
Start

Oracle Health Insurance Back
Office

Modification Logging within

Oracle Health Insurance Back Office

version 1.4

Part number: E51467_01

December 2013

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

This software and documentation may provide access to or information on content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related
notices. For information on third party notices and the software and related documentation in connection with
which they need to be included, please contact the attorney from the Development and Strategic Initiatives
Legal Group that supports the development team for the Oracle offering. Contact information can be found on
the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality described
in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions
of your Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

CHANGE HISTORY

Release Version Changes

10.12.2.0.0.0 1.3 Added more details regarding how modification logging works, because of
received questions, and included list of ALG_LOGGING_PCK predefined
configuration procedures.

10.13.3.0.0 1.4 Added paragraph about cached settings.

 Introduction

This document describes the operation of the modification logging functionality
(logging of changes in data) that is available within the OHI BO application.
First of all, an outline is provided of the reasons for modification logging.

This is followed by a summary of modification logging within OHI BO.

Finally, a more detailed description of modification logging is provided.

Why modification logging?

There are various reasons and requirements for equipping an application with
modification logging. These can be summarized as follows:

1. Traceability
Providing a means to trace who performed a specific modification and when.

2. Modification reports
Providing means to enable provision of simple overviews of the data
modified within a specific period. This can serve a number of purposes.

3. Interface support
Retaining modifications in order to pass them on to other applications in the
correct sequence and manner.

Because the application is used by different organizations with varying requirements,
modification logging within OHI BO is flexible, enabling fulfillment of the various
requirements by means of configuration.

Modification logging operation summary

A generic type of modification logging activation has been implemented in the OHI
BO application, which enables management of each individual table. Consequently,
each OHI BO table has a ‘shadow’ log table. Furthermore, there is a central log table
in which modifications to specific tables can be logged.

Specific modification logging levels can be activated by means of specific indicators
that can be configured per table in the ALG_TABELLEN table.

Modification logging is not activated by default. There is no screen for this activation.
Consequently, the relevant columns will have to be updated using (PL/)SQL (with
the aid of the ALG_LOGGING_PCK) if required.

There are three types of configuration settings:

1. SOORT_LOGGING
If modification logging (insert, update and delete operations) must be
performed in the shadow table for the table:
N(ot), B(asic), enabling retrieval of all modifications with the minimum of
additional data storage, or U (for Extensive), such that complete records (both
new and old values in the event of updates) are placed in the shadow table.

The latter is used to facilitate easier tracing of who performed which
transactions. It is very useful and faster/easier to retrieve what kind of
change has been executed but requires more storage space.

2. NIVEAU_LOGGING
If modifications must be logged in the central log table

ALG_MUTATIE_LOG:
N(ot), S(tatement) or for every R(ecord).

As a result, the central table can be used to immediately establish the
modification types performed, as well as the sequence, and which table(s),
without all of the tables having to be examined separately.

3. NUMMERING_LOGGING
If sequence numbers must be distributed:
N(ot), database T(ransaction) number per set of changes which are contained
in one transaction, with a sequence number within transaction per record
which is changed, or G(lobal). Global means that an overall modification ID is
distributed per statement (insert, update or delete) in addition to the
transaction ID and sequence numbers.

A transaction number is used to track a single Oracle transaction (commit) in
detail, while the global (statement) numbers are used to determine the overall
sequence of statements executed in different transactions.

Detailed technical modification logging design

Modification logging is designed in such a manner that an organization need not
necessarily use it.

Furthermore, if modification logging is required, the different configuration options
can be used to fulfill the various requirements.

Default auditing columns in regular tables

The ‘standard’ tables contain seven default columns that are also important for the
modification logging.

Every ‘regular functional’ table will be allocated a system-generated sequence
number generator that serves as a unique ID generator for each record in the table.
This enables standardized identification of records in every table by means of a
reference to the table and the record number (so each table has default an ID column).
This is useful for modification logging, but also offers advantages such as later
generic functionality implementations, or for the implementation of interfaces, for
example.

The other six default columns are for auditing. They are used to record creation and
last modification data.

Three column types are distinguished for creation and last modification logging:

1. An ID for the user who performed the modification (a numerical reference to
the ALG_FUNCTIONARISSEN table in order to save space).

2. The time at which the modification was performed (up to the second).

3. A source acknowledgement (e.g. the ID of another system or interface in the
event that that system or interface submits a notification regarding being the
source of the modification).
The latter is optional and is only registered in the event that the invoking
system or code activates/specifies this.

