Oracle AutoVue 20.2

AutoVue API Programmer’s Guide

ORACLE

March 2012

AutoVue APl Programmer’s Guide Page |2

Copyright © 1999, 2012, Oracle and/or its affiliates. All rights reserved.

Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.

Portions of this software Copyright Unisearch Ltd, Australia.

Portions of this software are owned by Siemens PLM © 1986-2012. All rights reserved.

This software uses ACIS® software by Spatial Technology Inc. ACIS® Copyright © 1994-2008 Spatial Technology
Inc. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure,
modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set
forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

AutoVue APl Programmer’s Guide Page |3

Contents

O o 1 - [ol I PP POROPRP 6
7 0 Lo [=] o T T TP TP PTOTSRPN 6
ReIAtEd DOCUMENTS. ... eeeiiiieiiee ettt ettt e sa e st e st e st e e saee e sabe e e s ne e e sabeesmeeesabeesneeesnreesaneeesaneanns 6

P 11 i o Yo [§ ol o] o [P USROS U SO POROPRTP 7

S T £3 =T 0 T =T [0 L =T 0 = 1 3 8

4. Architecture of an AUtOVUE API SOIULION.ottt st e s 8
AUTOVUE API DESIEN OPLIONS. ..o 9

5. AULOVUE APl PACKAEESevtiiieiiee ettt ettt e e e e e et re e e e e e e e s st e aeeeeaeeeesansteaaeeeeeeeesnnstannaeeessennnnes 11
VUEBEAN PACKAEE eeieieeeee ettt e e e e et e e e e e e e e et et e e e e e e e e esasteaeeeeaeesaannstsaneeeeseeannnntenneaaanas 11

YL oY o Vol -SSR 12
1Y/ T 0T o PSRRI 17
Y =Y U] o] I 1 =T USRS 17
Y =Y T o] =12 1 YR ST 17
SEIVEI CONTIOL ..ttt b e bt s at e s at e e bt et e e bt e sheesaeesabeeab e et e ebeesbeesaeesabesaneenneenne 18
VLU= ot o] o Y =T - V=TRSO 19
ADSTIACEVUBACTION ...ttt b e s bttt s e et e b e e s be e s aeesae e et e ebeebeenbeens 19
RV AT L= Yol AT o F PO P PP PTPPRPTP 19

o o o 1 £ oo P 21
Text Hotspots in 2D and EDA DOCUMENTES.........coccuiieieciiee e ceiiee e ectee e e eetee e e eeitee e e eateeesenteeeeenteeesennseeesennees 22
V=T O GV I o [T €Y oo} £ 22
1D N o [0] £ oo {3 22
2T =qTo Tl o [0} €Y oo £ USRS 23

270) gl 0] £ oo K-t 23

AutoVue APl Programmer’s Guide Page |4

AutoVUE Behavior 0N HOTSPOLSccccuiiiiiiiiiie ittt et e et e e et e e e e sbae e e e ae e s e s abaeaaenareeeeenanens 23
AutoVue API for External System INtEraction........cocccieiiiiiiee e e e e bee e e e 24
AUTOVUE HOTSPOT AP ... e e e e e e e e 24
DL ATl o 4 oo L PP 25
Perform an Action 0N @ HOTSPOLeiiiiiiiieccee ettt e e e e e e e e sbae e e e sabre e e e aees 27
Interactions with Hotspots from JavaSCripl.......cceeiiiciiii i e 28
[oY 8y oo Y- [a1 o] [USSR 29
PV o [T oY= T o Fo 4 o Yo | AP 29
R 1D & (0] £ oo] AU 31
[0=Tor = Yo Y ={T] P T gl = o Dl o [o 4 o Lo | APPSR 31
Bl 5 Lo] 5] oo | ST PP P PP PP PP PP PPPPPPPPPPPPPPPPPRt 32
USE CASES ittt a e s a e a e aba s 32
Building an AutoVue APl APPIICAtioNceiiciiii ettt e e erre e e s rae e e e 33
Implementing Functions from AutoVue in a Second Appletc.oeviiiciiei e 38
CUSTOM VUBACEION ..ottt e s s e s saa e e sbe e 39
Action that Performs a Single FUNCLIONc..uiiiiiiiiie ettt et 39
Action that Performs Multiple FUNCHIONS........coiiciiiiiciiie et 42
Directly INVOKING VUEBACLIONSevieee ittt ettt s et e et e e etee e e s sate e e s sabae e e snteeeesntaeessnsaeeesnsees 45
Y Y T LSRR 45
ENtering Markup MOooo it e st e e e ba e e e e te e e s s bteeessnsreeeenanees 45
Checking Whether Markup Mode is ENabledccooiviiiiiiiiii e 45
Lo T3\ T4 UTJN Fo o [T PSPPSR 45
Adding an Entity to an Active Markup/Layer.......cccvecieevieeiieiieciecite et esteesteestaesae s ereereereesveesseesrae s 46
ENUMEIatiNg ENTities . coeei it e e e e s et e e e e e e e s s sabrbeeeeeeeenaanns 46

Getting Entity Specification of @ Given ENtitycccuiiiiiiii i 46

AutoVue APl Programmer’s Guide Page |5

Changing Specification of an Existing Entity Programmatically........ccccocovviiiiiiiiiiiiiieeceee e 46
Adding @ TeXt BOX ENTILY coeiceieeiiiiiiie ettt e e e eab e e e e s aae e e e s saeeeeennaeees 47

(0 o1 oI (R a1 V= \V/ - [(U o PSP 48
SaVINg Markups 10 @ DIMIS/PLIM ...c.veiiuiiiieeie ettt ectee ettt vt eeteeeteeeteeeteeeaveeabeenbeesteesssesasesaseenseeseesseens 48
Adding a Markup Listener to Your AppliCation........ccccviieiciiie it e e 50

(070 01V T 4 oY= o 1T R 50
(07| o= o 0o T 0 1Y/ PSP 50
Converting to JPEG (CUSTOM CONVEISION) ...iciuiiiiiiieiiieeeieeeitteeeiteeeetteesreeetaeesabeeesseeesaseesresesasesssesennns 51

(6001 1)Y= T a d] o T= o I o B | S 52
Ao Y- T |1 o R0t I D A A - T o T USRS 53
Monitoring EVent NOtifiCations.......coicuiiii i et e e e e nre e e e 53
Retrieving the Dimension and Units 0f @ Fil.........ciiiiiii it 54

T O =T Y YUY o N o] o] 1= 3 PSPPSR 54
SESSION ClOSE ...ttt ettt st sttt e b e e bt e bt e s ae e st e bbbt e b e sre e saee s aneene e 54

TR 7 © BTSSR PR PR PRPR 55
Y Y T o] 2T o PSP 55

o 01T = 2SO PP PPPPPPPP 55
LCT=T o 1T - | OO OO OO PP U OO PP PP PPPOTOUPRRUPTOINS 56

10. (Y10 | o T 1ol TR 57

AutoVue APl Programmer’s Guide Page |6

1. Preface

The AutoVue APl Programmer’s Guide provides an overview of the concepts of the AutoVue APl and its
fundamental packages and classes.

For the most up-to-date version of this document, go to the AutoVue Documentation Web site on the
Oracle Technology Network at http://www.oracle.com/technetwork/documentation/autovue-

091442 .html.

Audience

This document is intended for Oracle partners and third-party developers (such as integrators) who
want to implement their own integration with AutoVue. Note that these developers are expected to
have a good understanding of JAVA programming. This guide serves as a good starting point for
developers and professional services to become more familiar with the AutoVue API.

Related Documents

For more information, see the following documents:

VueBean Javadocs

Oracle AutoVue Installation and Configuration Guide
AutoVue Planning Guide

AutoVue Integration SDK Overview

e Oracle AutoVue Web Services Overview

http://www.oracle.com/technetwork/documentation/autovue-091442.html�
http://www.oracle.com/technetwork/documentation/autovue-091442.html�

AutoVue APl Programmer’s Guide Page |7

2. Introduction

The AutoVue Application Programming Interface (API)" is a Java-based toolset that provides tools to
modify the functionality of Oracle’s AutoVue client?, and allows you to create your own customized Java
applets/applications based on AutoVue APl components.

Prior to developing your API integration, you should review the documentation for AutoVue API,
AutoVue Web Services and AutoVue Integration SDK to find the integration tool that best fits your

needs.

AutoVue API This is the APl described in this document.

AutoVue Web Services You can integrate AutoVue’s capabilities into your
application regardless of platforms or
programming languages. For more information,
refer to the AutoVue Web Services Overview.

AutoVue Integration SDK The AutoVue Integration SDK is a Java-based

implementation of the Document Management
Application Programming Interface (DMAPI)
specifications published by Oracle. For more
information, refer to the AutoVue Integration SDK
Overview.

This document provides an overview of the concepts of the AutoVue APl and its fundamental packages
and classes. Additionally, basic and advanced applications of the AutoVue API are provided along with
their source code. For detailed information on the packages and classes included in the AutoVue API,
refer to the VueBean Javadocs.

YIn previous releases of AutoVue, this APl was referred to as the VueBean API.

2 Throughout this document, the term “AutoVue client” is used interchangeably with term “JVue”.

AutoVue APl Programmer’s Guide Page |8

3. System Requirements

For a complete list of system requirements specific to your platform, refer to the Oracle AutoVue
Installation and Configuration Guide.

4. Architecture of an AutoVue API Solution

The AutoVue APl is an umbrella term for the APIs that the AutoVue client is built upon, with the
VueBean API being the core component of the architecture. The client can be a Java application, a Java
applet, or a Java servlet. The AutoVue client that ships with AutoVue Client/Server Deployment is an
example of an applet-based AutoVue client. As seen in the following diagram, the AutoVue client is
layered on top of the VueBean.

Note: It is possible to build a solution based on the JVue class (com.cimmetry. jvue) or based directly
on the VueBean class (com.cimmetry.vuebean). If you build a solution based on the JVue class, then
you are building from a class that already extends Applet, and you can take advantage of the
functionality and the graphical user interface (GUI) that Oracle has built into the JVue layer. If you build
a solution based on the VueBean class, then you must implement your own GUI.

There are a number of packages included in the AutoVue API. The following figure shows the most
commonly used components.

