Oracle® Agile Product Lifecycle Management for Process
Custom Report Configuration Guide

Extensibility Pack 2.7
E37243-01

September 2012

ORACLE

Copyrights and Trademarks

Agile Product Lifecycle Management for Process
Copyright © 1995, 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall
be subject to the restrictions and license terms set forth in the applicable Government contract, and, to
the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may
be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Agile Product Lifecycle Management for Process — Custom Report Configuration

Contents

CUSTOM REPORT CONFIGURATIONuiiiiiiiiiiiiiiiiiiniiiiiiiitiiiibiiaeiieeiiseeiseeseeeseessessessees 5
U oo LY TP PPPPTTPPR 5
OVEBIVIBW ..ttt ettt e e e st et e e e e e s e b et e e e e e s e s b b e st e e e e e saanbbeeeees sabeaeeeeesssannnes 5
REPOIt GENEIAtION SCIEEN ..cceiiiiiiiiiieetee e s s 5
Configuring the CustomReportEXtensions.Xml Filecceeiiiiiiiiiiiiie e e 6
File STrUCTUINE OVEIVIEW. ...eiiiiiiiiiiieiiec ettt sttt et s e e sar e sme e e saneesaneesaneee oe 6
Configuring Report Parameter TYPESuuviiiiei ittt e e e ettt e e e e e et e e e e s e st ae e e e e s s e anbteeeeaesesnnrreneaeanas 7
(€] o) oYl 2 U] o Lo T fl =T =10 0 1= {1 ST 7
KPAramMEtErTYPES> NOGE ...oviiiiiiiiee ettt e ettt e e sttt e e sttt e e sbteeessatbeeesanbaeeessseeesassseeesnnsseaean 8
S [T Ty (=T Y7 o T Yo [RS 8
<DAtASOUICE> NOUE ...ttt et et e bt e s st e st e s st e sae e st e sanesbesn e e bt eneeneen 10
SIMOAEIZ NOTE ...ttt sttt s bt ae e sttt et e et e e b e e b e e bt e nbeesbeesbeesaeesane reen 10
(00T a1 T =0 T o=l 2 U=T o Yo SRRt 11
KREPOIMCONTEXES NOUE ..ttt e s e e et e e e s b e e s s abe e e eeasbeeessaseeeeensbeeessnses 11
<CONEEXTCIEEIIA> NOGE ..ttt ettt e st e e bt e e bee e st e sbe e e saeeesaeeesabeesneeesareenns 11
SREPOITGIOUPS NOUB...ueiiiiieieiiiiiieee ettt e e e e eecetr et e e e eeestbareeeeeeessttbrseeaeeeesastssaseseseeessssrasaeeeeesannsses 12
KPArAMELEIS> NOGE ..ttt ettt e bt e bt e s bt e s be e sae e sae e eane st e s be e b e ebeenees 13
KPArAMELEI> NOGE....ciiiiiiieeee ettt ettt b e bt e s bt e s bt e sbe e sae e sane st e s b e e b e ereeneen 14
1= 0o o K->l Lo o [USSP 14
1= 0o o e\ o Yo ISR 15
<AIOWEAOULPULTYPESS NOUE.....uiiiiiee ettt ee ettt e e e e ettt e e e e e e e st raaeeeesessntsraeeeeeeessnsssaeesessansanes 16
<AHOWEAOULPULTYPES NOTE ...oviiiiiiiee ettt e st e e st e e st a e e e s nbeeeesnsaeeeentaeeessseees 17
(@foT o) iT={VTgT o= @l gTaa VoY TN 2¥=T oo o 3SR 17
Configuring Contextual REPOITINGccoiciiii it e e et e e e e rre e e e s bae e e eabaeeeennees 18

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

APPENDIX A — CREATING CUSTOM REPORT PARAMETER TYPES ... 20
Methods Of REtrIEVING Data......ccuuiiiiciiiie i eieee sttt e st e e e sre e e s sata e e e s sabaeeesasaeeesassaeeesnsseeeean 20
Displaying SEArCh ParamEters........ciicuiieiiiiiie ettt tree e e eee e e e rre e e e s bre e e e eatae e s eatee e e eabeeeeennreas 20

EQT MOGEIS ... e s 20
DAtASOUICES ..ottt e 24
EXISTING DAt@SOUICES ...ceeeiieeeeeeeee et e e 24
CUSTOM DataSOUICESuuiiiiiiiiii ittt aa e 26
APPENDIX B — APPLYING SECURITY TO REPORTS ... 27
OVEIVIBW ..ttt a e b e s b e s b s e e s b e e s abe e s ba e s bb e e sesabaeesaaeesan s 27
EXISTING SECUNITY PIUG-INS..ciiiiiiiiiiiiiee ettt ettt et e e rtee e e et e e e et ae e e s sabeee s ensbaeessnsteeeennseneesnnsenas 27
UserRoleBasedSecurityPlUGINFACTONYcociiii ittt s etae e e sate e e e e bae e e s enraeeeeans 27
UserPropertyBasedSecurityPlUSINFACTONYcoccuiiii ittt et e eetee e e e srte e e s e raee e e 27
UserGroupBasedSecurityPlUSINFACIONYc..eviiiieee et e et e e e e e e e ennraee e e e s 28
APPENDIX C - OBJECT LOADER URLS ..., 29
FOIMAt. .o s 29
160e] 00T gToT o T U KT ¥ == SR PP PUPPPPPPPPPR 29
APPENDIX D — THIRD PARTY EXTERNAL APPLICATION INTEGRATIONccccoeeieeiin. 30
Programmatic INtEITACESuiiiieiiee e e e st e s st e e s a e e e e naree e e e areeeean 30
Implementing IREPOIrtGENEratiONSEIVICEcciiiiiieiiciiee ettt eetee ettt e see e e s rae e e e sbae e s e saraeeeennes 30
Implementing IREPOrtGENEratiONSEIVICEcviiiiieeeiciiee ettt et sbee e e e te e e e s bae e s e earae e e ennees 31

(@o T oY {7 ={ U= Ao] @ o F= Y ¥={ Y USSR 33

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

Custom Report Configuration

Purpose
This guide describes how to configure custom reports for the Oracle Agile Product Lifecycle
Management (PLM) for Process Reporting module.

