

Oracle® AutoVue
AutoVue API Programmer’s Guide

Release 20.2.1

September 2012

Oracle AutoVue/AutoVue API Programmer's Guide, Release 20.2.1

Copyright © 1999 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.

Portions of this software Copyright Unisearch Ltd, Australia.

Portions of this software are owned by Siemens PLM © 1986-2012. All rights reserved.

This software uses ACIS® software by Spatial Technology Inc. ACIS® Copyright © 1994-2008 Spatial
Technology Inc. All rights reserved.

iii

Contents

1 Introduction

2 Architecture of an AutoVue API Solution

AutoVue API Design Options ... 2-2

3 AutoVue API Packages

VueBean Package.. 3-1
Event Package... 3-2

VueEvent .. 3-3
VueModelEvent... 3-3
VueEventBroadcaster ... 3-3
VueFileListener ... 3-3
VueMarkupListener ... 3-4
VueViewListener... 3-4
VueStateListener ... 3-4
VueModelListener .. 3-4
MarkupBean Package... 3-4

Markup .. 3-5
MarkupLayer .. 3-5
MarkupEntity ... 3-5

MarkupEntitySpec .. 3-6
Server Control ... 3-6
VueAction Package... 3-6

AbstractVueAction... 3-7
VueAction.. 3-7

Create an action that performs a single function ... 3-7
Create an action that performs multiple functions .. 3-8

4 Sample Cases

Building an AutoVue API Application .. 4-1
Implementing Functions from AutoVue in a Second Applet.. 4-5
Custom VueAction ... 4-6

Action that Performs a Single Function .. 4-6
Action that Performs Multiple Functions... 4-8

Directly Invoking VueActions .. 4-10

iv

Markups .. 4-10
Entering Markup Mode.. 4-10
Checking Whether Markup Mode is Enabled .. 4-11
Exiting Markup Mode .. 4-11
Adding an Entity to an Active Markup/Layer... 4-11
Enumerating Entities .. 4-11
Getting Entity Specification of a Given Entity .. 4-11
Changing Specification of an Existing Entity Programmatically... 4-11
Adding a Text Box Entity... 4-12
Open Existing Markup ... 4-12
Saving Markups to a DMS/PLM.. 4-13
Adding a Markup Listener to Your Application.. 4-14

Converting Files... 4-14
Calling to Convert... 4-14
Converting to JPEG (Custom Conversion).. 4-15
Converting to PDF .. 4-15

Printing a File to 11x17 Paper .. 4-16
Monitoring Event Notifications ... 4-16
Retrieving the Dimension and Units of a File... 4-17

5 FAQ

MarkupBean .. 5-1
Printing... 5-2
General ... 5-2

6 Feedback

General AutoVue Information... 6-1
Oracle Customer Support ... 6-1
My Oracle Support AutoVue Community .. 6-1
Sales Inquiries .. 6-1

v

Preface

The AutoVue API Programmer's Guide provides an overview of the concepts of the
AutoVue API and its fundamental packages and classes. For the most up-to-date
version of this document, go to the AutoVue Documentation Web site on the Oracle
Technology Network at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
This document is intended for Oracle partners and third-party developers (such as
integrators) who want to implement their own integration with AutoVue. Note that
these developers are expected to have a good understanding of JAVA programming.
This guide serves as a good starting point for developers and professional services to
become more familiar with the AutoVue API.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ ABV Developer’s Guide

■ VueBean Javadocs

■ Oracle AutoVue Installation and Configuration Guide

■ AutoVue Planning Guide

■ AutoVue Integration SDK Overview

■ Oracle AutoVue Web Services Overview

vi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

The AutoVue Application Programming Interface (API) is a Java-based toolset that
provides tools to modify the functionality of Oracle's AutoVue client, and allows you
to create your own customized Java applets/applications based on AutoVue API
components.

Prior to developing your API integration, you should review the documentation for
AutoVue API, AutoVue Web Services and AutoVue Integration SDK to find the
integration tool that best fits your needs.

This document provides an overview of the concepts of the AutoVue API and its
fundamental packages and classes. Additionally, basic and advanced applications of
the AutoVue API are provided along with their source code. For detailed information
on the packages and classes included in the AutoVue API, refer to the VueBean
Javadocs.

AutoVue API This is the API described in this document.

AutoVue Web Services You can integrate AutoVue's capabilities into your
application regardless of platforms or programming
languages. For more information, refer to the AutoVue
Web Services Overview.

AutoVue Integration SDK The AutoVue Integration SDK is a Java-based
implementation of the Document Management
Application Programming Interface (DMAPI)
specifications published by Oracle. For more
information, refer to the AutoVue Integration SDK
Overview.

2

Architecture of an AutoVue API Solution 2-1

2Architecture of an AutoVue API Solution

The AutoVue API is an umbrella term for the APIs that the AutoVue client is built
upon, with the VueBean API being the core component of the architecture. The client
can be a Java application, a Java applet, or a Java servlet. The AutoVue client that ships
with AutoVue Client/Server Deployment is an example of an applet-based AutoVue
client. As seen in the following diagram, the AutoVue client is layered on top of the
VueBean.

Note: It is possible to build a solution based on the JVue class (com.cimmetry.jvue) or
based directly on the VueBean class (com.cimmetry.vuebean). If you build a solution
based on the JVue class, then you are building from a class that already extends
Applet, and you can take advantage of the functionality and the graphical user
interface (GUI) that Oracle has built into the JVue layer. If you build a solution based
on the VueBean class, then you must implement your own GUI.

There are a number of packages included in the AutoVue API. The following figure
shows the most commonly used components.

VueAction: This component can add graphical user interface (GUI) elements to
different contexts (such as menu bar, toolbar, status bar, and so on). For example, when

AutoVue API Design Options

Architecture of an AutoVue API Solution 2-2

a menu option is selected in the GUI, a VueAction is triggered. For more information,
refer to "VueAction Package".

VueBean: This component manages the representation of a file including the resources
upon which the file depends. For more information, refer to "VueBean Package".

MarkupBean: This component handles markup functionality. For more information,
refer to "MarkupBean Package".

Server Control: This component handles the communication with the AutoVue server
and the session book keeping. For more information, refer to "Server Control".

AutoVue API Design Options
With the AutoVue API you have three design options: modify the functionality of the
client that is shipped with Oracle AutoVue, build your own customized
application/applet, or implement pre-existing code from Oracle's AutoVue client to
build your own customized client. It is recommended to review each option prior to
developing your project.

Design Option Description

Adding Custom Actions to Oracle's
AutoVue Client

This option is used to customize the existing
AutoVue client's menus and toolbars. For an
example, refer to "Custom VueAction".

Building a Custom Application/Applet This option allows you to build an
application/applet that makes calls to the
VueBean package. You can leverage our viewing
and markup technology while maintaining
complete control of the behavior of the
application/applet. For an example, refer to
"Building an AutoVue API Application".

Modifying the Behavior of Oracle's
AutoVue Client Through JavaScript

This option is used to build additional menu and
toolbars outside of the AutoVue client's interface.
You can design a standalone application or a Java
applet in a Web page. For an example, refer to
"Implementing Functions from AutoVue in a
Second Applet".

3

AutoVue API Packages 3-1

3AutoVue API Packages

The following sections provide an overview of common classes and interfaces that are
used to create a solution based on the AutoVue API. For more information on
classes/packages, refer to the VueBean Javadocs.

VueBean Package
The VueBean component is central to the AutoVue client architecture. An application
can embed the VueBean component and use its API to provide comprehensive support
for file viewing, markup, real-time collaboration, and so on. The following diagram
provides a graphical overview of how the VueBean can be used when developing your
own application/applet.

