
Start

Oracle Health Insurance Back
Office

Back Office Service Layer

User Manual

version 1.3

Part number: E51467_01

December 2013

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are “commercial computer software” or “commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including
applications which may create a risk of personal injury. If you use this software in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include
related notices. For information on third party notices and the software and related documentation
in connection with which they need to be included, please contact the attorney from the
Development and Strategic Initiatives Legal Group that supports the development team for the
Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should
be considered in your capacity as a customer advisory board member or pursuant to your beta trial
agreement only. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the
terms and conditions of your Oracle Software License and Service Agreement, which has been
executed and with which you agree to comply. This document and information contained herein
may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

CHANGE HISTORY

Release Version Changes

10.12.2.0.0.0 1.3 • Added technical principles at the consumer webservices

RELATED DOCUMENTS
A reference in the text (doc[x]) is a reference to another document about a subject that is related to this document.
Below is a list of related documents:

• Doc[1]: OHI Back Office Service Layer Installation & Configuration manual (CTA 13651)

Contents

1 Introduction ...2

2 Generic principles provider services ..3

2.1 Design principles ..3
2.2 Technical principles ..4

3 Generic usage aspects provider services ...6

3.1 Common usage behaviour ..6
3.2 Call standards ...6

3.2.1 Call Context ... 6
3.2.1.1 User_context ... 7
3.2.1.2 Enforce_consistent_read ... 7
3.2.1.3 Enforce_unchanged_since_scn ... 7
3.2.1.4 Combining these settings .. 8

3.2.2 Return Context .. 8
3.2.2.1 Message info ... 8

3.3 Error and exception handling ...9
3.4 Transaction handling ...10
3.5 Differences between provider plsql and web service ‘service layer
implementation’ ..10
3.6 Example plsql usage scenario ...11
3.7 Example provider web service usage scenario ...11

4 Consumer web services ..13

4.1 Technical principles ..13
4.2 Gateway setup ..13
4.3 Configuration ..13
4.4 Error and exception handling ...14

5 Appendix A – Provider web services documentation per service 16

 Introduction 2

1 Introduction

With release 2011.02 of the OHI Back Office application a first version of the ‘Service
Layer’ has been released.

The Service Layer is an optional component that in the long term should offer all
mainstream services to retrieve and manipulate the core OHI Back Office ‘fact’ data
(so the mass data which is somehow member related; typically this is the data that
does not fall in the category of configuration or ‘setup’ data). The Service Layer in this
meaning ‘provides’ a set of ‘provider services’, services that can be ‘consumed’ by
other applications.

But in a later release also a set of calling out web services, consumer web services, has
been rebuilt. These web services are also part of the Service Layer, although they are
less directly used, more indirectly in application functionality.

The rest of this document focuses on these provider and consumer services.

The Service Layer is targeted to ease integration in a Service Oriented environment.
However, in order to leverage investments, knowledge and experience and to benefit
throughput, the provider services are also offered as plsql services in the database.

This document describes the generic technical details regarding the service layer, how
to use it and what it is intended for.

Because the provider services are offered both as SOAP and as PL/SQL
implementation this documentation normally does not distinguish between both
implementations. This is because the SOAP implementation is built on top of the
PL/SQL implementation.

The functional details per provider web service are described in this document in an
appendix per web service. The consumer services are more used as integral part of
application functionality and are currently not separately documented. They are
currently implementations that implement (part of) the functionality as offered by
provider web services from external parties.

Most of the chapters in this document focus on the provider web service
functionality.

For information regarding installation and configuration of the OHI Back Office
service layer components please use Doc[1]. That document also contains a brief
description of the architectural setup of the service layer.

 Generic principles provider services 3

2 Generic principles provider services

This paragraph describes a number of generic principles that apply to a subset or all
Service Layer provider services and which are good for understanding best how the
services have been developed. Goal is to provide information on how to use these
services best.

2.1 Design principles

A number of design principles are being used in the setup of the provider services
part of the Service Layer. They are listed below and may be of influence for how to
use the Service Layer provider services.

For the OHI Back Office Service Layer provider web services the following principles
are used (during the initial transition period where new and previous services exist
next to each other there may be temporary exceptions):

1. Terminology, terms and documentation will be in the English language.

Rationale: the service layer is typically used by developers which are
required to know English because most tooling documentation is also only
available in English.