Overview

The Reporting application allows client to organize, configure, secure, and launch custom reports. The
configuration is managed in the CustomerReportExtensions.xml located in the
\Config\Extensions\ directory. Clients can configure custom reports, specify the categorization
of the reports, configure visibility rules via custom classes, and define the various report parameters to
display.

Reports are categorized by two grouping levels: Report Contexts and Report Groups, each of which can
be secured by configuring security classes.

Report parameters can use existing pop-ups found throughout the application, or use custom-defined
parameters. The parameter values are then sent to a reporting service, such as Oracle Bl Publisher or
SQL Server Reporting Services, which process the parameters to make custom SQL queries to produce
the report output. The reporting service then returns the results to the user.

For details on configuring the reporting service, see the Oracle Agile Product Lifecycle Management for
Process Configuration Guide.

Report Generation Screen
The report generation screen allows users to select an available report, enter report parameters, select
an output format, and launch the report.

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

Figure 1. Sample Report Generation Screen

DRACLE. Report Generation - Agile PLM for Process: RFT

hd Home

J Report Generation

~ | Reporting
Report Context: ;-Reuort Tests v
Report Group: Example BI Report Group | V

Report Template: | Spec Summary BI Report |»

~! Report Parameters
Select One Spec: fixc Material_1

~ | Report Qutput
Report Output: '_pDF v

Generate Report

The Report Generation screen is comprised of three main sections:

1. Reporting--Provides a way to organize, categorize, and secure reports.

2. Report Parameters—Presents parameter input and options for each report.

3. Report Output—Presents the possible reporting output formats, such as XML and PDF.

The data that is displayed to users is driven from the CustomerReportExtensions.xml file. This
guide explains how to configure this file for custom reporting needs.

Configuring the CustomReportExtensions.xml File

Customizing the report configuration primarily consists of defining any new report parameters types
that will be available to the reports, and configuring the custom reports. Any changes to the
CustomerReportExtensions.xml file will require the ProdikaReporting web application to be restarted.

File Structure Overview

Common objects, such as report parameter input types and common reports are defined in the
ServiceConfig section. The reports, their categorization, security, and parameter details are defined in
the ReportContexts section. The Contextual Reporting section defines ways to launch specific reports
from the various web applications (such as GSM, SCRM) based on several criteria.

A high-level outline of the Report Contexts and ServiceConfig hierarchies found in the
CustomerReportExtensions.xml file follows:

ServiceConfig
o ParameterTypes
= ParameterType
o CommonReports
ReportContexts
o ReportContext

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

= ContextCriteria
= ReportGroup
Parameters

Reports
0 Report
= AllowedOutputTypes

Reports are categorized by two grouping levels: Report Contexts and Report Groups.

Report Contexts represent the highest level of report organization, and contains multiple report
groups. These are displayed in the Report Context drop-down list.

Report Groups provide a way to group multiple reports that all use the same report parameters.
The parameters types specified for each ReportGroup are defined in a separate section called
ServiceConfig.

The following sections contain detailed information on how to configure each of these nodes.

Configuring Report Parameter Types

All report parameter types that are used by the reports must be defined in the
\ServiceConfig\ParameterTypes section. These parameters may then be referenced by the
reports defined in the \ReportContexts section. Several predefined report parameters are available
for use, but you may also create their own custom parameter types.

There are three different types of report parameters:

1. Simple type parameters — Parameter input types, such as a string or date field input
2. DataSource parameter types — Classes that are responsible for retrieving data for display
3. Models — Predefined Oracle Agile PLM data retrievers that are already used in the application

Each parameter type must specify a user interface element that will be used to display the report
parameter to the user. DataSource and Model report parameter types must also specify the method
used to retrieve the data to display.

Global Report Parameters
The following report parameters are automatically passed in and available to each report server
request:

1. paramCurrentUser — The current user’s PKID (40 character unique identifier string)
2. paramCurrentlLanguage — The current user’s language ID setting (see SupportedLanguages
table)

Note: Using DataSources and Models requires detailed technical knowledge of the Oracle Agile PLM for
Process application and may require writing custom classes. See Appendix A — Creating Custom Report
Parameter Types for details.

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

<ParameterTypes> Node
The ParameterTypes node contains a list of ParameterType nodes. Each ParameterType defines an input
parameter that may then be used to display selection criteria for reports.

Attributes
Attribute Name Description Required?
N/A
Child Nodes
<ParameterType>

Parent Node

<ServiceConfig>

<ParameterType> Node

The ParameterType node defines an input parameter that may then be used to display selection criteria
for reports. Each Parameter Type must also declare the user interface control to use for displaying the
report parameter to the user. The child nodes required are based on the specified web control.

Attributes
Attribute Name Description Required?
type Unique identifier for this parameter type. This value will be Yes

used to refer to the parameter type when configuring which
parameters are used for each report in a Report Group.

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

Attribute Name

Description

Required?

webControl

The name of one of the following available web controls:
ReportingControls/Stringlnput.ascx — An input box
that allows alphanumeric entry
ReportingControls/Datelnput.ascx — A date picker
control preset to the current date
ReportingControls/MonthYearlnput.ascx — A month
selection control and a year input control
ReportingControls/LookuplnputSingleSelect.ascx —
An drop-down input allowing a single selection from
data specified by a DataSource
ReportingControls/LookuplnputMultiSelect.ascx — A
pop up control allowing multiple selections from
data specified by a DataSource
ReportingControls/TreeViewlnput.ascx — A pop up
control for nested hierarchies, allowing a single or
multiple selections from data specified by a
DataSource
ReportingControls/EQTInput.ascx — A pop up control
with differing behavior based on which existing EQT
View is used

See Appendix A — Creating Custom Report Parameter Types
for more details on how each web control functions.

Yes

Child Nodes

The possible child nodes will depend on which web control is used:

Stringlnput, Datelnput: No child controls

MonthYearlnput : Allows for customizing the parameter names for the month and year controls

0 <MonthParamNameExtension> — InnerText should be set to the name extension

0 <YearParamNameExtension>— InnerText should be set to the name extension

LookuplnputSingleSelect, LookuplnputMultiSelect:

0 <DataSource>

TreeViewlnput:

O <DataSource>

0 <MultiSelect> — InnerText should be ‘Yes’ to enable selection of multiple entries, or

‘No’ for single selection.