Note: It is possible to have multiple instances of the VueBean class. For example, when
AutoVue is in Compare mode there are three instances of the VueBean class.

A typical VueBean usage scenario is as follows:

1. Create a VueBean Object.

2. Create a server control or use the default one obtained from the VueBean.

3. Use the server control to connect to the server and open a session on it.

4. View a file by invoking the VueBean.setFile(DocID) method.

VueBean Package

3-2 Oracle AutoVue/AutoVue API Programmer's Guide

The following file types are supported by the VueBean:

■ Vector files (2D and 3D)

■ Raster files

■ Document files (MS Word, and so on)

■ Spreadsheet files

■ Archive files

The file type can be queried through the VueBean.getFileType()method and file
information can be retrieved through the VueBean.getFileInfo() method.

You may have to convert a file to another file type. To do so, use the Vuebean.convert()
method.

In its various modes, such as viewing and markup, the VueBean manages the
representation of a file including the management of overlays, layers, and external
references to other files or resources upon which the file depends. Use the
VueBean.getResourceInfoState() method to query for resources that are attached to a
file.

To search for a particular string in the file use the VueBean.search(PAN_CtlSearchInfo)
method. The following is an example of how to build the PAN_CtlSearchInfoobject.

// Construct the search object with arguments (Search String, Search Multiple
// Occurrences, Search Downwards, Wrapped Search, Match Case, Whole Word),
// in this example we search for the word "line".
PAN_CtlSearchInfo searchInfo = new PAN_CtlSearchInfo("line", true, true,
 true, false, true);
Note: Since the VueBean is only a client-side component, the connection to the
AutoVue server must be established before any operation can be performed on the
VueBean. Refer to "Server Control" for more information.

Event Package
com.cimmetry.vuebean.event

For VueBean-specific events, the event delegation model of the VueBean is slightly
different from the standard Java one. Listeners such as VueViewListener,
VueFileListener, VueMarkupListener, or VueStateListener should register to the
VueBean's VueEventBroadcaster object instead of to the VueBean itself.

For example: vueBean.getVueEventBroadcaster().addFileListener(listener).

This package provides interfaces and classes for VueBean event broadcasting. Every
VueBean object has an event broadcaster. Depending on the operation type, the
broadcaster notifies listeners using an instance of VueEvent or VueModelEvent. The
following types of events are supported:

■ File events

■ View events

■ Markup events

■ State events

■ Model events

Every event type has a corresponding event listener interface which is registered to the
broadcaster. Objects that are responsible for handling of events should implement one
or more of the listener interfaces.

VueBean Package

AutoVue API Packages 3-3

The following code sample defines and registers an event handler:

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event.*;
.
.
.
final VueBean vueBean = getVueBean();// Get the valid active VueBean
if (vueBean != null) {
 VueFileListener eventHandler = new VueFileListener() {
 public void onFileEvent(VueEvent ev) {
 switch (ev.getType()) {
 case VueEvent.ONSETFILE:
 System.out.println("Set file: " + vueBean.getFile());
 break;
 case VueEvent.ONSETPAGE:
 System.out.println("Set page: " + vueBean.getPage());
 break;
 }
 }
 };
 vueBean.getVueEventBroadcaster().addFileListener(eventHandler);
}
.
.
.

VueEvent
com.cimmetry.vuebean.event.VueEvent

VueEvent object encapsulates information for all notifications sent by VueBean and is
generated for the VueFileListener, VueViewListener, VueMarkupListener and
VueStateListener interfaces. The event type is used to differentiate between a view
event, file event, markup event or state event.

VueModelEvent
com.cimmetry.vuebean.event.VueModelEvent

The VueModelEvent class handles all notifications for model-related events such as
entity attributes, 3D transformation, and so on. It is generated for objects
implementing VueModelListener interface.

VueEventBroadcaster
com.cimmetry.vuebean.event.VueEventBroadcaster

VueEventBroadcaster is used to manage event delegation model for the VueBean. Each
listener has to register to a VueEventBroadcaster to be notified of events in the
VueBean. By design, each VueBean owns its own VueEventBroadcaster. However, you
may find it useful to use only one VueEventBroadcaster for all beans by using the
VueBean.setVueEventBroadcaster method.

VueFileListener
com.cimmetry.vuebean.event.VueFileListener

Objects implementing this interface listen for file event notifications (such as setting
file, setting page, and so on).

VueBean Package

3-4 Oracle AutoVue/AutoVue API Programmer's Guide

VueMarkupListener
com.cimmetry.vuebean.event.VueMarkupListener

Objects implementing this interface listen for markup event notifications (such as
entering or exiting markup mode).

VueViewListener
com.cimmetry.vuebean.event.VueViewListener

Objects implementing this interface listen for view event notifications (such as zoom,
begin and end paint, and so on).

VueStateListener
com.cimmetry.vuebean.event.VueStateListener

Objects implementing this interface listen for state event notifications (such as server
error, file error, and so on).

VueModelListener
com.cimmetry.vuebean.event.VueModelListener

Objects implementing this interface listen for model event notifications (such as model
attribute, selection, transformation changes, and so on).

MarkupBean Package
com.cimmetry.markupbean

The top-level class for the com.cimmetry.markupbean package is the MarkupBean
class. MarkupBean represents the Markup functionality in the VueBean API. Each
VueBean instance can contain only one MarkupBean instance, represented by a private
member variable. Through the MarkupBean class, you can add/modify/remove
Markup Files, Markup Layers, and Markup Entities, as well as open and save Markup
Files.

The following diagram displays how the architecture of a Markup is structured into
four separate levels: "Markup", "MarkupLayer", "MarkupEntity", and
"MarkupEntitySpec".

VueBean Package

AutoVue API Packages 3-5

Markup
com.cimmetry.markupbean.Markup

This interface represents an individual Markup file. The key functionalities are as
follows:

■ Get/set information regarding the Markup files, such as:

■ Name

■ Visibility

■ Whether Markup is modified

■ Whether Markup is read-only

■ Get information regarding the base file

■ Get the layers in the Markup

MarkupLayer
com.cimmetry.markupbean.MarkupLayer

This interface represents an individual Markup layer. The key functionalities are as
follows:

■ Get/set information regarding the specific layer, such as:

■ Name

■ Color

■ Visibility

■ Default line type and width

■ Get the entities in the Markup layer

MarkupEntity
com.cimmetry.markupbean.MarkupEntity

This interface represents an individual Markup entity. The key functionalities are as
follows:

■ Name

■ Author

■ Date modified

■ Color

■ Line type and width

■ Tooltip text

■ Visibility

■ Selection state

■ Get children entities of the specific entity

■ Perform actions when user double-clicks on entity

Server Control

3-6 Oracle AutoVue/AutoVue API Programmer's Guide

MarkupEntitySpec
com.cimmetry.markupbean.MarkupEntitySpec

This class represents an entity's specification. Each entity has its own specification
class that is derived from this class defines the attributes specific to that entity's
context.

For example, the specification for a rectangle entity includes attributes for the XY
coordinates of all four corners, while the specification for a text entity includes
attributes for the contained text as well as its alignment.

Server Control
com.cimmetry.vueconnection.ServerControl

The ServerControl class handles the server connection object and the user session.
Prior to using the VueBean, you must first set its ServerControl properties, connect to
the server via the connect() method, and then open a session via the sessionOpen()
method.

For example:

import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;
…
VueBean bean = new VueBean();
ServerControl control = bean.getServerControl();
try {
 control.setHost(<SERVER URL>);
 control.connect();
 control.setUser("scarlati");
 control.sessionOpen();
} catch (Exception e) {
 System.out.println("Failed to connect to JVueServer.");
}
…
Note: Set the server URL to the VueServlet URL.