2. Terminology, terms, structure and contents of the service definitions will be
aligned as much as possible over the different Oracle Health Insurance
product lines.

Rationale: to ease implementing functionality which crosses boundaries of
different product lines it helps when the same terms, etc. are used. However,
strict (technical) dependencies are prohibited to prevent complicating
maintenance dependencies, so differences can occur.

3. A provider web service layer as well as a similar plsql service layer will be
offered.

Rationale: the first layer is offered to access the application from other
heterogeneous applications, the second layer for accessing the OHI Back
Office application from custom code within the same database (in such
situation it would be a complete overkill to use a web service interaction
although it can offer a more loosely coupled application architecture).

4. Existing OHI Back Office web services based on older technologies, and
developed for other reasons, will be replaced in the coming years with at
least similar but usually more extensive and generic services functionality in
the new services layer.

Rationale: this will help in offering a uniform and consistent way of
implementing services; it will ease management and reduce maintenance
efforts that finally will benefit customer investments.

5. The service layer will focus on offering quite generic usable services instead
of offering a very application (or localization) specific limited service.

Rationale: by offering more generic services these can be used for all kind of
different integration purposes instead of only for a very application specific
interface.

 Generic principles provider services 4

2.2 Technical principles

The following technical principles are followed and may be of influence for how you
realise your code to access the Service Layer provider web services.

1. SOAP 1.1 is used.

Rationale: this is by far still the most widely used common standard and
supported by almost all web service toolkit implementations.

2. Document style web services are used.

Rationale: this makes the services widely usable because they are
implementation and platform independent.

3. WebLogic Server will be used as the standard application server deployment
platform.

Rationale: this is a highly scalable, reliable and robust application server for
deploying Java applications that offers a lot of out of the box functionality.

4. Security functionality will be externalized from the web service
implementation unless Oracle standards require differently.

Rationale: by externalizing authorization, authentication and encryption from
the service implementation it is prevented that existing customer
functionality conflicts with chosen implementation solutions. This means that
customers can leverage their investments for as far as these can interact with
a Java based WebLogic deployed application. Normally applying open
standards Middleware to support these functionalities will be the way to go.

5. The service calls will be stateless.

Rationale: to serve easy integration each call is stateless; there is no state to be
remembered over more than one service call.

6. A single change call will contain one or more atomic transactions.

Rationale: service calls that change data do this in one or more atomic
transactions, which completely fail or succeed, to prevent inconsistent
situations can arise.

7. Optionally a form of optimistic locking can be activated. Default no locking
will occur.

Rationale: because services are stateless and to prevent long outstanding
locks blocking other transactions a form of optimistic locking can be activated
to control concurrency impact. When at a certain moment data is read and the
functionality requires that changes be made under the requirement that the
earlier read data is not changed, this optimistic locking can be activated.
When the service, which changes the data, detects that the data has been
touched by a transaction that committed since the last read moment the
change will be rolled back and an error will be returned.
Of course always a record will be locked explicitly immediately before it is
changed, to prevent hanging service calls due to outstanding changes on a
record. When the actual lock fails an error message is returned and the
transaction is rolled back.

8. SOAP error handling will be used to return functional and technical errors.

 Generic principles provider services 5

Rationale: this eases integration with development tooling which can
leverage functionality based on SOAP faults and makes coding easier and
less error prone.

9. Functional faults will support language dependent error messages.

Rationale: although the services are in English the functional error messages
returned will use the multi-language support as present in the OHI Back
Office application; this to be able to return language specific messages based
on the calling context.

10. Standard Java logging functionality will be offered for error, informative and
debug level log messages.

Rationale: by adhering to a common standard logging mechanism this will be
easier to configure and use for system administrators who are experienced
with Java based application management.

11. The user manual currently focuses on a ‘standardized approach’ for
synchronous provider web services.

Rationale: when this manual applies to other types of web services the
manual will be adapted for this.

12. Additional standardized requirements will be implemented as much as
possible through applying standardized technology.

Rationale: goal is to focus on delivering functionality and be open for most
architectural and infrastructural environments; this means that limited
development time is not spent on developing proprietary solutions that can
be implemented also through standard technology stack software. A number
of requirements should be implemented through more or less standardized
use of Oracle products. But customers may opt out for other choices.
Versioning of services is an example of this.

