
Start

Oracle Health Insurance Back
Office

Object Authorization within

Oracle Health Insurance Back Office

version 1.6

Part number: E51467_01

December 2013

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

This software and documentation may provide access to or information on content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related
notices. For information on third party notices and the software and related documentation in connection with
which they need to be included, please contact the attorney from the Development and Strategic Initiatives
Legal Group that supports the development team for the Oracle offering. Contact information can be found on
the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality described
in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions
of your Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

CHANGE HISTORY

Release Version Changes

10.12.2.0.0 1.5 • Grants to four views are not dependent anymore on use of General
Ledger

10.12.3.0.0 1.6 • Information is added about the ‘with grant option’ grant for custom code
objects used in ‘translation views’.

Introduction

This document contains a detailed explanation of the procedure employed for roles,
‘grants’, custom software (including custom code defined within the application as
pl/sql definitions) and accounts used for interfaces. This is based on the principle that
the server component of the application must ultimately be fully robust and not
permit any corrupt modifications.

Data may therefore only be modified in such a manner that it remains compliant with
the business rules.

Robust database

One of the main ideas behind the ‘modernization’ of the application, as implemented
some years ago, was the provision of a ‘robust database’ that may also be
manipulated using software other than the standard reference version. This allows
clients to develop their own (user) interfaces independently from Oracle. This refers
to interfaces that are specifically geared towards supporting a specific process.

Because this modernization process could not be completed ‘overnight’ in one release
the consequences were published by means of amendments in various releases.
Furthermore, only the database structure was being modernized as part of this
process. The application software remained unchanged for the most part.

Bearing this in mind, the object authorization is explained in further detail below.

In this context, we define a ‘robust database’ as follows:

1) The inability to implement modifications that do not comply with the integrated
business rules.

2) This is regardless of the manner in which the database is accessed, as the check is
performed directly on the data within the database.

The consistency and validity of the data can be guaranteed for as long as the DBA
ensures that the database can only be accessed via accounts that have no more than
the permitted rights. This also applies to the parts of the database structure that have
not yet been modernized, provided that the instructions in this document are
observed.

This type of robust database does not contain an authorization function to establish
whether the user may modify the data concerned. Moreover, there is no access check
in relation to the visibility of the data in the database to establish whether the user
may view the data concerned.

Multiple ‘user groups’

The application has to support multiple types of users in such a manner that the
robustness of the modernized parts of the database cannot be compromised.

We distinguish the following types of users and processes:

1. Interactive standard application users
These are the users who perform their activities via the screens.

2. Batch processes
These are processes realized as reference software that run in the background
and can be ‘requested’ by the users.

3. Interface users
These are essentially indirect users who interact with the database via a
synchronous or asynchronous customized interface (this is only permitted in
the modernized parts of the database).

This may or may not take place via the API layer.

4. Customization users
Customized software added to the database structure (only permitted for the
modernized parts of the structure) can in many cases be used to modify data
directly. In effect there is no real difference with respect to interface users,
although interface users will not usually perform their activities via a direct
database account. In principle, customization activities are usually performed
next to the API layer.

In actual fact, this distinction in terms of types of users and processes is not yet of
any real benefit. The reason for this distinction will only become clear when these
user groups are examined from a more technical point of view.

Identification, staff and accounts

Users are indicated as staff. Only staff can and may make modifications using the
screens.

Function authorization in screens, etc. is also granted based on the condition that the
user is a member of staff.

The screens require that the user connects to the database using an Oracle account
linked to a member of staff.

When a user submits a script request, the batch process concerned will log on using a
generic Oracle account (usually Oracle/Unix account ‘batch’), after which a check
will be performed in the batch process to establish whether a registered member of
staff submitted the request.

When a user logs on via a customized part of the system and wishes to perform
modifications, they will also have to do so using an Oracle account for which a
member of staff has been registered in the application.

For interface users it may be the case that there is a generic Oracle account for the
sake of optimization, which is used to log on to the database, while it may be
desirable and even necessary that a member of staff registered be specified for
modifications. Another option could be for each ‘interface user’ to log on via their
own Oracle account.

All of these situations must be supported.

