
Start

Oracle Health Insurance Back
Office

Business Event Framework within

Oracle Health Insurance Back Office

version 2.1

Part number: E51467_01

December 2013

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

This software and documentation may provide access to or information on content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related
notices. For information on third party notices and the software and related documentation in connection with
which they need to be included, please contact the attorney from the Development and Strategic Initiatives
Legal Group that supports the development team for the Oracle offering. Contact information can be found on
the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality described
in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle Software License and Service Agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

CHANGE HISTORY

Release Version Changes

10.13.1.0.0 2.0 New version of the Business Event Framework manual
10.13.3.0.0 2.1 Changes adapted in Dynamic pl/sql definition.

New additions in ALG_EVENT_INTERFACE_PCK

 Introduction ii

Contents

1. Introduction ... 1

2. Overview ... 2

2.1. Signaling Events .. 2
2.2. Responding to Events ... 2
2.3. Combining Signaling and Response Types ... 3

3. Framework Components ... 5

3.1. OHI Back Office Windows ... 5
3.2. Event Definition Package ... 8
3.3. Event Handling Package .. 9
3.4. Process Business Event Batch .. 9
3.5. Background Process .. 10
3.6. Business Event Framework Tables .. 10

4. Building Your Own Business Events ... 11

4.1. Detected Events ... 11
4.2. Triggered Events .. 13
4.3. Batch Handled Events ... 13
4.4. Near Real Time Events ... 14
4.5. Custom Plug-ins .. 15
4.6. Starting Business Events ... 16

5. Examples .. 18

5.1. Detected Event, Store to a Table .. 18
5.2. Triggered Event, Store to the Queue ... 21

Appendix 1 – ALG_EVENT_INTERFACE_PCK .. 24

Appendix 2 – Framework Tables .. 26

 Introduction 1

1. Introduction

This document describes the Business Event Framework developed for OHI Back
Office.

Specific hooks are required in the OHI Back Office application for customers to
develop custom event handling using the OHI Back Office database. The Business
Event Framework can be used to signal specific events in the OHI Back Office
application. These events can arise from creating or modifying data or by the passing
of time. The framework is also used to define how an event should be handled.

An example of how the Business Event Framework can be used is when a member
supplies the health care payer with their change of address after relocating. The
health care payer has an integrated customer relationship management (CRM)
system and uses the change of address event to automatically trigger an update to the
CRM database.

 Overview 2

2. Overview
The purpose of the Business Event Framework is to facilitate custom development for
signaling and responding to business events occurring in the OHI Back Office
application.

Since the majority of custom development for OHI Back Office implementations is
PL/SQL based, the framework is implemented in PL/SQL.

The Business Event Framework provides two options both for signaling and
responding. These options can be combined for each business event to create the
most suitable environment for handling the event.

2.1. Signaling Events
The Business Event Framework offers two options for signaling events and both are
described in this section.

2.1.1. Detected Events

Detected events are events that are signaled by querying the data in one or more
tables. A decision to register the event is based on the results of the query. The event
is registered based on the data that was found at the moment the data was queried.
This moment can be controlled by scheduling Process Business Events (SYS5001S)
batch (see Starting Business Event).

For example, a relation record is updated at 08.30, 11.15 and 14.50 hours. When the
batch is scheduled to run at 15.00, the data from the last modification (14.50) will be
evaluated. The data for the record as at 09.00 or 12.00 cannot be signaled by a
detected event.

Detected events are best used in situations where the intermediate modifications are
not important or where the passing of time is the trigger for the event.

2.1.2. Triggered Events

Triggered events are signaled the moment they occur. Using database triggers an
event is evaluated and registered. Unlike the detected events, intermediate changes
can be signaled. In the relation record example, which is updated at 08.30, 11.15 and
14.50, a triggered event can be registered for all three updates.

Events can be signaled separately based how the data is modified, for example insert,
update or delete.

Triggered events are used to signal data modifications immediately.

2.2. Responding to Events
The Business Event Framework offers two options for responding to events and both
are described in this section.

 Overview 3

2.2.1. Batch Response

To process signaled events in a batch the signaled events must be stored in an OHI
Back Office table. The moment the event is signaled, either through a detected event
or a triggered event, the event is saved to table ALG#EVENTS. The Process Business
Events (SYS5001S) batch handles the events. The batch can be scheduled to run at the
correct intervals (see Starting Business Event).

Note: No duplicate events

Duplicate events will not be stored when saving events to a table. In
case a relation or policy is signaled multiple times for the same event,
the table will hold only one occurrence of the event. If the same data
manipulation type is performed twice for an event on a table and
record, only the first will result in an event.

After successful processing the event, the same event could be
detected again.

2.2.2. Near Real Time

When an event should be signaled the moment it occurs, events can be stored to a
queue. An OHI Back Office background process is continuously listening to the
queue. Events are taken from the queue and processed immediately.