For example, http://<HostName>:5098/servlet/vueservlet

VueAction Package
com.cimmetry.vueaction

This package provides a hierarchy of classes implementing the AutoVue action API. It
can be used to add graphical user interface (GUI) elements to different contexts (such
as menu bar, toolbar, status bar, and so on). For example, when a menu option is
selected in the GUI, a VueAction is triggered.

To add a new action to the AutoVue client, create a new action class by extending
VueAction.

Use the methods in this package to:

■ Specify resources for an action. For example, menu item text, an icon, tooltip text,
and so on.

■ Specify which resource bundle (a properties file with resource mappings) to search
in for the action's resources.

VueAction Package

AutoVue API Packages 3-7

■ Specify sub-actions (for example, Zoom In, Zoom Out, Zoom Previous, and so on)
for the action if it can perform more than one function.

■ Receive a message signifying that the action should be performed. If the action has
sub-actions, the sub-action to perform is specified.

■ Specify properties of the views of the action or its sub-actions that appear in the
GUI in the menu bars, toolbars, and popup menus. For example, whether the view
can be selected (behaves as a checkbox) and/or whether it is enabled.

■ Specify groups of sub-actions (if the action includes sub-actions) in which selection
is exclusive (that is, in which only one sub-action can be selected at a time).

AbstractVueAction
com.cimmetry.vueaction.AbstractVueAction

The abstract class AbstractVueAction is the super class of all action classes. All actions
performed on the session must be derived from this class or a descendent of this class.

VueAction
com.cimmetry.vueaction.VueAction

VueAction is an abstract class that extends VueActionMultiMenu. It provides a simple
yet powerful interface for creating actions.

To create a new action class, you must extend this class. There are two ways to do this
depending on whether your action performs a single function or multiple functions.
The following sections describe both scenarios.

Create an action that performs a single function
1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.Note: Since
your action performs only one function, the super constructor takes the two String
arguments: resource key and resource bundle. The resource bundle identifies the
set of text files (one for each locale your action supports) containing the resources
identified by the resource key for your action.

3. Implement a perform() method to override the one in VueAction.Note: This
method is called when your action has been fired. In this method, enter your
action's code.

4. Implement event handlers onFileEvent and onViewEvent to ensure that your
action is enabled or disabled when appropriate. For example, if no base file has
been loaded yet, your action will be disabled. However, once a file has been
reloaded, your action must be enabled.

5. Create one or more resource files (one resource file per language your action
supports) containing the resource keys and their values needed by your action.
Together with any icon files used by your action, these files are referred to as a
resource bundle. For an example of a resource file, refer to VueFrame_en.properties
file.

6. Create a copy of AutoVue's .gui file and insert the name of your new action in the
appropriate location.

To view an example of implementing an action that performs a single function, refer to
"Action that Performs a Single Function".

VueAction Package

3-8 Oracle AutoVue/AutoVue API Programmer's Guide

Create an action that performs multiple functions
1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.Note: Since
your action performs multiple functions, the super constructor takes one String
argument: the resource bundle name. The resource bundle name indentifies the set
of text files (one for each language your action supports) containing the resources
for your action.

3. After you call the super constructor, call defineSubAction() to define each
sub-action your action can perform.Note: In each case, specify the name by which
you want to refer to the sub-action and its resource key. The resource key identifies
where to find the resources for your action (for example, menu item text, icon,
tooltip text and so on) in your resource bundle. Optionally, you can call
defineExclusiveGroup() to define a subset of your sub-actions that form an
exclusive group. That is, sub-actions that are selectable where only one can be
selected at a time.

4. Implement a performSubAction(String) method to override the one in
VueAction.Note: This method is called when your action's sub-action has been
fired. The method is passed the name of the sub-action fired, so that you will know
which one to perform. In this method, enter your sub-action's code.

5. Implement event handlers onFileEvent and onViewEvent to ensure that your
sub-actions are enabled or disabled when appropriate. For example, if no base file
has been loaded, your sub-action will be disabled. However, once a file has been
reloaded, your sub-actions must be enabled.

6. Create one or more resource files (one resource file per language that your action
supports) containing the keys and values needed by your action.Note: Together
with any icon files used by your action, these files are referred to as a resource
bundle.

7. Create a copy of AutoVue's .gui file and insert the name of your new action in the
appropriate location. You must also specify the appropriate sub-actions.

To view an example of implementing an action that performs multiple functions, refer
to "Action that Performs Multiple Functions".

4

Sample Cases 4-1

4Sample Cases

The following sections provide information on typical use cases you may come upon
when creating an AutoVue API applet/application or adding enhanced functionality
to the AutoVue client. Refer to the VueBean JavaDocs for more information.

Building an AutoVue API Application
A good starting point with the AutoVue API is to create an application that opens and
displays a file. The following example describes how to

This section provides detailed steps for creating a file open application using the
AutoVue API.

1. Import required packages.

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import com.cimmetry.util.Messages;

import com.cimmetry.core.*;
import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;

2. Create a Java class, ApplicationSample, that can be run as a stand-alone
application, and declare all external parameters and internal data members.

public class ApplicationSample {

Important: When executing a task in sequence you must make sure
the previous task is completed before starting a new one. Since the
INIT method in an applet is not guaranteed to be executed on the
same thread as the rest of the queries, you should implement a
synchronization check. The synchronization check should notify that
the session has opened (onSessionOpen), verify that a session is
currently open (isSessionOpen) as well as whether a session was
exited or failed to connect.

Note: Throughout this document, m_vueBean is used as a valid
active VueBean object and m_JVue as a valid JVue applet object. This is
done assuming that the methods or segments of code that use objects
have access to a class which owns them.

Building an AutoVue API Application

Sample Cases 4-2

 private String m_host = "http://<HostName>:5098/servlet/vueservlet";
 private String m_user = "guest";
 private String m_fileName = null;
 private String m_verbose = null;
 private String m_format = "AUTO";
 // Internal data members
 private VueBean m_vueBean = null;
 private ServerControl m_control = null;
 private static JFrame m_frame = null;
 private JMenu m_fileMenu = null;
}

3. Create stand-alone application support.

public static void main(final String args[]) {
 ApplicationSample app = new ApplicationSample();
 app.init(args);
}
public void init(final String[] args) {
 switch (args.length) {
 case 4:
 m_verbose = args[3];
 case 3:
 m_fileName = args[2];
 case 2:
 m_user = args[1];
 case 1:
 m_host = args[0];
 default:
 break;
 }
 init();
}

4. Initialize the application.

public void init() {
 // Setup verbosity
 if (m_verbose != null && m_verbose.length() > 0) {
 Messages.setVerbosity(m_verbose);
 }
…

5. Establish a connection with the server.

m_control = new ServerControl();
try {
 m_control.setHost(m_host);
 m_control.connect();
} catch (Exception e) {
 System.out.println("Unable to connect to:"+m_host);
 e.printStackTrace();
 return;
}

6. Open the session.

try {

Note: The init()method continues until step 13.