EQTInput:

0 <Model>

Parent Node

<ParameterTypes>

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

<DataSource> Node

The DataSource element is used to specify a class that will retrieve data to be used in the given web
control. Existing DataSources may be used to retrieve data, or custom DataSource classes may be
created to fulfill more specific requirements.

Attributes
Attribute Description Required?
Name
className | The full path of the DataSource class to use, along with any parameters. Yes
Format should be in the form of an Object Loader URL. Please see
Appendix C — Object Loader URLs for details.
Example:
Class:Xeno.-Web.Ul .Controls.DataSources.LookupServicelListViewD
ataSource, XenoWebControls$Allergens]Allergens
Child Nodes
N/A

Parent Node

<ParameterType>

<Model> Node

The Model element is used to specify an existing search model (EQTModel) that will retrieve data to be
used in the given EQTInput web control. The searches available through the EQT models may be much
more detailed and allow the user to specify exact search criteria.

Attributes

Attribute Description Required?
Name

displayVar | Indicates which return value from the EQT popup selection should be Yes

iableIndex | gisplayed. When an EQT view returns a value for display, the
/DisplayColumns/Columninfo element (from the Model node) includes an
attribute providelnSelectJS="true". If multiple display columns in the
EQT Model have the providelnSelect)S="true" attribute, the
displayVvariablelndex attribute determines which one should be
displayed to the user. For Models that only return one display value, the
displayVariablelndex attribute should be set to “1”.

© 2012 Oracle Corporation

10

Agile Product Lifecycle Management for Process — Custom Report Configuration

InnerText Value

The path to the EQT Model. See Appendix A — Creating Custom Report Parameter Types for
more details.

Child Nodes
N/A

Parent Node
<ParameterType>
Configuring Reports

<ReportContext> Node
The ReportContext node is used to group and secure related Report Groups together. All available
Report Contexts are displayed to the user in the Report Context drop-down list of the Report Generation

Screen.

Attributes

Attribute Name Description Required?

Name The name of the report context that will be displayed to the | Yes
user in the Report Generation screen.

SecurityFactoryRef | The security plug-in to use to limit access to this Report No
Context. See Appendix B — Applying Security to Reports for
more details.

Child Nodes

<ReportGroup>

<ContextCriteria>

Parent Node

<ReportContexts>

<ContextCriteria> Node
This node is currently not used.

Child Nodes

<Parameters>

Parent Node

<ReportContext>

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

<ReportGroup> Node
The ReportGroup node is used to group and secure related Report Groups together. All available Report
Contexts are displayed to the user in the Report Context drop-down list of the Report Generation

Screen.

Attributes

Attribute Name Description Required?

name Used to uniquely identify this report group in the Yes
configuration files.

label The display name that will appear to users or the Yes

translation lookup key. See isLabelTranslatable below.

isLabelTranslatable | true — Will use the value of the label attribute to look up | No
the report group name in the translation caches, using
the translationCache attribute, and return the
translation.

false — Will use the value of the label attribute as the
display name of the report group.

translationCache The name of the translation cache used to look up the Yes if
translation for the label value, if the isLabelTranslatable isLabelTranslatable
attribute is set to true. is true
securityFactoryRef | The security plugin to use to limit access to this Report No

Context. The value must be a valid Object Loader URL.
See Appendix B — Applying Security to Reports for more
details.

serviceLocation If present, will use the given value as the web service No
location to use to process all reports in this report group;
otherwise, will use the servicelLocation attribute value in
the\ServiceConfig\ReportingService element.

© 2012 Oracle Corporation

12

Agile Product Lifecycle Management for Process — Custom Report Configuration

Attribute Name Description Required?

reportEngineName | If present this will specify which report engine all reports | No
within that group will use. The options are:
SQLReportingService

OracleBIPublisher10_1 3 3
OracleBIPublisher10_1 3 4
OracleBlPublisher11_1_1 5

Refer to the Install/Upgrade Guide for setting the report
engine configuration entries.

If no report engine is specified it will use the default
report engine: SQLReportingService

Note: the default report engine can be changed in the
EnvironmentSettings.config file, by setting the
default="true” attribute to the desired reportEngine
entry in the /ProdikaReporting/ServiceConfig child nodes.

Child Nodes

— Parameters
Reports

Parent Node

<ReportContext>

<Parameters> Node
The Parameters node contains a list of Parameter nodes. Each Parameter will be used as input criteria
for the reports in the current ReportGroup.

Attributes

Attribute Name Description Required?

N/A

Child Nodes

Parameter

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

Parent Node

<ReportGroup>

<Parameter> Node

The Parameter node will be used as an input criterion for the reports in the current ReportGroup. The
parameter declared here uses a Parameter Type that must be defined in the ServiceConfig section of the
configuration.

Attributes

Attribute Name Description Required?

name The name of the parameter that will be passed to the Yes
Report Server. Must be unique within the <Parameters>
node.

label The display name that will appear to users or the Yes
translation lookup key. See isLabelTranslatable below.

isLabelTranslatable | true — Will use the value of the label attribute to look up No — Will use
the parameter name in the translation cache of the parent | false if not
ReportGroup and return the translation. specified
false — Will use the value of the label attribute as the
display name of the parameter.

type The name of the ParameterType from the Yes
\ServiceConfig\ParameterTypes list.

Required true — This parameter will be a required criterion for No — Will use
launching the report. false if not

specified

false — This parameter will be an optional criterion for
launching the report.

Child Nodes

N/A

Parent Node

<Parameters>

<Reports> Node
The Reports node contains a list of Report elements. Each Report will use the same Report Parameters
as input criteria in the current ReportGroup.

Attributes

Attribute Name Description Required?

N/A

© 2012 Oracle Corporation

Child Nodes

<Report>

Parent Node

<ReportGroup>

<Report> Node

Agile Product Lifecycle Management for Process — Custom Report Configuration

The Report node represents an individual report that can be launched using the report parameters

defined by the current report group. Reports can reference previously declared common reports and

use the attribute values defined for that original report.

