
Endeca® Discovery Framework
Extension Guide

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...7
Contacting Endeca Customer Support...8

Chapter 1: Extending the Discovery Framework.....................................9
Developer tasks in the Discovery Framework...9
Licensing requirement for component development...9
Obtaining more information..10

Chapter 2: Security extensions to the Discovery Framework..............11
Security Manager class summary ..11
Creating a new MDEX Security Manager...12
Implementing a new MDEX Security Manager...12
Using the MDEX Security Manager..12

Chapter 3: Managing data source state in the Discovery Framework..15
State Manager class summary...15
Creating a new MDEX State Manager..16
Implementing an MDEX State Manager...16
Using the MDEX State Manager...16

Chapter 4: Installing and using the Component SDK...........................19
Downloading and configuring the Component SDK...19
Configuring Eclipse for component development..20
Component development overview...20

Creating a new component..20
Importing the project in Eclipse...21
Building and testing your new component...21

Modifying Endeca enhancements to the Component SDK...21

Chapter 5: Localizing the Discovery Framework...................................23
Discovery Framework localization scenarios..23

About adding a translation to a released component..23
Setting up a component for localization...24

Chapter 6:Discovery Framework interaction with MDEX 7 Early Access edition.31
About MDEX 7 Early Access edition...31

Connecting to an MDEX 7 data source...31

iii

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2010 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2008 Oracle. All rights reserved.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca Profind, Endeca Navigation Engine, and other Endeca product
names referenced herein are registered trademarks or trademarks of Endeca Technologies, Inc. in
the United States and other jurisdictions. All other product names, company names, marks, logos, and
symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7424528, US Patent 7567957, US Patent 7617184, Australian
Standard Patent 2001268095, Republic of Korea Patent 0797232, Chinese Patent for Invention
CN10461159C, Hong Kong Patent HK1072114, European Patent EP1459206B1, and other patents
pending.

Endeca Discovery Framework Extension Guide • December 2010

Version 1.4

v

Preface

Endeca® Latitude applications guide people to better decisions by combining the ease of search with
the analytic power of business intelligence. Users get self-service access to the data they need without
needing to specify in advance the queries or views they need. At the same time, the user experience
is data driven, continuously revealing the salient relationships in the underlying data for them to explore.

The heart of Endeca's technology is the MDEX Engine.™ The MDEX Engine is a hybrid between an
analytical database and a search engine that makes possible a new kind of Agile BI. It provides guided
exploration, search, and analysis on any kind of information: structured or unstructured, inside the firm
or from external sources.

Endeca Latitude includes data integration and content enrichment tools to load both structured and
unstructured data. It also includes the Discovery Framework, a set of tools to configure user experience
features including search, analytics, and visualizations. This enables IT to partner with the business
to gather requirements and rapidly iterate a solution.

About this guide
This guide contains information about extending the Endeca Discovery Framework on Windows and
Linux. It also introduces the Discovery Framework Component SDK.

The Discovery Framework enables rapid configuration of dashboard applications that offer the highly
interactive Guided Navigation® user experience across a full range of structured and unstructured
enterprise data.

The Discovery Framework is easy to deploy and ideal for the agile development of enterprise-quality
applications. Due to component-based nature of the Discovery Framework, these applications are
simple to control, adapt, and extend. It provides granular layout and configuration control to enable
users to manage and personalize their own experiences.

The Discovery Framework consists of an enterprise-class portal framework and a library of UI
components that embody best practices in Endeca applications. In addition, it includes a Component
SDK, which is a packaged development environment for portlets, themes, layout templates, and other
portal element. Endeca has modified Liferay's version of its Plugins SDK to include the Endeca
enhancements, such as the EndecaPortlet core class.

Who should use this guide
This guide is intended for developers who are building applications using the Endeca Discovery
Framework on Windows or Linux.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

| Preface8

http://eden.endeca.com

Chapter 1

Extending the Discovery Framework

Out of the box, the Endeca Discovery Framework includes numerous components that you can use
to quickly develop an enterprise-quality search application. In addition, the Discovery Framework
provides a number of extension points for managing query and portlet operations, along with default
implementations of the various interfaces that you can modify.

Developer tasks in the Discovery Framework
Data source configuration tasks include:

• Modifying data sources.
• Adjusting security.
• Customizing how data sources interact with each other.

Component customization tasks include:

• Adding or modifying portlet components based on the EndecaPortlet class, using the Discovery
Framework Component SDK.

• Localizing components.

This guide covers all of these developer tasks.

Note: Before modifying data source, make sure to read chapter 3 in the Discovery Framework
Installation Guide, "About data source configuration." This chapter describes the default interaction
model between related data sources.

Licensing requirement for component development
Discovery Framework component development may require the purchase of a third party license.

If you want to modify any Discovery Framework components that use the Ext JS API, or use that API
to create your own components, you must purchase a developer's license from Ext JS.

http://www.extjs.com/products/js/

Obtaining more information
Because the Discovery Framework is built upon the Liferay Portal, you can access Liferay's
documentation for more information about how to perform administrative and developer tasks.