Building an AutoVue API Application

Sample Cases 4-3

 m_control.setUser(m_user);
 m_control.sessionOpen();
} catch (Exception e) {
 System.out.println("Unable to open session for " + m_user);
 e.printStackTrace();
 return;
}

7. Initialize the frame.

m_frame = new JFrame("VueBean Sample");
m_frame.setBounds(100, 100, 640, 480);
m_frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 destroy();
 }
});

8. Set the menus and actions.

setMenuBar();

9. Create the bean.

m_vueBean = new VueBean(m_format);
m_vueBean.setServerControl(m_control);
m_vueBean.setBackground(Color.lightGray);

10. Set up the viewer as a model event listener.

m_vueBean.setVueEventBroadcaster(m_vueBean.getVueEventBroadcaster());

11. Add the VueBean to the frame.

m_frame.getContentPane().add(m_vueBean);

12. Display the frame.

m_frame.setVisible(true);

13. Show the file.

updateFile();
}// Closing bracket for init() method

14. Close the session.

public void destroy() {
 try {
 m_control.sessionClose();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 m_frame.setVisible(false);
 m_frame.dispose();
 System.exit(0);
}

15. Get the attached VueBean.

Note: This step marks the end of the init() method.

Building an AutoVue API Application

Sample Cases 4-4

public VueBean getVueBean() {
 return m_vueBean;
}

16. Get the attached frame.

public JFrame getFrame() {
 return m_frame;
}

17. Get the file menu.

protected JMenu getFileMenu() {
 return m_fileMenu;
}

18. Get the frame. The following method sets the applet's menubar to File Open, Print,
and Exit.

public void setMenuBar() {
 m_fileMenu = new JMenu("File");
 JMenuItem menuItem;
 // File open menu item
 menuItem = m_fileMenu.add(new JMenuItem("Open"));
 menuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showFile();
 }
 });
 // set the Applet's menu bar
 JMenuBar menu_bar = new JMenuBar();
 m_frame.setJMenuBar(menu_bar);
 menu_bar.add(m_fileMenu);
}

19. Load the file.

public void updateFile() {
 // Set the vuebean's file
 if (m_fileName != null && !m_fileName.equals("")) {
 m_vueBean.setFile(new DocID(m_fileName));
 m_vueBean.setBackground(Color.lightGray);
 }
}

20. Display the client-side (upload) File Open dialog and set the selected file in the
bean.

public void showFile() {
 FileDialog openDlg = new FileDialog(m_frame, "File Open", FileDialog.LOAD);
 openDlg.setVisible(true);
 m_fileName = "upload://"+openDlg.getDirectory() + openDlg.getFile();
 openDlg.dispose();
 updateFile();
}
}

Note: End of class ApplicationSample. In order to run the
application properly, an AutoVue server needs to be running on either
a local or remote host that is specified through command line
arguments. Refer to step 3 for the definition of each argument.

Implementing Functions from AutoVue in a Second Applet

Sample Cases 4-5

Implementing Functions from AutoVue in a Second Applet
When creating your own customized Java applets/applications based on AutoVue API
components, it is sometimes easier to implement pre-existing code from AutoVue.
Many AutoVue and VueBean methods can be easily called through JavaScript in your
HTML page by first getting a handle to the AutoVue object with the following
JavaScript call:

document.applets["JVue"]

However, some functionality may be difficult to implement directly through JavaScript
and must be written in Java. An efficient way to do this is through a separate Applet
that references the AutoVue applet. The steps are as follows:

1. Create your own Java class (for example, App2.java) that extends Applet.

2. Import the appropriate packages and classes (such as java.applet.Applet,
com.cimmetry.vuebean.VueBean, com.cimmetry.jvue.JVue, and so on).

3. Add the following two variables to your class:

private Applet m_applet;
private JVue m_jv;

4. Define an attach() method for your class and add the following two lines of code
to obtain a handle to the AutoVue (JVue) applet instance:

m_applet = getAppletContext().getApplet("JVue");
m_jv = (JVue)m_applet;

5. Compile your class (make sure to include jvue.jar in the classpath) and place your
Java class file in your CODEBASE location.

6. In your HTML page, declare your Applet as follows:

<APPLET
 NAME="App2"
 CODE="App2.class"
 ARCHIVE="jvue.jar,jogl.jar,gluegen-rt.jar"
 CODEBASE="http://<SERVERNAME>/jVue"
 HEIGHT="0%" WIDTH="0%"
 MAYSCRIPT>
</APPLET>
import java.awt.event.*;
You can either modify frmApplet.html in the AutoVue root directory or use it as a
template to create your own HTML page.

Note: You can now call AutoVue methods on the m_jv variable, and
can also obtain a handle to the VueBean instance with m_
jv.getActiveVueBean().

Note: If your custom applet has inner classes and generates
additional class files upon compilation, you should combine those
classes in a JAR file and set the JAR files as your second applet's
archive parameter.

Custom VueAction

Sample Cases 4-6

For example:

CODEBASE="http://localhost:80/jVue"

7. In your HTML page, initialize your new Applet in the onAppletInit() method for
the AutoVue Applet by adding the following line:

document.applets["App2"].attach();

This is the easiest way to initialize the second Applet in this particular example,
since the frmApplet.html page already contains the onAppletInit method.

Custom VueAction
This chapter presents examples implementing a custom VueAction().

Action that Performs a Single Function
The following example shows how to implement a custom action for AutoVue that
displays a dialog that lists all components of a drawing that are represented by
hotspots and that were double-clicked by the user.

For information on AutoVue’s hotspot capabilities, refer to the Oracle Augmented
Business Visualization (ABV) Developer’s Guide.

1. Import all required packages.

import java.awt.*;
import java.util.Vector;
import com.cimmetry.vuebean.*;

import com.cimmetry.vuebean.event.*;
import com.cimmetry.vueframe.*;
import com.cimmetry.vueframe.hotspot.*;
import com.cimmetry.core.*;
import com.cimmetry.dialogs.VueBasicDialog;
import com.cimmetry.vueaction.VueAction;
import com.cimmetry.gui.*;

2. Make your class extend VueAction.

public class PartListAction extends VueAction { …}
setViewListener(true);

3. In the constructor of your class, call the appropriate super constructor. Since this
action only performs a single function, a call to the super-constructor of VueAction
takes this action's resource key as well as its resource bundle name.

public PartListAction() {
 super("LIST_PARTS",RESOURCE_BUNDLE_NAME);

Note: Make sure to set the CODEBASE and parameter appropriately
based on your Web server or application server hosting the Applet.

Note: The following are segments of the source code of the
VueAction example to illustrate the essential steps of creating a
custom action, it may not compile if you just copy and paste the code
here. For the complete source code, refer to PartListAction.java.

Custom VueAction

Sample Cases 4-7

 setViewListener(true);
}

4. Implement a perform method for this action.

public void perform() {
 PartInfo[] parts = new PartInfo[m_cart.size()];
 m_cart.copyInto(parts);
 PartListDialog dialog = new PartListDialog(getFrame(), parts);
 dialog.show();

5. Implement the event handlers onFileEvent and onViewEvent to notify when a file
has changed and to update the user-interface.

public void onFileEvent(VueEvent e) {
switch (e.getEvent()) {
 case VueEvent.ONPAGELOADED:
 setEnabledByCurrentState();
 break;
 }
 }
public void onViewEvent(VueEvent e) {
 switch(e.getEvent()) {
 case VueEvent.ONLINKCLICKED:
Object[] params = (Object[]) e.getParameter();
 MouseEvent me = (MouseEvent) params[0];
 if (me.getClickCount() == 2) {
Object link = params[1];
if (link instanceof HotSpot) {
HotSpot hotspot = (HotSpot) link;
 PartInfo part = getPartInfo(hotspot);
 m_cart.addElement(part);
 }
 }
 break;
 default:
 super.onViewEvent(e);
 break;
 }
}

6. The dialog that lists all components of a drawing extends VueBasicDialog. You
must implement your own constructor that calls the super-constructor and
over-rides buildDialog() and buttonAction(int).

public static class PartListDialog
extends
 VueBasicDialog
implements
 ActionListener (…)
protected void buildDialog() {

super.buildDialog();
…
}

Note: The resource bundle name here is the common part of resource
bundle files for different languages. The actual name of a resource
bundle file should include the language suffix and file extension. For
example, PartListAction_en.properties is the resource bundle file for
English.