2.3. Combining Signaling and Response Types

Four definitions result from the two types of events together with two storage
options. This section describes the situations where each definition can be used.

Detector

Trigger

Add event
(ALG_EVENT_INTERFACE_PCK.ADD_EVENT)

Handler

QUEUE
(ALG_EVENT_QUEUE)

TABLE
(ALG#EVENTS)

 Overview 4

2.3.1. Detected Events, Storing to a Table

This event definition is suitable when there is no urgency to act on specific events and
individual data changes are not important. For example, there is an event that
produces an overview of all policies modified in the previous week. A record of all
the individual modifications does not have to be kept. A check on the last date the
record was updated is sufficient in this example.

Detected events are also the only events able to act on situations not triggered by data
manipulation but the passing of time. For example, a member reaches 18 years of age
or a record having a specific status for a number of days. Triggered events are not
suitable for this since no data is changed and therefore no database trigger will signal
the event.

2.3.2. Triggered Events, Storing to a Table

This event definition is suitable when the action of the event has no urgency but the
individual data modifications are important. For example, a triggered event can be
used when an event should be registered when a policy reaches the final status. A
detected event is less suitable for this because at the time the detection batch is
running the policy could have been updated to another status. This results in the
policy being skipped by the detection run and no event is registered.

2.3.3. Detected Events, Storing to the Queue

Although technically possible, this type of event is not practical. Detected events are
processed in the same batch run. There is not much difference between the moment
an event is registered and the moment it is processed. Therefore processing these
events using the queue will not provide much of an advantage. The queue will have a
large load to process when lots of events are detected.

When multiple occurrences of the same event are required storing to the queue
should also be used.

2.3.4. Triggered Events, Storing to the Queue

This event type is best suited when individual updates are important and immediate
action is required. For example, the member should receive a welcome email when
their policy reaches the final status.

 Framework Components 5

3. Framework Components
This chapter describes all the components within the OHI Back Office application for
setup, registering and responding to business events.

3.1. OHI Back Office Windows

3.1.1. Event Definition

The Event Definition (SYS1149F) window is used for defining an event in OHI Back
Office.

 Framework Components 6

Data in Event Definition Block

Field Description

Name The name of the event, maximum length 30 characters.
Description The description of the event, maximum length 100 characters.
Type How the event is signaled, allowable values Detected and Triggered.
Detector The (package) procedure for registering this event. Only applicable for detected

events.
Last Detection The timestamp of the last processing run. Only applicable for detected events.
Storage Where are signaled events stored, allowed values Table and Queue.
Status The status of a processing run. Only applicable for detected events.
Run Number The last number of the processing run. Only applicable for detected events.
Begin Handler The (package) procedure for the begin handler. Only applicable for events with

storage set to Table.
Handler The (package) procedure for handling the event. Applicable for all events.
End Handler The (package) procedure for the end handler. Only applicable for events with

storage set to Table.
Active Indicates whether the event is active or not.
Purge Interval Success The purge interval for events that have been successfully processed. Only applicable

for events with storage set to Table.
Purge Interval Failure The purge interval for events that have failed. Only applicable for events with

storage set to Table.

The event tables block is only applicable for triggered events.

Data in Event Tables Block

Field Description

Table Holds the name of the table the event is designed for.
Insert Indicates whether events should be signaled when a new record in this table is

created.
Evaluation function The name of the dynamic PL/SQL definition used to evaluate the event. Only

allowed in case the Insert indication is checked.
Update Indicates whether events should be signaled when a record in this table is updated.
Evaluation function The name of the dynamic PL/SQL definition used to evaluate the event. Only

allowed in case the Update indication is checked.
Delete Indication whether events should be signaled when a record in this table is deleted.
Evaluation function The name of the dynamic PL/SQL definition used to evaluate the event. Only

allowed in case the Delete indication is checked.

The event can be fine-tuned with the evaluation functions to only signal the desired
situation. See the next section for a more detailed description of these functions.

The window is accessible by following the menu path:

⇒ System

⇒ Management

⇒ General

⇒ Event Definition

3.1.2. Dynamic PL/SQL Definition

The Dynamic PL/SQL Definition (SYS1139F) window is used to maintain the
dynamic PL/SQL functions that are used to fine-tune the registering of a specific
event.

 Framework Components 7

The Scope must be set to Event for PL/SQL definitions used within the Business
Event Framework. This window is also used to maintain PL/SQL definitions used
elsewhere within OHI Back Office. Only the fields applicable for the Business Event
Framework are described.

Data in the PL/SQL Definition Block

Field Description

Name The name of the PL/SQL definition, maximum length 20 characters.
Description The description of the PL/SQL definition, maximum length 50 characters.
Scope Should be set to Event to be able to select the definition in the Event Definition

(SYS1149F) window.
Body The actual code of the PL/SQL definition. The event will be registered when the

function returns a true value.

