
Oracle® Essbase Administration Services

Developer’s Guide

RELEASE 11.1.2

Administration Services Developer’s Guide, 11.1.2

Copyright © 2001, 2011, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to
change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS:
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to
the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Documentation Accessibility . 5

Chapter 1. Introduction . 7

About Administration Services . 7

About Java Plug-in Components . 8

Requirements for Using Administration Services Java Plug-ins . 9

Prerequisite Knowledge . 9

Framework Concepts . 10

Packaged APIs for Administration Services . 10

Administration Services Java Packages . 10

Example Classes . 10

About the Sample Code in this Guide . 10

Chapter 2. Writing Client Plug-ins . 11

Access Point for Plug-ins . 11

Class Packages . 11

How the Client Locates Plug-ins . 13

Creating the Miscellaneous Handler Class . 13

Adding Functionality . 14

Semantic Rules . 14

Adding a Branch to the Enterprise Tree . 14

Adding Children to Other Tree Nodes . 16

Permitting Plug-ins To Add Children To Your Tree Nodes . 17

Adding Context Menu Items To Tree Nodes . 17

Adding Options to the New Menu . 18

Adding Items To Menus . 19

Static Menu Items . 20

Internal Frame Menu Items . 21

Console Tree Menu Items . 21

Handling Save As . 21

Handling Server Connection and Disconnection . 22

Standard Controls . 23

Contents iii

The StandardDialog Class . 23

Name of Standard Dialog Class . 24

Dialog Creation . 24

Dialog Initialization . 24

Dialog Default Action . 25

Dialog Keyboard Handling, Focus Order, Action Maps, and So On 25

Dialog Results . 26

Methods to Override . 26

Standard Buttons and Other Controls . 27

Administration Services Console Services . 28

Retrieving the CSS Token from the Console . 28

Sending E-mail . 28

Internationalization . 29

Packaging the Plug-in . 29

Chapter 3. Writing Server-side Command Listeners . 31

Prerequisites . 31

Command Listeners . 32

Class Hierarchy . 32

Which Class To Extend . 33

Which Methods to Override . 33

Registering Commands . 34

CommandString Class . 34

CommandArgument Class . 34

CommandDescriptor Class . 35

Examples . 35

Command Handling Methods . 38

Method Signatures . 39

Grabbing Command Arguments . 40

Sending Results Back to the Client . 40

Storing Temporary Data Using the Framework . 41

Packaging the Code . 42

Loading the Code . 43

Utility Classes . 44

Glossary . 45

Index . 57

iv Contents

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with
good usability, to the disabled community. To that end, our documentation includes features
that make information available to users of assistive technology. This documentation is available
in HTML format, and contains markup to facilitate access by the disabled community.
Accessibility standards will continue to evolve over time, and Oracle is actively engaged with
other market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For more information, visit the Oracle
Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty
line; however, some screen readers may not always read a line of text that consists solely of a
bracket or brace.

Accessibility of Links to External Web Sites in
Documentation
This documentation may contain links to Web sites of other companies or organizations that
Oracle does not own or control. Oracle neither evaluates nor makes any representations
regarding the accessibility of these Web sites.

Access to Oracle Support for Hearing-Impaired
Customers
Oracle customers have access to electronic support through My Oracle Support or by calling
Oracle Support at 1.800.223.1711. Hearing-impaired customers in the U.S. who wish to speak
to an Oracle Support representative may use a telecommunications relay service (TRS).
Information about the TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html/, and
a list of telephone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.
International hearing-impaired customers should use the TRS at +1.605.224.1837. An Oracle
Support engineer will respond to technical issues according to the standard service request
process.

5

http://www.oracle.com/accessibility/
http://www.fcc.gov/cgb/consumerfacts/trs.html/
http://www.fcc.gov/cgb/dro/trsphonebk.html

6 Documentation Accessibility

1
Introduction

In This Chapter

About Administration Services ... 7

About Java Plug-in Components... 8

Requirements for Using Administration Services Java Plug-ins... 9

Prerequisite Knowledge ... 9

Framework Concepts .. .10

About the Sample Code in this Guide10

This chapter provides an overview of Oracle Essbase Administration Services.

About Administration Services
Administration Services is the cross-platform framework for managing and maintaining Oracle
Essbase. Administration Services provides a single point of access for viewing, managing, and
maintaining Essbase Servers, Essbase Administration Servers, and Oracle Hyperion Provider
Services.

Administration Services works with Essbase Servers in a three-tiered system that consists of a
client user interface, a middle-tier server, and one or more database servers (Essbase Servers).
The middle tier coordinates interactions and resources between the user interface and Essbase
Servers. The three tiers may or may not be on the same computer or platform. For more
information about deployment scenarios, see Oracle Hyperion Enterprise Performance
Management System Installation and Configuration Guide.

The three tiers include the following:

l Client tier: Administration Services Console—A Java client console enabling administrators
to manage the Essbase environment from a robust graphical user interface.

l Middle tier: Essbase Administration Server—A Java middle-tier server that communicates
with Administration Services Console and Essbase Servers. Essbase Administration Server
maintains communication and session information for each connection to Essbase Servers.
Essbase Administration Server also stores documentation files so that console users can
access documentation without having to install it locally.

l Database tier: Essbase Server—One or more Essbase Server that store and process
multidimensional database information. Essbase Servers are installed separately from
Administration Services.

About Administration Services 7

Essbase Administration Server serves as the middle tier between Administration Services
Console and Essbase Servers, as shown in Figure 1.

Figure 1 Administration Services Architecture

About Java Plug-in Components
Administration Services Java plug-ins are installable components. They provide the following
benefits to users:

l Enable the Administration Services development team to easily provide additional
functionality to end users

l Allow other Oracle internal development groups to easily integrate their products
withAdministration Services

l Enable partners and customers to easily integrate their processes into Administration
Services

l Allow customers to accomplish more because they are not launching several applications at
once

The following list describes how you can use Administration Services plug-ins:

l Customize the Administration Services Console Enterprise Tree

l Customize the Administration Services Console File > Open dialog box

l Customize the Administration Services Console File > New dialog box

l Customize the Administration Services Console File > Save As dialog box

l Change the Administration Services Console menus

8 Introduction

For each of these tasks, there are a set of classes, interfaces, and methods that must be
implemented by a plug-in author. There are also a set of guidelines to follow when implementing
plug-ins.

For information about performing the preceding tasks, see “Writing Client Plug-ins” on page
11.

Requirements for Using Administration Services Java
Plug-ins
The following list describes the requirements necessary to use Administration Services Java plug-
in components:

l Java SDK Version 1.4.1_b06 or later

l Essbase Release 7.1 or later

l Administration Services Release 7.1 or later

Prerequisite Knowledge
Developers using this guide must have the following prerequisite knowledge:

l XML (Extensible Markup Language)

l HTTP (Hypertext Transfer Protocol)

l Java 2 Introspection

m Introspection is a Java technique that Administration Services uses to interact and
communicate with plug-in components.

m Exception handling

m Packaging of applications (.jar files)

l Swing

Swing is a graphical user interface (GUI) component kit, part of the Java Foundation Classes
(JFC) integrated into Java 2 platform, Standard Edition (J2SE). Swing simplifies deployment
of applications by providing a complete set of user-interface elements written entirely in the
Java programming language. Swing components permit a customizable look and feel
without relying on any specific windowing system.

Because Swing is incorporated in the Java 2 platform, there is no need to download or install
it.

Requirements for Using Administration Services Java Plug-ins 9

Framework Concepts

Packaged APIs for Administration Services
Administration Services consists of several packages. For detailed information about these
packages, see the Administration Services Java API Reference for the packages and classes
described in this guide.

Administration Services Java Packages
com.essbase.eas.ui.* (all packages)

com.essbase.eas.framework.* (all packages)

Example Classes
ConsoleTreeHandler

ConsoleMenuHandler

MiscellaneousHandler

NewDialogHandler

OpenDialogHandler

OptionsDialogHandle

About the Sample Code in this Guide
The code snippets and examples contained in this guide are intended to demonstrate how plug-
ins interact with the Administration Services framework. They are intended to show how to get
an aspect of the interaction to work and, in some cases, omit details that are not relevant to the
topic being discussed. In addition, while the techniques shown will work, the Java techniques
shown may in some cases not be the best implementation method when scaling up to a
production quality product.

For example, in the section on context menu items, “Adding Context Menu Items To Tree
Nodes” on page 17, the example creates new menu items and action listeners each time the
getContextMenuItems() method is called; this might not be the best mechanism for handling
this task. Please consult the appropriate Java resources (books, Web pages, documentation) for
other techniques; in particular, when dealing with Swing objects, the Swing event model, and
associating Swing event listeners to objects.

10 Introduction

2
Writing Client Plug-ins

In This Chapter

Access Point for Plug-ins11

Class Packages11

How the Client Locates Plug-ins13

Creating the Miscellaneous Handler Class13

Adding Functionality .. .14

Standard Controls.. .23

Administration Services Console Services28

Internationalization29

Packaging the Plug-in .. .29

This chapter explains how to write a plug-in for Administration Services Console. Plug-ins are
the mechanism for extending the functionality of Administration Services Console.

Access Point for Plug-ins
The implementation of the Administration Services client is contained in the
eas_client.jar and framework_client.jar files that are installed with Administration
Services. Additional classes are found in the eas_common.jar and framework_common.jar
files. The Essbase plug-in to Administration Services Console is contained in the
essbase_common.jar and essbase_client.jar files.

Class Packages
Administration Services Console consists of several packages. The public classes in these
packages are available to the implementor of plug-ins. In particular, the user interface, print,
and mail-related classes. For detailed information about the packages and classes described in
Table 1, see the Administration Services Java API Reference.

Table 1 Administration Services Console Class Packages

Package or Class Name Description

com.essbase.eas.client.intf The classes and interfaces that provide an interface to the console

Access Point for Plug-ins 11

Package or Class Name Description

com.essbase.eas.client.
manager

The classes that provide “management” services for parts of the console; such as, LoginManager,
CommandManager, ConsoleManager, and so on

com.essbase.eas.client. plugins The classes that the client framework uses to install plug-ins, track plug-ins, and so on

com.essbase.eas.framework.
client.defs.command

The client-specific classes related to sending commands to the mid-tier. As of Release 7.1, this consists
only of the UICommandManager class.

com.essbase.eas.framework.
client.defs.login

This is the default login dialog box provided by the console. It displays if no plug-in has registered a
different login dialog or if any command is sent to the Administration Services mid-tier and a mid-tier
server name has not been provided.

com.essbase.eas.framework.
client.ui.filedlgs

Implements dialog boxes associated with a file menu. For example, New, Open, Save As

com.essbase.eas.ui Another package with several user interface components used by the console and by the Essbase
plug-in

com.essbase.eas.ui.ctable An implementation of a standard extension to the JTable control

com.essbase.eas.ui.ctree An implementation of an extension to the JTree control. This is the control that is used in the Enterprise
Tree and in the custom views of the console.

com.essbase.eas.ui.editor An implementation of a standard text editor with syntax highlighting. This control is used as the base
class for the calculation script editor, MaxL editor, and report script editor in the Essbase plug-in.

com.essbase.eas.ui.email An implementation of some e-mail related classes. The framework provides a service for sending e-
mail; this package contains the implementation of the service.

com.essbase.eas.ui.font The classes that provide the font-related utility

com.essbase.eas.ui.print The classes that provide the print-related utility

com.essbase.eas.ui.ptable An extension to the JTable control for editing properties. This table provides extensive editing, sorting
capabilities, and is used by many windows and dialogs in the Essbase plug-in.

com.essbase.eas.ui.ptree An extension to the JTree control for editing tree-oriented properties. This tree provides extensive editing
capabilities and is used by many windows and dialogs in the Essbase plug-in.

com.essbase.eas.ui.tree The generic utility routines for working with JTree-based controls

com.essbase.eas.framework.
defs

This package and the packages under it provide services for transferring commands from the mid-tier
to the client, packaging/unpackaging data to be transferred, a logging mechanism, and so on

com.essbase.eas.i18n The internationalization utility classes

com.essbase.eas.utils Various utility classes spanning a range of uses: file utilities, compression, encryption, array utilities,
and so on

com.essbase.eas.utils.print Utility classes dealing with printing

12 Writing Client Plug-ins

How the Client Locates Plug-ins
The client tracks plug-ins by maintaining a list of jar files that the user has selected using the
Configure Plugin Components dialog box. To display this dialog box, from Administration
Services Console, select Tools, and then Configure components.

When a jar file is selected, the dialog scans through each package in the jar file looking for a class
called MiscellaneousHandler.class. When a class with this name is found, the jar file name and
the package name containing that class file are retained by the plug-in manager. Therefore, each
jar file must contain exactly one package with a MiscellaneousHandler class in it.

When Administration Services Console starts, the plug-in manager scans each jar file in its stored
list, looking for the MiscellaneousHandler.class file in the specified package. If this class is found,
the plug-in manager adds this plug-in to its list of plug-ins. Other parts of the application, or
any other plug-in can then call the plug-in manager to get a list of all plug-ins.

