSI.TermQueue hInstance, dsiOUTPUTQUEUE

 oDSI.TermInstance hInstance

 oDSI.Term

Chapter 5
DSI Visual Basic APIs

306

InitInstance
Use this method to make an API call to initialize a thread instance. This method is also
called by InitSession, which is the preferred way to link to IDS. Unless you want to
administer the session directly, there is no need to call this routine.

Syntax InitInstance(LONG hApp) as Long

NOTE: You cannot use this method in a rule.

Arguments

Returns Instance, which provides the instance handle.

See also TermInstance on page 330

InitSession on page 308

Example From the CSamAPI.cls file in the DSICoSAM example:

’ initialize DSI for this process

 hApp = oDSI.Init()

’ initialize DSI for this thread

hInstance = oDSI.InitInstance(hApp)

’ init the queues but use DSI.INI by passing in "" as the path

 oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""

 oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down

 oDSI.TermQueue hInstance, dsiINPUTQUEUE

 oDSI.TermQueue hInstance, dsiOUTPUTQUEUE

 oDSI.TermInstance hInstance

 oDSI.Term

Argument Description

hApp IDS Server session

InitQueue

307

InitQueue
Use this method to initialize a DSI Queue for this instance. This method is also called by
InitSession, which is the preferred way to link to IDS and the queues.

NOTE: You cannot use this method in a rule.

Syntax InitQueue(hInstance as Long, QueueID as DSIQUEUE, FileName as String)

If the file name is empty, DSI will look for the DSI.INI file in either the current working
directory or the directory which contains the DSIW32.DLL file. For greater flexibility in
your applications, do not specify the file name.

NOTE: Unless you want to administer the queues directly for a special purpose, this
method should not be used. InitSession will make the necessary calls.

Arguments

See also InitSession on page 308

TermQueue on page 331

TermSession on page 332

Example From the CSamAPI.cls file in the DSICoSAM example:

’ initialize DSI for this process

 hApp = oDSI.Init()

’ initialize DSI for this thread

hInstance = oDSI.InitInstance(hApp)

’ init the queues but use DSI.INI by passing in "" as the path

 oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""

 oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down

 oDSI.TermQueue hInstance, dsiINPUTQUEUE

 oDSI.TermQueue hInstance, dsiOUTPUTQUEUE

 oDSI.TermInstance hInstance

 oDSI.Term

Argument Description

hInstance thread instance handle

QueueID queue index

FileName queue path. Most applications will set this to “”.

Chapter 5
DSI Visual Basic APIs

308

InitSession
Use this method to initialize your IDS session through the Visual Basic API for the
current thread. Most applications begin their processing with a call to InitSession.

Syntax InitSession(long hApp) as Long

NOTE: You cannot use this method in a rule.

Arguments

Returns The thread instance handle.

See also TermSession on page 332

Init on page 305

InitInstance on page 306

InitQueue on page 307

Example Dim sUnique as String

Dim sDummy() as String

Dim sReturn() as String

Dim sAttach(0 To 4, 0 To 1) As String

sAttach(0, 0) = "Name0"

sAttach(0, 1) = "Value0"

sAttach(1, 0) = "Name1"

sAttach(1, 1) = "Value1"

sAttach(2, 0) = "Name2"

sAttach(2, 1) = "Value2"

sAttach(3, 0) = "Name3"

sAttach(3, 1) = "Value3"

sAttach(4, 0) = "Name4"

sAttach(4, 1) = "Value4"

’ set up our server session

hInstance = oDSI.InitSession()

’ send the attachment to the server with the request t be echoed back

 sUnique = "" ’ to get us a new UniqueID

 oDSI.Submit hInstance, "ECH", sUnique, sAttach1, sDummy

’ Look for the result.

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

’ get the attachment into an array

 oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

Argument Description

hApp The app handle returned by the Init method. This is available for diagnostic
purposes only.

InitSession

309

’ shut down

 oDSI.TermSession hInstance

Chapter 5
DSI Visual Basic APIs

310

LocateAttachVar
Use this method to locate an attachment variable in the current queue record.

Syntax LocateAttachVar(hInstance as Long,QueueID as DSIQUEUE, Name as
String, Value as String) as Long

You must call the ParseAttachment method before you use this method.

Arguments

Returns dsiERR_SUCCESS

dsiERR_NOTFOUND

See also AddAttachVar on page 257

DeleteAttachVar on page 278

ParseAttachment on page 316

GetAttachVarSet on page 292

GetAttachRecSet on page 290

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

 lRet = oDSI.LocateAttachVar(hInstance, dsiINPUTQUEUE, "RESULTS",
sValue)

 If lRet = dsiERR_SUCCESS Then

 MsgBox ("Success: found RESULTS = " + sValue)

 Else

 msgBox ("Failure: " + Hex(lRet) +" No data found: ")

 End If

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Name The search target.

Value The value found associated with that name returned as a string.

LocateValue

311

LocateValue
Use this method to locate a persistent value by name. These variables are persistent and
must be destroyed by a call to DestroyValue method. They are not associated with the
queues or attachments and exist to aid communication or provide state information
between rules and calls to rules.

Syntax LocateValue(hInstance as Long,Name as String, Value as VARIANT) as
Long

Arguments

Returns dsiERR_SUCCESS

dsiERR_NOTFOUND

See also CreateValue on page 274

DestroyValue on page 279

LocateValueObj on page 313

QueryValueSize on page 317

Example From the CSamAPI.cls file in the DSICoSAM example:

’ save our string

 sTestValue = "Hello World"

 oDSI.CreateValue hInstance, sSTRING_TAG, sTestValue

’ now get it back

 Dim lRet

 lRet = oDSI.LocateValue(hInstance, sSTRING_TAG, sReturnedValue)

 If lRet <> dsiERR_SUCCESS _

 Or sReturnedValue <> sTestValue Then

 MsgBox ("Failed")

 Else

 MsgBox ("Success")

 End If

’ we’re through with it so we destroy it

 oDSI.DestroyValue hInstance, sSTRING_TAG

’ now lets see how integers fare

 iTestValue = 234

 oDSI.CreateValue hInstance, sINT_TAG, iTestValue

 lRet = oDSI.LocateValue(hInstance, sINT_TAG, iReturnedValue)

 If lRet <> dsiERR_SUCCESS _

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name name of the persistent value

Value the value that is found

Chapter 5
DSI Visual Basic APIs

312

 Or iTestValue <> iReturnedValue Then

 MsgBox ("Failed")

 Else

 MsgBox ("Success")

 End If

’ we’re through with it so we destroy it

 oDSI.DestroyValue hInstance, sINT_TAG

LocateValueObj

313

LocateValueObj
Use this method to locate a persistent value containing the name of an object. These
variables are persistent and must be destroyed by a call to DestroyValueObj. These
variables are not associated with the queues or attachments and exist to aid
communication or provide state information between rules and calls to rules.

Syntax LocateValueObj(hInstance as Long,Name as String, oRef as Object) as
Long

NOTE: ActiveX components are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, including in On Error
handlers, you can leave a dangling reference which can tie up resources
unnecessarily, perhaps even crash the server or your application.