The PL/SQL Body contains the actual code used to evaluate whether an event should
be registered. The code must return a Boolean value to indicate this. In case true is
returned the event will be signaled. In case the function returns false, it will not. Two
record variables are available for the old and new values (old_rec and new_rec).
These can be used to evaluate a specific situation, for instance only signal events in
case the new status is equal to D.

The two tabs are not applicable for the Business Event Framework.

 Framework Components 8

The window is accessible by following the menu path:

⇒ System

⇒ Management

⇒ General

⇒ Dynamic PLSQL Definition

Note: ‘Active’ indication

When committing a dynamic PL/SQL definition with the indication ‘Active’ checked, OHI
Back Office will try to validate the code of the Body section. When creating a new PL/SQL
definition the table that will be used is unknown to OHI Back Office. Therefore the ‘Active’
indication should not be checked when first creating the PL/SQL definition. After linking it
to a table in the Event Definition (SYS1149F) window it can be turned on.

3.2. Event Definition Package

The ALG_EVENT_INTERFACE_PCK can be used to define event definitions. This
offers the same functionality as the OHI Back Office Event Definition window with
the exception of defining the tables for a Triggered event. The functionality for
installing and de-installing an event is available for backward compatibility.

The package also holds procedures that are used for event handling and several
utilities.

See Appendix 1 for a full description of the parameters for each procedure and
function in the package.

3.2.1. Event Definition

• install
Available as a procedure and a function returning the ID of the event. This
can be used for the event definition. When the given event already exists
(based on the name of the event) it will update the event definition, otherwise
a new event definition will be registered with the values supplied.

• deinstall
This procedure is available twice. Once to remove an event with a given
name and once to remove it based on the ID of the event definition.

3.2.2. Event Handling

• add_event
Three procedures are available to store an event to the table. One receives the
name of the event as a parameter, the second the ID of the event definition.
The parameter code holds the identification of the record in OHI Back Office
that caused the event.
The third procedure stores an event to the Business Event Framework queue.
It receives one parameter of type:

 Framework Components 9

 alg_ede_payload_tp

To be able to change the storage clause of an event from table to queue the
code should be a string with the following format:

table_id##record_id##dml_type, where dml_type can be ‘I’(Insert), ‘U’
(Update) or ‘D’ (Delete)

• purge_all_events
Available twice, based on the name of the event definition and based on the
ID of the event definition. It will remove all events and event errors for the
given event.

• reapply_failed_event
Available twice, based on the name of the event definition and based on the
ID of the event definition. It will change the status of a event stored in the
table from ‘Failed’ to ‘New’. This procedure should be called from within the
detector plugin. Providing a specific event will reset only the provided event
for the given event definition. When no event is provided all failed events for
the given definition will be reset.

3.2.3. Utility

The package has two utilities.

• type_payload_to_code
Can be used to transform object type alg_ede_payload_tp to the code
parameter of the add_event procedure.

• code_payload_to_type
Available twice, used to convert the code parameter of the add_event
procedure to object type alg_ede_payload_tp. Available with the name
and the ID of the event definition.

3.3. Event Handling Package
Events are handled by the framework package ALG_EVENT_PCK. This is an internal
OHI Back Office package and is therefore not available for custom development. It
contains the same functions and procedures as the ALG_EVENT_INTERFACE_PCK.

3.4. Process Business Event Batch
The Process Business Events (SYS5001S) batch has been developed to support starting
the Business Event Framework by the OHI Back Office batch scheduler. The batch is
needed to signal Detected events and to process events which are stored in the
ALG#EVENTS table. The batch can be scheduled using OHI Back Office Submit Batch
Request (SYSS003F) window. It has the name of the event as a parameter allowing for
different run intervals per defined event.

 Framework Components 10

3.5. Background Process
Background process OHI_EVENT_JOB_x is used to handle events with storage set to
queue. The process is started and stopped simultaneously with the OHI Back Office
batch process.

The process monitors the Business Event Framework queue. Events are taken from
the queue and processed using the ALG_EVENT_PCK package.

With the Back Office parameter ‘No. of processes for event framework’ the number of
processes listing to the event queue can be set.

3.6. Business Event Framework Tables

The following database tables and object types are used for handling events:
• ALG_EVENT_DEFINITIES (event definitions)
• ALG_EVENT_INIT_WIJZIGINGEN (table involved in a triggered event

definition)
• ALG#EVENTS (events)
• ALG#EVENT_ERRORS (error messages)
• ALG_EDE_PAYLOAD_TP (event payload for queues)

The table columns are described in Appendix 2.