An example of a table (ALG_BRONNEN, see later) is displayed below (the first
column and final six columns are the above-mentioned seven columns):

ID NOT NULL NUMBER(14)
CODE NOT NULL VARCHAR2(10)
OMS NOT NULL VARCHAR2(200)
CREATIE_BRON_ID NUMBER(14)

CREATIE_MOMENT DATE
CREATIE_DOOR NUMBER(14)
LAATSTE_MUTATIE_BRON_ID NUMBER(14)
LAATSTE_MUTATIE_MOMENT DATE
LAATSTE_MUTATIE_DOOR NUMBER(14)

In the event of initial data entry, the ‘last modification’ columns are filled with the
same data as the ‘creation’ columns.

The sources and user ‘descriptions’ are maintained in separate tables (in
ALG_BRONNEN and ALG_FUNCTIONARISSEN respectively; ALG_BRONNEN is
the table that contains source identifiers used to describe the ID as stored in the
‘source columns’, CREATIE_BRON_ID and LAATSTE_MUTATIE_BRON_ID, that
are also present in this table). The auditing columns contain a reference in order to
minimize the storage space used: columns %BRON_ID reference a record in
ALG_BRONNEN and columns %DOOR reference a record in
ALG_FUNCTIONARISSEN.
A source or user ‘definition’ can be deleted from the specification tables even if there
are still records that refer to them. This is the responsibility of the organization using
the tables. The implementation of a check, by means of a foreign key for example, for
this purpose would be much too ‘costly’ from a performance point of view.

Configurable modification logging

Because of the various configuration possibilities, the data model features an entity
that contains the tables comprising the application. This entity also enables entry of
various settings per table. Consequently, modification logging can be configured for
each individual table.

However, this only applies to the regular ‘functional’ data tables (please see the
paragraph about availability of modification logging later on). There are no
modification logging possibilities for technical tables containing system maintained or
temporary data, etc.

In general, it can be assumed that the greater the accessibility of the logging data, the
higher the required overhead and the greater the storage space required. Logging
must also enable relatively rapid retrieval of specific modifications for disclosure to
other parties, for example.

In the light of the above, an implementation method has been chosen that can meet
the following configuration requirements ̶ which have served as base requirements
̶ by means of three settings:

1. Logging?
Is it necessary to log modifications?

2. Log including complete record with new(est)values?
In the event of logging, is it necessary to log only old and modifiable values
during an update (after all, the current table contains the new values and
fixed values), or is it necessary to log all of the new values in addition to the
old values for the purpose of simplicity?

In such cases the records are immediately saved in the logging table with all
of the new values in the event of additions/inserts. Furthermore, in the event
of modifications/updates, all new values are saved in the same record with
the modifiable old values.

In the event of modifications/updates and removals/deletions, the auditing
values from the last update or deletion are placed in the modification record,
in addition to the time stamp of the previous modification, regardless of the
setting for logging new values.

This can be used to immediately determine the validity of the data (old
modification moment up to and including the new modification moment).

In the event of deletions the record is always saved in its entirety if logging is
activated to avoid the values being lost.

The unique record ID is always recorded for every logging activity,
regardless of the type of modification (insert/update/delete).

This approach enables recording of logging information with minimum
overhead if required. This only applies to the previously modifiable values in
old columns for which all modifications are traceable.

3. Log unique sequential modification ID in log record?
Is it necessary to record a detailed modification ID in the log record that
determines a unique sequence number for all modifications in the
application? This number is required additional to a timestamp, as a large
number of modifications can be performed within the same second.
Consequently, an ID of this type is necessary to determine the sequence of
modifications over various records and/or tables.

Because this number must be generated for each SQL statement (DML) and
each record across all tables, the ID generator is a potential 'hot spot'
(although is optimized and extremely fast), which means it should be
employed only when really required.

4. Log statement ID in central overall modification table?
Because the modifications performed within a specific period should easily
be retrieved without the need to scan a lot or all of the tables, it is possible to
indicate that DML statements that have actually resulted in a modification
must be recorded in a central transaction log table (in which an entry is made
stating that a record has been inserted in a specific table, for example).

The type of statement (insert, update, delete), executing user account and
(optional, see next bullet) involved record are then recorded for the table
concerned.

5. Should the modification ID also be logged centrally for all records?
If the modification flow must be produced in greater detail for passing on
modifications to another system in exactly the correct sequence, it is possible
to indicate that the detailed modification ID must also be recorded centrally
for each record, i.e. in the central table. This may result in a greater number of
entries in the central table including a record ID.

Consequently, at this stage only the central table can be used to determine
what record types are required from the modification tables in order to
reconstruct an outgoing transaction without the various separate log tables
having to be scanned (that would be very inefficient to reproduce
transactions that span a set of unknown tables; all log tables would need to be
scanned for each transaction).

6. Log commit ID in log table?
For certain traceability activities (as well as software problems, for example)
it can be desirable to establish which modifications were performed within a
specific database transaction and in what sequence.