Arguments

Returns dsiERR_SUCCESS

dsiERR_NOTFOUND

See also CreateValueObj on page 276

DestroyValueObj on page 281

LocateValue on page 311

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim oTestValue As New CSamTObj

Dim oOtherTestValue As CSamTObj

’ Test with early bound object

 oDSI.CreateValueObj hInstance, "MY_OBJECT", oTestValue

’ clear our reference

 Set oTestValue = Nothing

’ get it back

 lRet = oDSI.LocateValueObj(hInstance, "MY_OBJECT",
oOtherTestValue)

’ use the object to make sure we got back what we sent out

 MsgBox (oOtherTestValue.TestReturn("Hello World"))

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name name of the persistent value

oRef a reference to an object

Chapter 5
DSI Visual Basic APIs

314

’ clear our reference

 Set oOtherTestValue = Nothing

’ we don’t want a dangling reference

 oDSI.DestroyValueObj hInstance, "MY_OBJECT"

’ ---

’ Test with late bound object

 Dim oObject As Object

 Dim oOtherObject As Object

 Set oObject = CreateObject("Docucorp_IDS_SamTObj.CSamTObj")

 oDSI.CreateValueObj hInstance, "MY_OBJECT", oObject

’ clear our reference

 Set oObject = Nothing

’ get it back

 lRet = oDSI.LocateValueObj(hInstance, "MY_OBJECT", oOtherObject)

’ use the object to make sure we got back what we sent out

 MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn ("Hello
New World"))

’ clear our reference

 Set oOtherObject = Nothing

’ we don’t want a dangling reference

 oDSI.DestroyValueObj hInstance, "MY_OBJECT"

OpenAttachCursor

315

OpenAttachCursor
Use this method to open a cursor into the attachment list for the specified queue. Be sure
to call the CloseAttachCursor method when you are through to free resources.

Syntax OpenAttachCursor(hInstance as Long,QueueID as DSIQUEUE) as Long

Arguments

Returns Cursor, which provides the newly-created cursor.

See also AttachCursorLast on page 262

AttachCursorNext on page 265

AttachCursorPrev on page 266

CloseAttachCursor on page 271

ParseAttachment on page 316

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful

 lRet = oDSI.AttachCursorNext(hCursor, sName, sValue)

 Wend

’ close out the cursor to free the resources

 oDSI.CloseAttachCursor hCursor

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Chapter 5
DSI Visual Basic APIs

316

ParseAttachment
Use this method to parse the attachment field in the queue record into an internal list of
name/value pairs which can be accessed by other methods.

Syntax ParseAttachment(hInstance as Long,QueueID as DSIQUEUE)

Arguments

See also GetAttachment on page 286

LocateAttachVar on page 310

DeleteAttachVar on page 278

GetAttachmentAll on page 288

GetAttachVarSet on page 292

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment

’ This cursor will allow us to walk through the attachment serially

 hCursor = oDSI.OpenAttachCursor(hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’

 lRet = oDSI.AttachCursorFirst(hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing

’ the name and value pairs and put them in the right hand list box

 While lRet = dsiERR_SUCCESS

 ... do something useful

 lRet = oDSI.AttachCursorNext(hCursor, sName, sValue)

 Wend

’ close out the cursor to free the resources

 oDSI.CloseAttachCursor hCursor

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

QueryValueSize

317

QueryValueSize
Use this method to get the length of a DSI persistent variable. These variables are
persistent and must be destroyed by a call to DestroyValue method. They are not
associated with the queues or attachments and exist to aid communication or provide
state information between rules and calls to rules.

Syntax QueryValueSize(hInstance as Long,sName as String) as Long

NOTE: Use of this method with a DSI persistent variable that is an object will return a
value that is unreliable.

Arguments

Returns ValueLength, which provides the length in bytes.

See also CreateValue on page 274

DestroyValue on page 279

LocateValue on page 311

CreateValueObj on page 276

LocateValueObj on page 313

DestroyValueObj on page 281

Example From the CSamAPI.cls file in the DSICoSAM example:

sTestValue = "Hello World"

 oDSI.CreateValue hInstance, "START_STMT", sTestValue

 Dim cbValue

 cbValue = oDSI.QueryValueSize(hInstance, "START_STMT")

 MsgBox ("returned size=", Str(cbValue))

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the persistent variable

Chapter 5
DSI Visual Basic APIs

318

SetAttachment
Use this method to insert an attachment as a single, continuous string (almost a BLOB)
into the queue record. Use for situations in which the name/value pair paradigm does not
support the needs of the application.

Syntax SetAttachment(hInstance as Long,QueueID as DSIQUEUE,Attachment as
String)

Most applications which interact with IDS will not need to use this method.

Arguments

See also GetAttachment on page 286

Example Here is an excerpt from the CSamAPI.cls file in the DSICoSAM example:

Dim sBLOB As String

sBLOB = "Of all the dispositions and habits, which lead to political
prosperity," + _

"Religion and Morality are indispensable supports. In vain would that
man " + _

"claim the tribute of Patriotism, who should labor to subvert these
great " + _

"pillars of human happiness, these firmest props of the duties of Men
and " + _

"Citizens. The mere Politician, equally with the pious man, ought to
respect " + _

"and to cherish them. A volume could not trace all their connexions
with " + _

"private and public felicity. Let it simply be asked, Where is the
security " + _

"for property, for reputation, for life, if the sense of religious
obligation " + _

"desert the oaths, which are the instruments of investigation in
Courts " + _

"of Justice? And let us with caution indulge the supposition, that
morality " + _

"can be maintained without religion. Whatever may be conceded to the
influence " + _

"of refined education on minds of peculiar structure, reason and
experience " + _

"both forbid us to expect, that national morality can prevail in
exclusion " + _

"of religious principle. -- George Washington"

oDSI.SetAttachment hInstance,dsiOUTPUTQUEUE,sBLOB

’set the Echo request type

 oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attachment The attachment as a string.

SetAttachment

319

’ set up a unique id for our record

 sUnique = "" ’ make sure we get a new one this time

 oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ insert record into queue for processing by the server

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

’ get our record back after processing by the server

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

 Dim sBLOBOut

 oDSI.GetAttachment hInstance, dsiINPUTQUEUE, sBLOBOut

 MsgBox (sBLOBOut)

Chapter 5
DSI Visual Basic APIs

320

SetPriority
Use this method to set the priority of the current queue record.

Syntax SetPriority(hInstance as Long,QueueID as DSIQUEUE, Priority as
String)

Arguments

See also SetQField on page 321

SetUserID on page 325

SetReqType on page 322

SetStatus on page 323

SetUniqueID on page 324

GetPriority on page 294

Example oDSI.SetPriority hInstance,dsiOUTPUTQUEUE,"1"

oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

oDSI.SetPriority hInstance,dsiOUTPUTQUEUE,"0"

oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Priority The priority as a string.

SetQField

321

SetQField
Use this method to set a specific queue field in the current queue record.

Syntax SetQField(hInstance as Long,QueueID as DSIQUEUE, FieldID as
Long,Value as String)

Arguments

See also GetQField on page 295

SetPriority on page 320

SetUserID on page 325

SetReqType on page 322

SetStatus on page 323

SetUniqueID on page 324

Example From the CSamAPI.cls file in the DSICoSAM example:

’ put our message in the attachment

 oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

’ put the attachment into the queue record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ set up the request type (all queue records must have a request type)

 oDSI.SetQField hInstance, dsiOUTPUTQUEUE, dsiQSET_REQTYPE, "ECH"

’ put a unique id in the queue record so we can get it from the server

 sUnique = "" ’ make sure we get a new one this time

 oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ submit the queue record to the queue for processing by the server

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_USERID, dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

Value The value to be updated in current queue record.