13. Date and date time values are not expected to have a time zone component in
them.

Rationale: the current application does not support time zones and all date
and (date)time values are expected to be expressed in the time zone as used
within the database. It may be that time zone handling for (date)time values
in the web services are added in a future version where these are always
converted to a standard time zone.
When time zones are passed in values it is expected a service bus or different
proxy solution will remove this component in the date and (date)time values.

 Generic usage aspects provider services 6

3 Generic usage aspects provider services

This chapter focuses on the generic aspects of the web services.

3.1 Common usage behaviour

For retrieving data several operations may be defined. These operations can be
distinguished in 3 types for which certain behaviour rules apply.

Get routines

Routines, which implement ‘get’ functionality, expect identifiers as inputs that
identify exactly one occurrence. If the identifiers do not identify an existing
occurrence a functional fault will be returned that no data matches the criteria.

Find routines

The find routines can be used to find a set of occurrences given certain identifiers.
These identifiers in itself do need to be existing values and may not contain
wildcards. If no data matches the criteria no response data is returned and no
functional error message is given. Simply the fact that nothing is found should make
clear that no data is found.

Search routines

The search routines can be used to find a set of occurrences given certain identifiers
that may contain wildcards. That is the distinctive difference, compared with find
routines. If no data matches the criteria no response data is returned and no
functional error message is given. Simply the fact that nothing is found should make
clear that no data is found.

3.2 Call standards

For each service a calling context and a returning context must be provided to call a
service routine. The calling context specifies behaviour and the returning context
provides feedback about the call.

These two ‘contexts’ are described by referencing the plsql definitions for these
contexts (these are ‘published’ identically in the Java layer).

For all service calls there are 2 standardized SVL object types which need to be passed
as 2 separate parameters to each service call.

 SVL_CALL_CONTEXT_TP - input parameter set to pass call data

 SVL_RETURN_CONTEXT_TP - output parameter set to pass return data

These are each described separately but they are related to each other when
optimistic locking functionality should be implemented. In this latter situation part of
the return context of a preceding call is input for the next call context.

3.2.1 Call Context

The (plsql) definition of the call context is as follows:
create or replace force type svl_call_context_tp
as object
(
 user_context svl_user_context_tp
, enforce_consistent_read svl_yes_no_tp

 Generic usage aspects provider services 7

, enforce_unchanged_since_scn number
)

The call context is used to define the behaviour of the called service. A number of
settings can be provided to the call.

3.2.1.1 User_context

The user_context setting is used to pass the OHI Back Office known and active
username which should identify the user that executes the action.

3.2.1.2 Enforce_consistent_read

The setting enforce_consistent_read is used to ensure that in a service call all eligible
data retrieved in and returned by that call is consistent, in the sense that it is all not
changed (and actually committed) since the call started (so there may not be a
committed change on the retrieved data by another session, since the retrieve
operation started, to prevent sequential selects in the retrieve call retrieve an
inconsistent situation; with other words, the data returned by the call is as it was at
the moment of that call, it is a ‘stable photo’). When data is changed since the
operation started an error will be raised by the service routine.

For each service it is defined whether the consistent read option is supported or not. If
not the service fails when it is asked to implement a consistent read.

IMPORTANT: When a service enforces a consistent read it only offers it correct when
in the database the ROWDEPENDENCIES setting is activated for the OHI tables
involved. This is a one time only database table reorganization action but will imply a
large downtime to implement this for all tables.

3.2.1.3 Enforce_unchanged_since_scn

The setting is used typically in a change scenario to implement an optimistic locking
algorithm. It should contain a numeric value which identifies an SCN value (System
Change Number, a sequential change number assigned to changes and also to each
committed transaction; please see the standard Oracle database documentation for
more information).

If specified a non null value (and the called service supports it) the service should
check for all records that will be changed (and perhaps in special cases also for other
records which are retrieved in the operation, but this is service specific), whether they
are not changed since the ‘SCN moment’ which is passed (a parameter value is
passed for this). The SCN for the retrieved records may not be younger (larger) than
the provided SCN (the third parameter specifies this).

Of course for updates/deletes an explicit lock with nowait is always implemented for
the records that are affected (immediately before they are changed), disregarding this
functionality. This to prevent the service ‘hangs’ on an outstanding lock. Internally
the service determines the SCN for a record as part of the 'select for update' or after
that select has succeeded (because the record is locked from that moment on, until the
transaction ends or fails and rollbacks).