This can also be desirable in order to make it relatively easy to see by means
of which transactions a user produced a specific modification.
This functionality can be activated by means of the generation of a commit ID
(an ID for each transaction being committed) in the log table with a sequence
number within the commit ID for each modified record (across the various
tables).

Please note that commit IDs do not indicate a mutual sequence of execution
(10 short transactions can take place within the duration of a single, long
transaction, and be completed before the long transaction).

7. Should the commit ID also be logged centrally for all records?
The commit ID (commit ID + sequence number per record) can also be
included in the central table to facilitate easy establishment of the total
composition of a logical transaction.

As you may already have concluded from the above, modification logging by table is
provided at record level, and not at column level. Past experience has shown that
modification logging at column level has almost no added value, while it does
demand considerable additional work in terms of configurability and use of the
logged data, but also in terms of logging implementation.

Configurability at column level is more complex, more expensive in terms of
realization, and will often be configured as logging at record level because the exact
data required cannot be established. Moreover, modification logging at record level
can indeed be used to retrieve every modification performed at column level.

For the purpose of simplicity, the above-mentioned settings have been combined into
three settings, each with three possible values (explained earlier, see above).

A specific OHI BO log table (for example ALG$BRONNEN, for regular table
ALG_BRONNEN) is as follows:

MUTATIE_OPERATIE NOT NULL VARCHAR2(1)
MUTATIE_ID NUMBER(14)|
COMMIT_ID NUMBER(14)
SEQ_IN_COMMIT NUMBER(10)
O$OMS VARCHAR2(200)
O$LAATSTE_MUTATIE_BRON_ID NUMBER(14)
O$LAATSTE_MUTATIE_MOMENT DATE
O$LAATSTE_MUTATIE_DOOR NUMBER(14)
ID NUMBER(14)
CODE VARCHAR2(10)
OMS VARCHAR2(200)
CREATIE_BRON_ID NUMBER(14)
CREATIE_MOMENT DATE
CREATIE_DOOR NUMBER(14)
LAATSTE_MUTATIE_BRON_ID NUMBER(14)
LAATSTE_MUTATIE_MOMENT DATE
LAATSTE_MUTATIE_DOOR NUMBER(14)

The modification type (Insert, Update or Delete) that resulted in the log record is
initially recorded in the first column. The other three columns are used to record the
modification ID and the commit ID if applicable, provided configurations have been
made for this purpose.

The columns in the table that can be modified by the user or by means of the code are
included twice: once as old columns (the name is identical to the column name in the
default table, with the exception of the first two characters, an O followed by a dollar
sign, $) and again as ‘new’ columns (the column names are identical to those in the
default table).

Columns that cannot be modified are only included as ‘new’ columns.

When ‘minimal’ logging is activated for the sole reason of traceability, a record
containing all modifiable columns with the values prior to the record modification
(regardless of whether the modifiable column concerned has also been modified) is
saved in the event of a modification to a modifiable column.

This makes it possible to reconstruct any past situation in combination with the
current record (uniquely identified by means of its ID).

The name of a shadow log table is identical to that of the original table. However, the
underscore (_) in position 4 is replaced by a dollar sign ($), for example
ALG$BRONNEN as opposed to ALG_BRONNEN.

When the composition of a transaction, and the sequence in which modifications are
performed across the various tables, needs to be established without large numbers of
scans of all log tables, it is possible to use additional logging of references to the log
tables in the central overall log table.

The central OHI BO log table ALG_MUTATIE_LOG is structured as follows:

MUTATIE_OPERATIE NOT NULL VARCHAR2(1)
TAB_ID NOT NULL NUMBER(14)
RECORD_ID NUMBER(14)
COMMIT_ID NUMBER(14)
SEQ_IN_COMMIT NUMBER(14)
MUTATIE_ID NUMBER(14)
MUTATIE_DOOR NUMBER(14)
MUTATIE_MOMENT DATE

This table contains a reference to the table containing the table names, which
facilitates easy tracing of the table in which the centrally logged modification was
performed. The column containing the Record ID refers to the unique number per
table issued to each record.

Activation of modification logging

The ALG_LOGGING_PCK package contains a number of public procedures that
enable the activation and deactivation of logging/journaling at various levels.
Naturally, modification logging can also be activated manually by means of SQL
statements in the ALG_TABELLEN table for tables for which it is already supported
(i.e. the tables for which there is a shadow table).