Specifically, the Liferay Portal Administrator's Guide provides extensive information about installing,
configuring, and maintaining a portal. To access a free PDF download of this guide, go to
http://www.liferay.com and navigate to Documentation.

Liferay developer resources

The Discovery Framework Extension Guide (this guide) only covers Endeca extensions to the Liferay
Portal. For additional developer support, Liferay provides blogs, wikis, and forums. To access this, go
to http://www.liferay.com and navigate to Community.

The Endeca Developer Network (EDeN)

You can obtain more information about the Discovery Framework and other Endeca products at the
Endeca Developer Network (EDeN) at http://eden.endeca.com.

Additional Endeca documentation

The Discovery Framework documentation set, including the Discovery Framework Installation Guide,
Discovery Framework Migration Guide, and Discovery Framework Component Catalog, can be accessed
from the EDeN knowledge base.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Extending the Discovery Framework | Obtaining more information10

http://www.liferay.com
http://www.liferay.com
http://eden.endeca.com

Chapter 2

Security extensions to the Discovery
Framework

You may require more than the default data source role-based security discussed in the Discovery
Framework Installation Guide. If so, you can customize the automated filtering of data from the MDEX
Engine (based on user profile details such as the user's role or group association) by creating a custom
MDEX Security Manager.

Security Manager class summary
This topic summarizes the Security Manager class.

An MDEX Security Manager is any concrete class that implements the
com.endeca.portal.data.security.MDEXSecurityManager.

com.endeca.portal.data.security.MDEXSecurityManagerAbstract base class

com.endeca.portal.data.DefaultMDEXSecurityManagerDefault implementation class

Handles pre-execution query modification based on the user, role,
or group-based security configuration of filters.

Description

The default Security Manager implementation makes use of
the securityEnabled, securityFilters, rolePermissions,

Default implementation
behavior

inheritSecurity, and parentDataSource properties.These
properties are defined in data source configurations in order to
apply role-based security filters to every query issued to the MDEX
Engine backing a given data source. Users are assigned to Liferay
roles in the Control Panel, and the related associations are made
available to every portlet through the user's session.The Security
Manager is responsible for maintaining an internal map of security
filters for each data source that should always be applied to queries
issued for that user's session.

Note: Record filters are the only supported type of
securityFilter.

Note: securityEnabled defaults to false if the value is
not present.

Note: inheritSecurity defaults to true if the data
source has a parent, and defaults to false if not.

Creating a new MDEX Security Manager
This topic describes the steps required to create an MDEX Security Manager.

To create a new MDEX Security Manager project:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:

• On Windows:.\create-mdexsecuritymanager.bat <your-security-manager-name>
• On Linux: ./create-mdexsecuritymanager.sh <your-security-manager-name>

This command creates a your-security-manager-name directory under endeca-extensions.
This directory is an Eclipse project that can be imported directly into Eclipse if you use that as your
IDE.

Note: This directory also contains a sample implementation, which is essentially identical
to the default implementation of the Security Manager used by the Discovery Framework.
You can use this sample implementation to help you understand how the Security Manager
can be used.

Implementing a new MDEX Security Manager
Your Security Manager must implement the applySecurity method described in this topic.

There are two versions of the applySecurity method, one of which your Security Manager must
implement:

public void applySecurity(PortletRequest request, MDEXState mdexState, Query
 query) throws MDEXSecurityException;

The Query class in this signature is com.endeca.portal.data.Query.This class provides a simple
wrapper around an ENEQuery.

Using the MDEX Security Manager
In order to use your MDEX Security Manager, you must specify a new class for the Discovery
Framework to pick up and use in place of the default Security Manager implementation.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Security extensions to the Discovery Framework | Creating a new MDEX Security Manager12

The your-security-manager-name directory you created contains an ant build file. The ant
deploy task places a .jar file containing your State Manager into the
portal/tomcat-<version>/lib/ext directory.

To specify your new class to the Discovery Framework:

1. Point the cursor at the Dock in the upper-right corner of the page.

2. In the drop-down menu, choose Control Panel.

3. In the Portal section of the Control Panel navigation panel, select Discovery Framework Settings.

4. Change the df.mdexSecurityManager property to the full name of your class, similar to following
example:

df.mdexSecurityManager = com.endeca.portal.extensions.YourSecurityManager¬
Class

5. Click Update Settings.

6. Restart the Discovery Framework so the change can take effect.You may also need to clear any
cached user sessions.

Endeca® Discovery Framework Extension GuideEndeca Confidential

13Security extensions to the Discovery Framework | Using the MDEX Security Manager

Chapter 3

Managing data source state in the
Discovery Framework

The Discovery Framework provides an extension point that allows you to define your own interaction
model by creating a custom MDEX State Manager. In addition, chapter 3 in the Discovery Framework
Installation Guide, "About data source configuration," describes the default interaction model between
related data sources.

State Manager class summary
This topic summarizes the State Manager class.

An MDEX State Manager is any concrete class that extends from
com.endeca.portal.data.AbstractMDEXStateManager. This class serves as a data source
state manager that can be used to customize how data sources interact with each other during updates
and query construction.

com.endeca.portal.data.AbstractMDEXStateManagerAbstract base class

com.endeca.portal.data.DefaultMDEXStateManagerDefault implementation class

Handles data source state updates and pre-execution query
modification, based on data source relationships and configuration.