When a value zero is passed the ‘SCN moment’ at the start of the service call will be
used (this is a special situation).

IMPORTANT: The same remark as in previous paragraph regarding
ROWDEPENDENCIES applies for a correct working of this functionality.

 Generic usage aspects provider services 8

3.2.1.4 Combining these settings

B y combining the previous 2 settings it can be specified for a service call to check
whether data is read consistent during a retrieve of this data and to check whether the
data to be changed during a (slightly) later service call is not changed in the
meantime. This is done by remembering the SCN call moment of the retrieve call
(which is returned in the returning context which is described later) and passing it on
to the change call.

For retrieve only functionality the last setting is normally not relevant. Typically only
the consistent read option will be supported but their may be exceptions.

For service calls that change data it can be useful to specify both the
enforce_consistent_read and the enforce_unchanged_since_scn settings. When both
options are supported this means the routine will support a consistent read for
‘supporting data’ that is retrieved, but for the data which will be changed the
enforce_unchanged_since_scn value that is passed, is used to check whether it has not
changed since that moment.

3.2.2 Return Context

The return context looks like shown below.
create or replace force type svl_return_context_tp
as object
(
 message_info svl_message_info_tp
, scn_call_moment number
, constructor function svl_return_context_tp
 return self as result
)

It typically can contain a list of regular error messages that occurred during the call.
These are passed using the message_info type, the first setting.

Next to the message info also the database SCN number (in fact a ‘moment in time
identifier’ of the last change in the system at a specific moment) of the moment the
service call started is returned, if consistent_read is enforced (!) and supported. This
can be used in subsequent calls when the calling environment wants to make sure
that data which is accessed/changed in the later call is not changed since the call
which returned the SCN (see previous paragraphs).

With using the combination of the return context and the call context in subsequent
calls an optimistic locking approach can be implemented in interface applications that
require this. This is especially useful because of the stateless behaviour of the service
calls, it is not possible to use a locking strategy with actual (row) locks.

3.2.2.1 Message info

The definition of the message info is shown below.
create or replace force type svl_message_info_tp
as object
(
 list svl_message_lst_tp
, top_severity varchar2(1)
, error_stack varchar2(32000)
, constructor function svl_message_info_tp
 return self as result
)

The first variable in this message info object contains the actual list of messages.
When there is a list of messages present (one or more messages in the list) this means
a (functional) error has occurred which is handled in the exception handler of the
called service routine. The message info variable contains in such a situation also the
most severe level of the messages in the message list (top_severity). When for

 Generic usage aspects provider services 9

example 2 informational messages and one error message are in the list the
top_severity is ‘Error’ (‘E’).

In the situation that an exception has occurred which is handled and put in the
message list also the plsql error stack can be passed. This can help in detecting the
cause of programming or application problems.

A message on the message list is structured as shown below:
create or replace type svl_message_tp
as object
 (message_code varchar2(32)
 , severity varchar2(1)
 , severity_desc varchar2(100)
 , message_text varchar2(2000)
 , help_text varchar2(2000)
 , lang_code varchar2(3)
 , constructor function svl_message_tp
 return self as result
)

This shows a code is passed that uniquely identifies the specific message type (of
course more of the same messages can be in the list) next to the severity, the
description of the severity, the actual text of the message (in the language as defined
by the preference of the user with which identity the service is called, which language
is passed back in the lang_code variable) and optionally a help text which applies to
that message.

3.3 Error and exception handling

When a call fails it can fail gracefully or by throwing an exception. When it fails
gracefully a list of messages is returned in the returning context.

In case of an ungraceful failure, which is not handled by an exception handler in the
service, an exception is thrown. Within the database this is typically an Oracle
exception.

At the web services side SOAP fault messages reflect both situations. The XSD below
specifies for this purpose a functional and a technical fault.