Attributes
Attribute Name Description Required?
id Used to uniquely identify reports that can be reused No
throughout the reporting configuration. If any other report
in the configuration matches the id value, an error is
thrown. See the Configuring Common Reports section on
page 17.
idref May be used to reference a previously declared Common No
Report entry. The idref value must match the unique id
value of the desired report. If a matching reference report
is found, no other attributes from this element are used. If
no matching report is found, an error is thrown. See the
Configuring Common Reports section on page 17.
name Used to uniquely identify this report in the configuration Yes, unless id
files within the report group. attribute is
used
label The display name that will appear to users or the Yes
translation lookup key. See isLabelTranslatable below.
isLabelTranslatable | true — Will use the value of the label attribute to look up No — Will use
the report name in the translation cache of the parent false if not
ReportGroup and return the translation. specified
false — Will use the value of the label attribute as the
display name of the report.
reportPath Path to the individual report on the reporting server. Yes
serviceLocation If present, will use the given value as the web service No
location to use to process this report; otherwise, will use
the ReportGroup’s value.
translationCache If present, will use the given value as the name of the No
translation cache to use to process this report’s label;
otherwise, will use the ReportGroup’s value.

© 2012 Oracle Corporation

15

Agile Product Lifecycle Management for Process — Custom Report Configuration

Attribute Name Description Required?

SecurityFactoryRef | The security plug-in to use to limit access to this report. The | No
value must be a valid Object Loader URL.

See Appendix B — Applying Security to Reports and
Appendix C— Object Loader URLs for more details.

template The name of the Bl Publisher layout template to use for the | Yes if using B
report output. Publisher for
report
generation;
No otherwise
reportEngineName | If present this will specify which report engine this report No

will use. The options are:
SQLReportingService

OracleBIPublisher10_ 1 3 3
OracleBIPublisher10_1 3 4

OracleBIPublisher1l_1 1 5

Refer to the Install/Upgrade Guide for setting the report
engine configuration entries.

If no report engine is specified it will use the default report
engine: SQLReportingService

Note: the default report engine can be changed in the
EnvironmentSettings.config file, by setting the
default="true” attribute to the desired reportEngine entry
in the /ProdikaReporting/ServiceConfig child nodes. #

Child Nodes
<AllowedOutputTypes>

Parent Node
<Reports>
<AllowedOutputTypes> Node
The AllowedOutputTypes node contains a list of OutputType nodes indicating the possible output

formats available for the report. Individual reports therefore restrict the full list of allowed output types
defined in the \ServiceConfig\ActiveReportOutputTypes node.

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

Attributes

Attribute Name Description Required?

N/A

Child Nodes
AllowedOutputType

Parent Node
<Report>
<AllowedOutputType> Node

The AllowedOutputType node indicates a possible output format available for the given report. Entries
are limited to values defined in the reporting framework’s list, such as EXCEL, PDF.

Attributes
Attribute Name Description Required?
key Unique identifier for the output type Yes
value The display name Yes
extension File extension (ex: “.pdf”) Yes
Child Nodes

N/A

Parent Node

<AllowedOutputTypes>

Configuring Common Reports

A <Report> node may also be defined in the /ServiceConfig/CommonReports section of the
configuration and then referenced in other report groups. This allows a report to be defined once, but
used multiple times. If, for instance, a particular report exists in multiple report groups, it would be
beneficial to define the report in this section, and then reference it in those report groups.

For example, the following section declares a common report that can then be used anywhere else in
the configuration:

<CommonReports configChildKey=""name" >
<Report id="ExampleCommonReport"” label="Example Common Report"
isLabelTranslatable="false" reportPath=""/ExampleReport/ExampleCommonReport'>
<AllowedOutputTypes configChildKey="key">
<OutputType key="PDF'" value="'PDF" extension=""_pdf'/>
</AllowedOutputTypes>

© 2012 Oracle Corporation

17

Agile Product Lifecycle Management for Process — Custom Report Configuration

</Report>
</CommonReports>

The id attribute represents the unique key that will need to be referenced if this report is to be included
elsewhere. To include this report in a ReportGroup, simply declare the Report node with the idref
attribute assigned to the above id. For example, the following ReportGroup declares a new report and
also includes the ExampleCommonReport from the CommonReports section:

<Reports configChildKey="name">
<Report name="ExampleReportA"™ label="Example Report A "
isLabelTranslatable="false" reportPath=""/ExampleReport/ExampleReportA>
</Report>
<Report idref=""ExampleCommonReport" />
</Reports>

Configuring Contextual Reporting

Individual Reports can be launched from most locations throughout the Ol X
application suite (GSM, SCRM, NPD, PQS, CACS, NSM, CC, eQ Admin) by M ISSERE AR
Mew 3
using Contextual Reporting. opes (Rl E002)

Mew Termplate
Open Template *

* bn | Mutrition | Complia

Report links are added by extending the Action Navigation and adding new
menu item nodes. Each new menu item entry specifies which report
context, report group, and individual report should be loaded, and can
send specific data to the reporting application to pre-populate specific
report parameters. The visibility of each report link can be configured
easily, such as specifying that the report link is only available when the
user is on a Packaging specification and if the user is a member of group
“Packaging Reports.” See the Navigation Extensibility Guide for more
information around how to add new navigational items and configure their
visibility.

jation
Edit

¢ CitricAcd @
Tools y ¢ CitricAcid @
¢ Draft - Draft
Wiarkflow
R e Workflow ¢ 5105470-002
e ¢ Food Additives
IesLe i Other
¢ Other
Copy
¢ 5105470-001 - Citric Add
Print I @
Action Items
Spec Compare =

Reparts \ ¥ Wutrition Report

Classifice Attribute Report
Country 0F 0 s dditional Report
Shipping Requirem

o Ine it Like Materials Report

Supplier Report
sl Chalf i ifa

Clicking the report link will launch the Reporting application in a popup window, allowing the user to

maintain their current context.

You can display the active object’s name inside your report parameter fields. For example, if the user is

on the Cajun Spice Blend specification and the report takes in a specification parameter, the string

“Cajun Spice Blend” can appear in the specification parameter field as a pre-selected value. For

SpecinstanceReport items, the target Report must contain a Parameter with name="paramObjectPKID"

using a parameter type that is one of the pop-up parameter types. Setting the parameter type this way

will allow for the name of the object to be displayed. Setting the parameter type to a parameter type

string will simply display the PKID itself.