Basically, each plug-in consists of the following:

A jar file containing a package with a

MiscellaneousHandler class

For the rest of this document, we will use the term “plug-in root” to refer to the package
containing the MiscellaneousHandler class.

For example, the rest of this document uses a plug-in with a class named
com.MyPlugin.MiscellaneousHandler; the plug-in root refers to the package com.MyPlugin.

Creating the Miscellaneous Handler Class
In order for Administration Services to recognize your client plugin, you must create a
MiscellaneousHandler.java class and include it in the plugin jar file. See the following example,
which implements a single API getDescription(). The framework_client.jar file is required to
compile this example.

package com.mycompany.client.plugins;

import com.essbase.eas.client.plugins.Description;

public class MiscellaneousHandler {
 public MiscellaneousHandler() {
 }
 /**
 * Return a description object for this plugin
 */
 public static Object getDescription() {
 Description d = new Description();
 d.setText("Give a short description");
 d.setVersion("1.0.0");
 d.setVendor("My Company Inc.");
 d.setCopyright("Copyright 2006, My Company Inc.");
 return d;
 }
}

How the Client Locates Plug-ins 13

Adding Functionality
There are many ways to add functionality to Administration Services Console. The following
sections describe how this is currently implemented:

l “Semantic Rules” on page 14

l “Adding a Branch to the Enterprise Tree” on page 14

l “Adding Children to Other Tree Nodes” on page 16

l “Permitting Plug-ins To Add Children To Your Tree Nodes” on page 17

l “Adding Context Menu Items To Tree Nodes” on page 17

l “Adding Options to the New Menu” on page 18

l “Adding Items To Menus” on page 19

l “Handling Save As” on page 21

l “Handling Server Connection and Disconnection” on page 22

Semantic Rules
Many of the following sections have a description of semantic rules. In most cases,
Administration Services Console does not enforce these rules. We expect that developers writing
plug-ins for Administration Services will be “well-behaved citizens”; philosophically, this means
that a lot of the console is open, accessible, and plug-ins can have an adverse effect on the
application by taking actions that break these semantic rules.

Adding a Branch to the Enterprise Tree
When Administration Services Console starts, a panel is created called the “Enterprise View”.
This panel contains an instance of the CTree class. The text for the root node is called “Enterprise
View”. Each plug-in gets the opportunity to add children to the root node. This permits each
plug-in to have its own branch in the Enterprise Tree view.

In the plug-in root, add a class called ConsoleTreeHandler. In our example, this would be
com.MyPlugin.ConsoleTreeHandler. Add a method called “populateTree()” to this class. The
source code should look something like the following example:

public class Console TreeHandler {
 //a no-argument constructor is required by the framework.
 public ConsoleTreeHandler() {
 }

 public void populateTree(CTreeModel model) {
 Object root=model.getRoot();

 //strictly speaking, this next check should not be
 //necessary; however, we do this to make sure some other
 //plug-in hasn’t replaced the root node with something
 //unexpected.
 if ((root!=null) && (root instanceof CTreeNode))

14 Writing Client Plug-ins

 //create any CTreeNode-derived objects, adding them
 //as children of the root node.
 }
 }
}

There are some unenforced semantic rules associated with CTree objects:

l The only action a plug-in should perform on the CTreeModel is to get the root. The plug-
in should never replace the root node, traverse the tree model, or make changes to any other
descendants of the root node.

l Every object added as child of the root node must be derived from a CTreeNode.
Theoretically, any object can be added as a child of the root; however, other parts of the
framework will not respond to those objects in any meaningful way.

Note: A plug-in can be called more than once if the console disconnects from the current
server. The code needs to check that the node has already been added and only append
nodes that have not been added previously. The source code should look something
like the following Essbase ConsoleTreeHandler code:

/**
 * populates the model with information required.
 */
 public void populateTree(CTreeModel model) {
 Object root=model.getRoot();
 CTreeNode rootNode=null;
 boolean firstTime=true;
 if (root instanceof CTreeNode) {
 rootNode=(CTreeNode) root;
 if (rootNode.getChildCount()!=0) {
 CTreeNode node=(CTreeNode) rootNode.getFirstChild();
 while (node !=null) {
 if (node instanceof ServersContainerNode) {
 firstTime=false;
 UIFactory.refreshServerList();
 break;
 }
 node=(CTreeNode rootNode.getChildAfter(node);
 }
 }
 }
 if (firstTime) {
 CTreeNode essnode=new ServersContainerNode(null);
 rootNode.add(essnode);
 final CTreeNode containerNode=essnode;

 ConsoleManager.getConsoleInstance().addFrameListener(new WindowAdapter() {
 public void windowClosed(WindowEvent e) {
 //signal that we are simply disconnecting instead of
 //closing
 if (e.getNewState() == WindowEvent.WINDOW_OPENED &&
 e.getOldState() == WindowEvent.WINDOW_OPENED) {
 Server[] servers = UIFactory.getServers();
 for (int ii=0; ii<servers.length; ii++) {

Adding Functionality 15

 UIFactory.removeServerInstance(servers[ii]);
 }
 }
 UIFactory.disconnectAll();
 }
 })
 }
 }

Adding Children to Other Tree Nodes
When a CTreeNode object is expanded for the first time, each plug-in gets the opportunity to
add child nodes to the CTreeNode being expanded.

In the plug-in root, add a class called ConsoleTreeHandler. In our example, this would be
com.MyPlugin.ConsoleTreeHandler. Add a method called “getTreeNodeChildren()” to this
class. The source code should look something like the following example:

public static CTreeNode[] getTreeNodeChildren(CTreeNode node) {
 // strictly speaking, this check for null should never be
 // necessary
 if (node == null)
 return new CTreeNode[0];
 if (node instanceof SomeSpecificTreeNode) {
 CTreeNode[] theChildren = new CTreeNode[5];
 theChildren[0] = new ChildNode();
 theChildren[1] = new AnotherChildNode();
 // and so on...
 return theChildren;
 }
 else if (node instanceof SomeOtherTreeNode) {
 // different set of children here.
 }
 // and if we're not interested in any other types.
 return new CTreeNode[0].
}

Item of interest for this operation:

l This method could be declared public Object[] getTreeNodeChildren(CTreeNode node)
and it would still get called. The CTreeNode method that handles this checks the return
value for null and also checks each item returned in the array to ensure that it is an instance
of a CTreeNode object. Declaring the method as in the example enforces to the implementer
of the plug-in that the items returned must be items derived from the CTreeNode class.

l The only arrangement that currently is done is that child nodes that cannot have children
are placed before the child nodes that can have children. Nodes from plug-ins are placed
after the nodes that the parent node already knows about.

16 Writing Client Plug-ins

Permitting Plug-ins To Add Children To Your Tree Nodes
By default, all CTreeNode based objects that can have children have this feature enabled.
Currently, there is no way to prevent plug-ins from adding children to a tree node if that tree
node can have children.

Adding Context Menu Items To Tree Nodes
When the CTree control detects that a popup menu needs to be displayed, it calls the instance
of the CTreeNode and asks it for a list of items to display in the context menu. The following
are rules or guidelines for how CTreeNode objects should build this array:

l The signature for the CTreeNode method is:

public Component[] getContextMenuItems();

Even though this method is declared to return an array of Component objects, it is highly
recommended that the objects returned all be instances of the JMenuItem class (or classes
derived from JMenuItem).

l The state of any menu items returned from the getContextMenuItems() method must be
properly initialized; that is, enabled/disabled, checked.

l The JMenuItem objects (or whatever objects) must be properly linked to the specific
CTreeNode object that is being called. The event passed in the actionPerformed() call will
contain none of this contextual information.

The CTree then calls each plug-in, retrieving any additional menu items for the specified
CTreeNode object. If there are additional items, the CTree places a separator after the original
menu items, then places all of the plug-in items in the popup menu, and then, if the CTreeNode
can be put on custom views, puts another separator and the menu items related to custom views.

For a plug-in to respond to the CTree properly in this case, add a class called ConsoleTreeHandler
to the plug-in root package. In our example, this would be com.MyPlugin.ConsoleTreeHandler.
Add a method called “getContextMenuItemsFor()” to this class. The source code could look
something like the following example:

public static Component[] getContextMenuItmsFor(CTreeNode node) {
 // strictly speaking, this check for null should never be
 // necessary
 if (node == null)
 return new Component[0];
 if (node instanceof SomeSpecificTreeNode) {
 JMenuItem theItem = new JMenuItem("Walk");
 JMenuItem anotherItem = new JMenuItem("Don't walk");
 theItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // take action here.
 }
 }
 return new Component[] { theItem, anotherItem };
 }
 else if (node instanceof SomeOtherTreeNode) {
 // different set of menu items here.

Adding Functionality 17

 }
 // and if we're not interested in any other types.
 return new Component[0].
}

Items of interest for this operation:

l This method can be declared to return anything. For instance, for better type safety within
your own code, you could declare the method to be “public static JMenuItem[]
getContextMenuItemsFor(CTreeNode node)”; however, the CTree object making the call
will only use items that are derived from the Component class.

l This example is very bare bones; for instance, the returned JMenuItem object does not know
which CTreeNode object it should be working with; even worse, one of the items does not
have an action listener associated with it. For a complete example of this, please see the
sample plug-ins developed by the Administration Services development team.

l CTreeNode (being derived from DefaultMutableTreeNode) objects have a user object. This
is available through the getUserObject() method. The intent is that the user object for a node
represents that data that the node has been created for and this is the data that would need
to be associated with the menu item. For instance, a node might have an object representing
an Essbase application. In the above example, we would then perform a
node.getUserObject() call to obtain this Essbase application object

l Because plug-ins are called in the order that the user has arranged them in the Component
Manager dialog box, there currently is no way to force the menu items from one plug-in to
appear before the menu items of another plug-in.

Adding Options to the New Menu
The Administration Services development framework provides one dialog box for the New
menu. When New is selected, the framework creates and displays an instance of the
com.essbase.eas.framework.client.ui.filedlgs.NewDialog.java class. The Essbase plug-in and
Administration Services plug-in add the following tabs:

l Essbase

l Scripts

l Wizards

The dialog box class includes the following items:

l The OK, Cancel, and Help buttons

l An instance of a JTabbedPane to act as a container for each of the other panels

l Actions for the OK, Cancel, and Help buttons that make the appropriate calls into the plug-
in that provided the active panel

To add a panel and tab to the New dialog box, add a class called NewDialogHandler to the plug-
in root package. In our example, this would be com.MyPlugin.ConsoleTreeHandler. Add a
method called “populatePanel()” to this class. Example source code:

public void populatePanel(JTabbedPane panel) {

18 Writing Client Plug-ins

 // create an instance of the right kind of panel
 CNewDialogScrollPanel s = new CNewDialogScrollPane();
 s.setHorizontalScrollBarPolicy(JscrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 s.setVerticalScrollBarPolicy(JscrollPane.VERTICAL_SCROLLBAR_AS_NEEDED);

 // create a list model that has some items in it.
 DefaultListModel model = new DefaultListModel();
 model.addElement(new JLabel("XTD Connection");
 model.addElement(new Jlabel("SQL Connection");

 // make sure the list box has a selected item
 list.setSelectedIndex(0);

 // toss the list into the scroll pane and ensure that the new
 // dialog box will call this instance when the OK button is
 // clicked.
 s.getViewport().add(list);
 s.setOkHandler(this);

 // add this panel to the tabbed panel we were given
 panel.add("My Objects", s);

}

For this to work correctly, you must add the following method to the class:

public void handleOk(Component component) {
 if (component instanceof CNewDialogScrollPane) {
 CNewDialogScrollPane scroller = (CNewDialogScrollPane) component;
 Component control = scroller.getViewport().getComponent(0);
 if (control != null) && (control instanceof JList)) {
 // extract the selected item in the JList.
 // ensure that it is one of the ones we added.
 // take the appropriate action.
 }
 }
}

Items of interest for this operation:

l Items added to the JTabbedPane must be derived from the CNewDialogScrollPane class.

l Because CNewDialogScrollPane is derived from JScrollPane, components derived from
JTable, JTree, and JList display best in the New dialog box.

l Components added to the scroller can have custom renderers, event handlers, and so on.

l For the best behavior, this list would need a MouseListener added to listen for double-click
events. This MouseListener should then call the enclosing dialog box’s handleOk() method.

l A plug-in can add more than one panel to the JTabbedPane instance.

