ORACLE

Oracle Knowledge Intelligent Search Application
Development Guide

A Guide to Customizing and Extending Oracle Knowledge

Oracle Knowledge Version 8.5
Document Number OKIS-ADEV85-01
January 15, 2013

Oracle, Inc.

COPYRIGHT INFORMATION

Copyright © 2002, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license
terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional
rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

Contents

Preface

Chapter 1

Chapter 2

ABOUL This GUIAE .. v ittt i et e st s e st et et n et naenannns

INThis GUIde
Screen and Text Representations
References to World Wide Web Resources

The Oracle Knowledge UserInterfaceciiiint.

The Personalized Response UserInterface
User Interface Processingo
Application Response Format
The Parameters Section
The Answers Section
The Query Section

User Interface Componentscciiiiiiiiinrrnnnnnnnns

The Main Template
Main Template File Example
The Global Layout Style Templates i
Basic Search Layout Display Example
Request and Response Element Templates
Global Configuration Parameters Template
Sample Configuration Parameters File
Request Element Templates
Request Area Example e
Dialog Request Area Example
Response Element Templates i
Global Elements and Utilities

Oracle Knowledge Intelligent Search Application Development Guide

ORACLE Contents

Chapter3 UserInterface Elementsciiiiiiii it ierennnnn 14
Request Elements e 14
Response Elements 14
Answer Display Features 15
ANSWEr PUIPOSES 16

Default Answer PUrposes i 17
Answer Portlets e 17
Default Answer Portlets 18
Promotions Portlet Example 19
Act Now Portlet Example 19
Learn More Portlet Example 20
Definition Portlet Example e 20
Feature Content Portlet Example 21

Chapter 4 Customizingthe UseriInterfaceot 22
Specifying the User Interface Layout 22
Integrating the User Interface 23
Customizing Style Elements 23

Customizing General Style Elements 23
Customizing Question Area Definitions 24
Customizing Answer Area Definitions L. 25
Customizing Sidebar Area Definitions 27
Customizing Request Elements 28
Customizing the Request Heading 29
Customizing the Example Question 29
Customizing the Question Box 29
Customizingthe Tips Link 30
Customizing the SubmitButton 30
Customizing Response Elements 30
Customizing the Question Echo 31
Customizing the Answer Introduction 31
Customizing Answer Headings 31
Customizing the Answer Body Text 31
Customizing the Answer Document Link 32
Configuring Answer PUrpPOSES 32
Adding Answer Purposes to the Application 33
Customizing Answer Portlets 36
Specifying Portlet Display Position 36
Customizing Portlet Headings 36
Customizing Portlet Answer Headings 36
Customizing Portlet Answer Text i 37
Customizing Portlet Document Links 37

Chapter 5 Implementing Optional Features i, 38

The Process Wizard User Interface i 38
The Process Wizard ANSWETottt 39
The Step Display Area 39
Modifying the Process Wizard UserInterface 39

iv Oracle Knowledge Intelligent Search Application Development Guide

Contents

Activating the Personalized Navigation User Interface Layout
The Personalized Navigation User Interface Elements . .
Personalized Navigation XSL Style Sheet Elements
Personalized Navigation CSS Style Sheet Elements . ..
Personalized Navigation-Related XML Elements

Implementing Direct Page Display
Direct Page Display Example

Implementing a Virtual Representative

Implementing User Feedback Collection
The User Feedback Portlet
The User Feedback CommentForm
The User Feedback Process
Customizing the User Feedback Area Heading
Customizing the User Feedback Rating Labels
Customizing the User Feedback Comment Form
Disabling the User Feedback Feature

Implementing Click-Through Logging

Highlighting Answers Within Documents
Enabling Highlighting within Answer Documents
Specifying HTML Highlighting Style Attributes

Managing Multiple Languages in the User Interface

Chapter 6 Creating a Custom Content Crawler

Example: Creating a Database Web Crawler
Example: Configuring the Database Web Crawler
Configuring a Custom Crawler

Example Crawler Settings

Chapter 7 Creating a Custom Document Preprocessor.

Example: Creating a Document Preprocessor
Configuring a Custom Document Preprocessor
Supporting Multiple Navigation Applications

Chapter8 CreatingaCustomTask

Example: Creating a Simple Custom Task
Example: Handling Argument Parsing
Example: Handling Document Count and Progress Updates

Example: Handling User Task Interruptions
Configuringa Custom Task

Chapter 9 Creating a Custom Authentication Interface

Example: Creating a Simple Custom Authenticator
Example: Simple Unit Testing of a Custom Authenticator . . .
Example: Configuration-based Test for iAuthenticator Objects
Configuring a Custom Authenticator

Oracle Knowledge Intelligent Search Application Development Guide

ORACLE

Contents

ORACLE’
Chapter 10 Integrating an External Authentication Application 87
Example: Integrating a Delegation Authenticator 88
Example: Integrating a Delegation Detector 90
Configuring a Delegation Authenticator or Detector 91
Chapter 11 Creatingan Action Pluginttt ens 93
Example: Creating an Action Plugin 93
Configuring an Action Plugin 95
Chapter 12 Creating a Custom Preference Handler 96
Example: Creating a Preference Handler 96
Configuring a Preference Handler 97
Chapter 13 Rendering Web Pages Usinga CustomAgent................... 98
..................... 98

Example: Rendering a Web Page Using a Custom Agent

Oracle Knowledge Intelligent Search Application Development Guide

vi

PREFACE

About This Guide

This guide provides information about integrating and customizing the Oracle Knowledge Personalized
Response User Interface. It describes the components and elements that make up the User Interface, and
includes guidelines for:

¢ Incorporating the User Interface into your web architecture
¢ Customizing User Interface appearance and functionality

¢ Implementing special features

This guide also provides information for application developers who want to customize or extend Oracle
Knowledge through its API. For information on configuration-based changes or changes to Oracle Knowledge
that are not accomplished through its API, refer to the Intelligent Search Optimization Guide.

For a full discussion of the Oracle Knowledge architecture, components, and instances as well as information
about setting up the development environment and deploying customizations and code changes to the
production environment refer to the Oracle Knowledge Intelligent Search Administration Guide.

This preface includes the following sections:
* In This Guide
e Screen and Text Representations

¢ References to World Wide Web Resources

In This Guide

The Intelligent Search Application Development Guide is divided into the following sections:

Chapter 1, The Oracle This section describes the basic functions of the User Interface and input

Knowledge User format of the application responses.

Interface

Chapter 2, User Interface This section describes the templates that define the User Interface func-
Components tionality and presentation.

Chapter 3, User Interface This section describes the various request and response elements within
Elements the User Interface.

Chapter 4, Customizing This section describes the process of specifying User Interface layout, indi-
the User Interface vidual element styles, and implementing Personalized Response features.
Chapter 5, Implementing This section describes optional User Interface features that you can use
Optional Features within your application.

Chapter 6, Creating a This section shows you how to implement a custom DB Web crawler.

Custom Content Crawler

INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

Chapter 7, Creating a
Custom Document
Preprocessor

Chapter 8, Creating a
Custom Task

Chapter 9, Creating a
Custom Authentication
Interface

Chapter 10, Integrating
an External
Authentication
Application

Chapter 11, Creating an
Action Plugin

Chapter 12, Creating a
Custom Preference
Handler

Chapter 13, Rendering
Web Pages Using a
Custom Agent

This section discusses common preprocessing tasks and provides an
example based on which you can develop your own preprocessing rou-
tines.

This section shows you how to create a custom task.

This section shows you how to create a custom authentication interface.

This section shows you how to integrate Oracle Knowledge's authentica-
tion with an external application.

This section shows you how to create and integrate an action plugin that
executes when a rule is invoked.

This section provides a template for developing preference handlers.

This section provides an example of how to integrate a custom agent
bypassing the web page rendering functionality built into Oracle Knowl-
edge.

Screen and Text Representations

The product screens, screen text, and file contents depicted in the documentation are examples. We attempt
to convey the product's appearance and functionality as accurately as possible; however, the actual product
contents and displays may differ from the published examples.

References to World Wide Web Resources

For your convenience, we refer to Uniform Resource Locators (URLSs) for resources published on the World
Wide Web when appropriate. We attempt to provide accurate information; however, these resources are
controlled by their respective owners and are therefore subject to change at any time.

INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

CHAPTER 1

The Oracle Knowledge User Interface

The Oracle Knowledge Personalized Response User Interface is a full-featured graphical user interface
designed to integrate easily with your existing production web site. The User Interface provides the elements
required for processing requests and presenting responses, and supports additional optional features that you
can implement as desired.

To use the User Interface in a production web environment, you must:
* Integrate it into your web site's navigation and presentation scheme
¢ Customize it to conform to your organization's functional and presentation requirements

¢ Implement any desired optional features as described in Chapter 5, Implementing Optional Features
The User Interface is installed as part of the standard product installation.

Note: The User Interface is available only as an HTML-based user interface for use with a configured
Oracle Knowledge web application. For information about implementing Oracle Knowledge using other
technologies, contact your Oracle account representative.

The Personalized Response User Interface

The Oracle Knowledge User Interface incorporates Oracle Knowledge's Personalized Response concept,
which presents direct answers to user requests in its main answer area, and categorized related information in
that you configure within the Dictionary.

The Personalized Response User Interface organizes various types of related responses into separate
graphical areas, or portals, enabling you to establish consistent, focused, and targeted presentation for various
types of application content, such as general site information, online glossaries, promotional material, and site
features, such as calculators and other tools.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACI—E

4 USERINTERFACE

User Interface Processing

The User Interface contains all of the elements required to solicit user questions and present categorized
application responses. During request processing, the User Interface:

¢ Passes user input to the application for processing. See Chapter 1, Dictionary Manager Advanced
Features in the Intelligent Search Optimization Guide for an overview of application request and
response processing.

* Receives formatted responses from the application. See Application Response Format on page 4 for
information about the response format.

» performs final formatting and displays responses to the end user, as specified by the configured
presentation elements as described in Chapter 4, Customizing the User Interface.

Application Response Format

The application passes responses to the User Interface as a file that conforms to an internal Extensible Markup
Language (XML) document type definition (DTD). The User Interface templates are stylesheets that transform
the XML into formatted HTML for presentation within a browser.

The response file is divided into sections:
e The Parameters Section on page 4
e The Answers Section on page 4

e The Query Section on page 5

The Parameters Section

The parameters section provides meta-information about the response, such as context information and other
configuration parameters. The User Interface uses this information to retrieve page parameters, server URLs,
and other required information.

The following example is an excerpt from a typical parameters section.

<params>

<param name="type">AnswerQuestion</param>

<param name="Question">how much can I contribute to a Roth ira in?
<param name="baseURL">http://lcdemo2:8222/htmlagent/ui.jsp</param>
</params>

The Answers Section

The answers section contains the various content responses (answers) to the request (question). Factors that
determine the number of answers passed to the User Interface include:

¢ The number of content matches (answers) located in the application content
* The scores associated with the located answers

The results file groups answers according to answer purposes, which are specified in the Dictionary. The User
Interface displays answers associated with each purpose in a specific section, or portlet of the response page.
The maximum number of answers within each portlet is determined by display thresholds. See Configuring
Answer Purposes on page 33 for more information about answer purposes and how they are displayed by the
User Interface.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

5 USERINTERFACE

The following example includes a general answer and an answer assigned to the purpose 1ink to
category.

<answer score="1.0">
<answer type="unstructured" score="0.6691748880962431"
<section>
<title idx="0"
<snippet 1lv1="0">Financial
</title>
<text idx="1"
<snippet 1lv1="1">Only married couples with
<snippet 1v1="3"> $ 150 </snippet>
<snippet 1lv1="1"> , 000 or less and singles

</text>
</section>
<highlighted link
<similar response link
</answer>
</answer>
<link to category score="1.0">
<answer type="custom" score="1.0">
<sentence type="code"><a
<title type="code">Roth IRA</title>
</answer>

The Query Section

The query section contains history information associated with the session, such as previously asked
questions. The User Interface uses this information to present session information with results.

The following example is an excerpt from a typical query section.

<query>

<guestion transactionId="1">

<original>how much can I contribute to a Roth ira in
<paraphrase>how much can I contribute to a Roth ira in
</question>

</query>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 2

User Interface Components

The User Interface consists of a set of templates that use Extensible Stylesheet Language Transformation
(XSLT) and HTML Cascading Style Sheets (CSS) to define presentation characteristics.

The set of templates includes the main template, called main.xs1, and subordinate templates that contain
the elements required for User Interface implementation.

The templates contain presentation and navigation design elements, such as:
¢ Page layouts
» Functional elements, such as user input elements and response presentation elements
¢ Global elements, such as color schemes and font families

The templates are pre-configured with default values for required elements.

In addition to the required User Interface elements, the templates contain elements that support optional
features, such as Personalized Navigation, direct page display, and dialog-style user interaction.

See Chapter 3, User Interface Elements for more information about the elements of the User Interface.

The Main Template

The main template specifies the set of subordinate templates that determine the layout, functional elements,
and style of the User Interface. The main template also specifies additional utilities and directories that provide
basic functional or graphical elements.

You need to modify the main template to integrate the User Interface with your site's navigation structure. The
main template is located in:

<InQuira home>/inquira/int/xsl/search

The main template specifies subordinate templates as include statements. Main Template File Example on
page 7 contains a sample section of the main template showing its structure.

See Chapter 4, Customizing the User Interface for more information on using the main template.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACI_E

7 THE MAIN

Main Template File Example

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<!-- General -->

<xsl:import href="config.xsl"/>

<xsl:import href="globals.xsl"/>

<xsl:import href="includes.xsl"/>
<xsl:import href="../common/util.xsl"/>

<!-- Options for Search UI Main Screens -->
<xsl:import href="ui search basic.xsl"/>
<!--xsl:import href="ui search and browse.xsl"/-->
<!--xsl:import href="ui search vrep.xsl"/-->
<!-- Other search UI pages -->

<xsl:import href="instant answer page.xsl"/>
<xsl:import href="user comments page.xsl"/>
<!-- Search UI Main Areas -->

<xsl:import href="results.xsl"/>

<xsl:import href="sidebar.xsl"/>

<xsl:import href="structured details.xsl"/>
<xsl:import href="tips.xsl"/>

<xsl:import href="error.xsl"/>

<!-- End of Imports -->

<xsl:output method="html" indent="yes"/>
<xsl:strip-space elements="*" />

<!-- Override the default, empty resource file with our own for the search UI -->
<xsl:variable name="resource-file" select="document ('resource.xml')" />

<xsl:template match="/">
<xsl:choose>
<xsl:when test="$error-message">
<xsl:call-template name="error-page" />
</xsl:when>
<xsl:when test="S$show-user-comments-page">

<xsl:call-template name="user-comments-page" />
</xsl:when>
<xsl:when test="$show-instant-answer-frame">
<xsl:call-template name="instant-answer-frame" />
</xsl:when>
<xsl:when test="S$instant-answer and not ($no-jump or S$show-definition-
detail-page or S$show-structured-detail-page) ">
<xsl:call-template name="instant-answer-page" />
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="question-and-results-page" />
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

THE GLOBAL

The Global Layout Style Templates

The layout style templates determine the basic format of the User Interface request and response pages. You
specify the following layout templates using an include statement in the main template file.

* The standard response page format (ui_search basic.xsl)
* The Personalized Navigation layout (ui search and browse.xsl)

» The Virtual Representative layout for (ui_search vrep.xsl)

The standard response page template is enabled by default, as shown in the following example:

<!-- Options for Search UI Main Screens -->
<xsl:import href="ui search basic.xsl"/>
<!--xsl:import href="ui search and browse.xsl"/-->
<!--xsl:import href="ui search vrep.xsl"/-->

See Chapter 5, Implementing Optional Features for more information on enabling the alternate global layout
styles.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

REQUESTAND

Basic Search Layout Display Example

The basic search layout provides a large left-column answer area, and the question input area and related

information portlets arrayed in the right column. Answer Display Features on page 15 describes features of
the answer displays.

= ANSWERS

Personal Finance Business Services

You asked: How much can I contribute to an IRA?

Investing

E LM Finance | IRA Contribution - Annual

Mazimum IRA contributions are determined by the tax year and your age during
the tax year. You can contribute up to the following armounts to a Traditional or
Roth IRa:

Tax Year Under Age 50 Age 50 and Older
2001 $2000 2000
2002-2004 $3000 3500
2005 $4000 4500
2006-2007 $4000 5000
2003 and Later $5000 6000

LM Finance | Traditional IRA

Traditional Individual Retirement Accounts (IRAS) are available to employed
persons and their spouses, The amount that you can contribute to an IRA is
limited, and the limits are determined by the date and your age. IR& contributions
are completely deductible for taxpayers and spouses who do not participate in a
qualified plan. For plan participants, contributions are deductible only if their
adjusted gross income is below a defined limit. IRA earnings are tax-deferred,
meaning that they are not taxed until withdrawn,

IRA Contributions

%3,000 per individual taxpayer or non - working spouse (Spousal IRA) or up to
100% of earned income (if less than maximum), excluding any contributions to a
Roth IRA . Add $£500 for contributers over age 50 in contribution year,

1 Sirnilar Answer

LM Finance

LM Finance | IRA FA

A Traditional IRA is a special retirement account that you can start at any time to
save for retirement, Traditional IRAs are also called contributory IRAS | You can
make annual contributions to an IRA up to $3,000 or 100% of your earned
income, whichever is less, You can also contribute the same amount to a separate
Spousal IRA if your spouse does not waork, Contributions to IRA&s are tax
deductible, within specified limits, and their earnings are tax-deferred (not taxed)
until withdrawal at eligibility (age 70 V2).

LM Finance | Roth IRA Comparison
Provides for tax-exempt income at eligibilty date. Contribute after-tax earnings.

Can supplement employer's plan. Can contribute to Roth IRA and Traditional TRA
inthe same year {up to $3,000 or $3,500 age 50 and over),

LM Finance | Traditional IRA Comparison

Provides tax-deferred contributions. Income taxed at retirement. Can supplement
employer's plan. Can contribute to Roth IRA and Traditional IRA in the same year
(up to $3,000 or $3,500 age 50 and over).