Chapter 5
DSI Visual Basic APIs

322

SetReqType
Use this method to set the DSI request type in the current queue record.

Syntax SetReqType(hInstance as Long,QueueID as DSIQUEUE,Type as String)

Every queue record submitted to the server must have a request type. This request type
should also be found in the DOCSERV configuration file. For instance, the ECH request
has the following entry in the DOCSERV configuration file:

< ReqType:ECH >

function = atcw32->ATCLoadAttachment

function = DSICoRul->Invoke,Docucorp_IDS_SAMSupp.CSAMSupp->Echo

function = atcw32->ATCUnloadAttachment

Arguments

See also GetReqType on page 299

SetQField on page 321

SetPriority on page 320

SetUserID on page 325

SetStatus on page 323

SetUniqueID on page 324

Example From the CSamAPI.cls file in the DSICoSAM example:

’ put our message in the attachment

 oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

’ put the attachment into the queue record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ set up the request type (all queue records must have a request type)

 oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

’ put a unique ID in the queue record

 sUnique = "" ’ make sure we get a new one this time

 oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ submit the queue record to the queue for processing by the server

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Type The request type as a string.

SetStatus

323

SetStatus
Use this method to set the status flag by OR’ing the bits, which will prevent the ERROR
bit from being reset. This field has a length of one byte.

Syntax SetStatus(hInstance as Long,QueueID as DSIQUEUE,Status as String)

Arguments

See also GetStatus on page 300

SetQField on page 321

SetPriority on page 320

SetUserID on page 325

SetReqType on page 322

SetUniqueID on page 324

Example oDSI.SetStatus hInstance,dsiINPUTQUEUE,"E"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Status The status as a string.

Chapter 5
DSI Visual Basic APIs

324

SetUniqueID
Use this method to set the UniqueID for a queue record. In a multiuser environment,
this is the way to keep your stuff separated from that of the other users. This value is
supplied to the GetQueueRec method to recover your queue record after it’s processed
by the server.

Syntax SetUniqueID(hInstance as Long,QueueID as DSIQUEUE,UniqueID as
String)

Arguments

See also GetUniqueID on page 301

SetQField on page 321

SetPriority on page 320

SetUserID on page 325

SetReqType on page 322

SetStatus on page 323

Example From the CSamAPI.cls file in the DSICoSAM example:

sUnique = "" ’ make sure we get a new one this time

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ insert our record into the queue for processing by the server

 oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

’ recover our record from the server after processing

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniqueID UniqueID as a string. If UniqueID is empty or “”, a new unique ID is returned.

SetUserID

325

SetUserID
Use this method to set up a user ID for the current queue record. The server does not use
this, but a client can use it to keep separate various requests.

Syntax SetUserID(hInstance as Long,QueueID as DSIQUEUE,UserID as String)

If the user ID is not going to change, you only need to make this call once. You can also
use the UserID property to set this field.

Arguments

See also GetUserID on page 304

SetQField on page 321

SetPriority on page 320

SetReqType on page 322

SetStatus on page 323

SetUniqueID on page 324

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.SetUserID hInstance, dsiOUTPUTQUEUE, "Walleye"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UserID Any string.

Chapter 5
DSI Visual Basic APIs

326

StoreAttachment
Use this method to update the attachment field in the queue record from the internal
attachment list buffer.

Syntax StoreAttachment(hInstance as Long, DSIQUEUE QueueID)

If you call the AddAttachVar or AttachList methods, you must call this method
afterwards. This method is not required after calls to the Submit method.

Arguments

See also AddAttachVar on page 257

AttachList on page 269

Submit on page 327

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "FISH", sBuf

’ Next we want to supply the values. To do this we use the

’ add to attach record functionality. We supply the buffer

’ returned from or earlier add attach record call.

’ Add name of my DLL

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TYPE", "BASS"

’ Add date DLL was built

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "SIZE",
"LARGE"

’ Add time DLL was built

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "STATUS",
"CAUGHT"

’ Add my DLL version number

 oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "LOCATION",
"BOAT"

’ Put the attachment into the queue record

 oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Submit

327

Submit
Use this method for most client submissions to the server.

Syntax Submit(hInstance as Long,Request as String,UniqueID as
String,parms1() as String,parms2() as String)

The lists parms1() and parms2() can be empty.

NOTE: Each call to submit generates another OUTPUT queue record.

Arguments

See also AddAttachVar on page 257

AttachList on page 269

Example 1 From the CSamAPI.cls file in the DSICoSAM example:

Dim sDummy1() as String

 Dim sDummy2() as String

 Dim sUnique as String

’ there is no attachment for SSS, so we use empty arrays.

’ sUnique is empty so we will get back the unique ID we can use to

’ recover the server response

 oDSI.Submit hInstance, "SSS", sUnique, sDummy1(), sDummy2()

’ get the server status record

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

 DoEvents

’ parse the attachment

 oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

 sNames(0) = "UPTIME"

 sNames(1) = "LASTRESTART"

 sNames(2) = "RESTARTCOUNT"

 sNames(3) = "SUCCESSCOUNT"

 sNames(4) = "ERRORCOUNT"

 sNames(5) = "ALLOCCOUNT"

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Request A server request, such as SSS.

UniqueID The unique ID for this submission. Any empty string will be returned with the
unique ID assigned to this queue record.

Parms1() A two-dimensional array with the parameter list to attach to the queue record.

Parms2() A two-dimensional array with the second parameter list to be also attached to
the queue record.

Chapter 5
DSI Visual Basic APIs

328

 sNames(6) = "FREECOUNT"

’ Get the current statistics from IDS

 lRet = oDSI.GetAttachVarSet(hInstance, dsiINPUTQUEUE, sNames,
asStats)

 If lRet = dsiERR_EOF Then

 MsgBox ("FAILED. Code = ", Val(lRet))

 Else

 Dim i

 Dim L, U

 L = LBound(sNames)

 U = UBound(sNames)

 For i = L To U

 MsgBox (sNames(i) + ": " + asStats(i))

 Next i

 End If

Example 2 From the CSamAPI.cls file in the DSICoSAM example:

sAttach1(0, 0) = "Name0"

sAttach1(0, 1) = "Value0"

sAttach1(1, 0) = "Name1"

sAttach1(1, 1) = "Value1"

sAttach1(2, 0) = "Name2"

sAttach1(2, 1) = "Value2"

sAttach1(3, 0) = "Name3"

sAttach1(3, 1) = "Value3"

sAttach1(4, 0) = "Name4"

sAttach1(4, 1) = "Value4"

sAttach2(0, 0) = "Name20"

sAttach2(0, 1) = "Value20"

sAttach2(1, 0) = "Name21"

sAttach2(1, 1) = "Value21"

sAttach2(2, 0) = "Name22"

sAttach2(2, 1) = "Value22"

sAttach2(3, 0) = "Name23"

sAttach2(3, 1) = "Value23"

sAttach2(4, 0) = "Name24"

sAttach2(4, 1) = "Value24"

’ send the attachment to the server with the request it be echoed back

 sUnique = "" ’ to get us a new UniqueID

 oDSI.Submit hInstance, "ECH", sUnique, sAttach1, sAttach2

’ wait for the server to return the attachment

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique, 1000, nTIMEOUT

’ get the attachment into an array

 oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

 For i = LBound(sAttachIn, 1) To UBound(sAttachIn, 1)

 MsgBox (sAttachIn(i, 0) +": " + sAttachIn(i, 1))

 Next i

Term

329

Term
Use this method to terminate the server session.