Adding Items To Menus
Menu items are typically displayed in three ways:

l Static

Adding Functionality 19

l From an internal frame

l From a CTreeNode on the console tree

Static Menu Items
Static menu items are always displayed. The following example is for a static menu item:

public class XYZ {
 private CMenu editorsMenu = new CMenu("Scripts", Console.ID_ACTIONS_MENU - 1, this);
 private CMenuItem outline = new CMenuItem("Outline", null, 0, this);
 private CMenuItem report = new CMenuItem("Report", null, 1, this);
 private CMenuItem calc = new CMenuItem("Calc", null, 2, this);
 private CMenuItem maxl = new CMenuItem("Maxl", null, 3, this);
 private CMenuItem mdx = new CMenuItem("Mdx", null, 4, this);
 private CMenuItem dataprep = new CMenuItem("DataPrep", null, 5, this);
 void createMenu() {
report.addActionListener(new AbstractAction("createReport") {
 public void actionPerformed(ActionEvent e) {
 }
});
calc.addActionListener(new AbstractAction("createCalc") {
 public void actionPerformed(ActionEvent e) {
 }
});
maxl.addActionListener(new AbstractAction("createMaxl") {
 public void actionPerformed(ActionEvent e) {
 }
});
mdx.addActionListener(new AbstractAction("createMdx") {
 public void actionPerformed(ActionEvent e) {
 }
});
outline.addActionListener(new AbstractAction("createOutline") {
 public void actionPerformed(ActionEvent e) {
 }
});
dataprep.addActionListener(new AbstractAction("createDataPrep") {
 public void actionPerformed(ActionEvent e) {
 }
});
editorsMenu.add(outline);
editorsMenu.add(dataprep);
editorsMenu.add(calc);
editorsMenu.add(report);
editorsMenu.add(maxl);
editorsMenu.add(mdx);
LocalizeUtils.localizeMenu(resources, editorsMenu);
ConsoleManager.getConsoleInstance().mergeMenus(new Component[] { editorsMenu});
 }
}

20 Writing Client Plug-ins

Internal Frame Menu Items
Menu items from an internal frame only display when the internal frame is active. If the internal
frame is deactivated or closed, then these menu items no longer are displayed. The following
example is for an internal frame menu item:

public class XYZ extends CInternalFrame {
 public Component[] getFrameMenus() {
// Like the example above
 return (new Component[] { editorsMenu});
 }
}

Console Tree Menu Items
These menu items only display when a node is selected. The following example is for a console
tree menu item:

public XYZ extends CTreeNode {
 public Component[] getActionMenuItems() {
 return (new Component[] { editorsMenu});
 }
}

In general, there are predefined menu positions defined in the Console interface:

 public static final int ID_FILE_MENU = 0;
 public static final int ID_EDIT_MENU = 1;
 public static final int ID_VIEW_MENU = 2;
 public static final int ID_ACTIONS_MENU = 10;
 public static final int ID_TOOLS_MENU = 20;
 public static final int ID_WIZARD_MENU = 30;
 public static final int ID_WINDOW_MENU = 90;
 public static final int ID_HELP_MENU = 99;

If the CMenu item’s (that is returned from the above example) position matches with one of
the predefined ones, then that CMenu item’s submenus are merged in else that CMenu is inserted
based on the position. So if the CMenu has a position of ID_ACTIONS_MENU, then the items
are merged in to the action menu item that is already on the main menubar. If the CMenu has
a position (ID_ACTIONS_MENU - 1), then the CMenu is inserted before the action menu.

Handling Save As
Save As requires the plug-in to implement the interface SaveAsRequestor. The following example
uses an inner class:

 if (saveAsAdapter == null) {
 saveAsAdapter = new SaveAsAdapter();
 }
 SaveAsDialog.showDialog(resources.getString("exportTitle"), (SaveAsRequestor)
saveAsAdapter);

}

Adding Functionality 21

The initSaveAsDialog is called to allow the dialog/frame to initialize the SaveAsDialog as it needs
to. By default a file system chooser is added to mainPanel at index 0. A plug-in can add other
panels to save to other places in this method.

When an object is selected from any panel, then the saveAsObject method is called with the
selected object. If the file system panel is selected the object will be a File if the plug-in adds a
panel of their own it they will have to perform the steps to save the object.

private class SaveAsAdapter implements SaveAsRequestor {
 public void initSaveAsDialogComponents(JTabbedPane mainPanel) {
 String xmlString = ResourceUtilities.getStringSafely(resources, XML_FILES);
 DefaultFileFilter xmlFilter = new DefaultFileFilter(xmlString, "xml", resultAction);
 JFileChooser jfc = (JFileChooser) mainPanel.getComponentAt(0);
 jfc.setFileSelectionMode(JFileChooser.FILES_ONLY);
 if (jfc.isAcceptAllFileFilterUsed() == true)
 jfc.setAcceptAllFileFilterUsed(false);
 jfc.setFileFilter(xmlFilter);
 }

 public void initExtraComponents(JPanel extraPanel) {
 }

 public boolean saveAsObject(Object saveObject) {
 boolean saved = false;
 if (saveObject instanceof File) {
 File file = (File) saveObject;
 String exportFile = file.getPath();
 if (exportFile != null) {
 String msg = "";
 if (AdminServerPropertiesHelper.requestExportDB(exportFile))
 {
 msg = resources.getString("sucEXDBMsg");
 StandardMessages.showMessage(resources, "exportTitle", msg,
 JOptionPane.DEFAULT_OPTION, JOptionPane.INFORMATION_MESSAGE);
 saved = true;
 }
 else
 {
 msg = resources.getString("failEXDBMsg");
 StandardMessages.showMessage(resources, "exportTitle", msg,
 JOptionPane.DEFAULT_OPTION, JOptionPane.ERROR_MESSAGE);
 }
 }
 }
 return saved;
 }
 public void setFocusComponent() {
 }
}

Handling Server Connection and Disconnection
In this release, Administration Services Console initially opens up disconnected from any Essbase
Administration Server. Your code can be notified when Essbase Administration Server is
connected, is disconnecting, or has already disconnected. Your code can implement the

22 Writing Client Plug-ins

EASServerListener interface to be notified of the change in the Essbase Administration Server
state.

import com.essbase.eas.client.intf.EASServerListener;
private EASServerListener listener = new EASServerListener() {
 public void ServerDisconnecting(String server) {
 // server is about to disconnect.
 }
 public void ServerDisconnected(String name) {
 // server is disconnected
 // disable menu items or Enterprise tree nodes when disconnected
 from the EAS server
 }
 public void ServerConnected(String name) {
 // enable menus
 // add Enterprise tree nodes
 }
};

To add the EASServerListener to the console use the following code snippet.

Console console = ConsoleManager.getConsoleInstance().
console.addEASServerListener(listener);

Standard Controls
While it is not required that plug-ins use the standard controls provided by the framework
classes, there are some benefits to using them. Namely, some consistency of look and feel is
provided, some housekeeping tasks are performed by the standard controls, there is support for
internationalization, accessibility, and so on.

The StandardDialog Class
The StandardDialog class is an extension of the JDialog class and was introduced for the following
reasons:

1. Standardize the mechanism for internationalization and localization handling

2. Standardize the position, location, and behavior of dialog “action” buttons

3. Standardize some of the accessibility handling for modal dialogs

4. Standardize the handling of results

The StandardDialog class contains the following protected (or private) fields:

Table 2 Fields in the StandardDialog Class

Field Description

okBtn An instance of an OK button. This is one of the standard controls described in “Dialog Initialization” on page
24.

Standard Controls 23

Field Description

cancelBtn An instance of a Cancel button. This is one of the standard controls described in “Dialog Initialization” on page
24.

helpBtn An instance of a Help button. This is one of the standard controls described in “Dialog Initialization” on page
24.

buttons An instance of a ButtonPanel. The ButtonPanel is one of the standard controls described in “Dialog
Initialization” on page 24.

resources An instance of a ResourceBundle object. This resource bundle is used for internationalization purposes.

adapter An instance of a StandardDialogAdapter.

dialogResult An instance of a DialogResult object.

saveDialogBounds A boolean value indicating whether the bounds (location and size) of this dialog should be saved when it is
closed.

Name of Standard Dialog Class
The name of the Standard Dialog class is StandardDialog. It is in
com.essbase.easui.StandardDialog.class.

Dialog Creation
There are at least 11 constructors for the StandardDialog class; most of these chain to another
constructor. The two constructors that should be invoked by derived classes are the ones with
the following signatures:

l StandardDialog(Frame owner, String title, boolean modal, DialogResult result);

l StandardDialog(Dialog owner, String title, boolean modal);

Most of the other constructors exist only to match constructor names of the JDialog class.

Dialog Initialization
During the call to the StandardDialog constructor, the following initialization steps will occur:

l An OK button, a Cancel button, and a Help button are created

These are the standard buttons used by most dialogs. If the dialog being implemented uses
a different set of buttons (for instance, Close, Apply, Next, and so on) the derived class
should implement instances of those buttons.

l A ButtonPanel containing the OK, Cancel, and Help buttons is created

If the dialog being implemented wants the button panel to contain a different set of buttons,
it should call buttonPanel.changeButtons(new Jbutton[] { closeBtn, helpBtn }); // as an
example.

l A ResourceBundle instance is created

24 Writing Client Plug-ins

This resource bundle is used to perform localization work within the dialog. It is important
to know where the standard dialog looks for the instance of the resource bundle. For
example, if the dialog class is MyFunnyDialog, then the resource bundle must be in a file
called resources/MyFunnyDialog.properties.

l A StandardDialogAdapter is created and is added as a window listener to the dialog

Caution! Because of the implementation of the StandardDialogAdapter class, there should
never be a reason for a descendant class of StandardDialog to attach a
WindowListener to itself. Routing of all window events should be handled by
the StandardDialogAdapter. If the descendant class needs to take action when a
window close, window open, and so on, event occurs then override the methods
in StandardDialog that the StandardDialogAdapter calls.

l Sets the instance of the dialog result to the value passed in, if any

To understand how this works, see “Dialog Results” on page 26.

l Sets the dialog’s default close operation to DISPOSE_ON_CLOSE

In most cases, this is the desired behavior; for a dialog that needs a different behavior, this
can be changed by the constructor in the descendant class.

l Sets the dialog’s content pane layout to be a BoxLayout oriented vertically

If necessary, this can be changed by the derived class.

l Adds entries to the action and input maps of the dialog’s root pane to take a “default action”
when the Enter key is pressed by the user

For more information on what this default action is, and why this step is necessary, see the
section of this document titled “Dialog default action”.

Dialog Default Action
The Microsoft Windows operating environment has the concept of a default button when modal
dialog windows are open. The default button is painted in a way that makes it stand out visually
to the user. Normally, that is the OK button; however, it can be any action button on the dialog.
To handle this concept, the StandardDialog adds entries to the action and input maps of its root
pane for handling the enter keystroke.

If your dialog box does not have an OK button or, if at any time, the default button should be
some other button, then a call like the following needs to be performed:

dlg.getRootPane().setDefaultButton(closeBtn);

Dialog Keyboard Handling, Focus Order, Action Maps, and So On
Depending on which buttons are inserted into a dialog, certain keystrokes will be mapped
automatically:

l The Enter key

l The Esc key

Standard Controls 25

l The F1 key (for help)

These are the primary keystrokes that are mapped by the standard dialog and the standard
buttons.

To add handling when these keystrokes are pressed, do the following:

l For the Enter key, override the handleOk() method. If everything finishes correctly and the
dialog needs to be released, then call super.handleOk(). This will ensure that the dialog shuts
down properly.

l For the Esc key, override the handleCancel() method. The standard dialog behavior closes
the dialog, releases all the controls, disposes of contained components, and so on. In most
cases, this method will not need to be overridden.

l For the F1 key, override the handleHelp() method. If the dialog has been connected via the
Administration Services help system via the normal manner, this step should not be
necessary.

By default, the Java Swing implementation sets the focus order of controls to correspond to the
order in which they were added to their container, and then those container’s to their container,
and so on. This can be overridden by making a call to the method DialogUtils.setFocusOrder().
This mechanism should be used in all dialogs to ensure the focus order of controls is correct and
doesn’t rely on how the code for building the containment models was written.

Dialog Results
In many cases, a dialog needs to return a significant amount of information to the calling
mechanism. Unfortunately, the method Dialog.show() is declared as void and does not return
any data.

If, when implementing a dialog, results from the dialog are needed, the recommended way to
get those is by doing the following tasks:

l Extend the DialogResult class to contain references and additional data needed by the dialog
and/or returned by the dialog.

l Before creating the dialog, create an instance of the DialogResult class.

l Ensure that the dialog has at least one constructor that accepts an instance of a DialogResult
object.

l In the constructor for the dialog class derived from StandardDialog, pass the DialogResult
object to the correct StandardDialog constructor.

l During the handling of the OK button, set the results back into this instance.

Methods to Override
The StandardDialog class has a set of methods that can be overridden. Whether each of these
methods are overridden will depend on the needs of each derived class. See the Administration
Services Java API Reference for detailed information about each of the following methods:

26 Writing Client Plug-ins

l dispose()

l handleCancel()

l handleOk()

l handleWindowClosed()

l handleWindowClosing()

l handleWindowOpened()

Standard Buttons and Other Controls
There are a large number of standard controls provided by the client framework. The following
is a representative list; for more complete information, see the Administration Services Java API
Reference for the com.essbase.eas.ui package and descendant packages.