 Building Your Own Business Events 11

4. Building Your Own Business Events

First the business event should be analyzed to determine the best suited registering
and handling types. Triggered events are best suited when the event signals data
manipulation and it is important to signal each individual action. Detected events can
be used for end-of-day status reports or for events not caused by data changes but by
the passing of time.

The storage of the event should be set to Queue when, as soon as the event is
signaled, immediate action is required. It can be set to Table when the action to the
event is less urgent and can occur at a scheduled times.

4.1. Detected Events
In the Event Definition window set the Type to Detected. The Detector field is
mandatory for this type of event.

4.1.1. Detector

The field holds the (package) procedure, which is used to register the business event.
The procedure receives the timestamp of the last time it was started and the name of
the business event. The Business Event Framework will commit after executing the
detector.

For example where an event should count the number of policies, the detector in the
event definition could be:

 my_event_pck.detect_nr_policies

The procedure definition could look like:

procedure detect_nr_policies
(pi_event_name in alg_event_definities.naam%type
, pi_start_date in date
);

Each event occurrence can be stored using the add_event procedure in the
ALG_EVENT_INTERFACE_PCK package.

4.1.2. Adding Events

Detected events should either be saved to the ALG#EVENTS table or to the Business
Event Framework queue. This can be done by calling the add_event procedure in
the ALG_EVENT_INTERFACE_PCK package.

Dependent on the storage clause for the event the appropriate add_event can be
called. For events stored in the table this would be:

alg_event_interface_pck.add_event
(pi_name in alg_event_definities.naam%type
, pi_code in alg#events.code
, pi_date in alg#events.master_date%type
);

 Building Your Own Business Events 12

Or:

alg_event_interface_pck.add_event
(pi_ede_id in alg_event_definities.id%type
, pi_code in alg#events.code
, pi_date in alg#events.master_date%type
);

For events stored in the queue this is:

alg_event_interface_pck.add_event
(pi_ede_payload in alg_ede_payload_tp
);

If the storage type of an event is modified in the Event Definition (SYS1149F) window
the add_event will continue to work and the received parameters will be converted
to match the storage type. Although it can have a (minor) impact on performance it is
not necessary to change the detector-program code.

4.1.3. Example

The following code shows an example of an event to signal all new relations created
since the last time this event was processed.

procedure my_detector
(pi_event_name in alg_event_definities.naam%type
, pi_start_date in date
) is
 cursor c_events
 (vi_date_from date
) is
 select rel.id
 from rbh_relaties rel
 where rel.creatie_moment >= c_events.vi_date_from;

 l_tab_id alg_tabellen.id%type;
 l_dml_type varchar2(1) := 'I';

begin

 -- Determine table id
 l_tab_id := rbh_rel_capi.g_tab_id;

 for r_rec in c_events (pi_start_date)
 loop

 -- Store to a table
 alg_event_interface_pck.add_event
 (pi_name => pi_event_name
 , pi_code => r_rec.id
);

 end loop;

end my_detector;

 Building Your Own Business Events 13

4.2. Triggered Events
In the Event Definition window set the Type to Triggered. For events of this type the
Detector field is not available since the event is signaled using OHI Back Office
database triggers.

4.2.1. Tables

The second block is only available for triggered events. The table of the event can be
defined and the action on the table can be set using the Insert, Update or Delete
indications.

4.2.2. Fine Tuning

Evaluation functions are available for defining additional criteria for registering an
event. These functions can be set up in the Dynamic PL/SQL Definition window.

4.2.3. Example

A triggered event can be set up to signal all policies that reach a final status. Since
policies cannot be created with the final status, the only action to monitor is update.
To prevent registering other updates to the policy the following dynamic PL/SQL
can be created, the scope of the dynamic PL/SQL should be set to Event. The body
can hold:

 -- declaration section: define cursors and variables here
 l_retval boolean := true;
begin
 -- body section:
 -- return boolean value --
 return new_rec.status = 'D' and
 new_rec.status <> old_rec.status;
end;

Since this PL/SQL definition will be linked to the VER_POLISSEN table in the event
definition window the new_rec and old_rec variables will hold all fields available
in that table.

4.3. Batch Handled Events
Events with storage clause set to table will be handled by the Process Business Events
batch.

4.3.1. Begin Handler

The (package) procedure defined for the begin handler in the event definition is
called once. This can be used for example to open a file for writing log messages. The
framework will commit after executing the begin handler.

