

Oracle® Transportation Management

Report Designer’s Guide

Release 6.3

Part No. E38433-05

January 2015

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. ii

Oracle Transportation Management Report Designer’s Guide, Release 6.3

Part No. E38433-05

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated

software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,

disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in

dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages

incurred due to your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. iii

Contents

CONTENTS .. III

SEND US YOUR COMMENTS ... V

PREFACE ... VI

CHANGE HISTORY .. VI

1. REPORTING OVERVIEW ... 1-1

ARCHITECTURE .. 1-1

EXTERNAL GENERATION .. 1-1
EMBEDDED GENERATION ... 1-2

BI PUBLISHER CONCEPTS .. 1-3

DATA GENERATION .. 1-3
TRANSFORMATION ... 1-4
LOCALIZATION ... 1-5
ADDITIONAL INFORMATION ... 1-5

2. REPORT DESIGN .. 2-1

QUERY TEMPLATE CREATION .. 2-1

SQL TEMPLATE .. 2-1
DATA TEMPLATE ... 2-2
INTEGRATION TEMPLATE .. 2-4
UPLOADING A QUERY TEMPLATE FOR EMBEDDED REPORTING .. 2-4

FORMAT TEMPLATE CREATION .. 2-5

UPLOADING A FORMAT TEMPLATE FOR EMBEDDED REPORTING ... 2-5

REPORT CLASSIFICATION .. 2-6
PARAMETERIZATION ... 2-8

3. TUTORIALS .. 3-1

SIMPLE SHIPMENT SUMMARY ... 3-1

STEP 1: GENERATE A DATA MODEL ... 3-1
STEP 2: CREATE A QUERY TEMPLATE ... 3-2
STEP 3: EXPORT SAMPLE XML FOR LAYOUT DESIGN ... 3-2
STEP 4: DESIGN A LAYOUT .. 3-3
STEP 5: CREATE A FORMAT TEMPLATE .. 3-3
STEP 6: CREATE A REPORT .. 3-3
STEP 7: TEST THE REPORT ... 3-4

SIMPLE COMMERCIAL INVOICE ... 3-5

STEP 1: GENERATE A DATA MODEL ... 3-6
STEP 2: CREATE A QUERY TEMPLATE ... 3-6
STEP 3: EXPORT SAMPLE XML FOR LAYOUT DESIGN ... 3-6
STEP 4: DESIGN A LAYOUT .. 3-6
STEP 5: CREATE A FORMAT TEMPLATE .. 3-7
STEP 6: CREATE A REPORT .. 3-8
STEP 7: TEST THE REPORT ... 3-9

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. iv

4. ADVANCED CONTENT ... 4-1

DATE AND TIMESTAMP HANDLING ... 4-1
DATA SECURITY .. 4-2
USING UTILITY PACKAGES ... 4-3

ORACLE TRANSPORTATION MANAGEMENT PACKAGE REFERENCE ... 4-3
ADDING CUSTOM PACKAGES ... 4-1

DYNAMIC SQL PARAMETERIZATION ... 4-1
USING A SAVED QUERY AS A REPORT INPUT PARAMETER .. 4-3

ADVANTAGES .. 4-3
HOW TO USE THE SAVED QUERY AS REPORT INPUT PARAMETER .. 4-4

5. ADVANCED LAYOUT ... 5-1

NAVIGATING ORACLE TRANSPORTATION MANAGEMENT INTEGRATION XML 5-1

NAMESPACES... 5-1
PROPERTIES .. 5-1

PDF CUSTOMIZATION ... 5-1

6. SCALABILITY ... 6-1

TIER CONTROL .. 6-1
APPLICATION SERVER SCALABILITY ... 6-1
WEB SERVER SCALABILITY .. 6-2
EXTERNAL BIP SERVER FARMS ... 6-2
DISABLING EMBEDDED REPORTS ... 6-3

7. TROUBLESHOOTING .. 7-1

REPORT LOGGING .. 7-1
INTERMEDIATE FILE PERSISTENCE ... 7-2

8. ORACLE REPORTS MIGRATION .. 8-1

9. ADDITIONAL RESOURCES .. 9-1

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. v

Send Us Your Comments

Oracle Transportation Management Report Designer’s Guide, Release 6.3

Part No. E38433-05

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication.
Your input is an important part of the information used for revision.

 Did you find any errors?

 Is the information clearly presented?

 Do you need more information? If so, where?

 Are the examples correct? Do you need more examples?

 What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can
send comments to us in the following ways:

 Electronic mail: otm-doc_us@oracle.com

If you would like a reply, please give your name, address, telephone number, and electronic mail

address (optional).

If you have problems with the software, contact Support at https://support.oracle.com or find the
Support phone number for your region at http://www.oracle.com/support/contact.html.

mailto:otm-doc_us@oracle.com

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. vi

Preface

This document is intended for Oracle Transportation Management clients, Oracle Transportation
Management System administrators, or Oracle Transportation Management Consultants who have an

interest in creating or customizing reports intended for use within the Oracle Transportation
Management Application.

Change History

Date Document Revision Summary of Changes

11/2012 -01 Initial release

Added the Using a Saved Query as a Report Input Parameter
section.

Added information on supporting CSV format for report layouts.

Added information on supporting XSL-FO stylesheets for eText

output.

12/2013 -02 Added information on Excel 2007 formats.

05/2014 -03 Added information about encoding URL calls to the BI Publisher
external servlet.

06/2014 -04 Updated information for external BI Publisher servers, in
accordance with new support for report systems.

01/2015 -05 Added information about deprecating embedded reports.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 1-1

1. Reporting Overview

This document describes how to design and generate reports for Oracle Transportation Management.
It is intended for Report designers and integrators who need to develop reports based off of Oracle

Transportation Management data, and for system administrators who need to configure and tune
report generation. It is not intended to serve as an installation or users guide. Please consult the
Installation Guide for details on installing Oracle Transportation Management; the online help for
details on generating ad-hoc or scheduled reports from within Oracle Transportation Management.

Architecture

Oracle Transportation Management supports two methodologies to generate reports:

 External: Report requests are sent via HTTP to an external reporting system. The report

server may begin an interactive session with you or simply return report content.

 Embedded: Report requests are routed to an Oracle Transportation Management application

server. The server uses Oracle’s Business Intelligence Publisher (BI Publisher) libraries to

generate report content.

Each report may be associated with a specific report system. This system defines the communication
between Oracle Transportation Management and the external report server. This may be an HTTP
URL, in the case of third-party reporting tools, or connection information for a BI Publisher server. If a
report is associated with no report system, it is generated with embedded BI Publisher 10g libraries.

Figure 1 summarizes the possible data flows.

Browser
Web

Server

External

Report Server

(interactive)

Redirect

Content

HTTP Report

Request

HTTP Report

Request

HTML, PDF

Excel, XML

Content

RMI Report

Request

Application

Server

Embedded

BI Publisher

External

Report Server

(content)

OTM

Document

Workflow
External

BI Publisher

Server

RMI Content

HTTP

SO
AP

Printer E-Mail

Figure 1: Reporting Architecture

External Generation

When providing an external report link to the browser, Oracle Transportation Management checks the
type of external report.

If the external reporting system does not handle embedded content, the link directly maps to the
report system URL. After selecting the report, you are redirected to the external report system. This
system may prompt for parameters and/or distribution, generate the report, and return report content
to the browser. Oracle Transportation Management makes no assumptions regarding any returned
content.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 1-2

If the external reporting system, though, handles embedded content, the report link connects to

standard Oracle Transportation Management reporting screens. These screens allow you to run ad-hoc
or scheduled reports. For ad-hoc reports, an HTTP request is sent to a web server which passes the
request via RMI to an application server. The application server sends an HTTP request to the report

server and assumes the response, if successful, contains report content. This content is piped back
through RMI to the web server, and then through HTTP to the browser. The content may also be
distributed via e-mail, IPP printing, and/or stored with an associated business object.

Scheduled report requests, or requests triggered by a workflow agent, similarly send an HTTP request
to the report server. The response content is distributed via e-mail, printed via IPP, or stored with an
associated business object.

External Generation via BI Publisher

Streamlined support is available when generating reports on a remote BI Publisher server or server
farm. Requests are sent directly from the application server to BI publisher via a SOAP web service

call. Results or errors are returned by the service. This allows full use of BI Publisher 11g features
such as interactive reports and sub templates.

Default Report System

Upon installation, a default report system named DEFAULT is available for reports. This system points
to a single installation of BI Publisher where properties specify host and login information1. In this
way, simple installations with a common BI Publisher report server can be easily moved between test
and production environments.

Embedded Generation

With embedded generation, the report link connects to standard Oracle Transportation Management
reporting screens. These screens allow you to run ad-hoc or scheduled reports. For ad-hoc reports, an

HTTP request is sent to a web server which passes the request via RMI to an application server. The
application server invokes BI Publisher APIs to generate the report within the server’s JVM2. The

resulting content is piped through the web server back to the browser. The content may also be
distributed via e-mail, IPP printing and/or stored with an associated business object.

Scheduled report requests, or requests triggered by a workflow agent, similarly invoke BI Publisher
from the application server. The response content is distributed via e-mail, printed via IPP, or stored

with an associated business object.

Note that embedded report generation supports only reports designed with BI Publisher 10g. For 11g
support, reports must be generated via an external BI Publisher server.

1 The following properties control the DEFAULT BI Publisher report system:

 glog.bip.externalFarm.host = the BI Publisher host name

 glog.bip.externalFarm.port = the BI Publisher port

 glog.bip.externalFarm.user = the BI Publisher user for report generation

 glog.bip.externalFarm.password = the BI Publisher user password

 glog.bip.externalFarm.reportPath = an optional root path for all reports

2 See the Tier Control section for properties to control which tier, web or application, generates

report components.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 1-3

BI Publisher Concepts

Oracle Transportation Management is tightly integrated with BI Publisher to deliver high quality,
multiple format output, translation compliant, and easily customizable reports which span the entire
application. The advantages of BI Publisher include the reduced cost of report maintenance, a

consistent user interface, the ability to generate reports in multiple output formats, and the ability to
use already familiar tools to develop report layouts. BI Publisher enables the separation of the report
data from the report design layout, as well as, report translations. It provides flexibility in the
creation, modification, and maintenance of reports.

Figure 2 summarizes the process flow for BI Publisher report generation.