AutoVue APl Programmer’s Guide Page |9

Web Browser Firewall
ORACLE
AutoVue
Server

AutoVue Client VueAction

com.cimmetfry.vueaction

VueAction: This component can add graphical user interface (GUI) elements to different contexts (such
as menu bar, toolbar, status bar, and so on). For example, when a menu option is selected in the GUI, a
VueAction is triggered. For more information, refer to VueAction Package.

VueBean: This component manages the representation of a file including the resources upon which the
file depends. For more information, refer to VueBean Package.

MarkupBean: This component handles markup functionality. For more information, refer to
MarkupBean Package.

Server Control: This component handles the communication with the AutoVue server and the session
book keeping. For more information, refer to Server Control.

AutoVue API Design Options

With the AutoVue APl you have three design options: modify the functionality of the client that is
shipped with Oracle AutoVue, build your own customized application/applet, or implement pre-existing
code from Oracle’s AutoVue client to build your own customized client. It is recommended to review
each option prior to developing your project.

AutoVue API

Programmer’s Guide

Design Option

Description

Adding Custom Actions to Oracle’s AutoVue Client

This option is used to customize the existing
AutoVue client’s menus and toolbars. For an
example, refer to Adding Customized Menu ltems
to the AutoVue Client.

Building a Custom Application/Applet

This option allows you to build an
application/applet that makes calls to the VueBean
package. You can leverage our viewing and
markup technology while maintaining complete
control of the behavior of the application/applet.
For an example, refer to Building an AutoVue API

Application.

Modifying the Behavior of Oracle’s AutoVue Client
Through JavaScript

This option is used to build additional menu and
toolbars outside of the AutoVue client’s interface.
You can design a standalone application or a Java
applet in a Web page. For an example, refer to
Implementing Functions from AutoVue in a Second

Applet.

Page |10

AutoVue APl Programmer’s Guide

5. AutoVue API Packages

Page |11

The following sections provide an overview of common classes and interfaces that are used to create a
solution based on the AutoVue API. For more information on classes/packages, refer to the VueBean

Javadocs.

VueBean Package

The VueBean component is central to the AutoVue client architecture. An application can embed the
VueBean component and use its APl to provide comprehensive support for file viewing, markup, real-
time collaboration, and so on. The following diagram provides a graphical overview of how the VueBean

can be used when developing your own application/applet.

' Functionality cont’d

+ Conversion
+ Fileloading
+ Open files, closefiles
+ Markup mode
+ Entermarkup mode, load
markups

Functionality

+ Documentmanipulation
« Layers, blocks, view,
overlays
+ View manipulation
+ Panning,zooming, rotation,
page selection, background
color

[Analysis

+ File analysis
+ Text search, page type (2D,
3D, and so on), bookmarks
+ File properties
+ Fileinfo, page count,
dimensions, insertion and
scaling

| Controllers

+ Server Control
+ Mouse listener control

VueBean |

Note: It is possible to have multiple instances of the VueBean class. For example, when AutoVue is in

Compare mode there are three instances of the VueBean class.

A typical VueBean usage scenario is as follows:

1. Create a VueBean Object.

2. Create a server control or use the default one obtained from the VueBean.

3. Use the server control to connect to the server and open a session on it.

4. View a file by invoking the VueBean.setFile(DoclID) method.

AutoVue APl Programmer’s Guide Page |12

The following file types are supported by the VueBean:
e Vector files (2D and 3D)
e Raster files
e Document files (MS Word, and so on)
e Spreadsheet files
e Archive files

The file type can be queried through the VueBean.getFileType() method and file information can be
retrieved through the VueBean.getFilelnfo() method.

You may have to convert a file to another file type. To do so, use the Vuebean.convert() method.

In its various modes, such as viewing and markup, the VueBean manages the representation of a file
including the management of overlays, layers, and external references to other files or resources upon
which the file depends. Use the VueBean . getResourcelnfoState() method to query for resources
that are attached to afile.

To search for a particular string in the file use the VueBean .search(PAN_CtlSearchInfo) method.
The following is an example of how to build the PAN_CtlSearchlInfo object.

// Construct the search object with arguments (Search String, Search Multiple

// Occurrences, Search Downwards, Wrapped Search, Match Case, Whole Word),

// in this example we search for the word “line”.

PAN_CtlSearchInfo searchInfo = new PAN_CtlSearchInfo("line", true, true,
true, false, true);

Note: Since the VueBean is only a client-side component, the connection to the AutoVue server must be
established before any operation can be performed on the VueBean. Refer to Server Control for more
information.

Event Package
com.cimmetry.vuebean.event

For VueBean-specific events, the event delegation model of the VueBean is slightly different from the
standard Java one. Listeners such as VueViewListener, VueFileListener, VueMarkupListener,
or VueStatelL istener should register to the VueBean's VueEventBroadcaster object instead of to
the VueBean itself.

For example: vueBean.getVueEventBroadcaster() .addFileListener(listener).

AutoVue APl Programmer’s Guide Page |13

This package provides interfaces and classes for VueBean event broadcasting. Every VueBean object has
an event broadcaster. Depending on the operation type, the broadcaster notifies listeners using an
instance of VueEvent or VueMode lEvent. The following types of events are supported:

e File events

e View events

e Markup events
e State events

e Model events

Every event type has a corresponding event listener interface which is registered to the broadcaster.
Objects that are responsible for handling of events should implement one or more of the listener
interfaces.

The following code sample defines and registers an event handler

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event.*;

final VueBean vueBean = getVueBean();// Get the valid active VueBean
if (vueBean '= null) {
VueFileListener eventHandler = new VueFileListener() {
public void onFileEvent(VueEvent ev) {
switch (ev.getType()) {
case VueEvent.ONSETFILE:
System.out.printIn(Set file: "™ + vueBean.getFile());
break;
case VueEvent.ONSETPAGE:
System.out.printIn(*'Set page: " + vueBean.getPage());
break;

}
3

vueBean.getVueEventBroadcaster() .addFileListener(eventHandler);

AutoVue APl Programmer’s Guide Page |14

VueEvent
com.cimmetry.vuebean.event._VueEvent

VueEvent object encapsulates information for all notifications sent by VueBean and is generated for
the VueFileListener, VueViewListener, VueMarkupListener and VueStatelListener
interfaces. The event type is used to differentiate between a view event, file event, markup event or
state event.

VueModelEvent
com.cimmetry.vuebean.event._.VueModelEvent

The VueMode lEvent class handles all notifications for model-related events such as entity attributes,
3D transformation, and so on. It is generated for objects implementing VueModelListener interface.

VueEventBroadcaster
com.cimmetry.vuebean.event._.VueEventBroadcaster

VueEventBroadcaster is used to manage event delegation model for the VueBean. Each listener has
to register to a VueEventBroadcaster to be notified of events in the VueBean. By design, each VueBean
owns its own VueEventBroadcaster. However, you may find it useful to use only one
VueEventBroadcaster for all beans by using the VueBean . setVueEventBroadcaster method.

VueFileListener
com.cimmetry.vuebean.event.VueFilelListener

Objects implementing this interface listen for file event notifications (such as setting file, setting page,
and so on).

VueMarkupListener
com.cimmetry.vuebean.event.VueMarkupListener

Objects implementing this interface listen for markup event notifications (such as entering or exiting
markup mode).

VueViewListener
com.cimmetry.vuebean.event.VueViewListener

Objects implementing this interface listen for view event notifications (such as zoom, begin and end
paint, and so on).

VueStateListener
com.cimmetry.vuebean._event._VueStatel istener

Objects implementing this interface listen for state event notifications (such as server error, file error,
and so on).

AutoVue APl Programmer’s Guide Page |15
VueModelListener
com.cimmetry.vuebean.event.VueModelListener

Objects implementing this interface listen for model event notifications (such as model attribute,
selection, transformation changes, and so on).

AutoVue APl Programmer’s Guide Page | 16

MarkupBean Package
com.cimmetry._markupbean

The top—level class for the com.cimmetry.markupbean package is the MarkupBean class.
MarkupBean represents the Markup functionality in the VueBean API. Each VueBean instance can
contain only one MarkupBean instance, represented by a private member variable. Through the
MarkupBean class, you can add/modify/remove Markup Files, Markup Layers, and Markup Entities, as

well as open and save Markup Files.

The following diagram displays how the architecture of a Markup is structured into four separate levels:
Markups, Markup Layers, Markup Entities, and Markup Entity Specification.

MarkupEntity MarkupEntitySpec

MarkupEntitySpec

MarkupLayer MarkupEntity

Markup MarkupLayer

MarkupBean

MarkupLayer

Markup

AutoVue APl Programmer’s Guide

Markup
com.cimmetry.markupbean.Markup

This interface represents an individual Markup file. The key functionalities are as follows:
e Get/set information regarding the Markup files, such as:
0 Name
0 \Visibility
0 Whether Markup is modified
0 Whether Markup is read-only
e Getinformation regarding the base file
o Get the layers in the Markup

MarkupLayer
com.cimmetry.markupbean.MarkupLayer

This interface represents an individual Markup layer. The key functionalities are as follows:

e Get/set information regarding the specific layer, such as:

O Name
o Color
0 \Visibility

0 Default line type and width
e Get the entities in the Markup layer

MarkupEntity
com.cimmetry._markupbean._MarkupEntity

This interface represents an individual Markup entity. The key functionalities are as follows:

e Name

e Author

e Date modified

e Color

Page |17

AutoVue APl Programmer’s Guide Page | 18

Line type and width

e Tooltip text

o Visibility

e Selection state

e Get children entities of the specific entity

o Perform actions when user double-clicks on entity

MarkupEntitySpec
com.cimmetry.markupbean.MarkupEntitySpec

This class represents an entity’s specification. Each entity has its own specification class that is derived
from this class defines the attributes specific to that entity’s context.

For example, the specification for a rectangle entity includes attributes for the XY coordinates of all four
corners, while the specification for a text entity includes attributes for the contained text as well as its
alignment.

Server Control
com.cimmetry.vueconnection.ServerControl

The ServerControl class handles the server connection object and the user session. Prior to using the
VueBean, you must first set its ServerControl properties, connect to the server via the connect()
method, and then open a session via the sessionOpen() method.

For example:

import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;

VueBean bean = new VueBean();
ServerControl control = bean.getServerControl();
try {
control .setHost(<SERVER URL>);
control .connect();
control .setUser(*'scarlati™);
control .sessionOpen();
} catch (Exception e) {
System.out.printIn(*'Failed to connect to JVueServer.');
}

Note: Set the server URL to the VueServlet URL.