The (package) procedure receives the following parameters:

• The name of the event

 Building Your Own Business Events 14

• The run number of the process
• The date of the last processed run

my_event_pck.begin_handler
(pi_name in varchar2
, pi_run_nr in number
, pi_date_detection in date
);

4.3.2. Handler

The handler is called for each instance of the event. The framework will commit after
executing the handler. The handler (package) procedure receives the following
parameters:

• The code of the event
• The date that was passed when registering the event
• The date the event was registered

my_event_pck.handler
(pi_name in varchar2
, pi_date_source in date
, pi_date_detection in date

);

4.3.3. End Handler

The end handler is called once after processing all events. For example this can be
used to save information about the process run such as the total number of events
processed, the number of failed events or close the file opened in the begin handler.
The framework will commit after executing the end handler.

my_event_pck.end_handler
(pi_name in varchar2
, pi_run_nr in number
, pi_date_detection in date

);

4.3.4. Purge Intervals

Removal of old event records is a batch function. It is possible to set up the intervals
in the Event Definition window. It is possible to have different values for failed
events since investigation may take longer than successful events.

The batch will remove records from the ALG#EVENTS tables at the end of the run.

4.4. Near Real Time Events
Events stored to a queue are processed by a continuous Background Process. Since
each event is processed individually no begin handler or end handler is available for
these events. Only the handler is applicable.

 Building Your Own Business Events 15

4.4.1. Handler

The OHI Back Office event package will take an event from the queue and call the
handler defined in Event Definition window. The (package) procedure for this
handler receives an object as parameter. This object contains the following
information.

• The ID of the event definition
• The ID of the table the signaled record is stored in
• The record ID
• The DML type that caused the event

The handler can be defined as:

my_event_pck.queued_event_handler
(pi_load in alg_ede_payload_tp
);

4.5. Custom Plug-ins
The event tables and event framework are pre-installed in the OHI Back Office
database. The custom plug-ins for the detector and handlers of the events must be
implemented in a separate database schema.

The following is assumed for the purpose of this installation procedure:

• The event definition is called my_event

• The custom components are combined in a single package called
my_event_pck

• The my_event_pck.install procedure creates and configures an event definition
for my_event

• The OHI components are owned by database schema ozg_owner

• The database schema for bespoke software is called my_schema

• The business event framework is started by the ozg_batch schema.

The installation consists of the following steps:
• Ensure that public synonyms and access privileges are created for the

ozg_owner components that are accessed by the my_event_pck package (you
may only use the objects granted by
$OZG_ADMIN/OZG_DIRECT.grt.<sid> sqlplus script for this)

• Ensure that my_schema has execute privileges for
ozg_owner.alg_event_interface_pck (should be taken care of in the previous step
but in previous releases the grant was missing)

• Compile the package specification and package body for my_event_pck under
the database schema my_schema

• Create a public synonym my_event_interface_pck for my_schema.my_event_pck
• Grant execute privileges for my_schema.my_event_pck to the ozg_owner

schema.
• Run my_event_interface_pck.install under my_schema to install the definition for

my_event or set up the event definition using the Event Definition window.

 Building Your Own Business Events 16

4.6. Starting Business Events
Starting business events is dependent of the business event definition. Detected
events are registered by the Process Business Events batch. Triggered events are
started by database triggers.

4.6.1. Process Business Events Batch

The Process Business Events (SYS5001S) batch has been developed to start up a
business event processing run. The batch can be scheduled using the Submit Batch
Request (SYSS003F) window.

Figure 1 - Sample of scheduling Process Business Events (SYS5001S) batch

In the screenshot business event ‘AZR_MOD_PRT’ will start every hour.

The batch serves two purposes and is only needed for these types of events:

1. Signal Detected events.
For detected events the program code defined by the Detector is executed
once. See Detector for a more detailed description of the detector.

This step is skipped for triggered events.

2. Process events stored in a table.
Events stored in the table are processed. First the specified Begin Handler is
called once. Per event the Handler is called to process the event. After
processing all events the End Handler is called once.

After the end handler the batch purges old events.

This step is skipped for events stored in the queue.

 Building Your Own Business Events 17

Note: Detection and Processing in one run

For Detected events storing the events to a table and registering and processing the events
happen in the same processing run.

4.6.2. Queued Events

Events stored to the queue are processed by a dedicated process monitoring the
business event queue. Events are taken from the queue and the handler is called to
process the event.

The dedicated process is started and stopped together with the OHI Back Office batch
scheduler.

 Examples 18

5. Examples
This chapter contains examples of how to set up events to be handled by the Business
Event Framework.

5.1. Detected Event, Store to a Table
This example shows an event to signal all relations that have been updated since the
last time the event was run. It writes the identification of the relations to a file. Since
there is no need to act on individual updates and no immediate action is required
upon the change, a detected event storing to a table will suffice.

5.1.1. Event Definition

The screenshot shows an example event definition named OHI_DEMO_D_T. It is a
detected event (Type is set to Detected) and it will store events to the ALG#EVENTS
table (Storage set to Table).