Figure 2: BI Publisher Report Generation

Data Generation

At its core, BI Publisher takes an XML representation of data and transforms it against a template of
the report layout. The XML can be generated by:

 A SQL Template. BI Publisher executes the SQL statement against a given data source and

generates XML elements for each selected column. Nested elements can be added via cursors.

Report parameters are specified with named bind variables. The use of SQL has the advantage

of simplicity, but may restrict data needed for layout design.

 A Data Template. A data template is a standardized XML document which defines the

information needed to generate data content for the report. It includes a list of report

parameters, SQL statements to retrieve content based on those parameters, and a mapping of
resulting SQL columns to XML elements. Creating a data template requires understanding of

the BI Publisher Data Template schema, but provides greater flexibility by mapping dependent

and independent relational data to XML.

 An external XML generator. When using embedded generation, BI Publisher can accept an
external XML for data transformation. This approach minimizes data design but may

complicate report layout. Specifying individual fields within the report can require complex

XPath expressions.

Data
Source

Data
XML SQL Template

Data Template
PDF Layout

RTF Template

BIP
Content

Generator

BIP
Transformer

Report

XML Generator

(e.g. OTM
Integration)

XSL:FO
Template

eText Layout

XLIFF
Translations

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 1-4

Other data models can be used with BI Publisher, but these are not supported by embedded

generation.

Transformation

BI Publisher includes a transformation engine that applies XML data against a report layout. The
layout defines the visual structure of the report, including markup tags to populate the report XML

from data generation. This markup defines:

 placeholders for XML data. For simple XML schemas, the placeholder can simply be the
element name. Complex schemas may require XPath expressions to navigate to the correct

data.

 grouping definitions. Tabular data can be inserted into reports using special markup tags to

define the repeating XML element. Columns are then defined with placeholders relative to the

parent element.

 layout-specific commands.

The output of the transformation engine is a report document. Depending on the layout type, the

report user can select the report format.

Table 1 lists each layout supported by BI Publisher, mechanisms for adding markup, and a list of
report formats available3.

Layout Type Recommended
Design Tool

Markup Mechanism Supported Report
Formats

Rich Text Format
(RTF)

Microsoft Word with
the BI Publisher
Template Builder
plug-in

XML-style markup tags

Help text in MS-Word
fields

HTML, RTF, PDF, Excel,
CSV4, Excel 20074

Portable Document
Format
(PDF)

Adobe Acrobat Acrobat form fields PDF

Extensible Stylesheet

Language Formatting
Objects
(XSL:FO)

Any XSL or text

editor

XSL transformation

commands (e.g.
<xsl:value-of …>)

HTML, RTF, PDF, Excel,

CSV, Excel 2007

Text, if the XSL
stylesheet outputs
fixed-column text.

3 Oracle Transportation Management v6.2 is certified with BI Publisher v10.1.3.4. BI

Publisher v11.1 supports a proprietary layout format for use with its custom layout editor.

Report designers can use this layout to develop external reports. Embedded reports will

support additional v11.1 layouts in future Oracle Transportation Management releases.

4 Note that CSV support is available only when BI Publisher is accessed via an external

server or farm.

4 The Excel 2007 format is supported only with BI Publisher 11g version and only when

accessed via an external server or farm.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 1-5

Layout Type Recommended

Design Tool

Markup Mechanism Supported Report

Formats

Electronic Text
(EFT or EDI)

Microsoft Word with
the BI Publisher
Template Builder
plug-in

XML-style markup tags Text

Table 1: Report Layouts

Few report designers directly use XSL:FO layouts. For RTF templates, though, transformation
performance can be enhanced by converting each RTF layout to XSL:FO. See the XSL vs. XSL:FO

Transformation section in the Advanced Layout chapter for more information.The format, Excel
2007 generates a pure binary excel file which will be rendered to the Browser, Email and Printer with
MIME type as application/vnd.openxmlformats-officedocument.spreadsheetml.sheet.

The Excel format is now enhanced to provide excel files which will be backed by either HTML or
MHTML. This can be configured via a property glog.bipreports.excelFormat.backedByMHTML. The
default value is false. If true, when we request the report format as Excel, a MHTML report will be

generated and will be rendered to Browser, Email and Printer as application/vnd.ms-excel MIME Type.
If false, when we request the report format as Excel, a HTML report will be generated and will be
rendered to Browser, Email and Printer as application/vnd.ms-excel MIME Type

Localization

BI Published supports localization of RTF labels via a translation template. This template is an XML
Localization Interchange File Format (XLIFF) file containing translations required by the layout. These
are used during transformation for proper translations to be used. An XLIFF is a standard format,
which has its own standards and specifications. They can be created manually or automatically

generated from the RTF layout. XLIFF files are not required if the report layout is already translated
for the locale where it is being used.

Additional Information

For more detailed information regarding data generation and transformation, including details on RTF,
PDF and eText markup, consult the Oracle Business Intelligence Publisher Report Designer's Guide.

http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12187/toc.htm

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-1

2. Report Design

This section provides guidelines for designing a report integrated with Oracle Transportation
Management. It is not meant to be an exhaustive description of BI Publisher or any other reporting

tool, but to present a streamlined approach to quickly build reports. It requires installation and a basic
understanding of both products.

Oracle Transportation Management includes a set of analytic and transactional5 reports available to all
report users. As these reports have particularly complex data templates6, designers are discouraged
from using them as templates for custom reports. The guidelines and examples provided in this
document should be used as a starting point for new reports.

To create an embedded BI Publisher report, the report designer:

1. Creates a template for data generation. See the Query Template Creation section.

2. Creates a template for the report layout. See the Format Template Creation section.

3. Creates a report associated with both templates and defines user access to the report. See the

Report Classification section.

4. Registers custom parameters passed from Oracle Transportation Management to the report.

See the Parameterization section.

To create an external report, the report designer:

1. Provides a URL to request the report via HTTP.

2. Creates a report associated with the external URL and defines user access to the report. See

the Report Classification section.

3. Registers custom parameters passed from Oracle Transportation Management to the report.

See the Parameterization section.

Query Template Creation

A Query Template defines how BI Publisher generates data XML for the report. Oracle Transportation
Management supports three types of templates for embedded reports: SQL Templates, Data
Templates, and Integration Templates.

SQL Template

A SQL Template is a single SQL statement returning data needed by the report. BI Publisher maps the
result set to XML as follows:

 The overall result set is contained in a <ROWSET>…</ROWSET> element.

 Each row in the result set is contained in a <ROW>…</ROW> element.

 The value of each column in the result set is contained in an element named for the column

alias.

 For each nested cursor, BI Publisher outputs the nested result set in an element named for the

cursor alias.

5 A transactional report is one that is focused on a single business object. A shipment

document, such as a Bill of Lading, is an example of a transactional report.

6 This is primarily due to the migration of these reports from Oracle Reports to BI Publisher

in Oracle Transportation Management v6.0.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-2

 Each row in the nested result set is contained in a <cursor alias_ROW>…</cursor

alias_ROW> element.

 The value of each column in the nested result set is contained in an element named for the

column alias.

Consider the following SQL example:

select s.shipment_gid as gid, s.shipment_xid as xid,

s.shipment_name as name, s.domain_name as domain,

 cursor(

 select distinct

 sip.involved_party_qual_gid as ip_qual,

 sip.involved_party_contact_gid as ip_contact,

 from shipment_involved_party sip

) as involved_party

 from shipment s

 where s.shipment_gid = :P_SHIPMENT_ID

This query selects the shipment header and a list of involved parties for a given shipment. The
resulting XML could be:

<?xml version="1.0" encoding="UTF-8"?>

<ROWSET>

 <ROW>

 <GID>MIKEE.000466</GID>

 <XID>000466</XID>

 <NAME>TEST112</NAME>

 <DOMAIN>MIKEE</DOMAIN>

 <INVOLVED_PARTY>

 <INVOLVED_PARTY_ROW>

 <IP_QUAL>CONSIGNEE</IP_QUAL>

 <IP_CONTACT>ESL</IP_CONTACT>

 </INVOLVED_PARTY_ROW>

 <INVOLVED_PARTY_ROW>

 <IP_QUAL>LOGISTICS</IP_QUAL>

 <IP_CONTACT>MIKEE.MAB</IP_CONTACT>

 </INVOLVED_PARTY_ROW>

 </INVOLVED_PARTY>

 </ROW>

</ROWSET>

Report designers must adhere to the following rules when developing SQL templates:

1. Every result column and cursor must be uniquely aliased.

2. The alias must adhere to XML element name semantics.

3. All bind variables must be named and map to a standard or custom report parameter passed

by Oracle Transportation Management.

Data Template

A Data Template is an XML file specifying parameters and queries needed by the report, along with a
mapping of result set data to its XML representation. It provides greater flexibility for:

 parameter specification. Parameters can be typed and explicitly listed.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-3

 data querying. Multiple SQL statements can be specified, allowing independent queries to

populate a report.

 data mapping. The results of each SQL statement can be combined, nested, or flattened to

simplify the resulting XML, and resulting field specification in the report layout.

There are three primary components of a data template:

1. A list of parameters under a <parameters> element. Each parameter is named and typed.

2. A list of SQL data queries under a <dataQuery> element. Each SQL query is entered in a

<sqlStatement> element with a distinct name and a valid SQL query embedded in a CDATA

section. Note that parameters are available as named bind variables for each query.

3. A tree of XML groups under a <dataStructure> element. Each <group> element defines a list
of XML elements for a particular result set. Each element maps a result set column name or

alias to an XML element name.