Description

The default state manager implementation makes use of the
ParentDataSource property defined in data source configurations

Default implementation
behavior

in order to propagate state changes throughout a hierarchy of data
source relationships. When a portlet modifies the query state of its
data source, that modification is applied to its parent data source
and is also applied to all children of that parent. It is recursive in
that it will apply all the way up and back down an ancestor tree.
This allows application developers to create more advanced
interfaces, such as tabbed result sets where a single Guided
Navigation component should control the query state for Results
Table components in individual tabs, by establishing a relationship
hierarchy in data source configurations.

Creating a new MDEX State Manager
This topic describes the steps required to create an MDEX State Manager.

To create a new MDEX State Manager project:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:

• On Windows: .\create-mdexstatemanager.bat <your-state-manager-name>
• On Linux: ./create-mdexstatemanager.sh <your-state-manager-name>

This command creates a your-state-manager-name directory under endeca-extensions.
This directory is an Eclipse project that can be imported directly into Eclipse if you use that as your
IDE.

Note: This directory also contains a sample implementation, which is essentially identical
to the default implementation of the State Manager used by the Discovery Framework.
You can use this sample implementation to help you understand how the State Manager
can be used.

Implementing an MDEX State Manager
Your State Manager must implement the two methods described in this topic.

public void handleStateUpdate(PortletRequest request, MDEXState mdexState,
 QueryState newQueryState) throws QueryStateException;

public QueryState handleStateMerge(PortletRequest request, MDEXState
mdexState) throws QueryStateException;

• handleStateUpdate() is called when a portlet calls DataSource.setQueryState(qs).
This method should eventually call mdexState.setQueryState(). (However, if it determines
that, for whatever reason, the MDEXState's QueryState should not change, it is not required
to make this call.) handleStateUpdate() is also responsible for marking any data sources
impacted by the update (which could depend upon your implementation of handleStateMerge())
so that portlets that listen to them on the page will properly update. For this reason, the
addEventTrigger(PortletRequest request, MDEXState ds) method is provided for
you to call, with the passed in request object and any MDEXState objects that are considered
changed.

• handleStateMerge() is called when a portlet calls DataSource.getQueryState().You
are expected to return the QueryState that the portlet should get access to for the data source
represented by the mdexState, taking into account any data source relationships or other aspects
of your State Manager that might impact query state.

Using the MDEX State Manager
In order to use your MDEX State Manager, you must specify a new class for the Discovery Framework
to pick up and use in place of the default State Manager implementation.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Managing data source state in the Discovery Framework | Creating a new MDEX State Manager16

The your-state-manager-name directory you created contains an ant build file.The ant deploy
task places a .jar file containing your State Manager into the
portal/tomcat-<version>/lib/ext directory.

To specify your new class to the Discovery Framework:

1. Point the cursor at the Dock in the upper-right corner of the page.

2. In the drop-down menu, choose Control Panel.

3. In the Portal section of the Control Panel navigation panel, select Discovery Framework Settings.

4. Change the df.mdexStateManager property to the full name of your class, similar to following
example:

df.mdexStateManager = com.endeca.portal.extensions.YourStateManagerClass

5. Click Update Settings.

6. Restart the Discovery Framework so the change can take effect.You may also need to clear any
cached user sessions.

Endeca® Discovery Framework Extension GuideEndeca Confidential

17Managing data source state in the Discovery Framework | Using the MDEX State Manager

Chapter 4

Installing and using the Component SDK

You can customize the Discovery Framework even further by creating your own components. The
Discovery Framework Component SDK is a packaged development environment that you can use to
add or modify portlets, themes, and layout templates. The Component SDK is a modified version of
the Liferay Plugins SDK. The Endeca version includes enhancements such as the EndecaPortlet
core class.

Downloading and configuring the Component SDK
You can download the Discovery Framework Component SDK from the Downloads section of the
Endeca Developer Network (EDeN).

Before installing the Component SDK, download and unzip endeca-portal-<version>.zip, as
described in the Discovery Framework Installation Guide.This is the base Discovery Framework code,
which the Component SDK depends upon.You do not have to start the Discovery Framework.

Note: On Windows, for steps 3 and 5 below, backslashes in paths must be escaped. That is,
use something like the following:

portal.base.dir=C:\\my_folder\\endeca-portal

instead of:

portal.base.dir=C:\my_folder\endeca-portal

To install the Component SDK:

1. Download and unzip components-sdk-<version>.zip to a separate directory. This is the
Component SDK itself. Perform the following steps within the Component SDK.

2. Create a file components/build.<user>.properties, where <user> is the user name with
which you logged on to this machine.

3. Within that properties file, add a single property
portal.base.dir=<absolute_path_to_portal> , where <absolute_path_to_portal>
is the path to the unzipped endeca-portal-<version>.zip.

4. Create a shared.properties file in the shared/ directory.

5. Edit shared/shared.properties and set the single property
portal.base.dir=<absolute_path_to_portal> , where <absolute_path_to_portal>
is the path to the unzipped endeca-portal-<version>.zip.

