

Oracle® Agile Product Lifecycle Management for
Process
Extensibility Guide

Extensibility Pack 2.7

E37239-01

September 2012

Oracle Agile Product Lifecycle Management for Process Extensibility Guide, Extensibility Pack 2.7

E37239-01

Copyright © 1995, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Audience.. vii
Variability of Installations... vii
Documentation Accessibility ... viii
Related Documents ... viii
Conventions ... ix

1 Introducing Extensibility Points

Sample Code Disclaimer ... 1-1

2 Extensibility Points

BOM Calc Extensions .. 2-2
Possible Uses... 2-2
Technical Overview ... 2-2
Technical Documentation ... 2-2
Reference Implementation.. 2-2

Custom Data Denormalization .. 2-3
Custom Sections ... 2-3
Extended Attributes... 2-3
Possible Uses... 2-3
Technical Documentation ... 2-4

Custom Portal.. 2-5
Possible Uses... 2-5
Technical Overview ... 2-5
Technical Documentation ... 2-5
Available Reference Implementation.. 2-5

eSignature Validate Plugin... 2-7
Technical Overview ... 2-7
Technical Documentation ... 2-7
Available Reference Implementations .. 2-7

Event Model .. 2-8
Possible Uses... 2-8
Technical Overview ... 2-8

iv

Extended Attribute Calculations ... 2-9
Technical Overview ... 2-9
Technical Documentation ... 2-9
Available Reference Implementations .. 2-9

Formulation Percent Breakdown Classification Override Plugin... 2-10
Technical Overview .. 2-10
Technical Documentation .. 2-10

Formulation Push Percent Breakdown Plugin .. 2-11
Technical Overview .. 2-11
Technical Documentation .. 2-11
Available Reference Implementations ... 2-11

Get Latest Revision Extensibility... 2-12
Technical Overview .. 2-12
Technical Documentation .. 2-12
Available Reference Implementations ... 2-13

Label Claims Extensibility .. 2-14
Technical Overview .. 2-14
Technical Documentation .. 2-14
Available Reference Implementations ... 2-14

Material Identity Plugins... 2-15
Possible Uses.. 2-17
Technical Overview .. 2-17
Technical Documentation .. 2-18
Available Reference Implementations ... 2-18

Navigation Extensibility .. 2-19
Possible Uses.. 2-20
Technical Overview .. 2-20

Notification Panel ... 2-21
Possible Uses.. 2-21
Technical Overview .. 2-21
Custom Notification Table... 2-22
Technical Documentation .. 2-22
Available Reference Implementations ... 2-22

Print Extensibility ... 2-23
Possible Uses.. 2-23
Technical Overview .. 2-23

Quick Links .. 2-24
Section Level Editing.. 2-25

Possible Uses.. 2-25
Technical Overview .. 2-25
Technical Documentation .. 2-25
Available Reference Implementations ... 2-25

Specification Calculation Veto Plugin .. 2-27
Possible Uses.. 2-27
Technical Overview .. 2-27
Technical Documentation .. 2-27
Available Reference Implementations ... 2-27

v

Specification Veto Plugin .. 2-28
Possible Uses.. 2-28
Technical Overview .. 2-28
Technical Documentation .. 2-28
Available Reference Implementations ... 2-28

Validation Framework .. 2-29
Possible Uses.. 2-29
Technical Overview .. 2-29
Technical Documentation .. 2-30
Available Reference Implementations ... 2-30

Workflow Actions and Guard Conditions ... 2-31
Possible Uses.. 2-31
Technical Overview .. 2-31
Technical Documentation .. 2-31
Available Reference Implementations ... 2-31

A Developer Information

PLM4PExtensionUtils Developer Utility Library ... A-1
Object Loader URLs.. A-2

Format... A-2
Common Usage ... A-2
Example .. A-2
Passing Parameters in the ObjectLoaderURL ... A-2

Object and Data Schema Documentation .. A-3
Database Tables ... A-3
Data Objects ... A-4
Other Available Data .. A-4
Additional Details ... A-5

PKIDs—Primary Key Identifiers ... A-5
OR Metadata Tables .. A-5
Language Aware Tables.. A-6

vi

vii

Preface

The Agile Product Lifecycle Management for Process Extensibility Guide provides an
overview of the numerous extensibility points in the Oracle Agile Product Lifecycle
Management for Process suite. Extensibility points are areas in the application suite
that can be used to extend the functionality of the product, typically through custom
code and/or configuration changes.

Each extensibility point and any available reference implementations are described in
the following chapters, along with the location of more detailed documentation.

This Preface contains these topics:

■ Audience

■ Variability of Installations

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for technical implementers using Oracle Agile Product Lifecycle
Management for Process. It can also be used by solution architects and business
analysts who are responsible for designing and managing extension solutions.
Information about administering the system resides in the Oracle Agile Product Lifecycle
Management for Process Administrator User Guide.

Variability of Installations
Descriptions and illustrations of the Agile PLM for Process user interface included in
this manual may not match your installation. The user interface of Agile PLM for
Process applications and the features included can vary greatly depending on such
variables as:

■ Which applications your organization has purchased and installed

■ Configuration settings that may turn features off or on

■ Customization specific to your organization

■ Security settings as they apply to the system and your user account

viii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer
Assistant will relay information between the customer and Oracle Support Services at
1.800.223.1711. Complete instructions for using the AT&T relay services are available at
http://www.consumer.att.com/relay/tty/standard2.html. After the
AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support
Services engineer will handle technical issues and provide customer support according
to the Oracle service request process.

Related Documents
For more information, see the following documents in the Oracle Agile Product
Lifecycle Management for Process Extensibility Pack documentation set:

■ Agile Product Lifecycle Management for Process Web Services Guide

■ Agile Product Lifecycle Management for Process Data Administration Toolkit Guide

■ Agile Product Lifecycle Management for Process Print Extensibility Guide

■ Agile Product Lifecycle Management for Process Custom Section Denormalization Guide

■ Agile Product Lifecycle Management for Process Extended Attribute Denormalization
Guide

■ Agile Product Lifecycle Management for Process Custom Report Configuration Guide

■ Agile Product Lifecycle Management for Process Navigation Configuration Guide

■ Agile Product Lifecycle Management for Process Extended Attribute Calculation Guide

■ Agile Product Lifecycle Management for Process Release Notes

ix

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

1

Introducing Extensibility Points 1-1

1Introducing Extensibility Points

The Extensibility Pack contains detailed extensibility point documentation, reference
example source code, and compiled reference examples. Most extensibility points are
in place in the core product suite release and available without requiring the
Extensibility Pack. The documentation in this guide provides an overview of each
extension point, a technical introduction, and describes any available reference
examples. Each extensibility point also has more detailed documentation that provides
technical implementation details to assist software developers.

Several extensibility points (such as the Web Services API, Custom Portal, Custom
Section & Extended Attribute Denormalization) are larger in nature and are only
available in the Extensibility Pack as deployable tools, web applications, database
scripts, or utility classes.

Sample Code Disclaimer
Copyright © 2011 Oracle Corporation, 6373 San Ignacio Avenue, San Jose, California
95119-1200 U.S.A.; Telephone 408.284.4000, Facsimile 408.284.4002, or
<http://www.oracle.com/>. All rights reserved.

The files provided as reference implementations, which have been provided by Oracle
Corporation as part of an Oracle® product for use ONLY by licensed users of the
product, include CONFIDENTIAL and PROPRIETARY information of Oracle
Corporation.

USE OF THIS SOFTWARE IS GOVERNED BY THE TERMS AND CONDITIONS OF
THE LICENSE AGREEMENT AND LIMITED WARRANTY FURNISHED WITH THE
PRODUCT.

IN PARTICULAR, YOU WILL INDEMNIFY AND HOLD ORACLE CORPORATION,
ITS RELATED COMPANIES AND ITS SUPPLIERS, HARMLESS FROM AND
AGAINST ANY CLAIMS OR LIABILITIES ARISING OUT OF THE USE,
REPRODUCTION, OR DISTRIBUTION OF YOUR PROGRAMS, INCLUDING ANY
CLAIMS OR LIABILITIES ARISING OUT OF OR RESULTING FROM THE USE,
MODIFICATION, OR DISTRIBUTION OF PROGRAMS OR FILES CREATED FROM,
BASED ON, AND/OR DERIVED FROM THESE SAMPLE SOURCE CODE FILES.