Consider the following data template example:

<dataTemplate name="SIMPLE_SHIPMENT_TEST" description="Simple Shipment Test">

 <parameters>

 <parameter name="P_SHIPMENT_ID" dataType="character"/>

 </parameters>

 <dataQuery>

 <sqlStatement name="SHIPMENT">

 <![CDATA[

 select s.shipment_gid as gid, s.shipment_xid as xid,

 s.shipment_name as name, s.domain_name as domain

 from shipment s

 where s.shipment_gid = :P_SHIPMENT_ID

]]>

 </sqlStatement>

 <sqlStatement name="INVOLVED_PARTY">

 <![CDATA[

 select distinct

 sip.involved_party_qual_gid as ip_qual,

 sip.involved_party_contact_gid as ip_contact

 from shipment_involved_party sip

 where sip.shipment_gid = :P_SHIPMENT_ID

]]>

 </sqlStatement>

 </dataQuery>

 <dataStructure>

 <group name="SHIPMENT" source="SHIPMENT">

 <element name="GID" value="GID"/>

 <element name="XID" value="XID"/>

 <element name="NAME" value="NAME"/>

 <element name="DOMAIN" value="DOMAIN"/>

 <group name="INVOLVED_PARTY" source="INVOLVED_PARTY">

 <element name="IP_QUAL" value="IP_QUAL"/>

 <element name="IP_CONTACT" value="IP_CONTACT"/>

 </group>

 </group>

 </dataStructure>

</dataTemplate>

This data model selects the shipment header and a list of involved parties for a given shipment. The
resulting XML could be:

<?xml version="1.0" encoding="UTF-8"?>

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-4

<SIMPLE_SHIPMENT_TEST>

 <P_SHIPMENT_ID>MIKEE.000466</P_SHIPMENT_ID>

 <LIST_SHIPMENT>

 <SHIPMENT>

 <GID>MIKEE.000466</GID>

 <XID>000466</XID>

 <NAME>TEST112</NAME>

 <DOMAIN>MIKEE</DOMAIN>

 <LIST_INVOLVED_PARTY>

 <INVOLVED_PARTY>

 <IP_QUAL>CONSIGNEE</IP_QUAL>

 <IP_CONTACT>ESL</IP_CONTACT>

 </INVOLVED_PARTY>

 <INVOLVED_PARTY>

 <IP_QUAL>LOGISTICS</IP_QUAL>

 <IP_CONTACT>MIKEE.MAB</IP_CONTACT>

 </INVOLVED_PARTY>

 </LIST_INVOLVED_PARTY>

 </SHIPMENT>

 </LIST_SHIPMENT>

</SIMPLE_SHIPMENT_TEST>

Note that, unlike SQL Templates, all parameters are included in the data XML. This can be useful in
layout design.

Detailed information regarding Data Template design can be found in the BI Publisher documentation:
Building a Data Template.

Integration Template

An Integration Template is a special query template that relies on the Oracle Transportation
Management integration layer to generate data XML for BI Publisher layouts. It is reserved for

transactional reports. The XML schema for each transportation business object can be found in the
Oracle Transportation Management Integration Guide.

Though an integration template is the simplest query template to specify, it generates complex data
XML. This can complicate layout design as full XPath expressions may be needed for each data field.
See the Navigating Oracle Transportation Management Integration XML section for more

information.

Uploading a Query Template for Embedded Reporting

After selecting and generating query template content, the report designer needs to upload the query
template for use in Oracle Transportation Management. They should:

1. Log into Oracle Transportation Management. They must have rights to create report data.

2. Navigate to Business Process Automation > Power Data > Document Generation >

Query Template.

3. Create a new query template.

4. If defining a SQL or data template, upload the respective .sql or .xml file to the system. If
the report is transactional, select the associated Data Query Type. This will add a check to

determine that the data template, format template, and report types all match.

5. If defining an integration template, select the associated Data Query Type. Optionally, select

an Out XML Profile to minimize the generated XML as needed.

http://download.oracle.com/docs/cd/E12844_01/doc/bip.1013/e12187/T421739T434255.htm
http://download.oracle.com/docs/cd/E16561_01/otm/acrobat/integration.pdf

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-5

6. Generate sample XML for layout design. This action will prompt you for any required template

parameters:

 for a SQL template, this includes all named bind variables

 for a Data template, this includes all entries in the <parameter> section

 for an Integration template, this is the GID of the business object

Note: This XML can be used to define the XML data model for the BI Publisher Microsoft
Word add-in . To best leverage this tool, the data source should populate all possible fields

in the XML. Otherwise, the designer may have to directly insert XPath markup into his

layout document.

7. Save the generate XML to disk.

Format Template Creation

Once a query template is defined, the report designer creates a Format Template. The Format

Template is a definition of both the report layout and any XLIFF translations to apply to it. Table 1 lists
layouts supported by Oracle Transportation Management and the recommended tools for generating
them.

Though designers are free to use all features of the BI Publisher Microsoft Word add-in or other tools
to generate layout, the following steps are recommended for RTF report designers using Oracle
Transportation Management:

 Use Microsoft Word with the BI Publisher Microsoft Word add-in to design RTF templates.

 Import the sample XML generated in step 6 above via Data > Load XML Data. This avoids the
need for per-report schemas, defining data templates within BI Publisher Enterprise, and a

.NET/J2EE connection between Microsoft Word and BI Publisher.

 Use Input > Field to add simple data fields to the layout. If a field is not uniquely named in

the XML schema, edit the field properties and add distinguishing XPath.

 Use Input > Table Wizard to add tabular data fields to the layout.

 Save the layout as an RTF and use Tools > Export > XSL-FO Style Sheet to export the
layout as an XSL:FO file. This is for performance optimization. Though the RTF file can be

uploaded as a layout to Oracle Transportation Management, each generation of the report will

require transformation of the RTF to an XSL:FO. By uploading the transformed XSL:FO to the

system, report generation time can be reduced.

Uploading a Format Template for Embedded Reporting

After generating a layout, the report designer needs to upload it to a format template for use in Oracle
Transportation Management. They should:

1. Log into Oracle Transportation Management. They must have rights to create report data.

2. Navigate to Business Process Automation > Power Data > Document Generation >

Format Template.

3. Create a new format template.

4. Upload the layout to the system. This should be a .pdf, .rtf or .xsl file, depending on the layout

type.

5. If the layout represents an electronic text specification, select the eText Template check box.

6. If the layout represents a BI Publisher stylesheet, select the XSL-FO Template check box. If
this check box is cleared, the system transforms XML data using a simple Xalan XSLT

transformation and circumvents BI Publisher entirely.

7. If the report is transactional, select the associated Data Query Type. This enforces type

checking against query templates and report definitions.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-6

8. Add Translation Template records for each XLIFF file supported by the report.

Report Classification

With query and format templates defined, the designer then classifies the report. They should:

1. Log into Oracle Transportation Management. They must have rights to create report data.

2. Navigate to Business Process Automation > Power Data > Document Generation >

Reports.

3. Create a new report. By default, the report will be created in your domain.

4. Select the Select Via UI check box. This allows the report to be explicitly run by Oracle

Transportation Management users.

5. Select the Use Report Parameters as Bind Values check box. See the Dynamic SQL

Parameterization section for more information on this option.

6. Follow the flowchart in Figure 3 to determine how the report should be accessed.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-7

Figure 3: Report Classification

Set the

Third Party

Content

Type to

Browser

Only

Check

Run on

Third

Party

Server

Does the

report run on a

3rd party

server?

Is the report

transactional?

Should the report be

accessible from the general

Report Manager?

Is the 3rd Party an

Analytics system,

interacting with the

user?

Does the 3rd Party

accept OTM

parameters?

Does the 3rd

party return

simple content?

Set the Third Party

Content Type to None

Specify

a

Report

URL

Set the

Third Party

Content

Type to

Embedded

Add a required

parameter

matching the

business

object type

Check

Report

Manager

Display

Select the

Report

Type of the

manager

Add ad-hoc parameters

Set the Third Party

Content Type to None

Yes Yes

No

No

Yes Yes

No

No

Yes

Yes

No

Check Can

Auto

Generate

No

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-8

Parameterization

For both embedded and external reports, Oracle Transportation Management passes standard and ad
hoc parameters to the report generator7. Table 2 summarizes the standard parameters passed to
every report.

Name Description Comments

P_REPORT_GID The requested report External systems are responsible for mapping

the Oracle Transportation Management report
GID to a valid report. Alternatively, the report
URL can embed the mapping within a request
parameter.

P_DBCONN_TYPE The data schema OLTP for the Oracle Transportation Management
transactional database; ODS for the offline

analytical database.

P_GL_USER The user requesting the
report

This may be used by external systems to
enforce VPD data security on report queries.

P_ROLE_ID The role of the requesting

user

This may be used by external systems to

enforce VPD data security on report queries.

P_DOMAIN The domain of the
requesting user

P_LANGUAGE The ISO language code

requested for the report

For embedded reports, XLIFF translations are

automatically applied.

P_COUNTRY The ISO country code

requested for the report

For embedded reports, XLIFF translations are

automatically applied.

P_DISPLAY_NAME A user-readable name for
the report.

P_DATE_FORMAT The Oracle date format
for both input parameters
and output fields.

For input parameters, use the
TO_DATE(:P_MY_DATE, :P_DATE_FORMAT)

function.

For output parameters, use the
TO_CHAR(field, :P_DATE_FORMAT) function.

This should be reserved for fields that are date-
only.

7 If external report generators do not support these parameters, their content type should
be set to None.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 2-9

Name Description Comments

P_DATE_TIME_FORMAT The Oracle timestamp
format for both input
parameters and output
fields.

For input parameters, use the
TO_DATE(:P_MY_TIMESTAMP,

:P_DATE_TIME_FORMAT)

function.

For output fields, use the
TO_CHAR(field, :P_DATE_TIME_FORMAT)

function.

This should be reserved for fields that have
both date and time.

Table 2: Standard Parameters

The report designer may add additional, ad-hoc parameters to a report using the Report Parameters
grid of the Report Manager. Before submitting a report request, you are presented with a list of these
additional parameters and must enter information for any marked as Mandatory.8

For BI Publisher, all parameters are available for data generation and layout as follows:

 SQL Template: Each parameter is mapped into a bind variable matching the Report

Parameter Name with a string value. If any bind variable in the SQL template is not specified

in the report parameters, BI Publisher fails to generate data.

 Data Template: Each parameter is mapped to a <parameter> entry in the data template. The
parameter name attribute must match the Report Parameter Name or the parameter is

ignored. All values are strings. If any template parameter is not specified in the report

parameters, BI Publisher fails to generate data.

 Layout: If the XML data came from a Data Template, all parameters are passed as top-level

elements9. These can be used within the layout. Otherwise, parameters are not available.

A transactional report is defined as a report with a mandatory parameter matching a particular
business object type.

For external reports, parameters are added as HTTP request parameters to the URL.

8 Note that transactional reports have at least one mandatory parameter matching the

business object type. If requested from a transactional manager, the system automatically
populates this parameter. E.g., a shipment document with one mandatory P_SHIPMENT_ID
parameter with a Query Name of BUY_SHIPMENT can be selected from the shipment manager. The

P_SHIPMENT_ID parameter is automatically populated with the relevant shipment GID.