5.1.2. Detector

The detector of the event in this example is OHI_EVENT_DEMO_PCK.DETECTOR_T.
Typically the code of a detector consists of a query to select the records to be
registered and a call the ALG_EVENT_INTERFACE_PCK package to save the
identification of the selected records:

 Examples 19

5.1.3. Begin Handler

The begin handler OHI_EVENT_DEMO_PCK.START_HANDLER_T in this example is
used to open the file for writing the identifications of the relations.

5.1.4. Handler

The handler OHI_EVENT_DEMO_PCK.HANDLER_T of the example writes the data
to the opened file. The code parameter contains the identification of the relation
record. It could be used to select more detailed information from the relation record.
For instance who and when the last modification was made. Since this is a detected
event the data would however only reflect the last modification.

5.1.5. End Handler

The end handler OHI_EVENT_DEMO_PCK.END_HANDLER_T in this example is used
to close the file.

 Examples 20

5.1.6. Scheduling the Event

All steps for the detected event have finished. The event can be scheduled to run
using Submit Batch Request (SYSS003F) window.

 Examples 21

5.2. Triggered Event, Store to the Queue

This example shows how to define an event that will be registered when a new
record is created.

5.2.1. Evaluation Function

First step is creating the evaluation function which will be used in the event
definition. OHI Back Office will validate the entered PL/SQL code when it is saved.
Since the PL/SQL Definition has not yet been linked to a table this validation will fail.
Therefore the indicator ‘Active’ should not be checked. In that case the PL/SQL code
is disabled and will not be validated.

The complete Body of the PL/SQL definition is not visible, it contains:

 Examples 22

The example shows that when a record is created for a male relation and the code is
equal to ‘40’ the function will return true and an event will be registered.

Since it is linked to the RBH_DERDEN_CODERINGEN table in the event definition, the
new_rec will hold all the new values of the record. It can be used for more
sophisticated evaluation than this example.

5.2.2. Event Definition

The screenshot shows example event definition named OHI_DEMO_T_Q. It is a
triggered event (Type is set to Triggered) and it will store events to Business Event
Framework queue (Storage set to Queue). This type of event will be signaled by

 Examples 23

database triggers so a separate Detector is not needed. A begin handler and end
handler are not required when the storage clause is set to Queue as the events will be
handled.

The event will be signaled by the creation of a record in the
RBH_DERDEN_CODERINGEN table when the dynamic PL/SQL definition EVT_CK_40
returns true.

‘Active’ indication

After the PL/SQL Definition has been linked to a table the ‘Active’
indication in the Dynamic PL/SQL Definition window must be checked to
validate and enable the code.

5.2.3. Handler

The events are handled by OHI_EVENT_DEMO_PCK.HANDLER_Q. It takes the
identification of the record from the object type it receives as parameter and sends an
email to notify another department for instance.

Business Event Framework – Manual (cta13665) Appendix 1 – ALG_EVENT_INTERFACE_PCK 24

Appendix 1 – ALG_EVENT_INTERFACE_PCK

Procedures Parameters

Name Description Name Type Description

install Creates an event definition in the database.

Also available as function returning
alg_event_definities.id%type.

pi_name alg_event_definities.naam%type The name of the event definition.
pi_description alg_event_definities.oms%type The description of the event definition.
pi_event_type alg_event_definities.type_signalering%

type
Indicates how the event is signaled. Allowable values:
D for Detected events
T for Triggered events

pi_storage alg_event_definities.type_opslag%type Indicates how events are stored. Allowable values:
T for Table
Q for Queued

pi_handler alg_event_definities.handler%type The (package) procedure for the handler of the event.
pi_detector alg_event_definities.detector%type The (package) procedure for the detector of the event.
pi_begin_handler alg_event_definities.begin_handler%

type
The (package) procedure for the begin handler of the
event.

pi_end_handler alg_event_definities.end_handler%type The (package) procedure for the end handler of the event.
pi_purge_processed alg_event_definities.schoningsinterval_

verwerkt%type
Determines after how many days successfully processed
events can be deleted from the event table.

pi_purge_failed alg_event_definities.schoningsinvterval_
mislukt%type

Determines after how many days failed events can be
deleted from the event table.

deinstall Removes an event definition form the database. When
events still exist for this definition an error is given.

pi_name alg_event_definities.naam%type The name of the event definition to be removed from the
database.

deinstall Removes an event definition form the database. When
events still exist for this definition an error is given.

pi_ede_id alg_event_definities.id%type The ID of the event definition to be removed from the
database.

purge_all_events Removes all events for the given event definition from
the database. Can be used prior to the deinstall
procedure to remove all events.

pi_name alg_event_definities.naam%type The name of the event for which all the event occurrences
will be removed.

purge_all_events Removes all events for the given event definition from
the database. Can be used prior to the deinstall
procedure to remove all events.

pi_ede_id alg_event_definities.id%type The ID of the event definition for which all the event
occurrences will be removed.

reapply_failed_
event

Reset events with the status 'Failed' from a previous
run.

pi_name alg_event_definities.naam%type the unique name of the event definition
pi_code alg#events.code%type the identifying code of the event

reapply_failed_
event

Reset events with the status 'Failed' from a previous
run.

pi_ede_id alg_event_definities.id%type the unique identifier of the event definition
pi_code alg#events.code%type the identifying code of the event

add_event This procedure must be called by the detector of an
event to add an occurrence of the event to the event
table or queue.

pi_name alg_event_definities.naam%type The name of the event definition.
pi_code alg#events.code%type The identifying code of the event. Must be in format:

Table_id##record_id##dml_type. E.g. 1234##876##U.