1-2 Agile Product Lifecycle Management for Process Extensibility Guide

2

Extensibility Points 2-1

2Extensibility Points

This chapter describes the extensibility points found in Extensibility Pack 2.7 of Oracle
Agile Product Lifecycle Management for Process. Topics in this chapter include:

■ BOM Calc Extensions

■ Custom Data Denormalization

■ Custom Portal

■ eSignature Validate Plugin

■ Event Model

■ Extended Attribute Calculations

■ Formulation Percent Breakdown Classification Override Plugin

■ Formulation Push Percent Breakdown Plugin

■ Get Latest Revision Extensibility

■ Label Claims Extensibility

■ Material Identity Plugins

■ Navigation Extensibility

■ Notification Panel

■ Print Extensibility

■ Quick Links

■ Section Level Editing

■ Specification Calculation Veto Plugin

■ Specification Veto Plugin

■ Validation Framework

■ Workflow Actions and Guard Conditions

BOM Calc Extensions

2-2 Agile Product Lifecycle Management for Process Extensibility Guide

BOM Calc Extensions
The formulation specification’s Bill Of Material calculation process (BOM Calc) and
user interface can be extended to create custom calculation rules and user interaction.

Customers can create new calculation paths to handle a formulation specification’s
inputs, outputs, and steps, defining which fields should be editable, which fields
should be locked down, and the calculation rules that will be used. Custom tags can be
created for inputs, outputs, and/or steps, which can then be assigned in the UI as
needed and guide the custom calculation rules.

Possible Uses
1. Create a formulation specification where no calculations are performed.

2. Create a BOM calculation path that extends inputs with certain tags. These tags
can be used to extend calculations. For example, tag an input as a "protein" and
always perform a certain set of calculations on that input.

Technical Overview
A custom BOM Calc implementation requires the creation of custom classes and user
interface controls that define:

■ Calculation Path—Defines the presentation of data and processing of events from
the user interface. The path determines the BOM Calculator and specifies which
custom tags should display for inputs, outputs, and steps.

■ BOM Calculator—Manages the calculation logic.

■ Custom Tags—Individual UI controls can assign values to inputs, outputs, and
steps that may be used in the calculation logic.

Database scripts are used to set up the calculation path for user selection.

Technical Documentation
Refer to the BomCalcDocumentation.doc document, located in the Extensibility Pack
Code\ReferenceImplementations\BomCalc\Documentation folder for more details.

Reference Implementation

A reference BomCalcPath can be found in the Extensibility Pack under the folder
ReferenceImplementations/BomCalc. This reference implementation does not do any
calculations other then some multiplication of fields based on tag settings, and the
events write out messages to a log file, with a name based on the specification number
of the formulation specification being edited. The deployment files can be found in the
Resources folder, while the source code can be found in the
SourceCode/BomCalcExample folder.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Custom Data Denormalization

Extensibility Points 2-3

Custom Data Denormalization
Custom Data Denormalization is available via two denormalization techniques:
Custom Section Denormalization and Extended Attribute Denormalization. The
Extensibility Pack provides database scripts that are used to create new denormalized
database tables and populate those tables with the denormalized data. Custom Section
denormalization is configured in the Data Admin application of the PLM for Process
suite, and allows for specifying how each custom section should be denormalized.
Extended Attribute denormalization is not configured in the user interface; instead, all
relevant extended attributes are automatically included in the process.

Custom Sections
Custom Section Denormalization (CS Denorm) is a feature that provides the ability to
convert the internal data storage of custom sections into data structures that are easier
to understand and report against while providing improved query performance.

The CS Denorm process allows clients to indicate which custom sections (and which
rows and columns) they want to denormalize and how the data should be
denormalized. The CS Denorm process then reads this information, pulls the relevant
custom section data from specifications (or other business objects), and populates that
data into a newly created database table used solely for that custom section.

This approach provides customers with the following benefits:

1. Performance—The denormalized data will be accessible via far fewer joins.

a. Without denormalization, querying for custom section data could involve over
20 database tables just for the custom section data.

b. Using CS Denorm, simply querying the single new table provides most of that
same data needed.

2. Accessibility—The context for the data is surfaced to the table structure. This
allows third party applications to represent and search the data in a meaningful
way.

Extended Attributes
Extended Attribute Denormalization (EA Denorm) is a feature that provides the ability
to convert the internal data storage of extended attributes into data structures that are
easier to understand and report against while providing improved query performance.

The EA Denorm process pulls data for all activated (Active, Archive, and Inactive)
extended attributes from specifications (or other business objects, such as sourcing
approvals, NPD projects, etc.), and populates that data into specific denormalization
tables. Extended attributes from custom sections are also included if they are marked
as IsDistinct. The denormalization tables include additional information such as
attribute IDs, custom section IDs, etc., that make the data easier to query against for
reporting purposes.

Possible Uses
1. Reporting

2. Analytics

Custom Data Denormalization

2-4 Agile Product Lifecycle Management for Process Extensibility Guide

Technical Documentation
Detailed documentation explaining custom data denormalization can be found in the
following locations:

EP2_5_Documentation\Oracle Agile Product Lifecycle Management for Process
Custom Section Denormalization Guide

EP2_5_Documentation\Oracle Agile Product Lifecycle Management for Process
Extended Attribute Denormalization Guide

Custom Portal

Extensibility Points 2-5

Custom Portal
The Custom Portal is an extension of the Oracle Agile PLM for Process (PLMP)
application suite. It allows customers to implement various integration solutions that
leverage the PLMP data and capabilities without using the core application. Its
primary usage is to provide a framework for searching, filtering, and displaying PLMP
data, and gives solution implementers the ability to customize each of those aspects.

Custom Portal pages can be built to give users (who would not typically access PLMP)
very specific access to certain data. Views of that data can be tailored to meet specific
business needs, such as providing business partners with custom views into their
specifications.

Possible Uses
1. Grant read only access to your individual plants. Plant users are a very different

audience compared to the average GSM specification user. Plant users need to see
a read only view of the entire finished good specification. This could be a
combined view of data spanning attributes from the trade, nutrient profile,
formulation, and raw materials.

2. Grant read only access to internal departments in a format they are used to seeing
the data. For example, you can grant the Marketing department access to Product
Fact Sheet reports for only approved finished goods. This would allow them to see
nutritional fact panels and label claims pertaining to a particular finished good
without granting them access to the entire nutrient profile and trade specification.

Technical Overview
Custom Portal is a web application that must be installed in an existing Oracle Agile
PLM for Process environment. It contains portal management screens, page layout,
security, and a pluggable framework that is used to develop custom search, filter, and
display functionality. It relies on the Interfaces located in the CustomPortalInterfaces
assembly, which define the class structure required when using the Search, Render,
and Filter Plugins.

Client implementations that use the Oracle Agile PLM for Process Web Services API
will require that the Web Services API is installed in an accessible environment.

Custom Portal may also host the client’s own web application or assembly in which
most of the customized plugins and other implementation code should be located.

Technical Documentation
Detailed documentation explaining the Custom Portal framework, including the
administration of portal pages and views, the technical implementation requirements
for extending the portal, and the existing reference implementation, can be found in
the following location:

Code\Web\CustomPortal\Documentation\Custom Portal Implementation
Guide.doc.

Available Reference Implementation

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Custom Portal

2-6 Agile Product Lifecycle Management for Process Extensibility Guide

MockCustomPortalPlugins is a reference implementation of a CustomPortal solution.
It demonstrates the use of various search criteria and Plugins, and uses various web
service calls and direct database queries to populate data that is then rendered as a
PDF.

Source code: See Code\ReferenceImplementations\MockCustomPortalPlugins\.

eSignature Validate Plugin

Extensibility Points 2-7

eSignature Validate Plugin
If using the eSignature feature, and not using the out-of-the-box Passphrase based
eSignature feature, this plugin can be called to perform custom eSignature
authentication. The plugin receives the token passphrase (a string value) entered for
eSignature authentication. The current user account is also available via the User
property.