9 This is default behavior. The BI Publisher include_parameters property in the data template can

be set to false to suppress it.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-1

3. Tutorials

Simple Shipment Summary

If you want to generate a simple summary of shipments whose start time is between a date range

that you specify. The summary should include shipment header information like XID, Name, Start
Time, End Time, and Domain; along with a list of involved parties.

The basic steps to create an embedded analytical report are:

1. Generate a data model. For this report, you will use a SQL Template.

2. Create a Query Template record within the system and upload the data model to it.

3. Export sample XML data for layout design.

4. Design a layout using the XML fields. For this report, you will define an RTF layout using the BI

Publisher Template Builder.

5. Create a Format Template record within the system and upload the layout to it.

6. Create a Report record within the system, mapping the query template from #2 and the
format template from #5. You will also specify any custom parameters needed by the report

and select a Report Manager UI to hold the report links.

7. Test the report.

Step 1: Generate a Data Model

The following is a SQL Template for the report. It is located in:

<OTM_INSTALL_DIR>/samples/reports/SimpleShipmentSummary/SimpleShipmentSummary.s

ql

select

 :P_EARLIEST_DATE as earliest,

 :P_LATEST_DATE as latest,

 cursor(select

 s.shipment_xid as xid,

 s.shipment_name as name,

 to_char(s.start_time, :P_DATE_TIME_FORMAT) as start_time,

 to_char(s.end_time, :P_DATE_TIME_FORMAT) as end_time,

 s.domain_name as domain,

 cursor(select distinct

 sip.involved_party_qual_gid as ip_qual,

 sip.involved_party_contact_gid as ip_contact

 from shipment_involved_party sip

 where sip.shipment_gid=s.shipment_gid

 order by sip.involved_party_qual_gid) as involved_party

 from shipment s

 where s.start_time >= to_date(:P_EARLIEST_DATE, :P_DATE_FORMAT)

 and s.start_time <= to_date(:P_LATEST_DATE, :P_DATE_FORMAT)

 order by s.start_time, s.shipment_gid

) as shipment

from dual

Note that:

 Every select column and cursor has an alias. This alias is used to define XML elements and

must adhere to element naming restrictions.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-2

 The bind variables implicitly define four parameters for the report: P_EARLIEST_DATE,

P_LATEST_DATE, P_DATE_TIME_FORMAT, and P_DATE_FORMAT. The last two parameters are

provided by the system to every report. The first two are custom parameters.

 To use SQL Template parameters in the layout, you must select the parameters from dual.

The outermost select defines a single <ROW> for parameters.

 The first nested cursor selects shipment header information. Start and end time are formatted

with P_DATE_TIME_FORMAT to reflect user preferences. Each matching shipment is mapped to a

<SHIPMENT_ROW> based on the cursor alias.

 The system passes all parameters as text. In particular, dates and timestamps are formatted

using user preference date or date/time formats. To compare dates, you need to convert

P_EARLIEST_DATE and P_LATEST_DATE to dates via the to_date() function.

 The second nested cursor selects involved parties for each shipment. Each party is mapped to

an INVOLVED_PARTY_ROW based on the cursor alias.

Step 2: Create a Query Template

1. Log into Oracle Transportation Management and navigate to Business Process Automation

> Power Data > Document Generation > Query Template. Create a new query template

and upload the sql file.

2. Select Finished to save the query template.

Step 3: Export Sample XML for Layout Design

1. Reopen the query template and select Generate Sample XML. This will prompt you for the

four bind variables:

2. Fill in as follows:

 P_EARLIEST_DATE. The earliest start time to retrieve shipments. This should be in

P_DATE_FORMAT (YYYY-MM-DD).

 P_LATEST_DATE. The latest start time to retrieve shipments. This should be in P_DATE_FORMAT

(YYYY-MM-DD).

 P_DATE_TIME_FORMAT = YYYY-MM-DD HH24:MI:SS

 P_DATE_FORMAT = YYYY-MM-DD

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-3

3. The date range should be picked to produce 10-50 shipments. Once you select Submit, your

browser will prompt you to open or save the document.

4. Save the document to a drive accessible by the BI Publisher Template Builder.

5. Close the Generate Sample XML window.

Step 4: Design a Layout

To modify the sample layout file for the report:

1. Open up Microsoft Word with the BI Publisher Template Builder.

2. Open up
<OTM_INSTALL_DIR>/samples/reports/SimpleShipmentSummary/SimpleShipmentSummary.r

tf holding the layout. Your layout will resemble:

3. Select Data > Load XML Data from the BI Publisher Template Builder menu and select the
XML file saved in Step 3 above. This associates the sample XML which is implicitly defining an

XML schema for the layout.

4. Use Insert > Field and Insert > Table Wizard to add ad-hoc and tabular data to the

layout.

5. Use Preview to test the modified layout with the sample XML.

6. Save the modified layout as a Rich Text Format document to a drive accessible by your local

browser. Do not overwrite the sample layout.

7. Optionally, use Tools > Export > XSL:FO Style Sheet to export the layout as an XSL:FO

document. Save the displayed document with an xsl extension to a drive accessible by your

local browser. Using an XSL layout will improve report performance.

Step 5: Create a Format Template

1. Return to Oracle Transportation Management and navigate to Business Process Automation
> Power Data > Document Generation > Format Template. Create a new format

template and either:

 Upload the RTF file created in step 4; or

 Upload the XSL file created in step 4 and select the XSL-FO Template check box.

2. Select Finished to save the format template.

Step 6: Create a Report

1. Navigate to Business Process Automation > Power Data > Document Generation >

Reports. Create a new report as follows:

2. Set Report ID to SIMPLE SHIPMENT SUMMARY.

3. Set Report Display Name to Simple Shipment Summary.

4. Set Report Description to Simple Shipment Summary Test.

5. Set Report Type to SHIPMENT. The report should be available on the Reports menu under

Shipment Management.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-4

6. Select the Report Manager Display check box. The report should be available under

Business Process Automation > Reporting > Report Manager.

7. Select the Use Report Parameters as Bind Values check box.

8. Select the Select Via UI check box.

9. Set Report Group ID to SHIPMENT_REPORTS. In the overall report manager, the report

should be grouped with other shipment reports.

10. Set the Query Template to SIMPLE SHIPMENT SUMMARY.

11. Set the Format Template to SIMPLE SHIPMENT SUMMARY.

12. Add two mandatory date parameters: P_EARLIEST_DATE and P_LATEST_DATE.

The resulting report in the Report Manager is shown below:

13. Select Finished to save the report.

Step 7: Test the Report

1. Navigate to Shipment Management > Reports and find the Simple Shipment Summary

grouped with the Shipment Reports. Select Run Online to be prompted for custom

parameters and delivery information.

2. Enter the earliest and latest start times and Submit to test the report. A PDF output of the

report will resemble:

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-5

Simple Commercial Invoice

Assume you want to generate a Commercial Invoice report for a given shipment. The report should
include shipment header information such as: Seller, Consignee, Buyer, Origin, Destination, Weight,
Volume, and Cost. It should also list the contents of the items on the shipment.

The basic steps to create an embedded transactional report are:

1. Generate a data model. For this report, you will use a Data Template.

2. Create a Query Template record within the system and upload the data model to it.

3. Export sample XML data for layout design.

4. Design a layout using the XML fields. For this report, you will define an RTF layout using the BI

Publisher Template Builder.

5. Create a Format Template record within the system and upload the layout to it.

6. Create a Report record within the system, mapping the query template from #2 and the

format template from #5, specifying a single mandatory shipment parameter needed by the

report.

7. Test the report via the Shipment Manager action menu.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-6

Step 1: Generate a Data Model

1. The Data Template for the report can be found in

<OTM_INSTALL_DIR>/samples/reports/SimpleCommercialInvoice/SimpleCommercialInvoi

ce.xml. Note that:

 The report has a single parameter, P_SHIPMENT_ID. This will be defined as a mandatory

parameter with a query table of SHIPMENT to mark the report as a transactional shipment

report.

 The report will hold two SQL statements. The first, q_shipment, retrieves header
information based on the :P_SHIPMENT_ID bind variable. The results are mapped to a top

level <G_SHIPMENT> XML element.

 The second SQL statement, q_items, retrieves item information associated with the

shipment. It basis its query on the first XML element <SHIPMENT> defined in
<G_SHIPMENT>. BI Publisher automatically maps this element to a :SHIPMENT bind

variable. While q_items could simply have reused the :P_SHIPMENT_ID parameter, this

shows the implicit relationships between disparate queries. The item results are stored in

nested <G_ITEM> elements under <G_SHIPMENT>.

 This report makes significant use of PL/SQL utilities provided with the system. See the

Using Utility Packages section for more information

Step 2: Create a Query Template

1. Log into Oracle Transportation Management and navigate to Business Process Automation

> Power Data > Document Generation > Query Template. Create a new query template,

set the Data Query Type to SHIPMENT and upload the xml file.

2. Select Finished to save the query template.

Step 3: Export Sample XML for Layout Design

1. Reopen the query template and click Generate Sample XML. This will prompt you for the

report parameters, including a sample shipment GID:

2. Select a shipment that has a seller, consignee, buyer, weight, volume, cost, and distinct

items. Once you click Submit, your browser will prompt you to open or save the document.

3. Save the document to a drive accessible by the BI Publisher Template Builder.

4. Close the Generate Sample XML page.

Step 4: Design a Layout

To modify the sample layout file for the report:

1. Open up Microsoft Word with the BI Publisher Template Builder

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-7

2. Open

<OTM_INSTALL_DIR>/samples/reports/SimpleCommercialInvoice/SimpleCommercialInvoi

ce.rtf holding the layout. Your layout will resemble:

3. Select Data > Load XML Data from the BI Publisher Template Builder menu and select the
XML file saved in Step 3 above. This associates sample XML, implicitly defining an XML schema

for the layout.

4. Use Insert > Field and Insert > Table Wizard to add ad hoc and tabular data to the

layout.

5. Use Preview to test the modified layout with the sample XML.

6. Save the modified layout as a Rich Text Format document to a drive accessible by your local

browser. Do not overwrite the sample layout.

7. Optionally, use Tools > Export > XSL:FO Style Sheet to export the layout as an XSL:FO

document. Save the displayed document with an xsl extension to a drive accessible by your

local browser. Using an XSL layout will improve report performance.