Note: This is not a complete list of controls. The plug-in developer should browse the Java API
Reference for the com.essbase.eas.ui package and other packages under this one for
additional standard components.

l ActivateButton

l ApplyButton

l BackButton

l BooleanComboBox

l ButtonPanel

l CancelButton

l CloseButton

l DoneButton

l FinishButton

l HelpButton

l ListMoverPanel

l NextButton

l NumericTextField

l OkButton

l ReadOnlyTextFrame

l RefreshButton

l ResetButton

l SimpleWizardPanel

l VerticalPairPanel

l WizardPanel

Standard Controls 27

Administration Services Console Services
The client framework provides the following Administration Services Console services:

l Retrieving the CSS Token from the ConsoleRetrieving the CSS Token from the Console

l Sending E-mail

Retrieving the CSS Token from the Console
The CSS token is retrieved from the FrameworkUser object which is returned on successful login
to Essbase Administration Server.

import com.essbase.eas.client.intf.Login;
import com.essbase.eas.client.manager.LoginManager;
import com.essbase.eas.admin.defs.*;
import com.essbase.eas.admin.client.*;
import com.essbase.eas.framework.defs.FrameworkUser;
private String getToken() {
 String loginToken = null;
 Login login = LoginManager.getLoginInstance();
 if (login != null) {
 FrameworkUser u = (FrameworkUser)
login.getProperty("FrameworkUser");
 if (u != null) {
 loginToken = u.getToken();
 }
 }
 return loginToken;
}

Sending E-mail
Administration Services Console has integrated support for sending e-mail using the JavaMail
API. We have wrapped the classes and provide a dialog for sending e-mail. There is also support
in the InternalFrame class to send from any class derived from the CInternalFrame class.

The following is a simple example of how to send the contents of a text area in an e-mail from
a dialog.

Import com.essbase.eas.ui.email.*;
public void email() {
 JFrame fr = ConsoleManager.getConsoleFrame();

 SendEmail email = new SendEmail(fr, fr.getTitle(), new Object[] {
getTextArea().getText()});
 email.send();
 }

The following example is for a window derived from CInternalFrame. The methods,
isEmailable() and getObjectsToEmail, are methods in the CInternalFrame class.

 public boolean isEmailable() {
 return true;

28 Writing Client Plug-ins

 }

 public Object[] getObjectsToEmail() {
 HTMLDoc doc = new HTMLDoc();

 doc.setTitle(getTitle());
 doc.addObject(doc.getHeading(2, doc.getStyleText(getTitle(),
doc.BOLD | doc.UNDERLINE), doc.CENTER));
 doc.addObject(doc.BR);
doc.addObject(TableUtilities.getHTML((DefaultTableModel)locksTable.getModel()));
 return (new Object[] { new EmailAttachment(doc.toString(),
"Locks.htm", EmailAttachment.HTMLTEXT, "", EmailAttachment.ATTACHMENT)});
 }

Note: Sending an e-mail puts an entry in the background process table showing the outcome
of the e-mail.

Internationalization
The framework provides a set of internationalization and localization utilities in the package
com.essbase.eas.i18n. These classes provide a mechanism for locating resources associated with
a window or dialog box, loading resource bundles based on the locale, localizing collections,
arrays of components, or containers. There is also an i18n-friendly string collator class.

Packaging the Plug-in
The only packaging requirement is that all classes and resources necessary for a client plug-in
must be contained in the same jar file. You must include an entry in the jar file which defines
the other jar files it depends on. For example, lets say the plug-in jar file xyz.jar depends on
abc.jar and cde.jar, include the following entry in the manifest file for the plug-in jar file:

Class-Path: xyz.jar cde.jar

Internationalization 29

30 Writing Client Plug-ins

3
Writing Server-side Command

Listeners

In This Chapter

Prerequisites.. .31

Command Listeners.. .32

Command Handling Methods... .38

Packaging the Code42

Loading the Code43

Utility Classes44

This chapter explains how to write a command listener for the Administration Services mid-tier
web server. Installable command listeners are the mechanism for extending the functionality of
the Administration Services Web server.

Prerequisites
You should have the following skills and tools:

l You have some Java experience

l You have access to the Administration Services Java API Reference

l Since different developers use different build tools and environments, we do not discuss
how to do anything for specific development environments. Rather, we describe the desired
results, leaving it to the developer to know how to achieve these results with their specific
development tools.

Note: For the purposes of this documentation, the terms “Administration Services web
server”, “Administration Services servlet”, “Administration Services mid-tier”,
“Administration Services framework”, and, simply, “the framework” can generally
be taken to refer to the same object.

The framework is the Administration Services servlet and associated classes that receive
commands, handle housekeeping duties, return results, and route commands to the
registered listener.

Prerequisites 31

Command Listeners
A command listener is an instance of any class that implements the CommandListener interface;
however, for practical purposes, all plug-in command listeners should extend one of these classes:

l EssbaseCommandListener

l AppManCommandListener

l AbstractCommandListener

The framework uses command listeners as the mechanism to properly route commands to be
handled.

When the Administration Services servlet starts up, it builds a table of command listeners, the
commands that each command listener can handle, and the method in the command listener
for that command. As client applications send commands (http requests), theAdministration
Services servlet uses the command's operation parameter to determine the command listener
and method to route the request to.

For example, a typical command might be to log in to the Administration Services servlet. When
expressed as an http request, this command will look something like this:

http://LocalHost/EAS?op=login&name=user1&password=hello

The Administration Services servlet parses the following parameters:

l op=login

l name=user1

l password=hello

The framework uses the “op” parameter to route the command to the correct command listener.
If the command listener has been registered correctly, the framework will also collect the
“name=” and “password=” parameters and pass them as arguments to the method in the
command listener.

Class Hierarchy
The class hierarchy for the command listeners is:

com.essbase.eas.framework.server.application.AbstractCommandListener
com.essbase.eas.server.AppManCommandListener
com.essbase.eas.essbase.server.EssbaseCommandListener

All three of these classes are declared as abstract. You must extend from one of these three classes
in order to have the framework find your command listener.

The AbstractCommandListener class provides the basic functionality that is needed for the
framework. Most of the methods in this class are either final or protected; for most practical
purposes, implementers of derived classes should not override the protected methods of this
class. For a description of those methods that can be useful to implement in a derived class, see
the section “Which Methods to Override” on page 33.

32 Writing Server-side Command Listeners

The AppManCommandListener class adds some small functionality to the
AbstractCommandListener, mostly dealing with EAS servlet session validation and exception
handling during command routing.

The EssbaseCommandListener class adds some Essbase-specific functionality, primarily Oracle
Essbase session validation.

Which Class To Extend
Do not extend the AbstractCommandListener class, even though it is declared public. The
EssbaseCommandListener.handleEventPrep() method checks some standard parameters for an
Essbase Server name, application name, and database name and ensures a connection to that
database if those parameters exist. If the implementer of the new command listener wishes to
take advantage of the session handling performed by the EssbaseCommandListener, then they
should extend this class; however, if this isn’t necessary, the new command listener can extend
the AppManCommandListener class.

Which Methods to Override
AbstractCommandListener.getCommands() must be overridden. We explain more about this
method in the section, “Registering Commands” on page 34.

The handleEventPrep(), handleEventPost(), and handleEventException() methods may be
overridden. These three methods, along with AbstractCommandListener.handleEvent(), form
the core processing for any command received by the framework.

Once the framework determines which command listener to route a command to, it calls that
command listener’s handleEvent() method. Since the AbstractCommandListener declares this
method as final, the framework always calls the method in AbstractCommandListener. This
method then performs the following sequence of steps:

1. Calls handleEventPrep(); if this method returns true, then continues with step 2.

2. Gets the command listener's method that handles this specific command. If this method
cannot be located, logs an error with the logging utility.

3. Converts the arguments from the http command into an array of Java objects.

4. Using Java introspection, invokes the method.

5. If no exceptions were thrown, invokes handleEventPost().

6. If exceptions were thrown in steps 4 or 5, calls handleEventException().

Any change to the processing of events before they arrive at a specific method in the command
listener must be done by overriding the handleEventPrep() method. For instance, this is where
the EssbaseCommandListener class checks Essbase sessions and the AppManCommandListener
checks for a valid servlet session.

In most cases, the handleEventPost() method is empty and the handleEventException() method
is empty.

Command Listeners 33

Registering Commands
After a command listener is instantiated by the framework, the framework calls the
getCommands() method. This method returns an array of CommandDescriptor objects. The
CommandDescriptor objects describe each command that the CommandListener is designed
to handle. The CommandDescriptor object consists of three main parts:

l A string for the command

l The method in the command listener to call

l The list of arguments expected for this command.

The next few sections describe the classes used by the framework when registering commands.

Note: All of these classes are in the package com.essbase.eas.framework.defs.command.

CommandString Class
A command listener handles commands like “GetDatabaseList”, “GetUsers”, “DeleteUsers”, and
so on. The CommandString class was introduced to let each command listener programmer
think of their commands in the simplest way. The CommandString class is declared as:

public abstract class CommandString

The only constructors are declared as:

private CommandString() { ... }
protected CommandString(String original) { ... }

These two declarations combined mean that instances of this class can never be instantiated and
derived classes must call the CommandString(String original) constructor with a valid String
object as the parameter.

The most important action that instances of this class do is take the original String object and
prepend the class name, including the package name, to the front of the String. This new value
is then returned when the object’s toString() method is called.

CommandArgument Class
The CommandArgument class describes individual arguments to commands. It contains the
following fields:

l String name (available through the getName() method)

This is the name of the http parameter corresponding to this argument.

l boolean required (available through the isRequired() method)

Indicates whether this argument is required. The intent is that the framework can check this
field when routing a command and return a pre-defined error status to the client if a required
field is missing.

l Class ClassType (available through the getClassType() method)

34 Writing Server-side Command Listeners

This is used so the framework can convert the incoming text value to an appropriate object
type.

l Object defaultValue (available through the getDefaultValue() method)

The framework will substitute this object for the argument if the argument is missing from
the command.

l Boolean hidden (available through the isHidden() method)

The framework can log the retrieval and routing of commands and their parameters. Setting
this field to true means the framework will not echo the value of this argument in the log
file. This would be useful for passwords, and so on.

These fields are all declared as private and, since there are no setXXX() methods, cannot be
changed after a CommandArgument object is constructed.

CommandDescriptor Class
The CommandDescriptor class combines the CommandArgument and CommandString classes
into a cohesive value so that the framework can construct its internal tables and route the
commands as they are received.

The examples in the following sections show how all of this fits together.

Examples
This section includes the following sample code:

l Example

l Example

l Example

l Example

Example.java
// this is a simple class used as a parameter to show how the
// framework can separate out command arguments that are object
// types embedded in XML. For more information on how the
// framework uses XML to transport "generic" objects between the
// mid-tier and the client, please see the Java Docs references
// for the XMLTransferObject class.
public Example extends Object {
 private String name = "";
 private String[] text = new String[0];
 // no-argument constructor. Must be public for XML Transfer
 // to work.
 public Example() {
 }

 public String getName() {
 return name;

Command Listeners 35

 }

 public void setName(String value) {
 name = value;
 }

 public String[] getSampleText() {
 String[] result = new String[text.length];
 for (int i = 0; i < result.length; ++i)
 result[i] = text[i];
 return result;
 }

 public void setSampleText(String[] values) {
 if (values != null) {
 text = new String[values.length];
 for (int i = 0; i < values.length; ++i)
 text[i] = values[i];
 }
 else {
 text = new String[0];
 }
 }
}

ExampleCommandString.java
public ExampleCommandString extends CommandString {
 // declare some static String objects in a way that we know
these
 // objects do not need to be translated to different locales.
 public static final String GET_EXAMPLES_TEXT = "GetExamples";
 public static final String ADD_EXAMPLE_TEXT = "AddExample";
 public static final String DELETE_EXAMPLE_TEXT =
"DeleteExample";

 // now we declare the actual commands
 public static final ExampleCommandString GET_EXAMPLES =
 new ExampleCommandString(GET_EXAMPLES_TEXT);
 public static final ExampleCommandString ADD_EXAMPLE =
 new ExampleCommandString(ADD_EXAMPLE_TEXT);
 public static final ExampleCommandString DELETE_EXAMPLE =
 new ExampleCommandString(DELETE_EXAMPLE_TEXT);

 // for organizational purposes, we also declare the parameters for each
 // of these commands in this file.
 public static final String PARAM_LOCATION = "location";
 public static final String PARAM_EXAMPLE = "example";
 public static final String PARAM_NAME = "examplename";

 // declare a CommandArgument object for each of these parameters
 private static final CommandArgument ARGUMENT_LOCATION =
 new CommandArgument(PARAM_LOCATION,
 true,
 String.class,
 null);
 private static final CommandArgument ARGUMENT_EXAMPLE =

36 Writing Server-side Command Listeners

 new CommandArgument(PARAM_EXAMPLE,
 true,
 Example.class,
 null);
 private static final CommandArgument ARGUMENT_NAME =
 new CommandArgument(PARAM_NAME,
 true,
 String.class,
 null);

 // declare an array of arguments for each command.
 public static final CommandArgument[] GET_EXAMPLES_ARGS =
 new CommandArgument[] { ARGUMENT_LOCATION };
 public static final CommandArgument[] ADD_EXAMPLE_ARGS =
 new CommandArgument[] { ARGUMENT_LOCATION,
 ARGUMENT_EXAMPLE };
 public static final CommandArgument[] DELETE_EXAMPLE_ARGS =
 New CommandArgument[] { ARGUMENT_LOCATION,
 ARGUMENT_NAME };
}

This class declares command strings and describes the arguments for three commands that will
be supported by the ExampleCommandListener class. If the toString() method of each
ExampleCommandString object declared in this source code file were called, the results would
be:

ExampleCommandString.GetExamples
ExampleCommandString.AddExample
ExampleCommandString.DeleteExample

Every CommandDescriptor object contains a reference to an object derived from
CommandString; it is through this mechanism that the framework guarantees every command
name is unique.