Syntax Term()

The InitSession and TermSession methods are the preferred means of managing your
connection to IDS. Unless you want to manage the server session directly, you should not
call this routine.

NOTE: This method will be automatically called when you exit. Most applications will
not use it. This method cannot be called from a rule.

Arguments None

See also Init on page 305

InitSession on page 308

Example From the CSamAPI.cls file in the DSICoSAM example:

’ initialize DSI for this process

 hApp = oDSI.Init()

’ initialize DSI for this thread

hInstance = oDSI.InitInstance(hApp)

’ init the queues but use DSI.INI by passing in "" as the path

 oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""

 oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down

 oDSI.TermQueue hInstance, dsiINPUTQUEUE

 oDSI.TermQueue hInstance, dsiOUTPUTQUEUE

 oDSI.TermInstance hInstance

 oDSI.Term

Chapter 5
DSI Visual Basic APIs

330

TermInstance
Use this method to terminate the thread instance. It is also called by TermSession, which
is the preferred way to unlink from IDS.

Syntax TermInstance(hInstance as Long)

NOTE: This method cannot be called from rules.

Arguments

See also InitInstance on page 306

InitSession on page 308

TermSession on page 332

Example From the CSamAPI.cls file in the DSICoSAM example:

’ initialize DSI for this process

 hApp = oDSI.Init()

’ initialize DSI for this thread

hInstance = oDSI.InitInstance(hApp)

’ init the queues but use DSI.INI by passing in "" as the path

 oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""

 oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down

 oDSI.TermQueue hInstance, dsiINPUTQUEUE

 oDSI.TermQueue hInstance, dsiOUTPUTQUEUE

 oDSI.TermInstance hInstance

 oDSI.Term

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

TermQueue

331

TermQueue
Use this method to terminate the linkage to one of the two queues. Called by InitSession,
which is the preferred way to link to IDS.

Syntax TermQueue(hInstance as Long,QueueID as DSIQUEUE)

NOTE: This method cannot be called from rules.

Arguments

See also InitQueue on page 307

InitSession on page 308

TermSession on page 332

Example From the CSamAPI.cls file in the DSICoSAM example:

’ initialize DSI for this process

 hApp = oDSI.Init()

’ initialize DSI for this thread

hInstance = oDSI.InitInstance(hApp)

’ init the queues but use DSI.INI by passing in "" as the path

 oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""

 oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

’ do something useful

’ shut down

 oDSI.TermQueue hInstance, dsiINPUTQUEUE

 oDSI.TermQueue hInstance, dsiOUTPUTQUEUE

 oDSI.TermInstance hInstance

 oDSI.Term

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Chapter 5
DSI Visual Basic APIs

332

TermSession
Use this method to end the relationship with IDS. You must pair this method with the
InitSession method.

Syntax TermSession(hInstance as Long)

NOTE: This method cannot be called from rules.

Arguments

See also InitSession on page 308

Init on page 305

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim sUnique as String

Dim sDummy() as String

Dim sReturn() as String

Dim sAttach(0 To 4, 0 To 1) As String

sAttach(0, 0) = "Name0"

sAttach(0, 1) = "Value0"

sAttach(1, 0) = "Name1"

sAttach(1, 1) = "Value1"

sAttach(2, 0) = "Name2"

sAttach(2, 1) = "Value2"

sAttach(3, 0) = "Name3"

sAttach(3, 1) = "Value3"

sAttach(4, 0) = "Name4"

sAttach(4, 1) = "Value4"

hInstance = oDSI.InitSession()

’ send the attachment to the server with the request it be echoed back

 sUnique = "" ’ to get us a new UniqueID

 oDSI.Submit hInstance, "ECH", sUnique, sAttach1, sDummy

’ Look for the result.

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

’ get the attachment into an array

 oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

’ shut down

 oDSI.TermSession hInstance

Argument Description

hInstance The thread instance handle.

Trace

333

Trace
Use this method to put a couple of strings in the VB trace file. If tracing is not enabled,
no action is taken.

Syntax Trace(hInstance as Long,Caller as String,Msg as String)

The trace file is named DSICO.TRC. This file is stored in the current working directory
of the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Arguments

See also TraceSnapshot on page 337

TraceEnableRule on page 335

Property TracePath on page 341

TraceEnableRule on page 335

Example oDSI.Trace hInstance,"Fish Rule::GoFish","Bass bait ignored"

Argument Description

hInstance The thread instance handle.

Caller The routine making the call.

Msg A message string.

Chapter 5
DSI Visual Basic APIs

334

TraceAttach
Use this method to write the entire attachment to the trace file.

Syntax TraceAttach(hInstance as Long,QueueID as DSIQUEUE)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Arguments

See also Trace on page 333

TraceEnableRule on page 335

TraceSnapshot on page 337

TraceEnableRule on page 335

TraceEnableRule on page 335

Property TracePath on page 341

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.TraceAttach hInstance,dsiINPUTQUEUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueueID Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

TraceEnableRule

335

TraceEnableRule
Use this method to turn the tracing on and off in a rule. The TraceEnable property cannot
be used in rules.

Syntax TraceEnableRule(hInstance as Long,Enable as Boolean)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Arguments

See also Trace on page 333

TraceAttach on page 334

TraceEnableRule on page 335

TraceSnapshot on page 337

Property TracePath on page 341

Example oDSI.TraceEnableRule hInstance,TRUE

Argument Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

bEnable Enter True to enable tracing. Enter False to disable tracing.

Chapter 5
DSI Visual Basic APIs

336

TraceList
Use this method to trace an attachment list of name/value pairs.

Syntax TraceList(ID as String,List() as String

Arguments

See also Trace on page 333

TraceAttach on page 334

TraceEnableRule on page 335

TraceEnableRule on page 335

TraceSnapshot on page 337

Example From the CSamAPI.cls file in the DSICoSAM example:

Dim sAttach(0 To 4, 0 To 1) As String

sAttach(0, 0) = "Name0"

sAttach(0, 1) = "Value0"

sAttach(1, 0) = "Name1"

sAttach(1, 1) = "Value1"

sAttach(2, 0) = "Name2"

sAttach(2, 1) = "Value2"

sAttach(3, 0) = "Name3"

sAttach(3, 1) = "Value3"

sAttach(4, 0) = "Name4"

sAttach(4, 1) = "Value4"

oDSI.TraceList "Initial list state",sAttach

Argument Description

ID A list identifier.

List () A two-dimensional array of name/value pairs.

TraceSnapshot

337

TraceSnapshot
Use this method to dump the current state of the queues, including attachments in the
current queue record, to the trace file. This method then closes and reopens the trace file
to flush the buffers.