Business Event Framework – Manual (cta13665) Appendix 1 – ALG_EVENT_INTERFACE_PCK 25

Procedures Parameters

Name Description Name Type Description

When the storage type of the event is set to Table, the
event is only created in case there is no existing event
with the given code for the event definition with a
status N(ew).
When the storage type of the event is set to Queue, the
event is always placed on the queue.

pi_date alg#events.master_date%type Optional timestamp for ordering event handling.

add_event This procedure must be called by the detector of an
event to add an occurrence of the event to the event
table of queue.
When the storage type of the event is set to Table, the
event is only created in case there is no existing event
with the given code for the event definition with a
status N(ew).
When the storage type of the event is set to Queue, the
event is always placed on the queue.

pi_ede_id alg_event_definities.id%type The ID of the event definition.
pi_code alg#events.code%type The identifying code of the event. Must be in format:

Table_id##record_id##dml_type. E.g. 1234##876##U.
pi_date alg#events.master_date%type Optional timestamp for ordering event handling.

add_event This procedure must be called by the detector of an
event to add an occurrence of the event to the event
table or queue.
In case the storage type of the event is set to Table, the
event is only created when there is no existing event
with the given code for the event definition with a
status N(ew).
In case the storage type of the event is set to Queue,
the event is always placed on the queue.

pi_ede_payload alg_ede_payload_tp The object type containing the data of the event.

type_payload_to_
code

Function which converts a storage type Queue
payload type to a storage type Table format.
Returns alg#events.code in the format
table_id##record_id##dml_type. E.g. 1234##876##U

pi_ede_payload alg_ede_payload_tp The object type containing the data of the event.

code_payload_to_
type

Function which converts a storage type Queue
payload type to a storage type Table format.
Returns alg_ede_payload_tp.

pi_name alg_event_definities.naam%type The name of the event definition.
pi_code alg#events.code%type The identifying code of the event. Must be in format:

Table_id##record_id##dml_type. E.g. 1234##876##U.
code_payload_to_
type

Function which converts a storage type Queue
payload type to a storage type Table format.
Returns alg_ede_payload_tp.

pi_ede_id alg_event_definities.id%type The id of the event definition.
pi_code alg#events.code%type The identifying code of the event. Must be in format:

Table_id##record_id##dml_type. E.g. 1234##876##U.

Business Event Framework – Manual (cta13665) Appendix 2 – Framework Tables 26

Appendix 2 – Framework Tables

This table holds the event definitions and contains the following

ALG_EVENT_DEFINITIES

• NAAM (Name)
This is a logical name for the event type, for example: AZR_MODIFY_PARTY.

• OMS (Description)
For example: Export updates to parties to the XYZ system.

• DETECTOR
A custom plug-in procedure which is called to detect events for this event definition. Example:
azr_mod_prt_pck.detector.

• BEGIN_HANDLER
A plug-in procedure that must be called once before processing events for this type, for example to create a .csv file to
which all event data will be written.

• HANDLER
A plug-in procedure which is called for every event that must be processed. Example: my_event_pck.handler.

• END_HANDLER
A plug-in procedure which is called once after all events have been processed, for example to close a .csv file to which all
event data were written.

• LAATSTE_DETECTIE_DATUM (last_detection_date)
Used by the framework to record the last date when the detection mechanism was used.

• STATUS
Updated by the framework to avoid multiple starts of the framework for this event definition.
The status can be: ‘K’ (ready) or ‘L’ (running).

• RUN_NR
Managed by the framework. All events that were detected in a single run are given the same run number for later
processing and reporting.

• SCHONINGSINTERVAL_VERWERKT (Purge interval processed)
Defines when (successfully) processed events for this definition may be purged. The default interval is 7 days.

• SCHONINGSINTERVAL_MISLUKT (Purge interval failed)
Defines when failed events for this definition may be purged. The default interval is 27 days.

• IND_ACTIEF (Active indicator)
Indicates whether the event is currently active.

Business Event Framework – Manual (cta13665) Appendix 2 – Framework Tables 27

This table holds the tables which are monitored by the event for triggered events. It contains:

ALG_EVENT_INIT_WIJZIGINGEN

• EDE_ID
Foreign key to ALG_EVENT_DEFINITIES.