ExampleDescriptor.java
public class ExampleDescriptor extends CommandDescriptor {
 private static final String GET_EXAMPLES_METHOD = "getExamples";
 private static final String ADD_EXAMPLE_METHOD = "addExample";
 private static final String DELETE_EXAMPLE_METHOD = "deleteExample";

 public static final CommandDescriptor GET_EXAMPLES =
 new CommandDescriptor(ExampleCommands.GET_EXAMPLES,
 GET_EXAMPLES_METHOD,
 ExampleCommands.GET_EXAMPLES_ARGS);
 public static final CommandDescriptor ADD_EXAMPLE =
 new CommandDescriptor(ExampleCommands.ADD_EXAMPLE,
 ADD_EXAMPLE_METHOD,
 ExampleCommands.ADD_EXAMPLE_ARGS);
 public static final CommandDescriptor DELETE_EXAMPLE =
 new CommandDescriptor(ExampleCommands.DELETE_EXAMPLE,
 DELETE_EXAMPLE_METHOD,
 ExampleCommands.DELETE_EXAMPLE_ARGS);
}

Command Listeners 37

ExampleCommandListener.java
public class ExampleCommandListener extends AppManCommandListener {
 // the method called when the GetExamples command is received.
 public boolean getExamples(CommandEvent theEvent,
 ServiceContext theContext,
 String theLocation) {
 // the details will be filled in later
 return true;
 }

 // the method called when the AddExample command is received.
 Public Boolean addExample(CommandEvent theEvent,
 ServiceContext theContext,
 String theLocation,
 Example theExample) {
 // the details will be filled in later
 return true;
 }

 // the method called when the DeleteExample command is
 // received.
 public boolean deleteExample(CommandEvent theEvent,
 ServiceContext theContext,
 String theLocation,
 String theName) {
 // the details will be filled in later.
 return true;
 }

 // the framework calls this method to get the descriptors for
 // the commands supported by this command listener.
 public CommandDescriptor[] getCommands() {
 return new CommandDescriptor[] {
 ExampleDescriptor.GET_EXAMPLES,
 ExampleDescriptor.ADD_EXAMPLE,
 ExampleDescriptor.DELETE_EXAMPLE };
 }
}

The preceding example shows the skeleton of a command listener:

1. Extend the correct class

2. Add the command handling methods

3. Override the getCommands() method to return the descriptors for those commands.

The difficulty is in the details of the command handling methods, which is covered in the next
section.

Command Handling Methods
This section includes the following topics:

l “Method Signatures” on page 39

38 Writing Server-side Command Listeners

l “Grabbing Command Arguments” on page 40

l “Sending Results Back to the Client” on page 40

l “Storing Temporary Data Using the Framework” on page 41

Method Signatures
If you were looking carefully at the example code in the preceding section, you might be saying
something along the lines of, “Wait a minute, in GET_EXAMPLES_ARGS, I defined one
argument, the location argument. What are these other two arguments, theEvent and
theContext? Where did they come from and what do I do with them?” The answer partly lies in
the older version of the Administration Services framework. The first version of the framework
did not do all the type checking and parameter parsing that the new level does, so all command
handling methods had the following signature:

 public boolean handlerMethod(CommandEvent theEvent) { }

It was up to each method to then extract and handle the arguments along the lines of:

 String theLocation = theEvent.getRawParameter("Location");
 if (theLocation == null) {
 // oops - this shouldn't happen!
 return false;
 }

Or, if the parameter was supposed to be a numeric value:

 int theNumber = 0;
 String theValue = theEvent.getRawParameter("Value");
 if (theValue == null) {
 // oops - this shouldn't happen!
 return false;
 }
 try {
 theNumber = Integer.parseInt(theValue)
 }
 catch (Exception ex) {
 return false;
 }

In most cases, theEvent object was used mostly to get the parameters for the command. When
the framework was upgraded, theEvent object was retained as the first argument to the command
handler methods, even though it is rarely used.

The second argument, theContext, is actually a field in theEvent object; if you want to return
results to the client, you must do so through the ServiceContext reference. Since every command
handling method at some time would call theEvent.getServiceContext(), we decided to add it as
a second parameter to every command handling method.

As a result of these decisions, every command handling method has the following signature:

 public boolean handlerMethod(CommandEvent theEvent,
 ServiceContext theContext,
 Class0 value0,

Command Handling Methods 39

 ...,
 ClassN, ValueN);

Where the ClassX parameters are described by the CommandDescriptor for the method.

In addition, even though the method is declared boolean, the framework never looks at the
return value from a command handler method. Return values are handled within each method
by a mechanism explained later in this document.

Grabbing Command Arguments
In most cases, the command arguments will have been extracted and parsed by the framework;
however, special circumstances can arise whereby extra arguments are sent with each command
that, for whatever reason, the programmer doesn't want to include in the CommandDescriptor
object.

An example is the EssbaseCommandListener; the EssbaseCommandListener.handleEventPrep()
method calls a validateSession() method that looks for the standard parameters “servername”,
“appname”, “dbname”, then attempts to validate an EssbaseSession against those parameters.
If this fails, then the handleEventPrep() method returns a standard error status to the client. In
most cases, any EssbaseCommandListener will need these arguments when handling commands.
However, there are cases (such as in the outline editor) when those arguments aren't used. If,
during implementation of a command listener method, a similar situation arises, the parameters
can be retrieved by the following call:

 String aValue = theEvent.getRawParameter("SomeParameterName");

This should be a rare necessity and should raise caution alarms if an implementer finds
themselves needing to do this.

Sending Results Back to the Client
There are two types of results to return to a client:

1. Status of the command

2. Data that the client needs to display

The CommandStatus class is used to return the success/failure of the command to the client.
The CommandStatus class only understands two types of status: SUCCESS and FAILURE. The
original intent of this class was to indicate whether a command was routed successfully by the
framework. However, this wasn’t made explicit and, as a result, many existing command
handling methods use this SUCCESS/FAILURE to indicate the status of their specific processing.

It would be a good practice to always extend this class to enable returning more specific error
codes than just SUCCESS/FAILURE.

So, let’s return to our example and fill in one of the command handling methods to return data
and a SUCCESSFUL status to the client.

public boolean getExamples(CommandEvent theEvent,
 ServiceContext theContext,

40 Writing Server-side Command Listeners

 String theLocation) {
 //object used to transmit results back to the client
 XMLTransferObject xto=new XMLTransferObject();
 Example [] theResults=someMethod(theLocation);
 if (theResults == null) {
 //this is simplistic, but it shows what we need
 xto.setCommandStatus(CommandStatus.SIMPLE_FAILURE);
 }
 else {
 if (theResults.length != 0)
 xto.addAll(theResults);
 xto.setCommandStatus(CommandStatus.SIMPLE_SUCCESS);
 }
 this.storeService.set(theContext,
 DefaultScopeType.REQUEST_SCOPE,
 AppManServlet.RESULT,
 xto.exportXml());
 return true;
}

The XMLTransferObject is used to transmit the data and the command status back to the client;
we use the defined CommandStatus.SIMPLE_FAILURE or
CommandStatus.SIMPLE_SUCCESS objects to return the correct status. If results were
available, they were then added to the XMLTransferObject using the addAll() method. The
results were then placed in the command listener's store service using the REQUEST_SCOPE
and using the key AppManServlet.RESULT. After this method returns to the framework, the
framework will take any data stored using the combination
DefaultScopeType.REQUEST_SCOPE and AppManServlet.RESULT and send that data back to
the client as the results of the command.

Storing Temporary Data Using the Framework
In the preceding section, we gave an example of how to place data in the framework’s storage
so that the data would be returned to the client as the results of a command. The storeService
field in each command manager can store data for additional purposes. There are six defined
DefaultScopeTypes:

1. CONFIG_SCOPE

This is used by the framework as it is initializing. It should never be used by command
handler methods.

2. BUILDER_SCOPE

This is used by the framework as it is initializing. It should never be used by command
handler methods.

3. APP_SCOPE

Using this scope type will cause the data to be stored for the life of the servlet. This should
be very, very rarely used by command listeners.

4. SESSION_SCOPE

Command Handling Methods 41

Using this scope type will cause the data to be stored until the current client/server session
is no longer valid. At that point, the framework will remove all data stored in this scope.
Store information in this scope that needs to be recovered when processing subsequent
commands.

5. USER_SCOPE

Using this scope makes the data available to any client connected using the same EAS user
id. When all sessions associated with this user are no longer valid, the framework will remove
data stored in this scope. In the current implementation, this is never used and it probably
will never be used very often.

6. REQUEST_SCOPE

Using this scope makes the data available until the framework has bundled the results of the
command and returned them to the client. The framework then removes all data stored in
this scope associated with the request that just finished.

Storing data is done through a command listener’s store service, as in the preceding example.
The StoreService interface has several get(), set(), and remove() methods. However, there is only
one of each of these methods that a command listener (or other plug-in code) should call; the
other methods were put in place for use by some of the framework code itself. The three method
signatures are:

public Object get(ServiceContext context, ScopeType type, Object key);
public Object set(ServiceContext context, ScopeType type, Object key, Object value);
public Object remove(ServiceContext context, ScopeType type, Object key);

For more information about these methods, see the Essbase Administration Services Java API
Reference.

Packaging the Code
When packaging the code into jar files for a plug-in, follow these guidelines:

l Separate the code into three distinct pieces:

m Code that is only used on the client

m Code that is only used on the server

m Code that is used in both places

l Set up the build tools to compile and package these pieces separately to prevent crossover
compilation. For example, the framework is packaged into the following jar files:

 framework_client.jar
 framework_common.jar
 framework_server.jar

l Package the command listener classes in the server jar

l Package the command descriptor classes in the server jar. This is because they contain
references to the method names in the command listeners and this should not be publicly
available on the client.

42 Writing Server-side Command Listeners

l Package the CommandString derived classes in the common jar file. While the framework
does not currently take advantage of this on the client, it will be upgraded to do the packaging
of parameters and commands for client applications.

l Place any classes extending CommandStatus in the common jar file.

l Place any specialized classes (such as Example.java) in the common jar file.

The server jar file must contain a manifest file. Each command listener must have an entry in
this manifest file that looks like the following:

Name: ExampleCommandListener.class

EAS-Framework-CommandListener: True

If, as is likely, the command listener has a package name that must be prepended to the name
in the example above, like this:

Name: com/essbase/eas/examples/server/ExampleCommandListener.class

EAS-Framework-CommandListener: True

Note: Even though this is a class name, use slashes (“/”) instead of dots (“.”) to separate the
package names.

Loading the Code
To enable the framework to recognize command listeners and route commands to the correct
place, the jar file containing the command listeners and any other jar files on which this code
depends must be bundled inside Administration Server’s eas.war file. The eas.war file is
contained in the eas.ear file, and must be unpacked so that the command listeners can be
added.

ä To bundle the command listeners:

1 Unzip the eas.ear file.

2 Unzip the eas.war file.

3 In the directory structure thus created, add the command listeners to the WEB-INF/lib directory.

4 Rezip the eas.war file.

5 Rezip the eas.ear file.

Note: The eas.ear file is installed by default to EPM_ORACLE_HOME\products\Essbase
\eas\server\AppServer\InstallableApps\Common.

After putting the jar files in this location, you must stop and restart Administration Server. To
determine if the new command listeners have been installed, set the Administration Services
logging level between INFO and ALL.

Loading the Code 43

Utility Classes
There are many utility classes provided by theOracle Essbase Administration Services
framework. In particular, there are utility classes in some of the following packages:

com.essbase.eas.framework.defs
com.essbase.eas.framework.server
com.essbase.eas.utils
com.essbase.eas.ui
com.essbaes.eas.i18n
com.essbase.eas.net

The Administration Services Java API Reference makes it easy to navigate through these classes
and learn what is available.