Step 5: Create a Format Template

1. Return to Oracle Transportation Management and navigate to Business Process Automation
> Power Data > Document Generation > Format Template. Create a new format

template and either:

 upload the RTF file created in step 4; or

 upload the XSL file created in step 4 and check the XSL-FO Template check box.

2. Select Finished to save the format template.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-8

Step 6: Create a Report

1. Navigate to Business Process Automation > Power Data > Document Generation >

Reports. Create a new report as follows:

2. Set Report ID to SIMPLE COMMERCIAL INVOICE.

3. Set Report Display Name to Simple Commercial Invoice.

4. Set Report Description to Simple Commercial Invoice Test.

5. Set Report Type to SHIPMENT. The report should be available on the Reports menu under

Shipment Management.

6. Select the Report Manager Display check box. The report should be available under

Business Process Automation > Reporting > Report Manager.

7. Select the Use Report Parameters as Bind Values check box.

8. Select the Select Via UI check box.

9. Set Report Group ID to SHIPMENT_REPORTS. In the overall report manager, the report

should be grouped with other shipment reports.

10. Set the Query Template to SIMPLE COMMERCIAL INVOICE.

11. Set the Format Template to SIMPLE COMMERCIAL INVOICE.

12. Add a mandatory P_SHIPMENT_ID parameter. This parameter should have a Parameter Type
of Finder and a Query Name of BUY_SHIPMENT. When selected from the Shipment Manager

actions menu, the system automatically populates the parameter with the selected shipment

ID. When selected from the Reports Manager, you will be prompted with a Shipment pick list.

Note that the second parameter P_DATE_FORMAT is a standard parameter passed to all reports.

The resulting report is:

13. Select Finished to save the report.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 3-9

Step 7: Test the Report

1. Navigate to Shipment Management > Shipment Management > Buy Shipments. Query

for shipment results and select one of the matching shipments. Select Actions > Business

Process Automation > Reports > Custom Reports. You are prompted to select a report.

2. Select the Simple Commercial Invoice.

3. Submit to test the report. A PDF output of the report will resemble:

Note: Reports entered in the PUBLIC domain can be selected directly off of the actions

menu. E.g., if the Simple Commercial Invoice report is PUBLIC, you can navigate to

Actions > Business Process Automation > Reports > Simple Commercial Invoice.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-1

4. Advanced Content

Date and Timestamp Handling

Report designers should take special care when writing queries or layout involving DATE columns. This

includes:

 Converting date parameters for where clause comparison. All date parameters are sent as
strings, formatted according to your date preferences. To compare one to a data field, the

designer should use Oracle’s TO_DATE function, applying the standard P_DATE_FORMAT

parameter:

where accessorial_cost.effective_date > TO_DATE(:P_EARLIEST_DATE,

:P_DATE_FORMAT)

 and accessorial_cost.effective_date < TO_DATE(:P_LATEST_DATE,

:P_DATE_FORMAT)

 Converting timestamp parameters for where clause comparison. Like dates, timestamp

parameters are sent as strings, formatted according to your date/time preferences10. To

compare one to a timestamp field, the designer should use Oracle’s TO_DATE function, applying

the standard P_DATE_TIME_FORMAT parameter:

where shipment.start_time > TO_DATE(:P_EARLIEST_START, :P_DATE_TIME_FORMAT)

 and shipment.start_time < TO_DATE(:P_EARLIEST_START,

:P_DATE_TIME_FORMAT)

 Applying your date and time preferences to report layout. Depending on the use case,

designers may want to apply user preferences to dates displayed on the final report. If so, the

query template should convert selected date and timestamp values using Oracle’s TO_CHAR

function:

select TO_CHAR(accessorial_cost.effective_date, :P_DATE_FORMAT) …

select TO_CHAR(shipment.start_time, :P_DATE_TIME_FORMAT) …

 Accounting for UTC storage in report layout. Nearly all timestamp fields in Oracle
Transportation Management are converted to UTC before persisting to the database. A report

designer who simply queries shipment.start_time, for example, receives the time in UTC. To

convert the stored time to the application or report server’s time zone, use the

vpd.gmt_offset function:

select TO_CHAR(shipment.start_time-(vpd.gmt_offset/24), :P_DATE_TIME_FORMAT)

…

 Accounting for UTC storage in query template criteria. To compare timestamp fields to some
offset of current time, designers can either convert the field or use vpd.gmt_sysdate. This

function returns the current time in UTC. E.g. to query shipments starting in the next three

days:

select shipment.gid

 where shipment.start_time > vpd.gmt_sysdate

 and shipment.start_time < vpd.gmt_sysdate+3

10 Note that the Reporting has never applied user time preference. Time preference is

assumed to be HH24:MI:SS.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-2

Data Security

Oracle Transportation Management implements data security via Oracle’s Virtual Private Database
(VPD). Given a user and their role, the system limits row access to tables. The default VPD policies
implement a domain model, where a user’s domain determines their read/write privileges. Specific

implementations, however, can enhance this model to restrict access based on other columns and
grant access across domains.

When running embedded reports, VPD security is automatically enforced by the system. The database
connection passed to the BI Publisher APIs maintains the user and role in context, applying VPD
policies on any queries.

External report generators, however, have two options regarding data security:

 Suppress it. The standard glogdba database user requires a VPD context. If a report logs in as
glogowner, however, VPD is suppressed. The report queries have access to all data. This may

be appropriate for transactional reports where the data is restricted to a particular business

object. Alternatively, each report can implement its own data security model independent of

Oracle Transportation Management.

 Set the user context before issuing any queries. The GLOGOWNER.VPD package provides the

following procedures and functions to set the context for VPD:

procedure set_user (user VARCHAR2);

procedure set_user_r (user VARCHAR2, user_role varchar2);

function set_user_fct (user VARCHAR2);

function set_user_r_fct (user VARCHAR2, user_role varchar2);

By passing the standard P_GL_USER (and optionally P_ROLE_ID) parameter to one of these functions,
VPD returns the proper rows.

When designing, testing, or generating reports directly within the BI Publisher web application, a

report designer must choose one of these options as well. The report data source can login as
glogowner and suppress VPD, though this may return too many rows for analytical reports. If logged

in as glogdba, setting the context for VPD can be executed in the first query in the data template11.

For example,

<dataTemplate name="vpd_test" dataSourceRef="glogdba_data_source">

 …

 <parameters>

 <parameter name="P_GL_USER" dataType="character"/>

 …

 </parameters>

 <dataQuery>

 <sqlStatement name="VPD">

 <![CDATA[

 SELECT vpd.set_user_fct(:P_GL_USER) as gl_user from dual

]]>

 </sqlStatement>

 <sqlStatement name="Q_1">

 …

 </sqlStatement>

 </dataQuery>

 <dataStructure>

11 SQL Templates do not support VPD except in embedded reports.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-3

 …

 </dataStructure>

</dataTemplate>

This report prompts for the P_GL_USER and supplies it to the VPD package, prior to making any
queries. Though this is ideal when BI Publisher is acting as an external report generator to Oracle
Transportation Management (since P_GL_USER is passed as a standard parameter), it doesn’t truly
enforce security during design or when generating reports through the BI Publisher web interface. You

can take this one step farther by leveraging BI Publisher security. Assume BI Publisher users have the
same name (case insensitive) as Oracle Transportation Management user GID’s. Then the following
data template applies full VPD security whether BI Publisher is used for design, ad-hoc generation, or
an external generator:

<dataTemplate name="vpd_test" dataSourceRef="glogdba_data_source">

 …

 <parameters>

 <parameter name="xdo_user_name" dataType="character"/>

 <parameter name="P_GL_USER" dataType="character"/>

 …

 </parameters>

 <dataQuery>

 <sqlStatement name="VPD">

 <![CDATA[

 SELECT vpd.set user fct(upper(nvl(:P GL USER,:xdo user_name)))

 as gl_user from dual

]]>

 </sqlStatement>

 <sqlStatement name="Q_1">

 …

 </sqlStatement>

 </dataQuery>

 <dataStructure>

 …

 </dataStructure>

</dataTemplate>

Note: xdo_user_name is a BI Publisher reserved parameter, holding the currently logged-in

user. If the report is not passed P_GL_USER as a user ID, it uses the upper-case version of
the BI Publisher user to set VPD.

Using Utility Packages

Oracle Transportation Management Package Reference

Pre-packaged reports in Oracle Transportation Management leverage a number of PL/SQL packages to
simplify query template development. These include:

 utility functions for formatting and logging

 streamlined queries for order, shipment and invoice reports

Table 3 summarizes the available procedures and functions. For more information, please review the
create_rpt scripts in <OTM_INSTALL_DIR>\glog\oracle\script8.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-1

Package Procedure/Function Description Parameters Returns

vpd set_user Sets the user for VPD data
security

Oracle Transportation
Management user GID

--

set_user_r Sets the user and user role for
VPD data security

Oracle Transportation
Management user GID

Oracle Transportation
Management user role GID

--

set_user_fct Sets the user for VPD data

security. Designed for use as
the first query in a Data
Template

Oracle Transportation

Management user GID

true

set_user_r_fct Sets the user and user role for
VPD data security. Designed for
use as the first query in a Data
Template

Oracle Transportation
Management user GID
Oracle Transportation
Management user role GID

true

get_gl_user Returns the current user for
VPD data security

-- Oracle
Transportation
Management

user GID

utc get_local_date Converts a UTC timestamp to a
location time zone

UTC Timestamp
Location GID

Timestamp in
the location’s

time zone

get_utc_date Converts a local timestamp to a
UTC timestamp based on a
location time zone

Local Timestamp
Location GID

UTC Timestamp

get_time_zone Returns the time zone for a

location

Location GID Time Zone

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-2

Package Procedure/Function Description Parameters Returns

rpt_general p_insert_log Logs a record to REPORT_LOG Unique Filename
Report GID
Report Job #
User
Domain

up to 3 (name, value) pairs

--

f_uom_base Returns the default storage type
for a unit of measure

Unit of measure Default storage
type

f_date_diff Returns a readable string
representing the duration

difference of two dates

Ending date
Starting date

Duration string

f_remove_domain Strips the domain from a GID GID XID

f_format_address Returns a formatted address for
a location

Location GID Formatted,
multi-line

address for the
location

f_corporation Returns the corporation for a
location

Location GID Corporation GID

f_location_refnum Returns the value of a specific
location reference number

Location GID
Reference number qualifier

Reference
number value

rpt_order f_ob_refnum Returns the value of a specific
order base reference number