 <xsd:element name="functionalFaultType">
 <xsd:annotation>
 <xsd:documentation>SOAP Fault which is returned when a functional regularly
handled error has occurred.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="unbounded" name="messages"
 type="faultMessageType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="technicalFaultType">
 <xsd:annotation>
 <xsd:documentation> SOAP Fault which is returned when a technical unhandled error
has occurred. </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string" minOccurs="0"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="faultMessageType">
 <xsd:sequence>

 Generic usage aspects provider services 10

 <xsd:element name="severityText" type="xsd:string"/>
 <xsd:element name="severityCode" type="xsd:string"/>
 <xsd:element name="messageText" type="xsd:string"/>
 <xsd:element name="messageCode" type="xsd:string"/>
 <xsd:element name="helpText" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

All application raised messages or handled exceptions are returned as functional
faults and can be handled as such. As long as functional faults are returned it is clear
the service call itself is still being executed along all the layers in the technology stack
but somewhere during processing in the application functional errors or a handled
exception occurs.

When an unhandled exception occurs this is typically returned as a technical fault
and can be handled differently. This is more severe and can have all kind of causes.
For example the database can be unreachable or down. But it cannot be said by
definition that processing should be aborted, that is dependent on the cause of the
technical fault. It might well be that the next call succeeds again because there only
was a switch over from for example a failing network component to a replacement.

Beware that the structure of the XML messages, both the request as well as the
response message, will be validated against the WSDL/XSD definitions. Errors will
be returned when the message does not comply with the definition.

3.4 Transaction handling

For web services that can change data (so which implement more than only ‘retrieve’
operations) the change operation will commit automatically or fail in a consistent way
(rolling back partially executed transactions). This behaviour is implemented
automatically in the web service implementation.

When using the plsql implementation the calling code is responsible for committing
or rolling back partially executed operations. When exceptions are handled in an
exception handler be sure a rollback is executed in the exception handler to prevent
partially executed transactions are committed (although this will never result in
inconsistent data, that is guarded by the business rule implementation layer in the
database), resulting in potentially unwanted changes.

3.5 Differences between provider plsql and web service ‘service layer implementation’

The plsql and web service ‘services’ are very similar. In fact the plsql services are
‘wrapped’ into a web service. Typically there is one database plsql package
supporting the operations of the corresponding web service.

In the service layer implementation the supporting web service plsql packages are
named SVL_WS_<service> and contain the operations as packaged procedures. A
standard function is_alive is offered that is wrapped as web service to check the
complete web service technology stack is working fine. The is_alive function returns
the version number of the associated package.

The operations, implemented as packaged procedures, accept as input and output
parameters of user defined object types that are similar formatted as the input and
response messages in the corresponding WSDL/XSD definitions.

In the current release it is not possible to access the call context and the return context
in the web service implementation, as they are not present in the WSDL definition. In
a future release this will be enhanced (at this moment they are of no use because the
current services do not support the consistent read and optimistic locking
functionality).

 Generic usage aspects provider services 11

There is one exception: the calling user name can and must be specified in the Back
Office properties file for each web service. Please read the installation and
configuration manual for how to specify this calling user name. It will be passed as
the user context part for the call context as described earlier.

So to state it more clearly, in the plsql implementation it is possible to specify and
access the call and return context directly where this is not (yet) possible in the web
service implementation.

3.6 Example plsql usage scenario

When the plsql implementation is used there are lots of possibilities in how to use the
services. They can be combined with SQL and plsql to retrieve and change data
directly or they can be used solely.

Below a very simple example is given how to retrieve some policy data using a plsql
program:

declare
 l_call_context svl_call_context_tp :=
svl_call_context_tp(svl_user_context_tp('MANAGER'),svl_yes_no_tp('N'),svl_yes_no_tp('N'),0);
 l_return_context svl_return_context_tp;
 l_pol_details_tp svl_policy_and_details_tp := svl_policy_and_details_tp();
begin
 svl_ws_policy_pck.get_pol_detail_by_pol_num_int
 (pi_pol_nr_tp => svl_policy_number_internal_tp(17553)
 , pi_call_context => l_call_context
 , po_pol_detail_tp => l_pol_details_tp
 , po_return_context => l_return_context
);
 if l_return_context.message_info.messages.count > 0
 then
 dbms_output.put_line(l_return_context.message_info.error_stack);
 for i in 1..l_return_context.message_info.messages.count loop
 dbms_output.put_line('Msg('||i||'): '||l_return_context.message_info.messages(i).message_text);
 end loop;
 else
 dbms_output.put_line('No errors occurred.');
 for i in 1..l_pol_details_tp.membership_lst.count loop
 dbms_output.put_line('Mmb('||i||'): since=<'||l_pol_details_tp.membership_lst(i).start_date||
 '> name=<'||l_pol_details_tp.membership_lst(i).member_tp.formatted_name.formatted_name||
 '> sofi=<'||
 l_pol_details_tp.membership_lst(i).member_tp.social_security_number.social_security_number||'>');
 end loop;
 end if;
end;

As you can see the service operation
SVL_WS_POLICY_PCK.GET_POL_DETAIL_BY_POL_NUM_INT is used. As calling
user the known application username MANAGER is used. This code is executed
using a database account created for this purpose (as using the application object
owner directly is not supported).