AutoVue APl Programmer’s Guide Page |19

For example, http://<HostName>:5098/servilet/vueserviet

VueAction Package
com.cimmetry.vueaction

This package provides a hierarchy of classes implementing the AutoVue action API. It can be used to add
graphical user interface (GUI) elements to different contexts (such as menu bar, toolbar, status bar, and
so on). For example, when a menu option is selected in the GUI, a VueAction is triggered.

To add a new action to the AutoVue client, create a new action class by extending VueAction.
Use the methods in this package to:
e Specify resources for an action. For example, menu item text, an icon, tooltip text, and so on.

e Specify which resource bundle (a properties file with resource mappings) to search in for the
action’s resources.

e Specify sub-actions (for example, Zoom In, Zoom Out, Zoom Previous, and so on) for the action if
it can perform more than one function.

e Receive a message signifying that the action should be performed. If the action has sub-actions,
the sub-action to perform is specified.

e Specify properties of the views of the action or its sub-actions that appear in the GUI in the
menu bars, toolbars, and popup menus. For example, whether the view can be selected
(behaves as a checkbox) and/or whether it is enabled.

e Specify groups of sub-actions (if the action includes sub-actions) in which selection is exclusive
(that is, in which only one sub-action can be selected at a time).

AbstractVueAction
com.cimmetry.vueaction.AbstractVueAction

The abstract class AbstractVueAction is the super class of all action classes. All actions performed on
the session must be derived from this class or a descendent of this class.

VueAction
com.cimmetry._vueaction.VueAction

VueAction is an abstract class that extends VueActionMul tiMenu. It provides a simple yet powerful
interface for creating actions.

To create a new action class, you must extend this class. There are two ways to do this depending on
whether your action performs a single function or multiple functions. The following sections describe
both scenarios.

AutoVue APl Programmer’s Guide Page |20

Create an action that performs a single function

1. Make sure your class extends VueAction.

2. Inthe constructor of your class, call the appropriate super constructor.
Note: Since your action performs only one function, the super constructor takes the two String
arguments: resource key and resource bundle. The resource bundle identifies the set of text files
(one for each locale your action supports) containing the resources identified by the resource
key for your action.

3. Implement a perform() method to override the one in VueAction.
Note: This method is called when your action has been fired. In this method, enter your action’s
code.

4. Implement event handlers onFi leEvent and onViewEvent to ensure that your action is
enabled or disabled when appropriate.
For example, if no base file has been loaded yet, your action will be disabled. However, once a
file has been reloaded, your action must be enabled.

5. Create one or more resource files (one resource file per language your action supports)
containing the resource keys and their values needed by your action. Together with any icon
files used by your action, these files are referred to as a resource bundle.

For an example of a resource file, refer to VueFrame_en.properties file.

6. Create a copy of AutoVue’s .gui file and insert the name of your new action in the appropriate
location.

To view an example of implementing an action that performs a single function, refer to Action that
Performs a Single Function.

Create an action that performs multiple functions

1. Make sure your class extends VueAction.

2. Inthe constructor of your class, call the appropriate super constructor.
Note: Since your action performs multiple functions, the super constructor takes one String
argument: the resource bundle name. The resource bundle name indentifies the set of text files
(one for each language your action supports) containing the resources for your action.

3. After you call the super constructor, call defineSubAction() to define each sub-action your
action can perform.
Note: In each case, specify the name by which you want to refer to the sub-action and its
resource key. The resource key identifies where to find the resources for your action (for
example, menu item text, icon, tooltip text and so on) in your resource bundle. Optionally, you
can call defineExclusiveGroup() to define a subset of your sub-actions that form an

AutoVue APl Programmer’s Guide Page |21

exclusive group. That is, sub-actions that are selectable where only one can be selected at a
time.

4. Implement a performSubAction(String) method to override the one in VueAction.
Note: This method is called when your action’s sub-action has been fired. The method is passed
the name of the sub-action fired, so that you will know which one to perform. In this method,
enter your sub-action’s code.

5. Implement event handlers onFi leEvent and onViewEvent to ensure that your sub-actions
are enabled or disabled when appropriate.
For example, if no base file has been loaded, your sub-action will be disabled. However, once a
file has been reloaded, your sub-actions must be enabled.

6. Create one or more resource files (one resource file per language that your action supports)
containing the keys and values needed by your action.
Note: Together with any icon files used by your action, these files are referred to as a resource
bundle.

7. Create a copy of AutoVue's .gui file and insert the name of your new action in the appropriate
location. You must also specify the appropriate sub-actions.

To view an example of implementing an action that performs multiple functions, refer to Action that
Performs Multiple Functions.

6. Hotspots

AutoVue includes a hotspot capability that allows system integrators to create links between objects in
AutoVue’s data model and objects in an external system. With this feature, a solution can be built that
integrates AutoVue tightly into other applications. By clicking on an area of a document in AutoVue, an
action is triggered and/or information displays in other applications. Additionally, you can expose data
from enterprise systems visually by changing the hotspot color.

AutoVue provides the following capabilities around hotspots:

e Hotspot definitions

e Data connection information defining AutoVue hotspots linked to external objects
e Tooltip to display on the hotspots defined in AutoVue

e Customization for hotspot selection notification

e Customization for available actions for selected hotspot

AutoVue provides the ability to define the following kinds of hotspots:

o Text-based hotspots in 2D and EDA documents (based on AutoVue’s text search capability)
e Hotspots in Web CGM files

AutoVue APl Programmer’s Guide Page |22

e Box (rectangular region) hotspots in 2D, EDA, and graphics documents
e Hotspots based on 3D attribute names and/or values

Note: It is possible to extend the AutoVue applet using the VueAction() method to implement a
hotspot action. Refer to section Custom VueAction for a VueAction() hotspot example.

Text Hotspots in 2D and EDA Documents

Text hotspot support in 2D and EDA documents is based on regular expressions filtering graphical text
strings based on AutoVue’s text search. You can use regular expressions in the hotspot definition. Since
AutoVue uses the Java library, it relies on Java’s regular expression guidelines. For more information,
refer to the Java regular expression guidelines at
http://java.sun.com/developer/technicalArticles/releases/1.4regex.

Note: Text hotspot support is not available for raster formats, archive formats, Microsoft Office, Excel,
RTF, and Outlook formats.

Web CGM Hotspots

In Web CGM files, hotspots are defined in the native file. The hotspot information contains three

attributes:
e Name
e ID
e URI

External systems can interact with these hotspots using the VueBean API using a given name. AutoVue
matches the name to the ID property of the hotspot. If this fails, AutoVue matches the name to the
Name property in order to highlight a specific hotspot.

3D Hotspots

In 3D files, hotspots are defined by the attribute name. Optionally, an attribute value can be defined. If
no attribute value is provided, then AutoVue identifies all parts with the attribute name as a hotspot.
That is, the attribute value is used by AutoVue as a key to identify the hotspot attached to the owner
part.

Note the following when defining 3D hotspots:
e Hotspots are not supported on 3D PMI entities.

e Attribute name or value used in 3D hotspot definitions cannot contain regular expressions. The
attribute name/value should not contain any leading or trailing spaces and should exactly match
the attribute name/value in the model.

e AutoVue does not currently support attribute names/values that contain a semi-colon (;).

http://java.sun.com/developer/technicalArticles/releases/1.4regex�

AutoVue APl Programmer’s Guide Page |23

e Internal attributes that AutoVue displays in 3D models (for example, Mesh Resolution,
Transparency, and Layers) should not used when defining hotspots.

e To prevent conflicts in highlight color, it is recommended to use the Bounding Box Highlight for a
3D selection (default AutoVue setting) instead of the Entity Highlight. The conflicts result
because of dynamic rendering, conflict in highlights on measurements, and performance due to
redundant rendering of the model part.

e If a hotspot is defined with density an attribute, then the specified density value must be the
same value saved in the native file without measurement units.

e Itis not recommended to define hotspots with attributes that the user can modify after the
model loads (for example, Color, Transparency, Display/Render Mode, Visibility, Highlight Color,
and Bounding Box Color). If these attributes are used, AutoVue uses the values defined at the
time of hotspot initialization and not the value set by the user.

Regional Hotspots

Box Hotspots

A box hotspot can be drawn on 2D, EDA, and Raster files. The dimensions/extents of the box are based
on the coordinates displayed in the AutoVue status bar. Optionally, a user key can be used by AutoVue
as an identifying key for the hotspot.

Note the following when defining box hotspots:

e Box hotspots are not supported on archive formats, Microsoft Word, Microsoft Excel, Microsoft
Outlook, RTF formats.

e Vector files and raster files do not use the same World Coordinate System in AutoVue. Vector
files use the bottom-left corner of the client area as the origin and the Y-axis oriented down-top,
while the Raster-Files use the Top-Left corner as the origin and the Y-axis oriented top-down.
This mismatch is already exposed in AutoVue with the current user interface (Ul) because the
mouse position is reported in World Coordinates System on the Status Bar of the Ul. Since box
hotspots are provided relatively to World Coordinate System, the box definitions need to
consider this difference between raster and vector files.

AutoVue Behavior on Hotspots
AutoVue handles the following user interactions around hotspots:

e When the mouse cursor is on top of a hotspot, a visual hint is displayed to the user to indicate
that the hotspot can be interacted (for example, can be clicked). A tooltip is displayed to show
its description.

0 The hotspot tooltips have the following priority ranking in the stack of tooltips
precedence:

AutoVue APl Programmer’s Guide Page |24

= Markup tooltip

= Measurement tooltip

= Hotspot tooltip

= EDA Entity Information tooltip
= Hyperlink tooltip

e When a user clicks on a hotspot on the display, a notification is fired to the external system with
the information identifying the clicked hotspot and the mouse action (Click vs. Double-Click) and
keyboard modifiers (Ctrl, Shift, Alt)

0 The mouse click and double-click on a hotspot fires the notification to an external
application following these precedence rules:

= Markup: Consumes the click / double-click.

= Measurement: Consumes the click / double-click.

= Hotspot: Notifies the external application but does not consume the click /
double-click and allows the subsequent layers to handle the click / double-click
as well.

= Hyperlink: Does not consume the click / double-click.

= EDA Entity selection, 3D Entity selection, Entity properties on double-click, and
so on.

e When a user right-clicks on the hotspot, a menu displays with the available actions on this
hotspot pre-defined by the integrator. When the user clicks on one of the menu items, a
notification is fired to the external system with the information identifying the clicked hotspot
and the action selected by the user.