Configuring Eclipse for component development
Before developing Discovery Framework components in Eclipse using the Component SDK, two
Eclipse classpath variables need to be created.

Note: Depending on your version of Eclipse, the steps below may vary slightly.

To configure the Eclipse classpath variables for Endeca Discovery Framework component development:

In Eclipse, go to Window > Preferences > Java > Build Path > Classpath Variables and create
two new variables:

ExamplePathName

C:/endeca-portal/tomcat-<version>/¬

common/lib

Path to the
application server
global library.

DF_GLOBAL_LIB

C:/endeca-portal/tomcat-<version>/¬

webapps/ROOT/WEB-INF/lib

Path to the Liferay
ROOT Web
application library.

DF_PORTAL_LIB

Once these variables have been created, the components generated by the Component SDK are
ready to be imported into Eclipse.

Component development overview
This topic provides a high-level overview of the component development process. Subsequent topics
explain each step given here in greater detail.

To develop a new Discovery Framework component:

1. Create the component.

2. Import the project in Eclipse.

3. Build and test the new component.

Creating a new component
New Discovery Framework components are extensions of the EndecaPortlet class.

To create a new component:

1. At a command prompt, navigate to the Component SDK directory, and from there to
components/portlets.

2. Run the command create.bat a-portlet-name-without-spaces "A Friendly Portlet
Name" where:

• The first argument must not have spaces. The string -portlet is automatically appended to
the name.

• The second argument is intended to be a more human-friendly name. Spaces are allowed, but
if the name has spaces, it must be enclosed in quotation marks.

An example command would be create.bat jons-test "Jon's Test Portlet"

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Installing and using the Component SDK | Configuring Eclipse for component development20

Importing the project in Eclipse
Before beginning component development, you have to import the component project you just created
into Eclipse.

To import the Discovery Framework Component SDK project you just created into Eclipse:

1. Within Eclipse, choose File > Import > General > Existing Projects into Workspace.

2. As the root directory from which to import, select the directory where you installed the Component
SDK.You should see multiple projects to import.

3. Import the portlets you need to work with. If your portlets depend on shared library projects located
within the /shared directory, import those as well.

Note: It takes some time for projects to build after they are imported.

Building and testing your new component
Next, you can build your new component in Eclipse and ensure that it appears in the Discovery
Framework.

To build your new component in Eclipse:

1. In your new project, open the build.xml file at the top level.

2. In the outline view, right-click the deploy task and select Run as... > Ant Build.

Note: This step is only necessary if you do not have Build Automatically checked in the
Eclipse Project menu.

3. If the Discovery Framework is not already running, log on to the Discovery Framework and sign in.

4. Look at the Discovery Framework logs to confirm that the component was picked up successfully.

5. Test your new component within the Discovery Framework by choosing Add Application and
looking in the Sample category. Add the new component to your page by dragging and dropping
it.

Modifying Endeca enhancements to the Component SDK
The build.xml file in the root directory of each component created by the Component SDK contains
three lines that control Endeca's build enhancements.

By default, these three lines are:

<property name="shared.libs" value="endeca-common-resources,endeca-discovery-
taglib" />
 <property name="endeca-common-resources.includes" value="**/*" />
 <property name="endeca-common-resources.excludes" value="" />

The properties control the behavior described below:

• The shared.libs property controls which of the projects in the shared/ directory are included
in your component. These shared projects are compiled and included as .jar files where
appropriate.

Endeca® Discovery Framework Extension GuideEndeca Confidential

21Installing and using the Component SDK | Modifying Endeca enhancements to the Component SDK

• The endeca-common-resources include and exclude properties control which files in the
shared/endeca-common-resources project are copied into your component. By default, all
endeca-common-resources files are included, giving your component the Endeca AJAX
enhancements (preRender.jspf and postRender.jspf) and the ability to switch between
data sources in your component's preferences (dataSourceSelector.jspf). If your component
needs to override any of these files, you must exclude them via these build properties or your code
will be overwritten.

These include and exclude properties can be specified for any shared library, as shown in the
following example:

<property name="endeca-discovery-taglib.includes" value="**/*" />
 <property name="endeca-discovery-taglib.excludes" value="" />

When unspecified, includes default to "**/*" and excludes default to "".

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Installing and using the Component SDK | Modifying Endeca enhancements to the Component SDK22

Chapter 5

Localizing the Discovery Framework

The Discovery Framework is an internationalized application that can be adapted for use in different
locales. This section describes how to localize your Discovery Framework components.

Discovery Framework localization scenarios
Discovery Framework localization refers to two sets of tasks.

The first case is translating a component that has already been localized. In this scenario, you are
applying the translation to components whose message strings have already been externalized to a
resource bundle. Details on modifying and deploying a translated component appear in the next section.

The second, more involved case is developing or updating a component so that it supports localization.
For details, see the section beginning with the topic "Setting up a component for localization."

About adding a translation to a released component
This section discusses translating a component that has already been localized.

In this scenario, the component's English-language message strings have been externalized into the
portlet WAR file's resource bundle. These strings can be translated to the target language and then
made available to the Discovery Framework.

Note: If you are working with a double-byte, extended character set language, consult the
section "Working with non-Unicode characters" that appears later in this chapter before following
the procedure below.