Order Base GID
Reference number qualifier

Reference
number value

rpt_ship f_commodity Returns the commodity name

for a specific item

Item GID Commodity

name

f_ob_party_location Returns the location for a
specific order base involved
party

Order Base GID
Involved party qualifier

Location GID

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-3

Package Procedure/Function Description Parameters Returns

f_or_party_location Returns the location for a
specific order release involved
party

Order Release GID
Involved party qualifier

Location GID

f_order_base_gid Returns the order base

associated with an order release

Order Release GID Order Base GID

f_party_address Returns a formatted address for
an order release involved party

Order Release GID
Involved party qualifier

Formatted,
multi-line

address for the
location

f_tender_accepted_by Returns the carrier that
accepted a shipment tender

Shipment GID Service Provider
GID

f_packaging_form_code Returns the packaging form
code for a ship unit specification

Ship Unit Specification GID Packaging Form
Code GID

f_capacity_rate_offering Returns the rate offering for a
capacity usage

Capacity Usage GID Rate Offering
GID

f_capacity_time_period Returns the time period type for
a capacity limit

Capacity Limit GID Time Period
Type

f_lane_source Returns the source for a lane XLane GID Source

f_lane_destination Returns the destination for a
lane

XLane GID Destination

f_equipment_type_name Returns the name for a
equipment type

Equipment Type GID Equipment Type
Name

f_sellside_cost Returns the sell-side cost for a
shipment

Shipment GID Sell-side cost

f_transport_mode_name Returns the transport mode for
a shipment

Shipment GID Transport Mode

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-4

Package Procedure/Function Description Parameters Returns

f_get_ship_inv_party_addr Returns a formatted address for
a shipment involved party

Shipment GID
Involved Party Qualifier

Formatted,
multi-line
address for the
involved party

f_get_country_name Returns the origin or destination
country name for a shipment

Shipment GID
‘O’ for origin, ‘D’ for destination

Country name

f_get_pol Returns the port of lading for a

shipment

Shipment GID Port of lading

rpt_invoice f_party_location Returns an involved party
location on the invoice

Invoice GID
Involved Party Qualifier

Involved party
location

f_party_address Returns a formatted address for
an invoice involved party

Invoice GID
Involved Party Qualifier

Formatted,
multi-line
address for the
involved party

rpt_servprov f_servprov_gid Returns the Service Provider

GID for a particular alias

Service Provider Alias

Service Provider Alias Qualifier

Service Provider

GID

f_alias Returns the Service Provider
alias

Service Provider GID
Service Provider Alias Qualifier

Service Provider
Alias

Table 3: PL/SQL Report Functions

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-1

Adding Custom Packages

To add a custom package for use with query templates, the report designer:

 Creates the PL/SQL package specification and the package body definition in the Oracle

Transportation Management reportowner DB schema

 Compiles both the PL/SQL package specification and body to make sure the code is error free

 Provides grants and permissions so Oracle Transportation Management users can access the
custom package. The following scripts are provided under the installation and should be run as

reportowner.

<OTM_INSTALL_DIR>/glog/oracle/script8/reportowner_grants.sql

<OTM_INSTALL_DIR>/glog/oracle/script8/create_public_synonyms.sql

Dynamic SQL Parameterization

When a report is configured with Use Report Parameters as Bind Values selected, parameter
values are passed as simple strings to the query template or external system. They can be used as
bind variables within queries, whether the report is using a SQL template, data template or some
external querying mechanism.

The system, however, supports a more complex specification of parameters. If Use Report
Parameters as Bind Values is cleared, you are prompted for both a parameter operator and value.

E.g., a shipment start time parameter would be entered with an operator like Before, After or

Between. The value sent to the query template or external system reflects a dynamic SQL where

clause. Table 4 lists the possible operators for each type of parameter, the corresponding parameter

instruction sent to the report, and dynamic SQL generated for each instruction.

Parameter Type Criteria Resulting Condition

Finders SAME AS~’value’ column=’value’

ONE OF~’value1,value2’ column in (‘value1’,’value2’)

NOT ONE OF~’value1,value2’ column not in (‘value1’, ‘value2’)

BEGINS WITH~’value’ column like ‘value%’

END WITH~’value’ column like ‘%value’

CONTAINS~’value’ column like ‘%value%’

Date/Time SAME AS~’value’ column = TO_DATE(‘value’,

:P_DATE_FORMAT)

BEFORE~’value’ column < TO_DATE(‘value’,

:P_DATE_FORMAT)

AFTER~’value’ column > TO_DATE(‘value’,

:P_DATE_FORMAT)

BETWEEN~’value1’ AND

‘value2’

column > TO_DATE(‘value1’,

:P_DATE_FORMAT)

and

column < TO_DATE(‘value2’,

:P_DATE_FORMAT)

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-2

Parameter Type Criteria Resulting Condition

Number ==~value column=value

=<~value column < value

=>~value column > value

=<=~value column <= value

=>=~value column >= value

Any IS NULL column is null

NOT NULL column is not null

Table 4: Dynamic SQL Parameters

For BI Publisher reports, dynamic SQL is implemented via lexicals. A lexical is a macro expression that

evaluates to a PL/SQL variable set in a custom package. Each report supporting dynamic SQL
maintains a custom PL/SQL package where:

 The package defines a variable for each parameter, to hold the dynamic SQL.

 The package defines an AFTERPFORM function that sets each variable, based on operators and

values passed.

 The data template uses the variable as a macro in its where clause. The macro is of the form

&variable name.

As a simple example, assume you have a report with a single text parameter P_NAME that constrains

the s.shipment_name column in the data template.

The data template would use the lexical to formulate a where clause.

<?xml version=’1.0’ encoding = ‘UTF-8’?>

<dataTemplate name = “PKG_SAMPLE_REPORT” defaultPackage=”PKG_SAMPLE_REPORT”

version=”1.0”>

<properties>

 <property name=”xml_tag_case” value=”upper”>

</properties>

<parameters>

 <parameter name=”P_GL_USER” dataType=”character” defaultValue=”DBA.ADMIN”/>

 <parameter name=”P_ROLE_ID” dataType=”character” defaultValue=”ADMIN”/>

 <parameter name=”P_NAME” dataType=”character” defaultValue=”1=1”/>

</parameters>

<dataQuery>

 <sqlStatement name="Q_1">

 <![CDATA[SELECT s.shipment_gid, s.shipment_name

 FROM shipment s

 WHERE &P_NAME_PARAM]]>

 </sqlStatement></dataQuery>

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-3

 <dataTrigger name="afterParameterFormTrigger"

source="pkg_sample_report.after_pform"/>

 <dataStructure>

 <element name=”P_NAME_PARAM” dataType=”varchar2”

 value=”PKG_SAMPLE_REPORT.P_NAME_PARAM”>

 </dataStructure>

</dataTemplate>

There should be a parameter defined in the query template for receiving the value passed from the UI
(in this example it is P_NAME). Also, the global variable defined in the package specification
parameter and this parameter should also be of the same name.

The PL/SQL supporting the report could include:

Package Specification:

CREATE OR REPLACE PACKAGE PKG_SAMPLE_REPORT IS

 P_NAME VARCHAR2(32766) := '1=1';

 P_NAME_PARAM VARCHAR2(32766) := ‘1=1’;

 P_GL_USER VARCHAR2(128);

 FUNCTION AFTERPFORM RETURN BOOLEAN;

END PKG_SAMPLE_REPORT;

Package Body:

CREATE OR REPLACE PACKAGE BODY PKG_SAMPLE_REPORT IS

 FUNCTION AFTERPFORM RETURN BOOLEAN IS

 P_NAME_PARAM := s.shipment_name ||

 REPORTS_LIBRARY.GET_FILTER_CONDITION(P_NAME, NULL, ‘Y’);

 END AFTERPFORM;

END PKG_SAMPLE_REPORT;

This custom package name is linked to the report’s data template using the defaultPackage attribute.

When the query template starts executing, it sets the values for all the global variables defined in the
specification of the package (defined for the query template). The BI Publisher engine looks for the
global variables with the same name as defined in the query template.

Using a Saved Query as a Report Input Parameter

Advantages

While defining a report, you can give as many different input parameters as required to constrain the
data to be fetched. However, if there are too many parameters, it becomes inconvenient to enter a
great number of values before running the report.

The Saved Query approach enables you to save different constraints for an object. A saved query is
nothing but an SQL statement derived using an Oracle Transportation Management finder for an
object, where different fields can be defined for filtering the data. All these constraints are saved as

“where” clauses in the query, and the select statement is the primary key of the object.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-4

You define constraints using an Oracle Transportation Management finder, and save these constraints

as a saved query. When you run the report, you use the saved query to provide the input parameters.
The saved query is then used to filter the output on the report.

How to Use the Saved Query as Report Input Parameter

The idea here is to use the query in the SQL_FIND_ALL column of the SAVED_QUERY table, for a

particular SAVED_QUERY_GID, as a sub query for the main query defined in the query template. We
can use this sub query to filter the objects which are returned by the saved query.

Follow the below steps to configure a Saved Query as an input parameter to any report. The example
shown below is a Bill Of Lading report.

Report Definition

1. Define the report input parameter:

 Parameter Type: Saved Query

 Data Query Type: SHIPMENT (this is the primary key of the object on which the saved

query has been defined). (Assume the report parameter name defined here is

P_L_SHIP_SAVED_QUERY).

2. Save the report definition with this saved query as one of the parameter. Defining a saved

query as the parameter means that the user is providing all the constraints he wants to

specify, on a specific object that exists in the saved query. Depending on the need, other

parameters can also be included.

3. Navigate to the Report Input Parameter screen for the above defined report. There the saved

query parameter appears in the Saved Query drop down for the object pointed to by the Data

Query Type (in this example, SHIPMENT).

4. Run the report using the saved query.

Parameter Creation in Query Template Creation

There should be a parameter defined in the query template for receiving the value passed from the UI.
The parameter name should be the same as what we have defined in the report definition.