AutoVue API for External System Interaction
An external system can call the AutoVue API for manipulating hotspots from the following user actions:

e Highlight (Multiple Selection, Add/Remove)
0 Text Highlight as used in text search.
O 2D Entity Highlight for Web CGM format.
0 3D Entity Highlight for 3D formats.
0 Box Highlight for box hotspots.
e Zoom to a hotspot, or the hotspots associated with a specific external object.
e Browse the hotspots associated with a specific external object using Zoom Previous/Zoom Next.

Note: When a user selects a hotspot, all hotspots associated with the same external object may be
selected by using the highlight mechanism provided above.

AutoVue Hotspot API

There are two methods in the jVue class that handle hotspots:

o setHotSpotHandler () to define hotspots
e performHotSpot() to perform an action on a hotspot

AutoVue APl Programmer’s Guide Page |25

Define Hotspot

setHotSpotHandler (final String definitionType, final String definitionKey,
final String Definition)

This method sets the hotspot handler for a given hotspot definition. This should typically be
called before opening the file. It initializes hotspots in the files opened in AutoVue based on
external application data.

Parameter Description

definitionType The hotspot definition type. Specify if hotspot is a
WebCGM hotspot, text search hotspot, box hotspot, or
a 3D attribute-based hotspot.
See Hotspots Handler Types

definitionKey The hotspot definition key. This is the identifier for the
hotspot.
definition A string separated by semicolons specifying hotspot

definition parameters. For example: namel = valuel;
name2 = value2.
See Hotspot Definition Types.

Hotspot Handler Types
The hotspot definition types supported in setHotSpotHandler()are:

DEFINITION_TYPE_NATIVE Native Web CGM hotspot.
DEFINITION_TYPE_TEXT Text search hotspot.
DEFINITION_TYPE_BOX Rectangular box hotspot.

DEFINITION_TYPE_3D_ATTRIBUTE 3D entity hotspot.

AutoVue APl Programmer’s Guide Page | 26
Hotspot Definition Types

The hotspot definition parameters supported in the key-value string parameter (definition) of the method
setHotSpotHandler () are:

Common Definition Parameters

DEFINITION_TOOLTIP

DEFINITION_ONINIT

DEFINITION_FUNCTION

DEFINITION_ACTIONS

DEFINITION_COLOR

Text Definition Parameters
DEFINITION_REGEX

DEFINITION_MATCHCASE

3D Definition Parameters

DEFINITION_ATTRIB_NAME

DEFINITION_ATTRIB_VALUE

DEFINITION_MATCHCASE

The tooltip that displays when a mouse point
hovers over a hotspot defined by the handler.

The java script method to call when page is loaded
and ready to interact.

The JavaScript function to call when user performs
an action on the hotspot.

Popup actions to show when user right-clicks on a
hotspot.

The highlight color to use when user hovers the
mouse cursor over a hotspot.

Note that AutoVue parses the RGBA value as a
string.

Example: (R, G, B, [AD).

Refer to 3D Hotspot and Rectangular Box Hotspot

examples for more information.

Regular expression to use only in Text Search
Hotspot handlers.

Whether to handle case sensitivity in Text Search
Hotspot handlers only.

The attribute name assigned to a 3D hotspot on
the model.

The attribute value assigned to a 3D entity on the
model. (Optional)

Whether to handle case sensitivity when searching

AutoVue APl Programmer’s Guide Page |27

name and value attributes assigned to 3D entities

Rectangular Box Definition Parameters

DEFINITION_BOX Define the bounds of the rectangular box given the
minimum and maximum points. Where {X1, Y1}
and {X2, Y2} are the coordinates of the box
minimum and maximum points.

Syntax: DEFINITION_BOX=#X1#Y2#X2#Y2

DEFINITION_USER_KEY Define a user key for the rectangular box. This user
key allows you to link multiple boxes with various
definitions to the same external object. (Optional)

Syntax: DEFINITION_USER_KEY=box1

Perform an Action on a Hotspot

performHotSpot (final String definitionKey, Ffinal String hotspotKey, final
String action, final String params)

Perform a hotspot action on the given hotspot. This method should be called during the file
session when the hotspots have been already initialized (only after the external application
notifies that hotspots have been initialized in the file).

Parameters Description

definitionKey The hotspot definition key (the hotspot identifier)
provided at creation.

hotspotKey The hotspot property key string found based on the
definition key.

action The action to perform on the hotspot. Refer to
Hotspots Actions.

params A string separated by semicolons specifying hotspot
action parameters. For example: namel = valuel;
name2 = value2.

Hotspot Actions

The hotspot actions supported in performHotSpot()and their arguments are:

AutoVue APl Programmer’s Guide Page |28

Action Name Description Arguments

HIGHLIGHT Perform a highlight HOTSPOT_COLOR: The color for a
highlight to add (RGBA Format). If
this argument is not provided, the
action is interpreted as a Highlight

Removal.
Z00MTO Zoom to all hotspot None
instances
ZOOMNEXT Zoom to the next hotspot None
instance
ZOOMPREV Zoom to the previous None

hotspot instance

Interactions with Hotspots from JavaScript
The following is a code prototype for a custom JavaScript function call to initialize hotspots when the
file/page loads:

initialization_script(String definitionKey)

The following is a code prototype for a custom JavaScript function call when a user interacts with
hotspots:

notification_script(String definitionKey, String hotspotKey, String action,
int keyModifiers, String properties)

action may be a custom action sent during the definition of the hotspot handler (RMB actions) or one
these two predefined actions:

OnHotSpotClicked To send when user clicks on the hotspot

OnHotSpotDoubleClicked To send when user double-clicks on the hotspot

properties that could be sent to the external application notification script are:

PROPERTY_ ID ID of Native WebCGM Hotspots

AutoVue APl Programmer’s Guide Page |29

PROPERTY_ NAME Name of Native WebCGM Hotspots

PROPERTY_URI URI of Native WebCGM Hotspots

Hotspot Samples
The following sections provide sample code on how to add hotspot capability to AutoVue and how to
define text hotspots, rectangular box hotspots, and 3D hotspots.

Adding a Hotspot

The following hotspot example shows how the setHotSpotHandler() and performHotSpot() methods are
implemented to add hotspot capability to AutoVue. This example only adds one definition, but it is
possible to add multiple definitions.

1. Initialize the hotspots with the ONINIT applet parameter. This parameter is used to call the

onAppletInit() method after the AutoVue applet has initialized.

Note: If a newly added definition key already exists, then the existing definition is replaced by
the new one.

<PARAM NAME="ONINIT" VALUE="onAppletinit();">

function onAppletlnit() {
var handlerStr = "DEFINITION_REGEX=AutoVue;
DEFINITION_TOOLTIP=AutoVue 2D Professional';
// The following function is called once when AutoVue is ready to
// interact with a hotspot.
handlerStr += " ;DEFINITION_ONINIT=onHotSpotlInit";
// The following function is called each time a hotspot is fired.
handlerStr += " ;DEFINITION_FUNCTION=0onHotSpot;
DEFINITION_ACTIONS=Menul, Menu2";
color = ((128 & OxFF) << 24) | ((0O & OxFF) << 16) | ((0 & OxFF) <<
8) | ((255 & OxFF) << 0);
handlerStr += ";DEFINITION_COLOR=" + color;

//The following call sets up the hotspot definition.

window.document.applets["JVue'"] .setHotSpotHandler ("'DEFINITION
_TYPE_TEXT"™, "AV2D", handlerStr);

AutoVue APl Programmer’s Guide Page |30

2. Method onHotSpotInit() is called for each definition when the current page is loaded and
ready for hotspot interactions. Note that the method name should be exactly the same as the
one specified in the hotspot definition DEFINITION_ONINIT in step 1.

function onHotSpotlnit(hotspotDefinitionKey) {
alert("'HotSpot definition initialized: " + hotspotDefinitionKey);
bs

3. The following onHotSpot() method is invoked when a hotspot is fired when the user either
clicks on the hotspot or by selecting one of the Hotspot menu items defined in variable
DEFINITION_ACTION in step 1.

function onHotSpot(hotspotDefinitionKey, hotspotKey, action, modifiers,
properties) {
if (equalslgnoreCase(action, "onHotSpotClicked™)) {
alert("'User clicked on hotspot: " + hotspotKey);
} else if (equalslgnoreCase(action, "onHotSpotDoubleClicked™)) {
alert("'User double clicked on hotspot: " + hotspotKey);
} else if (equalslgnoreCase(action, "Menul™)) {

alert("'User Peformed Menul action: ' + hotspotKey);
} else if (equalslgnoreCase(action, "Menu2'™)) {
alert("'User Peformed Menu2 action: ' + hotspotKey);

}

Note that the method name should be exactly the same as the one specified in the hotspot
definition DEFINITION_FUNCTION in step 2. The onHotSpotClicked and
onHotSpotDoubleClicked methods are predefined keys when the user clicks on the hotspot.

4. The following code performs specific actions on the clicked hotspot such as Highlight Zoom and
so on.

// Highlight the "AutoVue"™ hotspot, "AV2D" is the definition key.

// Color : alpha | red | green | blue

params = "HOTSPOT_COLOR=" + (((128 & OxFF) << 24) | ((255 & OxFF) <<
16) | ((255 & OxFF) << 8) | ((0 & OxFF) << 0));
window.document.applets['JVue™] .performHotSpot(*'AvV2D*", "AutoVue',
"Highlight'”, params);

// To clear the hotspot highlight simply set the params (color) to
null.

window.document.applets["JVue"] .performHotSpot("'Av2D", "AutoVue",
"Highlight”, null);

// To clear the definition highlights, set the hotspot key to null.

AutoVue APl Programmer’s Guide Page |31

window.document.applets["JVue'].performHotSpot("'"Highlight'™, "Av2D",
null, null);

// To clear all hotspot highlights, set the definition key to null.
window.document.applets["JVue'].performHotSpot(null, null, "Highlight",
null);

// Zoom to the next "AutoVue' hotspot.
window.document.applets[''JVue™] .performHotSpot(*'AvV2D", "AutoVue",
""ZoomNext", null);

// Zoom to the previous "AutoVue' hotspot.
window.document.applets["JVue'].performHotSpot(*'AV2D", "AutoVue',
“"ZoomPrev', null);

3D Hotspot
The following example shows how to define a 3D hotspot.