Locations | Contact Us | Careers | Privacy

Customer Center I_

Have Another Question?

Type it below to find an
answer now,

Q:

Tips Ask

Act Now

Plan My Retirernent Savings
A I Eligible?

Open My IRA Today

Related Links

Betirernent Accounts
IRA FAG

Retirernent Services

IRA

IRA - Spouse
IRA - Education
IRA - Roth

Are we answering your
questions?

[Absaolutely!
s Usually

 Sometimes
s Rarely

 Not even close!

Submit |

Request and Response Element Templates

The request and response element templates determine the basic format and content of the request and
response elements within the specified layout.

e Sample Configuration Parameters File on page 10

* Request Element Templates on page 10

* Response Element Templates on page 12

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

10 REQUESTAND

Global Configuration Parameters Template

The configuration parameters template specifies global settings for both request and response elements. The
config.xsl template contains User Interface configuration parameters, such as section headers and
feature switches. Sample Configuration Parameters File on page 10 provides a sample of the file contents.

Sample Configuration Parameters File

The following is a sample of the configuration parameters file, config.xs1.

<?xml version="1.0" 2>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<t--
- Configurable variables
-—>

<l--

- Score Thresholds

- best-answers-min-score: Minimum score required to be considered one of the
best answers

- best-answers-min-diff: Minimum difference between scores required before
being cut off from the best answers

- best-answers-max-display: Maximum # of best answers to display

-—>
<xsl:variable name="best-answers-min-score" select="0.90" />
<xsl:variable name="best-answers-min-diff" select="0.01" />
<xsl:variable name="best-answers-max-display" select="3" />
<l--
- The spellchecker returns suggestions with scores between 0 and 100.
- This sets the minimum score required before a suggestion is made to the user.
-—>
<xsl:variable name="spellcheck-min-suggest-score" select="90" />
<l--
- User Interface Options
-—>
<xsl:variable name="default-charset" select=""'UTF-8'" />
<xsl:variable name="get-user-feedback" select="true ()" />
<xsl:variable name="show-search-running-indicator" select="true()" />
<xsl:variable name="debug-full-excerpt" select="false ()" />

</xsl:stylesheet>

Request Element Templates

The request element templates determine the basic format and contents of the request elements within a
specified layout.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

11 REQUESTAND

Request elements
question.xsl

This template specifies standard question interaction using the question boxes, example questions, and other
user input elements. You must specify this template or the alternative dialog-style elements. This template is
the default. Request Area Example on page 11 provides a sample request area display.

Dialog-style elements
question vrep.xsl

This template specifies dialog-style question interaction for use with virtual representatives (VREPSs) or similar
implementations, as described in Implementing a Virtual Representative.Dialog Request Area Example on
page 12 provides a sample dialog-style request area display.

Request Area Example

The default request area provides the functional and presentation elements required for integrating a request
area into pages within your web site. The request area elements are described in more detail in Request
Elements on page 14.

Have a Question? Tips

Type your question below to find an answer now,
Q' Ask

Example: "Does Product-x have Feature-y?"

INQUIRA-
Top 10 Questions

Question 1
Question 2
Question 3
Question 4
Question &
Question 6
Question 7
Question 8
Question 9
Question 10

[R Rt I U (R O B e

=

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

12 REQUESTAND

Dialog Request Area Example

The dialog-style request area provides the functional and presentation elements required for integrating a
dialog-style request area into pages within your web site. The request area elements are described in more
detail in Request Elements on page 14. See Implementing a Virtual Representative for more information
about using the dialog style template to support user interaction with a virtual representative. _
P
Have a Question? Tips T

REP: Can I help you find something? Just ask!

Space for
“irtual Rep
Irmage

Q: Ack

Example: "Does Product-x have Feature-y?"

INQUIRA-
Top 10 Questions

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10

[o I w N T S A TR W

jury

Response Element Templates

The response element templates determine the basic form and content of the response elements.
Standard answer elements
results.xsl

This template contains elements for presenting standard answers, and also contains the basic building blocks
for answers used by all answer purposes.

Portlet answer elements
sidebar.xsl

This template contains elements that generate the portlet display area of the response page. The portlet
display area displays all answer purposes except standard, dialog, and direct page display.

See Default Answer Purposes on page 17 for information on default answer purpose presentation.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

13 GLOBAL

User Interface error messages
error.xsl

This template specifies the format for displaying error messages. This template is required.

Global Elements and Ultilities

The global element templates specify basic colors, fonts, and section headings and other variables used
throughout the User Interface. The utilities files include graphics directories and basic usability functions. You
can specify elements within these templates for either the two- or three-column layout style.

Common elements

includes.xsl
This template contains the elements that support inclusion of basic style sheets and utilities, such as
CSS and JavaScript.

Global Javascript file

gna_common.js

This is the main JavaScript file, located in <InQuira home>/inquira/int/js. It contains basic
JavaScript functions used on the request and response pages.

Common element style sheet
gna_style.css

This is the style sheet, located in <InQuira home>/inquira/int/js, that defines the basic common
elements, such as fonts and colors, for the request and response page elements. See Customizing General
Style Elements on page 23 for more information on the style elements.

Common image directory
images/*.gif

This directory contains various images used throughout the User Interface. It also stores custom images, such
as character images for dialog-style interaction, as described in Implementing a Virtual Representative.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

CHAPTER 3

User Interface Elements

The various templates and style sheets within the User Interface define the elements that process user
requests and display application responses. Request elements and response elements include both functional
elements, such as the question input box, and presentation elements, such as color schemes and heading text,
that organize the application functions into a meaningful visual display.

Request Elements

The functional and presentation elements of the user request area appear on the initial request page and on
the response page. Request elements include the question box for user input and other functional and graphic

elements.
Element Description
Request Area Defines the request area elements.

Request Heading

Specifies the text that appears at the top of the request area. See Customiz-
ing the Request Heading on page 30.

Example Question

Specifies the example question text that appears below the request heading.
See Customizing the Example Question on page 30.

Question Box

Defines the text input box. See Customizing the Question Box on page 30.

Tips Link Specifies the link to the User Interface help page. See Customizing the Tips
Link on page 31.
Submit Button Specifies the request submittal mechanism. See Customizing the Submit

Button on page 31.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

15 RESPONSE

Response Elements

The User Interface displays answers and related information on the response page. The response page is
divided into several functional areas:

¢ The request area, which provides the means for users to ask additional questions.
e The answer area, which presents the application responses that directly the user's question.

* The related information area, which presents related responses, grouped into separate portlets by
answer area, which presents the application’s direct responses to the user's question.

Note: You can also use the direct page display feature to display the document that contains the answer to
a specified request directly on the response page. Direct page displays supersede the standard answers.
See Implementing Direct Page Display for more information on configuring the direct page display feature.

Response elements include answers, which are composed of various configurable sub-elements, and other
functional and graphic elements.

Element Description

Answer Area Defines the answer display area on the response page. See Customizing
Response Elements on page 31.

Question Echo Specifies the display of the user's question on the response page. See Cus-
tomizing the Question Echo on page 32.

Answer Introduction Specifies text that introduces the answer. See Customizing the Answer
Introduction on page 32.

Answer Heading Specifies the format of the document titles displayed as answer headings.
See Customizing Answer Headings on page 32.

Answer Body Text Specifies the display font for answers on the response page. See Customiz-
ing the Answer Body Text on page 32.

Answer Document Link | Specifies the format of the link text within answers. See Customizing the
Answer Document Link on page 33.

Related Information Specifies the format of the elements that make up the answer portlets. See
Customizing Response Elements on page 31.

Answer Display Features

The User Interface contains features that display a variety of visual cues that accompany answers. These
features include:

Answer source icons

Answer source icons indicate the type of document or information source in which the answer is located. They
are passed in the XML response format in a standard attribute called docType. The User Interface displays
icons for the following answer sources:

» Answers from structured information (database) sources:]
» Answers from HTML, newsgroups, Microsoft PowerPoint, and ASCII text documents: =
» Answers from PDF documents: "%

« Answers from Microsoft Word documents: "%

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

16 ANSWER

* Answers from Microsoft Excel documents: *=
. Images:@
Answer highlighting and question-word emphasis

The stylesheet gna _style.css contains settings to emphasize words and phrases in the answer excerpt.
Various levels of emphasis are defined in the User Interface, and these levels correspond to values defined for
primary and secondary word-matching and proximity to words occurring in the user's question. Matching words
are determined by the language analysis process, which takes into account word-form va. The default setting
applies a bold style (bold) and a blue background to matching words.

Similar answer link

The similar answer link provides access to answers derived from other pages on the site having similar content
that were found in the search. This feature enables the User Interface to consolidate duplicate pages, or pages
that re-use a substantial amount of content, in the initial response. Users can click on the link to display the full
answer page including the similar answers.riations, synonyms, and other semantic relationships, as described
in the Intelligent Search Language Tuning Guide.

Answer Purposes

Answer purposes are categories to which you assign answer actions within Dictionary rules. Answer purposes
correspond to display characteristics defined in the User Interface, enabling you to establish consistent,
focused, and targeted presentation for various types of application content, such as general site information,
online glossaries, promotional material, and site features, such as calculators and other tools.

Oracle Knowledge is installed and configured with a standard set of answer purposes, described in Default
Answer Purposes on page 17, which are designed for use with the Personalized Response User Interface.
The default answer purposes associate each purpose with a defined response category area, or portlet, of the
answer page.

You use answer purposes by:

¢ Assigning answer purposes to actions within Rules, as described in Rules in the Intelligent Search
Language Tuning Guide.

* Configuring presentation characteristics for User Interface portlets, as described in Configuring Answer
Purposes on page 33.

Note: In contrast with answer purposes, answer methods correspond to type of data or method used to
supply the answer. Examples of answer methods include querying structured data, searching the indexed
unstructured content, and displaying custom content. See Answer Action Methods for Rules in the
Intelligent Search Optimization Guide for more information on answer methods.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

17

ANSWER

Default Answer Purposes

The standard set of answer purposes described below are designed for use with the Personalized Response

User Interface.

Purpose Description Default Response |Default Presentation
Template

Answer Displays responses that Answer Template In the Answer area of the
directly address the user’s response page
question.

Act Displays links that provide Act Template In the Act Now portlet
actions that the user can take
on the web site.

Promote Displays cross-sell or up-sell | Promote Template In the Promotion portlet
advertisements for products
related to the intent of the
question.

Related Topic Displays links to major topic | Link To Category Template |In the Related Topics portlet
categories defined for the web
site.

Define Displays links to terms used in | n/a In the Definition portlet
the question as well as similar
content.

Jump to Page Displays content configured in | n/a See Implementing Direct Page
the Dictionary for use with the Display on page 42.
direct page display feature.

Converse Displays conversational Converse Template See Implementing a Virtual

response intended for use
with a virtual representative
on the response page.

Representative on page 44.

Feature Content

Displays specific featured
content from the web site that
supplements the answers.

Feature Content Template

In the Featured Content
area of the response page

Contact

For use with the Contact
Deflection feature. This field
appears only when activated
through the Contact Deflec-
tion feature.

Answer Portlets

n/a

Does not appear. See Oracle
Knowledge Intelligent Search
Administration Guide, Chapter 9:
Advanced Configuration Facility,
“Contact Deflection” for addi-
tional information.

User Interface portlets are defined regions of the answer page. Portlets enable you to categorize responses
displayed on the answer page according to purpose; some desirable responses are direct answers to user
questions, while others might be information about related promotions, services, tools, and terms.

The User Interface is installed with a set of default portlets that correspond to the purposes that you can
specify specific responses within the application Dictionary.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

18

ANSWER

In general, the User Interface portlets are designed to accept and present information associated with any type
of answer action that can be specified within a Rule; however, this section does describe limitations and
suggested applications where appropriate.

See the Intelligent Search Language Tuning Guide and Intelligent Search Optimization Guide for more
information on the Dictionary, Rules, actions and answer purposes and methods.

Default Answer Portlets

The User Interface is installed with several pre-defined portlets. Each portlet is designed to present answers
with a specific purpose, as described in Answer Purposes on page 16

The following table describes the available default portlets. The default answer page displays the portlets in a
single column to the right of the answer area. The portlets are listed here in the order in which they are
displayed in the default User Interface.

Portlet

Usage

Promotions

Use this portlet to display promotional information, such as cross-sell or up-sell
advertisements for products related to the intent of the question. You can configure
responses to include graphics as links to pages that contain more detailed informa-
tion. See Promotions Portlet Example on page 19 for more information.

Act Now

Use this portlet to display information about relevant activities that users can perform
immediately on the site. This portlet favors concise, imperative messages that com-
pel users to access beneficial features. See e Act Now Portlet Example on page 19
for more information.

Learn More

Use this portlet to display brief summaries of content areas that are relevant to the
user's question, such as tools and calculators. See Learn More Portlet Example on
page 20 for more information.

Definition

Use this portlet to display definitions of terms related to the user's question. This por-
tal is ideal for displaying existing glossary information adapted from various formats.
See Definition Portlet Example on page 20 for more information.

Feature Content

Use this portlet to display more detailed information about relevant content areas
and site features, such as tools and calculators. The Feature Content portlet dis-
plays responses in the lower portion of the answer area and not in a segregated box,
which provides space for more detailed information, such as graphical tools. See
Feature Content Portlet Example on page 21 for more information.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

19 ANSWER

Promotions Portlet Example

The Promotions portlet is intended to display relevant promotions and special offers. The Promotions portlet
provides an opportunity to create effective context-sensitive marketing by configuring Promotional responses
based on products or services mentioned the user's question.

The Promotions portlet can display responses generated by any of the available answer methods; however, it
is well-suited to present custom content answers. You can configure a custom content response to include a
graphic as in the following example:

Promotions

Apply NMow for a Home Equity Loan!

ClICK riere
For Full Details!

Mo purchase
nacessary.

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language Tuning Guide for more
information on configuring custom content responses.

Act Now Portlet Example

The Act Now portlet is intended to provide quick access to relevant activities that users can perform on your
site. Opening an account, registering for a service, and checking the status of an order are examples of actions
that you can configure as Act Now responses.

The Act Now portlet can display responses generated by any of the available answer methods; however, it is
well-suited to present custom content answers that specify a title as a link to the desired location, as in the
following example:

Apply Mow for a Mortgage
Check Your Application Status
Get Today's Rates

Prequalify for a Loan

Apply for Home Equity

Enroll in Online Banking

Set Up an AutoPay Plan

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language Tuning Guide for more
information on configuring custom content responses.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

20 ANSWER

Learn More Portlet Example

The Learn More portlet is intended to provide access to related topic areas and site features. You can use the
Learn More portlet to direct users to FAQ pages, process overview pages, tools and calculators, and other site
resources.

The Learn More portlet can display responses generated by any of the available answer methods. It is well-
suited to present:

* Custom content answers that specify a title as a link to the desired location
* Custom content responses that include additional descriptive text, as in the following example:

Mortgage Loan Process
Online Mortgage Answers
Mortgage Calculators

Home Equity Loan

A Home Equity Loan provides flexible
tarms with a fixed monthly payment to
allow for easy budgeting.

Office Locator

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language Tuning Guide for more
information on configuring custom content responses.

Definition Portlet Example

The Definitions portlet is intended to present glossary information that may or may not be accessible on the
site. Oracle Knowledge uses a special Dictionary component called an alias list to store glossary information
for use by the application. The application then generates a Definitions response whenever a configured
glossary term occurs in a question.

The default Definitions portlet displays the glossary term as a link that users can click to display the associated
definition on a separate answer page.

The Definitions portlet is recommended for use with the Glossary answer purpose as in the following example:

APR

The annual percentage rate is defined as the cost of money
borrowed expressed as an annual rate, It's a way for
consumers to caormnpare similar mortgages from different
lenders, Costs used to calculate APR are mortgage interest,
discount points or origination fees, lender fees such as
underwriting, processing docurmnent preparation, rortgage
broker feesz and private riortgage insurance feas,

Adjustable Rate Mortgages

#An adjustable rate mortgage (ARM) is a2 mortgage for which
the interest rate is not fixed but changes during the life of
the loan. Lenders generally charge lower initial interest rates
for ARMs than for fixed-rate mortgages. Additionally, vou
may be able to gualify for a greater armount under an ARM
program than a fixed-rate program.

Closing Costs

Costz included in thiz calculation are the appraizal fees,
urderwriting or other lender fees, title insurance and escrow
fees,

See Glossary Answer Action Method in the Intelligent Search Optimization Guide for more information on
accessing glossary information.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

21 ANSWER

Feature Content Portlet Example

The Feature Content portlet is intended to direct users to site features and resources. The Feature Content
portlet is similar in intent to the Learn More portlet; however, the default User Interface displays Feature
Content responses inline with the standard answers, enabling more information to be displayed for each
response.

The Feature Content portlet can display responses generated by any of the available answer methods;
however, it is well-suited to present custom content answers that include HTML-based functionality, as in the
following example:

= FEATURE CONTENT

=l Is refinancing right for me?

Am | better off refinancing?

TR Resuts | Graphs | Tabes | FHep

Regarding your current loan
Original loan amount % 100,000

(2] Original term (years) |307
Years already paid |3—

(7] Balloon year (zero if none) Igi

(7] Interest rate W%

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 4

Customizing the User Interface

The basic customization tasks for integrating the User Interface include:
* Specifying the layout style within the main template

¢ Customizing common elements, such as fonts, background colors, and graphic images, as described in
Customizing Style Elements on page 23

¢ Customizing request and response elements, as described in Customizing Request Elements on
page 29 and Customizing Response Elements on page 31

* Implementing optional features, as described in Implementing Optional Features on page 38.