Syntax TraceSnapshot(hInstance as Long)

Arguments

See also Trace on page 333

TraceAttach on page 334

TraceEnableRule on page 335

Example From the CSamAPI.cls file in the DSICoSAM example:

’ recover the attachment echoed back to us

 oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

 oDSI.Trace "Fish::GoFish","where are the worms?"

 oDSI.TraceSnapshot hInstance

Parameter Description

hInstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Chapter 5
DSI Visual Basic APIs

338

Property Instance
Use this property to return the DSI instance handle.

Syntax Property Instance as Long (read only)

This method is for diagnostic purposes only.

NOTE: In a multi-threaded context, such as an ASP Active X component running under
Microsoft IIS, you cannot rely on this value.

See also InitInstance on page 306

InitSession on page 308

TermInstance on page 330

TermSession on page 332

Example MsgBox ("Instance handle is " + Str (oDSI.Instance))

Property Signature

339

Property Signature
Use this property to return the DLL “signature” for diagnostic purposes.

Syntax Property Signature as String

NOTE: This information is subject to change in content and format without notice.

Returns A string with data identifying the VB ActiveX DLL.

Example MsgBox ("DSICoLib signature: " + Str (oDSI.Signature))

Chapter 5
DSI Visual Basic APIs

340

Property TraceEnable
Use this property to start and stop tracing.

Syntax Property TraceEnable as BOOL (read only)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

The trace file will be automatically closed when the application exits.

See also TraceSnapshot on page 337

TraceAttach on page 334

Trace on page 333

TraceEnableRule on page 335

Property TracePath on page 341

Example From the CSamAPI.cls file in the DSICoSAM example:

oDSI.TraceEnable = true

oDSI.InitSession

Property TracePath

341

Property TracePath
Use this property to get the path and file name of the trace file, if the trace file has been
opened, the system will set the trace file name. This name will take effect only after the
trace file is opened.

Syntax Property TracePath as String

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using this
property.

See also TraceEnableRule on page 335

Example oDSI.TracePath = "D:\TEMP"

oDSI.TraceEnable = true

oDSI.InitSession

Chapter 5
DSI Visual Basic APIs

342

343

Index

A

accessing variables 15
Active Server Page

ADMAsp sample 76
and COM objects 76
Debug.ASP 72

ActiveX
registering DLLs 62
writing Visual Basic rules 61

AddAllRequest
JavaBeans 172

AddAttachRec
in C 15, 83
in Visual Basic 255

AddAttachVar
in C 8, 15, 84, 85
in Visual Basic 257

ADDINST program 62
addJob 209
AddJobRule 209
AddRequest

JavaBeans 172
AddToAttachRec

in C 15, 86, 87
in Visual Basic 258

AddToQueue
in C 8, 89
in Visual Basic 260

ADMAsp
sample 76

Index

344

ADMIN.ASP
sample 76

APIs
C 79
Java 171
Visual Basic 249

ATCAppend2Attachment 230
ATCLoadAttachment 13, 231
ATCLogTransaction 232
ATCReceiveFile 233

referencing attachment variables 78
ATCSendFile 236

referencing attachment variables 78
ATCSendMultipleFiles rule 238
ATCUnloadAttachment 13, 239
AttachCursorFirst

in C 9, 15, 90, 92
in Visual Basic 261

AttachCursorLast
in C 9, 15, 94
in Visual Basic 262

AttachCursorName
in C 98
in Visual Basic 264

AttachCursorNext
in C 9, 15, 100, 102
in Visual Basic 265

AttachCursorPrev
in C 9, 15, 104, 106
in Visual Basic 266

AttachCursorValue
in C 108, 110
in Visual Basic 268

AttachList
in Visual Basic 269

Attachment control group 199
attachment variables

referencing 78
AttachmentPath option 231, 239

attachments
accessing using C 15
defined 4
DSIReceiveFile 146
DSISendFile 154
list 7
using a proprietary format with C 8
variables 9, 13

Attachments option 234, 236
autorun rules

CacheFile 115
avoiding file naming conflicts 16

B

Bounds Checker 12
buffer 8

C

C
APIs 79
creating, accessing, and destroying variables 15
DSI API 3, 7
list of API functions 80
sample program 10
writing processing rules 12

cache
purging 204

CacheFile
in C 16, 115
in Visual Basic 270

CacheGetFile option 198
CAD request type 16
case statements

in VB 62
CGI client

DSI API 3
writing processing rules 12

345

class modules 61
classes

list of Java classes and methods 182
CLF request type 17
client rules

list of 229
CloseAttachCursor

in C 15, 116
in Visual Basic 271

CoClasses folder 63
COM

and Visual Basic rules 66
GUIDS 66
interfaces and VB 61
objects under ASP 76
ProgIDs 61, 63
registering objects 63

CONFIG.INI file
referencing attachment variables 78

CopyAttachVars
in C 15, 117
in Visual Basic 272

copyData 215
copyMessageVariables 215
CopyQRecord

in C 118
in Visual Basic 273

CreateValue
in C 15, 119
in Visual Basic 66, 274

CreateValueObj
in Visual Basic 276

creating
rules for reserved request types 16
rules in C 13
variables in C 15
Visual Basic rules 61

D

daemon 17

DAP.INI file
referencing attachment variables 78

Debug control group 234, 236
debug log file 200
Debug option 198, 200
Debug.ASP 72
DEFAULT request type 17

UnloadAttachment 239
DeleteAttachVar

in C 15, 120
in Visual Basic 278

destroying variables
C 15

DestroyValue
in C 15, 121, 122, 123
in Visual Basic 279

DestroyValueObj
in Visual Basic 281

diagnostics
Signature property 339

DOCC.BMP sample file 76
DOCSERV.INI file

referencing attachment variables 78
specifying Visual Basic rules 63

Document Server Interface (DSI) 171
DSI

C APIs 79
COM objects (ASP) 76
Java APIs 171
processing rules 183
Visual Basic API 61

DSI Java APIs 76
DSI Visual Basic APIs 249
DSI_MSGINIT message 12
DSI_MSGRUNF message 12
DSI_MSGRUNR message 12, 13
DSI_MSGTERM message 12
DSIAddAttachVar

in C 8
DSIAddAttachVarEx 85
DSICO.TRC 340

Index

346

DSICoADM
sample 76

DSICoAPI 65
DSICoEx

Visual Basic version 75
DSICoExV

sample 74
DSICoRul

and VB rule processing 61
registering ActiveX DLLs 65

DSICoSAM
sample 73

DSICoTB
sample 68
testing rules 63

DSIDiag
sample 71

DSIENV_* flags 144
DSIEX.C 3, 11
DSIEXW32 program 10
DSIGetSOAPMessage 128
DSIGetSOAPMessageSize 129
DSIGetUniqueString

in C 8
DSIInit 136
DSIInitInstance 137
DSIInitQueue 138
DSILIB

passing JVM options 180
DSILIB.H 7
DSILocateAttachVar 112, 113, 139, 140
DSILocateValue 141
DSIOpenAttachCursor 142
DSIParseAttachment 143
DSIQSET_ATTACHMENT