Technical Overview
The eSignature Validate plugin extensibility point will call the PluginExtensions
framework to check if a Validate plugin is configured for this extension point in the
CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used
that simply returns true and gives permission to the eSignature entry.

The eSignature Validate plugin is configured using the name
eSignatureValidatePlugin.

Example CustomPluginExtensions.xml configuration:

<ValidatePlugins configChildKey="name">
<Plugin name="eSignatureValidatePlugin"
FactoryURL="Class:Xeno.Prodika.PluginExtensions.Plugins.DefaultPlugins.DefaultV
alidateTruePluginExtensionFactory,PluginExtensions" />

</ValidatePlugins>

Technical Documentation
Refer to the PluginExtensions document, located in
Code\ReferenceImplementations\PluginExtensions\Documentation for more details.

Available Reference Implementations
While there are no specific reference implementations, any other validate plugin
reference implementation can be reviewed for general guidelines.

Event Model

2-8 Agile Product Lifecycle Management for Process Extensibility Guide

Event Model
As specific events occur in GSM and SCRM, their details are captured and recorded in
a single database table. Clients can watch for events added to this table to trigger some
custom actions.

Each event captured may include the following information:

Event Type—The type of event that occurred (1: Create, 2: Save, 3: Workflow, 4: Copy)

Event Source—What caused the event (New issue of a specification, workflow
transition, etc.)

Actor—User who performed the event

Time—Date and time stamp of when the event happened

Affected Object—Specification or object that was acted upon (Specification that was
saved, specification that was copied, etc.)

Related Object—Related object when appropriate (Workflow step, smart issue
request, specification ID, etc.)

Reason—Reason the action occurred when appropriate (Workflow comments, global
succession reason for change, smart issue request that caused the change, etc.)

Possible Uses
The events captured can be the catalyst to a third party system action (email
notifications, data comparisons, etc.).

1. Every time an ingredient specification is created, the Ingredient Manager is
notified by email.

2. Every time a new specification issue is created a comparison will be performed. If
any compliance data has changed, the facilities producing the product will be
notified when opening the specification in custom portal.

Technical Overview
A feature configuration setting Common.Auditing.LifecycleEvents.Enabled
determines if events should be logged.

Events are captured in the commonLifecycleEventLog database table:

commonLifecycleEventLog (
pkid char(40) not null unique,
eventType int not null, -- create, save, workflow, etc.
eventSource varchar(50), -- cause of the event
timestamp DateTime not null, -- time of change
fkActor char(40) not null, -- user making the changefkAffectedObject
char(40) not null, -- changed data object
reason nvarchar(256), -- user comments
fkRelatedObject char(40) -- optional participant
)
The event type codes include:

Create—1

Save—2

Workflow—3

Copy—4

Extended Attribute Calculations

Extensibility Points 2-9

Extended Attribute Calculations
Calculated Numeric Extended Attributes allow you to create a read-only extended
attribute that displays results of a calculation to the user. The calculation, entered in
the Data Admin user interface for Extended Attributes, must be written in JScript, and
can access many predefined PLM for Process functions and properties that give access
to specific data. Custom warning messages may be added during the calculation
process for display to the user.

Clients wishing to have more control over calculations, consolidate their calculation
logic, or access other data not directly available through JScript (and the predefined
functions), may call out to custom classes from their scripts. The custom classes get
executed and return a result back to the script. They may optionally receive parameter
data from the script.

Technical Overview
A custom calculation class is identified in the CustomerSettings.config file with a
unique key. This key is then referenced in the extended attribute’s JScript calculation
which calls out to the class and optionally passes data from the script to it.

Technical Documentation
Refer to the Oracle Agile Product Lifecycle Management for Process Extended Attribute
Calculation Guide, located in the main documentation folder, for more details.

Available Reference Implementations
An example custom calculation class, Other Carbohydrates Calculator, demonstrates
how a custom class can be used in calculations.

See the reference implementation in
Code\ReferenceImplementations\CalculationExtensions\SourceCode for
implementation details.

Formulation Percent Breakdown Classification Override Plugin

2-10 Agile Product Lifecycle Management for Process Extensibility Guide

Formulation Percent Breakdown Classification Override Plugin
This extension point allows for the programmatic override of the percent breakdown
classification on the formulation output popup. Out of the box the classification
override can be declared by the formulator on the formulation output. This plugin
allows you to calculate the classification override.

Technical Overview
The Formulation Percent Breakdown Classification Override plugin extensibility point
will call the PluginExtensions framework to check if a Format plugin is configured for
this extension point in the CustomPluginExtensions.xml file. If a custom plugin is
configured, it must return a list of comma separated Formulation Classification PKIDs,
which will then be listed by their names in the UI. If no plugin is configured, the
overrides must be done manually in the UI.

The Formulation Percent Breakdown Classification Override plugin is configured
using the name FormulationPercentBreakdownClassificationOverride.

Example CustomPluginExtensions.xml configuration:

< FormatPlugins configChildKey="name">
<Plugin name="FormulationPercentBreakdownClassificationOverride"
ignoreInheritFromPluginName="true"
FactoryURL="Class:AcmePLM.FormatPlugins.CustomFormulationPercentBreakdownClassi
ficationOverrideFactory,AcmePlugins" />

</ FormatPlugins>

Technical Documentation
Refer to the PluginExtensions document, located in
Code\ReferenceImplementations\PluginExtensions\Documentation for more details.

Formulation Push Percent Breakdown Plugin

Extensibility Points 2-11

Formulation Push Percent Breakdown Plugin
This extension point allows for the conditional enabling/disabling of the formulation
output push of percent breakdown information to the material specification.

Technical Overview
The Formulation Push Percent Breakdown plugin extensibility point will call the
PluginExtensions framework to check if a Validate plugin is configured for this
extension point in the CustomPluginExtensions.xml file. If no plugin is configured, a
default plugin is used that simply returns true and gives permission to push the
percent breakdown.

The Formulation Push Percent Breakdown plugin is configured using the name
FormulationPushPercentBreakdown.

Example CustomPluginExtensions.xml configuration:

<ValidatePlugins configChildKey="name">
<Plugin name="FormulationPushPercentBreakdown"
FactoryURL="Class:Xeno.Prodika.GSMLib.Security.Plugins.DefaultPushOutputBreakdo
wnValidatePluginFactory,GSMLib" />

</ValidatePlugins>

Technical Documentation
Refer to the PluginExtensions document, located in
Code\ReferenceImplementations\PluginExtensions\Documentation for more details.

Available Reference Implementations
While there are no specific reference implementations, any other validate plugin
reference implementation can be reviewed for general guidelines.

Get Latest Revision Extensibility

2-12 Agile Product Lifecycle Management for Process Extensibility Guide

Get Latest Revision Extensibility
Get Latest Revision (GLR) is a feature that allows Agile PLM for Process specifications
links to be automatically updated with newer Approved revisions. In the user
interface, a lock icon next to a linked specification controls the GLR status for that
item. When the icon is marked as locked (), the specification is tied to an exact
specification/issue combination. When the icon is marked as unlocked (), however,
the specification will be replaced with the latest revision/issue of that specification,
based on defined behavior. Out of the box the system will find the latest issue in a
status that contains the isApproved tag. This extension allows you to change this
behavior.

Figure 2–1 Locked and unlocked icons

The default behavior for retrieving the latest issue of a spec is to retrieve the latest
Approved issue of that specification. If there are no newer approved issues of that
specification, no updates are made.

This extension point allows for customizing the default behavior of Get Latest
Revision, either by modifying the retrieval behavior to include specs in other
workflow statuses, or using custom retrieval logic by implementing custom classes.

Technical Overview
Get Latest Revision works in the UI by examining a spec link as it is loaded and, if
unlocked, retrieving any newer revisions. A separate process runs on the Remoting
Container on a regular basis to find any newer revisions and update the relevant spec
links behind the scenes. To customize the GLR behavior, you will have to modify both
functional areas.

Modifying the behavior to allow for different workflow statuses can generally be
accomplished with no code changes, while implementing more complex
customization will require a more involved implementation.