Specifying the User Interface Layout

You specify the layout of the User Interface by specifying one of the global templates available in the extensible
style language (xsl) file main.xs1, located in:

int/xsl/search/main.xsl

The main.xs1 file contains include statements for the basic search layout and the additional personalized
navigation and virtual representative features. Each include statement refers to one of the available global
templates:

Layout Style Description
ui_search_basic.xsl Specifies the basic User Interface layout. This statement is enabled by
default.

ui_search_and_browse.xsl Specifies to display the Personalized Navigation user interface elements
as described in Activating the Personalized Navigation User Interface
Layout on page 41.

ui_search_vrep.xsl Specifies to display the virtual representative user interface elements as
described in Implementing a Virtual Representative on page 44.

Important! You can enable only one of the include statements for your application.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

23 INTEGRATING THE

The following example shows the default implementation, which enables the basic search layout,
ul search basic.xsl:

<!-- Options for Search UI Main Screens -->
<xsl:import href="ui search basic.xsl"/>
<!--xsl:import href="ui search and browse.xsl"/-->
<!--xsl:import href="ui search vrep.xsl"/-->

Integrating the User Interface

To integrate the Oracle Knowledge User Interface with your web site, you need to:

¢ Integrate standard elements from your site, such as navigation and graphics, into the selected layout
template

* Reference the URL of the installed and customized User Interface layout template from the appropriate
locations within your site pages, such as search boxes and relevant navigation links

Customizing Style Elements

You can customize style elements of the User Interface, such as fonts, background colors, and margins, by
modifying the values contained in the User Interface stylesheet, gna style.css. The stylesheet defines
presentation for general elements used in multiple locations, and sets of related elements, as described in:

* Customizing General Style Elements on page 23
* Customizing Question Area Definitions on page 24
e Customizing Answer Area Definitions on page 26

* Customizing Sidebar Area Definitions on page 27

Customizing General Style Elements

The general style elements determine style and formatting of various elements used throughout the user
interface.

Element Name Description

gna-page-body This element defines the properties for the HTML <body> element of the page. It
establishes general settings for relative font size, font type, page color, and page mar-
gins by default.

qna-normal-text This element defines generic properties for a variety of text on the page. It establishes
font type and relative font size.

qna-small-text This element defines generic properties for a variety of text on the page, similar to
<gna-normal-text>. It establishes font type and relative font size for text ele-
ments intended to be a little smaller than normal, such as the text just above the ques-
tion box.

gna-input-textarea This element defines properties for the HTML <textarea> object used for the
question box. It establishes font type, relative font size, and scrolling properties.

qna-input-button This element defines properties for HTML form buttons on the page. By default, it sets
the font type, size and color as well as the button color.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

24

CUSTOMIZING

Element Name

Description (Continued)

qna-header

This element defines properties for the question box and top ten questions header
bars on the main search page. It sets the font type, weight, and color, as well as the
background color of the header bar.

gna-header-side

This element defines properties for headers in the left sidebar when using the
question and results side.xsl template, similar to the <gna-
header> element.

qna-field-label This element defines properties for the label next to the question box. By default, it
sets the alignment to the top-right of its table cell.
qna-help-link This element defines properties for the link to the help (Tips) page located near the

question box. It sets the font type, size, color and alignment within its area.

qna-radio-link

This element defines properties for the links around the user feedback options. It sets
the font type and color, alignment within its area, and underline properties to distin-
guish the options from hyperlinks.

qna-similar-link

This element defines properties for the link text to similar answers. It sets the font type
and color by default.

qna-link

This element defines properties for general purpose link objects such as the paging
links. It sets the font type, color, and alignment.

gna-area-separator

This element defines properties for any lines used to separate major sections of the
User Interface. By default, it is used to draw the line between the results and the site
navigation. It is primarily used in the main User Interface integration files such as
question and results.xsl and only defines a background color by
default.

qna-area-separator-dark

Same as <gna-area-separator>, but used for a second level of separation in
some cases, such as between results and the sidebar.

qna-header-separator

This element defines properties for the lines around header bars such as the question
box on the main search page. It only defines the color of those lines by default.

qgna-footer-separator

This element defines properties for the separator line at the bottom of a results page.
It only defines the color of that line by default.

Customizing Question Area Definitions

The question area elements determine style and formatting of various elements used within the User Interface

question area.

Element Name

Description

qna-question-header

This element defines properties for the question box header bar that is used
when shown at the top of the results list. It sets the font type, relative size
and color.

qna-question-sidebar-
header

This element defines properties for the question box header bar that is used
when shown in the left sidebar. Similar to <gna-question-header>.

qna-question-label

This element defines properties for the label next to the repeated question
on the page. It specifies the font type, weight, relative size, color and align-
ment. The default label text is: You Asked.

qna-question-text

This element defines properties for the repeated question on the page. It
sets the font type, weight, relative size and color.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

CUSTOMIZING

qna-question-sidebar-
label

This element defines properties for the label next to the repeated question
when shown in the left sidebar (using

question and results side.xsl). Similarto <gna-ques-
tion-label>.

qna-question-sidebar-
text

This element defines properties for the repeated question when shown in
the left sidebar area (using question and results side.xsl).
Same as <gna-question-text>.

gna-question-sidebar-
block

This element defines properties for the area where the question is repeated
when using the three column layout

(question and results side.xsl). By default, it sets the
background color for the area.

gna-dialog-text-question-
label

This element defines properties for the label identifying the user’s question
when using the virtual representative interaction. By default, it sets the font
family, size, weight, alignment and color for the label.

gna-dialog-text-question

This element defines properties for the user’s question when using the vir-
tual representative interaction. By default, it sets the font family, size, align-
ment and color for the text.

gna-dialog-text-answer-
label

This element defines properties for the label identifying a virtual representa-
tive’s response to the user. By default, it sets the font family, size, and
weight.

gna-dialog-text-answer

This element defines properties for a virtual representative’s response to the
user. By default, it sets the font family, size, alignment and color for the text.

qna-dialog-sidebar-
answer-label

This element defines properties for the label identifying a virtual representa-
tive’s response to the user for answer labels displayed in the sidebar when
using the three-column layout. Similar to <gna-dialog-text-
answer—-label>.

gna-dialog-sidebar-
answer-text

This element defines properties for a virtual representative’s response to the
user for answers displayed in the sidebar area when using the three-column

layout. Similar to <gqna-dialog-text-answer>.

gna-dialog-image-border

This element defines properties for the border around a virtual representa-
tive’s image on the screen. By default, it defines the color of the border.

gna-dialog-border

This element defines properties for the border around the text dialog
between the virtual representative and the user on the screen. By default, it
defines the color of the border.

gna-dialog-block

This element defines properties for the area containing the text dialog
between the virtual representative and the user on the screen. By default, it
defines the background color and padding for the area.

qna-example-label

This element defines properties for the label next to the question example
text. By default, it defines the font family, size, color and alignment.

qna-example-label-above

This element defines properties for the label next to the question example
text when it appears above the example text. By default, it defines the font
family, size, color and alignment.

qna-example-text

This element defines properties for the question example text. By default, it
defines the font family, size, and color.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

26 CUSTOMIZING

Customizing Answer Area Definitions

The answer area elements determine style and formatting of various elements used within the User Interface
answer area.

Element Name

Description

qna-result-section-
header

This element defines properties for the header of each section of results
(best answers, possible answers, featured content). By default, it defines
the font family, weight, size, color, and alignment.

qna-result-text

This element defines high level properties for “best” answers. By default, it
defines the font family, size, and alignment.

qna-result-text-small

This element defines high level properties for regular answers. By default, it
defines the font family, size, and alignment.

qna-result-bar

This element defines properties for the area of the results list containing
general headers and other controls. By default, it defines the font family,
weight, size, and alignment.

gna-result-bar-disabled

This element defines properties for the area of the results list containing dis-
abled controls. By default, it defines the font color.

qna-result-marker

This element defines properties for the marker identifying the beginning of
an answer. By default, the marker is a document icon, but the style defines
the font type, weight, size and alignment in case text elements are to be
used.

qna-more-result-marker

This element defines properties for the marker identifying the more results
link when shown between best and possible answers. By default, it defines
the font type, weight, size, color and alignment.

gna-standard-subject

This element defines properties for the answer title. By default, it defines the
font type, weight and color.

qna-standard-more-link

This element defines properties for the more link to the answer (if used in
the design). By default, it defines the font type, weight, size, and color.

qna-standard-excerpt-
block

This element defines general properties for the answer excerpt. By default,
it defines the font type, size, and color, as well as spacing for the block.

qgna-snippet-sentence-
text

This element defines properties for the sentence in the answer excerpt that
matched the user’s question. By default, it defines the font size, weight,
color, and background color.

gna-secondary-snippet-
text

This element defines properties for the secondary word matches in the
answer excerpt. By default, it defines the font size, weight, color, and back-
ground color.

qna-snippet-text

This element defines properties for the primary word matches in the answer
excerpt. By default, it defines the font size, weight, color, and background
color.

qna-standard-table-block

This element defines properties for the structured table display area. By
default, it defines the font type, size, and color, as well as margins for the
area.

gna-standard-source-
block

This element is intended to define properties for text displaying the source
URL of the answer. By default, the source is not shown. This definition sets
a font type, size, style, and color as well as margins for the display block.

qna-standard-link-block

This element is used to define properties for useful links following the
answer excerpt such as “similar answers”. By default, the source is not
shown. This definition sets a font type, size, and color as well as margins for
the block.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

27

CUSTOMIZING

gna-standard-sentence-
block

This element defines properties for simple sentence answers such as man-
aged answers that display custom content. By default, it defines the font
type, size, and color, as well as margins for the block.

qna-exact-excerpt-block

This element defines properties for specially identified “exact” excerpts. In a
default implementation, this is only applicable to exact answer definitions.
By default, it defines the font type, size, and color as well as margins, pad-
ding and borders for the block.

qna-result-table

This element defines properties for the main table definition of a structured
answer. By default, it defines the border style and color.

qna-result-table-header

This element defines properties for the column headers of a structured
answer. By default, it defines the font type, weight, size, and color in addi-
tion to the border style and color.

gna-result-table-text

This element defines properties for a data cell of a structured answer table.
By default, it defines the font type, weight, size, and color in addition to the
border style and color.

gna-result-table-more

This element defines properties for the link to the entire table of a structured
answer when displaying as a summary (usually in an answer list). By
default, it defines the font type, weight, size, alignment, and color in addition
to the border style and color.

Customizing Sidebar Area Definitions

The answer area elements determine style and formatting of various elements used within the User Interface
answer area.

Element Name

Description

qna-sidebar-block

This element defines general properties for the area of the screen where the
sidebar is to be displayed. By default, it defines the background color.

qgna-sidebar-section-
border

This element defines properties for the border around the sidebar area and/
or individual components. By default, it defines the background color.

qna-sidebar-section-title

This element defines properties for the title area of a sidebar component. By
default, it defines the font type, weight, size, and color as well as the back-
ground color for the title area.

qna-sidebar-section

This element generally defines properties for the content area of a sidebar
component. By default, it defines the font type, size, alignment and color as
well as the background color for the area.

qna-sidebar-section-
center

This element defines properties for the content area of a sidebar compo-
nent, similar to <gna-sidebar-section>, except that the content
area is centered. By default, this is only used by the user feedback module.

gna-sidebar-subject

This element defines properties for answer titles within a sidebar compo-
nent. By default, it defines the font type, weight and color. Similar to <gna-
standard-subject>.

qna-sidebar-more-link

This element defines properties for the more link to the answer in a regular
sidebar component (if used in the design). By default, it defines the font
type, weight, size, and color. Similar to <gna-standard-more-
link>.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

28

CUSTOMIZING

gna-sidebar-excerpt-
block

This element defines general properties for answer excerpts displayed in a
regular sidebar component. By default, it defines the font type, size, and

color, as well as spacing for the block. Similar to <gna-standard-
excerpt-block>.

qna-sidebar-table-block

This element defines properties for structured table display areas within
sidebar components. By default, it defines the font type, size, and color, as
well as margins for the area. Similar to <gna-standard-table-
block>.

qna-sidebar-source-
block

This element is defines properties for text displaying the source URL of
answers within sidebar components. By default, the source is not shown.
This definition sets a font type, size, style, and color, as well as margins for
the display block. Similar to <gna—-standard-source-block>.

gna-sidebar-sentence-
block

This element defines properties for simple sentence answers, such as man-
aged answers that display custom content, within sidebar component. By
default, it defines the font type, size, and color, as well as margins for the
block. Similar to <gna-standard-sentence-block>.

gna-strong-sidebar-
section-border

This element defines properties for a highlighted border around the sidebar
area and/or individual components. Similar to <gna-sidebar-sec-
tion-border>.

gna-strong-sidebar-
section-title

This element defines properties for a highlighted title area of a sidebar com-
ponent. Similar to <gna-sidebar-section-title>.

gna-strong-sidebar-
section

This element defines properties for a highlighted content area of a sidebar
component. Similar to <gna-sidebar-section>.

qgna-strong-sidebar-
section-center

This element defines properties for a highlighted content area of a sidebar
component, similar to <gna-sidebar-section>, except that the
content area is centered.

gna-strong-sidebar-

This element defines properties for highlighted answer titles within a sidebar

subject component. Similar to <gna-sidebar-subject>.
gna-strong-sidebar- This element defines properties for a highlighted more link within a sidebar
more-link component. Similar to <gna-sidebar-more-1ink>.

qna-strong-sidebar-
excerpt-block

This element defines general properties for highlighted answer excerpts dis-
played in a sidebar component.Similar to <gna-sidebar-excerpt-
block>.

qna-strong-sidebar-
table-block

This element defines properties for highlighted structured table display
areas within sidebar components. Similar to <gna-sidebar-table-
block>.

gna-strong-sidebar-
source-block

This element is defines properties for text displaying highlighted answer
source URLs within sidebar components. Similar to <gna-sidebar-
source-block>.

gna-strong-sidebar-
sentence-block

This element defines properties for highlighted simple sentence answers,
such as managed answers that display custom content, within sidebar com-
ponents. Similarto <gna-sidebar-sentence-block>.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

29 CUSTOMIZING

Customizing Request Elements

The User Interface request area contains the following elements, each of which has one or more configurable
properties, as described in the following sections:

e Customizing the Request Heading on page 30
* Customizing the Question Box on page 30

* Customizing the Tips Link on page 31

* Customizing the Submit Button on page 31

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

30

CUSTOMIZING

Customizing the Request Heading

The request heading contains the following configurable properties:

Property

Template

Element Name

Default Value

question area header

config.xsl

question-area-label

question-sidebar-area-
header

Ask a Question
Ask Another Question

text to display above
the question box

config.xsl

question-box-header

Have a question?
Type it below to find an
answer now.

font characteristics

gna_style.css

gna-question-*

Customizing the Example Question

The example question contains the following configurable properties:

Property

Template

Element Name

See Customizing Question
Area Definitions on page 24

Default Value

text to display below
the request heading

config.xsl

question-example

"Does Product X have Feature
Y?"

font characteristics

Customizing the Question Box

gna_ style.css

gna-question-*

The question box has the following configurable properties:

Property

Template

See Customizing Question
Area Definitions on page 24

Element Name

box size

question.xsl

question side.xsl

question-top
question-side

question-sidebar

boundary characteristics

question.xsl

question side.xsl

question-top
question-side
question-sidebar

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

31 CUSTOMIZING

Customizing the Tips Link

The Tips link has the following configurable properties:

Property Template Element Name Default Value

text to display question.xsl tips-link Tips

font characteristics gna style.css |gna-help-link See Customizing Question
o Area Definitions on page 24

Customizing the Submit Button

The Submit button has the following configurable properties:

Property Template Element Name Default Value
Location

text to display question.xsl question-top Ask
question side. |question-side
xsl question-sidebar

font characteristics gna style.css |gna-input-button See Customizing Ques-

B tion Area Definitions on
page 24

Customizing Response Elements

The User Interface response page contains the answer area and the related information (portlet) area. The
answer area contains the following elements, each of which has one or more configurable properties, as
described in the following sections:

e Customizing the Question Echo on page 32

e Customizing the Answer Introduction on page 32
* Customizing Answer Headings on page 32

* Customizing the Answer Body Text on page 32

e Customizing the Answer Document Link on page 33

See for information on customizing elements in the related information area.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

32

CUSTOMIZING

Customizing the Question Echo

The question echo contains the following configurable properties:

Property

Template

Element Name

Default Value

echo prefix

config.xsl

question-paraphrase-label

You Asked:

font characteristics

gna_ style.css

gna-question-label

gna-question-text

Customizing the Answer Introduction

The answer introduction contains the following configurable properties:

Property

Template

Element Name

See Customizing Ques-
tion Area Definitions on
page 24

Default Value

text to display as head-
ing for highest scoring
answers

config.xsl

best-answers-header

Best Answers

text to display as head-
ing for additional good
answers

config.xsl

good-answers-header

Answers

font characteristics

gna-style.css

gna-result-section-header

See Customizing Ques-
tion Area Definitions on
page 24

Customizing Answer Headings

The headings or titles for standard answer displays contain the following configurable properties:

‘ Default Value

See Customizing Ques-
tion Area Definitions on
page 24

Property

font characteristics

|Temp|ate ‘ Element Name

gna-result-section-header

gna_ style.css

Customizing the Answer Body Text

The text of standard answer displays contain the following configurable properties:

‘ Default Value

See Customizing Ques-
tion Area Definitions on
page 24

Property

font characteristics

|Temp|ate ‘ Element Name

gna-result-text

gna_style.css

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

33

CONFIGURING

Customizing the Answer Document Link

The link to the document that contains the answer for standard answers has the following configurable

properties:

Property

Template

Element Name

Default Value

document icon

results.xsl

answer-marker

document type-depen-
dent, as described in
Answer Display Features

display or not

results.xsl

answer-block

display text

results.xsl

answer-block

font characteristics

gna_ style.css

gna-*-more-link

Configuring Answer Purposes

See Customizing Ques-
tion Area Definitions on

The Oracle Knowledge Personalized Response User Interface is installed with a defined set of answer
purposes, which are mapped to a default set of portlets, as described in Default Answer Purposes on
page 17. You can also add custom answer purposes to meet specific implementation requirements.