Custom VueAction

Sample Cases 4-8

protected void buttonAction(int index){…}
7. You must define a model for the table that represents the displayed product parts

list.

public static class PartListModel implements CTableModel { …}

8. Close the PartListDialog method.

9. Get a PartInfo associated with a given hotspot.

private PartInfo getPartInfo (HotSpot hotspot) {
 return new PartInfo(hotspot.getDefinitionKey(),
 hotspot.getHotSpotKey(),
 hotspot.getProperty(HotSpot.PROPERTY_DESCRIPTION));
)

Action that Performs Multiple Functions
The following example shows how to implement a custom action for AutoVue that
performs multiple tasks. The custom action consists of several related sub-actions that
access information about parts of a model. One sub-action permits the user to order a
part, another permits the user to display part information, and another sub-action
displays a list of all the model's parts.

Note: The following are segments of the source code of the VueAction example to
illustrate the essential steps of creating a custom action, it may not compile if you just
copy and paste the code here. For the complete source code, refer to
PartCatalogueAction.java.

1. Make your class extend VueAction.

public class PartCatalogueAction extends VueAction {
 private static final String RESOURCE_BUNDLE_NAME ="/PartCatalogueAction";

 // Names of the sub-actions used in *.gui file
 private static final String ORDER_SUBACTION = "Order";
 private static final String LIST_PARTS_SUBACTION = "ListParts";
 private static final String SHOW_INFO_SUBACTION = "ShowInfo";
 …
}

2. In the constructor of your class, call the appropriate super constructor.

public PartCatalogueAction() {
 super(RESOURCE_BUNDLE_NAME);
 defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");

3. Call defineSubAction to define each sub-action your action can perform.

defineSubAction(ORDER_SUBACTION,"ORDER_PART");
defineSubAction(LIST_PARTS_SUBACTION,"LIST_PARTS");
defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");
}

4. Implement a performSubAction(String) method to override the one in VueAction.

public void performSubAction(String subActionName) {

Note: The resource bundle name here is the common part of resource
bundle files for different languages. The actual name of a resource
bundle file should include the language suffix and file extension. For
example, PartCatalogueAction_en.properties is the resource bundle
file for English.

Custom VueAction

Sample Cases 4-9

 if (subActionName.equals(ORDER_SUBACTION)) {
 //Code for performing the "Order" subaction
 …
} else if (subActionName.equals(LIST_PARTS_SUBACTION)) {
 //Code for performing the "List Parts" subaction
 …
 }
…
}

5. Implement the event handlers onFileEvent and onViewEvent to ensure that your
sub-actions are enabled or disabled when appropriate.

public void onFileEvent(VueEvent e) {
switch (e.getEvent()) {
 case VueEvent.ONSETFILE:
 //Code for handling ONSETFILE event
 …
 case VueEvent.ONPAGELOADED:
 //Code for handling ONPAGELOADED event
 setEnabledByCurrentState();
 …
 break;
 }
 }
public void onViewEvent(VueEvent e) {
 switch(e.getEvent()) {
 case VueEvent.ONVIEWCHANGED:
 //Code for handling ONVIEWCHANGED event
 setEnabledByCurrentState();
 …
 break;
 case VueEvent.ONOPTIONSCHANGED:
 //Code for handling ONOPTIONSCHANGED event
 …
 break;
 }
 }

6. Create one or more resource files, one per language your action supports,
containing the keys and values needed by your action. For example:

…
FILE_MARKUP_NEW_MARKUP=&New Markup, 32_new_markup_red.png, New Markup
FILE_MARKUP_OPEN=&Open..., 57_markup_red.png, Open Markup(s)
FILE_MARKUP_SMALL= &Markup, 57_markup_red_small.png, Markup
FILE_MOCKUP=&Import File for Mockup..., 115_dmu.png, Import File for Mockup
FILE_MRU=Recent Files
FILE_NOTFOUND=File not found.
FILE_NOTSUPPORTED=This file format is not supported by your server.
FILE_NOTUPLOADED=Failed to upload file.
FILE_OPEN=&Open...\\tCTrL+O, 59_open.png, Open File
FILE_OPEN_SERVER=Open from &Server..., , Open a file from the server
…
Similarly, in our resource bundle file for English language PartCatalogueAction_
en.properties, it should contain the resource keys for the PartCatalogueAction
shown in the following:

…
ORDER_PART = &Order Part, order_part.png, Order a part
LIST_PARTS = &List Parts, list_parts.png, List product parts
SHOW_INFO_SUBACTION = &Show Part Info, show_info.png, Show part information
…

Markups

Sample Cases 4-10

7. Make a copy of AutoVue's default.gui file located in the <AutoVue Installation
Root>\bin directory, and insert the name of your new action in the appropriate
locations of your GUI file. Note that for an action that performs multiple tasks,
you must also specify the appropriate sub-actions.Note: For information on how
PartCatalogueAction sub-actions are inserted into a menubar, toolbar, and custom
pop-up menu, refer to default.gui and the custom.gui file located in the
"<AutoVue Installation Root>\examples\VueActionSample\ directory.

8. To allow the custom action to take effect, you may need to create a JAR file with
your custom VueAction classes and all resource files they depend on. For example,
for the resource bundle files for different languages and icon files, if any, place
your JAR file under AutoVue's bin directory or its web root directory and include
your JAR file in the classpath of the stand-alone JVue application or ARCHIVE list
of the JVue applet.

9. You must specify the name of the modified GUI file through Applet or Command
line parameters. For more information, refer to the "Customizing the GUI" section
of the Installation and Configuration Guide.

Directly Invoking VueActions
It is possible to develop your own customized user interface in an HTML page that
incorporates AutoVue functionality. To do so, you must call invokeAction() of the
com.cimmetry.jvue.JVue applet from the HTML page. This call to the action can be
done purely through JavaScript.

Markups
The following show some ways to execute common Markup actions.

Note: Various MarkupBean functionalities (and various functionalities throughout the
AutoVue API) require the use of the Property class. This class is used to define various
property hierarchies for other classes in the API.

Entering Markup Mode
VueBean.setMarkupModeEnable(true)
import com.cimmetry.gui.*;

Checks whether the MarkupBean member is null, and if so:

■ Instantiates a new MarkupBean object

■ Gets the markup settings from the user's profile

■ Sets the markup-specific mouse listeners

■ Points the VueBean's MarkupBean member to the new instance

Note: Each resource key has three entries separated by a comma ",".
The first entry (for example, &Order Part) is the text displayed on the
GUI item (such as a menu item or toolbar button) and the ampersand
"&" defines a shortcut key. The second entry (for example, order_
part.png) is the file of the icon displayed on its GUI item. The third
entry is the tooltip text for the GUI item. The second and third entries
are optional. You should get the icon files ready if needed and add
them to the JAR file for your custom action.

Markups

Sample Cases 4-11

■ Broadcasts VueEvent.ONENTERMARKUPMODE

Checking Whether Markup Mode is Enabled
VueBean.isMarkupModeEnabled()

Checks whether the MarkupBean member is null.