1. Getthe JVue Applet.
| JApplet = window.document.applets['JVue"]; |

2. Define a 3D hotspot.

This example defines a hotspot matching a part number in a 3D Unigraphics assembly file. The
sample file is included with the AutoVue Client/Server Deployment installation: <AutoVue
Installation Folder>/samples/3D/Unigraphics/3DUnigraphics_ilLearn-Assy.prt.
item00003Def = "DEFINITION_ATTRIB_NAME=PART_ NUMBER;
DEFINITION_ATTRIB_VALUE=ITEM-UG-00003;""

+ "DEFINITION_TOOLTIP=Board;"
"DEFINITION_ONINIT=0onHotSpotlnit;"
"DEFINITION_FUNCTION=0onHotSpot;"

"DEFINITION_ACTIONS=Add Part, Remove Part;"
"DEFINITION_COLOR=(255, 0, 0)";

+ + + +

3. Setthe 3D hotspot handler.
JApplet._setHotSpotHandler (""DEFINITION_TYPE_3D_ATTRIBUTE'™, "item00003",
item00003De¥) ;

Rectangular Box Hotspot
The following example shows how to define a rectangular box hotspot.

1. Getthe JVue Applet.
| JApplet = window.document.applets[JVue']; |

2. Define a rectangular hotspot.
This example defines a rectangular hotspot that encloses the Oracle logo included in the PDF
sample file that is included with the AutoVue Client/Server Deployment installation: <AutoVue
Installation Folder>/samples/Desktop-Office/Basell_Autovue_ Case_ Study.pdf.

AutoVue APl Programmer’s Guide Page |32

Note: The rectangle coordinates are defined by #minX #minY #maxX #maxY. Note that each
coordinate must be preceded by a dash (#).

oracleDef = "DEFINITION_BOX=#6.4 #0.7 #8.1 #0.4;
DEFINITION_USER_KEY=oracle;"

+ "DEFINITION_TOOLTIP=www.oracle.com;"
"DEFINITION_ONINIT=onHotSpotlInit;"
"DEFINITION_FUNCT ION=0nHotSpot;"™
"DEFINITION_ACTIONS=Open Link;"
"DEFINITION_COLOR=(0, 0O, 255, 64)";

+ + + 4+

3. Set the rectangular box hotspot handler.

JApplet.setHotSpotHandler (""DEFINITION_TYPE BOX', "oracleBox",
oracleDef);

Text Hotspot
The following example shows how to define a text hotspot.

1. Get the JVue Applet.
| JApplet = window.document.applets[JVue™]; |

2. Define a text hotspot. The following example defines a text hotspot (regular expression)
matching the AutoVue string. The PDF sample from Rectangular Box Hotspot Sample includes

the AutoVue string in multiple locations.
autovueDef = "DEFINITION_REGEX=AutoVue; DEFINITION_MATCHCASE=false;"
+ "DEFINITION_TOOLTIP=AutoVue Professional;"
+ "DEFINITION_ONINIT=0onHotSpotlnit;"
+ "DEFINITION_FUNCTION=0onHotSpot;"
+ "DEFINITION_ACTIONS=AutoVue 2D, AutoVue 3D, AutoVue EDA,

AutoVue Electro-Mechanical;
+ "DEFINITION_COLOR=(0, 255, 0, 128)";

3. Set the text hotspot handler.
JApplet._setHotSpotHandler (""DEFINITION_TYPE_TEXT"™, "AutoVue',
autovueDef);

7. Use Cases

The following sections provide information on typical use cases you may come upon when creating an
AutoVue API applet/application or adding enhanced functionality to the AutoVue client. Refer to the
VueBean JavaDocs for more information.

Note: Throughout this document, m_vueBean is used as a valid active VueBean object and m_JVue as a
valid JVue applet object. This is done assuming that the methods or segments of code that use objects
have access to a class which owns them.

AutoVue APl Programmer’s Guide Page |33

Building an AutoVue API Application
A good starting point with the AutoVue APl is to create an application that opens and displays a file. This
section provides detailed steps for creating a file open application using the AutoVue API.

1. Import required packages.

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

import com.cimmetry.core._*;

import com.cimmetry.util_Messages;

import com.cimmetry.vuebean.*;

import com.cimmetry.vueconnection.ServerControl;

2. Create aJava class, ApplicationSample, that can be run as a stand-alone application, and
declare all external parameters and internal data members.

public class ApplicationSample {
private String m_host = "socket://localhost:-5099";
private String m_user = "‘guest";
private String m_fileName = null;
private String m _verbose = null;
private String m _format = "AUTO";

// Internal data members

private VueBean m_vueBean = null;
private ServerControl m_control = null;
private static JFrame m_frame = null;

private JMenu m_fileMenu = null;

3. Create stand-alone application support.

public static void main(final String args[]) {
ApplicationSample app = new ApplicationSample();
app-init(args);

public void init(final String[] args) {
switch (args.length) {

case 4:

m_verbose = args[3];
case 3:

m_FfileName = args[2];
case 2:

m_user = args[1];
case 1:

m_host = args[O0];
default:

break;

AutoVue APl Programmer’s Guide

Page | 34

4. |Initialize the application.

public void init() {
// Setup verbosity
it (n_verbose !'= null && m_verbose.length() > 0) {
Messages.setVerbosity(m_verbose);
}

Note: The init() method continues until step 13.

5. Establish a connection with the server.

m_control = new ServerControl();
try {
m_control .setHost(m_host);
m_control .connect();
} catch (Exception e) {
System.out.printin(*"Unable to connect to:"+m_host);
e.printStackTrace();
return;

6. Open the session.

try {
m_control .setUser(m_user);

m_control _.sessionOpen();
} catch (Exception e) {
System.out.printIn(""Unable to open session for
e.printStackTrace();
return;

+ m_user);

7. |Initialize the frame.

m_frame = new JFrame(''VueBean Sample™);
m_frame.setBounds(100, 100, 640, 480);
m_Frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
destroy();

AutoVue APl Programmer’s Guide Page |35

DE

8. Set the menus and actions.

setMenuBar();

9. Create the bean.

m_vueBean = new VueBean(m_format);
m_vueBean.setServerControl(m_control);
m_vueBean.setBackground(Color.lightGray);

10. Set up the viewer as a model event listener.

m_vueBean.setVueEventBroadcaster(m_vueBean.getVueEventBroadcaster());

11. Add the VueBean to the frame.

m_Frame.getContentPane() .add(m_vueBean);

12. Display the frame.

m_frame.setVisible(true);

13. Show the file.

updateFile();

}// Closing bracket for init() method

Note: This step marks the end of the init() method.

14. Close the session.

public void destroy() {
try {
m_control .sessionClose();
} catch (Exception ex) {

AutoVue API

15.

16.

17.

18.

19.

Programmer’s Guide

Page | 36

ex.printStackTrace();

}

m_frame.setVisible(false);
m_frame.dispose();
System.exit(0);

¥

Get the attached VueBean.

public VueBean getVueBean() {
return m_vueBean;
}

Get the attached frame.

public JFrame getFrame() {
return m_frame;
}

Get the file menu

protected JMenu getFileMenu() {
return m_fileMenu;
}

Get the frame. The following method sets the applet’s menubar to File Open, Print, and Exit.

public void setMenuBar() {

m_FileMenu = new JMenu("'File™);

JMenultem menultem;

// File open menu item

menultem = m_fileMenu.add(new JMenultem(*'Open'));
menultem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

showFile();

}
D:;

// set the Applet®s menu bar

new JMenuBar();
m_frame.setIMenuBar(menu_bar);
menu_bar._.add(m_fileMenu);

JMenuBar menu_bar =

}

Load the file

public void updateFile() {

// Set the vuebean®"s file

if (n_fileName = null && Im FileName.equals("™)) {
m_vueBean.setFile(new DoclD(m_FfileName));
m_vueBean.setBackground(Color.lightGray);
initMouseListeners();

Javax.swing.SwingUtilities. invokelLater(new Runnable() {

AutoVue APl Programmer’s Guide Page |37

public void run(Q) {
m_vueBean.getController() .-zoomFit();
}

DE
}

20. This method initializes listeners for mouse actions and sets the right mouse button to zoom out.

private void initMouselListeners() {
MouselListener mouseSet = new MouseAdapter() {
public void mouseClicked(MouseEvent me) {
if ((me.getModifiers() & MouseEvent.BUTTON3 MASK) I= 0)

it (m_vueBean.getFilelnfo() !'= null) {
m_vueBean.getController().zoomFit();
me.consume() ;

}

VueMouseToolManager mtm = m_vueBean.getMouseToolManager();
mtm.setMouseListener(VueMouseToolManager . TOP_LAYER,
mouseSet) ;

}

21. Display the client-side (upload) File Open dialog and set the selected file in the bean.

public void showFile() {
FileDialog openDlg = new FileDialog(m_frame, "File Open",
FileDialog.LOAD);
openDlg.setVisible(true);
m_FileName = "upload://"+openDlg.getDirectory() +
openDIg.getFile();
openDlg.dispose();
updateFile();

}

Note: End of class ApplicationSample. In order to run the application properly, an AutoVue
server needs to be running on either a local or remote host that is specified through command
line arguments. Refer to step 3 for the definition of each argument.

AutoVue APl Programmer’s Guide Page |38

Implementing Functions from AutoVue in a Second Applet

When creating your own customized Java applets/applications based on AutoVue APl components, it is
sometimes easier to implement pre-existing code from AutoVue. Many AutoVue and VueBean methods
can be easily called through JavaScript in your HTML page by first getting a handle to the AutoVue object
with the following JavaScript call:

document.applets[“JVue’]

However, some functionality may be difficult to implement directly through JavaScript and must be
written in Java. An efficient way to do this is through a separate Applet that references the AutoVue
applet. The steps are as follows:

1. Create your own Java class (for example, App2.java) that extends Applet.

2. Import the appropriate packages and classes (such as java.applet.Applet,
com.cimmetry.vuebean.VueBean, com.cimmetry. jvue.JVue, and so on).

3. Add the following two variables to your class:

private Applet m_applet;
private JVue m_jv;

4. Define an attach() method for your class and add the following two lines of code to obtain a
handle to the AutoVue (JVue) applet instance:

m_applet = getAppletContext().getApplet(*'IVue™);
m_jv = (JVue)m_applet;

You can now call AutoVue methods on the m_jv variable, and can also obtain a handle to the
VueBean instance with m_jv.getActiveVueBean().

Note: For more information regarding the getAppletContext() method, refer Java
documentation for the AppletStub interface in the java.applet.package.