You configure answer purposes by:

» Customizing portlet presentation, as described in Customizing Answer Portlets on page 38

¢ (Optional) Adding answer purposes to the application, as described in Adding Answer Purposes to the
Application on page 34

Note: Your application may include additional industry- or domain-specific answer purposes. For more
information about domain-specific answer purposes, contact your Oracle account representative.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

34 CONFIGURING

Adding Answer Purposes to the Application

You can add and modify answer purposes in the application configuration on the Dictionary Service page of the
Instances section of the Advanced Configuration Facility.

When you configure a new answer purpose, the new purpose is available to Dictionary Manager users in the
Purpose drop-down menu of the Rule window.

To define or modify an answer purpose:
1 Select "Service" from the Advanced configuration.
2 Click Edit.

3 Select "Default Configuration".
The Answer Purpose Section displays currently defined answers...

4 Select Dictionary from the Advanced Configuration Facility main menu.
The Answer Purpose section of the Dictionary Service page displays the currently defined answer

purposes:
Answer Purpose ; q
Answer Purpose : AMNSWER
2. Al
nswer Purpose 1 ACT
3.
Answer Purpose : CONTACT
4. Al
nswer Purpose | [EFIWE
L=
Answer Purpose @ JUMP_TO_PAGE
a.
Answer Purpose : PROMOTE
7 Al
nswer Purpose © CONYVERSE
2.
Answer Purpose : FEATURE_CONTENT
5 Click Edit.

6 Click Add New Item below the Answer Purpose list.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

35

CONFIGURING

The Answer Purpose selection list displays.

Editing: dictionaryService > Answer Purpose

5

Answer Purpose

7 Select Edit List

: finanel

AMEWER
PROMOTE

Edit List

Cancel

RELATED_TZPRIC
DEFIME
JUMP_TO_PAGE
COMWERSE
FEATURE_COMTEMT
HIDDEM

COMTACT

VREP Secondary

The Answer Purpose list displays.

Answer Purpose @],

9.

AMNSWWER

&CT

. PEOMOTE

LIME TO CATEGORY

. DEFIME

JUMP T PAGE

COMNVERSE

FEATURE COMTEMT

COMNTACT

Add Mew Itern

Gl o o) i

2 B B B B B B B @

oAl Al Ak AR AR AP A 4

8 Click an existing purpose to edit properties, or click Add New Item below the Answer Purpose list to
create a new purpose.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

36

CONFIGURING

The Answer Purpose page displays. The following example shows the default settings for the Answer

purpose:

DescHpton
label

Enabled

Max Answers
Page Size
Minimunm Score
ignore-

navigaton-
candidates

display-area
display -position
Answer Template

matched-channel

overriden By

: |answER

o IAnswer

®on Coff
P |is

¥ |10

3

Con ®off

[3 ||:|rir|'|ar',I

b |z

: Iﬂmswer Ternplate _3:] Edit Lizst

: |answER

" (none)
fdd Mew Itermn

9 Specify the following answer purpose parameters:

Parameter Description

Description Specify the name of the answer purpose. The name can be any alphanumeric
string. Spaces and punctuation are not allowed. When the purpose is defined
and enabled, this name displays in the Purpose drop-down menu of the Rule
window.

Label Specify the text to display as the portlet heading in the User Interface.

Enabled Select On to enable this purpose. Only enabled purposes is available in the

Dictionary Manager and processed by the Rules Engine and User Interface
components. The default value is On.

Note: Existing rules that specify purposes that are not enabled are
processed using the Answer purpose.

Maximum Answers

Specify the maximum number of answers having this purpose to display on
the response page for a given question.

Page Size

Specify the maximum number of answers having this purpose to display on
the initial response page.

Minimum Score

Specify the minimum score that answers having this purpose must obtain to
display on the response page for a given question. See the *Intelligent
Search Language Developers' Guide for more information on
response scoring.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

37

CONFIGURING

Parameter (Continued)

Description (Continued)

Ignore Navigation
Candidates

Specify whether answers having this purpose contribute to the answer totals
maintained by the Personalized Navigation feature.

display-area

Specify the area of the page where the response should appear.

display-position

Specify the display position within the area. Enter a numeric value of 1-10.

Answer Template

Select an answer template from the drop-down menu to use when creating a
new response.

matched-channel

Optionally, specify a channel to associate with this purpose.

Overriden By

Specify any answer purposes such that answers returned for the specified
purposes are not repeated in the display for this purpose.

10 Click OK to save the new or modified answer purpose.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

38 CONFIGURING

Customizing Answer Portlets
Each answer purpose that you define for your application is displayed in a separate portlet that has the
following configurable elements:

* Portlet display position as described in Specifying Portlet Display Position on page 38.

* Portlet headings as described in Customizing Portlet Headings on page 38

¢ portlet answers as described in Customizing Portlet Answer Text on page 39

 portlet document links as described in Customizing Portlet Document Links on page 39

Specifying Portlet Display Position

To specify the order in which the portlets appear on the response page, arrange the order of the portlet
definition sections in the sidebar.xs1 template. Each definition section corresponds to a defined portlet.
Portlets that are disabled, or for which there are no defined Rules in the Dictionary, do not display on the
response page.

Sample Portlet Display Area Template provides a sample of the contents of the portlet definitions.

Customizing Portlet Headings

The answer portlet headings have the following configurable properties:

Property Template Element Name Default Value

heading text config.xsl *-answers-header See Default Answer Pur-
poses on page 17

font characteristics gna style.css |gna-(strong-)sidebar-* See Customizing Sidebar
- Area Definitions on
page 27

background color gna style.css |gna-(strong-)sidebar-* See Customizing Sidebar
B Area Definitions on
page 27

Customizing Portlet Answer Headings

The answer headings within portlets contain the following configurable properties:

Property |Temp|ate ‘ Element Name ‘ Default Value
font characteristics gna style.css |gna-(strong-)sidebar-* See Customizing Sidebar
o Area Definitions on
page 27

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

39 CONFIGURING

Customizing Portlet Answer Text

The answer text within portlets contain the following configurable properties:

Property |Temp|ate ‘ Element Name ‘ Default Value
font characteristics gna style.css |ana-(strong-)sidebar- See Customizing Sidebar
o excerpt-block Area Definitions on
page 27

Customizing Portlet Document Links

The link to the document that contains the answer for portlet answers has the following configurable properties:

Property Template Element Name Default Value
display or not results.xsl answer-block Display
display text results.xsl answer-block More
font characteristics gna style.css gna-*-more-link See Customizing Sidebar
- Area Definitions on
page 27

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

CHAPTER 5

Implementing Optional Features

The User Interface default configuration implements the standard request and response features. You can
configure the User Interface to implement the following optional features:

Process Wizards as described in The Process Wizard User Interface on page 38

Personalized Navigation as described in Activating the Personalized Navigation User Interface Layout
on page 41

Direct page display for specified answers as described in Implementing Direct Page Display on page 42

Virtual representative (VREP) dialog support as described Implementing a Virtual Representative on
page 44

Answer quality user feedback collection as described in Implementing User Feedback Collection on
page 44

Click-through logging as described in Implementing Click-Through Logging on page 49

Answer highlighting within answer documents as described in Highlighting Answers Within Documents
on page 50

Non-English text elements as described in Managing Multiple Languages in the User Interface on
page 52

Note: You can also configure the User Interface to display answers from configured Siebel 7 applications.
For more information on integrating Siebel 7 applications with Oracle Knowledge, see the *Intelligent
Search Siebel Integration Guide, or contact your Oracle account representative.

The Process Wizard User Interface

The Process Wizard User Interface is a set of specific pages designed for use with Process Wizards. When
users select an Process Wizard answer from the standard answer page, the User Interface invokes the
Process Wizard User Interface pages to display the selected Process Wizard.

Note: The Process Wizard User Interface is automatically configured for use within the standard User
Interface.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

39 THE PROCESS

The Process Wizard User Interface consists of the following major elements:

* The Process Wizard answer, which displays on the answer page as described in The Process Wizard
Answer on page 39

¢ The step display area, which contains the steps defined for the process, as well as the navigation
buttons (Back, Next, Finish) as described in The Step Display Area on page 39

¢ The process summary column, which displays information about the previous steps that the user has
taken to progress through the wizard as described in The Step Display Area on page 39

The Process Wizard Answer

When an end-user submits a request to the application that matches a process wizard rule, the User Interface
displays a special Process Wizard answer in the standard answer area, for example:

Find Answers

Type a question or describe what you are looking for below

Ihow can i retrieve messages ask
Example; "Does Product-» have Feature-v?" Tips
Answers

a Help Retrieving Messages

Having problems retrieving messages? Let us guide yvou through it,

If users select the link in the process wizard answer, the User Interface displays the initial step of the process
wizard.

The Step Display Area

When users select a Process Wizard answer, the application displays the initial step in the Process Wizard
User Interface step display area.

The Process Wizard User Interface displays a summary of the user's previous responses to the left of the step
display area. The summary displays below the heading Your Responses.

Each response is displayed as a link that navigates back to the process step.

Help Retrieving Messages

» Start over Hawving problems retrieving messages? Let us guide you through it,

Your Responses

To read e-mail in your online mailbox
What kind of mezsage are you trying

to retrieve?
Email Message 1. Click the Read icon on the toalbar,

2, 0On the Mew tab, double-click the first e-mail item to read it.
From where are you trying to retrieve
Your messages?

From your home computer

= Back Finish

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

40

THE PROCESS

Modifying the Process Wizard User Interface

You can modify Process Wizard User Interface elements to suit the needs of your application by editing the
Process Wizard User Interface files, located in one of the following locations:

<InQuira root>/inquira/int/<subdirectory>

where:
<subdirectory> is one of the following:
* CSS
. js
* xsl/search
CSS Files Description
gna wizard style |Thisis the style sheet that specifies the style and formatting for the elements
_css o that are specific to the Process Wizard User Interface and are not part of the

Java Script Files

standard search.

Description

gna wizard.js

XSL Files

This is a JavaScript library that contains Process Wizard User
Interface-specific functionality.

Description

wizard.xsl

This is the main Process Wizard User Interface file that contains the basic
page definition (similar to the ui search* .xs1 files) and utilities for the
wizard pages.

wizard fields.xsl

This file contains all of the templates used to render any defined wizard fields
such as radio buttons, text boxes, select boxes, HTML areas, etc. on the UI.

wizard history
.xsl

This file contains the templates for displaying the user's choice history as well
as the support templates for any actions generated by the history information
such as links back to previous pages.

Note: Thefile int/xsl/process wizard/step.xsl is used only for previewing steps in the
Process Wizard Editor, and is not used in the Process Wizard User Interface.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

41 ACTIVATING THE

Activating the Personalized Navigation User Interface Layout

To implement the Personalized Navigation User Interface elements, you activate the Personalized Navigation
User Interface layout, ui search and browse.xsl, located in:
int/xsl/search/main.xsl

The main.xs1 file contains an include statement for the Personalized Navigation User Interface layout.

The following is an example of the include statements within the main. xs1 file, showing the Personalized
Navigation layout enabled:

<!-- Options for Search UI Main Screens -->

<!--xsl:import href="ui search basic.xsl"/-->
<xsl:import href="ui search and browse.xsl"/>
<!--xsl:import href="ui search vrep.xsl"/-->

Important! You can enable only one of the include statements for your application.

The Personalized Navigation User Interface Elements

The User Interface uses various elements to display Personalized Navigation content categories:

» Style elements, as described in Personalized Navigation XSL Style Sheet Elements on page 41 and
Personalized Navigation CSS Style Sheet Elements on page 42

* Resource elements as described in Personalized Navigation-Related XML Elements on page 42.

Personalized Navigation XSL Style Sheet Elements

The User Interface XSL style sheets are located in:
<InQuira home>/int/xsl/search

XSL Style Sheet Description

ui_search_and_ This file is one of the main templates that determine the layout of the User
browse.xsl Interface elements, including the question box, browse bar, answers, and

sidebar. It is one of three main templates that you choose among as part of
the basic User Interface implementation process as described in Specify-

ing the User Interface Layout on page 22.

browse_bar.xsl This file contains the templates that render the contents of the facet navi-
gation browse bar.

facet_table.xsl This file contains the templates for displaying an entire table of values in
response to selecting the More... link in the browse bar for categories that
contain a large number of items. The More link displays a page containing
all of the items.

question_browse This file contains the definition for the question-top template used with Per-

xsl sonalized Navigation, which differs from the standard User Interface ques-
tion area.

results.xsl This file contains updates to the standard answer block template to support

facet label display within the answer section.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

42 IMPLEMENTING

Personalized Navigation CSS Style Sheet Elements

The User Interface CSS style sheet is located in:
<InQuira home>/int/css

CSS Style Sheet Description

gna_style.css This is the standard CSS for the User Interface. It contains new
elements to support Personalized Navigation, primarily in the
section labeled Browse Area Definitions. Additional
Personalized Navigation-related definitions can be found by
searching for facet in this file.

Personalized Navigation-Related XML Elements

The User Interface-related XML resources are located in:
<InQuira home>/int/search

XML File |Description

resource.xml This is the standard XML resource file, which contains new text elements
and definitions. Personalized Navigation-related definitions begin with the
term facet-.

Implementing Direct Page Display

The direct page display feature specifies direct display of the document that contains the best answer within a
modified version of the response page.

The direct page display template defines an alternate response page that displays the relevant document
contents in the area that the answer section would normally occupy.

The components of direct page display include:
e The Jump to Page answer purpose
* The direct page display template

You implement the direct page display feature by assigning the Jump to Page answer purpose to the
appropriate Rule in the Dictionary as described in Rules in the Intelligent Search Language Tuning Guide.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

43

IMPLEMENTING

Direct Page Display Example

The direct page display layout provides direct access to the best answer for a specified question in lieu of the
standard answer display. The following example shows direct page display within a three-column layout style.

Have a QQuestion?

Q: What is
InQuira 67

We've taken you straight
to the answer we think
you're looking for. If this
doesn't answer your *| Financial Services
guestion, you can also | Telecommunications
seelmore aNswers. If 3] Manufacturing
you're done asking

gquestions, you can close £ Retall
this frame.

;M

Interactive Marketing

Customer Self-Sarvice
Employee Self-Service
Call Center

v

;M

v

Sign-up for up-to-date
info on InQuira..

IEmalI Address

[=2] Email this Page to:

IEmaiI Address

Horne :

Products :

InGuira 6 Cuerview
InQuira 6 Overview

DESCRIPTION:

InQuira 6 is a customer search and navigation application used t
optimize the Web experience for prospects and customers, Utiliz
dynamically assisted site navigation, InQuira & enables YWeb site
question in natural language, and then interprets the real intent
automatically responding with the precise answer and enriching
the user to relevant content, including additional related informsz
to buy products and services, InQuira 6 also allows users to emt
rules to achieve enterprise objectives like up-sellfcross-sell and

hurman service channels.

Ask a question
Dynamic Navigation User Interface

Automated

Managed

Answers

Administration
Workbench

Application Connectors

Packaged Apps We

@ !

Content

TOP LEYEL FEATURES & BENEFITS
Delivers best user experience:

+ Managed answers

» Dynamic navigation user interface (U1}

e MNatural language and keyword search

+ Single point of access to structured elmd unstructured coz?i_vl
L3

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

44 IMPLEMENTING A

Implementing a Virtual Representative

You can configure Oracle Knowledge for virtual representative (VREP) applications. To configure an Oracle
Knowledge application for use with a VREP, you need to:

¢ Make an image library for your VREP available to the application

* Create appropriate Dictionary rules using the Dialog answer purpose, as described in the Rules in the
Intelligent Search Language Tuning Guide.

* Associate appropriate images from the library with the configured Dialog answers
* Enable the virtual representative user interface layout

The User Interface contains a dialog-style layout template, ui search vrep.xsl, located in:
inquira/int/xsl/search/

The main.xs]1 file contains an include statement for the virtual representative user interface layout. To
enable the virtual representative user interface layout, activate the xsl import statement. The following is an
example of the layout include statements showing the virtual representative layout enabled:

<!-- Options for Search UI Main Screens -->
<!--xsl:import href="ui search basic.xsl"/-->
<!--xsl:import href="ui search and browse.xsl"/-->

<xsl:import href="ui search vrep.xsl"/>

Important! You can enable only one of the include statements for your application.

Implementing User Feedback Collection

You can collect information from customers about their satisfaction with the answers provided by the
application through the user feedback feature of the response page. The user feedback mechanism consists of
two components:

* The user feedback portlet as described in The User Feedback Portlet on page 44
* The user feedback comment page as described in The User Feedback Comment Form on page 45

The user feedback feature is configured by default to display in the related information area of the response
page. You can disable the user feedback mechanism as described in Disabling the User Feedback Feature
on page 48.

The User Feedback Portlet

The user feedback portlet displays by default in the related information area of the response page.

Are we answering
your questions?

O absolutely!

O ysually

O Sometimes

O Hardly

O Mot even close!

Subrnit |

It contains the following elements that you can customize for your application:

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

45 IMPLEMENTING

e The user feedback heading, as described in Customizing the User Feedback Area Heading on page 47

e The rating labels, as described in Customizing the User Feedback Rating Labels on page 47

The User Feedback Comment Form

The user feedback comment form displays by default in when users submit feedback to the application.
7 Thanks for your feedback - Microsoft Intern

Thanks for your feedback

To date, we have added 100 new pages of
content based on feedback like yours,

We are currently working on providing more
content in the following areas:

e Area 1
» Areg 2
e Are3 3
e Area ¢

If you would like to send us more detailed
comments, please type them in below:

| Send Comments | | Close |

The comment form provides space for users to enter additional comments. User-supplied comments are
maintained in the application logs, and are available to the optional Oracle Knowledge Analytics application's
User Feedback report.

See Analytics Administration Guide for more information on the User Feedback report.

Important! The default user feedback form contains sample content that is intended to be customized for
your application.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

46 IMPLEMENTING

The User Feedback Process

The user feedback process begins on the standard results page. The user feedback portlet solicits optional
input from users. Users enter feedback by selecting from a list of radio buttons that correspond to the rating
levels described in Customizing the User Feedback Rating Labels on page 47.