Adding a translation to a released component

This procedure can be followed whether you want to translate the content yourself or obtain the
translation from a third party.

To add translated message strings to a released component:

1. Unzip the .war file of the localized component you want to modify.

2. Edit its portlet.xml file to enable the additional locale you want to support. For example, to add
French, include <supported-locale>fr</supported-locale>.

3. In WEB-INF/classes/com/endeca/ (or other location, based on your component's class
structure), generate a Resource_[locale].properties file for the new language. This file
should contain target-language values of the properties used in the component.To see the supported
properties, refer to the WEB-INF/classes/com/endeca/Resource_en.properties file
already in the component.Your file should contain a version of each of those messages in your
target language.

4. Re-zip the .war file of the component and place it in the endeca-portal/deploy directory.
Liferay hot-deploys the component.

5. Repeat steps 1 through 4 for each component you want to enable for your target language.

6. Start the Discovery Framework and add your components, as well as the Language component,
to the page.

7. In the Language component, click the flag associated with your target language.
The Discovery Framework displays the component messages from your resource bundle in your
target language. In addition, because the portal itself is also localized, menus and other portal
controls also appear in your target language.

8. In the Language component, click the United States flag to switch back to English.

Setting up a component for localization
This topic describes the steps needed to develop or update a component so that it supports localization.

To set up a portlet for localization:

1. Update the portlet.xml file to specify the locales this portlet will support.

The following example enables English and German:

<supported-locale>en</supported-locale>
<supported-locale>de</supported-locale>

2. Update portlet.xml to specify the location of the portlet's resource bundle. (The resource bundle
is the mechanism the Liferay Portal uses to add localized content to a portlet.)

Continuing our example, we will include resource files Resource_en.properties and
Resource_de.properties in the sample portlet's com/endeca/portlet/sample/ directory:

<resource-bundle>com.endeca.portlet.sample.Resource</resource-bundle>

3. Create resource bundles for your supported languages in
WEB-INF/src/[path/to/resource/bundle]_[locale].properties (for example, the
bundle for English for an Endeca component would be
WEB-INF/src/com/endeca/portlet/sample/Resource_en.properties). For the most
part, this is a simple properties file with key/value pairs for message IDs and their locale-specific
messages.

4. Update your portlet's implementation to use the LanguageUtils class to retrieve messages from
the resource bundle, rather than hard-coding message strings.This should be done for all messages
displayed to the user, including form labels, portlet titles (and other metadata), warning and error
messages, preferences pages, help text, and so on. See below for details on how to use the
LanguageUtils class.

Note: See the sections below for details about portlet-specific messages and messages with
tokens.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Localizing the Discovery Framework | Discovery Framework localization scenarios24

Note: You may note that the resource-bundle attribute is different from the file path you edit
messages in.This is because the portlet build process combines common message strings from
shared libraries with your portlet-specific messages to create the final
com/endeca/Resource_[locale].properties file in the compiled portlet WAR. For more
information, see the topic below on build process interaction with localization.

Build process interaction with localization

You should edit localization messages in a different resource file from the one you configure the portlet
to read messages from.

The build process combines resource files into a single resource file that the component reads messages
from.The build combines the component's com/endeca/PluginResource_[locale].properties
file and any file found in a shared library's directory matching
com/endeca/*Resource_[locale].properties into a single
com/endeca/Resource_[locale].properties file. The messages from your component's
PluginResource_[locale].properties appear at the top of the final
Resource_[locale].properties, so you can easily override any messages from shared libraries.
However, if your component includes more than one shared library, no guarantee can be made about
the order in which the resource files from shared libraries will be appended.

Localizing your own shared libraries

If you have included localized messages in your shared libraries, make sure you choose a prefix other
than Plugin for the resource file com/endeca/[prefix]Resource_[locale].properties. If
you do not, this file will override your component's
com/endeca/PluginResource_[locale].properties file during the build, and your final
com/endeca/Resource_[locale].properties will be incorrect. Endeca recommends that you
choose a prefix for your library's resource file that is distinct and similar to your library's name to avoid
file name conflicts with components or other shared libraries.

Switching the locale of a component

The Discovery Framework includes resources that you can use to switch a component's locale.

The Language component, described in the next topic, can be used to change the locale of a portlet.

There are also controls available in the Display Settings section of Liferay's Control Panel (as well
as configuration properties in the portal.properties file) for setting the default container locale
and the available locales. For full details on using these Liferay features, see the Liferay Portal
documentation.

Adding the Language component

To change the locale of the server, Endeca recommends using the Language component to select
an alternate language.

The Language component is included in the default Add Components menu.

To add the Language component:

1. Point the cursor at the Dock in the upper-right corner of the page. The Dock is labeled "Welcome
<user name>!"

2. In the drop-down menu, select Add Component.
The Add Component dialog box opens.

Endeca® Discovery Framework Extension GuideEndeca Confidential

25Localizing the Discovery Framework | Discovery Framework localization scenarios

http://www.liferay.com/documentation/5.2
http://www.liferay.com/documentation/5.2

3. In the Add Component dialog box, expand the Tools category.
A list of the available Tools components appears.

4. Click Add, or drag the Languages component to your portal page.

5. Click the flag representing the language you want to use. The portal will switch to that language,
replacing English with the target language.