Custom code within OHI software

In release 2009.03 a first implementation is offered of dynamic pl/sql code that can be
defined by the customer. This code can be called within certain standard processes of
the application.

For this code these restrictions apply:

1. No DDL is allowed.

2. It is only allowed to query data from the database (so only ‘select statements’
are allowed, the update, delete and insert DML statements are not allowed).

3. It is not allowed to lock any data.

4. It is not allowed to change any package states (i.e. variables within a
package).

5. The code should be very efficient in order to prevent noticeable delays and a
decreased response time (when performance problems are caused by this
code a logged incident will be marked as caused by customer).

6. It is not allowed to circumvent business rules or authorization rules in the
application.

7. Object access is restricted to the access rights implemented for custom code
and as granted to the role OZG_ROL_DIRECT (described below).

8. Transactions may not be influenced (so no rollback, savepoints, autonomous
transactions or whatsoever may be implemented).

These checks will be enforced where possible and may change in strictness over
different application releases.

Additional rules will be defined here based on experiences with this functionality.

Non-OHI software

Interface and customized software can in some cases consist of database objects
(PL/SQL packages, procedures, tables, views, etc.) incorporated into the database in
which the database structure was created. While this is not permitted using the same
framework (account) used to create the objects, a different account may be used.
Moreover, direct references may be made to specific (i.e. not all!) OHI objects.

Naturally, this situation must be supported.

Beware, when custom code objects in a custom code owner account need to be used
in ‘translation views’, views in OHI that can be defined on a custom code definition, it
is important these custom code objects are granted in the correct way. They need to be
granted to the OHI owner account including the ‘with grant option’. This is required
so these views can be granted again.

Points of attention

The above-mentioned points mean that there must be a grant structure that complies
with all of the requirements without in any way jeopardizing the robustness of the
application.

For the regular screen users, it will be sufficient if all database objects are granted to a
single role, and each Oracle account that must be able to use the screens are able to
activate this role. These screens will become ‘familiar’, as they are part of the
reference software. Measures must also be taken to ensure that the users can only
query and modify the data via the screens. In order to ensure compatibility with ‘old’
code, the ‘grants’ provide extensive rights, which essentially facilitate every type of
modification. This includes modifications that cannot be checked by the database side
of the application and should really not be permitted.

For interface and customized software and users we want to utilize a rights structure
that prevents compromising with the robustness layer. Consequently, a much more
limited, robust ‘grant’ structure is required for this purpose.

Nevertheless, the problem is that certain users (staff) may want to use the database in
a variety of ways (via the regular user interface, but also via customized or other
applications that exchange modifications with the OHI application), in which case we
will have to proportionally enable use of another rights structure.

Solution

Recognition of multiple roles and their ‘grants’ makes it possible to use different
rights depending on the purpose.

Consequently, the following roles are used and are mandatory in the database:

1. OZG_ROL

2. OZG_ROL_BATCH

3. OZG_ROL_SELECT

4. OZG_ROL_DIRECT

OZG_ROL

All OHI object rights are assigned to the OZG_ROL role using the OZGGRANTS.ins
script.

This role may not be granted to any account in the database, with no exceptions, even not
the OHI batch scheduler account, for which role OZG_ROL_BATCH is dedicated.

The role is (only) dynamically activated when a user logs on via the OHI screens.
Consequently, this is not a default user role, which prevents the user from performing
modifications on the OHI data using other tools (e.g. SQL*Plus or SQL Developer).

Users cannot activate the role themselves using the commands “SET ROLE” or
“dbms_session.set_role”. The role can only be activated using the
ALG_SECURITY_PCK package, which contains logic for checking whether the role is
created using a supported (user) interface. Checks are also performed to establish
whether a registered member of the OHI staff is using the package.

This is facilitated by means of the ‘public granting’ of a small number of objects.
There are two packages and tables for which public execution and select rights are
granted.

The following rights are granted/updated for this role:

• The rights for the objects related to use or non-use of General Ledger (GL). If
GL is not used, modification rights are granted for the local table
GL_INTERFACE (select, insert, update, delete). If GL is used, rights are not
granted for the GL table, as these rights are granted from GL.