queue field 7
DSIQSET_REQTYPE

queue field 7
DSIQSET_UNIQUE_ID

queue field 7, 8
DSIQSET_USERID

queue field 7

DSIQueryEnvOptions 144
DSIQueryValueSize 145
DSIReceiveFile 146, 153
DSIReceiveFileAsBuffer 147
DSIReceiveFileAsBufferSize 149
DSIRowset2XML 151
DSIRowset2XMLSize 152
DSISendFile 154
DSIStoreAttachment

in C 8
DSIW32.DLL 7
DSIW32.LIB 7
DSRVW32 program 66
DumpDebugInfo

in Visual Basic 283
DUTTRACE.LOG 66

E

ERR request type 17
error handling

Visual Basic rules 65
error log

returning records from 203
error messages

using ErrorMessage 15
ErrorMessage

in C 15, 124
in Visual Basic 284

ErrorMsg
in C 125

ERS request type 17
ESS request type 17

F

fat clients
in Visual Basic 249

347

files
generating unique names 16
removing temporary files 16

FindInQueue
in C 8, 126
in Visual Basic 285

firewalls
debug log file 200
IRLFileFTP 195
IRLInitFTP 202

flags
DSIENV_* 144

FTP control group 200
FTP servers

IRLFileFTP 195
FTPCONNECTIONS variable 202
FTPRule

defined 186
functions

list of C API 80

G

generating unique file names 16
GetAttach 78
GetAttachment

in Visual Basic 286
GetAttachmentAll

in Visual Basic 288
GetAttachRecSet

in Visual Basic 290
GetAttachVarSet

in Visual Basic 292
GetFirstFromQueue

in C 127
GetPriority

in Visual Basic 294
GetQError

in C 16, 130

GetQField
in C 9, 16, 131
in Visual Basic 295

GetQFieldLength
in C 16, 133
in Visual Basic 296

GetQueueRec
in C 8, 134
in Visual Basic 297

GetReqType
in Visual Basic 299

GetStatus
in Visual Basic 300

GetUniqueID
in Visual Basic 301

GetUniqueIDLength
in Visual Basic 302

GetUniqueString
in C 8, 16, 135
in Visual Basic 303

GetUserID
in Visual Basic 304

global methods 64
GlobalDataClean method 65
GlobalDataCreate method 65
GlobalDataDestroy method 65
GlobalDataRead method 65
GlobalDataSize method 65
GUIDs 66

H

handling errors
in Visual Basic 250

Heap Agent 12
hInstance parameter 13
how the system processes rules 12
HRESULT 250
HTML files

IRCUnloadPage formatting rule 15

Index

348

I

IDS Servers
storing data for multiple servers 64

INI request type 17
Init

in C 7, 11, 14, 136
in Visual Basic 305

initializing lists 12
InitInstance

in C 7, 11, 14, 137
in Visual Basic 306

InitQueue
in C 7, 138
in Visual Basic 307

InitSession
in Visual Basic 308

Instance
in Visual Basic 338

interfaces
C 79, 171
Java 76, 171
Visual Basic 61, 249

Internet Document Server
how rules are processed 13
queues 4
required queue fields 7

INTERNETSESSION variable 202
IRCInit 241
IRCPrint 242
IRCRequest 243
IRCResult 244
IRCSendVersion 245
IRCUnloadPage 15, 244, 247
IRLClearLog 191
IRLCopyAttachment 192
IRLFileFTP 195
IRLInit 194
IRLInitFTP 202
IRLLog 203
IRLPurgeCache 16, 204

IRLSearch 205
IRLSendVersion 206
IRLStatistics 208

J

Java
API classes 182
APIs 76, 171
DSI API 3
JNI 180
JVM 180
messaging library 179

JavaBean
using 172

L

LocateAttachVar
in C 15, 112, 113, 139, 140
in Visual Basic 310

LocateValue
in C 15, 141
in Visual Basic 66, 311

LocateValueObj
in Visual Basic 313

log files
clearing 17

log4j 181
loops

and Visual Basic rules 66

M

memory violations 12
messages

getting the size 129
retrieving from memory 128

349

Microsoft
Visual Basic 5 61

MQSeries
Java messaging library 179

multiple class modules 61

O

OLEVIEW program 63
OpenAttachCursor

in C 15, 142
in Visual Basic 315

Oracle WebCenter Content 228

P

ParseAttachment
in C 9, 143
in Visual Basic 316

Path option 199
global data 64

performance
and Visual Basic 66

processAttachments 228
processing rules

template 14
writing 12

ProgIDs
and Visual Basic rules 66

Project Description field 66
properties

Instance 338
Signature 339
TraceEnable 340
TracePath 341

proprietary attachment format 16
C 8

pszId parameter 8
pszParms parameter 14

public functions 64
PurgeCache 204

Q

QueryEnvOptions
in C 144

QueryValueSiz rule
in Visual Basic 317

QueryValueSize
in C 15, 145

queues
accessing using C 16
attachments 15, 238
fields 7
InitQueue 138
overview 4
processing rules 13
time spent in 240

R

RAD request type 17
registering

ActiveX DLLs 62
relay daemon 17
RemoveOnGet option 198
RemoveOnPut option 198
removing

temporary files 16
REQTYPE

DOCSERV INI file 64
request types

creating rules for reserved 16
RRS request type 17
RSS request type 17
rule wizard

example 66

Index

350

rules
checking status 17
client 229
creating 13
list 13
memory violations 12
processing 12, 183
reserved request types 16
server 184
template 14
VB processing 61
writing 12

S

samples
VB rule wizard 66
Visual Basic 68

SAR request type 17
SCS request type 17
SDK

Java APIs 171
using the Internet Document Server SDK 1

servers
log file layout 232
rules 184
statistics 208

SERVERTIMESPENT attachment variable 240
SetAttachment

in Visual Basic 318
SetPriority

in Visual Basic 320
SetQField

in C 8, 16, 155
in Visual Basic 321

SetReqType
in Visual Basic 322

SetStatus
in Visual Basic 323

SetUniqueID
in Visual Basic 324

setupPool 209
SetUserID

in Visual Basic 325
sharing violations

and Visual Basic rules 66
Signature property 339
SSS request type 17
state and Visual Basic rules 66
stem variables 15
StoreAttachment

in C 8, 156
in Visual Basic 326

Submit
in Visual Basic 327

Subs 64
switch statements 14

T

temporary files
creating 16
removing 16

Term
in C 7, 11, 157
in Visual Basic 329

TermInstance
in C 7, 11, 158
in Visual Basic 330

TermQueue
in C 159
in Visual Basic 331

TermSession
in Visual Basic 332

threads
and Visual Basic rules 66
InitInstance C function 137

TOTALTIMESPENT attachment variable 240
Trace

in Visual Basic 333

351

TraceAttach
in Visual Basic 334

TraceEnable property 340
TraceEnableRule

in Visual Basic 335
TraceList

in Visual Basic 336
TracePath property 341
TraceSnapshot

in Visual Basic 337
tracing

in Visual Basic 340
transactions

time spent in queues 240
troubleshooting

Visual Basic rules 63

U

ulMsg parameter 14
ulOptions parameter 14
unique file names, generating 16
Universal Content Management 228
UNK request type 17
using

the DSI APIs with C 7
the Internet Document Server SDK 1
Visual Basic 61
Visual Basic prototypes and examples 250

utility functions
for C 16

V

variables
attachment 15
creating, accessing, and destroying using C 15
stem 15

version information
IRCSendVersion 245
IRLSendVersion 206

Visual Basic
class files 62
handling errors 250
installing the rule wizard 62
list of API functions 252
loops 66
performance 66
projects 62
rule wizard 61, 66
samples 68
sharing violations 66
states 66
test bed sample 68
testing 65
threads 66
troubleshooting 63
using prototypes and examples 250
workgroups 62
writing processing rules 61