For example, after clicking the Spanish flag, the Dock drop-down menu looks like this:

Including common externalized strings

All Discovery Framework components tend to include common messages, like those associated with
the data source selector and those associated with saving preferences. The default localizations for
these messages are automatically included in your compiled component.

The messages below are the default values.You can change or override these by including the same
keys in your PluginResource_[locale].properties file.

Common messages

df.portlet-does-not-support-datasource-api=Portlet does not support the API
 used by this data source.

Data source selector messages
df.select-a-datasource=Select a data source
df.update-datasource=Update data source

df.no-data-source-selected=No data source selected for this portlet. Go to
 Preferences and select a data source.
df.no-data-source-specified=Error updating data source binding. No data
source was specified in the request.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Localizing the Discovery Framework | Discovery Framework localization scenarios26

df.data-source-binding-unchanged=Data source binding was not changed from
\"{0}\".
df.data-source-binding-unsupported-api=Data source binding was not changed
 from \"{0}\". Portlet does not support the API used by the data source
\"{1}\".
df.data-source-binding-changed-successfully=Data source binding successfully
 changed to data source \"{0}\".
df.data-source-binding-error=Error updating data source binding with new
data source name \"{0}\"; please notify your system administrator.

Save preferences messages
df.save-prefs-success=Preferences updated successfully.
df.save-prefs-error=There was an error saving your preferences.
df.save-analytics-prefs-success=Analytics preferences updated successfully.
df.save-analytics-prefs-error=There was an error saving your analytics
preferences.

Note: The Discovery Framework retrieves these localized messages with their English defaults.
If the messages are not included in a portlet's resource bundle, the Discovery Framework uses
the hard-coded English defaults without displaying an error.

Including component-specific messages

Resource bundles should include a handful of component-specific messages that allow the Discovery
Framework to localize the name, description, keywords, and category of the component.

To localize the component's metadata, include the following messages:

javax.portlet.title=Sample Endeca Portlet
javax.portlet.short-title=Sample Endeca Portlet
javax.portlet.keywords=Sample, Endeca, Portlet

Additionally, if your component is displayed in the Add Components menu as part of a custom category
(or sub-category), you may need to localize the name of the category. Take the following categories
as an example:

<display>
 <category name="my.new.category">
 <category name="my.new.sub-category">
 <portlet id="portlet_A" />
 </category>
 </category>
</display>

To localize the category names, have your component's resource bundle include the following
messages:

my.new.category=My Category
my.new.sub-category=My Sub-Category

If multiple components declare the same categories, they should all include these messages, since
the component container uses the localized messages from the first component that specifies them.

Using tokens in message strings

Message strings can include tokens that are substituted at run-time.

Endeca® Discovery Framework Extension GuideEndeca Confidential

27Localizing the Discovery Framework | Discovery Framework localization scenarios

For example, a search breadcrumb may need to display a spelling correction message like "No matches
found for 'bearign'; showing results for 'bearing'". This message would appear in a .properties file
with tokens for the two terms, as in the following example:

autocorrect-msg=No matches found for \'{0}\'; showing results for \'{1}\'

When including this message in your portlet with the LanguageUtils utility, you pass in a list of
parameters to substitute for these tokens. This substitution uses the class
java.text.MessageFormat. Refer to the javadoc for that class for the options available with token
substitution. Tokens may also do advanced substitution, such as date substitution formatted
appropriately for the locale.

Using the Discovery Framework LanguageUtils class

The core class provided by the Discovery Framework to access localized messages is
com.endeca.portlet.util.LanguageUtils. There are several ways to use this class.

Calling static methods from the Java
You can access LanguageUtils by calling static methods from your Java class.

The following example shows the static use of the getMessage methods to retrieve messages (with
token substitution in the third line).

LanguageUtils.getMessage(request, "reset");
LanguageUtils.getMessage(request, "num-records");
LanguageUtils.getMessage(request, "search-for", new String[]{ "American"
});

A number of convenience method signatures are provided, allowing the user to specify the portlet
request and message ID, and optionally to include parameters for token substitution and a default
string. The default string may be useful for shared localized messages, allowing portlets to function
with a default (un-localized) message if the localized message is not retrieved from the resource
bundle.

All method signatures require specifying the PortletRequest.

Using the Discovery taglib in JSP
The Discovery taglib provides a tag for retrieving localized messages. This is the recommended
way to retrieve localized messages in JSPs.

The following is an example using the taglib:

<%@ taglib uri='http://endeca.com/discovery' prefix="edisc"%>
<edisc:getMessage messageName="no-matching-values"/>

<edisc:getMessage messageName="message-with-params">
 <edisc:param value="test" />
</edisc:getMessage>

Using the LanguageUtils class from JSP
You can access LanguageUtils to retrieve localized messages in JSP pages.

This is similar to accessing LanguageUtils from Java.