Exiting Markup Mode
VueBean.setMarkupModeEnabled(false)

Checks whether the MarkupBean member is null, and if not:

■ Sets the MarkupBean member to null

■ Removes markup-specific mouse listeners

■ Saves markup settings into the user's profile

■ Broadcasts VueEvent.ONEXITMARKUPMODE

Adding an Entity to an Active Markup/Layer
MarkupBean.setMarkupEntityClass(<class name of desired markup entity>)
MarkupBean.setActionMode(MarkupBean.ACTION_MODE_ADD)

Adds a new markup entity to the active layer in an active Markup (based on the class
name provided) through user input from the GUI. To programmatically add a markup
entity, you must call: MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

Enumerating Entities
MarkupLayer.getEntities()
or

MarkupBean.getMarkupEntities(MarkupLayer layer)

Returns an array of MarkupEntity objects in a markup layer.

Getting Entity Specification of a Given Entity
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent)

You must pass in the specific entity for MarkupBean to return its specification.

Changing Specification of an Existing Entity Programmatically
MarkupBean.exchangeMarkupEntity(MarkupEntity a, MarkupEntity b)

Allows you to dynamically change the properties of an existing entity. That is, it
replaces markup entity a with markup entity b. Some properties can be directly
changed via the following set methods of MarkupEntitySpec inherited from the
MarkupGraphicSpec parent class:

■ setColor

■ setFillColor

■ setFilled

Markups

Sample Cases 4-12

■ setFilltype

■ setFont

■ setLineType

■ setLineWidth

For other properties, such as the entity position, entity size, entity text content, and so
on, there are no set methods directly on the specification. As a result, you must do the
following:

1. Create a new specification instance (with the new properties).

2. Create a new entity instance (with the new specification).

3. Use exchangeMarkupEntity to replace the existing entity.

4. Make a call to MarkupBean.repaint().

Adding a Text Box Entity
The following code shows how to add a text box entity programmatically.

import com.cimmetry.markupbean.*;
.
.
.
public void addTextBox(String text){

 m_vueBean.setMarkupModeEnabled(true);

CTextPane textPane = GUIFactory.createTextPane();
 textPane.setText(text);
 byte[] textRTF = textPane.getRTF();
 PAN_CtlRange rect = new PAN_CtlRange(m_vueBean.getViewExtents());
 rect.scale(0.2);
 TextBoxSpec spec = new
 TextBoxSpec(m_vueBean.getMarkupBean().getMarkupEntitySpec(),
 rect.min, textRTF, rect.max,TextBoxSpec.MRK_ALIGN_BOTTOMCENTER);
 m_vueBean.getMarkupBean().setMarkupEntityClass(spec.getEntityClassName());
 m_vueBean.getMarkupBean().addMarkupEntity(spec);
}

Open Existing Markup
MarkupBean.readMarkup(InputStream is)
.

InputStream can be relative to the client (for example, a locally-saved Markup),
relative to the AutoVue server (for example, managed by AutoVue's markups.map file)
or from a DMS/PLM/ERP.

To read a Markup from the AutoVue server, you first must get the InputStream by
reading the Markup Property from the VueBean, and then choose a child property (that
represents a Markup file) you want to read into the stream. The following code
illustrates how to create a markup, save it, and then read it into the MarkupBean.

import com.cimmetry.markupbean.*;
.
.
Property[] name = {new Property(Property.PROP_DOC_NAME, <your Markup name>)};
Property prop = new Property(Property.PROP_MARKUP, name);

Markups

Sample Cases 4-13

ByteArrayOutputStream os = new ByteArrayOutputStream();
m_markupBean.writeMarkup(os);
m_vueBean.writeMarkup(prop, os);
Property masterMarkup = m_vueBean.getMarkupProperty();
Property[] listMarkups = masterMarkup.getChildrenWithName(Property.PROP_MARKUP);
Property aMarkup = listMarkup[0];
InputStream is = m_vueBean.readMarkup(aMarkup);
m_markupBean.readMarkup(is);
…

Saving Markups to a DMS/PLM
Note: This example is not applicable if you are building an ISDK-based application.

The following example uses the same concept as saving a Markup back to the
AutoVue server; you must set the appropriate Property and build the OutPutStream. In
order to build the Markup property, you need to first read the CSI_Markups property
so that you can retrieve the values that the user sets in the Markup Save dialog.

private void saveMarkupToDMS() {
 // Gets the master markup property for the current file, that is,
 // the property containing the GUI and the markup list
 Property propMaster = m_vueBean.getMarkupProperty();

 // If none, the an output appears stating "Could not get master markup property"
 if (propMaster == null) {
 System.out.println("Could not get master markup property!");
 return;
 } else {
 // Get the GUI child property under master markup property
 Property[] listGuiProp =propMaster.getChildrenWithName(Property.PROP_GUI);
 if (listGuiProp == null || listGuiProp.length != 1) {
 System.out.println("No valid GUI property!");
 return;
 }
 Property propGui = listGuiProp[0];
 // Get the user field (Edit) child property under GUI property
 Property[] listEditProp =propGui.getChildrenWithName(Property.PROP_GUI_
 EDIT);
 if (listEditProp == null || listEditProp.length != 1) {
 System.out.println("No valid GUI edit property!");
 return;
 }
 Property propGuiEdit = listEditProp[0];
 // Get the list of user fields from save dialog all children items under GUI
 // edit property
 Property [] itemsEdit = propGuiEdit.getChildren();
 // ToDo: Use the list of edit items (GUI element) to construct a
 // save dialog to get user input for properties under PROP_GUI_EDIT.
 // Assume the input for attribute "CSI_DocName" we got from the dialog
 // is "myMarkup" and the input for attribute "CSI_MarkupType" is
 // "Normal", now the following code using the inputs to construct
 // the markup property contains these two attributes. In reality
 // there can be more than two attributes.
 Property [] listProp = {
 new Property("CSI_DocName", "myMarkup"),
 new Property("CSI_MarkupType", "Normal")
 };
 // Create a Markup property with the specified name & type properties
 Property propMarkup = new Property(Property.PROP_MARKUP, listProp);

Converting Files

Sample Cases 4-14

 // Save the Markup
 try {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 m_vueBean.getMarkupBean().writeMarkup(os);
 m_vueBean.writeMarkup(propMarkup, os);
 } catch (MarkupIOException e) {
 System.out.println("Markup IO Exception!");
 }
 }
}

Adding a Markup Listener to Your Application
MarkupBean.getMarkupBroadcaster().addMarkupEventListener(MarkupEventListener mel);
import java.awt.*;

A Markup listener listens for Markup events related to creating/saving/deleting
Markups, Markup entities, Markup file information, fonts, Markup status, and so on.
Note that you must implement the
com.cimmetry.MarkupBean.event.MarkupEventListener interface (thereby
implementing the onMarkupEvent method).

Converting Files
The following sections discuss how to execute common Conversion actions such as
making a call to convert, converting an image to a JPEG using a custom conversion,
and converting a vector file to a PDF. In some cases, there are additional methods to
achieve the same functionality. Refer to the VueBean Javadocs for more information.

The class hierarchy for conversion is as follows:

Calling to Convert
com.cimmetry.vuebean.VueBean.convert(ConvertOptions opts)
or
com.cimmetry.jvue.JVue.convertFile(ConvertOptions opts)

Once the convert options are defined, you must call one of the methods to convert.

Note: The classes represent the format which you are converting a
file to. For example, if you are converting to a vector format, you
should define a VectorConvertOptions and pass it into the conversion
method.