© 2012 Oracle Corporation

18

Agile Product Lifecycle Management for Process — Custom Report Configuration

For Contextual Reporting, the new navigation item must be assigned an XML attribute, called
ClientSideCommand, which is configured with two possible behaviors:

1. LaunchSpecificObjectPKIDReport — will launch the specified report, sending the current
business object’s PKID and name to the Reporting Application. If the specified report has a
report parameter with a name="paramObjectPKID”, it will be pre-filled with the object’s name
for display, and the object’s PKID for the value.

Required parameters:
a. report context name
b. report group name
C. reportname

2. LaunchObjectTypeReport — will launch the specified report, sending the current business
object’s 4-digit object Type value to the Reporting Application. If the specified report has a
report parameter with a name="paramObjectType”, it will be pre-filled with the object’s 4-digit
type for the parameter value.

Required parameters:

a. report context name
b. report group name
c. report name

Example:

If you have a NLEA Fact Panel (report name: NLEAPanel) report inside the context Material Reports
(context name: Material) and group Nutritional Reports (group name: Nutritional) and you want to call
that report using contextual reporting you would use the following function:

LaunchSpecificObjectPKIDReport('Material', 'Nutritional', 'NLEAPanel');

If you want to show the navigation item on a material spec when it’s in read mode, the menu item node
would look something like this:

<Menultem ID="GSMNavSpec" configChildKkey="1D">

<Menultem ID="NLEAPAnel" DisplayText="NLEA Panel"
ClientSideCommand="LaunchSpecificObjectPKIDReport('Material', 'Nutritional', 'NLEAPanel');"
Visible="eval:${ObjectType}==1004 && ${IsInReadMode}" />

</Menultem>

© 2012 Oracle Corporation

19

Agile Product Lifecycle Management for Process — Custom Report Configuration

Appendix A — Creating Custom Report Parameter Types

Methods of Retrieving Data

Clients can create custom report parameter types by leveraging existing data searches found throughout
the application (via EQT Models) or by calling data retriever classes (DataSources) to retrieve the
necessary search data.

Displaying Search Parameters

When specifying the report parameter type in the reporting configuration, a user interface control must
also be declared. The web control that will display the parameter type will depend on which of the data
retrieval approaches is used.

The Reporting module provides three web controls for DataSource parameters:

ReportingControls/LookuplnputSingleSelect.ascx — A drop-down input allowing a single
selection from data specified by a DataSource

ReportingControls/LookuplnputMultiSelect.ascx — A pop up control allowing multiple selections
from data specified by a DataSource

ReportingControls/TreeViewInput.ascx — A pop up control for nested hierarchies, allowing a
single or multiple selections from data specified by a DataSource

The EQT Model parameters all use the following web control:

ReportingControls/EQTInput.ascx — A pop up control with differing behavior based on which
existing EQT View is used

EQT Models

The Entity Query Toolkit (EQT) is an internal framework used in Oracle Agile PLM for Process for
mapping existing internal data models to search parameters and search results. This mapping is declared
in configuration files that are available for reference. EQT Models define how a search occurs, including
which search parameters are available, which search parameters are mandatory (and therefore hidden
and always used), what data is returned, and how returned data is displayed.

Most searches throughout the application use the EQT framework. The Reporting framework can
therefore leverage some existing EQT searches to create search parameters for the desired reports.
However, some EQT searches used in the application may not function as needed when leveraged in
EQT. For instance, one SCRM facility search allows the selection of a facility based on some search
parameters. When selecting the facility, however, the facility name may not populate the web control in
the reporting screen properly, even though the facility’s unique ID (PKID) does get stored properly.

Caveat: The details of EQT are complex, difficult to interpret, and are comprised of many components.
Additionally, EQT is an internal development tool only; although it may be leveraged in the Reporting

© 2012 Oracle Corporation

20

Agile Product Lifecycle Management for Process — Custom Report Configuration

module, it is not supported as a client facing tool. Therefore, a detailed review of EQT is beyond the
scope of this document.

Oracle Consulting Services may be able to provide some assistance in leveraging EQT to meet reporting
needs.

Reference EQT configuration files

The main EQT configuration file, EQtUIMode IDefinitions.xml, contains many of the EQT views
accessible throughout the application. Some of the views may reference the views in the
EqgtUlCommonMode Is.xml file. A reference version of each of these files is available by request.

Identifying an EQT search to use

To leverage an existing EQT search, the name of the searchable EQT view must first be identified. For
searches that occur in a pop-up window, the view name may be found by looking at the search pop-up
window’s properties listing (right click, select Properties) and examining the URL. The URL may include a
parameter that references the name of the EQT view.

For instance, the URL of one popup includes the following parameter:

&DataSource=SearchableView:Config:ProdikaSettings/SearchableMultiSelectViews,
PackagingSpecViewForProcessAndTradeSpecs

© 2012 Oracle Corporation

21

Agile Product Lifecycle Management for Process — Custom Report Configuration

p(_; Oracle - Windows [nternet Explorer

Packaging Material Spedfication !v]

Search Criteria

Spec Name [+] | contains [» tray maore criteria...

~ Load | [Save [Search || Reset

Search Results

Results Per Page |10 ||

Spec Spec Name Status Supercedes
5077545001 | IOF TRAY FILM | Developmental |
5083507001 IOF TRAY FILM Draft

1

Selected Ttems

Remove Clear Done

The EQT search view name used in this popup is PackagingSpecViewForProcessAndTradeSpecs.

Return value of the EQT selection

Examining the EqtUIModelDefinitions.xml file and locating this view reveals some information that will
be useful:

<PackagingSpecViewForProcessAndTradeSpecs . . . >
<AllowedModels>
<Model active=""true" name='"Packaging Specification" alias="1blTypel009"
orderByColumns="-"" captionColumn="1" primaryKeyColumnName="SpeclD">

The attribute primaryKeyColumnName specifies which field is returned upon selection. In this
instance, the SpeclD property will be returned. This may be only partially informative, as the details of
the model and its properties are hidden, but it generally can give an idea of what field value is returned.

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

Display value of the EQT selection

The display columns that contain an attribute providelInSelectJS are returned and accessible to
the report parameter, so that they can fill the input box upon selection.

<DisplayColumns>

<ColumnInfo width=""200" dataField=""SpecName" dataFieldCaption=""1blSpecName"
providelnSelectJS=""true"/>

The columns where providelnSelectJs are set to true are then used by the <Model> node’s
displayVvariablelndex attribute, representing the location/index of the desired property to display
in the selected items input field. In this example, the SpecName field is returned as the only display
item, and therefore its displayVariablelndex attribute would be set to 1.