Are we answering
your questions?

O absolutely!

O ysually

O Sometimes

O Hardly

O Mot even close!

When users submit the rating selection, the application displays the user feedback form, which must be
customized for your application as described in Customizing the User Feedback Comment Form on page 48.
Users can enter additional feedback as text, or choose to close the feedback form.

7 Thanks for your feedback - Microsoft Inter

Thanks for your feedback

To date, we have added 100 new pages of
content based on feedback like yours,

We are currently working on providing more
content in the following areas:

Area 1
Area 2
Area 3
Area 4

If you would like to send us more detailed
comments, please type them in below:

| Send Comments | | Close |

The application logs both the rating level and any optional text as a message having the identifier
ANALYTICS USER FEEDBACK. The optional Oracle Knowledge Analytics application uses these
messages to populate the User Feedback report.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

47 IMPLEMENTING

Customizing the User Feedback Area Heading

You can customize the user feedback heading by editing the value specified in the User Interface resource file,
<InQuira home>/inquira/int/xsl/search/resource.xml.

The resource.xml file is divided into sections that correspond to functional areas within the User Interface.

To modify the user feedback heading:

* Locate the user feedback section, which is indicated by the label:
User feedback modules / screens

* Locate the parameter user-feedback-header

<term id="user-feedback-header">
<entry lang="en">Are we answering your questions?</entry>
<entry lang="de">Beantworten wir IThre Fragen?</entry>
<entry lang="es">?stamos contestando a sus preguntas?</entry>
<entry lang="fr">Repondons-nous a vos questions?</entry>
<entry lang="it">Trovi le nostre risposte soddisfacenti?</entry>
<entry lang="ja"><see original file for correct characters></entry>
</term>

¢ Edit the appropriate entry for the language of your application. For example, the default entry for English
applications is:

<entry lang="en">Are we answering your questions?</entry>

Customizing the User Feedback Rating Labels

You can customize the text associated with the user feedback rating levels by by editing the value specified in
the User Interface resource file, <InQuira home>/inquira/int/xsl/search/resource.xml.

To modify the user feedback labels:

* Locate the user feedback section, which is indicated by the label:
User feedback modules / screens

* Locate the parameter user-feedback-rating-n

where:
n is the feedback rating level. For example:

</term>
<term id="user-feedback-rating-5">
<entry lang="en">Absolutely!</entry>
<entry lang="de">Absolut!</entry>
<entry lang="es">?bsolutamente!</entry>
<entry lang="fr">Absolument!</entry>
<entry lang="it">Si, assolutamente</entry>
<entry lang="ja"><see original file for correct characters</entry>
</term>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

48 IMPLEMENTING

 Edit the appropriate entry for the language of your application. For example, the default English rating

labels are:
Rating Level Default Value
5 Absolutely!
4 Usually
3 Sure
2 Hardly
1 Not even close!

Customizing the User Feedback Comment Form

You customize the user feedback comment form by editing the elements that control the layout and contents of
the form in the user comments form style sheet, <InQuira home>/inquira/int/xsl/search/
user comments page.xsl.

The user comments form style sheet is divided into sections that correspond to supported languages. For
example, the section in English contains the following:
Thanks for your feedback

To date, we have added 100 new pages of content based on feedback like yours.

We are currently working on providing more content in the following areas:

 Area 1 </1i>

 Area 2 </1li>

<1li> Area 3 </1i>

<1li> Area 4 </1i>

If you would like to send us more detailed comments, please type them in below:

To modify the content and layout of the user feedback comment form:
1 Locate the appropriate section for your language

2 Edit the layout and content to suit the needs of your application

Disabling the User Feedback Feature

You can disable the user feedback feature by editing the User Interface configuration file,
<InQuira home>/inquira/int/xsl/search/config.xsl

To disable the user feedback feature:

1 Locate the following statement in the config.xsl file:
<xsl:variable name="get-user-feedback"...select="true()" />

2 Change the value of the select parameterto false:
<xsl:variable name="get-user-feedback"...select="false()" />

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

49 IMPLEMENTING

Implementing Click-Through Logging
You can configure the User Interface to log information about the answer links selected by Oracle Knowledge
users. Answer links are links to the page or document from which the application derived the answer.

When click-through logging is on, Oracle Knowledge logs a message with the identifier
ANALYTICS_CLICK_THROUGH.

To specify click-through logging:
1 Select Click-through from the System section of the Advanced Configuration Facility

The Click-through page displays:

Click-through

0w Advanced Options

Performn HTML -

Highlighting T on
Performn PDF -

Highlighting LN

Performn Click- - on

through Tracking

Performy Search - Off
Within Document

Perform Default -
Question Off
Highlight

HTrL Highlighting

Highlight Title = 0lor: #000000; background:FFFF99

Style
Senm::gh;i;';: * color: #000000; background: #FFFF99
Honor Document :
Anchor Off

Check For -
Location Replace Off

T

2 Select the On radio button in the Perform Click-through Tracking field

3 Select OK to save your configuration

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE‘

50 HIGHLIGHTING

Highlighting Answers Within Documents

The User Interface displays links within answers that users can select to display the actual answer documents.
You can configure the application to highlight the answer text within HTML and PDF documents.

You can implement document highlighting by:
1 Enabling the highlighting feature
2 Optionally specifying style attributes for highlighted titles and sentences within HTML documents
3 Optionally specifying text string matching processes for HTML documents

Important! The text matching algorithm and highlighting display for PDF documents is determined by the
Adobe API, and is not configurable in Oracle Knowledge.

Enabling Highlighting within Answer Documents

To enable highlighting for HTML and PDF documents:

1 Select Click-through from the System section of the Advanced Configuration Facility:
The Click-through page displays:

dvanced Options

Performn HTML -
Highlighting ® on O off

Perform PDF -
Highlighting ® on O off

Performn Click- -
through Tracking @ on O off

Performy Search - O on & Off

Within Document
Perform Default

Question o & ofF
Highlight

HTML Highlighting

Highlight Tide
Style

Highlight
Sentence Style

Honor Document :
Anchor Con @ off

: Ic-:ulu:ur:#EIEIIIIIIIIIIIII,' background:FFFF29 |

: Icnlnr:#DDDDDD; background: #FFFF93 |

Check For -
Location Replace

O on ™ Off

2 Select the On radio button in the Perform HTML Highlighting field

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

51 HIGHLIGHTING

3 Select the On radio button in the Perform PDF Highlighting field

4 Select OK to save your configuration

Specifying HTML Highlighting Style Attributes

You can specify HTML highlighting style attributes to apply to relevant titles and text within answer documents.
You can specify any HTML statements that are valid within tags.

To specify highlighting attributes:

1 Select Click-through from the System section of the Advanced Configuration Facility
The Click-through page displays:

Editing: Click-through

0w Advanced Options

Performn HTML -
Highlighting ® on O off

Perform PDF -
Highlighting ® on O off

Performn Click- -
through Tracking @ on O off

Performy Search - O on & Off

Within Document
Perform Default

Question o & ofF
Highlight

HTML Highlighting

Highlight Tide
Style

Highlight
Sentence Style

Honor Document :
Anchor Con @ off

: Ic-:ulu:ur:#EIEIIIIIIIIIIIII,' background:FFFF29 |

: Icnlnr:#DDDDDD; background: #FFFF93 |

Check For -
Location Replace

O on ™ Off

el |

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE‘

52 MANAGING

2 Enter valid style attributes in the desired fields:

Field Description

Highlight Title Style Specifies the style for titles within the document that match the answer text. The
default style is color:#000000; background:#E8F5FF, which dis-
plays in standard browsers as black text on a light blue background.

Highlight Sentence Style |Specifies the style for text within the document that matches the answer text. The
default style is color: #000000; background:#00FF00, which dis-
plays in standard browsers as black text on a bright green background.

Honor Document Anchor | Specifies that the application use existing anchors within documents to determine
highlighted regions when opening the answer document in response to click-

through.
Check for Location Specify this setting to check for this parameter, and display the re-directed location
Replace without performing highlighting if it is present in the answer URL. Location replace

is a JavaScript mechanism used to redirect users from one page to another; how-
ever, the HTML highlighting feature cannot process the JavaScript properly.

Managing Multiple Languages in the User Interface

The User Interface is installed and configured with multi-lingual text that is stored in a resource file (int/
common/resource.xml). The User Interface uses the language parameter to determine the appropriate
text to display.

Since the default language parameter setting for the Oracle Knowledge application is English, the User
Interface displays English text by default; however, setting the language parameter to another language
automatically overrides the User Interface language setting.

For example, if the web server configuration or a selection mechanism on the question input page sets the
language parameter to FR (French), then the User Interface displays the User Interface text element in French.

The following larger User Interface content components are also automatically translated based on the value of
the language parameter

Page Location
Tips int/xsl/tips.xsl

User Comments int/xsl/core/user feedback.xsl (locate “template name="user-
comments-page"”)

Contact Deflection |int/xsl/contact/thank you.xsl
Thank You

There is no additional configuration required to implement the multi-lingual User Interface features; however,
you can tailor the User Interface elements and other content to the needs of your organization by editing the
referenced User Interface files.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

CHAPTER 6

Creating a Custom Content Crawler

Oracle Knowledge includes a content acquisition framework containing base classes that support the creation
of custom crawlers. The framework includes three classes: CustomCrawlerConfig,
CustomCrawlerConfigController, and CustomCrawlerState that set up and instantiate a
custom crawler.

Using the framework you can create custom content crawlers to access data from non-standard data sources
and integrate it with Oracle Knowledge. The example on Example: Creating a Database Web Crawler on
page 54, shows you how to crawl a database that tracks content on a website not otherwise crawled and
consequently not available in the Content Store.

The example includes two classes: DBWebCrawler and DBWebCrawlerConfig. The DBWebCrawler
class extends Crawler, the standard Oracle Knowledge class used or extended by all crawlers that do
content acquisition within the content service framework. The second class, DBWebCrawlerConfig, shown
in Example: Configuring the Database Web Crawler on page 58, sets up objects used by DBWebCrawler and
extends CustomCrawlerConfig.

After developing your custom crawler, continue by configuring it within the Oracle Knowledge environment as
explained in the section, Configuring a Custom Crawler on page 59.

Example: Creating a Database Web Crawler

The example below can be found in the file DBWWebCrawler.java

package samples.content.dbwebcrawler;

import java.io.*;

import java.util.x*;
import Jjava.sqgl.*;
import Jjava.net.*;

import com.inquira.infra.*;
import com.inquira.content.*;
import com.inquira.content.custom.*;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI_E

55 EXAMPLE:

import com.inquira.scheduler.job.*;
import com.inquira.util.sqgl.*;

/* The DBWebCrawler class implements a custom crawler that accesses
* a database containing URLs of documents to crawl
*/
public class DBWebCrawler
extends Crawler
{
protected Connection conn;
protected Statement st;
protected ResultSet rs;

/* Called by the content acquisition framework prior to
* call starting the crawl
*/
public void connect(CrawlerConfig configuration)
throws CrawlerException

DBWebCrawlerConfig rcc = (DBWebCrawlerConfig)configuration;
try {
conn = Datasource.forName (rcc.getDatasourceName()).getConnection (
) ;CrawlerException
st = conn.createStatement();
rs = st.executeQuery(rcc.getQuery());

} catch(Throwable t) {
throw new CrawlerException(t);
}
}

/* Called by the content acquisition framework after
* the crawl is completed
*/
public void rundown ()
throws CrawlerException

{

try {

if(rs != null) {
rs.close();

}

if(st !'= null) {
st.close();

}

if(conn != null) {

conn.close();

} catch(Throwable t) {
throw new CrawlerException(t);
}
}

/* Called by the content acquisition framework prior to call starting
* the crawl after calling connect
*/

public void start()

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

56 EXAMPLE:

{
}

/* Indicates that a single call to the findContent method discovers
* a current document
*/
public boolean findComplete()
{
return true;

}

/* Indicates that this is a custom crawler */
public ContentSourceType getType()
{
return ContentSourceType.HTTP;
}

/* Returns all currently known document objects that are found
* in the data source
*/
public Collection findContent(Collection priorContent,
CrawlerConfig conf,
CrawlerState state,
TaskStatus status)
throws CrawlerException

Collection rc = new ArrayList();

try {
String temp = null;

while(rs.next()) {
String url = rs.getString(1);

if('rs.wasNull() && !url.equals(temp)) {
System.out.println("Getting URL: " + url);
Timestamp time = rs.getTimestamp (2);
Document d = new Document ();
d.setCollection(conf.getCollection());
d.setFetchURL(url);
d.setDisplayURL(url);

.setCSType (ContentSourceType.CUSTOM) ;
.setlLastModificationTime(time);
.setIndexingAllowed(true);
.setStatusCode (Document.STATUS OK) ;

Q.0 0 0

rc.add(d);

temp = url;
} else {

System.out.println("NULL or Dupe!");
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

57

EXAMPLE:

}

public bytel]

} catch(Throwable t) {
throw new CrawlerException(t);

}

return rc;

throws
CrawlerException

byte[] rc = null;

URL url = null;
URLConnection urlconn = null;
InputStream is = null;

ByteArrayOutputStream baos = null;

try {

url= new URL(doc.getFetchURL())
System.out.println("In getContent,

urlconn = url.openConnection();

is = new BufferedInputStream(urlconn.getInputStream
) ;

baos = new ByteArrayOutputStream/(

byte[] buf = new byte[8192];

int count = 0;

while((count = is.read(buf, O,
baos.write(buf, 0, count);

}

rc = baos.toByteArray();

doc.setContent (DataComponent.RAW,
doc.setDocSize(rc.length);

} catch(ContentStoreException t) {
throw new CrawlerException(t);
} catch(IOException t) {
throw new CrawlerException(t);
} finally {
if(is !'= null) {
try {
is.close();
} catch(IOException ex) {
// ignore on close

}
}

return rc;

/* Returns the raw content for the given document */
getContent (CrawlerConfig conf,

Document doc

getting URL: "

rc

)7

)

buf.length)) > 0

+ url);

)7

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

58 EXAMPLE:

Example: Configuring the Database Web Crawler

This supporting class, containing configuration objects for the DBWebCrawler example, can be found in the
file DBWebCrawlerConfig.java

package samples.content.dbwebcrawler;
import java.util.*;

import com.inquira.content.*;

import com.inquira.content.custom.*;
/* The CustomCrawlerConfig class implements a custom crawler configuration
object that knows about two non-standard configuration items:

datasourceName - defines the name of the data source that

contains the document information

query - defines the query string used to find the document information
/

public class DBWebCrawlerConfig

extends CustomCrawlerConfig

X% o o X X o

{

private static final String ident = "S$Revision: 1.1.2.2 §";

/* Compares the last modification dates of the two documents passed,
* to determine if the document has changed
*/
public boolean isModifiedDocument (Document currentDocument, Document
newDocument)
{
return newDocument.getLastModificationTime ().after(
currentDocument.getLastModificationTime());

}

/* Returns the data source name */
public String getDatasourceName ()
throws CrawlerException

{

String dataSourceName = configValues.getProperty("datasourceName");
if(dataSourceName == null || dataSourceName.length() ==) |
throw new CrawlerException("CUSTOM DBWEB CRAWLER NO DATASOURCE",
new Object[]{ getCollectionName() });

}

return dataSourceName;

}

/* Returns the query string */
public String getQuery()
throws CrawlerException

{
String query = configValues.getProperty("query");

if(query == null || query.length() == 0) {
throw new CrawlerException("CUSTOM DBWEB CRAWLER NO QUERY", new
Object[]1{ getCollectionName() });

}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

59

CONFIGURING A

return query;

}

/* Returns a new DBWebCrawler object */
public Crawler getCrawler()

throws CrawlerException
{

return new DBWebCrawler();

}

/* Indicates that this crawler compares existing documents in the
* content store with documents it discovers to identify content changes
*/
public boolean fetchExistingContent ()
{
return true;

}

Configuring a Custom Crawler

The custom crawler in this example assumes that the customer has developed an in-house content publishing
system that uses a database table called "content" containing a record for every document that has been
published to their website. This table contains two columns:

Column Name Description

url This column contains the URL at which the document can be accessed on the
website

modtime This column contains the last date and time the document was published

Configuration for custom crawlers is done through the Advanced Config settings in the System Manager. In
the example below, you can see that the ur1l and modt ime fields appear as part of the query defined in the
Configuration settings in the System Manager.

To configure the custom crawler:

1

2
3
4

Open the System Manager and choose Advanced Config from the Tools menu.
Select Crawler Settings and choose Edit.
Under Custom Crawlers, select Add New Item.

Enter the ltem Name, Class Name, and add the Configuration fields for the data source and query
following the example below.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

60 CONFIGURING A

Example Crawler Settings

Item HName § ISamples

Custom Crawlers

Class Name | Isamples.cuntent.dbwebcrawler.DEWebCrawlerCanig

Available for -
Unstuctured & on O off
Search

Document Type
Detector Istandard

=l
Language : IEninsh [en-US] ;I
=l

Encoding : IAutDmatic

Configuration

H B
Ttem Mame | Idatasuurce_name:
Yalue ; IsampleDB
&

Item Mame § Iq,_,er.?.

Yalue ; Iselect utl, modtirme from content

Add Mew Ttem

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 7

Creating a Custom Document
Preprocessor

This section shows how you can customize the way in which raw document content is processed for both text
and binary files. In the example, we extend the ProcessingFilterAdapter class which implements the
PreprocessingFilter interface.

The PreprocessingFilter interface defines the preprocessDocument method (text files) and
postprocessDocument methods (text and binary files) called by Preprocessor when it processes content.
By extending the ProcessingFilterAdapter class, which implements the PreprocessingFilter interface,
we can introduce our own preprocessing and post-processing routines as part of Oracle Knowledge's standard
processing of text and binary files.

In the example, described in Example: Creating a Document Preprocessor on page 61, we include two
common preprocessing and post-processing customizations: removing footers from HTML files, and removing
the table of contents from PDF files.