Technical Documentation
Refer to the GetLatestRevision document, located in
Code\ReferenceImplementations\GetLatestRevision\Documentation for more
details.

Note: The GLR feature actually identifies a specification as
Approved if its current workflow status contains the IsApproved
workflow tag.

Get Latest Revision Extensibility

Extensibility Points 2-13

Available Reference Implementations
A reference implementation demonstrates how to prevent a Trade spec link from being
updated if the parent Trade specification is in a status with one of the given workflow
statuses (using workflow tag behaviorIDs).

See the reference implementations in
Code\ReferenceImplementations\GetLatestRevision\SourceCode for implementation
examples.

Label Claims Extensibility

2-14 Agile Product Lifecycle Management for Process Extensibility Guide

Label Claims Extensibility
Label Claim determination rules can be created and customized by using the Data
Administration Toolkit. Label Claim formula calculation rules must be written in
JScript, and return a boolean result indicating if the label claim is met. The formula
rule calculation script can access various nutritional and reference data from the
current business object via predefined properties.

Clients wishing to have more control over label claim determination rules, consolidate
their calculation logic, or access other data not directly available through JScript (and
the predefined functions), may call out to custom classes from their scripts. The
custom classes get executed and return a result back to the script.

Technical Overview
A custom calculation class is identified in the CustomerSettings.config file with a
unique key. This key is then referenced in the extended attribute’s JScript calculation
which calls out to the class and optionally passes data from the script to it.

Technical Documentation
Refer to the Label Claims Calculation document, located in
Code\ReferenceImplementations\CalculationExtensions\Documentation for more
details.

Available Reference Implementations
An example label claims calculation class,
AlternateNutrientPer100gValueDynamicScriptMethod, demonstrates how a custom
class can be used to return an alternate nutrient value.

See the reference implementation in
Code\ReferenceImplementations\CalculationExtensions\SourceCode for
implementation details.

Material Identity Plugins

Extensibility Points 2-15

Material Identity Plugins
Throughout the application suite there are many grids that display related
specifications. For example, Formulation Input BOM and Trade Packaging BOM. The
material identity extension allows for additional information to be displayed along
with the standard specification information. Out-of-the-box, this extension shows the
specification status in the majority of locations, however this plugin can be replaced
with your own custom plugin displaying other information.

There are 32 unique specification identity extension points that can be leveraged to
display additional specification related information. Each extension point is uniquely
identified; for instance, the specifications listed in the trade specification’s Next Lower
Level Items grid are configured using the plugin name
"TrdNextLowerLevelItemsIdentityPlugin". Each plugin can implement its own
behavior, or it can call a common plugin. These plugins also return data for display in
the print results, and can have the output returned for printing be different than the
output returned for the user interface.

The material identity plugins are available in the following UI locations:

Table 2–1 Material identity plugin locations

GSM Specifications UI Area Plugin Name

All Specifications Associated Specification AssociatedSpecsIdentityPlugin

Master Specification MasterSpecsIdentityPlugin

Related Labeling PackingRelatedLabelingIdentityPl
ugin

Equipment Specifications Related Packaging EquipmentRelatedPackagingIdent
ityPlugin

Formulation Specifications Formulation Tab: Input Row BOMInputItemPlugin

Process Tab: Input Row BOMInputItemPlugin

Output PopUp: Composition
Grid

BOMInputItemPlugin

Alt Material FrmAltMaterialIdentityPlugin

Output Material FrmOutputMaterialIdentityPlugin

Labeling Specifications Related Packing LabelingRelatedPackingIdentityPl
ugin

Material Specifications Related Formulations MaterialRelatedFormulationsIden
tityPlugin

Trade Specification Association MaterialSpecTrdSpecAssociationI
dentityPlugin

Trade Specification Context
Association

MaterialSpecTrdSpecContextAsso
ciationIdentityPlugin

Packaging Configuration PackagingConfigIdentityPlugin

Substitute Material SubStituteMaterialIdentityPlugin

Material Identity Plugins

2-16 Agile Product Lifecycle Management for Process Extensibility Guide

Menu Item Specification Alt Global Standard AltGlobalStandardIdentityPlugin

Global Standard GlobalStandardIdentityPlugin

Item Alternate MenuItemAltIdentityPlugin

Item Product MenuItemProductIdentityPlugin

Alternate Packaging MenuItemRelatedAltPackagingId
entityPlugin

Related Packaging MenuItemRelatedPackagingIdenti
tyPlugin

Nutrient Profile NutrientProfileIdentityPlugin

Nutrient Profiles Related Specification NutrientProfileRelatedSpecIdentit
yPlugin

Packaging Specifications Packaging Configuration PackagingConfigIdentityPlugin

Printed Packaging Material PackagingPrintedPkgMaterialIde
ntityPlugin

Related Equipment PackagingRelatedEquipmentIdent
ityPlugin

Sub Component PackagingSubComponentIdentity
Plugin

Substitute Material SubStituteMaterialIdentityPlugin

Packing Configuration
Specifications

Relates Specs DeliveredMaterialPackingIdentity
Plugin

Printed Packaging
Specifications

Parent Packaging Material PrintedPkgRelatedParentPkgIdent
ityPlugin

Substitute Material SubStituteMaterialIdentityPlugin

Product Specifications Alternate Global Standard AltGlobalStandardIdentityPlugin

Global Standard GlobalStandardIdentityPlugin

Packaging Configuration PackagingConfigIdentityPlugin

Trade Specifications Nutrient Profile NutrientProfileIdentityPlugin

Alternate Packaging TrdAlternatePackagingIdentityPlu
gin

Material Specification
Association

TrdMaterialSpecAssociationIdenti
tyPlugin

Material Specification Context
Association

TrdMaterialSpecContextAssociati
onIdentityPlugin

Next Lower Level Items TrdNextLowerLevelItemsIdentity
Plugin

Packaging Material TrdPackagingMaterialIdentityPlu
gin

Parent Items TrdParentItemsIdentityPlugin

Table 2–1 Material identity plugin locations

GSM Specifications UI Area Plugin Name

Material Identity Plugins

Extensibility Points 2-17

Figure 2–2 Standard input material display

Figure 2–3 Extended input material display

Possible Uses
1. Display all cross references versus just the user’s cross reference preference.

2. Display the Supplier Item #s from all sourcing approvals attached to the material
specification.

Technical Overview
Each Material Identity extensibility point will call the Plugin Extensions framework to
check if a format plugin is configured. Each plugin is identified by a specific unique
name, which is then referenced in the CustomPluginExtensions.xml configuration file.

If a plugin is found for the given extensibility point name, the class specified in the
configuration is loaded, passed the relevant data item (e.g., the related specification).
The result of the plugin is then returned to the user interface.

If no plugin is found, it will use the out-of-the-box specification status implementation.
To return a blank instead, use the EmptyIdentityPlugin
(inheritFromPluginName="EmptyIdentityPlugin")Example
CustomPluginExtensions.xml configuration for the Material Identity plugin:

<FormatPlugins configChildKey="name">
<Plugin name="BOMInputItemPlugin"
FactoryURL="Class:ReferencePlugins.FormatPlugins.BOMInputSupplierItemPluginFact
ory,ReferencePlugins" MaxSizeUI="40" MaxSizePrinting="100" />

</FormatPlugins>

The Material Identity plugins are implemented using a FormatPlugin, which provides
for several capabilities:

■ MaxSizeUI—Configuration setting tells the plugin what the maximum length for
display should be.

Material Identity Plugins

2-18 Agile Product Lifecycle Management for Process Extensibility Guide

■ MaxSizePrinting—Configuration setting tells the plugin what the maximum
length for printing display should be.

■ UseTextURL—A boolean setting in the plugin to determine if the display should
be replaced by some custom Javascript code.

■ GetTextURL—A string value that is returned if UseTextURL returns true. This can
contain html content, such as an anchor tag with a javascript pop-up code, for
instance. A predefined pop-up is also available for use (and is demonstrated using
the reference implementation below) to display content longer than the MaxSizeUI
value.

See the BOMInputSupplierItemPlugin reference implementation and the code
comments for details.

Technical Documentation
Refer to the PluginExtensions document, located in the Extensibility Pack
Code\ReferenceImplementations\PluginExtensions\Documentation folder for more
details.