Converting Files

Sample Cases 4-15

Converting to JPEG (Custom Conversion)
To convert an image to a JPEG, you must use the encode() method that Java provides
as part of the com.sun.image.coded.jpeg.JPEGImageEncoder interface. This method
encodes buffers of the image data in JPEG data streams. To use this interface, you must
provide the image data in raster format or a BufferedImage. The following example
illustrates how to use this interface with the AutoVue API:

import java.io.*;
import java.awt.image.*
import com.cimmetry.core.*;
import com.sun.image.codec.jpeg.*;
…

double scaling=0.5; BufferedImage bi = new BufferedImage((int)(m_
vueBean.getWidth()*scaling), (int)(m_vueBean.getHeight()*scaling),
BufferedImage.TYPE_INT_RGB);

//Create or get Graphics and RenderOptions object here
Graphics2D g = bi.createGraphics();
RenderOptions optsRender = new RenderOptions();
//TODO: Initialize the Graphics object and RenderOptions object properly such
//as setting the source and destination.
try {
 m_vueBean.renderOntoGraphics(g,optsRender);
 FileOutputStream out = new FileOutputStream("c:\\temp\\my.jpeg");
 JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
 JPEGEncodeParam param = encoder.getDefaultJPEGEncodeParam(bi);
 //TODO: Use the JPEGEncodeParam Interface to set the encoder parameters.
 encoder.encode(bi, param);
 out.flush();
 out.close();
} catch (Exception e) {
 System.out.println("Exception while converting to JPEG ");
 return;
}
…

Converting to PDF
To convert a vector file to a PDF you must perform the following steps:

■ Create new VectorConvertOptions() object

■ Set all appropriate convert options

■ Call VueBean.convert and pass in the convert options

The following convertToPDF() method converts a vector file to a PDF.

public void convertToPDF() {
}
 VectorConvertOptions opts = new VectorConvertOptions();

 opts.setStepsPerInch(1);
 PAN_CtlFileInfo fi = m_vueBean.getFileInfo();

Note: When making a call from the VueBean you must call
VueBean.convert. When making a call from the AutoVue applet layer,
you must call JVue.convertFile.

Monitoring Event Notifications

Sample Cases 4-16

 PAN_CtlRange ps = m_vueBean.getPageSizeEx();

 if (fi.getType() == fi.PAN_DocumentFile) {
 ps = fi.getPageSize();

 opts.setInputRange(ps);
 opts.setArea(ConvertOptions2D.AREA_EXTENTS);
 opts.setScaleFactor(100);
 opts.setScaleType(ConvertOptions2D.TYPE_SCALE);
 opts.setWidth(Math.abs(ps.width()));
 opts.setHeight(Math.abs(ps.height()));
 opts.setUnits(Constants.UNITS_INCH);
 opts.setPages(ConvertOptions2D.PAGES_ALL);
 opts.setFromPage(1);
 opts.setToPage(fi.getPagesNumber());
 opts.setFormat("PCVC_PDF");
 opts.setSubFormatID(0);
 opts.setFileName("c:\\output.pdf");

 //Uploads all currently loaded markups to the AutoVue server
 Property[] p = m_ vueBean.uploadMarkups();

 opts.setProperties(p);
 m_ vueBean.convert(opts);
}

Printing a File to 11x17 Paper
The following code prints a file to 11x17 paper size using the
com.cimmerty.common.PrintProperties and com.cimmetry.commonPrintOptions
classes.

import com.cimmetry.common.PrintProperties;
import com.cimmetry.common.PrintOptions;
public void printFile() {
 PrintProperties paramPrintProperties = new PrintProperties();
 PrintOptions po = new PrintOptions();
 po.setPrinter("AutoVue Document Converter");
 po.setPaperSize(po.PAPER_11X17);
 paramPrintProperties.setOptions(po);
 // The second parameter will enable the bypass of the Windows dialog
 m_ JVue.printFile(paramPrintProperties, true);
}

Monitoring Event Notifications
com.cimmetry.vuebean.event
double width = pctlDim.getWidth();

If you have a requirement to programmatically execute specific file actions (such as
rotation, zooming, and so on) as soon as a file has finished loading, you must monitor
for the appropriate event notifications. If you do not check for file load completion,
you might call a file action too early which may lead to errors.

The VueBean includes a set of notifications known as VueEvents. You can set up a
listener to catch VueEvents, and catch the specific events that represent the completion
of a file loading. In order to catch file loading completion, you must use a file listener,
with the VueFileListener interface.

Retrieving the Dimension and Units of a File

Sample Cases 4-17

The steps are as follows:

1. Implement your own VueFileListener (for example, in a second applet).

2. In the onFileEvent method, check for occurrence of the
Vue.Event.ONPAGELOADED event.

3. Implement your code to be executed when these two events are detected in order.

4. Add your file listener to the VueBean.

5. Add this to your second applet. See "Implementing Functions from AutoVue in a
Second Applet".

Retrieving the Dimension and Units of a File
The following sample code shows how to get the dimensions and units of a file.

PAN_CtlDimensions pctlDim = m_vueBean.getFileInfo().getDimensions();
double height = pctlDim.getHeight();
double depth = pctlDim.getDepth();
int units = m_vueBean.getFileInfo().getInsertion().units;

5

FAQ 5-1

5FAQ

The following sections provide frequently asked questions regarding the AutoVue
API.

MarkupBean
Q: How do you determine the layer that a given entity is in?

A: Get the entity's spec and then get the layer from the spec.

Q: Do I have to implement the entire text editing dialog for the Text/Leader/Note
entity?

A: No. The text editing dialog is inherent to these entities.

Q: An entity spec is tied to a given entity. Why was it decided to have an entity spec
tied to the MarkupBean?

A: The entity spec on the MarkupBean was designed to be a reference to the most
recent spec settings. When you create a new Markup entity, it defaults much of its spec
attributes to the current spec in the MarkupBean. To retrieve the most recent spec
settings, you can call MarkupBean.getMarkupEntitySpec().

Q: What is the difference between MarkupGraphicSpec and MarkupEntitySpec? Why
are the specs such as ArcSpec subclass not derived directly from MarkupGraphicSpec?

A: The MarkupGraphicSpec is a top-level specification that manages visual attributes
such as color, fill type, and so on. The MarkupEntitySpec is a top-level spec that has
access to the overall structure such as the MarkupBean, Markups, layers, pages, and so
on.

Q: Can you work with MarkupBean independent of VueBean?

A: In theory it is possible to instantiate and work with MarkupBean without having a
VueBean. However, there are not many use cases or practical reasons where this would
be valuable.

Q: Are the Markup tree and Markup toolbars from the AutoVue Applet accessible if I
am building a custom application from VueBean/MarkupBean?

Note: The other two methods
MarkupBean.getMarkupEntitySpec(MarkupEntity ent) and
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent) are for
when you need to get the spec of a specific entity.

General

FAQ 5-2

A: No. The UI such as toolbars and Markup tree are part of the "JVue" class. If you
build your solution using the JVue class you can use or customize this UI. However, if
you build your solution directly from VueBean you need to implement your own UI.

Q: Is it possible to add AutoVue markup capabilities to a third-party application?

A: Yes. There are two primary ways to add markup entities using MarkupBean:

■ With user input, using MarkupBean.setActionMode(MarkupBean.ACTION_
MODE_ADD)

■ Programmatically, using MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

Printing
Q: What is the purpose of com.cimmetry.core.PrintInfo class?

A: It is used to pass information between the client and server.

General
Q: Can I perform file type-dependent operations?

A: Yes. You can do so by using the getFileInfo() method. The PAN_CtlFileInfo object
that is returned can be queried to determine file format (such as vector, raster,
spreadsheet, document, archive, or a database file).

Q: Can I delete server-side Markups when using the VueBean API?

A: No. It is not currently possible to programmatically delete server-managed
Markups (referenced in the markups.map file on the server) using the VueBean API.