<parameter>

 <parameter name="P_GL_USER" dataType="character” defaultValue="DBA.ADMIN"/>

 <parameter name="P_ROLE_ID" dataType="character" defaultValue="ADMIN"/>

 <parameter name="P_L_SHIP_SAVED_QUERY" dataType="character" />

</parameters>

Since a dynamic SQL has to be formed using this saved query, you will have to create a custom
package and define it in the query template attached to the report. This custom package is defined
using the defaultPackage attribute in the query template as follows:

<dataTemplate name="bill_of_lading" defaultPackage=" bill_of_lading"

version="1.0">

Package Specification

In the package defined for the query template, you need to create two global variables, one with the
same name as we have in the data query template (P_L_SHIP_SAVED_QUERY), and another for holding

the dynamic SQL (P_L_SHIPMENT_ID_PARAM).

P_L_SHIPMENT_ID1 VARCHAR2(32766) := '1=1';

P_L_SHIPMENT_ID_PARAM VARCHAR2(32766) := '1=1';

P_L_SHIP_SAVED_QUERY_ID VARCHAR2(32766) := '1=1';

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-5

The parameter defined in the query template and the global variable in the package specification

should be the same (P_L_SHIP_SAVED_QUERY_ID).

When the query template starts executing, it sets the values for all these global variables defined in
the specification of the package (defined for the query template). The BI Publisher engine looks for the

global variables with the same name as defined in the query template.

Data triggers

Once the global variables are set, the dataTriggers defined in the query template start getting
executed. In Oracle Transportation Management, it is advisable to use the afterpform (after parameter
formation) function in order to manipulate the parameters. The data triggers are defined as follows:

<dataTrigger name="afterParameterFormTrigger"

source="bill_of_lading.afterpform"/>

<dataTrigger name="beforeReportTrigger" source="bill_of_lading.beforereport"/>

The dynamic SQL can be formed in either the afterpform function or the set_lexical_parameter
function, which is called from afterpform function. For example, let us say the column is
“shipment_gid” and the saved query is for “shipment” as is the data query type.
P_L_SHIP_SAVED_QUERY_ID is the parameter name for saved query. P_L_SHIPMENT_ID_PARAM is the

variable that shall hold the dynamic SQL.

The dynamic query can be formed as follows:

PROCEDURE SET_LEXICAL_PARAMETERS IS

subQuery varchar2(4000);

v_sql varchar2(1000);

 BEGIN

 v_sql:='select sql_find_all from saved_query where saved_query_gid =

 P_L_SHIP_SAVED_QUERY_ID';

 execute immediate v_sql into subQuery using P_L_SHIP_SAVED_QUERY_ID;

 IF VALUE_ENTERED (P_L_SHIP_SAVED_QUERY_ID) THEN

 P_L_SHIPMENT_ID1 := 'BOL_HEADER_BOV.SHIPMENT_GID in (' || subQuery || ')';

 P_L_SHIPMENT_ID_PARAM := 'SHIPMENT_GID in (' || subQuery || ')';

 ELSE

 P_L_SHIPMENT_ID_PARAM := '1=1';

 P_L_SHIPMENT_ID1 := '1=1';

 END IF;

 END SET_LEXICAL_PARAMETERS;

You can now use the variable that holds the dynamic sql in the query template.

In order to use the dynamic sql where clause, it has to be defined as an element in the data structure
of the query template as follows:

<dataStructure>

 <element name="P_L_SHIPMENT_ID1" dataType="varchar2"

value="BILL_OF_LADING.P_L_SHIPMENT_ID1"/>

 <element name="P_L_SHIPMENT_ID_PARAM" dataType="varchar2"

value="BILL_OF_LADING.P_L_SHIPMENT_ID_PARAM"/>

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-6

This element can then be used as a lexical parameter (precede the name of the element with the “&”

symbol) in the query, which gets substituted as it is in the query.

<sqlStatement name="Q_1">

 <![CDATA[SELECT ALL

STOPS_INFO_BOV.SHIPMENT_GID,

STOPS_INFO_BOV.STOP_NUM,

STOPS_INFO_BOV.CONTACT_NAME,

STOPS_INFO_BOV.PHONE,

STOPS_INFO_BOV.PARTY_NAME,

STOPS_INFO_BOV.ADDRESS1,

STOPS_INFO_BOV.ADDRESS2,

STOPS_INFO_BOV.ADDRESS3,

STOPS_INFO_BOV.UNIT,

STOPS_INFO_BOV.ARRIVAL_DATE,

STOPS_INFO_BOV.ARRIVAL_TIME,

STOPS_INFO_BOV.DEPARTURE_DATE, STOPS_INFO_BOV.DEPARTURE_TIME,

STOPS_INFO_BOV.CARRIER_NAME

FROM REPORTOWNER.STOPS_INFO_BOV

WHERE &P_L_SHIPMENT_ID_PARAM]]>

</sqlStatement>

On execution the ‘where’ clause in the above query becomes:
WHERE SHIPMENT_GID IN (subquery)

bill_of_lading_query_template.xml

<?xml version = '1.0' encoding = 'UTF-8'?>

<dataTemplate name="bill_of_lading" defaultPackage="bill_of_lading"

version="1.0">

 <properties>

 <property name="xml_tag_case" value="upper"/>

 </properties>

 <parameters>

 <parameter name="P_GL_USER" dataType="character"

defaultValue="DBA.ADMIN"/>

 <parameter name="P_ROLE_ID" dataType="character" defaultValue="ADMIN"/>

 <parameter name="P_L_SHIP_SAVED_QUERY" dataType="character"/>

 </parameters>

 <lexicals/>

 <dataQuery>

 <sqlStatement name="Q_1">

 <![CDATA[SELECT ALL

 STOPS_INFO_BOV.SHIPMENT_GID,

 STOPS_INFO_BOV.STOP_NUM,

 STOPS_INFO_BOV.CONTACT_NAME,

 STOPS_INFO_BOV.PHONE,

 STOPS_INFO_BOV.PARTY_NAME,

 STOPS_INFO_BOV.ADDRESS1,

 STOPS_INFO_BOV.ADDRESS2,

 STOPS_INFO_BOV.ADDRESS3,

 STOPS_INFO_BOV.UNIT,

 STOPS_INFO_BOV.ARRIVAL_DATE,

 STOPS_INFO_BOV.ARRIVAL_TIME,

 STOPS_INFO_BOV.DEPARTURE_DATE,

 STOPS_INFO_BOV.DEPARTURE_TIME,

 STOPS_INFO_BOV.CARRIER_NAME

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 4-7

 FROM REPORTOWNER.STOPS_INFO_BOV

 WHERE &P_L_SHIPMENT_ID_PARAM]]>

 </sqlStatement>

 <sqlStatement name="Q_2"></sqlStatement>

 <sqlStatement name="Q_3"></sqlStatement>

 .

 .

 .<!--SQL Queries-->

 .

 .

 </dataQuery>

 <dataTrigger name="afterParameterFormTrigger"

source="bill_of_lading.afterpform"/>

 <dataTrigger name="beforeReportTrigger"

source="bill_of_lading.beforereport"/>

 <dataStructure>

 <element name="P_L_SHIPMENT_ID1" dataType="varchar2"

value="BILL_OF_LADING.P_L_SHIPMENT_ID1"/>

 <element name="P_L_SHIPMENT_ID_PARAM" dataType="varchar2"

value="BILL_OF_LADING.P_L_SHIPMENT_ID_PARAM"/>

 .

 .

 .

 . <!-- Define elements and groups as per your queries and grouping

requirements -->

 .

 .

 .

 </dataStructure>

 <dataTrigger name="afterReportTrigger"

source="bill_of_lading.afterreport()"/>

</dataTemplate>

Note: Report designers should avoid dynamic SQL when creating reports. The additional

PL/SQL complexity and data template complexity outweighs the advantages of a dynamic

Where clause. For example, using a dynamic condition to control a date range can be easily
replaced with two parameters: one defining the earliest date; and one the latest date.

SQL Parameterization is presented here to aid in migration from Oracle Reports. Reports
designed for previous versions of Oracle Transportation Management rely on dynamic

where clauses and will be migrated with lexicals. For Oracle Transportation Management

version 6.2, most reports shipped with the system were migrated from Oracle Reports and
support dynamic SQL.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 5-1

5. Advanced Layout

Navigating Oracle Transportation Management Integration XML

When using an Integration template for data generation, a report designer needs a good

understanding of XPath. Oracle Transportation Management Integration XML is based on the following
schema:

<OTM_INSTALL_DIR>/glog/config/GLogXML.xsd

The Integration template can be configured to send BI Publisher the overall <Transmission> element

or the specific business object element (i.e. one of the elements contained by <GLogXMLElement>). In

either case, navigating to data generally requires a more sophisticated XPath expression than the BI

Publisher Microsoft Word add-in generates.

As an example, assume a shipment report is based on integration XML. To display the source location,
a designer retrieves the Location XID for the first shipment stop. The shortest XPath unique
expression would be:

ShipmentStop[StopSequence=1]/LocationRef/LocationGid/Gid/Xid

To specify this in Microsoft Word, the designer opens up the Advanced tab for the edit field and
specifies the XPath within a BI Publisher markup:

<?ShipmentStop[StopSequence=1]/LocationRef/LocationGid/Gid/Xid?>

The reuse of elements within the schema forces more complex field specification.

Namespaces

By default, integration XML is provided without namespace qualifiers. This simplifies XPath
specification but may not support all possible schema elements. Global Trade Management objects, for
example, may include two elements from two namespaces: the default namespace for Oracle
Transportation Management; and one for elements specific to Global Trade Management.

If namespaces are enabled, a report designer must register any namespace prefixes in his layout and
use the prefixes in XPath expressions. For example, assume the XML has the default namespace:

<xsl:schema xmlns=http://xmlns.oracle.com/apps/otm ...>

The report designer must add the following markup prior to laying out data fields:

<?namespace:x=http://xmlns.oracle.com/apps/otm?>

where x is some prefix to be used for the associated XPath elements. To specify this in Microsoft

Word, the designer must add a text form field to Microsoft Word for which help text holds the markup.
Once the namespace is registered, XPath markup for the source location would be:

<?x:ShipmentStop[x:StopSequence=1]/x:LocationRef/x:LocationGid/x:Gid/x:Xid?>

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 5-1

Properties

Table 5 lists properties to control the format of integration XML provided to BI Publisher:

Property Type Values Description Default
Value

glog.bipreports.integration.format

OutboundXML

boolean true/false If true, integration XML for reports is
formatted for readibility

false

glog.bipreports.integration.transm

issionXML

boolean true/false If true, the full Transmission XML is
output. This is useful for customers
basing reports on the full Oracle
Transportation Management schema. If
false, only the specific GLogElement is
included.

false

glog.bipreports.integration.stripI

nstruction

boolean true/false If true, the <?xml> instruction is
stripped from the output

false

glog.bipreports.integration.stripN

amespace

boolean true/false If true, the Oracle Transportation
Management namespace is stripped from

the output.

true

Table 5: Integration XML Properties

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 5-1

PDF Customization

A report designer can customize the format template to support three features specific to PDF report
output:

 Text Watermarks: You can control the watermark’s font, font size, angle, color, and bottom

left coordinates (as measured in pixels from the bottom left of the screen).