Available Reference Implementations
1. BOMInputSupplierItemPlugin—Returns a list of the facility name and the supplier

item number for each sourcing approval.

2. GSMSpecNumberFormatPluginExtension—Displays the specification number and
the effective date.

Source Code: See
Code\ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins\
FormatPlugins

Navigation Extensibility

Extensibility Points 2-19

Navigation Extensibility
You can extend all navigation panels throughout the application suite. There are three
primary navigation areas:

1. Platform Navigation—The navigation menu available in the top right of the
browser window inside the suite header. This menu can be adjusted in the
following ways:

a. Add items

b. Remove items

c. Re-arrange items

d. Apply visibility and security controls

Figure 2–4 Platform navigation

2. Portal Navigation—Available on the portal homepage listing in the left navigation
panel. This menu can be adjusted in the following ways:

a. Add items

b. Remove items

c. Re-arrange items

d. Apply visibility and security controls

Figure 2–5 Portal navigation

Navigation Extensibility

2-20 Agile Product Lifecycle Management for Process Extensibility Guide

3. Action Navigation—Available in the top left corner of all objects. This navigation
also includes the quick access icons. This menu can be adjusted in the following
ways:

a. Add menu items

b. Remove menu items

c. Add quick access icons

d. Remove quick access icons

e. Adjust hot keys

f. Re-arrange items

g. Apply visibility and security controls

Figure 2–6 Action navigation

Possible Uses
1. Only users in the UGM user group of "Nutrition" are able to see the Nutrient

Profiles link in GSM.

2. Add a quick access icon for a commonly used core action.

3. Add a link to an external system sending certain specification information to that
system to direct the user’s view.

Technical Overview
For more information, refer to the following the Oracle Agile Product Lifecycle
Management for Process Navigation Configuration Guide. This guide can be found in:
/Extensibility Pack 2.7 Documentation/ Oracle Agile Product Lifecycle Management
for Process Navigation Configuration Guide.pdf

Notification Panel

Extensibility Points 2-21

Notification Panel
A Notification Panel is available to display custom notification messages on GSM
specifications when the user opens the specification. Its content is populated through
one or more Notification Plugins and configured in the NotificationPlugins node of the
CustomPluginExtensions.xml file.

Notification Plugins are extension points used to return a list of messages. Multiple
notification plugins can be configured and are chained together; each notification
plugin is executed in the order found in the configuration file. Each notification plugin
returns a list of strings, which is displayed to the user.

Figure 2–7 Sample notification panel

Possible Uses
1. Notify users when a specification contains specific allergens

2. Notify users when they are reading a specification that is not the approved issue

Technical Overview
The NotificationPlugins extensibility point will call the PluginExtensions framework
to check if any NotificationPlugins are configured for this extension point in the
CustomPluginExtensions.xml file, and executes each notification plugin listed.

Example CustomPluginExtensions.xml configuration for the Material Identity plugin:

<NotificationPlugins configChildKey="name">
<Plugin name="CustomNotificationsReaderPlugin"
FactoryURL="Class:ReferencePlugins.NotificationPlugins.CustomNotificationsReade
rPluginFactory,ReferencePlugins" />
<Plugin name="AllergenNotifierPlugin"
FactoryURL="Class:ReferencePlugins.NotificationPlugins.AllergenNotifierPluginFa
ctory,ReferencePlugins" />

</NotificationPlugins>

The notification plugins are called for each rendering of the specification page,
regardless of the tab selected, or the edit/read mode of the specification. Creation of
alternate display behavior, such as only showing the notifications while in Read mode,
is the responsibility of the individual plugin. If no results are returned by any of the
configured notification plugins, the notification panel is not displayed.

Notification Panel

2-22 Agile Product Lifecycle Management for Process Extensibility Guide

Custom Notification Table
A database table, CustomNotification, is available to store custom messages and then
display them using a notification plugin. Entries in this table are not populated by any
actions in Oracle Agile PLM for Process (PLMP); rather, the table is a storage location
for other integration needs to store specific messages for an Oracle Agile PLMP object
such as an ingredient specification.

These records can then be read by a notification plugin and displayed to the user as
needed. A sample implementation (CustomNotificationsReaderPlugin) is included in
the ReferencePlugins project.

CustomNotifications Table schema:

[customNotifications]
(

[pkid] [char](40) NOT NULL,
[fkOwner] [char](40) NOT NULL,
[message] [nvarchar](2048) NOT NULL,
[created] [datetime] NULL,
[starts] [datetime] NULL,
[expires] [datetime] NULL,
[NotificationContext] [nvarchar](1024) NULL

)
■ pkid—4 digit typeID + 36 character GUID: [Ex: '1149' + newId()]

■ fkOwner—Represents the PKID of the relevant object, such as the PKID of the
ingredient spec that the message is for

■ Message—The message notification text

■ NotificationContext—Unused

Technical Documentation
Refer to the PluginExtensions document, located in the Extensibility Pack
Code\ReferenceImplementations\PluginExtensions\Documentation folder for more
details.

Available Reference Implementations
1. AllergenNotifierPlugin—If the current object is a trade or material specification, a

list of contained allergens is returned.

2. FormulationOutputsNotifierPlugin—If the current object is a formulation spec,
displays a list of inputs and outputs that are not in a given status, such as
approved.

3. CustomNotificationsReaderPlugin—Displays any entries for the current object in
the CustomNotificaton database table.

Print Extensibility

Extensibility Points 2-23

Print Extensibility
Printing the various system objects, such as specifications, NPD projects, etc., may be
customized to meet various client needs. Clients may limit access to specific print
templates, use custom data and field translations in the existing print templates, create
their own print templates, configure what is pre-selected for users in the print dialog
UI and use other printing engines (Oracle's BI Publisher, for instance) to render the
results.

Possible Uses
1. Reformat the trade specification print out to use a different font or different

spacing guidelines.

2. Remove certain sections from appearing in the material specification printout.

3. Create a Fact Panel report that is accessed from the trade specification. This report
will include the fact panel data from the active nutrient profile and the potential
label claims stored on the trade specification.

4. Every time a user prints a trade specification the packaging specifications, the
custom sections and the active nutrient profile is included.

Technical Overview
See the Oracle Agile Product Lifecycle Management for Process Print Extensibility Guide for
more information.

Quick Links

2-24 Agile Product Lifecycle Management for Process Extensibility Guide

Quick Links
Methods are available to quickly launch a specification or object by using the objects
system defined number. For example, to access a GSM object, the URL would be
http://LOCALSITEURL/gsm/getSpecByNum.aspx?SpecNum=5084567-001
(5084567-001 would be the GSM specification number and issue number). Previously
the database pkid would have to be known.

These methods are available for the following objects:

Table 2–2 Events tied to validation framework

Object URL

GSM http://LOCALSITEURL/gsm/getSpecByNum.aspx?SpecNum=xxxxxxx-xxx

SCRM Company http://LOCALSITEURL/scrm/BaseForms/frmCompany.aspx?EntityID=xxxxxxx

SCRM Facility http://LOCALSITEURL/scrm/BaseForms/frmFacility.aspx?EntityID=xxxxxxx

Sourcing Approval http://LOCALSITEURL/scrm/BaseForms/frmSAC.aspx?EntityID=xxxxxxx

Sourcing Approval
(Non-Spec)

http://LOCALSITEURL/scrm/BaseForms/frmNonSpecSAC.aspx?EntityID=xxxxx
xx

NPD Projects http://LOCALSITEURL/npd/MainPage/NPD.aspx?ContentKey=ProjectEditor&L
oad=xxxxxxx

NPD Strategic Briefs http://LOCALSITEURL/npd/MainPage/NPD.aspx?ContentKey=StrategicBriefEdi
tor&Load=xxxxxxx

NSM Analysis http://LOCALSITEURL/reg/NutritionSurveillance/NSM.aspx?ContentKey=Nutri
entAnalysis&Load=xxxxxxx

NSM Composite http://LOCALSITEURL/reg/NutritionSurveillance/NSM.aspx?ContentKey=Nutri
entComposite&Load=xxxxxxx

Smart Issue http://LOCALSITEURL/gsm/gsmextensions/SmartIssue/SmartIssue.aspx?Conten
tKey=SmartIssueRequest&Load=xxxxxxx

Global Succession http://LOCALSITEURL/reg/MainPage/GlobalSuccession.aspx?ContentKey=Succe
ssionRequest&Load=xxxxxxx

DRL Document http://LOCALSITEURL/drl/DRL.aspx?ContentKey=DrlDocument&DocumentId=
xxxxxxx-xxx

LIO Profile http://LOCALSITEURL/gsm/baseforms/frmLIOProfile.aspx?id=xxxxx

Component Catalog
Term

http://LOCALSITEURL/reg/FIC/GetTermByNumber.aspx?TermNumber=xxxxxxx

eQuestionnaire http://LOCALSITEURL/eq/MainPage/eq.aspx?ContentKey=ctlGetEntity&id=xxx
xxxx

Section Level Editing

Extensibility Points 2-25

Section Level Editing
Custom validation rules can be created to control edit access of GSM sections. For
example, a rule can be written to turn off editing of specific sections based on UGM
user group and specification category, regardless of workflow status. When a section is
read only, all editing methods will be hidden, for example, New buttons, Edit icons
(pencils, deletes, etc.).