44 Writing Server-side Command Listeners

Glossary

! See bang character.

#MISSING See missing data.

access permissions A set of operations that a user can

perform on a resource.

accessor Input and output data specifications for data-

mining algorithms.

accounts dimension A dimension type that makes accounting

intelligence available. Only one dimension can be defined

as Accounts.

Advanced Relational Access The integration of a relational

database with an Essbase multidimensional database so that

all data remains in the relational database and is mapped to

summary-level data in the Essbase database.

agent An Essbase server process that starts and stops

applications and databases, manages connections from

users, and handles user-access security. The agent is referred

to as ESSBASE.EXE.

aggregate cell A cell comprising several cells. For example, a

data cell that uses Children(Year) expands to four cells

containing Quarter 1, Quarter 2, Quarter 3, and Quarter 4

data.

aggregate storage database The database storage model

designed to support large-scale, sparsely distributed data

which is categorized into many, potentially large

dimensions. Upper level members and formulas are

dynamically calculated, and selected data values are

aggregated and stored, typically with improvements in

overall aggregation time.

aggregate view A collection of aggregate cells based on the

levels of the members within each dimension. To reduce

calculation time, values are pre-aggregated and stored as

aggregate views. Retrievals start from aggregate view totals

and add up from there.

aggregation The process of rolling up and storing values in

an aggregate storage database; the stored result of the

aggregation process.

aggregation script In aggregate storage databases only, a file

that defines a selection of aggregate views to be built into an

aggregation.

alternate hierarchy A hierarchy of shared members. An

alternate hierarchy is based upon an existing hierarchy in a

database outline, but has alternate levels in the dimension.

An alternate hierarchy allows the same data to be seen from

different points of view.

ancestor A branch member that has members below it. For

example, the members Qtr2 and 2006 are ancestors of the

member April.

application 1) A software program designed to run a specific

task or group of tasks such as a spreadsheet program or

database management system; 2) A related set of dimensions

and dimension members that are used to meet a specific set

of analytical requirements, reporting requirements, or both.

area A predefined set of members and values that makes up

a partition.

arithmetic data load A data load that performs operations on

values in the database, such as adding 10 to each value.

artifact An individual application or repository item; for

example, scripts, forms, rules files, Interactive Reporting

documents, and financial reports. Also known as an object.

attribute A characteristic of a dimension member. For

example, Employee dimension members may have

attributes of Name, Age, or Address. Product dimension

members can have several attributes, such as a size and

flavor.

Glossary 45

attribute association A relationship in a database outline

whereby a member in an attribute dimension describes a

characteristic of a member of its base dimension. For

example, if product 100-10 has a grape flavor, the product

100-10 has the Flavor attribute association of grape. Thus,

the 100-10 member of the Product dimension is associated

with the Grape member of the Flavor attribute dimension.

Attribute Calculations dimension A system-defined dimension

that performs these calculation operations on groups of

members: Sum, Count, Avg, Min, and Max. This dimension

is calculated dynamically and is not visible in the database

outline. For example, using the Avg member, you can

calculate the average sales value for Red products in New

York in January.

attribute dimension A type of dimension that enables analysis

based on the attributes or qualities of dimension members.

attribute reporting A reporting process based on the attributes

of the base dimension members. See also base dimension.

attribute type A text, numeric, Boolean, date, or linked-

attribute type that enables different functions for grouping,

selecting, or calculating data. For example, because the

Ounces attribute dimension has the type numeric, the

number of ounces specified as the attribute of each product

can be used to calculate the profit per ounce for that

product.

authentication Verification of identity as a security measure.

Authentication is typically based on a user name and

password. Passwords and digital signatures are forms of

authentication.

axis 1) A straight line that passes through a graphic used for

measurement and categorization; 2) A report aspect used to

arrange and relate multidimensional data, such as filters,

pages, rows, and columns. For example, for a data query in

Simple Basic, an axis can define columns for values for Qtr1,

Qtr2, Qtr3, and Qtr4. Row data would be retrieved with

totals in the following hierarchy: Market, Product.

bang character (!) A character that terminates a series of

report commands and requests information from the

database. A report script must be terminated with a bang

character; several bang characters can be used within a

report script.

base currency The currency in which daily business

transactions are performed.

base dimension A standard dimension that is associated with

one or more attribute dimensions. For example, assuming

products have flavors, the Product dimension is the base

dimension for the Flavors attribute dimension.

batch calculation Any calculation on a database that is done

in batch; for example, a calculation script or a full database

calculation. Dynamic calculations are not considered to be

batch calculations.

batch file An operating system file that can call multiple

ESSCMD scripts and run multiple sessions of ESSCMD. On

Windows-based systems, batch files have BAT file

extensions. On UNIX, batch files are written as a shell script.

batch processing mode A method of using ESSCMD to write

a batch or script file that can be used to automate routine

server maintenance and diagnostic tasks. ESSCMD script

files can execute multiple commands and can be run from

the operating system command line or from within

operating system batch files. Batch files can be used to call

multiple ESSCMD scripts or run multiple instances of

ESSCMD.

block The primary storage unit which is a multidimensional

array representing the cells of all dense dimensions.

block storage database The Essbase database storage model

categorizing and storing data based on the sparsity of data

values defined in sparse dimensions. Data values are stored

in blocks, which exist only for sparse dimension members

for which there are values.

build method A method used to modify database outlines.

Choice of a build method is based on the format of data in

data source files.

cache A buffer in memory that holds data temporarily.

calculated member in MaxL DML A member designed for

analytical purposes and defined in the optional WITH

section of a MaxL DML query.

cascade The process of creating multiple reports for a subset

of member values.

CDF See custom-defined function.

CDM See custom-defined macro.

46 Glossary

cell 1) The data value at the intersection of dimensions in a

multidimensional database; the intersection of a row and a

column in a worksheet; 2) A logical group of nodes

belonging to one administrative domain.

cell note A text annotation for a cell in an Essbase database.

Cell notes are a type of LRO.

child A member with a parent above it in the database

outline.

clean block A data block in which the database is fully

calculated, if a calculation script calculates all dimensions at

once, or if the SET CLEARUPDATESTATUS command is

used in a calculation script.

code page A mapping of bit combinations to a set of text

characters. Different code pages support different sets of

characters. Each computer contains a code page setting for

the character set requirements of the language of the

computer user. In the context of this document, code pages

map characters to bit combinations for non-Unicode

encodings. See also encoding.

committed access An Essbase Kernel Isolation Level setting

that affects how Essbase handles transactions. Under

committed access, concurrent transactions hold long-term

write locks and yield predictable results.

consolidation The process of aggregating data from

dependent entities to parent entities. For example, if the

dimension Year consists of the members Qtr1, Qtr2, Qtr3,

and Qtr4, its consolidation is Year.

crosstab reporting Reporting that categorizes and

summarizes data in table format. The table cells contain

summaries of the data that fit within the intersecting

categories. For example, a crosstab report of product sales

information could show size attributes, such as Small and

Large, as column headings and color attributes, such as Blue

and Yellow, as row headings. The cell in the table where

Large and Blue intersect could contain the total sales of all

Blue products that are sized Large.

cube A block of data that contains three or more

dimensions. An Essbase database is a cube.

cube deployment In Essbase Studio, the process of setting load

options for a model to build an outline and load data into

an Essbase application and database.

cube schema In Essbase Studio, the metadata elements, such

as measures and hierarchies, representing the logical model

of a cube.

currency conversion A process that converts currency values

in a database from one currency into another. For example,

to convert one U. S. dollar into the European euro, the

exchange rate (for example, 0.923702) is multiplied by the

dollar (1* 0.923702). After conversion, the European euro

amount is .92.

currency partition A dimension type that separates local

currency members from a base currency, as defined in an

application. Identifies currency types, such as Actual,

Budget, and Forecast.

custom-defined function (CDF) Essbase calculation functions

developed in Java and added to the standard Essbase

calculation scripting language using MaxL. See also custom-

defined macro.

custom-defined macro (CDM) Essbase macros written with

Essbase calculator functions and special macro functions.

Custom-defined macros use an internal Essbase macro

language that enables the combination of calculation

functions and they operate on multiple input parameters.

See also custom-defined function.

cycle through Perform multiple passes through a database

while calculating it.

data cache A buffer in memory that holds uncompressed

data blocks.

data cell See cell.

data file cache A buffer in memory that holds compressed

data (PAG) files.

data load rules A set of criteria that determines how to load

data from a text-based file, a spreadsheet, or a relational data

set into a database.

data mining The process of searching through an Essbase

database for hidden relationships and patterns in a large

amount of data.

data value See cell.

Glossary 47

date measure In Essbase, a member tagged as Date in the

dimension where measures are represented. The cell values

are displayed as formatted dates. Dates as measures can be

useful for analysis types that are difficult to represent using

the Time dimension. For example, an application may need

to track acquisition dates for a series of capital assets, but

the acquisition dates span too large a period to allow for

feasible Time dimension modeling. See also typed measure.

dense dimension In block storage databases, a dimension

likely to contain data for every combination of dimension

members. For example, time dimensions are often dense

because they can contain all combinations of all members.

Contrast with sparse dimension.

derived text measure In Essbase Studio, a text measure whose

values are governed by a predefined rule expressed as a

range. For example, a derived text measure, called "Sales

Performance Index," based on a measure Sales, could

consist of the values "High," "Medium," and "Low." This

derived text measure is defined to display "High,"

"Medium," and "Low" depending on the range in which the

corresponding sales values fall. See also text measure.

descendant Any member below a parent in the database

outline. In a dimension that includes years, quarters, and

months, the members Qtr2 and April are descendants of the

member Year.

dimension A data category used to organize business data for

the retrieval and preservation of values. Dimensions usually

contain hierarchies of related members grouped within

them. For example, a Year dimension often includes

members for each time period, such as quarters and months.

dimension build The process of adding dimensions and

members to an Essbase outline.

dimension build rules Specifications, similar to data load rules,

that Essbase uses to modify an outline. The modification is

based on data in an external data source file.

dimension type A dimension property that enables the use of

predefined functionality. Dimensions tagged as time have a

predefined calendar functionality.

dimensionality In MaxL DML, the represented dimensions

(and the order in which they are represented) in a set. For

example, the following set consists of two tuples of the same

dimensionality, because they both reflect the dimensions

(Region, Year): { (West, Feb), (East, Mar) }

dirty block A data block containing cells that have been

changed since the last calculation. Upper-level blocks are

marked as dirty if their child blocks are dirty (that is, if they

have been updated).

domain In data mining, a variable representing a range of

navigation within data.

drill-down Navigation through the query result set using the

dimensional hierarchy. Drilling down moves the user

perspective from aggregated data to detail. For example,

drilling down can reveal hierarchical relationships between

years and quarters or quarters and months.

duplicate alias name A name that occurs more than once in

an alias table and can be associated with more than one

member in a database outline. Duplicate alias names can be

used with duplicate member outlines only.

duplicate member name Multiple occurrences of a member

name in a database, with each occurrence representing a

different member. For example, a database has two

members named New York. One member represents New

York state and the other member represents New York city.

duplicate member outline A database outline containing

duplicate member names.

Dynamic Calc and Store members Members in a block storage

outline that Essbase calculates only upon the first retrieval

of the value. Essbase then stores the calculated value in the

database. Subsequent retrievals do not require calculating.

Dynamic Calc members Members in a block storage outline

that Essbase calculates only at retrieval time. Essbase

discards calculated values after completing the retrieval

request.

dynamic calculation In Essbase, a calculation that occurs only

when you retrieve data on a member that is tagged as

Dynamic Calc or Dynamic Calc and Store. The member's

values are calculated at retrieval time instead of being

precalculated during batch calculation.

dynamic hierarchy In aggregate storage database outlines

only, a hierarchy in which members are calculated at

retrieval time.

dynamic reference A pointer in the rules file to header records

in a data source.

Dynamic Time Series A process that performs period-to-date

reporting in block storage databases.

48 Glossary

encoding A method for mapping bit combinations to

characters for creating, storing, and displaying text. Each

encoding has a name; for example, UTF-8. Within an

encoding, each character maps to a specific bit combination;

for example, in UTF-8, uppercase A maps to HEX41. See

also code page, locale.

Enterprise View An Administration Services feature that

enables management of the Essbase environment from a

graphical tree view. From Enterprise View, you can operate

directly on Essbase artifacts.

essbase.cfg An optional configuration file for Essbase.

Administrators may edit this file to customize Essbase

Server functionality. Some configuration settings may also

be used with Essbase clients to override Essbase Server

settings.

EssCell A function entered into a cell in Essbase Spreadsheet

Add-in to retrieve a value representing an intersection of

specific Essbase database members.

ESSCMD A command-line interface for performing Essbase

operations interactively or through batch script files.

ESSLANG The Essbase environment variable that defines the

encoding used to interpret text characters. See also

encoding.