Select PEICkEQiI'IQ: |IQF TRAY FILM

<ParameterType type="ExampleEQTInput_PackagingSpecView"
webControl="ReportingControls/EQT Input.ascx">

<Model
displayVariablelndex="1">SearchableView:Config:ProdikaSettings/EQTConfiguration/Search
ableMultiSelectViews,PackagingSpecViewForProcessAndTradeSpecs</Model></ParameterType>

Other ways to identify an EQT model

While some EQT views can be identified by the URL of the pop-up, others views are harder to identify.
Examining the EqtUIMode IDefinitions.xml file and searching for the desired information may
yield results.

Oracle Consulting Services may be able to provide more assistance in identifying a desired EQT model.

Available EQT models

Currently, only the models in the following EqtUIModelDefinitions.xml sections are supported in the
Reporting module:

Views in the models/ProdikaReporting node (via SearchableMultiSelectViews)
Views in the models/pgs node (via PQSSearchableMultiSelectViews)

For example, to create a report parameter to access the SpecSummaryView EQT view from
ProdikaReporting, use the following entry:

<ParameterType type="ExampleEQTInput_SpecSummary"

webControl="ReportingControls/EQT Input.ascx">

<Model
displayVariablelndex="1">SearchableView:Config:ProdikaSettings/EQTConfiguration/Search
ableMultiSelectViews,SpecSummaryView</Model>

</ParameterType>

When configuring the Model node, the syntax above always begins with
SearchableView:Config:ProdikaSettings/EQTConfiguration/ and is followed by either

© 2012 Oracle Corporation

23

Agile Product Lifecycle Management for Process — Custom Report Configuration

SearchableMultiSelectViews (for the models in the ProdikaReporting node) or
PQSSearchableMultiSelectViews (for the models in the PQS node), then a comma, followed by the
name of the Model.

An additional and possibly more straightforward approach to creating custom search parameters is by
using DataSources.

DataSources

DataSources are classes that implement a specific interface (discussed later) whose responsibility is to
retrieve search result data for selection in a pop-up web control. Clients can leverage several existing
DataSources, or implement their own classes and plug them in easily. DataSources are referenced by
their full class name and package name. They may also include parameters in their declarations that are
then used by the class to modify its behavior. Please see Appendix C — Object Loader URLs and some of
the examples below for more details.

Here is a report parameter that uses an existing datasource (LookupServicelListViewDataSource):

<ParameterType type="ExampleGenericLookup_Allergens"
webControl="ReportingControls/LookupInputMultiSelect.ascx">

<DataSource
className=""Class:Xeno.Web.Ul .Controls.DataSources.LookupServiceListViewDataSource,Xeno
WebControls$AllergensTitle|Allergens'/>
</ParameterType>

Existing DataSources
Several existing DataSources may be leveraged to retrieve data which only require parameters to
customize their results. A few are outlined here.

LookupServiceListViewDataSource

There are many data lists throughout the application, such as Languages, NPDBrands, Allergens, etc.
Most lists are managed through a service that uses the database table commonLookupServiceManagers
to maintain each list and how the list is configured. The ManagerID column value of this table for the
desired lookup data must be passed in as the second parameter and is used by the
LookupServicelListViewDataSource class to retrieve that list.

See the Oracle Agile PLM Data Training for more details on how CommonLookups work.

In the example above, the DataSource used is as follows, and takes two parameters
(“AllergensTitle | Allergens”), the first for the pop-up title, and the second for the lookupManagerID.

<DataSource
className=""Class:Xeno.Web.Ul .Controls.DataSources.LookupServiceListViewDataSo
urce,XenoWebControls$AllergensTitle|Allergens' />

Some lookup items are status aware, so this Datasource allows for a third parameter to be passed in to
indicate if only Active items should be displayed ('ForSearching'), or all historically valid items should be
displayed ('StatusAwareConsumer').

© 2012 Oracle Corporation

24

Agile Product Lifecycle Management for Process — Custom Report Configuration

GenericlistSelectView

This DataSource is used for specifying a table and column to search on, and the return value for the
selected item(s). Rather than pass in the table name, however, this DataSource expects a class name
which it then uses to retrieve the table name (The tablename to classname mapping can be found in the
database table orclassmetainfo). To specify the column to retrieve, this DataSource expects the class
parameter name that will then be used to retrieve the column name (The property to column name
mapping can be found in the orpropertymetainfo table). To specify the return value column name,
this DataSource expects the class parameter name that will then be used to retrieve the column name.

Example SQL to find the classname and property name:
SELECT tablename FROM orclassmetainfo where classname="complieswith*®

SELECT columnName, propertyName FROM orpropertymetainfo
where fkORClassMetalnfo = (select pkid from orclassmetainfo where
classname="complieswith")

An example of using the GenericListSelectView DataSource for CompliesWith items, displays the Name
of the compliesWith item, and returns the PKID for the selected item(s).

<ParameterType type="ExampleGenericTableLookup_ CompliesWith"
webControl="ReportingControls/LookuplnputMultiSelect.ascx'>

<DataSource
className=""Class:Xeno.Web.Ul _DataSources.GenericListSelectView, XenoWebControl
s$|CompliesWith|Name|PKID"/>
</ParameterType>

TaxonomyXNodeTreeViewDataSource

This DataSource is used to load multi-level taxonomies that are managed in the
commonTaxonomyNamespace table. It requires a namespaceid parameter and must use the
TreeViewlnput control. There is also the option of making the selectable data a single- or multi-select.