Refer to the GSM Section IDs document, located in the Extensibility Pack
Code\ReferenceImplementations\PluginExtensions\Documentation folder for a list
of secured section IDs.

Possible Uses
1. Only users in the UGM group “Nutrition” can edit the Fact Panel custom section

on a nutrient profile.

2. When a specification is in an Approved state, only the Approved for Use in section
is editable.

3. Only users in the UGM Group “Packaging” can edit the packaging sections of the
trade specification.

Technical Overview
Section Level Editing rules are declared in the
config\Extensions\SLESecurityExtension.config file. Security Handler classes are
created that have access to the specification and the user information, and are used to
determine if a particular GSM section can be edited.

Technical Documentation
Refer to the SLE Reference Implementation document, located in the Extensibility Pack
Code\ReferenceImplementations\SLExtensions\Documentation folder for more
details.

Available Reference Implementations

1. User Group and Specification Status

The included reference implementation evaluates the specification’s workflow
status and user’s UGM group membership.

a. If the ingredient specification is in the status of Official, Approved for Use In is
the only editable section for all users.

b. If the specification editor is in the UGM group of “Spec Admin” then all
sections on the specification can be edited.

Source Code:

<ExtensionsCode>\ReferenceImplementations\SLExtensions\SourceCode\Reference
SLExtensions\ReferenceSLEHandlers\SpecStatusUserGroupHandler.cs

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Section Level Editing

2-26 Agile Product Lifecycle Management for Process Extensibility Guide

2. Configurable Handler

This example demonstrates how to parse configurable information to the handler
from the SLESecurityExtension.config.

Source Code:

<ExtensionsCode>\ReferenceImplementations\SLExtensions\SourceCode\ReferenceSLEx
tensions\ReferenceSLEHandlers\ConfigurableSLESecurityHandler.cs

Specification Calculation Veto Plugin

Extensibility Points 2-27

Specification Calculation Veto Plugin
Custom rules can be evaluated to determine if GSM specification calculations should
occur. The IsSpecCalculationAllowed Plugin is an extension point available to all GSM
specifications that allows a custom class to be accessed when the specification
calculation process runs. The custom class evaluates the current specification and
returns a true or false value to indicate if calculation should occur.

Possible Uses
1. Turn off specification calculation once a spec has reached Approved status.

Technical Overview
The Specification Calculation Veto plugin extensibility point will call the
PluginExtensions framework to check if a Validate plugin is configured for this
extension point in the CustomPluginExtensions.xml file. If no plugin is configured, a
default plugin is used that simply returns true and gives permission to run calculation.

The Specification Calculation Veto Plugin is configured using the name
IsSpecCalculationAllowed.

Example CustomPluginExtensions.xml configuration for Spec Veto plugin:

<ValidatePlugins configChildKey="name">
<Plugin name="IsSpecCalculationAllowed"
FactoryURL="Class:ReferencePlugins.ValidatePlugins.WorkflowTagBasedSpecCalculat
ionDisablerFactory,ReferencePlugins$4" />

</ValidatePlugins>

Technical Documentation
Refer to the PluginExtensions document, located in the Extensibility Pack
Code\ReferenceImplementations\PluginExtensions\Documentation folder for more
details.

Available Reference Implementations
1. WorkflowTagBasedSpecCalculationDisabler is a reference implementation of a

Validate Plugin that examines a specification and turns off calculation is the
specification status is Approved. The Approved status is determined by checking
the workflow tags on the current status - if the IsApproved workflow tag (which
has a BehaviorID of 4), then calculation is disabled. The BehaviorID is entered in
the configuration file, so that it can easily be changed; for instance, adding other
workflow tag behaviorIDs.

Source code: See the ValidatePlugins in
Code\ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins
for details.

Note: An optional Format plugin,
IsSpecCalculationAllowedOverrideMessage, can be used to display a
custom message to indicate if the specification calculation was
enabled/disabled.

Specification Veto Plugin

2-28 Agile Product Lifecycle Management for Process Extensibility Guide

Specification Veto Plugin
Custom security rules can be evaluated when determining GSM specification read
permissions. The Specification Veto Plugin is an extension point available to all GSM
specifications that allows a custom class to be accessed when the user opens a
specification. The custom class evaluates the current specification and returns a true or
false value giving read access to the specification or not.

Possible Uses
1. If the user does not have read access to every specification in the trade’s hierarchy,

the user is not allowed to read the trade specification.

2. If the user does not have read access to all inputs used on the formulation
specification, the user is not allowed to read the formulation.

Technical Overview
The Specification Veto plugin extensibility point will call the PluginExtensions
framework to check if a Validate plugin is configured for this extension point in the
CustomPluginExtensions.xml file. If no plugin is configured, a default plugin is used
that simply returns true and gives read access.

The Specification Veto Plugin is configured using the name HasSpecVisibilityPlugin.

Example CustomPluginExtensions.xml configuration for Spec Veto plugin:

<ValidatePlugins configChildKey="name">
<Plugin name="HasSpecVisibilityPlugin"
FactoryURL="Class:ReferencePlugins.ValidatePlugins.ValidateTradeAccessPluginFac
tory,ReferencePlugins" />

</ValidatePlugins>

If Business Unit (BU) security is enabled, the user’s business unit permissions are
evaluated prior to calling the HasSpecVisibility plugin. If BU security is not enabled,
the HasSpecVisibility plugin is called immediately and its results determine read
permission to that specification. The specification and the current user data objects are
passed to the plugin.

Technical Documentation
Refer to the PluginExtensions document, located in the Extensibility Pack
Code\ReferenceImplementations\PluginExtensions\Documentation folder for more
details.

Available Reference Implementations

1. ValidateTradeAccessPlugin is a reference implementation of a Validate Plugin that
examines trade specifications and only allows access if the user has read
permission to each lower level trade specification.

Source code: See the ValidatePlugins in
Code\ReferenceImplementations\PluginExtensions\SourceCode\ReferencePlugins
for details.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Validation Framework

Extensibility Points 2-29

Validation Framework
The validation framework allows you to configure custom validation rules to specific
UI events in the system. For example, when a user selects the Save action button on a
specification, code can be put in place to make sure specific required fields are
properly filled out. If any required fields are left blank, an error message can be
displayed preventing the user from saving the specification until all of the data is
provided.

The following objects are tied to the validation framework:

■ GSM specifications and templates

■ Smart issue requests

■ Testing protocols

■ SCRM facilities, companies, and sourcing approvals

■ eQuestionnaires

■ Custom section templates

■ NPD projects, activities ISPs, and strategic briefs

To see a detailed listing of events, type IDs, validation target objects and context
objects refer to ReferenceImplementations/Validation/Documentation/Validation
Objects.xls.

Possible Uses
1. Make sure all data has been added to the specification or object before it is saved

or transitioned to a new workflow state. This includes custom data. For example, a
nutrient profile cannot be approved until the custom section: NLEA Fact Panel has
been added.

2. A trade specification cannot be approved until all packaging specifications
attached to the trade specification are in an approved state.