ESSMSH See MaxL Shell.

external authentication Logging on to Oracle EPM System

products with user information stored outside the

application. The user account is maintained by the EPM

System, but password administration and user

authentication are performed by an external service, using

a corporate directory such as Oracle Internet Directory

(OID) or Microsoft Active Directory (MSAD).

extraction command An Essbase reporting command that

handles the selection, orientation, grouping, and ordering

of raw data extracted from a database; begins with the less-

than (<) character.

file delimiter A character, such as a comma or tab, that

separates fields in a data source.

filter A constraint on data sets that restricts values to specific

criteria; for example, to exclude certain tables, metadata, or

values, or to control access.

format string 1) In Essbase, a method for transforming the

way cell values are displayed; 2) In Data Relationship

Management, a parameter of a Format or Formatted Date

derived property that indicates the format in which a

property value should be returned.

free-form reporting Creating reports by entering dimension

members or report script commands in worksheets.

generation A layer in a hierarchical tree structure that defines

member relationships in a database. Generations are

ordered incrementally from the top member of the

dimension (generation 1) down to the child members. Use

the unique generation name to identify a layer in the

hierarchical tree structure.

global report command A command in a running report script

that is effective until it is replaced by another global

command or the file ends.

GUI Graphical user interface

Hybrid Analysis An analysis mapping low-level data stored in

a relational database to summary-level data stored in

Essbase, combining the mass scalability of relational systems

with multidimensional data.

index 1) A method where Essbase uses sparse-data

combinations to retrieve data in block storage databases. 2)

The index file.

index cache A buffer containing index pages.

index entry A pointer to an intersection of sparse dimensions.

Index entries point to data blocks on disk and use offsets to

locate cells.

index file An Essbase file storing block storage data retrieval

information, residing on disk, and containing index pages.

index page A subdivision in an index file. An index page

contains pointers to data blocks.

input data Data loaded from a source rather than calculated.

intelligent calculation A calculation method tracking updated

data blocks since the last calculation.

interdimensional irrelevance A situation in which a dimension

does not intersect with other dimensions. Because the data

in the dimension cannot be accessed from the

nonintersecting dimensions, the nonintersecting

dimensions are not relevant to that dimension.

Glossary 49

introspection A deep inspection of a data source to discover

hierarchies based on the inherent relationships in the

database. Contrast with scraping.

isolation level An Essbase Kernel setting that determines the

lock and commit behavior of database operations. Choices

are: committed access and uncommitted access.

layer 1) The horizontal location of members in a

hierarchical structure, specified by generation (top down)

or level (bottom up); 2) Position of objects relative to other

objects. For example, in the Sample Basic database, Qtr1 and

Qtr4 are in the same layer, so they are also in the same

generation, but in a database with a ragged hierarchy, Qtr1

and Qtr4 might not be in same layer, though they are in the

same generation.

level A layer in a hierarchical tree structure that defines

database member relationships. Levels are ordered from the

bottom dimension member (level 0) up to the parent

members.

level 0 block A data block for combinations of sparse, level 0

members.

level 0 member A member that has no children.

lineage The relationship between different metadata

elements showing how one metadata element is derived

from one or more other metadata elements, ultimately

tracing the metadata element to its physical source. In

Essbase Studio, a lineage viewer displays the relationships

graphically. See also traceability.

link 1) A reference to a repository object. Links can reference

folders, files, shortcuts, and other links; 2) In a taskflow, the

point where the activity in one stage ends and another

begins.

linked partition A shared partition that enables you to use a

data cell to link two databases. When a user clicks a linked

cell in a worksheet, Essbase opens a new sheet displaying the

dimensions in the linked database. The user can then drill

down those dimensions.

linked reporting object (LRO) A cell-based link to an external

file such as cell notes, URLs, or files with text, audio, video,

or pictures. (Only cell notes are supported for Essbase LROs

in Financial Reporting.) Contrast with local report object.

locale A computer setting that specifies a location's

language, currency and date formatting, data sort order, and

the character set encoding used on the computer. Essbase

uses only the encoding portion. See also encoding,

ESSLANG.

locale header record A text record at the beginning of some

non-Unicode-encoded text files, such as scripts, that

identifies the encoding locale.

location alias A descriptor that identifies a data source. The

location alias specifies a server, application, database, user

name, and password. Location aliases are set by DBAs at the

database level using Administration Services Console,

ESSCMD, or the API.

Log Analyzer An Administration Services feature that enables

filtering, searching, and analysis of Essbase logs.

LRO See linked reporting object.

mathematical operator A symbol that defines how data is

calculated in formulas and outlines. Can be any of the

standard mathematical or Boolean operators; for example,

+, -, *, /, and %.

MaxL The multidimensional database access language for

Essbase, consisting of a data definition language (MaxL

DDL) and a data manipulation language (MaxL DML). See

also MaxL DDL, MaxL DML, and MaxL Shell

MaxL DDL The data definition language used by Essbase for

batch or interactive system-administration tasks.

MaxL DML The data manipulation language used in Essbase

for data query and extraction.

MaxL Perl Module A Perl module (essbase.pm) that is part of

Essbase MaxL DDL. This module can be added to the Perl

package to provide access to Essbase databases from Perl

programs.

MaxL Script Editor A script-development environment in

Administration Services Console. MaxL Script Editor is an

alternative to using a text editor and the MaxL Shell for

administering Essbase with MaxL scripts.

MaxL Shell An interface for passing MaxL statements to

Essbase Server. The MaxL Shell executable file is located in

the Essbase bin directory (UNIX: essmsh; Windows:

essmsh.exe).

50 Glossary

member A discrete component within a dimension. A

member identifies and differentiates the organization of

similar units. For example, a time dimension might include

members Jan, Feb, and Qtr1.

member load In Essbase Integration Services, the process of

adding dimensions and members (without data) to Essbase

outlines.

member selection report command A type of Report Writer

command that selects member ranges based on outline

relationships, such as sibling, generation, and level.

member-specific report command A type of Report Writer

formatting command that is executed as it is encountered

in a report script. The command affects only its associated

member and executes the format command before

processing the member.

metadata elements Metadata derived from data sources and

other metadata that is stored and cataloged for Essbase

Studio use.

metadata sampling The process of retrieving a sample of

members in a dimension in a drill-down operation.

metadata security Security set at the member level to restrict

users from accessing certain outline members.

metaoutline In Essbase Integration Services, a template

containing the structure and rules for creating an Essbase

outline from an OLAP model.

mining attribute In data mining, a class of values used as a

factor in analysis of a set of data.

minischema A graphical representation of a subset of tables

from a data source that represents a data modeling context.

missing data (#MISSING) A marker indicating that data in the

labeled location does not exist, contains no value, or was

never entered or loaded. For example, missing data exists

when an account contains data for a previous or future

period but not for the current period.

model 1) In data mining, a collection of an algorithm's

findings about examined data. A model can be applied

against a wider data set to generate useful information about

that data; 2) A file or content string containing an

application-specific representation of data. Models are the

basic data managed by Shared Services, of two major types:

dimensional and nondimensional application objects; 3) In

Business Modeling, a network of boxes connected to

represent and calculate the operational and financial flow

through the area being examined.

multidimensional database A method of organizing, storing,

and referencing data through three or more dimensions. An

individual value is the intersection point for a set of

dimensions. Contrast with relational database.

named set In MaxL DML, a set with its logic defined in the

optional WITH section of a MaxL DML query. The named

set can be referenced multiple times in the query.

nested column headings A report column heading format that

displays data from multiple dimensions. For example, a

column heading that contains Year and Scenario members

is a nested column. The nested column heading shows Q1

(from the Year dimension) in the top line of the heading,

qualified by Actual and Budget (from the Scenario

dimension) in the bottom line of the heading.

non-dimensional model A Shared Services model type that

includes application objects such as security files, member

lists, calculation scripts, and Web forms.

non-unique member name See duplicate member name.

numeric attribute range A feature used to associate a base

dimension member that has a discrete numeric value with

an attribute that represents a value range. For example, to

classify customers by age, an Age Group attribute dimension

can contain members for the following age ranges: 0-20,

21-40, 41-60, and 61-80. Each Customer dimension

member can be associated with an Age Group range. Data

can be retrieved based on the age ranges rather than on

individual age values.

OLAP Metadata Catalog In Essbase Integration Services, a

relational database containing metadata describing the

nature, source, location, and type of data that is pulled from

the relational data source.

Glossary 51

OLAP model In Essbase Integration Services, a logical model

(star schema) that is created from tables and columns in a

relational database. The OLAP model is then used to

generate the structure of a multidimensional database. See

also online analytical processing (OLAP).

online analytical processing (OLAP) A multidimensional,

multiuser, client-server computing environment for users

who analyze consolidated enterprise data in real time. OLAP

systems feature drill-down, data pivoting, complex

calculations, trend analysis, and modeling.

outline The database structure of a multidimensional

database, including all dimensions, members, tags, types,

consolidations, and mathematical relationships. Data is

stored in the database according to the structure defined in

the outline.

outline synchronization For partitioned databases, the process

of propagating outline changes from one database to

another database.

page file An Essbase data file.

page heading A report heading type that lists members

represented on the current page of the report. All data values

on the page have the members in the page heading as a

common attribute.

parallel calculation A calculation option. Essbase divides a

calculation into tasks and calculates some tasks

simultaneously.

parallel data load In Essbase, the concurrent execution of

data load stages by multiple process threads.

parallel export The ability to export Essbase data to multiple

files. This may be faster than exporting to a single file, and

it may resolve problems caused by a single data file

becoming too large for the operating system to handle.

partition area A subcube within a database. A partition is

composed of one or more areas of cells from a portion of

the database. For replicated and transparent partitions, the

number of cells within an area must be the same for the data

source and target to ensure that the two partitions have the

same shape. If the data source area contains 18 cells, the data

target area must also contain 18 cells to accommodate the

number of values.

partitioning The process of defining areas of data that are

shared or linked between data models. Partitioning can

affect the performance and scalability of Essbase

applications.

pattern matching The ability to match a value with any or all

characters of an item entered as a criterion. Missing

characters may be represented by wild-card values such as

a question mark (?) or an asterisk (*). For example, "Find

all instances of apple" returns apple, but "Find all instances

of apple*" returns apple, applesauce, applecranberry, and so

on.

periodicity Any shared pattern among time-related

dimension members that makes them meaningful for time-

based analysis. For example, Jan and Apr share the

periodicity of being opening months of a quarter in the

Gregorian calendar.

permission A level of access granted to users and groups for

managing data or other users and groups.

persistence The continuance or longevity of effect for any

Essbase operation or setting. For example, an Essbase

administrator may limit the persistence of user name and

password validity.

pivot Alter the perspective of retrieved data. When Essbase

first retrieves a dimension, it expands data into rows. You

can then pivot or rearrange the data to obtain a different

viewpoint.

precalculation Calculating the database before user retrieval.

preserve formulas User-created formulas kept within a

worksheet while retrieving data.

provisioning The process of granting users and groups

specific access permissions to resources.

qualified name A member name in a qualified format that

differentiates duplicate member names in a duplicate

member outline. For example, [Market].[East].[State].

[New York] or [Market].[East].[City].[New York].

query governor An Essbase Integration Server parameter or

Essbase Server configuration setting that controls the

duration and size of queries made to data sources.

52 Glossary

ragged hierarchy An asymmetrical hierarchy that occurs

when a member has branches that contain different

numbers of levels. For example, assume a Country

dimension containing hierarchies of different geographical

entities down to cities at level 0. The United States hierarchy

contains three levels: country, state, and city. The Greece

hierarchy contains two levels: country and city.

record In a database, a group of fields making up one

complete entry. For example, a customer record may

contain fields for name, address, telephone number, and

sales data.

redundant data Duplicate data blocks that Essbase retains

during transactions until Essbase commits updated blocks.

replicated partition A portion of a database, defined through

Partition Manager, used to propagate an update to data

mastered at one site to a copy of data stored at another site.

Users can access the data as though it were part of their local

database.

Report Extractor An Essbase component that retrieves report

data from the Essbase database when report scripts are run.

report script A text file containing Essbase Report Writer

commands that generate one or more production reports.

Report Viewer An Essbase component that displays complete

reports after report scripts are run.

restore An operation to reload data and structural

information after a database has been damaged or

destroyed, typically performed after shutting down and

restarting the database.

restructure An operation to regenerate or rebuild the

database index and, in some cases, data files.

roll-up See consolidation.

root member The highest member in a dimension branch.

sampling The process of selecting a representative portion

of an entity to determine the entity's characteristics. See also

metadata sampling.

schema In relational databases, a logical model that

represents the data and the relationships between the data.

scope The area of data encompassed by any Essbase

operation or setting; for example, the area of data affected

by a security setting. Most commonly, scope refers to three

levels of granularity, where higher levels encompass lower

levels. The levels, from highest to lowest: the entire system

(Essbase Server), applications on Essbase Server, or

databases within Essbase Server applications. See also

persistence.

scraping An inspection of a data source to derive the most

basic metadata elements from it. Contrast with

introspection.

security platform A framework enabling Oracle EPM System

products to use external authentication and single sign-on.

serial calculation The default calculation setting. Divides a

calculation pass into tasks and calculates one task at a time.

shared member A member that shares storage space with

another member of the same name, preventing duplicate

calculation of members that occur multiple times in an

Essbase outline.