 Image Watermarks: You can upload an image for the watermark and control its lower left

and upper right coordinates. The watermark is scaled to fit the specified rectangle.

 Page Numbers: You can control the starting page number, font, font size, and bottom left

coordinates (as measured in pixels from the bottom left of the screen).

If you pick an output type other than PDF, these settings are ignored.

XSL vs. XSL:FO Transformation

Embedded reports are designed around the BI Publisher Transformation API. A common use case of

this API is to transform XSL:FO layouts with XML data to generate report output. BI Publisher supports
a number of XSL/XML transformation outputs including: HTML, PDF, RTF, Excel, Excel 2007, CSV, and
eText.

Oracle Transportation Management, though, supports a more direct transformation. By uploading a
standard XSLT stylesheet format to the format template, a designer can avoid BI Publisher. Instead,
the system uses Xalan to transform the XSLT with the XML into some structured output. This is
controlled by instructions in the XSLT but typically generates HTML. To use the Xalan transformation,

upload the stylesheet, but be sure to leave the XSL-FO Template check box unchecked.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 6-1

6. Scalability

Tier Control

The following are steps in the generation of an embedded report:

1. Template Retrieval

2. Data Generation

3. Transformation

4. Distribution (e.g. e-mail, IPP)

For scheduled and automated reports, these steps must run on the application tier. For ad-hoc
reports, though, properties control which steps run on which tier. Running some or all of these steps
on the web tier can increase performance.

As an example, assume a report has a small template, generates little data but produces large report
content. Transforming the report on the application tier may be infeasible because the returned
content exceeds RMI buffers. Running steps 1 and 2 on the application tier, but step 3 on the web tier

avoids RMI communication limits. If the web server is behind a firewall and has access to the
database, running steps 1 and 2 on the web tier could further optimize report generation.

By default, all four steps are run on the application tier. This allows the web tier to reside outside the
firewall without access to the database. It also allows application clustering to scale computationally
intensive reports.

The following properties specify tier control for ad-hoc reports:

Property Description Default Comments

glog.bipreports.appTier.transform Runs steps 1-4 on the

application tier

true if false, the web tier must

have database access

glog.bipreports.appTier.query Runs steps 1 and 2 on
the application tier

true if transform is false and
query is false,
transformation is run on
the web tier

glog.bipreports.appTier.distribute Runs step 4 on the

application tier

true if transform is false and

distribute is false,
distribution (e-mail and
IPP) is run on the web tier

If ad-hoc reports are generated on the application tier, but the web tier and application tier reside on

the same physical server and can access a shared directory, the bandwidth to return large report
content via RMI can be avoided. When the property glog.bipreports.report.share.browser is true,

the report is saved to the glog.bipreports.report.path directory. When control is returned to the

web tier, it reads the report file to output content to the browser.

Application Server Scalability

Report processing can be scaled on the application tier by assigning Reports functionality to a cluster

of application servers. All report generation is delegated to the cluster, whether ad hoc, scheduled, or
automated.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 6-2

If the cluster is dedicated only to Reports, the cluster overhead is minimal. A reports cluster does not

require JMS synchronization or business object locking. The only coordination it needs with other
servers is for Process Control handling.

Web Server Scalability

If the web tier is used for ad-hoc report generation (i.e.

glog.bipreports.appTier.transform=false), report processing can also be scaled on the web tier

by:

 enabling Web Scalability

 defining web servers and web clusters

 delegating Reports functionality to a dedicated web cluster

Please see the Application Scalability Guide for more information.

External BIP Server Farms

Though application server scalability can be used to isolate and scale BI Publisher report generation,
report designers also have the option to generate reports on a set of dedicated BI Publisher servers.
This can be done to isolate BI Publisher workload from Oracle Transportation Management or to fully
utilitize BI Publisher 11g features.

To specify a report runs on an external BI Publisher server, first define a report system of type BI
Publisher. The report system specifies the host, port, user and password to use when requesting
reports. This report system can be associated with one or more reports defined in Oracle
Transportation Management. Make sure the full path of the report is the concatenation of the report
system's report path prefix and the report's report path.

All report parameters are passed to BI Publisher as <item> elements under the

<parameterNameValues> element in the SOAP message. In addition, the following parameters are

passed as part of every report request:

Request Parameter Description

P_FORMAT The document format requested by the user (e.g. HTML,
PDF)

P_GL_USER The user who requested the document. This can be used to
enforce data security via VPD calls.

P_ROLE_ID The user role of the user requesting the document. This
can be used to enforce data security via VPD calls.

P_DATE_FORMAT The date/time format preference for the report.

P_DBCONN_TYPE OLTP, if the data source model should point to the online
database.

ODS, if the data source model should point to the offline
database.

Table 6: External BI Publisher Parameters

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 6-3

If the reports are created on an 11g or 10g server and accessed from OTM through web services, the

VPD will not be applied. In order to have the VPD applied for these reports newly created outside of
OTM, you will have to explicitly set the VPD using the before data event triggers which can call a
PLSQL function and can set the VPD accordingly.

For example:

1. If you are using 10g reports server and using a data template for creation of the report

content, then use the dataTrigger tag for specifying the PLSQL function to call the VPD:

<dataTrigger name="afterParameterFormTrigger"

source="reports_library.set_vpd(:P_GL_USER, :P_ROLE_ID)"/>

2. If you are using an 11g report server, call the PLSQL function using the Event Triggers which

are called before data.

Disabling Embedded Reports

Using embedded reports can add significant overhead to the Oracle Transportation Management
application servers. To remove the possibility of embedded reports being created or run, they can be
disabled by setting:

glog.bireports.supportEmbedded=false

With this configuration, users will not be able to:

 Generate an embedded report
 Create or edit an embedded report
 Create or edit a query, format or translation template

In addition, new reports will check the Run On Third Party Server flag by default.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 7-1

7. Troubleshooting

When generating a report, errors can occur in the BI Publisher layer when generating data or
transforming the data against a stylesheet. If fatal, an exception is thrown to Oracle Transportation

Management. For an ad-hoc report request, the exception is shown to the user; for scheduled or
automated reports, it is written to the exception log.

Report Logging

Two types of logging are available to diagnose report issues:

 Oracle Transportation Management logging. The REPORT log ID outputs each major step of

report creation (template retrieval, data generation, transformation, and distribution). The

logging may be written to the web log or various application logs, depending on tier control
settings. The REPORT_DETAILS log ID provides more detailed information on the

transformation engine.

 BI Publisher logging. The BI Publisher engine maintains a separate logging subsystem to track

data generation and transformation progress. The following properties control where and what

BI Publisher will log:

Property Description Default

glog.bipreports.log.filename The file to hold BI Publisher logging bipublisher.log

glog.bipreports.log.level The level of detail for logging. Valid

values are:

0 = none
1 = all statements
2 = all procedures
3 = all events

4 = exceptions only
5 = errors only

6 = unexpected errors only

4

glog.bipreports.log.maxsize Maximum size of the log file before
spooling to a backup

1000000

glog.bipreports.log.numBackups Maximum number of log file backups 5

Note: The BI Publisher log level also controls exception output. While generating a report,

Oracle Transportation Management captures any BI Publisher logging12. If an exception
occurs, this logging is prepended to the exception stack trace. Given a reporting error,

detailed BI Publisher logging can be turned on via the properties servlet. When the user

tries to rerun the report, the exception trace will include the BI Publisher logging and aid in
troubleshooting.

12 Currently, BI Publisher does not provide a mechanism to capture logs for a particular

request. The log output may show results from a number of synchronous report requests.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 7-2

Intermediate File Persistence

During report generation, content and report files are written to the disk before being distributed. By
default, these files have a short lifespan. Once the report is generated, the content file is deleted.
Once the report is distributed, the report file is deleted. For troubleshooting, it may be useful to view

these files. They can be persisted via the following properties:

Property Description Default

glog.bipreports.content.persist If true, content files are not
removed

false

glog.bipreports.report.persist.browser If true, report files used for
browser views are not removed

false

glog.bipreports.report.persist.attachment If true, report files used for

e-mails attachments are not
removed

false

glog.bipreports.report.persist.printer If true, report files used for IPP
printing are not removed

false

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 8-1

8. Oracle Reports Migration

Prior to Oracle Transportation Management 6.2, reports were generated with Oracle Reports. There
are three options to leverage these reports in 6.2:

 Redefine the reports as a third party report. Each report will require a URL to the Oracle

Reports Server, specifying the specific report to be run.

 Migrate the reports to BI Publisher, maintaining dynamic SQL criteria. This is the default

behavior of the BI Publisher migration tools. It requires the maintenance of a PL/SQL package

per report and lexicals within the data template.

 Migrate the reports to BI Publisher, removing support for dynamic SQL. This would require
using the BI Publisher migration tools to maintain the layout and data queries. Once migrated,

though, the report designer would remove the PL/SQL package and modify the data template

to use simple bind parameters.

Examples of these migrations will be available in future versions of this document.

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 9-1

9. Additional Resources

Oracle Business Intelligence Suite Enterprise Edition Documentation Library:

http://download.oracle.com/docs/cd/E10415_01/doc/nav/portal_booklist.htm

A BI Publisher developer's diary...

http://blogs.oracle.com/BIDeveloper/

BI Publisher Forum

http://forums.oracle.com/forums/forum.jspa?forumID=245

http://download.oracle.com/docs/cd/E10415_01/doc/nav/portal_booklist.htm
http://blogs.oracle.com/BIDeveloper/
http://forums.oracle.com/forums/forum.jspa?forumID=245

Copyright © 2010, 2015, Oracle and/or its affiliates. All rights reserved. 9-2