3.7 Example provider web service usage scenario

In the situation of a web service of course the WSDL URL should be used to access
the WSDL. The system administrators who deploy the web services should provide
this URL.

A typical WSDL URL could be:

http://<servername>:<port>/OHIBOWebservices/OhiPolicyService?wsdl

To test whether a service is technically working a tool like soapUI can be used which
creates requests for the different operations.

The isAlive operation can be used for the technical test.

However, a simple example, which is similar to the plsql example in the previous
paragraph, can also be used:

 Generic usage aspects provider services 12

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:v1="http://www.oracle.com/insurance/ohibo/policy/policymessages/v1">
 <soapenv:Header/>
 <soapenv:Body>
 <v1:getCurrentPolicyDetailsByPolicyNumberInternalRequestType
policyNumberInternal="17553"/>
 </soapenv:Body>
</soapenv:Envelope>

This will return a SOAP message containing the contents of the returned policy
message structure or a SOAP fault message structure in case of problems.

 Consumer web services 13

4 Consumer web services

Starting with release 2012.01 a first implementation is offered of consumer services
that are consumed within the database. These services support existing batch
functionality that consumes services in the outside world. Where outside world is
defined as ‘outside of the OHI application’.

For implementing these services it is expected that for amongst others security and
traceability reason an internal ‘facility’ can be called that provides these services. This
intermediate ‘gateway’ (typically a proxy or a service bus) implements the call to the
real outside world. In this way for example standardized security solutions can be
used to protect the communication to the outside world, independent from the OHI
Back Office application.

This chapter focuses on implementation aspects for the consumer services.

4.1 Technical principles

The following technical principles are followed and may be of influence for how you
realise your code to access the Service Layer consumer web services.

1. SOAP 1.1 is used.

Rationale: this is by far still the most widely used common standard and
supported by almost all web service toolkit implementations.

2. The OHI provided WSDL’s are currently look-a-likes for the outside world
WSDL’s that are offered by VECOZO.

4.2 Gateway setup

Internally a proxy or a Service Bus should be setup to provide the provider web
services functionality that can be consumed by the consumer web services.

To know the functionality that should be implemented a WSDL is delivered per
consumer web service that describes the interface to be offered.

These OHI provided WSDL’s are currently look-a-likes for the outside world WSDL’s
that are offered by Vecozo. It should be quite easy to identify how to map the data of
the external and the ‘OHI’ WSDL.

For more information currently the Functional Specification of theme M-2647 should
be used.

4.3 Configuration

Currently only Dutch localisation consumer web services exist. The table below
shows which Back Office parameter settings should be configured for each service.
The values should identify the internal gateway you configure.

Code Name Back Office parameters

 Consumer web services 14

Code Name Back Office parameters

FSH1009S Uitvoering fraudecontrole
(VECOZO)

1. EVREndPoint
2. EVRProxyHost
3. EVRProxyPort

FIN2114S Aanmaken en versturen
borderel ambtshalve
verzekerden

1. AmbtshalveEndPoint
2. AmbtshalveProxyHost
3. AmbtshalveProxyPort

ZRG1293S Controle op premieachterstand
VECOZO

1. PremieAchtEndPoint
2. PremieAchtProxyHost
3. PremieAchtProxyPort

ZRG1298S Opzegservice VECOZO 1. OpzegSrvceEndPoint
2. OpzegSrvceProxyHost
3. OpzegSrvceProxyPort

ZRG2221S Aanmaken en versturen AVG-
bestand

1. AVGEndPoint
2. AVGProxyHost
3. AVGProxyPort

ZRG3078S Genereren machtiging
retourbericht (XML)

1. MachtigingEndPoint
2. MachtigingProxyHost
3. MachtigingProxyPort

4.4 Error and exception handling

When a consumer web service call fails it fails by throwing an exception. Because the
calls are implemented inside the database this is typically an Oracle exception with
the error code ORA-29532. These errors are stored as messages that occurred during
the batch that executed the consumer services.