3. A sourcing approval cannot be approved until the specification it is tied to is in an
approved state.

4. A user cannot transition an issue of a specification to an approved state if a
previous issue of that specification is in an approved state.

5. A user cannot create an issue of a specification that is in a non-approved state.

Technical Overview
Validation logic is declared in a configuration file
(Config\Extensions\ValidationSettings.xml) and specified by using predefined
validation classes or creating custom validation classes.

Validators are classes that can examine the current object and execute validation rules
against it. The result of a validator is true for a successful validation and false for a
failed validation check. Error messages may be added based on the validation, which
are then displayed to the user.

Example rule in ValidationSettings.xml:

<ValidationRules>
<!-- Example Ingredient Spec save validation requires Cross References (aka
Legacy profiles) -->
<rule type="1004">

Validation Framework

2-30 Agile Product Lifecycle Management for Process Extensibility Guide

<condition event="save">
<if type="ReflectiveRequiredValidator" property="LegacyProfiles" />

</condition>
</rule>

</ValidationRules>

Technical Documentation
Detailed technical training of the Validation Framework is available in the
Extensibility Pack in Code\ReferenceImplementations\Validation\Documentation\.

Available Reference Implementations

Several reference implementations are available in the
Code\ReferenceImplementations\Validation\SourceCode\ReferenceValidation
project, including:

1. TIP Value Validator—Evaluates a given property of a TIP in a given namespace.

2. CustomDataValidator—Performs validation on the existence of custom sections,
their rows or columns, and on the existence of values on extended attributes. This
validator is a good reference implementation of using the CustomDataFacade
utility class to perform specific validations on custom sections and extended
attributes.

Other reference implementations and examples of all predefined validators are found
in the Validation Framework Training presentation and source code, located in the
Extensibility Pack in Code\ReferenceImplementations\Validation\Documentation\.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Workflow Actions and Guard Conditions

Extensibility Points 2-31

Workflow Actions and Guard Conditions
A workflow action is an extension point that triggers the execution of custom classes
when a workflow transition occurs. A guard condition is an extensibility point that
helps determine if a workflow transition can occur.

Workflow actions and workflow guard conditions are assignable to workflow
transitions in WFA. Different workflow actions and guard conditions are available in
WFA for GSM, SCRM, and CSS workflows.

Possible Uses
1. Every time a sourcing approval reaches the approved state, specific data from the

sourcing approval can be sent to a third party system.

Technical Overview
Workflow actions and workflow guard conditions are created as custom classes,
packaged into a DLL, and added to the relevant web applications (web\gsm\bin,
web\scrm\bin, and web\ugm\bin).

They must be configured in the config\Extensions\CustomWFAExtensionsConfig.xml
file to be made available for assignment in WFA.

Workflow actions can perform custom activities, such as sending an email, logging
information, etc., and have access to the item being workflowed.

Guard conditions can evaluate the item being workflowed, determine if the workflow
transition should occur, and return a true or false result accordingly. Additionally, they
can add error messages which will be displayed to the user in the workflow pop-up.

Technical Documentation
See the \Code\ReferenceImplementations\WorkflowActions\Documentation folder
located in the Extensibility Pack for more details.

Available Reference Implementations

Several reference implementations are available in the
Code\ReferenceImplementations\WorkflowActions\SourceCode\ReferenceWorkflo
ws and
Code\ReferenceImplementations\GuardConditions\SourceCode\RefGuardConditio
ns projects, including:

1. SpecStatusChangeLogger—Logs workflow status changes, along with
specification identifier information, to a file.

Disclaimer: Reference implementations are provided to demonstrate
implementation details and are not for use in production systems.

Workflow Actions and Guard Conditions

2-32 Agile Product Lifecycle Management for Process Extensibility Guide

A

Developer Information A-1

ADeveloper Information

PLM4PExtensionUtils Developer Utility Library
PLM4PExtensionUtils is a library that provides classes to assist external developers
with Agile PLM for Process extensibility development. Custom Validators, Workflow
Actions and Workflow Guard Conditions, Plugins, Calculation Extensions, and other
extensibility points can leverage these utility classes by referencing the
PLM4PExtensionUtils.dll.

The following utility classes are available:

■ SpecPermissionEvaluator—Provides specification related security permission
methods

■ SpecWorkflowTagEvaluator—Provides workflow status related methods for GSM
specifications

■ SCRMWorkflowTagEvaluator—Provides workflow status related methods for
SCRM sourcing approvals

■ FormulationStepsRetriever—Retrieves a sorted list of formulation steps for a given
formulation specification

■ CustomDataFacade—A class that provides simplified access to extended attributes
and custom sections.

■ Detailed documentation and the PLM4PExtensionUtils.dll are available in the
Extension Utilities document in the Utilities\PLM4PExtensionUtils folder.

Several reference implementations, such as the ValidateTradeAccessPlugin in
ReferencePlugins, already leverage the various classes available in this dll.

Note: This has been copied from ValidationExtensions.dll, which
will be deprecated in the next release.

Object Loader URLs

A-2 Agile Product Lifecycle Management for Process Extensibility Guide

Object Loader URLs
Object Loader URLs are classpaths that are used to dynamically load objects. They are
used to declare the protocol to use when loading the class, the class path, and
optionally any parameters to pass to the class.

Format
[Protocol] : [Path] $ [{parameter1} | { parameter2}|…]

■ Protocol—Examples are "Class" and “Singleton"

■ Path—The fully qualified class name, including the package name. For
example
"Xeno.Prodika.SecurityModel.Contextual.UserRoleBasedSecuri
tyPluginFactory,ProdikaLib" where ProdikaLib is the name of the
package (.dll file).

■ Parameters—If the class implements the ITakesParameters interface, the
parameter list, separated by pipes (|), is available to the class. See Passing
Parameters in the ObjectLoaderURL below.

When loading an object, the loader first inspects the Protocol and using lazy loading,
determines an appropriate protocol handler based on this protocol’s name. The
"Class" protocol may refer to a class that accepts parameters during instantiation
which are defined after a "$" and delimited by "|"s (pipes).

Common Usage
The most common usage of this class is in configuration files. Often a factory class is
supplied in a configuration and the Object Loader bootstraps the factory, which in turn
facilitates the use of the rest of the implementation. These implementations are easily
swapped by simply providing a different factory in the configuration.

Example
Class:Xeno.Prodika.Portal.WebUI.Util.Security.UserPropertyBasedS
ecurityPluginFactory,ProdikaLib$NPD

"Class" is the protocol, "NPD" is a parameter, and the rest of the string between the ":"
and the "$" is the path as defined by the protocol. In this case, it is the class path of the
object that is to be instantiated.

Passing Parameters in the ObjectLoaderURL
Implementing the Xeno.Prodika.Common.ITakesParameters interface (from
ProdikaCommon.dll) by the Factory class allows the passing in of parameters in the
ObjectLoaderURL. Its method setParams is called, with the StringSplitter input
parameter containing the arguments in the ObjectLoaderURL. This allows the same
factory class to be used for multiple situations, such as passing in the desired
workflow statuses as a parameter.

For an example of a class that implements the ITakesParameters interface, see the
WorkflowTagBasedSpecCalculationDisablerFactory in ReferencePlugins

Object and Data Schema Documentation

Developer Information A-3

public class WorkflowTagBasedSpecCalculationDisablerFactory:
IValidatePluginExtensionFactory, ITakesParameters
{

private IList<int> _behaviorIDs ;
public IValidatePlugin Create()
{

return new WorkflowTagBasedSpecCalculationDisablerPlugin(_behaviorIDs);
 }

public void setParams(StringSplitter splitter)
 {

_behaviorIDs = new List<int>();
 Assert.True(splitter.hasMoreTokens(),
"WorkflowTagBasedSpecCalculationDisablerFactory must pass a comma delimited
list of workflow behavior IDs assigned to Workflow Steps that should not have
Calculation occur.");

string[] tags = splitter.nextToken().Split(',');
foreach(string tag in tags)
{

_behaviorIDs.Add(int.Parse(tag));
}

}
}

Object and Data Schema Documentation
When writing custom reports or SQL queries against the PLM4P database, or writing
various extensibility points such as Validators, Workflow Actions, and more,
developers must be able to navigate and understand the internal data and object
structures they will be interacting with. The Object and Database Schema document
(available via the index.html file in the DatabaseAndObjectSchema folder) is a catalog
of the Agile PLM for Process database tables and data object classes. The tool allows
SQL developers and .NET developers to inspect the internal Agile PLM for Process
database and data object hierarchies using HTML files. It provides a listing of all
database tables and their corresponding data object classes, categorized by the
application and the high level business objects (e.g., GSM -> Packaging Specification).