5. Compile your class (make sure to include jvue.jar in the classpath) and place your Java class file
in your CODEBASE location.
Note: If your custom applet has inner classes and generates additional class files upon
compilation, you should combine those classes in a JAR file and set the JAR files as your second
applet’s archive parameter.

AutoVue APl Programmer’s Guide Page |39

6. Inyour HTML page, declare your Applet as follows:

<APPLET
NAME=""App2"
CODE=""App2.class"
ARCHIVE="jvue.jar,jogl.jar,gluegen-rt_jar"
CODEBASE=""http://<SERVERNAME>/jVue"
HEIGHT=""0%"" WIDTH=""0%"
MAYSCRIPT>

</APPLET>

You can either modify frmApplet.html in the AutoVue root directory or use it as a template to
create your own HTML page.

Note: Make sure to set the CODEBASE and parameter appropriately based on your Web server
or application server hosting the Applet.

For example: CODEBASE=""http://localhost:80/jVue"

7. Inyour HTML page, initialize your new Applet in the onAppletInit() method for the AutoVue
Applet by adding the following line:

document._applets[“App2].attach();

This is the easiest way to initialize the second Applet in this particular example, since the
frmApplet.html page already contains the onAppletInit method.

Custom VueAction

Action that Performs a Single Function
The following example shows how to implement a custom action for AutoVue that displays a dialog that

lists all components of a drawing that are represented by hotspots and that were double-clicked by the
user.

Note: The following are segments of the source code of the VueAction example to illustrate the
essential steps of creating a custom action, it may not compile if you just copy and paste the code here.
For the complete source code, refer to PartListAction.java.

1. Import all required packages.

import java.awt.*;
import java.awt.event.*;
import java.util_Vector;

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event._*;

AutoVue APl Programmer’s Guide Page |40

import com.cimmetry.vueframe.*;

import com.cimmetry.vueframe.hotspot.*;
import com.cimmetry.core.*;

import com.cimmetry.dialogs.VueBasicDialog;
import com.cimmetry.vueaction.VueAction;
import com.cimmetry.gui.™;

2. Make your class extend VueAction

public class PartListAction extends VueAction { ..} |

3. Inthe constructor of your class, call the appropriate super constructor. Since this action only
performs a single function, a call to the super-constructor of VueAction takes this action’s
resource key as well as its resource bundle name.

public PartListAction() {
super(“LIST_PARTS” ,RESOURCE_BUNDLE_NAME) ;
setViewListener(true);

3

Note: The resource bundle name here is the common part of resource bundle files for different
languages. The actual name of a resource bundle file should include the language suffix and file
extension. For example, PartListAction_en.properties is the resource bundle file for
English.

4. Implement a perform method for this action.

public void perform() {
Partinfo[] parts = new Partinfo[m _cart.size()];
m_cart.copylnto(parts);
PartListDialog dialog = new PartListDialog(getFrame(), parts);
dialog.show();

5. Implement the event handlers onFi leEvent and onViewEvent to notify when a file has
changed and to update the user-interface.

public void onFileEvent(VueEvent e) {
switch (e.getEvent()) {
case VueEvent.ONPAGELOADED:
setEnabledByCurrentState();

AutoVue APl Programmer’s Guide

Page |41

break;

}

public void onViewEvent(VueEvent e) {
switch(e.getEvent()) {
case VueEvent.ONLINKCLICKED:
Object[] params = (Object[]) e.getParameter();
MouseEvent me = (MouseEvent) params[O0];
it (me.getClickCount() == 2) {
Object link = params[1];
if (link instanceof HotSpot) {
HotSpot hotspot = (HotSpot) link;
Partinfo part = getPartinfo(hotspot);
m_cart.addElement(part);

s
b
break;
default:
super.onViewEvent(e);
break;
3

6. The dialog that lists all components of a drawing extends VueBasicDialog. You must

implement your own constructor that calls the super-constructor and over-rides buildDialog()

and buttonAction(int).

public static class PartListDialog
extends

VueBasicDialog
implements

ActionListener (..)

protected void buildDialog() {
super.buildDialog();

;

protected void buttonAction(int index){.}

7. You must define a model for the table that represents the displayed product parts list.

| public static class PartListModel implements CTableModel { .}

8. Close the PartListDialog method.

9. GetaPartlnfo associated with a given hotspot.

private Partinfo getPartinfo (HotSpot hotspot) {
return new Partlnfo(hotspot.getDefinitionKey(),

AutoVue APl Programmer’s Guide Page |42

hotspot.getHotSpotKey(),
hotspot.getProperty(HotSpot.PROPERTY_DESCRIPTION));

Action that Performs Multiple Functions

The following example shows how to implement a custom action for AutoVue that performs multiple
tasks. The custom action consists of several related sub-actions that access information about parts of a
model. One sub-action permits the user to order a part, another permits the user to display part
information, and another sub-action displays a list of all the model’s parts

Note: The following are segments of the source code of the VueAction example to illustrate the
essential steps of creating a custom action, it may not compile if you just copy and paste the code here.
For the complete source code, refer to PartCatalogueAction.java.

1. Make your class extend VueAction.

public class PartCatalogueAction extends VueAction {
private static final String RESOURCE_BUNDLE_NAME =
"/PartCatalogueAction';

// Names of the sub-actions used in *_gui Ffile

private static final String ORDER_SUBACTION = *Order™;

private static final String LIST_PARTS_SUBACTION = "ListParts";
private static final String SHOW_INFO_SUBACTION = *Showlnfo";

2. Inthe constructor of your class, call the appropriate super constructor.

public PartCatalogueAction() {
super (RESOURCE_BUNDLE_NAME) ;

Note: The resource bundle name here is the common part of resource bundle files for different
languages. The actual name of a resource bundle file should include the language suffix and file
extension. For example, PartCatalogueAction_en.properties is the resource bundle file
for English.

3. Call defineSubAction to define each sub-action your action can perform.

defineSubAction(ORDER_SUBACTION, "ORDER_PART™);
defineSubAction(LIST_PARTS_SUBACTION,"LIST_PARTS™);
defineSubAction(SHOW_INFO_SUBACTION, ""SHOW_PART_INFO™);

AutoVue APl Programmer’s Guide Page |43

4. Implement a performSubAction(String) method to override the one in VueAction.

public void performSubAction(String subActionName) {
if (subActionName.equals(ORDER_SUBACTION)) {

//Code for performing the “Order” subaction
} elge if (subActionName.equals(LIST_PARTS SUBACTION)) {

//Code for performing the “List Parts” subaction

5. Implement the event handlers onFileEvent and onViewEvent to ensure that your sub-
actions are enabled or disabled when appropriate.

public void onFileEvent(VueEvent e) {
switch (e.getEvent()) {
case VueEvent.ONSETFILE:
//Code for handling ONSETFILE event

case VueEvent.ONPAGELOADED:
//Code for handling ONPAGELOADED event
setEnabledByCurrentState();

break;
3
b
public void onViewEvent(VueEvent e) {
switch(e.getEvent()) {
case VueEvent.ONVIEWCHANGED:

//Code for handling ONVIEWCHANGED event
setEnabledByCurrentState();

break;
case VueEvent.ONOPTIONSCHANGED:
//Code for handling ONOPTIONSCHANGED event

Break;

6. Create one or more resource files, one per language your action supports, containing the keys
and values needed by your action. For example:

AutoVue APl Programmer’s Guide Page |44

FILE_MARKUP_NEW_MARKUP=&New Markup, 32_new_markup_red.png, New Markup
FILE_MARKUP_OPEN=&Open..., 57 _markup_red.png, Open Markup(s)

FILE_MARKUP_SMALL= &Markup, 57 _markup_red_small._png, Markup
FILE_MOCKUP=&Import File for Mockup..., 115 dmu.png, Import File for
Mockup

FILE_MRU=Recent Files

FILE_NOTFOUND=File not found.

FILE_NOTSUPPORTED=This file format is not supported by your server.
FILE_NOTUPLOADED=Failed to upload file.

FILE_OPEN=&Open.. \\tCTrL+0, 59 open.png, Open File
FILE_OPEN_SERVER=Open from &Server..., , Open a file from the server

Similarly, in our resource bundle file for English language
PartCatalogueAction_en.properties, it should contain the resource keys for the
PartCatalogueAction shown in the following:

ORDER_PART = &Order Part, order_part.png, Order a part
LIST_PARTS = &List Parts, list_parts._png, List product parts
SHOW_INFO_SUBACTION = &Show Part Info, show_info.png, Show part
information

Note: Each resource key has three entries separated by a comma “,”. The first entry (for
example, &0rder Part) is the text displayed on the GUI item (such as a menu item or toolbar
button) and the ampersand “&” defines a shortcut key. The second entry (for example,
order_part.png) is the file of the icon displayed on its GUI item. The third entry is the tooltip
text for the GUI item. The second and third entries are optional. You should get the icon files
ready if needed and add them to the JAR file for your custom action.

7. Make a copy of AutoVue’s default.gui file located in the <AutoVue Installation Root>\bin
directory, and insert the name of your new action in the appropriate locations of your GUI file.
Note that for an action that performs multiple tasks, you must also specify the appropriate sub-
actions.

Note: For information on how PartCatalogueAction sub-actions are inserted into a
menubar, toolbar, and custom pop-up menu, refer to default.gui and the custom.gui file
located in the “<AutoVue Installation Root>\examples\VueActionSample\ directory.

8. To allow the custom action to take effect, you may need to create a JAR file with your custom
VueAction classes and all resource files they depend on.
For example, for the resource bundle files for different languages and icon files, if any, place
your JAR file under AutoVue’s bin directory or its web root directory and include your JAR file in
the classpath of the stand-alone JVue application or ARCHIVE list of the JVue applet.

AutoVue APl Programmer’s Guide Page |45

9. You must specify the name of the modified GUI file through Applet or Command line
parameters.
For more information, refer to the “Customizing the GUI” section of the Installation and
Configuration Guide.

Directly Invoking VueActions

It is possible to develop your own customized user interface in an HTML page that incorporates AutoVue
functionality. To do so, you must call invokeAction() of the com.cimmetry. jvue.JVue applet
from the HTML page. This call to the action can be done purely through JavaScript.

Markups

The following show some ways to execute common Markup actions.

Note: Various MarkupBean functionalities (and various functionalities throughout the AutoVue API)
require the use of the Property class. This class is used to define various property hierarchies for other
classes in the API.