After developing your custom document preprocessor, continue by configuring it within the Oracle Knowledge
environment as explained in the section, Configuring a Custom Document Preprocessor on page 65.

Example: Creating a Document Preprocessor

The example below can be found in the file SamplePreprocessingFilter.java
First, we import the referenced packages.

package samples.prep;
import java.io.*;
import java.util.x*;

import Jjava.util.regex.*;

import com.inquira.content.*;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACI—E

62

EXAMPLE:

import com.inquira.prep.*;
import com.inquira.util.xml.*;

Next, we set up a new custom preprocessor class by extending PreprocessingFilterAdapter, a class that
implements the PreprocessingFilter interface. The PreprocessingFilterAdapter class adds the getStringContent
method, which we use to get the document content for HTML files.

/* Implements a pre- and post-processing filter used during document conversion

*/

public class SamplePreprocessingFilter

{

)7

extends PreprocessingFilterAdapter

/* Defines the regular expression that marks a table of contents page */
protected Pattern tocPattern;

/* Defines the maximum number of pages to check for table of contents */
protected int endPage;

/* Defines the regular expression that marks an HTML footer */
protected Pattern footerPattern;

/* Creates a new PreprocessingFilter instance, while configuration
* parameters are passed in to configProperties
*/
public SamplePreprocessingFilter (Map configProperties)
{
/* Assuming the configuration looks like this:
<preprocessingFilter name="sample">
<class>samples.prep.SamplePreprocessingFilter</class>
<config>
<values name="hello">def</values>
<values name="xyz">zyx</values>
</config>
</preprocessingFilter>

% X ok X X ok X X ot

The Map contains entries for keys "hello" and "xyz",
with values "def" and "zyx" respectively.

*

*/
tocPattern = Pattern.compile(" (?1i)Table of Contents", Pattern.MULTILINE

endPage = 10;
footerPattern = Pattern.compile(" (?1) ((\uO0A9|© |©) [

]*)2?2Copyright [0-9]+ Acme, Inc.", Pattern.MULTILINE);

}

We first check to see if it's an HTML file, and if it is, we grab the raw file contents. We then search the contents
for footerPattern to see if it contains footers, and if it does, we strip them out and save the contents using
setContent.

/* Removes footer from HTML documents based on a regular expression */
public void preprocessDocument (Document document, CollectionConfig

collection)

throws PreprocessingException

{

System.out.println("preprocessDocument called for " +
document.getFetchURL());
if (document.getDocType().equals(DocumentType.HTML) == true) {

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

63 EXAMPLE:

try {
StringBuffer rawContent = getStringContent (document);

Matcher m = footerPattern.matcher(rawContent);
if(m.find() == true) {
String newContent = m.replaceAll (
document.setContent (DataComponent.RAW, newContent);

nwn) .
’

}

} catch(ContentStoreException ex) {

throw new PreprocessingException("CUSTOM PREP PRE FILTER FAILER",
new Object[]{ document.getFetchURL(), new

Integer (document.getDocId()) }, ex);
}
}
}

For the TOC, we first check to see if it's a PDF file, and if it is, we grab the contents. We then search the
contents for tocPattern to see if it contains a TOC while the page number is less than endPage. If we find
a TOC, we strip it out and return the updated string representation of the 1 gxm1Node.

/* Remove Table of Contents pages from PDF documents */
public String postprocessDocument (Document document, CollectionConfig
collection, Node igxmlNode)
throws PreprocessingException

{

String rc = null;

System.out.println("postprocessDocument called for " +
document.getFetchURL());
if (document.getDocType() .equals(DocumentType.PDF) == true) {

// Since we are modifying the XML Node that represents the
// IQXML, we need to be careful not to modify the original Node
// unless we intentionally want to modify the XML. To signal
// that a modification was made we need to return the string
// representation of the new XML node that represents the IQXML
// after post processing.
if (removeTOC(igxmlNode, endPage) == true) {
rc = igxmlNode.toString();

}

return rc;

}

protected boolean removeTOC(Node n, int lastPage)

{

return removeTOC(n, new HashSet(), lastPage);

}

protected boolean removeTOC(Node n, HashSet skipPages, int lastPage)
{

boolean rc = false;
boolean afterTOC = false;

List children = n.getChildren();
if(children != null) {

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

64 EXAMPLE:

ListIterator it = children.listIterator();
while(it.hasNext()) {
Object o = it.next();
if(o instanceof Node) {
Node cn = (Node)o;

String text = cn.getText();
if(text != null && text.length() > 0) {
int pageNumber = getPageNumber(cn);
if (pageNumber >= 0) {
if (pageNumber >= lastPage) {
afterTOC = true;
break;
}

Integer nPageNumber = new Integer (pageNumber);

if (skipPages.contains(nPageNumber) == true) ({
rc = true;
it.remove();
} else {
if (tocPattern.matcher (text).find() == true) {
rc = true;
it.remove ();

skipPages.add (nPageNumber) ;

}
}
} else if(afterTOC == false) {
rc |= removeTOC(cn, skipPages, lastPage);

}

}

return rc;

}

We use the get PageNumber method in the postprocessDocument method to check where we are in
the document.

protected int getPageNumber (Node n)
{

int rc = -1;
String auxAttr = n.getAttribute("aux");
1f(auxAttr != null) {

int start = auxAttr.indexOf(" pg=");

if(start >= 0) {
start += 4;

int end = auxAttr.indexOf(" ", start):;
if(end > 0) {
rc = Integer.parselnt(auxAttr.substring(start, end));

}
}

return rc;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

65 CONFIGURING A

Configuring a Custom Document Preprocessor

You can define configuration information for your custom document preprocessor by adding the name of the
class and configuration information to the ICE custom. xml file as shown below. Note that you don't need to
do his unless you need to pass parameters to your custom preprocessor class.

¢ Locate the custom.xml configuration file in the instance folder:

<IS installation folder>\instances\<instance name>\custom.xml

* Add a preprocessor node to the file as shown below substituting the class name for
samples.prep.SamplePreprocessingFilter, and adding key value pairs as appropriate in
the <config> section.

<preprocessor>
<preprocessingFilter>
<class>samples.prep.SamplePreprocessingFilter</class>
<config>
<values name="hello">def</values>
<values name="xyz">zyx</values>
</config>
</preprocessingFilter>
</preprocessing>

Supporting Multiple Navigation Applications

To support multiple navigation applications, an entry similar to the following needs to be added to the
custom.xml file:

<task-definition index="16">

<name>Classification</name>
<shortName>Navigation</shortName>

<description>Classifies the navigation facets </description>
<taskClass>com.inquira.navigate.ClassifyTask</taskClass>

<parameters index="0">-p</parameters> <!-- enable progress tracking -->
<parameters index="1">-f</parameters> <!-- applitcaion 1 name follows -->
<parameters index="2">Default</parameters> <!-- applitcaion 1 name -->
<parameters index="3">-f</parameters> <!-- applitcaion 2 name follows -->
<parameters index="4">Maven</parameters> <!-- applitcaion 2 name -->
<parameters index="5">-f</parameters> <!-- applitcaion 3 name follows —-->
<parameters index="6">Quantum</parameters> <!-- applitcaion 3 name -->

<distribute>false</distribute>
<needsCollection>false</needsCollection>
<subcollection>false</subcollection>
</task-definition>

This overrides the default entry for the Classification task, adding the additional applications ‘Maven’ and
‘Quantum.’

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 8

Creating a Custom Task

This section shows you how to implement custom tasks to work within Oracle Knowledge's system framework.
The examples included here show you how to set up a simple custom task, how to handle parameters, how to
display document count and progress information on the System Manager status screen, and how to set up a
task so that users can interrupt it, if necessary, from the job status screen.

The following examples are provided:

e Example: Creating a Simple Custom Task on page 67
This example provides the basic template for crating a custom task.

e Example: Handling Argument Parsing on page 69
This example provides a basic template, but adds the ability to handle arguments as parameters.

e Example: Handling Document Count and Progress Updates on page 73
This example shows you how to update the document count and progress bar as documents are
processed by the task.

e Example: Handling User Task Interruptions on page 76
This example shows you how to test for a request from the user to interrupt processing. Note that
although we provide an example, we do not encourage you to use it unless you really need to and are
able to support the consequences of interrupting a task.

After creating your custom task, continue by configuring it within the Oracle Knowledge environment as
explained in the section, Configuring a Custom Task on page 77.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

67

EXAMPLE:

Example: Creating a Simple Custom Task

The example below can be found in the file CustomTaskTemplate. java.

First, we import the referenced packages.

package com.inquira.scheduler

import
import
import
import
import
import

import
import
import
import
import

org.
org.
org.
org.
org.
.apache.

org

org.
com.
com.
com.
com.

apache.
apache.
apache.
apache.
apache.

commons
commons
commons
commons
commons
commons

.cli.
.cli.
.cli
.cli
.cli
.cli

.job;

BasicParser;
CommandLine;

apache.commons.cli.*;
.scheduler. *;
.scheduler.*;
.infra.*;

inquira
inquira
inquira
inquira

.log.*;

.CommandLineParser;
.Option;

.Options;
.PatternOptionBuilder;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate

implements ITaskRunner,

public void run(TaskStatus status,
boolean success =

try {

true;

ILogConstants {

String[] args) throws Exception ({

Add the code for whatever task it is that you need to set up here

}

/*

* Do the actual custom task work here

*/

catch(Exception ex)
//Do any appropriate logging and exception handling
s = false;

}

succes

{

Be sure to set status here to setSuccess if the task completes successfully, or the task defaults to
setFailed

finally {
//Set the status at the end of the task.

//If the status is not set,

it defaults to setFailed()

//causing the task and any dependent tasks to fail
if (success)
status.setSuccess () ;

}

else {

{

status.setFailed();

}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

68

EXAMPLE:

}
public Options getTaskOptions ()
{

Options options;

options = new Options();

return options;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

69

EXAMPLE:

Example: Handling Argument Parsing

The example below can be found in the file CustomTaskTemplate Args.java.
In the first part of this custom task example, we import the referenced packages.

/*

* In this custom task example, we modify it to take arguments as

* parameters. We use the getTaskOptions () method inherited from the

* ITaskRunner interface to handle argument parsing.

*/
package com.inquira.scheduler.job;

import org.apache.commons.cli.BasicParser;

import org.apache.commons.cli.CommandLine;

import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;

import org.apache.commons.cli.Options;

import org.apache.commons.cli.PatternOptionBuilder;

import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
implements ITaskRunner, ILogConstants {

/* Example local variables set by argument parsing */
boolean fOption = false;
boolean pOption = false;
boolean rOption = false;
String collectionName = null;

Here we process the args array and define task processing accordingly. Substitute your own switch values
and parameters and processing options for ones appropriate to your task. Refer to Configuring a Custom Task

on page 77 for a discussion of how to handle arguments as parameters.
/*

* Use a method like the one below to process the arguments
* and set the local variables
*/
private boolean processArgs(String[] args) {
CommandLineParser parser;
CommandLine commandLine;
Options optionDefinitions;
Option[] options;
boolean success = true;

parser = new BasicParser();

try |
optionDefinitions = getTaskOptions();
commandLine = parser.parse(optionDefinitions, args
options = commandLine.getOptions () ;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

70 EXAMPLE:

for(int 1 = 0; 1 < options.length; i++) {
List values;
String mode;

mode = options[i].getOpt();

if (mode.equals("f") || mode.equals("fexample")) {
values = options[i].getValuesList();
fOption = Boolean.valueOf((String)values.get(0)

) .booleanValue() ;

}

else if(mode.equals("p") || mode.equals("pexample")) {
values = options[i].getValuesList();
pOption = Boolean.valueOf((String)values.get(0)

) .booleanValue () ;

}

else 1f(mode.equals("r") || mode.equals("rexample")) {
rOption = true;

}

else 1if(mode.equals("c") || mode.equals("collection")) {
values = options[i].getValuesList();
collectionName = (String)values.get (0);

}
}

catch(Exception ex) {
//Do any appropriate logging
Execution.context () .log() .event (ERROR MSG, "CUSTOM TASK ERROR", ex);

success = false;

}

return success;

public void run (TaskStatus status, String[] args) throws Exception {
boolean success = true;

try f{

if (processArguments(args) == false) {
success = false;
return;

/*
* Do the actual custom task work here

*/

}
catch(Exception ex) {
//Do any appropriate logging and exception handling

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

7

EXAMPLE:

success false;

}

Be sure to set status here to set Success if the task completes successfully, or the task defaults to

setFailed.

finally {
//Set the status at the
//If the status is not
//causing the task and

if (success) {
status.setSuccess () ;

}

else {

status.setFailed();

}
}

/* The getTaskOptions example below

parsing for "-p true -f false -r

This example uses the Apache CLI
can be found on their website by
for their Javadoc.
/
public Options getTaskOptions ()
{

X% o ok ok of

Options options;

end of the task.
set, it defaults to setFailed()
any dependent tasks to fail

’

In this section we look at how to define the parameters used when the task is run.

shows how to define argument
-c <collectionname>"

interface. Their documentation
searching for org.apache.commons.cli

Option collectionOption;

Option pOption;

Option fOption;

Option rOption;

options = new Options{();

pOption = new Option("p", "pexample", true, "Example for an option
called 'p'");

pOption.setArgName ("true | false ");

pOption.setOptionalArg(false);

pOption.setRequired(false);

pOption.setArgs(1);

fOption = new Option("f", "fexample", true, "Example for an option
called "£'");

fOption.setArgName ("true | false");

fOption.setOptionalArg(false);

fOption.setRequired(false);

fOption.setArgs(1);

rOption = new Option("r", "rexample", true, "Example for an option
called 'r'");

rOption.setOptionalArg(true);

rOption.setRequired(false);

rOption.setArgs(0);

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

72 EXAMPLE:

collectionOption = new Option("c", "collection", true, "Option for the
collection name.");
collectionOption.setArgName ("collection name");

collectionOption.setOptionalArg(false);
collectionOption.setRequired(true);
collectionOption.setArgs(1);

options.addOption(pOption);
options.addOption(fOption);
options.addOption(rOption);
options.addOption(collectionOption);

return options;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

73

EXAMPLE:

Example: Handling Document Count and Progress Updates

The example below can be found in the file CustomTaskTemplate Prog.java.

In the first part of this example, we import the referenced packages.

/*

* This custom task template provides examples for
* updating progress bar and document count information.

*/

package com.inquira.scheduler.job;

import
import
import
import
import
import

import
import
import
import
import

org
org

org.
org.
org.
org.

org.
com.
com.

com

com.

.apache.commons.cli.BasicParser;
.apache.commons.cli.CommandLine;

apache.commons.cli.CommandLineParser;
apache.commons.cli.Option;
apache.commons.cli.Options;
apache.commons.cli.PatternOptionBuilder;

apache.commons.cli.*;
inquira.scheduler.*;
inquira.scheduler.*;

.inquira.infra.*;

inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
implements ITaskRunner, ILogConstants {

public void run(TaskStatus status, String[] args) throws Exception {
boolean success = true;

try {

Add the code for your task here calling the appropriate method to update the document count and progress bar
as indicated in the comments below. Note that the method should only be called by tasks that use a looping
structure to process data so that a counter or progress indicator can be updated for each iteration of the loop.

/*

*

*/

ok X ok ok X ok ok X X % X

Do the actual custom task work here.

The examples below show how to handle progress bar updates
and document count updates for the task status screens in
System Manager. They should be called from within tasks
that use a looping structure, updating the doc count or
progress bar as a loop iteration is completed.

Option 1 for updating progress
status.setProgress(value);

This can be called periodically if
a value of 1 - 100 is known and it
makes sense to update progress with

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

74

EXAMPLE:

a specific value

Option 2 for updating progress
status.incrementProgress (incrementalvalue);
This can be called periodically

to increment the progress

by some incremental value. If the

progress was 35 and the value passed

to this method is 4, the new progress

will be 39.

Option 3 for updating progress and doc count

(used only if the task iterates over

a set of documents once). This option can also only

be used if the total number of documents to be processed
is known at the beginning of the task.

status.setTotalDocCount (total);
This should be called at the beginning
of the task, not inside the loop

status.incrementDocProgress () ;

This should be called from inside the loop, once

for each document that was processed. Internally

it will increment the counter for how many documents
were processed, and also calculate the progress
percentage based on the processed documents divided
by the totalDocCount () wvalue.

Option 4 for updating doc count but not progress
status.incrementDocCount () ;

Increments the current doc count processed by 1,
it starts at 0 at the beginning of every task.

X% >k ot X >k ok X F ok X b b X > ok X > ok X > ok X > ok X X o X ok o X % ot

catch(Exception ex) {

//Do any appropriate logging and exception handling
success = false;

Be sure to set status here to set Success if the task completes successfully, or the task defaults to

setFailed.

finally {

//Set the status at the end of the task.
//If the status is not set, it defaults to setFailed()
//causing the task and any dependent tasks to fail
if(success) {
status.setSuccess () ;
}
else {
status.setFailed();
}

public Options getTaskOptions ()

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

75

EXAMPLE:

Options options;
options = new Options{();

return options;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

76

EXAMPLE:

Example: Handling User Task Interruptions

The example below can be found in the file CustomTaskTemplate Prog.java.

In the first part of this example, we import the referenced packages.

~
*

X% % o o X F ok of

/

In this custom task example we add a method you can call from
within a task loop to periodically check if a user has used the
job-status screen to request that the current task stop
processing and exit.

It is up to the custom task code to do any necessary data
cleanup.
support task interruption.

If it cannot do this properly, it should not attempt to

package com.inquira.scheduler.job;

import
import
import
import
import
import

import
import
import
import
import

org.
org.
org.
.apache.commons.cli.Option;
org.
org.

org

org.
com.
com.
com.
com.

apache.commons.cli.BasicParser;
apache.commons.cli.CommandLine;
apache.commons.cli.CommandLineParser;

apache.commons.cli.Options;
apache.commons.cli.PatternOptionBuilder;

apache.commons.cli.*;
inquira.scheduler.*;
inquira.scheduler.*;
inquira.infra.*;
inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
implements ITaskRunner, ILogConstants {

public void run(TaskStatus status, String[] args) throws Exception {
boolean success = true;

try {

Add the code for your task here calling the i sInterrupted method from within a loop to check whether the
user has requested that the task be interrupted. Note that for the 1 sInterrupted method to be useful it
must be called from inside a loop as documents or other data are processed, so that it can poll for a change in
status at each loop iteration.