The ORA-29532 error code indicates a java exception; the actual error is shown in the
error message that follows after the error code.

Below is a non-exhaustive list of possible errors that can occur when a consumer
service is called by the OHI Back Office application:

Error Cause

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.rmi.RemoteException:; nested exception is:
 HTTP transport error:
javax.xml.soap.SOAPException:
java.security.PrivilegedActionException:
javax.xml.soap.SOAPException: Message send
failed: Connection refused

No web server available at the given location

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.rmi.RemoteException:; nested exception is:
 HTTP transport error:
javax.xml.soap.SOAPException:
java.security.PrivilegedActionException:
oracle.j2ee.ws.saaj.ContentTypeException: Not
a valid SOAP Content-Type: text/html;
charset=iso-8859-1

A web server is available at the given location,
but does not accept SOAP messages or cannot
respond to the requested message (unknown
request)

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
oracle.j2ee.ws.common.encoding.Deserializatio
nException:deserialization error:
java.lang.IllegalArgumentException

Unknown or invalid (response) message:
invalid value

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.lang.NullPointerException:null

Unknown or invalid (response) message:
invalid namespace

 Consumer web services 15

Error Cause

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.rmi.RemoteException:Error parsing
envelope: (1, 1) Start of root element expected.;
nested exception is:
 javax.xml.soap.SOAPException:
Error parsing envelope: (1, 1) Start of root
element expected.

Unknown or invalid (response) message:
empty message

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
oracle.j2ee.ws.common.encoding.Deserializatio
nException:unexpected element name:
expected={urn:http://www.oracle.com/insurance
/ohibo/SVL1001C:messages:isevr:v1}EvrStatus,
actual={urn:http://www.oracle.com/insurance/o
hibo/SVL1001C:messages:isevr:v1}EvrStatuss

Unknown or invalid (response) message:
Wrong name of element

 Appendix A – Provider web services documentation per service 16

5 Appendix A – Provider web services documentation per service

Please use the WSDL that can be retrieved when a web service is deployed.

When services are changed the functional specification contains the latest changes.

Currently the provider web services offer no consistent read or locking functionality
and can only retrieve data through a number of operations, except for services that
implement changes.

The SVL_WS% packages can be used to get an overview of the existing services and
their operations (the packaged procedures).

For more information please see the Business Function that start with WS_ within
application system SVL as defined in the Designer Repository. The operations are
documented as SubFunctions for the Business Services defined (6 at this moment).

Each operation is documented through either HTML in the Description field (be sure
you use an HTML editor to open this field) or is documented in a stored File (also
present as ‘File’ in the application system SVL) that is named in the Description field.

Attention: Starting with release 2011.03.2 the PreAuthorization provider web
service WSDL has been extended with an additional ‘Herkomst’ field. For the
corresponding consumer web service the official Vecozo WSDL has been
extended with an optional field that is not supported by Vecozo.

When the provider web service call specifies a value for the ‘Herkomst’ field
the consumer call will fill the non supported Vecozo field. This means the call
will not be accepted by Vecozo.

This functionality is introduced for the situation where an internal ‘intervening
component’ (typical a middleware solution like a service bus) is used as
intermediate and there is a requirement to distinguish between sources for pre
authorization requests. This can be helpful in using the pre authorization web
service for more source than the Vecozo pre authorization web service.

	1 Introduction
	2 Generic principles provider services
	2.1 Design principles
	2.2 Technical principles

	3 Generic usage aspects provider services
	3.1 Common usage behaviour
	3.2 Call standards
	3.2.1 Call Context
	3.2.1.1 User_context
	3.2.1.2 Enforce_consistent_read
	3.2.1.3 Enforce_unchanged_since_scn
	3.2.1.4 Combining these settings

	3.2.2 Return Context
	3.2.2.1 Message info

	3.3 Error and exception handling
	3.4 Transaction handling
	3.5 Differences between provider plsql and web service ‘service layer implementation’
	3.6 Example plsql usage scenario
	3.7 Example provider web service usage scenario

	4 Consumer web services
	4.1 Technical principles
	4.2 Gateway setup
	4.3 Configuration
	4.4 Error and exception handling

	5 Appendix A – Provider web services documentation per service