<%@ page import="com.endeca.portlet.util.LanguageUtils" />
<portlet:defineObjects />
<%= LanguageUtils.getMessage(renderRequest, "reset") %>

Instantiate the object and call instance methods from Java/JSP
You can instantiate the LanguageUtils object and call methods from Java/JSP.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Localizing the Discovery Framework | Discovery Framework localization scenarios28

This approach provides the same convenience methods as the static approach, but simplifies the
method signatures by removing the need to specify the request on every call. This may be useful for
developers who make many calls for localized strings and would prefer to instantiate the object once
and simplify the subsequent method calls.

<%@ page import="com.endeca.portlet.util.LanguageUtils" %>
<%
LanguageUtils lang = new LanguageUtils(renderRequest);
%>
<%= lang.getMessage("reset") %>
<%= lang.getMessage("num-records", "Num records:") %>
<%= lang.getMessage("search-for", "Search for \"{0}\"", new String[]{
"American" }) %>

Retrieve all messages from the resource bundle in one call from Java/JSP
You can retrieve all messages at once, in a single call from Java/JSP.

This approach may improve performance in portlets that require frequent access to the resource bundle
and want to consolidate the message retrieval to a single call.The rest of the page then makes lookups
into the loaded map.

<%@ page import="com.endeca.portlet.util.LanguageUtils" %>
<%@ page import="java.util.Map" %>
<%
Map<String, String> messages = LanguageUtils.getAllPortletMessages(render¬
Request);
%>
<%= messages.get("reset") %>
<%= messages.get("num-records") %>
<%= LanguageUtils.replaceMessageTokens(messages.get("search-for"), new
String[]{ "American" }) %>

Working with non-Unicode characters

This section describes how to work with non-Unicode characters in the Discovery Framework.

Because the Discovery Framework is Java-based, it can only read Unicode or Latin-1 characters. In
the case of other characters, you can work around this limitation by converting the native file to ASCII,
using a converter such as native2ascii, which is freely available as part of the JDK.

Keep in mind the following guidelines:

1. Use UTF-8 as your encoding. Lesser encodings cannot properly represent Japanese characters.
2. Pick a valid character set, such as Shift-JIS or UTF-8/Unicode, and stick with it.You cannot change

character sets midstream—if you change character sets, you must re-enter your values.
3. Make sure the character set in your text editor matches the character set in native2ascii.

More information about working with non-Unicode characters can be found on the Liferay Portal
Website.

Localizing a component to a non-Unicode language
The following example demonstrates how to localize a component to a double-byte, extended character
language.

If you want to use this example as a learning exercise but do not have non-Unicode text of your own
to deploy, you can machine-translate your English-language file and use that text in step 5 below.

To localize your portlet to a non-Unicode language (such as Japanese):

Endeca® Discovery Framework Extension GuideEndeca Confidential

29Localizing the Discovery Framework | Discovery Framework localization scenarios

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/native2ascii.html

1. Within your portlet, create a file PluginResource_<locale-code>.properties.native at
the appropriate location. For example, if you are working with Japanese, the file name would be
PluginResource_ja.properties.native.

2. Commit both the .native and .properties file to your portlet. The .properties file is used
by the portlet, but because that file uses escaped Unicode notation, it is extremely hard for humans
to read. It is easier to make any necessary changes in the .native file.

3. Open the .native file in an encoding- and character-set-aware text editor such as Notepad++.
Make sure the .native file uses UTF-8 as its encoding and Shift-JIS as its character set.

4. Copy the contents of the English resource bundle into the .native file.

5. Within your text editor, using your translation service, replace the English values with the Japanese
values.

6. Save the file.

7. From the command line, run Java's native2ascii converter. This tool is typically included in the
JDK. In the encoding argument, specify Shift_JIS as the character set, your .native file as the
input, and your final .properties file as the output.

native2ascii -encoding Shift_JIS PluginResource_ja.properties.native
PluginResource_ja.properties

8. Commit both the .native and .properties file to your portlet. The .properties file is used
by the portlet, but uses escaped Unicode notation, which is hard to read.The .native file is easier
to modify.

Obtaining more information about portal localization

This topic provides links to additional information about localization provided by Liferay.

For information about editing Liferay’s Language_<langcode>.properties file, which Liferay uses
to localize the portal's strings, see the section "Languages and Time Zones" in the Liferay Portal
Administrator's Guide.You can use this information to modify Liferay's translations as necessary.

For extensive documentation on Liferay language display customization, see this wiki page.

Endeca ConfidentialEndeca® Discovery Framework Extension Guide

Localizing the Discovery Framework | Discovery Framework localization scenarios30

http://www.liferay.com/documentation/5.2
http://www.liferay.com/documentation/5.2
http://www.liferay.com/web/guest/community/wiki/-/wiki/Main/Languagedisplay+customization

Chapter 6

Discovery Framework interaction with
MDEX 7 Early Access edition

This section describes changes you have to make to support MDEX 7 Early Access edition in the
Discovery Framework. If you do not have access to MDEX 7 Early Access edition, you can safely
ignore this section.

About MDEX 7 Early Access edition
This release of the Discovery Framework includes limited capabilities for use with MDEX Engine
Release 7. These capabilities are available only to users who have access to MDEX 7 Early Access
edition and can connect the Discovery Framework to an MDEX 7 data source.