/*
* Do the actual custom task work here

*/

Handling user-interrupted task requests is only viable if
the task is structured in some form of loop where it can
periodically check if there is an outstanding request for
the task to interrupt itself. This should only
be done if if the custom task code can cleanly

X % o o X X

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

77 CONFIGURING A

* interrupt its work without corrupting any data.

*/

status.isInterrupted() ;
//Check this method periodically in a loop. If it returns
//true, then a user has used the job-status screen to request
//that the current job/tasks stop processing and exit.

//An interrupted task should be treated as a failed

// task, so be sure to set success to false or

// otherwise ensure that status.setFailed() is called
}

catch(Exception ex) {

//Do any appropriate logging and exception handling
success = false;

}

Be sure to set status here to set Success if the task completes successfully, or the task defaults to
setFailed.

finally {
//Set the status at the end of the task.
//If the status is not set, it defaults to setFailed()
//causing the task and any dependent tasks to fail
if(success) {
status.setSuccess () ;
}
else {
status.setFailed();
}

}
public Options getTaskOptions ()
{

Options options;

options = new Options{();

return options;

Configuring a Custom Task

To configure a custom task:
1 Use one of the example templates to develop your custom task class.

2 Save the file and class using the appropriate local naming conventions.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

78

CONFIGURING A

Configure the placeholders for custom tasks in the <number> . xm1 file. You'll need to do this by hand
as they cannot be configured through the System Manager. The supported placeholders can be found
by searching for "PlaceholderTask" in <number> . xm1, based on your particular task. The list of
supported custom task placeholders include:

- Pre content update

- Pre document conversion

- Pre indexing

- Pre propagation

- Pre synchronization

- Post propagation/synchronization

- Pre log loading

- Post analytics processing (both Search and IM)

Select the correct placeholder task and replace the taskClass configuration node (which is set by
default to "com.inquira.scheduler.job.PlaceholderTask") with the name of the newly defined class. An
example is shown below:

<task-definition index="4">

<name>Pre-Document Conversion</name>

<description>Custom task to be run before document conversion.</description>
<taskClass>com.customer.services.custom.NewTask</taskClass>
<distribute>false</distribute>

<needsCollection>false</needsCollection>
<subcollection>false</subcollection>

</task-definition>

Other than taskClass, no other configuration nodes should be modified unless parameters are
required.

Compile the custom class and store it in the appropriate services. jar file so that ICE can add it to
the classpath. This ensures that when the scheduler runs the task, the custom code is invoked
rather than the PlaceholderTask class.

To add parameters to the task definition, add parameter nodes as shown in the example below. For
example,toadd "-p true","-f false", and "-r" as parameters you would add the following
parameter nodes:

<parameters index="0">-p</parameters>
<parameters index="1">true</parameters>
<parameters index="2">-f</parameters>
<parameters index="3">false</parameters>
<parameters index="4">-r</parameters>

If the collection name is a required parameter, set the <needsCollection> node to "true" and the
last parameter specified to "-c". If you follow this convention the scheduler automatically adds the
collection name to the arguments passed into the task. A sample result is shown below. Note that -c is
the last parameter and that needsCollection is setto true. The args [] array would include the
following data based on the task definition below when the task is run:

args[0] = "-p"

args[l] = "true"

args|[2] = "-f"

args|[3] = "false"

args[4] = "-r"

args[5] = "-c"

args[6] = "<collectionname>"

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

79

CONFIGURING A

<task-definition index="4">

<name>Pre-Document Conversion</name>

<description>Custom task to be run before document conversion.</description>
<taskClass>com.customer.services.custom.NewTask</taskClass>

<parameters
<parameters
<parameters
<parameters
<parameters
<parameters

index="0">-p</parameters>
index="1">true</parameters>
index="2">-f</parameters>
index="3">false</parameters>
index="4">-r</parameters>
index="5">-c</parameters>

<distribute>false</distribute>
<needsCollection>true</needsCollection>
<subcollection>false</subcollection>
</task-definition>

Note: When you set <needsCollection>true</needsCollection> thereby requiring a
collection, it also dictates that the task runs once for each collection defined in the job definition. Therefore,
the last parameter is a new collection name each time the task is run.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 9

Creating a Custom Authentication
Interface

The default Oracle Knowledge Search authentication interface uses a proprietary implementation to verify user
access to Oracle Knowledge modules. In some cases, you may want to bypass the default authentication
implementation to, for example, access user information stored in a database.
The following examples provide instructions for:
e Example: Creating a Simple Custom Authenticator on page 81
Creating a basic custom authenticator built on the iAuthenticator interface.
e Example: Simple Unit Testing of a Custom Authenticator on page 83
Unit-testing a custom authenticator.
e Example: Configuration-based Test for iAuthenticator Objects on page 85
Testing the configured security service (IAAS).

For the code to compile, you need to download both the file for the specific authenticator and the file
TestBase. java, which contains some of the classes called by the authenticators.

After creating your custom authenticator, continue by configuring it within the Oracle Knowledge environment
as explained in the section, Configuring a Custom Authenticator on page 85.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

81

EXAMPLE:

Example: Creating a Simple Custom Authenticator

The example below can be found in the file TestAuthenticator. java, and the shared authenticator

classes can be found in TestBase.java.

We import the referenced packages, including TestBase . java, which contains the shared classes

referenced by the authenticator examples.

package samples.security.authentication;

import java.util.*;
import java.security.*;

import com.inquira.infra.*;

import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.util.security.*;

We implement TestAuthenticator and get the user ID and password

/* This is a sample implementation of an authenticator */
public class TestAuthenticator

extends TestBase

implements IAuthenticator

private static final String _ ident = "S$Revision: 1.1.2.1 §";

protected String domain = "Test";

protected Field[] authenticationFields = new Field[] {InputField

new InputField(IFieldNames.FIELD USER ID),
new InputField(IFieldNames.FIELD PASSWORD,

true) };

public IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap,

long timestamp)
throws InquiraAuthenticationException
{

IUser rc = null;

System.out.println("TestAuthenticator.authenticate: called"”

)7

String userlId = getFieldValue(IFieldNames.FIELD USER ID, userInfo);

System.out.println("TestAuthenticator.authenticate: userId: "

if(userId != null) {
String password = getFieldValue(IFieldNames.FIELD PASSWORD,
) i

+ userId

userInfo

System.out.println("TestAuthenticator.authenticate: password: " +

password) ;

If the password is correct, we set up the user permissions to return using buildUser (defined in

TestBase. java), and print them for test purposes. If the password is incorrect or null, we handle the

exception by calling InquiraAuthenticationException.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

82 EXAMPLE:

if (password != null && password.equals(userId) == true) {

rc = buildUser (userId, domain, userInfo, roles2PermissionsMap,
timestamp);

}
}

if(rc == null) {
throw new InquiraAuthenticationException("LOGIN FAILED", new
Object[]1{ getDomain(), userId });
}

System.out.println("TestAuthenticator.authenticate: returns: " + rc);

return rc;

}
Get and return the domain (should return "Test" for the example)

public String getDomain ()
{
return domain;

}

public Field[] getAuthenticationFields()
throws InquiraAuthenticationException
{
return authenticationFields;
}

We get and print the values of authenticator, get the user's ID and password, and authenticate the user based
on the ID and password. We then print out the user permissions.

public static void main(String[] args)
throws Exception

{

TAuthenticator authenticator = new TestAuthenticator();
System.out.println(authenticator);

FieldValue[] userInfo = new FieldValue[]{ new FieldValue (
IFieldNames.FIELD USER ID, args[0]),

new FieldValue (
IFieldNames.FIELD PASSWORD, args([l]) };

IUser user = (IUser)authenticator.authenticate(userInfo,
getRole2PermissionsMap(), System.currentTimeMillis());

user.dump ();

System.out.println("security keys: " + user.getSecurityKeys());

for(int 1 = 2; 1 < args.length; i++) {

System.out.println("has access to " + args[i] + ": " + user.hasAccess(
new com.inquira.infra.security.ContentPermission(args[i])));

}
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

83 EXAMPLE: SIMPLE

Example: Simple Unit Testing of a Custom Authenticator

The example below can be found in the file AuthenticatorTest. java, and the shared authenticator
classes can be found in TestBase.java

We import the referenced packages, including TestBase . java, which contains the shared classes
referenced by the authenticator examples.

package samples.security.authentication;

import java.util.*;
import java.security.Permission;

import com.inquira.infra.*;

import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.config.*;

public class AuthenticatorTest

{

private static final String ident = "S$Revision: 1.1.2.1 §";

public static final String ROLE LANG DEV = "LanguageDevelopment";
public static final String ROLE LANG ADMIN = "LanguageAdministrator";
public static final String ROLE ANALYTICS ADMIN = "AnalyticsAdministrator";
public static final String ROLE ADMIN = "Administrator";

protected static final Set USABLE PERMISSIONS;
public static final Map DEFAULT ROLE PERMISSIONS;

static {
HashSet tmp = new HashSet();
String[] allPermissions = InquiraPermissions.PERMISSIONS;
for(int i = 0; i < allPermissions.length; i++) {
Permission p = new StandardPermission(allPermissions[i]);
if(p.equals(new StandardPermission(InquiraPermissions.USERS))
== false) {

tmp.add(p)
}
USABLE PERMISSIONS = Collections.unmodifiableSet(tmp);

DEFAULT ROLE PERMISSIONS = new HashMap()
HashSet langDevPerm = new HashSet();
langDevPerm.add(new StandardPermission(InquiraPermissions.DICTIONARY
))
langDevPerm.add (new StandardPermission(InquiraPermissions.TESTING));
langDevPerm.add(new StandardPermission (
InquiraPermissions.QUALITY MONITOR));
DEFAULT ROLE PERMISSIONS.put (ROLE LANG DEV, langDevPerm) ;

HashSet langAdminPerm = new HashSet (langDevPerm) ;
langAdminPerm.add (new StandardPermission(InquiraPermissions.TOP_LAYERS
))i
langAdminPerm.add(new StandardPermission (
InquiraPermissions.DOMAIN GROUPS));
langAdminPerm.add(new StandardPermission(InquiraPermissions.DOMAINS)

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

84

EXAMPLE: SIMPLE

);

langAdminPerm.add (new StandardPermission (
InquiraPermissions.ONT BUILDER));

langAdminPerm.add (new StandardPermission (
InquiraPermissions.NAVIGATION SETUP));

DEFAULT ROLE PERMISSIONS.put (ROLE LANG ADMIN, langAdminPerm) ;

HashSet analyticsAdminPerm = new HashSet();

analyticsAdminPerm.add(new StandardPermission (
InquiraPermissions.ANALYTICS ADMIN));

DEFAULTiROLEiPERMISSIONS.put(ROLE ANALYTICS ADMIN, analyticsAdminPerm
)7

DEFAULT ROLE PERMISSIONS.put (ROLE ADMIN, USABLE PERMISSIONS);
}

public static void main(String[] args)
throws Exception

{
ArrayList 1 = new ArrayList();

IAuthenticator auth = (IAuthenticator)Execution.context().config() .get(
new Key(args[0]))

System.out.println(auth);
l.add(auth);

’

IAAS aas = new AASImpl(1, DEFAULT_ROLE_PERMISSIONS)
System.out.println(aas)

FieldValue[] userInfo = new FieldValue[]{ new FieldValue (
IFieldNames.FIELD USER ID, args([l]),
new FieldValue (
IFieldNames.FIELD PASSWORD, argsl[2]),
new FieldValue (IFieldNames.FIELD DOMAIN,
args[3]) };

RoleBasedUser user = (RoleBasedUser) aas.login(userInfo);
user.dump ();

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

85 EXAMPLE:

Example: Configuration-based Test for iAuthenticator Objects

The example below can be found in the file AASTest . java, and the shared authenticator classes can be
found in TestBase.java.

We import the referenced packages, including TestBase . java, which contains the shared classes
referenced by the authenticator examples.

package samples.security.authentication;

import java.util.*;
import java.security.Permission;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;

/* Tests the currently configured AAS */
public class AASTest
{

private static final String ident = "S$Revision: 1.1.2.1 §";

public static void main(String[] args)
throws Exception

{
IAAS aas = (IAAS)Execution.context().aas();
System.out.println(aas);

FieldValue[] userInfo = new FieldValue[]{ new FieldValue (
IFieldNames.FIELD USER ID, args[0]),

new FieldValue (
IFieldNames.FIELD PASSWORD, args[l]),

new FieldValue (IFieldNames.FIELD DOMAIN,

args[2]) };
IUser user = (IUser) aas.login(userInfo);
user.dump ();

if(args.length > 3) {
System.out.println(aas.getPermission(args[3]));

}

Configuring a Custom Authenticator

After creating your custom authenticator, add the name of the class to the Oracle Knowledge configuration file
as shown below:

1 Locate the latest <number>.xml configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\< numbe r>.xml

2 Open the file and search for "<choices>".

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

86 CONFIGURING A

3 Addthe customAuthenticator element under <choices> as shown in the example. For the
<class> element, replace "customAuthenticator” with the name of your custom class and add an
index element that identifies the specific version.

<choices>

<customAuthenticator index="0">
<class>com.inquira.infra.security.impl.TestAuthenticator</class>
</customAuthenticator>

4 Next, define the customAuthenticator as the configured securityService by specifying the keyref as
shown below. Replace "choices.customAuthenticator[0]" with the name of your custom class and
index.

<securityService>
<authenticator index="1" keyref="choices.customAuthenticator[0]" />
</securityService>

5 Your edited file should look similar to the one shown below:

<serviceConfiguration name="default">

<securityService>

<authenticator index="1" keyref="choices.customAuthenticator[0]" />
</securityService>

<choices>

<customAuthenticator index="0">
<class>com.inquira.infra.security.impl.TestAuthenticator</class>
</customAuthenticator>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 10

Integrating an External Authentication
Application

If you're using a single-sign-on application you may want to bypass the default Oracle Knowledge
authentication interface to intercept the qualified user data it passes, and use that to set up user access to
Oracle Knowledge.

Use the examples provided in:

e Example: Integrating a Delegation Authenticator on page 88
This example shows you how to integrate an external authentication application using the
IDelegationAuthenticator interface, which extends regular authenticating modules that
integrate with single-sign-on solutions.

e Example: Integrating a Delegation Detector on page 90
This example shows you how to integrate an external authentication application using the
IDelegationDetector interface. The IDelegationDetector interface, in turn, is used
by the request processor to extract the user information from single-sign-on solutions.

Note: For the code to compile, download both the file for the specific authenticator and the file
TestBase. java, which contains some of the classes called by the examples.

After creating your custom delegation authenticator or delegation detector, continue by configuring it within the
Oracle Knowledge environment as explained in the section, Configuring a Delegation Authenticator or
Detector on page 92.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACI—E

88

EXAMPLE:

Example: Integrating a Delegation Authenticator

The example below can be found in the file DelegationAuthenticator.java

package samples.security.delegation;

import
import

import
import
import
import

import

java.util.*;

java.security.*;

com

.inquira
com.
com.
com.

.infra.*;
inquira.
inquira.
inquira.

infra.security.*;
infra.security.impl.*;
request.*;

samples.security.authentication.*;

/* This class supports simple delegation authorization functionality */
public class TestDelegationAuthenticator

extends TestBase

implements IDelegationAuthenticator

private static final String ident = "S$Revision: 1.1.2.2 §";
protected String domain = "Delegation";
protected Field[] authenticationFields = new Field[O0];

//Indicates that it cannot be used to display a login screen

public IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap,
long timestamp)
throws InquiraAuthenticationException

{

}

// Since we only want to test delegation, we provide
// no mechanism to authenticate a user

// through a login screen.

return null;

public IUser delegate(FieldValue[] userInfo, Principal principal, Map
roles2PermissionsMap, long timestamp)
throws InquiraAuthenticationException

{

userId

IUser rc =

null;

System.out.println("TestDelegationAuthenticator.delegate: called");

String userlId = getFieldValue(IFieldNames.FIELD USER ID, userInfo);
System.out.println("TestDelegationAuthenticator.delegate: userId: " +

) 7

if(

userld

!'= null) {

rc = buildUser(userId, domain, userInfo, roles2PermissionsMap,

timestamp);

rc);

}

System.out.println("TestDelegationAuthenticator.delegate: returns: " +

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

89

EXAMPLE:

return rc;

}

public String getDomain()
{

return domain;

}

public Field[] getAuthenticationFields()
throws InquiraAuthenticationException

{

return authenticationFields;

}

public static void main(String[] args)
throws Exception

{

IDelegationAuthenticator authenticator = new TestDelegationAuthenticator (
System.out.println(authenticator);
FieldValue[] userInfo = new FieldValue[]{ new FieldValue (

IFieldNames.FIELDiUSERiID, args[0]),
new FieldValue (IFieldNames.FIELD DOMAIN,

authenticator.getDomain()) 1};
IUser user = (IUser)authenticator.delegate(userInfo, null,
getRole2PermissionsMap(), System.currentTimeMillis());
1if(user != null) {
user.dump ();
} else {

System.out.println("Delegation for " + args[0] + " failed");
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

ORACLE

90 EXAMPLE:

Example: Integrating a Delegation Detector

The example below can be found in the file DelegationDetector.java

package com.inquira.infra.security.impl;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.request.*;

/* This class implements a simple delegation detector */
public class TestDelegationDetector
implements IDelegationDetector

{

private static final String _ ident = "S$Revision: 1.4.4.1 s$";
protected String domain;

public TestDelegationDetector()

{

}

public FieldValue[] detectDelegation(Request request)
{

return new FieldValue[]{

new FieldValue (IFieldNames.FIELD USER ID, System.getProperty (
"user.name")),

new FieldValue(IFieldNames.FIELD DOMAIN, "INQUIRA"™) };
}

public FieldValue[] detectDelegation(Request request)
{

FieldvValue[] rc = null;

String userId = null;

System.out.println(
"TestDelegationAuthenticator.detectDelegation: called");

try |
userld = request.getUserName();
} catch(Exception ex) {

//ignore since we don't have a valid user then

}

System.out.println(

"TestDelegationAuthenticator.detectDelegation: userId: " + userId);
if(userId != null && (userId = userId.trim()).length() > 0) {
rc = new FieldValue[] {

new FieldValue(IFieldNames.FIELD USER ID, userId),
new FieldValue(IFieldNames.FIELD DOMAIN, domain) };

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

91 EXAMPLE:

System.out.println(
"TestDelegationAuthenticator.detectDelegation: returns: " + rc);

return rc;

}

public static void main(String[] args)
throws Exception
{
IDelegationAuthenticator authenticator = new
TestDelegationAuthenticator ();
TestDelegationDetector detector = new TestDelegationDetector ();
detector.domain = authenticator.getDomain();

System.out.println(detector);
System.out.println(authenticator);

Request request = new Request();
request.setUserName (args[0]);

FieldValue[] userInfo = detector.detectDelegation(request);
IUser user = (IUser)authenticator.delegate(userInfo, null,
TestDelegationAuthenticator.getRole2PermissionsMap(),
System.currentTimeMillis());
if(user != null) {
user.dump ();
} else {

System.out.println("delegation for " + args[0] + " failed");
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

92 CONFIGURING A

Configuring a Delegation Authenticator or Detector

After creating your new delegation detector, add the name of the class to the Oracle Knowledge configuration
file as shown below:

1 Locate the latest <number>.xml configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\< numbe r>.xml

2 Open the file and search for "<choices>".

3 Addthe <delegationDetector> element under <choices> as shown below. Replace
"TestDelegationDetector" with the name of your custom class and add a name element that identifies
the specific version.