Visual C++ 5.0 debugger 65

W

web applications
firewalls 199

writing
processing rules 12
Visual Basic rules 61

Index

352

	Start
	Notice
	Contents
	Using the Internet Document Server SDK
	Queues
	Finding the Information You Need
	Using the DSI APIs with C
	Using Unicode in Attachment Variables
	Sample Program-DSIEX

	Writing Processing Rules in C
	How the System Processes Rules
	Creating Rules
	Creating, Accessing, and Destroying Variables
	Accessing the Attachment

	Accessing the Queue
	Using Utility Functions
	Creating Rules for Reserved Request Types

	Using the Java Libraries
	Using the MsgClient Sample Program

	Writing Processing Rules in Java
	How the System Processes Rules
	Developing and Deploying Java Rules
	Java Rules vs. C Rules
	Function Signature for Java Rules

	Using the IDSWebdav Servlet Client APIs and DPRLIB Rules
	DPRLbyPropFind
	DPRLbyGet
	DPRLbyPut
	DPRLbyLock
	DPRLbyUnlock
	DPRLbyDelete
	DPRLbyOptions
	DPRLbyCopy
	DPRLbyPropPatch
	DPRLbyMKCol
	WebDav Request Types for Library Manager
	Using File System Rules
	propFind
	get
	put
	lock
	unlock
	delete
	options
	copy
	move
	propPatch
	mkCol
	Using the IDSWebdavServlet

	Writing Processing Rules in Visual Basic
	Miscellaneous Notes
	Samples
	DSICoTB
	DSITest
	DSIDiag
	DSIDiag.exe
	Debug.ASP
	DSICoSAM
	DSICoExV
	DSICoEx.cpp
	DSICoAdm and ADMAsp
	DSI COM Objects under ASP

	Referencing Attachment Variables

	DSI C APIs
	C API Functions
	DSIAddAttachRec
	DSIAddAttachVar
	DSIAddAttachVarEx
	DSIAddToAttachRec
	DSIAddToAttachRecEx
	DSIAddToQueue
	DSIAttachCursorFirst
	DSIAttachCursorFirstEx
	DSIAttachCursorLast
	DSIAttachCursorLastEx
	DSIAttachCursorName
	DSIAttachCursorNext
	DSIAttachCursorNextEx
	DSIAttachCursorPrev
	DSIAttachCursorPrevEx
	DSIAttachCursorValue
	DSIAttachCursorValueEx
	DSIAttachVarLength
	DSIAttachVarLengthEx
	DSICacheFile
	DSICloseAttachCursor
	DSICopyAttachVars
	DSICopyQRecord
	DSICreateValue
	DSIDeleteAttachVar
	DSIDestroyValue
	DSIEncryptValue
	DSIEncryptValueEx
	DSIErrorMessage
	DSIErrorMsg
	DSIFindInQueue
	DSIGetFirstFromQueue
	DSIGetSOAPMessage
	DSIGetSOAPMessageSize
	DSIGetQError
	DSIGetQField
	DSIGetQFieldLength
	DSIGetQueueRec
	DSIGetUniqueString
	DSIInit
	DSIInitInstance
	DSIInitQueue
	DSILocateAttachVar
	DSILocateAttachVarEx
	DSILocateValue
	DSIOpenAttachCursor
	DSIParseAttachment
	DSIQueryEnvOptions
	DSIQueryValueSize
	DSIReceiveFile
	DSIReceiveFileAsBuffer
	DSIReceiveFileAsBufferSize
	DSIRowset2XML
	DSIRowset2XMLSize
	DSISendBuffer
	DSISendFile
	DSISetQField
	DSIStoreAttachment
	DSITerm
	DSITermInstance
	DSITermQueue
	LDAPGetErrorCode
	LDAPGetErrorMessage
	LDAPInit
	LDAPSearchDirectory
	LDAPTerm

	DSI Java APIs
	Using JavaBean Components
	Returning a RecordSet Object
	Using IDSJSP in a JSP Container
	DSI Bean APIs

	Using the DSI Java Messaging Library for Client Applications
	Passing JVM Options to DSILIB
	Generating Debug Output for Client Requests
	Java API Classes

	DSI Processing Rules
	Server Rules
	FTPRule
	Putting and Getting Multiple Files
	IRLCleanDirectory
	IRLClearLog
	IRLCopyAttachment
	IRLDecryptValue
	IRLInit
	IRLFileFTP
	IRLInitFTP
	IRLLog
	IRLPurgeCache
	IRLSearch
	IRLSendVersion
	IRLStatistics
	AddJobRule
	setupPool
	addJob

	AttachmentFilterRule
	sendFile
	receiveFile

	BLPPurgeRule
	BLPStatisticsRule
	CopyDataRule
	copyData
	copyMessageVariables

	FTPRule
	transferFiles

	IDSEncryptionRule
	IDSInitRule
	IDSTransactionRule
	LogTransactionRule
	logTransaction
	purgeOldTransactionTables

	processAttachments

	Client Rules
	ATCAppend2Attachment
	ATCLoadAttachment
	ATCLogTransaction
	ATCReceiveFile
	ATCSendFile
	ATCSendMultipleFiles
	ATCUnloadAttachment
	IRCInit
	IRCPrint
	IRCRequest
	IRCResult
	IRCSendVersion
	IRCUnloadPage

	DSI Visual Basic APIs
	Using the Prototypes and Examples
	Handling Errors
	Using the Web Services Example

	Visual Basic Methods
	AddAttachRec
	AddAttachVar
	AddToAttachRec
	AddToQueue
	AttachCursorFirst
	AttachCursorLast
	AttachCursorName
	AttachCursorNext
	AttachCursorPrev
	AttachCursorValue
	AttachList
	CacheFile
	CloseAttachCursor
	CopyAttachVars
	CopyQRecord
	CreateValue
	CreateValueObj
	DeleteAttachVar
	DestroyValue
	DestroyValueObj
	DumpDebugInfo
	ErrorMessage
	FindInQueue
	GetAttachment
	GetAttachmentAll
	GetAttachRecSet
	GetAttachVarSet
	GetPriority
	GetQField
	GetQFieldLength
	GetQueueRec
	GetReqType
	GetStatus
	GetUniqueID
	GetUniqueIDLength
	GetUniqueString
	GetUserID
	Init
	InitInstance
	InitQueue
	InitSession
	LocateAttachVar
	LocateValue
	LocateValueObj
	OpenAttachCursor
	ParseAttachment
	QueryValueSize
	SetAttachment
	SetPriority
	SetQField
	SetReqType
	SetStatus
	SetUniqueID
	SetUserID
	StoreAttachment
	Submit
	Term
	TermInstance
	TermQueue
	TermSession
	Trace
	TraceAttach
	TraceEnableRule
	TraceList
	TraceSnapshot
	Property Instance
	Property Signature
	Property TraceEnable
	Property TracePath