The ALG_LOGGING_PCK offers the following routines that require a table name as
parameter value to implement the functionality:

• DISABLE_LOGGING – disables logging to the central table but leaves
logging/journaling records to the shadow table as specified earlier

• DISABLE_JOURNALLING – completely disables any kind of logging for the
table, whether it is the central table or the table specific shadow table

• ENABLE_JOURNALLING_BASIC – enable logging to the shadow table in
the ‘cheapest’ (least space requiring) mode

• ENABLE_JOURNALLING_FULL – enable logging to the shadow table while
storing the complete record and old and new values

• ENABLE_LOGGING_STMT – enables logging of statement executions on a
table to the central log table with transaction id and modification id sequence
numbers being assigned

• ENABLE_LOGGING_ROW – enable logging of each involved row that is
changed by statement execution to the central log table with transaction id
and modification id sequence numbers being assigned

If you like to have a taste of logging ‘in between’ what is offered above (for example
logging of statements to the central log table but without a global modification id
being assigned) you should update table ALG_TABELLEN directly.

The best way to determine what is most suited for you is to just start with enabling
logging on some tables, enforce some statements that fire and looking at the results in
the shadow tables and central log table.

Cached modification logging settings

Beware, when you change settings for the modification logging they are not
immediately active:

• Of course you need to commit your changes in order to make them visible for
other sessions.

• For performance improvement sessions cache the settings for modification
logging. When code associated with a table is initialized the first time
immediately the modification logging settings are cached. This may also be a
result of a business rule firing for a completely different table that uses a
helper function from a related table. In that case the settings for that related
table are also initialized. So the only way to be sure the new settings are used
is to restart all present sessions. Only when a session reconnects the settings
will be read again during code ‘warming up’ in that session.

Performance and storage space implications

As you may already have concluded, modification logging takes into account the
resulting additional load on the system and the extra storage space required as much
as possible.

The various settings enable the organization using the system to reasonably weigh the
overheads required to record the logging and the effort required for its use. In this
respect, easier-to-use modification logging means that it’s recording requires
additional resources.

It is difficult to provide exact figures regarding the overall impact on the performance
of the application, the main reason being that detailed insight is required into the
current composition of the system load (load percentage caused by modifications
versus other use, modification types, quantities per table, etc.), as well as insight into
future logging settings. In reality, actual experience can only be gained in practice.

However, a general comment can be made regarding additional overhead during the
recording of a modification. Because a variety of checks are already performed during
the recording of the regular modification, and various indexes can be updated, the
overhead for the recording of an additional log record will be relatively limited.
Depending on the data that is to be logged (and therefore configurable) and the size
of the regular modification, the additional load is expected to be between a few
percent and a few tens of percents.

As regards the additional storage space, little can be said in advance. To a large extent
this depends on the frequency and nature of the modifications and the logging
settings, as well the length of time for which the logged data is stored.

There are no default cleaning procedures for this purpose. If required, requests can be
submitted for the implementation of default cleaning functionality in a reference
release.

Availability of modification logging

The above-mentioned configuration options per table are available for all regular
functional tables that are directly available for executing inserts, update or deletes.
These tables implement business rule validation through a series of triggers and
constraint definitions. The business rule validation mechanism implements also this
modification logging functionality.

This means that other tables, which cannot directly be modified, do not offer this
functionality. Such tables are typically maintained by the application. These
application maintained (or code maintained) tables are often referred as ‘technical’

tables in comparison with the user maintainable tables as ‘functional’ tables. The
technical tables can be recognized as having a ‘#’ sign on the fourth position of their
name.

The standardized way of granting insert, update, delete and select privileges makes
sure only the regular ‘functional’ tables can be changed.

Impact of release upgrades

When a new OHI release is installed an important requirement is to minimalize the
required installation time in order to have a minimal downtime of the application.

For that reason changes in the data structure or in the data as result of an OHI release
installation (a single patch, a patch set or a major release) are often optimized. These
optimizations may result in the following consequences for the logging data
(although they often do not apply):

 Changes due to a scripted update are not logged

 The table structure is changed and the current contents is converted in the
table (by adding for example a default value for a new column) while the
logging table is not updated

 A table may be newly (re)created where the existing data is converted to the
new structure; these changes will not be reflected in the logging table

 The log table might need to be recreated or dropped; in which situation the
old contents are dropped

These consequences do not apply to the central logging table.

Although these consequences might look severe, the heavier the consequence the less
often it occurs. And it must be considered that these are completely scripted
repeatable operations. For a potential impact of these type of unlogged changes we
advise to determine the ‘delta’ between the situation before and after a release
installation to judge whether such modifications are relevant for the derived
functionality. Only when there are consequences these must be implemented on the
derived environment.

In situations where traceability is key and the rare situation that a log table is cleared
we advise to export the table contents before implementing the release installation on
the production environment. The saved contents can be used for a custom conversion
or later retrieval when necessary.

	Introduction
	Why modification logging?
	Modification logging operation summary
	Detailed technical modification logging design
	Default auditing columns in regular tables
	Configurable modification logging
	Activation of modification logging
	Cached modification logging settings
	Performance and storage space implications
	Availability of modification logging

	Impact of release upgrades