Entering Markup Mode
VueBean.setMarkupModeEnable(true)

Checks whether the MarkupBean member is null, and if so:
e |Instantiates a new MarkupBean object
e Gets the markup settings from the user’s profile
e Sets the markup-specific mouse listeners
e Points the VueBean’s MarkupBean member to the new instance

Broadcasts VueEvent.ONENTERMARKUPMODE

Checking Whether Markup Mode is Enabled
VueBean. isMarkupModeEnabled ()

Checks whether the MarkupBean member is null.

Exiting Markup Mode
VueBean.setMarkupModeEnabled(false)

Checks whether the MarkupBean member is null, and if not:
e Sets the MarkupBean member to null

e Removes markup-specific mouse listeners

AutoVue APl Programmer’s Guide Page |46

e Saves markup settings into the user’s profile
e Broadcasts VueEvent.ONEXI TMARKUPMODE

Adding an Entity to an Active Markup/Layer

MarkupBean.setMarkupEntityClass(<class name of desired markup entity>)
MarkupBean.setActionMode(MarkupBean.ACTION_MODE_ADD)

Adds a new markup entity to the active layer in an active Markup (based on the class name provided)

through user input from the GUI. To programmatically add a markup entity, you must call:
MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

Enumerating Entities
MarkupLayer.getEntities()

or
MarkupBean.getMarkupEntities(MarkupLayer layer)

Returns an array of MarkupEntity objects in a markup layer.

Getting Entity Specification of a Given Entity
MarkupBean.getMarkupEntityFul ISpec(MarkupEntity ent)

You must pass in the specific entity for MarkupBean to return its specification.

Changing Specification of an Existing Entity Programmatically
MarkupBean.exchangeMarkupEntity(MarkupEntity a, MarkupEntity b)

Allows you to dynamically change the properties of an existing entity. That is, it replaces markup entity a
with markup entity b. Some properties can be directly changed via the following set methods of
MarkupEntitySpec inherited from the MarkupGraphicSpec parent class:

e setColor

e setFillColor

o setFilled
e setFilltype
e setFont

e setlineType
e setlineWidth

For other properties, such as the entity position, entity size, entity text content, and so on, there are no
set methods directly on the specification. As a result, you must do the following:

AutoVue APl Programmer’s Guide Page |47

1. Create a new specification instance (with the new properties).
2. Create a new entity instance (with the new specification).

3. Use exchangeMarkupEntity to replace the existing entity.
4. Make a call to MarkupBean . repaint().

Adding a Text Box Entity

The following code shows how to add a text box entity programmatically.

import com.cimmetry.markupbean.*;
import com.cimmetry.gui.*;

bublic void addTextBox(String text){

m_vueBean.setMarkupModeEnabled(true);

CTextPane textPane = GUIFactory.createTextPane();
textPane.setText(text);
byte[] textRTF = textPane.getRTF();

PAN_CtlIRange rect = new PAN_CtlRange(m_vueBean.getViewExtents());
rect.scale(0.2);

TextBoxSpec spec = new
TextBoxSpec(m_vueBean.getMarkupBean() -.getMarkupEntitySpec(),
rect.min, textRTF,
rect.max, TextBoxSpec.MRK_ALIGN_BOTTOMCENTER) ;

m_vueBean.getMarkupBean() -setMarkupEntityClass(spec.getEntityClassName());
m_vueBean.getMarkupBean() -addMarkupEntity(spec);
}

AutoVue APl Programmer’s Guide Page |48

Open Existing Markup
MarkupBean.readMarkup(InputStream is)

InputStream can be relative to the client (for example, a locally-saved Markup), relative to the
AutoVue server (for example, managed by AutoVue’s markups.map file) or from a DMS/PLM/ERP.

To read a Markup from the AutoVue server, you first must get the InputStream by reading the Markup
Property from the VueBean, and then choose a child property (that represents a Markup file) you want
to read into the stream. The following code illustrates how to create a markup, save it, and then read it
into the MarkupBean.

import com.cimmetry.markupbean.*;

Property[] name = {new Property(Property.PROP_DOC NAME, <your Markup name>)};
Property prop = new Property(Property.PROP_MARKUP, name);
ByteArrayOutputStream os = new ByteArrayOutputStream();
m_markupBean.writeMarkup(os);

m_vueBean.writeMarkup(prop, 0s);

Property masterMarkup = m_vueBean.getMarkupProperty();
Property[] listMarkups =
masterMarkup.getChildrenWithName(Property.PROP_MARKUP) ;
Property aMarkup = listMarkup[O];

InputStream is = m_vueBean.readMarkup(aMarkup) ;
m_markupBean . readMarkup(is);

Saving Markups to a DMS/PLM

Note: This example is not applicable if you are building an ISDK-based application.

The following example uses the same concept as saving a Markup back to the AutoVue server; you must
set the appropriate Property and build the OutPutStream. In order to build the Markup property, you
need to first read the CS1_Markups property so that you can retrieve the values that the user sets in
the Markup Save dialog.

private void saveMarkupToDMS() {
// CGets the master markup property for the current file, that is,
// the property containing the GUI and the markup list
Property propMaster = m_vueBean.getMarkupProperty();

// 1f none, we have a problem

it (propMaster == null) {
System.out.printIn(*Could not get master markup property!');
return;

} else {
// Get the GUI child property under master markup property

AutoVue APl Programmer’s Guide Page |49

Property[] listGuiProp
=propMaster.getChildrenWithName(Property.PROP_GUI);
if (listGuiProp == null || listGuiProp.length 1= 1) {
System.out._printIn("'No valid GUI property!');
return;

}
Property propGui = listGuiProp[0];

// Get the user field (Edit) child property under GUI property
Property[] listEditProp
=propGui .getChildrenWithName(Property.PROP_GUI_EDIT);
it (listEditProp == null || listEditProp.length = 1) {
System.out.printIn("'No valid GUI edit property!™);
return;

¥
Property propGuiEdit = listEditProp[0];

// Get the list of user fields from save dialog
// all children items under GUI edit property
Property [] itemskEdit = propGuiEdit.getChildren();

// ToDo: Use the list of edit items (GUI element) to construct a

// save dialog to get user input for properties under PROP_GUI_EDIT.
// Assume the input for attribute ""CSI_DocName"™ we got from the dialog
// is "myMarkup' and the input for attribute "CSI_MarkupType" is

// "Normal', now the following code using the inputs to construct

// the markup property contains these two attributes. In reality

// there can be more than two attributes.

Property [] listProp = {
new Property(*'CS1_DocName', "myMarkup'),
new Property("'CS1_MarkupType™, "Normal'™)

3

// Create a Markup property with the specified name & type properties
Property propMarkup = new Property(Property.PROP_MARKUP, listProp);

// Save the Markup

try {
ByteArrayOutputStream os = new ByteArrayOutputStream();
m_vueBean.getMarkupBean() -writeMarkup(os);
m_vueBean.writeMarkup(propMarkup, 0s);

} catch (MarkuplOException e) {
System.out.printIn(""Markup 10 Exception!');

}

AutoVue APl Programmer’s Guide Page | 50

Adding a Markup Listener to Your Application

MarkupBean.getMarkupBroadcaster() .addMarkupEventListener(MarkupEventListener
mel);

A Markup listener listens for Markup events related to creating/saving/deleting Markups, Markup
entities, Markup file information, fonts, Markup status, and so on. Note that you must implement the
com.cimmetry.MarkupBean.event.MarkupEventListener interface (thereby implementing the
onMarkupEvent method).

Converting Files

The following sections discuss how to execute common Conversion actions such as making a call to
convert, converting an image to a JPEG using a custom conversion, and converting a vector file to a PDF.
In some cases, there are additional methods to achieve the same functionality. Refer to the VueBean
Javadocs for more information.

The class hierarchy for conversion is as follows:

com.cimmetry.core.
ConvertOptions

| |
com.cimmetry.core. com.cimmetry.core.
ConvertOptions2D ConvertOptions3D
com.cimmetry.core. com.cimmetry.core.
RasterConvertOptions VectorConvertOptions

Note that the classes represent the format which you are converting a file to. For example, if you are
converting to a vector format, you should define a VectorConvertOptions and pass it into the
conversion method.

Calling to Convert
com.cimmetry.vuebean.VueBean.convert(ConvertOptions opts)
or

com.cimmetry. jvue.JVue.convertFile(ConvertOptions opts)

Once the convert options are defined, you must call one of the methods to convert.

Note: When making a call from the VueBean you must call VueBean . convert. When making a call
from the AutoVue applet layer, you must call JVue.convertFile.

AutoVue APl Programmer’s Guide Page |51

Converting to JPEG (Custom Conversion)

To convert an image to a JPEG, you must use the encode () method that Java provides as part of the
com.sun. image.coded. jpeg.JPEGImageEncoder interface. This method encodes buffers of the
image data in JPEG data streams. To use this interface, you must provide the image data in raster
format or a BufferedlImage. The following example illustrates how to use this interface with the
AutoVue API:

import java.io.*;

import java.awt.*;

import java.awt.image.*

import com.cimmetry.core.™;

import com.sun.image.codec. jpeg.*;

double scaling=0.5;
BufferedImage bi = new BufferedImage((int)(m_vueBean.getWidth()*scaling),
(int) (m_vueBean.getHeight()*scaling), Bufferedlmage.TYPE_INT_RGB);

//Create or get Graphics and RenderOptions object here
Graphics2D g = bi.createGraphics();
RenderOptions optsRender = new RenderOptions();

// TODO: Initialize the Graphics object and RenderOptions object properly
such // as setting the source and destination.

try {
m_vueBean.renderOntoGraphics(g,optsRender);

FileOutputStream out = new FileOutputStream(‘'c:\\temp\\my.jpeg™);
JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
JPEGENncodeParam param = encoder.getDefaul tJPEGEncodeParam(bi);

// TODO: Use the JPEGEncodeParam Interface to set the encoder parameters.

encoder .encode(bi, param);
out.flush();
out.close();
} catch (Exception e) {
System.out.printIn("Exception while converting to JPEG ");
return;

}

AutoVue APl Programmer’s Guide
Converting to PDF
To convert a vector file to a PDF you must perform the following steps:
e Create new VectorConvertOptions() object
e Set all appropriate convert options
e (Call VueBean.convert and pass in the convert options

The following convertToPDF() method converts a vector file to a PDF.