6

Feedback 6-1

6Feedback

We appreciate your feedback, comments or suggestions. Contact us by e-mail or
telephone. Let us know what you think.

For any questions regarding a particular class or method, please contact Oracle
Customer Support or post your question to the My Oracle Support AutoVue
Community Web site. Customer Support can answer all questions related to specific
topics documented in the VueBean Javadocs.

General AutoVue Information

Oracle Customer Support

My Oracle Support AutoVue Community

Sales Inquiries

Telephone +1.514.905.8434 or 1.800.363.5805

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

Web Site http://www.oracle.com/support/index.html

Web Site https://communities.oracle.com/portal/server.pt

E-mail autovuesales_ww@oracle.com

	Contents
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Conventions
	1 Introduction
	2 Architecture of an AutoVue API Solution
	AutoVue API Design Options
	3 AutoVue API Packages

	VueBean Package
	1. Create a VueBean Object.
	2. Create a server control or use the default one obtained from the VueBean.
	3. Use the server control to connect to the server and open a session on it.
	4. View a file by invoking the VueBean.setFile(DocID) method.
	Event Package
	VueEvent
	VueModelEvent
	VueEventBroadcaster
	VueFileListener
	VueMarkupListener
	VueViewListener
	VueStateListener
	VueModelListener
	MarkupBean Package

	Markup
	MarkupLayer
	MarkupEntity
	MarkupEntitySpec

	Server Control
	VueAction Package
	AbstractVueAction
	VueAction
	Create an action that performs a single function
	1. Make sure your class extends VueAction.
	2. In the constructor of your class, call the appropriate super constructor.Note: Since your action performs only one function, ...
	3. Implement a perform() method to override the one in VueAction.Note: This method is called when your action has been fired. In this method, enter your action's code.
	4. Implement event handlers onFileEvent and onViewEvent to ensure that your action is enabled or disabled when appropriate. For ...
	5. Create one or more resource files (one resource file per language your action supports) containing the resource keys and thei...
	6. Create a copy of AutoVue's .gui file and insert the name of your new action in the appropriate location.

	Create an action that performs multiple functions
	1. Make sure your class extends VueAction.
	2. In the constructor of your class, call the appropriate super constructor.Note: Since your action performs multiple functions,...
	3. After you call the super constructor, call defineSubAction() to define each sub-action your action can perform.Note: In each ...
	4. Implement a performSubAction(String) method to override the one in VueAction.Note: This method is called when your action's s...
	5. Implement event handlers onFileEvent and onViewEvent to ensure that your sub-actions are enabled or disabled when appropriate...
	6. Create one or more resource files (one resource file per language that your action supports) containing the keys and values needed by your action.Note: Together with any icon files used by your action, these files are referred to as a resource bundle.
	7. Create a copy of AutoVue's .gui file and insert the name of your new action in the appropriate location. You must also specify the appropriate sub-actions.
	4 Sample Cases
	Important
	Note

	Building an AutoVue API Application
	1. Import required packages.
	2. Create a Java class, ApplicationSample, that can be run as a stand-alone application, and declare all external parameters and internal data members.
	3. Create stand-alone application support.
	4. Initialize the application.
	Note

	5. Establish a connection with the server.
	6. Open the session.
	7. Initialize the frame.
	8. Set the menus and actions.
	9. Create the bean.
	10. Set up the viewer as a model event listener.
	11. Add the VueBean to the frame.
	12. Display the frame.
	13. Show the file.
	Note

	14. Close the session.
	15. Get the attached VueBean.
	16. Get the attached frame.
	17. Get the file menu.
	18. Get the frame. The following method sets the applet's menubar to File Open, Print, and Exit.
	19. Load the file.
	20. Display the client-side (upload) File Open dialog and set the selected file in the bean.
	Note

	Implementing Functions from AutoVue in a Second Applet
	1. Create your own Java class (for example, App2.java) that extends Applet.
	2. Import the appropriate packages and classes (such as java.applet.Applet, com.cimmetry.vuebean.VueBean, com.cimmetry.jvue.JVue, and so on).
	3. Add the following two variables to your class:
	4. Define an attach() method for your class and add the following two lines of code to obtain a handle to the AutoVue (JVue) applet instance:
	Note

	5. Compile your class (make sure to include jvue.jar in the classpath) and place your Java class file in your CODEBASE location.
	Note

	6. In your HTML page, declare your Applet as follows:
	Note

	7. In your HTML page, initialize your new Applet in the onAppletInit() method for the AutoVue Applet by adding the following line:

	Custom VueAction
	Action that Performs a Single Function
	Note
	1. Import all required packages.
	2. Make your class extend VueAction.
	3. In the constructor of your class, call the appropriate super constructor. Since this action only performs a single function, a call to the super-constructor of VueAction takes this action's resource key as well as its resource bundle name.
	Note

	4. Implement a perform method for this action.
	5. Implement the event handlers onFileEvent and onViewEvent to notify when a file has changed and to update the user-interface.
	6. The dialog that lists all components of a drawing extends VueBasicDialog. You must implement your own constructor that calls the super-constructor and over-rides buildDialog() and buttonAction(int).
	7. You must define a model for the table that represents the displayed product parts list.
	8. Close the PartListDialog method.
	9. Get a PartInfo associated with a given hotspot.

	Action that Performs Multiple Functions
	1. Make your class extend VueAction.
	2. In the constructor of your class, call the appropriate super constructor.
	Note

	3. Call defineSubAction to define each sub-action your action can perform.
	4. Implement a performSubAction(String) method to override the one in VueAction.
	5. Implement the event handlers onFileEvent and onViewEvent to ensure that your sub-actions are enabled or disabled when appropriate.
	6. Create one or more resource files, one per language your action supports, containing the keys and values needed by your action. For example:
	Note

	7. Make a copy of AutoVue's default.gui file located in the <AutoVue Installation Root>\bin directory, and insert the name of yo...
	8. To allow the custom action to take effect, you may need to create a JAR file with your custom VueAction classes and all resou...
	9. You must specify the name of the modified GUI file through Applet or Command line parameters. For more information, refer to the "Customizing the GUI" section of the Installation and Configuration Guide.

	Directly Invoking VueActions
	Markups
	Entering Markup Mode
	Checking Whether Markup Mode is Enabled
	Exiting Markup Mode
	Adding an Entity to an Active Markup/Layer
	Enumerating Entities
	Getting Entity Specification of a Given Entity
	Changing Specification of an Existing Entity Programmatically
	1. Create a new specification instance (with the new properties).
	2. Create a new entity instance (with the new specification).
	3. Use exchangeMarkupEntity to replace the existing entity.
	4. Make a call to MarkupBean.repaint().

	Adding a Text Box Entity
	Open Existing Markup
	Saving Markups to a DMS/PLM
	Adding a Markup Listener to Your Application

	Converting Files
	Note
	Calling to Convert
	Note

	Converting to JPEG (Custom Conversion)
	Converting to PDF

	Printing a File to 11x17 Paper
	Monitoring Event Notifications
	1. Implement your own VueFileListener (for example, in a second applet).
	2. In the onFileEvent method, check for occurrence of the Vue.Event.ONPAGELOADED event.
	3. Implement your code to be executed when these two events are detected in order.
	4. Add your file listener to the VueBean.
	5. Add this to your second applet. See "Implementing Functions from AutoVue in a Second Applet".

	Retrieving the Dimension and Units of a File
	5 FAQ

	MarkupBean
	Note

	Printing
	General
	6 Feedback

	General AutoVue Information
	Oracle Customer Support
	My Oracle Support AutoVue Community
	Sales Inquiries