<choices>

<delegationDetector name="test">
<class>com.inquira.infra.security.impl.TestDelegationDetector</class>
</delegationDetector>

4 Define the delegationDetector in as the configured securityService by specifying the keyref as
shown below. Replace "delegationDetector[test]" with the name of your custom class and version
name.

<securityService>
<delegationDetector keyref="choices.delegationDetector[test]" />
</securityService>

5 Your edited file should look similar to the one below:

<serviceConfiguration name="default">

<securityService>

<delegationDetector keyref="choices.delegationDetector[test]" />
</securityService>

<choices>

<delegationDetector name="test">
<class>com.inquira.infra.security.impl.TestDelegationDetector</class>
</delegationDetector>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 11

Creating an Action Plugin

This section deals with how to create a plugin for use within dictionary rules. The example, Example: Creating
an Action Plugin on page 93, implements a class that can be used to trigger an action in a rule that calls the
plugin. You can have the rule be called for every question, and then implement your own custom condition.

After creating your custom plugin, continue by configuring it within the Oracle Knowledge environment as
explained in the section, Configuring an Action Plugin on page 95.

Example: Creating an Action Plugin

The example below can be found in the file ActionGeneratorPlugin. java.
In the first part of this example, we import the referenced packages and display the copyright notices.

package com.CLIENT NAME.inquira.action;

import com.inquira.dictionary.rules.userdata.AnswerPart

import com.inquira.dictionary.DictionaryObjectTypes;
import com.inquira.dictionary.answerlayout.AnswerPart;
import com.inquira.dictionary.answerlayout.FacetRestriction;
import com.inquira.dictionary.dictobjs.ActionRule;
import com.inquira.evaluator.Action;

import com.inquira.evaluator.ActionGenerator;

import com.inquira.evaluator.SetFacetRestrictionAction;
import com.inquira.infra.Execution;

import com.inquira.infra.InquiraException;

import com.inquira.intents.*;

import com.inquira.match.Matcher;

import com.inquira.match.SentenceMatcher;

import com.inquira.match.VariableInstantiation;

import com.inquira.match.expression.IMLExpression;
import com.inquira.nlp.Sentence;

import com.inquira.request.RequestContext;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

94 EXAMPLE:

/*

* This class can be used to trigger an action in a rule that calls

* this plugin. You can have the rule be called for every question, and
* then implement your own custom condition below.

*/
Next, we implement the action plugin based on the ActionGenerator interface.

public class MyPluginActionGenerator
implements ActionGenerator {

/* This method is triggered when the plugin fires based on rules */
public Action[] generate (RequestContext requestContext, AnswerPart
answerPart,

Sentence sentence,
VariableInstantiation variableInstantiation, Map map)
throws
InquiraException {

IntentService is = Execution.context () .intents();
Action[] actions = new Action[0];

//Test for condition to trigger the action you want

actions = new Action[1l];

In this example, we set up a facet restriction as our rule-based action. By setting up and defining your own
action as actions [0] below, you can use this example to trigger other actions.

/* Example

* FacetRestriction fr = new FacetRestriction("\"CRID." +

* contentRecordID.toUpperCase() + "\"", true);

* actions[0] = new PluginExactSearchAction (answerPart, fr, "FACET" +

* facetIML);

*/

return actions;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

95 CONFIGURING AN

Configuring an Action Plugin

After creating your action plugin, add the name of the class to the Oracle Knowledge configuration file as
shown below:

1 Locate the latest <number>.xml configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\< numbe r>.xml

2 Open the file and search for "<PluggableConsequences>".

3 Under <PluggableConsequences> add a new section like the one shown below:

<Consequence name="Followup">
<description>Module for recreating followup questions</description>
<class> com.inquira.analysis.followup.FollowupActionGenerator </class>
<parameter index="0"> type </parameter>
</Consequence>

4 Enter the plugin name, description, class name, and parameter for the new plugin.The parameter
("type" in this case), appears as text in a text box in the Workbench when you choose the plugin.

5 Once the plugin has been added to the configuration file, it appears as a selection in the Plugin drop-
down list when you set up a rule in the Dictionary Manager. For information on how to set up plugins as
answer actions for rules, refer to Advanced Features of Rules in the Intelligent Search Optimization
Guide.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 12

Creating a Custom Preference
Handler

This section describes how to set up a custom preference handler by creating a new Java class that extends
NamedHandler (see the example in Example: Creating a Preference Handler on page 96).

After creating your custom preference handler, continue by configuring it within the Oracle Knowledge
environment as explained in the section, Configuring a Preference Handler on page 97.

Example: Creating a Preference Handler

The example below can be found in the file PreferenceHandler. java
In the first part of this example, we import the referenced packages.

package samples.preferencehandler;

import com.inquira.request.*;
import com.inquira.infra.Execution;
import com.inquira.preference.*;

import java.util.regex.*;
import java.util.x*;

Next, we set up the custom preference handler class by implementing the NamedHand1er interface.

public class SamplePreferenceHandler implements NamedHandler

{

public RequestContext handle (RequestContext rc) throws HandlerException
{

// Get parameters

Properties prop = rc.getUserAgentRequestParameters () ;

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACI—E

97 CONFIGURING A

try {
PreferenceService prefs = Execution.context () .preferences();

System.out.println ("*** Got Preference ***");

//Loop through the property names
Enumeration e = prop.propertyNames () ;
while (e.hasMoreElements ()) {
String propName = (String)e.nextElement () ;
System.out.println ("*** Got prop: " + propName) ;
System.out.println ("*** " + propName + " has a value of: " +

prop.getProperty (propName)) ;

//Assign a property value referenced by a context variable

of the property name
PreferenceValue pv = prefs.setPreferenceValue (propName,

prop.getProperty (propName)) ;
}
}

catch (Exception ex) {
System.err.println("!!! Error getting preferences! " + ex);

}

return rc;

}

public String getHandlerName ()
{

return "Sample Preference";

}

Configuring a Preference Handler

After creating the custom preference handler, add the name of the class to the Oracle Knowledge configuration
file as shown below:

1 Locate the latest <number.xml> configuration file in the configuration folder:
$APROOTS$\development\content\data\config\default\<number>.xml
2 Open the file and search for <requests name="AnswerQuestion">.

3 Inthe list of classes named <handlers>, add your preference handler class as index=1 renaming all
the subsequent ones.

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

CHAPTER 13

Rendering Web Pages Using a
Custom Agent

This section presents an example of how to render web pages using a custom transformation tool. The
example is generic, in that it does not assume anything about the type of output you may want to produce. It
simply sets up the gateway, retrieves the data, and does a standard XSL transformation.

In the example (Example: Rendering a Web Page Using a Custom Agent on page 98), we set up a client
(IClient) and initialize a connection through a SOAP gateway with the Oracle Knowledge backend. Using a
subclass (XMLAgent) of the class (Agent) used by Oracle Knowledge, the example gets the request parameter
that defines how the retrieved data is presented in the Oracle Knowledge user interface, and continues by
retrieving the data. Since XMLAgent does not carry out the transformation included in Agent, the example
continues by transforming the returned XML (GIML) using the standard XSL transformation.

Prior to doing the transformation, the example sets up access to a DOM node. Using the DOM node to access
the returned XML data, you can substitute your own rendering algorithms to produce output other than the
standard HTML produced by Oracle Knowledge.

Example: Rendering a Web Page Using a Custom Agent

The source for the example below can be found in the file xml1ui. jsp

In the first part of the example server page we set up error handling, display the copyright notice, and import
the referenced packages.

<%@ page errorPage="error.jsp" %>
<%--
/*
*InQuira Copyright (c) 2002 - 2006 Inquira, Inc. All rights
* reserved. Use or distribution without the express written consent of
* Inquira, Inc. 1s not permitted and is prohibited by law.
*/
-—%>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACI—E

99

EXAMPLE:

<%@ page import="java.io.*,java.util.*" %>

<%@ page

import="javax.xml.transform.*, javax.xml.transform.stream.*, javax.xml.transform
.dom.*,org.w3c.dom.*" %>

<%@ page
import="com.inquira.infra.gateway.htmll3.*,com.inquira.infra.client.*" %>

Next, we set up a client object using the IClient interface and initialize a connection through a SOAP gateway.

<%!
private static IClient client;
private static Object lockObject = new Object();
static {
client = null;
}
%>
<% //Create an IClient object to communicate with the search back end
synchronized (lockObject) {
if (client == null) {
System.out.println("Initializing Connection with InQuira Gateway");
IClient configuredClient = null;
Properties props = new Properties();
// Modify the values below to adjust for your environment
String soapurl = "http://hostname:port/inquiragw/servlet/rpcrouter;
String soapurn = "urn:inquira";
String timeout = null;
// Create, configure, and connect the SOAP client
configuredClient = new Client();
props.setProperty(Client.URN, soapurn);
props.setProperty(Client.URL, soapurl);
if(timeout != null) {
props.setProperty(Client.TIMEOUT, timeout);
}
try |
configuredClient.setConnectionProperties(props);
configuredClient.connect();
}
catch(ClientException ex) {
ex.printStackTrace();
RuntimeException rex = new RuntimeException("Unable to connect
to client.\nReason: " + ex.toString());
throw rex;
}
}
client = configuredClient;
}
}
%>

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

100 EXAMPLE:

Using the XMLAgent subclass of Agent, we get the request parameter that defines how the retrieved data is
presented in the user interface, and retrieve the data. Refer to the comments for the switches below to find out
what each parameter does.

AN
o\

// Create the XMLAgent that takes the HTTP request parameters

// and headers and create an Inquira request, call the

// IClient.process method, and return the Inquira

// response in a DOM node.

Agent agent = new XMLAgent(client, request, response, config,
request.getSession (true));

// Get the mode we are in from the HTTP request parameter

// called "ui mode"

String mode = request.getParameter(Agent.HTTP PARAM MODE) ;

Object node = null;

if(mode == null || (mode = mode.trim()).length() == 0 || mode.equals (
Agent.HTTP PARAM MODE INITIAL SCREEN)) {

// If there was no mode set or it was set to "initial screen",
// then we want to display the entry point
// to the search application
node = agent.processlInitialScreen();

} else if(mode.equals(Agent.HTTP PARAM MODE QUESTION)) {
// If mode is set to "question", then we are answering a
// user's question
node = agent.processQuestionMode();

} else if(mode.equals(Agent.HTTP PARAM MODE NAVIGATE)) {
// If mode is set to "navigate", then we are processing a
// user changing navigation parameters -
// by clicking on the facet links
node = agent.processNavigateMode();

} else if(mode.equals(Agent.HTTP PARAM MODE ANSWER)) {
// If mode is set to "answer", then we are processing an
// answer-based request, such as highlighting
// or click-through tracking
node = agent.processAnswerMode();

} else if(mode.equals(Agent.HTTP PARAM MODE FEEDBACK)) {
// If mode is set to "feedback", then we are handling the
// user rating the answers

node = agent.processFeedbackMode();
response.setStatus (204); // No Content response
} else if(mode.equals(Agent.HTTP PARAM MODE PAGING)) {

// If mode is set to "paging", then we are displaying the
// prior, current, or next page of answers
// depending on the direction
node = agent.processPagingMode();

} else if(mode.equals(Agent.HTTP PARAM MODE GETPAGE)) {
// If mode is set to "get page", then we get a static
// page such as the search tips

node = agent.processGetPage();

} else if(mode.equals(Agent.HTTP PARAM MODE LOGIN)) {
// If mode is set to "login", then we process a login request
node = agent.processLoginMode();

} else if(mode.equals(Agent.HTTP PARAM MODE SEARCH WITHIN)) {
// If mode is set to "search within", then we process a
// search within a given document

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DRACLE

101 EXAMPLE:

node = agent.processSearchWithin();

} else {
// We encountered an unsupported mode
node = agent.processInvalidMode (mode) ;

}

If we managed to retrieve some data, we continue by setting up a DOM node and doing the standard
transformation normally done in Oracle Knowledge. Use the DOM node to access the returned XML and
substitute your own transformation algorithms to generate output other than HTML.

if(node !'= null) {

// 1f we got a response, we try to apply the standard XSL

// transformation to generate HTML

DOMSource xslIn = new DOMSource ((Node)node);

StreamResult xslOut = new StreamResult(out);

agent.assureTemplates ();

Transformer transformer = agent.getTemplate("QUESTION ANSWER"
) .newTransformer ();

transformer.setOutputProperty(OutputKeys.ENCODING, "UTF-8");

transformer.transform(xslIn, xslOut);

o
Vv

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE DEACLE

	Preface
	About This Guide
	In This Guide
	Screen and Text Representations
	References to World Wide Web Resources

	The Personalized Response User Interface
	User Interface Processing
	Application Response Format
	The Parameters Section
	The Answers Section
	The Query Section
	The Main Template
	Main Template File Example
	The Global Layout Style Templates
	Basic Search Layout Display Example
	Request and Response Element Templates
	Global Configuration Parameters Template
	Sample Configuration Parameters File
	Request Element Templates
	Request Area Example
	Dialog Request Area Example
	Response Element Templates
	Global Elements and Utilities
	Request Elements
	Response Elements
	Answer Display Features
	Answer Purposes
	Default Answer Purposes
	Answer Portlets
	Default Answer Portlets
	Promotions Portlet Example
	Act Now Portlet Example
	Learn More Portlet Example
	Definition Portlet Example
	Feature Content Portlet Example
	Specifying the User Interface Layout
	Integrating the User Interface
	Customizing Style Elements
	Customizing General Style Elements
	Customizing Question Area Definitions
	Customizing Answer Area Definitions
	Customizing Sidebar Area Definitions
	Customizing Request Elements
	Customizing the Request Heading
	Customizing the Example Question
	Customizing the Question Box
	Customizing the Tips Link
	Customizing the Submit Button
	Customizing Response Elements
	Customizing the Question Echo
	Customizing the Answer Introduction
	Customizing Answer Headings
	Customizing the Answer Body Text
	Customizing the Answer Document Link
	Configuring Answer Purposes
	Adding Answer Purposes to the Application
	Customizing Answer Portlets
	Specifying Portlet Display Position
	Customizing Portlet Headings
	Customizing Portlet Answer Headings
	Customizing Portlet Answer Text
	Customizing Portlet Document Links
	The Process Wizard User Interface
	The Process Wizard Answer
	The Step Display Area
	Modifying the Process Wizard User Interface
	Activating the Personalized Navigation User Interface Layout
	The Personalized Navigation User Interface Elements
	Personalized Navigation XSL Style Sheet Elements
	Personalized Navigation CSS Style Sheet Elements
	Personalized Navigation-Related XML Elements
	Implementing Direct Page Display
	Direct Page Display Example
	Implementing a Virtual Representative
	Implementing User Feedback Collection
	The User Feedback Portlet
	The User Feedback Comment Form
	The User Feedback Process
	Customizing the User Feedback Area Heading
	Customizing the User Feedback Rating Labels
	Customizing the User Feedback Comment Form
	Disabling the User Feedback Feature
	Implementing Click-Through Logging
	Highlighting Answers Within Documents
	Enabling Highlighting within Answer Documents
	Specifying HTML Highlighting Style Attributes
	Managing Multiple Languages in the User Interface
	Example: Creating a Database Web Crawler
	Example: Configuring the Database Web Crawler
	Configuring a Custom Crawler
	Example Crawler Settings
	Example: Creating a Document Preprocessor
	Configuring a Custom Document Preprocessor
	Supporting Multiple Navigation Applications
	Example: Creating a Simple Custom Task
	Example: Handling Argument Parsing
	Example: Handling Document Count and Progress Updates
	Example: Handling User Task Interruptions
	Configuring a Custom Task
	Example: Creating a Simple Custom Authenticator
	Example: Simple Unit Testing of a Custom Authenticator
	Example: Configuration-based Test for iAuthenticator Objects
	Configuring a Custom Authenticator
	Example: Integrating a Delegation Authenticator
	Example: Integrating a Delegation Detector
	Configuring a Delegation Authenticator or Detector
	Example: Creating an Action Plugin
	Configuring an Action Plugin
	Example: Creating a Preference Handler
	Configuring a Preference Handler
	Example: Rendering a Web Page Using a Custom Agent