An example of using this DataSource to display SCRM business units in a multi-select pop-up:

<ParameterType type="ExampleGenericTaxonomy_ SCRMBusinessUnit"
webControl="ReportingControls/TreeViewlnput._ascx'>

<DataSource
className=""Class:Xeno.Web.Ul .DataSources.TaxonomyXNodeTreeViewDataSource, XenoWebContro
Is$SCRMBusinessUnit" />

<MultiSelect>true</MultiSelect>
</ParameterType>

© 2012 Oracle Corporation

25

Agile Product Lifecycle Management for Process — Custom Report Configuration

Custom DataSources

Clients may also create a custom DataSource class to implement their own data retrieval operations. The
class must implement the Xeno.Web.Ul.Controls.IListView interface, and must include implementations
of the following interfaces from the Xeno.Web.Ul.Controls namespace:

The IListView interface returns an IListDataSource, which must enumerate through the results and
return an IListltem for each entry.

public interface IListView

{
IListDataSource ListItemsByPrefix(String prefix);
IListDataSource ListAllItems();
String Title{ get; }
bool AllowAddNew{ get; }
void AddNewListItem(IListItem item);
}
public interface IListDataSource
{
IListItem Current{ get; }
bool Next();
}
public interface IListItem
{
String Value{ get; }
String DisplayValue{ get; }
}

The custom DataSource class must be compiled and placed into the Web\ProdikaReporting\bin
directory.

© 2012 Oracle Corporation

26

Agile Product Lifecycle Management for Process — Custom Report Configuration

Appendix B — Applying Security to Reports

Overview

The Reporting framework allows customers to configure security rules that govern if a Report or Report
Group should be visible to the current user. The SecurityFactoryReT attribute of the Report and
ReportGroup nodes can be declared with different security plug-ins using Object Loader syntax. Each
security plug-in takes parameters in its declaration that determine the access restrictions for that Report
or Report Group.

Because Report nodes are children of the ReportGroup node, security is enforced hierarchically. When
considering access to a Report, the user must have access to the parent Report Group.

Existing Security Plug-ins
The following report security plug-ins are available:

UserRoleBasedSecurityPluginFactory
This plug-in secures a Report, Report Group, or Report Context based on the roles to which a user
belongs. The specified roles are evaluated using an OR relationship, meaning that if the user belongs to

any of the roles listed, they allowed access. Negation is allowed through the use of the "!" (exclamation

mark) operator as a prefix to a role name.

Example

SecurityFactoryRef="Class:Xeno.Prodika.SecurityModel .Contextual .UserRoleBased
SecurityPluginFactory,Prodikal ib$[SCRM_COMPANY_READER] | [SCRM_FACILITY_READER]

Note that the brackets surrounding the role name are required.

UserPropertyBasedSecurityPluginFactory

This plug-in secures a Report, Report Group, or Report Context based on the user’s application

access. The specified applications listed are evaluated in an OR relationship. It is important to note that
this type of security considers a user’s "HasAdminAccess" property, and if so, allows access regardless of
the supplied permissions.

Example

SecurityFactoryRef=""Class:Xeno.Prodika.SecurityModel .Contextual .UserPropertyB
asedSecurityPluginFactory,ProdikalLib$SCRM"

© 2012 Oracle Corporation

27

Agile Product Lifecycle Management for Process — Custom Report Configuration

UserGroupBasedSecurityPluginFactory
Note that this plug-in is available in the Extensibility Pack, under the Handlers package. Be sure to add
the Handlers.dll file to the web\ProdikaReporting\bin directory.

This plug-in secures a Report, Report Group, or Report Context based on the user’s group access. The
specified groups listed are evaluated in an OR relationship. There are several ways to specify the group:

using the group name or the group PKID. Negation is allowed through the use of the "!" (exclamation
mark) operator as a prefix to a group name or PKID. Additional options are detailed in the Extensibility

Pack documentation.
Example

SecurityFactoryRef=""Class:Xeno.Prodika.SecurityModel .Contextual .UserGroupBase
dSecurityPluginFactory,Handlers$Groupl123|Group456"

© 2012 Oracle Corporation

28

Agile Product Lifecycle Management for Process — Custom Report Configuration

Appendix C — Object Loader URLs

Object Loader URLs are classpaths that are used to dynamically load objects. They are used to declare
the protocol to use when loading the class, the class path, and optionally any parameters to pass to the
class.

Format
[Protocol] : [Path] $ [[param1] | param2]

Protocol - Examples are "Class" and “Singleton".

Path - The fully qualified class name, including the package name. For example
""Xeno.Prodika.SecurityModel .Contextual .UserRoleBasedSecurityPlugi
nFactory,ProdikalLib’ where Prodikalib is the name of the package (.dll file).

When loading an object, the loader first inspects the Protocol and using lazy loading, determines an
appropriate protocol handler based on this protocol’s name. The "Class" protocol may refer to a class
that accepts parameters during instantiation which are defined after a "$" and delimited by "|"s (pipes).

Common Usage

The most common usage of this class is in configuration files. Often a factory class is supplied in a
configuration and the Object Loader bootstraps the factory, which in turn facilitates the use of the rest
of the implementation. These implementations are easily swapped by simply providing a different
factory in the configuration.

Example

Class:Xeno.Prodika.Portal.WebUI.Util.Security.UserPropertyBasedSecurityPluginFactory,ProdikaLibSNPD

"Class" is the protocol, "NPD" is a parameter, and the rest of the string between the ":" and the "S$" is
the path as defined by the protocol. In this case, it is the class path of the object that is to be
instantiated.

© 2012 Oracle Corporation

29

Agile Product Lifecycle Management for Process — Custom Report Configuration

Appendix D — Third Party External Application Integration

The Oracle Agile Product Lifecycle Management for Process application allows customers to integrate
with reports that exist in an external reporting engine. Specifically, customers can configure the
application suite to gather information from within the application and provide well-formatted reports
that are generated in an external system.

Currently, the PLM for Process application supports only two reporting engines:
Oracle Bl Publisher
SQL Server Reporting Service

This document outlines the steps necessary to integrate the PLM for Process application with any other
third party external application that can provide similar functionality.

Programmatic Interfaces
In order to achieve this integration, two classes must be created that conform to PLM for Process
interfaces.