• TAB_ID
Foreign key to ALG_TABELLEN.

• IND_INSERT
Indicates whether insert actions on the table should be signaled.

• DPS_ID_INSERT
Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the insert trigger.

• IND_UPDATE
Indicates whether update actions on the table should be signaled.

• DPS_ID_UPDATE
Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the update trigger.

• IND_DELETE
Indicates whether delete actions on the table should be signaled.

• DPS_ID_DELETE
Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the delete trigger.

• IND_ACTIEF (Active indicator)
Indicates whether the event is currently active.

This table stores events with storage clause set to Table.

ALG#EVENTS

• EDE_ID
Foreign key to the ALG_EVENT_DEFINITIES table for the event definition that signaled this event.

• EDE_RUN_NR
Set by the framework to group event occurrences. The highest run number is stored in the event definition.

• CODE
Code retrieved by the detection plug-in for use as a key to process the event. In most cases this will be the primary key
that can be used to find the data with which the event is to be processed. To be compatible with storing the event to the
queue this should be in format table_id##record_id##DML-type.

• STATUS
Records the processing status of an event occurrence. Possible values: ‘N’ (new), ‘O’ (pending), ‘V’ (processed), ‘M’
(failed).

• DATUM_ORIGINEEL (original date)
An optional column that can be used to determine the processing order.

Business Event Framework – Manual (cta13665) Appendix 2 – Framework Tables 28

• CREATIE_MOMENT (creation date)
This standard column is used for processing in the correct order if the DATUM_ORIGINEEL has not been set.

This table holds event errors.

ALG#EVENT_ERRORS

• EDE_ID (event definition ID)
Refers to the event definition that detected this event.

• TAB_ID (table ID)
Refers to the table on which the DML was executed.

• RECORD_ID
Refers to the record of the changed record. Together with TAB_ID this uniquely identifies the record in OHI Back Office.

• DML_TYPE
What DML action caused the event

• EET_ID (event ID)
Refers to the event in ALG#EVENTS table.

• CODE
Code for event processing.

• CREATIE_MOMENT (creation date)
Timestamp when the error occurred

• FOUTCODE (Error code)
The code of the error occurred.

• FOUTMELDING (Error message)
The error message for the error that occurred.

The object for storing events to the queue contains the following:

ALG_EDE_PAYLOAD_TP

• EDE_ID (event definition ID)
Refers to the event definition that detected this event.

• TAB_ID (table ID)
Refers to the table on which the DML was executed.

• RECORD_ID
Refers to the record of the changed record. Together with TAB_ID this uniquely identifies the record in OHI Back Office.

• DML_TYPE
What DML action caused the event

	1. Introduction
	2. Overview
	2.1. Signaling Events
	2.1.1. Detected Events
	2.1.2. Triggered Events

	2.2. Responding to Events
	2.2.1. Batch Response
	2.2.2. Near Real Time

	2.3. Combining Signaling and Response Types
	2.3.1. Detected Events, Storing to a Table
	2.3.2. Triggered Events, Storing to a Table
	2.3.3. Detected Events, Storing to the Queue
	2.3.4. Triggered Events, Storing to the Queue

	3. Framework Components
	3.1. OHI Back Office Windows
	3.1.1. Event Definition
	3.1.2. Dynamic PL/SQL Definition

	3.2. Event Definition Package
	3.2.1. Event Definition
	3.2.2. Event Handling
	3.2.3. Utility

	3.3. Event Handling Package
	3.4. Process Business Event Batch
	3.5. Background Process
	3.6. Business Event Framework Tables

	4. Building Your Own Business Events
	4.1. Detected Events
	4.1.1. Detector
	4.1.2. Adding Events
	4.1.3. Example

	4.2. Triggered Events
	4.2.1. Tables
	4.2.2. Fine Tuning
	4.2.3. Example

	4.3. Batch Handled Events
	4.3.1. Begin Handler
	4.3.2. Handler
	4.3.3. End Handler
	4.3.4. Purge Intervals

	4.4. Near Real Time Events
	4.4.1. Handler

	4.5. Custom Plug-ins
	4.6. Starting Business Events
	4.6.1. Process Business Events Batch
	4.6.2. Queued Events

	5. Examples
	5.1. Detected Event, Store to a Table
	5.1.1. Event Definition
	5.1.2. Detector
	5.1.3. Begin Handler
	5.1.4. Handler
	5.1.5. End Handler
	5.1.6. Scheduling the Event

	5.2. Triggered Event, Store to the Queue
	5.2.1. Evaluation Function
	5.2.2. Event Definition
	5.2.3. Handler

	Appendix 1 – ALG_EVENT_INTERFACE_PCK
	Appendix 2 – Framework Tables