• Select, insert, update and delete rights are granted for all tables. The
modification logging ‘shadow’ tables and external tables form exceptions to
this rule, as only select rights are granted for these tables.

• Select rights are granted for all views, as well as the sequences.

• Execution rights are granted for all stored PL/SQL objects.

• Additional insert, update and delete rights are granted for all views not
directly dependent on the DUAL table.

All objects whose names begin with the letters ‘API’ (the ‘API objects’) form a
general exception to the above-mentioned rules.

For the rest, the above only occurs for the objects whose names begin with a
recognized three-letter subsystem acronym, the exception being the CG$ERRORS
package.

OZG_ROL_BATCH

This role must not be granted to any account in the database, with exception of the OHI
batch scheduler account, to which this role must be granted. All privileges granted to
OZG_ROL are granted to OZG_ROL_BATCH, enabling the batch account to perform
its requested mutations. On installing a patch, in installation step 110, the following
checks are verified:

• The existence of OZG_ROL_BATCH;

• It being granted to the batch account;

• It not being granted to any other account.

OZG_ROL_SELECT

The selection rights to the ‘selectable OHI objects’ are granted to the OZG_ROL_SELECT
role using the OZGGRANTS.ins script. This includes all tables, views and sequences
whose names begin with a recognized three-letter acronym and not ‘API’.

This role therefore gives staff the opportunity to perform selections of data outside of
the user interface.

This role can and may be granted to an interface and/or users of customized
applications who only require, or are only allowed to have query rights.

OZG_ROL_DIRECT

Selection rights for all tables and modification rights for tables that are robust are
granted to OZG_ROL_DIRECT using the OZGGRANTS.ins script. With regard to
modification rights for these tables, column-level inserts and ‘update grants’ are used
to prevent unauthorized column inserts and updates. The table and functional API
objects are also granted to this role. Other database objects are therefore not (!)
granted in order to prevent compromising with the robustness layer.

This role can be granted to interface and/or customization users.

When these ‘direct access grants’ must be allocated directly

This can be necessary if a customized owner account is created with customized
stored procedures, functions or packages that use the objects. In such cases, ‘direct’
grants are required, as this type of stored code cannot be created based on ‘quick
grants’ that only apply when a role is active, which is not the case when a user is
logged out, for example.

 to an account, the
OZG_DIRECT.grt.<ORACLE_SID> script (e.g. OZG_DIRECT.grt.prod) must be used.
This script is created (in the $OZG_BASE directory) every time OZGGRANTS.ins is run.

A more detailed description of the rights granted:

• Select rights for all tables whose names begin with API.

• Execution rights for all packages whose names begin with API.

• Execution rights supplementary to objects used in indexes and some general
objects.

• Select rights like the rights granted to OZG_ROL_SELECT role for all of the
remaining tables, views and sequences.

• Delete grants, column-level inserts and ‘column-level update grants’ to all
regular application tables modernized in line with a ‘robust’ structure. The
‘column-level grants’ help prevent columns that may no longer be modified
as the result of an application from being modified (in certain cases the
column may be modified as the result of business rules). When such columns
are still assigned a (modified) value via the API (table), the value is ignored.

Installation & migration

Installation

See the OZGI001S.sql script for instructions on how to create the above-mentioned
four roles.

Migration

When a client is not yet utilizing the *** ORACLE-RECOMMENDED *** secured role
OZG_ROL and wishes to activate this role, the role must be modified as follows under
SYS:

 alter role ozg_rol identified using <OHI Back Office
owner>.alg_set_gui_role_prc;

 e.g.

 alter role ozg_rol identified using ozg_owner.alg_set_gui_role_prc;

The OZG_ROL role must subsequently be revoked by means of a revocation for all
database accounts.

	Introduction
	Robust database
	Multiple ‘user groups’
	Identification, staff and accounts
	Custom code within OHI software
	Non-OHI software
	Points of attention
	Solution
	OZG_ROL
	OZG_ROL_BATCH
	OZG_ROL_SELECT
	OZG_ROL_DIRECT

	Installation & migration
	Installation
	Migration