1. IServiceFactory
2. IReportGenerationService

Implementing IReportGenerationService
The PLM for Process application expects all implementations of its report integration adapters to
implement the IReportGenerationService interface:

namespace Xeno.Prodika.Services

{

public interface IServiceFactory

{
IService Create(lExecutionContext execContext, IBlockingResourcePool
servicePool);

}
}

As the sample code illustrates, this class has two purposes:
i Retrieve configuration information from the ReportingServiceConfig

ii. Initialize and return a Service that will be used to manage integration with a reporting engine
(which in this case is called ParameterReportGenerationService)

public class ParameterReportGenerationServiceFactory : IServiceFactory

{

private ReportingServiceConfig _config;

public IService Create(lExecutionContext execContext, IBlockingResourcePool
servicePool)

© 2012 Oracle Corporation

30

Agile Product Lifecycle Management for Process — Custom Report Configuration

ExtractConfiguration();
return new ParameterReportGenerationService(_config);
}

private void ExtractConfiguration()

if (config !'= null)
return;
IXMLConfigurationManager cm = (IXMLConfigurationManager)
AppPlatformHelper.ApplicationManager.EnvironmentManager .GetConfigManager ("'ReportingSer
viceConfig"™);

_config = (ReportingServiceConfig) cm.GetConfig(‘''ReportingServiceConfig™);

if (Cconfig == null)
throw new ProdikaConfigurationException(*'Could not read
ReportingServiceConfig");

}
}

Implementing IReportGenerationService
The PLM for Process application expects all implementations of its report integration adapters to
implement the IReportGenerationService interface:

namespace Xeno.Reporting.Service.ReportGenerationService

public interface IReportGenerationService : IService
{
ReportingServiceConfig Config { get; }
ReportResults GenerateReport(ReportConfig config, ITranslationCache
translationCache, string format, IDictionary parameters);
}
}

This interface provides two capabilities:
i The ability to access configuration information

ii. A method that can be converts a request for a report into the result of a report invocation.

internal class ParameterReportGenerationService : IReportGenerationService
{
private readonly ReportingServiceConfig _config;
public ParameterReportGenerationService(ReportingServiceConfig config)
{
_config = config;

}

public ReportResults GenerateReport(ReportConfig config, ITranslationCache
translationCache, string format, IDictionary parameters)
{
ReportResults result = new ReportResults();
result_ReportContent = BuildParameterReport(parameters);
result_.MimeType = format;
return result;

© 2012 Oracle Corporation

31

Agile Product Lifecycle Management for Process — Custom Report Configuration

private static byte[] BuildParameterReport(IDictionary parameters)

{
StringBuilder builder = new StringBuilder();

foreach (DictionaryEntry parameter in parameters)

builder.AppendFormat("'Parameter *"{0}" has value: "{1}"
", parameter .Key,
parameter.Value);

return new ASCIIEncoding().GetBytes(builder.ToString());
}

public ReportingServiceConfig Config

{
get { return _config; }

public IServiceContext ServiceContext

{
get { return new ServiceContextAdapter(); }

set { ; }
by
T

In our example, the configuration information was passed into this class upon creation. All that needs to
be done is to provide it back in order to fulfill the contract of the IReportGenerationService.

The generation is also reasonably straightforward. The following information is provided to the method
that implements this behavior:

i The ReportConfig, which contains information on which report is being requested as well as its
service location

ii. The translation cache that has been configured for this particular report
iii. The format of the result
iv. All parameters that have been picked by a user and are being passed into the report

As can be seen, the sample code in question does not make a call to a reporting engine. Instead, it
displays all parameters that have been provided to it in HTML.

A more realistic implementation would access the Name and ServicelLocation values off the
ReportConfig object and then use that to drive which report needed to be invoked.

It should be noted that the approach taken by PLM for Process does not assume a specific protocol
(SOAP/DB/etc). That is a decision best left up to the implementer.

© 2012 Oracle Corporation

32

Agile Product Lifecycle Management for Process — Custom Report Configuration

Configuration Changes

In order for the PLM for Process application to use custom code for report integration, we must register
it at the appropriate location. In this particular case, the correct location is the
Config/Custom/CustomerSettings.config file.

For our sample implementation, the entry for SQLReportingService in the configuration file would be
modified to this if the following assumptions about the class that implements IServiceFactory were true:

i. It is named ParameterReportGenerationServiceFactory and is in namespace
ParameterReportingServiceAdapter

ii. It is contained in the ParameterReportingServiceAdapter.dll

iii. The DLL file is available to all web applications (i.e., it is present in each Web/*/bin directory)

<SQLReportingService refscope="Session"
factory=""Class:ParameterReportingServiceAdapter.ParameterReportGenerationServiceFactor
y,ParameterReportingServiceAdapter"

configChildKey=""name"

configAttributeOverrideModifier="Replace” > </SQLReportingService>

PLM for Process must be configured with the user name and password in order integrate properly. To
set this value, please refer to the “Setup Assistant” section of the Agile Product Lifecycle Management
for Process Configuration Guide.

© 2012 Oracle Corporation

33

© 2012 Oracle Corporation

Agile Product Lifecycle Management for Process — Custom Report Configuration

34

	Oracle® Agile Product Lifecycle Management for Process Custom Report Configuration Guide
	Copyrights and Trademarks
	Contents
	Custom Report Configuration
	Purpose
	Overview
	Report Generation Screen

	Configuring the CustomReportExtensions.xml File
	File Structure Overview

	Configuring Report Parameter Types
	Global Report Parameters
	<ParameterTypes> Node
	Attributes

	<ParameterType> Node
	Attributes
	Child Nodes
	Parent Node

	<DataSource> Node
	<Model> Node
	Attributes

	Configuring Reports
	<ReportContext> Node
	<ContextCriteria> Node
	<ReportGroup> Node
	<Parameters> Node
	<Parameter> Node
	<Reports> Node
	<Report> Node
	<AllowedOutputTypes> Node
	<AllowedOutputType> Node

	Configuring Common Reports
	Configuring Contextual Reporting

	Appendix A – Creating Custom Report Parameter Types
	Methods of Retrieving Data
	Displaying Search Parameters

	EQT Models
	Reference EQT configuration files
	Identifying an EQT search to use
	Display value of the EQT selection
	Other ways to identify an EQT model
	Available EQT models

	DataSources
	Existing DataSources
	LookupServiceListViewDataSource
	GenericListSelectView
	TaxonomyXNodeTreeViewDataSource

	Custom DataSources

	Appendix B – Applying Security to Reports
	Overview
	Existing Security Plug-ins
	UserRoleBasedSecurityPluginFactory
	Example

	UserPropertyBasedSecurityPluginFactory
	Example

	UserGroupBasedSecurityPluginFactory
	Example

	Appendix C – Object Loader URLs
	Format
	Common Usage
	Example

	Appendix D – Third Party External Application Integration
	Programmatic Interfaces
	Implementing IReportGenerationService
	Implementing IReportGenerationService

	Configuration Changes