Important: MDEX 7 features are in an Early Access state.The interfaces and behavior of these
Early Access features may change in later releases of MDEX 7 or of the Discovery Framework,
based on information gathered during the Early Access period. These capabilities are not
supported for use in production.

Connecting to an MDEX 7 data source
In order to connect to an MDEX 7 data source, the JSON data source file requires an additional
attribute.

The setting, apiVersion, has two possible values: ENE_QUERY, used for MDEX 6 data sources, and
DISCOVERY_SERVICE, used for MDEX 7 data sources. If the setting is not present, its value defaults
to ENE_QUERY.

The following is an example default.json file establishing a connection to an MDEX 7 data source:

{
 "server":"server01.lab.acme.com",
 "port":"15000",
 "apiVersion" : "DISCOVERY_SERVICE"
}

MDEX 7 data source limitation

Parent/child data sources are not supported on MDEX 7.You should not include the parentId attribute
in your MDEX 7 data source JSON configuration files.

Index

B

build process and localization 25
building and testing a new component 21

C

calling static methods from the JSP 28
class summary

Security Manager 11
State Manager 15

common externalized strings 26
component

adding localized message strings to 23
component development overview 20
Component SDK

about 19
configuring 19
configuring Eclipse for 20
downloading 19
modifying Endeca enhancements to 21

components
and localization 25
creating 20
switching locales 25

configuring classpath variables for the Component SDK
20
creating

an MDEX State Manager 16
MDEX Security Manager 12

D

data source limitation on MDEX 7 31
data source state

managing 15
Discovery Framework

extending 9
obtaining more information 10

Discovery taglib 28
downloading the Component SDK 19

E

Eclipse
configuring classpath variables 20

Endeca enhancements to the Component SDK 21
example

localizing a non-Unicode portlet 29
Ext JS

licensing requirement 9

I

implementing
MDEX Security Manager 12
MDEX State Manager 16

importing a project into Eclipse 21
introduction to extending the Discovery Framework 9

J

JSON
connecting to MDEX 7 31

L

Language component
adding 25

LanguageUtils
instantiate from Java/JSP 29
retrieving all messages at once 29
using from JSP 28

LanguageUtils class 28
calling static methods from the JSP 28

licensing Ext JS 9
Liferay portal

accessing documentation for 10
localization

adding a translation to a component 23
adding the Language component 25
build process 25
data supported
including common externalized strings 26
of shared libraries 25
portlet-specific messages 27
setting portlets up for 24
switching locales 25
tasks 23
using tokens in message strings 28

localizing
non-Unicode example 29

localizing, about 23

M

managing data source state 15
MDEX 7

data source limitation on 31
MDEX 7 Early Access

setting JSON file for data sources 31
MDEX 7 Early Access, about 31
MDEX Security Manager

about 11
creating 12

MDEX Security Manager (continued)
implementing 12
using 13

MDEX State Manager
creating 16
implementing 16
using 17

modifying
Endeca enhancements to the Component SDK 21

N

non-Unicode characters
working with 29

O

obtaining additional information 10
overview of component development 20

P

portal localization
obtaining more information 30

portlets
providing portlet-specific messages 27
setting up for localization 24
switching locales 25

S

security extensions to the Discovery Framework 11
Security Manager

class summary 11
shared libraries

localizing 25
State Manager

class summary 15

T

taglib
use in localization 28

tokens
using in message strings 28

translation
adding to a released component 23

U

using
MDEX Security Manager 13
MDEX State Manager 17

W

working with non-Unicode characters 29

Endeca® Discovery Framework34

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Extending the Discovery Framework
	Developer tasks in the Discovery Framework
	Licensing requirement for component development
	Obtaining more information

	Security extensions to the Discovery Framework
	Security Manager class summary
	Creating a new MDEX Security Manager
	Implementing a new MDEX Security Manager
	Using the MDEX Security Manager

	Managing data source state in the Discovery Framework
	State Manager class summary
	Creating a new MDEX State Manager
	Implementing an MDEX State Manager
	Using the MDEX State Manager

	Installing and using the Component SDK
	Downloading and configuring the Component SDK
	Configuring Eclipse for component development
	Component development overview
	Creating a new component
	Importing the project in Eclipse
	Building and testing your new component

	Modifying Endeca enhancements to the Component SDK

	Localizing the Discovery Framework
	Discovery Framework localization scenarios
	About adding a translation to a released component
	Adding a translation to a released component

	Setting up a component for localization
	Build process interaction with localization
	Switching the locale of a component
	Adding the Language component
	Including common externalized strings
	Including component-specific messages
	Using tokens in message strings
	Using the Discovery Framework LanguageUtils class
	Calling static methods from the Java
	Using the Discovery taglib in JSP
	Using the LanguageUtils class from JSP
	Instantiate the object and call instance methods from Java/JSP
	Retrieve all messages from the resource bundle in one call from Java/JSP

	Working with non-Unicode characters
	Localizing a component to a non-Unicode language

	Obtaining more information about portal localization

	Discovery Framework interaction with MDEX 7 Early Access edition
	About MDEX 7 Early Access edition
	Connecting to an MDEX 7 data source

	Index