Page |52

public void convertToPDF() {
VectorConvertOptions opts = new VectorConvertOptions();

opts.setStepsPerinch(l);
PAN_CtlFilelnfo fi = m_vueBean.getFilelnfo();
PAN_CtlIRange ps = m_vueBean.getPageSizeEx();

it (fi.getType() == fi.PAN_DocumentFile) {
ps = fi.getPageSize();
}

opts.setlnputRange(ps);
opts.setArea(ConvertOptions2D.AREA_EXTENTS);
opts.setScaleFactor(100);
opts.setScaleType(ConvertOptions2D.TYPE_SCALE);
opts.setWidth(Math.abs(ps-width()));
opts.setHeight(Math.abs(ps.-height()));
opts.setUnits(Constants.UNITS_INCH);
opts.setPages(ConvertOptions2D.PAGES_ALL);
opts.setFromPage(l1);
opts.setToPage(fi.getPagesNumber());
opts.setFormat("'PCVC_PDF'™);
opts.setSubFormatiD(0);
opts.setFileName('c:\\output.pdf'™");

Property[] p = m_ vueBean.uploadMarkups();
//Uploads all currently loaded markups to the AutoVue server

opts.setProperties(p);
m_ vueBean.convert(opts);

AutoVue APl Programmer’s Guide Page |53

Printing a File to 11x17 Paper
The following code prints a file to 11x17 paper size using the
com.cimmerty.common.PrintProperties and com.cimmetry.commonPrintOptions classes.

import com.cimmetry.common.PrintProperties;
import com.cimmetry.common.PrintOptions;

public void printFile()
{

PrintProperties paramPrintProperties = new PrintProperties();
PrintOptions po = new PrintOptions();

po.setPrinter("AutoVue Document Converter™);
po.setPaperSize(po.PAPER_11X17);
paramPrintProperties.setOptions(po);

// The second parameter will enable the bypass of the Windows dialog
m_JVue.printFile(paramPrintProperties, true);

}

Monitoring Event Notifications
com.cimmetry.vuebean.event

If you have a requirement to programmatically execute specific file actions (such as rotation, zooming,
and so on) as soon as a file has finished loading, you must monitor for the appropriate event
notifications. If you do not check for file load completion, you might call a file action too early which may
lead to errors.

The VueBean includes a set of notifications known as VueEvents. You can set up a listener to catch
VueEvents, and catch the specific events that represent the completion of a file loading. In order to
catch file loading completion, you must use a file listener, with the VueFileListener interface.

The steps are as follows:
1. Implement your own VueFileListener (for example, in a second applet).

2. Inthe onFileEvent method, check for occurrence of the Vue.Event.ONSHOWINGFILE event
directly followed by the VueEvent.ONACTIVEVIEW event.
Note: These two events in this particular order indicate that VueBean has finished loading a file.

3. Implement your code to be executed when these two events are detected in order.
4. Add your file listener to the VueBean.

5. Add this to your second applet. See Implementing Functions from AutoVue in a Second Applet.

AutoVue APl Programmer’s Guide Page |54

Retrieving the Dimension and Units of a File
The following sample code shows how to get the dimensions and units of a file.

PAN_CtlIDimensions pctlDim = m_vueBean.getFilelnfo().getDimensions();
double width = pctIDim.getWidth();

double height = pctlDim.getHeight();

double depth = pctlDim.getDepth();

int units = m_vueBean.getFilelnfo().getinsertion().units;

8. Cleanup Problems

Session Close
The following code is for a session close when using the VueBean. Note that when closing the session
you do not need to close the document as it is done automatically by the session close call.

Note: This code is not required when using the AutoVue applet as it is done automatically by the
applet’s destroy() method.

//Disable restoration to speedup the shutdown
getServerControl () .setRestorable(false);
if (getServerControl().isSessionClosed()) {
// Already closed
return;

try {
//Close session on the server

getServerControl () .sessionClose();
} catch (VueRemoteException ex) {
//Failed to close session
¥

//Close connection to the server
getServerControl () .disconnect();

//Stop all the active worker threads (threadpool)
JobGroup.killRootJobGroup(VueFrame.this);

AutoVue APl Programmer’s Guide Page |55

9. FAQ

MarkupBean

Q: How do you determine the layer that a given entity is in?
A: Get the entity's spec and then get the layer from the spec.

Q: Do | have to implement the entire text editing dialog for the Text/Leader/Note entity?
A: No. The text editing dialog is inherent to these entities.

Q: An entity spec is tied to a given entity. Why was it decided to have an entity spec tied to the
MarkupBean?

A: The entity spec on the MarkupBean was designed to be a reference to the most recent spec settings.
When you create a new Markup entity, it defaults much of its spec attributes to the current spec in the

MarkupBean. To retrieve the most recent spec settings, you can call
MarkupBean.getMarkupEntitySpec() .

Note: The other two methods MarkupBean . getMarkupEntitySpec(MarkupEntity ent) and
MarkupBean.getMarkupEntityFul ISpec(MarkupEntity ent) are for when you need to get the
spec of a specific entity.

Q: What is the difference between MarkupGraphicSpec and MarkupEntitySpec? Why are the specs
such as ArcSpec subclass not derived directly from MarkupGraphicSpec?

A: The MarkupGraphicSpec is a top-level specification that manages visual attributes such as color, fill
type, and so on. The MarkupEntitySpec is a top-level spec that has access to the overall structure
such as the MarkupBean, Markups, layers, pages, and so on.

Q: Can you work with MarkupBean independent of VueBean?
A: In theory it is possible to instantiate and work with MarkupBean without having a VueBean. However,
there are not many use cases or practical reasons where this would be valuable.

Q: Are the Markup tree and Markup toolbars from the AutoVue Applet accessible if | am building a
custom application from VueBean/MarkupBean?

A: No. The Ul such as toolbars and Markup tree are part of the "JVue" class. If you build your solution
using the JVue class you can use or customize this Ul. However, if you build your solution directly from
VueBean you need to implement your own Ul.

Q: Is it possible to add AutoVue markup capabilities to a third-party application?
A: Yes. There are two primary ways to add markup entities using MarkupBean:

1. With user input, using MarkupBean . setActionMode (MarkupBean.ACTI10ON_MODE_ADD)
2. Programmatically, using MarkupBean.addMarkupEntity(MarkupEntitySpec spec)
Printing

Q: What is the purpose of com.cimmetry.core.PrintiInfo class?
A: It is used to pass information between the client and server.

AutoVue APl Programmer’s Guide Page | 56

General

Q: Can | perform file type-dependent operations?

A: Yes. You can do so by using the getFilelInfo() method. The PAN_CtlFilelnfo object that is
returned can be queried to determine file format (such as vector, raster, spreadsheet, document,
archive, or a database file).

Q: Can | delete server-side Markups when using the VueBean API?
A: No. It is not currently possible to programmatically delete server-managed Markups (referenced in
the markups.map file on the server) using the VueBean API.

AutoVue APl Programmer’s Guide Page |57

10. Feedback

We appreciate your feedback, comments or suggestions. Contact us by e-mail or telephone. Let us know
what you think.

For any questions regarding a particular class or method, please contact Oracle Customer Support or
post your question to the My Oracle Support AutoVue Community Web site. Customer Support can
answer all questions related to specific topics documented in the VueBean Javadocs.

General Inquiries:
Telephone: +1.514.905.8400 or +1.800.363.5805

E-mail: autovuesales_ ww@oracle.com
Web Site: http://www.oracle.com/us/products/applications/autoVue/index.html

Sales Inquiries:
Telephone: +1.514.905. 8400 or +1.800.363.5805

E-mail: autovuesales_ ww@oracle.com

Oracle Customer Support:
Web Site: http://www.oracle.com/support/index.html

My Oracle Support AutoVue Community:
Web Site: https://communities.oracle.com/portal/server.pt

mailto:autovuesales_ww@oracle.com�
http://www.oracle.com/us/products/applications/autoVue/index.html�
mailto:autovuesales_ww@oracle.com�
http://www.oracle.com/support/index.html�
https://communities.oracle.com/portal/server.pt�

AutoVue APl Programmer’s Guide Page |58

	1. Preface
	Audience
	Related Documents

	2. Introduction
	3. System Requirements
	4. Architecture of an AutoVue API Solution
	AutoVue API Design Options

	5. AutoVue API Packages
	VueBean Package
	Event Package
	VueEvent
	VueModelEvent
	VueEventBroadcaster
	VueFileListener
	VueMarkupListener
	VueViewListener
	VueStateListener
	VueModelListener
	MarkupBean Package

	Markup
	MarkupLayer
	MarkupEntity
	MarkupEntitySpec

	Server Control
	VueAction Package
	AbstractVueAction
	VueAction
	Create an action that performs a single function
	Create an action that performs multiple functions

	6. Hotspots
	Text Hotspots in 2D and EDA Documents
	Web CGM Hotspots
	3D Hotspots
	Regional Hotspots
	Box Hotspots

	AutoVue Behavior on Hotspots
	AutoVue API for External System Interaction
	AutoVue Hotspot API
	Define Hotspot
	Hotspot Handler Types
	Hotspot Definition Types

	Perform an Action on a Hotspot
	Hotspot Actions

	Interactions with Hotspots from JavaScript
	Hotspot Samples
	Adding a Hotspot
	3D Hotspot
	Rectangular Box Hotspot
	Text Hotspot

	Common Definition Parameters
	Text Definition Parameters
	3D Definition Parameters
	Rectangular Box Definition Parameters
	7. Use Cases
	Building an AutoVue API Application
	Implementing Functions from AutoVue in a Second Applet
	Custom VueAction
	Action that Performs a Single Function
	Action that Performs Multiple Functions

	Directly Invoking VueActions
	Markups
	Entering Markup Mode
	Checking Whether Markup Mode is Enabled
	Exiting Markup Mode
	Adding an Entity to an Active Markup/Layer
	Enumerating Entities
	Getting Entity Specification of a Given Entity
	Changing Specification of an Existing Entity Programmatically
	Adding a Text Box Entity
	Open Existing Markup
	Saving Markups to a DMS/PLM
	Adding a Markup Listener to Your Application

	Converting Files
	Calling to Convert
	Converting to JPEG (Custom Conversion)
	Converting to PDF

	Printing a File to 11x17 Paper
	Monitoring Event Notifications
	Retrieving the Dimension and Units of a File

	8. Cleanup Problems
	Session Close

	9. FAQ
	MarkupBean
	Printing
	General

	10. Feedback