Database Tables
Each database table listed describes its database columns and its various relationships
to and from other tables. Clicking on a relationship link will display the related table
and maintain a breadcrumb trail of the relationship. A “Show SQL” link can be used to
show SQL code that can be used to join the tables defined in the breadcrumb trail.

For instance, to get the trade type name of a trade specification, (starting in All
Applications), click GSM, then Trade Specification, then gsmTradeType, then
gsmTradeTypeMML, where the Name column can be found. The breadcrumb trail
shows the following: Applications > GSM > gsmBaseTradeSpec > gsmTradeType >
gsmTradeTypeMML.

Clicking Show SQL displays the following results:

SELECT * FROM gsmBaseTradeSpec t1
INNER JOIN gsmTradeType t2 ON t1.fkTradeType = t2.pkid
INNER JOIN gsmTradeTypeMML t3 ON t2.pkid = t3.fkTradeType

Object and Data Schema Documentation

A-4 Agile Product Lifecycle Management for Process Extensibility Guide

Additionally, since each database table is related to a specific .NET class, a link to its
corresponding data object is available.

Data Objects
Each data object listed describes its implemented interfaces, simple/primitive
properties, object properties, and collection properties. The PLM4P internal data
objects, however, can only be accessed by their immediate interface.

For instance, the AdditiveContainedDO data object can be accessed by the
IAdditiveContainedDO interface. Since Additives may be found on multiple
specification types, the AdditiveContainedDO data object has a property named
Parent, which is of type IBaseSpec, the common interface of all specification types.

To access the trade type information for the data object, (starting in All Applications),
click GSM, then Trade Specification, then the Data-Object IGSMTradeSpecDO link,
then ITradeType, then ITradeTypeMML, where the Name property can be found. If
trying to access this data in code, the property can be accessed like so: string
tradeName = ((IGSMTradeSpecDO) baseSpec).TradeType.TradeTypeMML.Name;

Each data object also links back to its related database table.

Other Available Data
The topmost navigation provides several other useful listings:

■ All Applications—The front page of this document set and provides an
alphabetized list of all application groupings of the highest level business objects.
You can navigate from any of the listed objects to all of their constituent tables via
their relationships.

■ All Tables—An alphabetical listing of all of the documented tables.

■ All Columns—An alphabetical index of all of the Agile PLM4P fields (columns
and join-tables) with their descriptions. This index can be especially useful when
searching for a table when all that is known is a keyword/concept. Columns are
listed in the form of "Columnname.Tablename: Description" (or
"JoinTableName.MasterTableName: Description" for join-relationships). The
hyperlink navigates to the table where that relationship is defined, and down to
the specific section where that column is listed.

■ All Data-Objects—An alphabetical listing of all of the documented
data-object/classes.

■ All Data-Object Properties—An alphabetical listing of all of the documented
data-object properties with their descriptions. This index can be especially useful
when searching for a data-object when all that is known is a keyword/concept.
Properties are listed in the form of "Classname.Property: Description". The
hyperlink navigates to the data-object where that relationship is defined, and
down to the specific section where that property is listed.

■ All Views—An alphabetical listing of all of the Agile PLM4P views.

Object and Data Schema Documentation

Developer Information A-5

Additional Details
Agile PLM for Process uses a custom Object Relational Mapping layer, which defines
how the data objects used in the application are tied to the database tables. Each class
relates to a database table. Each row in the table represents a single object instance. The
OR Mapping relationships are stored in the database. This provides a way to
understand the database table relationships by examining the OR Mapping tables.

PKIDs—Primary Key Identifiers
All tables entries have a uniquely typed PKID by prefixing a 4 digit type id onto the
front of a 36 character GUID (or 6 character GUID in some cases).

PKID = 4 Digit Type ID + GUID (Globally Unique Identifier)

The TypeID can help navigate the database structure to locate where an identifier can
be found. For example, the SpecSummary table maintains a SpecID column, which
could point to one of many different specification tables. Extracting the typeID value
from the SpecID foreign key will tell us which table.

OR Metadata Tables
The ORClassMetaInfo table tells us which database table (and therefore which class)
the TypeID represents:

SELECT * FROM orclassmetainfo WHERE type=1004 OR type = 2147;

We can now see that a PKID starting with:

TypeID 1004 is a material specification, the table is MaterialSpec, and the class is
IngredientSpecification

TypeID 2147 is a trade specification, the table is gsmBaseTradeSpec, and the class is
GSMTradeSpecDO

■ ORClassMetaInfo—Tells which database table the TypeID represents.

■ ORObjectPropertyMetaInfo —Tells the related objects for a table, for single and
multi-value secondary object references. To find related tables based on a specific
table look at:

SELECT * FROM orpropertymetainfo WHERE fkORClassMetaInfo = (SELECT pkid FROM
orclassmetainfo WHERE tablename = '<yourtablename>')

■ ORPropertyMetaInfo —Simple and foreign-key fields.

Tablename Classname Type

MaterialSpec IngredientSpecification 1004

gsmBaseTradeSpec GSMTradeSpecDO 2147

Object and Data Schema Documentation

A-6 Agile Product Lifecycle Management for Process Extensibility Guide

Language Aware Tables
To support multiple languages, all translatable text is stored in language aware tables.
These tables will always contain the column, langID, which is a reference to a
predefined language in the SupportedLanguages table. Many of the language aware
tables also contain "ML" as part of the table name. For example, gsmShortNameML
contains the text for the specification's short name. The default value for langID is 0
(English). There should always be a value in the language aware tables with langID=0.
It is important to specify the langID when writing direct SQL or you may end up with
more results than desired. For example:

Select
spec.SpecNumber,
specname.name,
shortname.name shortname

From specSummary spec
inner join SpecSummaryName specname on specname.fkSpecsummary = spec.PKID and
specname.langid = 0
inner join gsmShortNameML shortname on shortname.fkSpecSummary = spec.PKID and
shortname.langid = 0

where
specname.name like '%test%';

	Oracle Agile Product Lifecycle Management for Process Extensibility Guide
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introducing Extensibility Points
	Sample Code Disclaimer

	2 Extensibility Points
	BOM Calc Extensions
	Possible Uses
	Technical Overview
	Technical Documentation
	Reference Implementation

	Custom Data Denormalization
	Custom Sections
	Extended Attributes
	Possible Uses
	Technical Documentation

	Custom Portal
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementation

	eSignature Validate Plugin
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Event Model
	Possible Uses
	Technical Overview

	Extended Attribute Calculations
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Formulation Percent Breakdown Classification Override Plugin
	Technical Overview
	Technical Documentation

	Formulation Push Percent Breakdown Plugin
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Get Latest Revision Extensibility
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Label Claims Extensibility
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Material Identity Plugins
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Navigation Extensibility
	Possible Uses
	Technical Overview

	Notification Panel
	Possible Uses
	Technical Overview
	Custom Notification Table
	Technical Documentation
	Available Reference Implementations

	Print Extensibility
	Possible Uses
	Technical Overview

	Quick Links
	Section Level Editing
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Specification Calculation Veto Plugin
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Specification Veto Plugin
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Validation Framework
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	Workflow Actions and Guard Conditions
	Possible Uses
	Technical Overview
	Technical Documentation
	Available Reference Implementations

	A Developer Information
	PLM4PExtensionUtils Developer Utility Library
	Object Loader URLs
	Format
	Common Usage
	Example
	Passing Parameters in the ObjectLoaderURL

	Object and Data Schema Documentation
	Database Tables
	Data Objects
	Other Available Data
	Additional Details
	PKIDs-Primary Key Identifiers
	OR Metadata Tables
	Language Aware Tables