	Index
	A
	accessing variables 15
	Active Server Page
	ActiveX
	AddAllRequest
	AddAttachRec
	AddAttachVar
	ADDINST program 62
	addJob 209
	AddJobRule 209
	AddRequest
	AddToAttachRec
	AddToQueue
	ADMAsp
	ADMIN.ASP
	APIs
	ATCAppend2Attachment 230
	ATCLoadAttachment 13, 231
	ATCLogTransaction 232
	ATCReceiveFile 233
	ATCSendFile 236
	ATCSendMultipleFiles rule 238
	ATCUnloadAttachment 13, 239
	AttachCursorFirst
	AttachCursorLast
	AttachCursorName
	AttachCursorNext
	AttachCursorPrev
	AttachCursorValue
	AttachList
	Attachment control group 199
	attachment variables
	AttachmentPath option 231, 239
	attachments
	Attachments option 234, 236
	autorun rules
	avoiding file naming conflicts 16

	B
	Bounds Checker 12
	buffer 8

	C
	C
	cache
	CacheFile
	CacheGetFile option 198
	CAD request type 16
	case statements
	CGI client
	class modules 61
	classes
	CLF request type 17
	client rules
	CloseAttachCursor
	CoClasses folder 63
	COM
	CONFIG.INI file
	CopyAttachVars
	copyData 215
	copyMessageVariables 215
	CopyQRecord
	CreateValue
	CreateValueObj
	creating

	D
	daemon 17
	DAP.INI file
	Debug control group 234, 236
	debug log file 200
	Debug option 198, 200
	Debug.ASP 72
	DEFAULT request type 17
	DeleteAttachVar
	destroying variables
	DestroyValue
	DestroyValueObj
	diagnostics
	DOCC.BMP sample file 76
	DOCSERV.INI file
	Document Server Interface (DSI) 171
	DSI
	DSI Java APIs 76
	DSI Visual Basic APIs 249
	DSI_MSGINIT message 12
	DSI_MSGRUNF message 12
	DSI_MSGRUNR message 12, 13
	DSI_MSGTERM message 12
	DSIAddAttachVar
	DSIAddAttachVarEx 85
	DSICO.TRC 340
	DSICoADM
	DSICoAPI 65
	DSICoEx
	DSICoExV
	DSICoRul
	DSICoSAM
	DSICoTB
	DSIDiag
	DSIENV_* flags 144
	DSIEX.C 3, 11
	DSIEXW32 program 10
	DSIGetSOAPMessage 128
	DSIGetSOAPMessageSize 129
	DSIGetUniqueString
	DSIInit 136
	DSIInitInstance 137
	DSIInitQueue 138
	DSILIB
	DSILIB.H 7
	DSILocateAttachVar 112, 113, 139, 140
	DSILocateValue 141
	DSIOpenAttachCursor 142
	DSIParseAttachment 143
	DSIQSET_ATTACHMENT
	DSIQSET_REQTYPE
	DSIQSET_UNIQUE_ID
	DSIQSET_USERID
	DSIQueryEnvOptions 144
	DSIQueryValueSize 145
	DSIReceiveFile 146, 153
	DSIReceiveFileAsBuffer 147
	DSIReceiveFileAsBufferSize 149
	DSIRowset2XML 151
	DSIRowset2XMLSize 152
	DSISendFile 154
	DSIStoreAttachment
	DSIW32.DLL 7
	DSIW32.LIB 7
	DSRVW32 program 66
	DumpDebugInfo
	DUTTRACE.LOG 66

	E
	ERR request type 17
	error handling
	error log
	error messages
	ErrorMessage
	ErrorMsg
	ERS request type 17
	ESS request type 17

	F
	fat clients
	files
	FindInQueue
	firewalls
	flags
	FTP control group 200
	FTP servers
	FTPCONNECTIONS variable 202
	FTPRule
	functions

	G
	generating unique file names 16
	GetAttach 78
	GetAttachment
	GetAttachmentAll
	GetAttachRecSet
	GetAttachVarSet
	GetFirstFromQueue
	GetPriority
	GetQError
	GetQField
	GetQFieldLength
	GetQueueRec
	GetReqType
	GetStatus
	GetUniqueID
	GetUniqueIDLength
	GetUniqueString
	GetUserID
	global methods 64
	GlobalDataClean method 65
	GlobalDataCreate method 65
	GlobalDataDestroy method 65
	GlobalDataRead method 65
	GlobalDataSize method 65
	GUIDs 66

	H
	handling errors
	Heap Agent 12
	hInstance parameter 13
	how the system processes rules 12
	HRESULT 250
	HTML files

	I
	IDS Servers
	INI request type 17
	Init
	initializing lists 12
	InitInstance
	InitQueue
	InitSession
	Instance
	interfaces
	Internet Document Server
	INTERNETSESSION variable 202
	IRCInit 241
	IRCPrint 242
	IRCRequest 243
	IRCResult 244
	IRCSendVersion 245
	IRCUnloadPage 15, 244, 247
	IRLClearLog 191
	IRLCopyAttachment 192
	IRLFileFTP 195
	IRLInit 194
	IRLInitFTP 202
	IRLLog 203
	IRLPurgeCache 16, 204
	IRLSearch 205
	IRLSendVersion 206
	IRLStatistics 208

	J
	Java
	JavaBean

	L
	LocateAttachVar
	LocateValue
	LocateValueObj
	log files
	log4j 181
	loops

	M
	memory violations 12
	messages
	Microsoft
	MQSeries
	multiple class modules 61

	O
	OLEVIEW program 63
	OpenAttachCursor
	Oracle WebCenter Content 228

	P
	ParseAttachment
	Path option 199
	performance
	processAttachments 228
	processing rules
	ProgIDs
	Project Description field 66
	properties
	proprietary attachment format 16
	pszId parameter 8
	pszParms parameter 14
	public functions 64
	PurgeCache 204

	Q
	QueryEnvOptions
	QueryValueSiz rule
	QueryValueSize
	queues

	R
	RAD request type 17
	registering
	relay daemon 17
	RemoveOnGet option 198
	RemoveOnPut option 198
	removing
	REQTYPE
	request types
	RRS request type 17
	RSS request type 17
	rule wizard
	rules

	S
	samples
	SAR request type 17
	SCS request type 17
	SDK
	servers
	SERVERTIMESPENT attachment variable 240
	SetAttachment
	SetPriority
	SetQField
	SetReqType
	SetStatus
	SetUniqueID
	setupPool 209
	SetUserID
	sharing violations
	Signature property 339
	SSS request type 17
	state and Visual Basic rules 66
	stem variables 15
	StoreAttachment
	Submit
	Subs 64
	switch statements 14

	T
	temporary files
	Term
	TermInstance
	TermQueue
	TermSession
	threads
	TOTALTIMESPENT attachment variable 240
	Trace
	TraceAttach
	TraceEnable property 340
	TraceEnableRule
	TraceList
	TracePath property 341
	TraceSnapshot
	tracing
	transactions
	troubleshooting

	U
	ulMsg parameter 14
	ulOptions parameter 14
	unique file names, generating 16
	Universal Content Management 228
	UNK request type 17
	using
	utility functions

	V
	variables
	version information
	Visual Basic
	Visual C++ 5.0 debugger 65

	W
	web applications
	writing

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