Shared Services Registry The part of the Shared Services

repository that manages EPM System deployment

information for most EPM System products, including

installation directories, database settings, computer names,

ports, servers, URLs, and dependent service data.

sibling A child member at the same generation as another

child member and having the same immediate parent. For

example, the members Florida and New York are children

of East and each other's siblings.

single sign-on (SSO) The ability to log on once and then access

multiple applications without being prompted again for

authentication.

slicer In MaxL DML, the section at the end of a query that

begins with and includes the keyword WHERE.

sparse dimension In block storage databases, a dimension

unlikely to contain data for all member combinations when

compared to other dimensions. Contrast with dense

dimension. For example, not all customers have data for all

products.

standard dimension A dimension that is not an attribute

dimension.

Glossary 53

stored hierarchy In aggregate storage databases outlines only,

a hierarchy in which the members are aggregated according

to the outline structure. Stored hierarchy members have

certain restrictions; for example, they cannot contain

formulas.

supervisor A user with full access to all applications,

databases, related files, and security mechanisms for a

server.

suppress rows A setting that excludes rows containing

missing values and underscores characters from spreadsheet

reports.

symmetric multiprocessing (SMP) A server architecture that

enables multiprocessing and multithreading. Performance

is not significantly degraded when a large number of users

simultaneously connect to an single instance.

synchronized The condition that exists when the latest

version of a model resides in both the application and in

Shared Services. See also model.

TCP/IP See Transmission Control Protocol/Internet

Protocol.

text list In Essbase, an object that stores text values mapped

to numeric identifiers. Text Lists enable the use of text

measures.

text measure In Essbase, a member tagged as Text in the

dimension where measures are represented. The cell values

are displayed as predefined text. For example, the text

measure Satisfaction Index may have the values Low,

Medium, and High. See also typed measure, text list, derived

text measure.

time series reporting A process for reporting data based on a

calendar date (for example, year, quarter, month, or week).

traceability The ability to track a metadata element to its

physical source. For example, in Essbase Studio, a cube

schema can be traced from its hierarchies and measure

hierarchies to its dimension elements, date/time elements,

measures, and, ultimately, to its physical source elements.

See also lineage.

transformation 1) A process that transforms artifacts so that

they function properly in the destination environment after

application migration; 2) In data mining, the modification

of data (bidirectionally) flowing between the cells in the

cube and the algorithm.

Transmission Control Protocol/Internet Protocol (TCP/IP) A

standard set of communication protocols linking

computers with different operating systems and internal

architectures. TCP/IP utilities are used to exchange files,

send mail, and store data to various computers that are

connected to local and wide area networks.

transparent partition A shared partition that enables users to

access and change data in a remote database as though it is

part of a local database.

triggers An Essbase feature whereby data is monitored

according to user-specified criteria that, when met, cause

Essbase to alert the user or system administrator.

tuple MDX syntax element that references a cell as an

intersection of a member from each dimension. If a

dimension is omitted, its top member is implied. Examples:

(Jan); (Jan, Sales); ([Jan], [Sales], [Cola], [Texas],

[Actual]).

two-pass An Essbase property that is used to recalculate

members that are dependent on the calculated values of

other members. Two-pass members are calculated during a

second pass through the outline.

typed measure In Essbase, a member tagged as Text or Date

in the dimension where measures are represented. The cell

values are displayed as predefined text or dates.

unary operator A mathematical indicator (+, -, *, /, %)

associated with an outline member. The unary operator

defines how the member is calculated during a database roll-

up.

Unicode-mode application An Essbase application wherein

character text is encoded in UTF-8, enabling users with

computers set up for different languages to share

application data.

unique member name A nonshared member name that exists

only once in a database outline.

unique member outline A database outline that is not enabled

for duplicate member names.

upper-level block A type of data block wherein at least one of

the sparse members is a parent-level member.

user-defined attribute (UDA) An attribute, associated with

members of an outline to describe a characteristic of the

members, that can be used to return lists of members that

have the specified associated UDA.

54 Glossary

validation The process of checking a business rule, report

script, or partition definition against the outline to ensure

that the object being checked is valid.

varying attribute An attribute association that changes over

one or more dimensions. It can be used to track a value in

relation to these dimensions; for example, the varying

attribute Sales Representative, associated with the Product

dimension, can be used to track the value Customer Sales

of several different sales representatives in relation to the

Time dimension. Varying attributes can also be used for

member selection, such as finding the Products that a Sales

Representative was responsible for in May.

visual cue A formatted style, such as a font or a color, that

highlights specific data value types. Data values may be

dimension members; parent, child, or shared members;

dynamic calculations; members containing a formula; read-

only data cells; read-and-write data cells; or linked objects.

WITH section In MaxL DML, an optional section of the query

used for creating reusable logic to define sets or members.

Sets or custom members can be defined once in the WITH

section and then referenced multiple times during a query.

workbook An entire spreadsheet file with many worksheets.

write-back The ability for a retrieval client, such as a

spreadsheet, to update a database value.

XOLAP An Essbase multidimensional database that stores

only the outline metadata and retrieves all data from a

relational database at query time. XOLAP supports

aggregate storage databases and applications that contain

duplicate member names.

Glossary 55

56 Glossary

Index

A
AbstractCommandListener class, 32
AbstractCommandListener.getCommands method,

33
accessing

client plug-ins, 11
ActivateButton control, 27
adapter field, 24
addAll method, 41
adding

a branch to the Enterprise Tree, 14
children to tree nodes, 16
console tree menu items, 21
context menu items to tree nodes, 17
internal frame menu items, 21
items to menus, 19
items to the File > New menu, 18
static menu items, 20

Administration Server
described, 7

Administration Services
described, 7
Java packages, 10
logging level, 43

Administration Services Console
adding a branch to the tree, 14
adding functionality, 14
class packages, 11
described, 7
locating plug-ins, 13
retrieving the CSS token, 28
services, 28
writing plug-ins for, 11

APP_SCOPE, 41
ApplyButton control, 27
AppManCommandListener class, 32, 33
architecture, 8

B
BackButton control, 27
Boolean hidden field, 35
boolean required field, 34
BooleanComboBox control, 27
BUILDER_SCOPE, 41
ButtonPanel control, 27
buttons

standard, 27
buttons field, 24

C
cancelBtn field, 24
CancelButton control, 27
children

adding to tree nodes, 16
permitting plug-ins to add to tree nodes, 17

Class ClassType field, 34
class hierarchy

for command listeners, 32
class packages

Administration Services Console, 11
client

adding functionality, 14
class packages, 11
locating plug-ins, 13
sending results to, 40
writing plug-ins for, 11

client plug-ins
access point, 11

client tier, 7
CloseButton control, 27
code

compiling, 42
loading, 43
packaging, 42

code samples

A B C D E F G H I J L M N O P R S T U V W

Index 57

about, 10
com.essbase.eas.client.intf, 11
com.essbase.eas.client.manager, 12
com.essbase.eas.client.plugins, 12
com.essbase.eas.framework.client.defs.command, 12
com.essbase.eas.framework.client.defs.login, 12
com.essbase.eas.framework.client.ui.filedlgs, 12
com.essbase.eas.framework.defs, 12
com.essbase.eas.i18n, 12
com.essbase.eas.i18n package, 29
com.essbase.eas.ui, 12
com.essbase.eas.ui.ctable, 12
com.essbase.eas.ui.ctree, 12
com.essbase.eas.ui.editor, 12
com.essbase.eas.ui.email, 12
com.essbase.eas.ui.font, 12
com.essbase.eas.ui.print, 12
com.essbase.eas.ui.ptable, 12
com.essbase.eas.ui.ptree, 12
com.essbase.eas.ui.tree, 12
com.essbase.eas.utils, 12
com.essbase.eas.utils.print, 12
com.MyPlugin.MiscellaneousHandler, 13
command arguments

grabbing, 40
command handling methods

described, 38
command listener

class hierarchy, 32
command listeners

defined, 32
writing, 31

CommandArgument class, 34
CommandArgument object, 35
CommandDescriptor class, 35
CommandDescriptor objects, 34
commands, registering, 34
CommandStatus class, 40
CommandString class, 34
CONFIG_SCOPE, 41
Configure Plugin Components dialog box, 13
console tree menu items, adding, 21
constructors for the StandardDialog class, 24
context menu items

adding to tree nodes, 17
controls

setting focus order, 26

standard, 27
CSS token

retrieving from the Console, 28

D
data

storing temporary using the framework, 41
DefaultScopeTypes, 41
dialog results, 26
Dialog.show method, 26
DialogResult class, 26
dialogResult field, 24
DialogUtils.setFocusOrder method, 26
dispose method, 27
DoneButton control, 27

E
e-mail

support for sending, 28
eas_client.jar file, 11
eas_common.jar file, 11
Enterprise Tree

adding a branch, 14
essbase_client.jar file, 11
essbase_common.jar file, 11
EssbaseCommandListener, 40
EssbaseCommandListener class, 32, 33
EssbaseCommandListener.handleEventPrep method,

33
example classes, 10
example code

about, 10
example.java sample code, 35
ExampleCommandListener class, 37
exampleCommandListener.java sample code, 38
exampleCommandString.java sample code, 36
exampleDescriptor.java sample code, 37
extending Administration Services Console, 11

F
File > New menu

adding items to, 18
FinishButton control, 27
focus order of controls, setting, 26
framework

using to store temporary data, 41

A B C D E F G H I J L M N O P R S T U V W

58 Index

framework_client.jar file, 11, 42
framework_common.jar file, 11, 42
framework_server.jar file, 42
functionality

adding to Administration Services Console, 14

G
get method, 42
getClassType method, 34
getCommands method, 34, 38
getContextMenuItemsFor method, 17
getDefaultValue method, 35
getName method, 34
getObjectsToEmail method, 28
getTreeNodeChildren method, 16
grabbing command arguments, 40

H
handleCancel method, 26, 27
handleEvenPost method, 33
handleEvent method, 33
handleEventException method, 33
handleEventPrep method, 33, 40
handleHelp method, 26
handleOk method, 19, 26, 27
handleWindowClosed method, 27
handleWindowClosing method, 27
handleWindowOpened method, 27
helpBtn field, 24
HelpButton control, 27

I
internal frame menu items, 21
InternalFrame class, 28
internationalization utilities, 29
isEmailable method, 28
isHidden method, 35
isRequired method, 34

J
Java Introspection, 9
Java packages

for Administration Services, 10
Java plug-in components

described, 8

requirements for using, 9
Java plug-ins

packaging, 29
Java Swing, 9

L
ListMoverPanel control, 27
loading code, 43
localization utilities, 29
logging level, 43

M
manifest file, 43
menu items

adding, 19
adding internal frame, 21
adding to tree nodes, 17
console tree, 21

menus
adding items to, 19

method signatures, 39
methods

command handling, 38
middle tier, 7
MiscellaneousHandler.class, 13

N
name parameter, 32
NextButton control, 27
nodes

adding children, 16
adding context menu items to, 17
permitting plug-ins to add children to, 17

NumericTextField control, 27

O
Object defaultValue field, 35
okBtn field, 23
OkButton control, 27
op parameter, 32

P
packaging plug-ins, 29
packaging the code, 42
password parameter, 32

A B C D E F G H I J L M N O P R S T U V W

Index 59

permitting plug-ins to add children to tree nodes, 17
plug-ins

access point for client, 11
how the client locates, 13
packaging, 29
writing client, 11

populatePanel method, 18
populateTree method, 14
public classes

Administration Services Console, 11

R
ReadOnlyTextFrame control, 27
RefreshButton control, 27
registering commands, 34
remove method, 42
REQUEST_SCOPE, 42
requirements

for using Java plug-in components, 9
ResetButton control, 27
resources field, 24

S
sample code

about, 10
example.java, 35
exampleCommandListener.java, 38
exampleCommandString.java, 36
exampleDescriptor.java, 37

Save As, handling, 21
SaveAsRequestor interface, 21
saveDialogBounds field, 24
sending e-mail, 28
sending results back to the client, 40
server-side command listeners

writing, 31
services

for Administration Services Console, 28
SESSION_SCOPE, 41
set method, 42
setting

focus order of controls, 26
SimpleWizardPanel control, 27
standard buttons and controls, 27
standard controls, 23
StandardDialog class, 23

methods that can be overriden, 26
StandardDialog class constructors, 24
StandardDialog class name, 24
StandardDialog default action, 25
StandardDialog initialization, 24
StandardDialog results, 26
static menu items, adding, 20
StoreService interface, 42
String name field, 34

T
temporary data

storing using the framework, 41
toString method, 34, 37
tree nodes

adding children, 16
adding context menu items to, 17
permitting plug-ins to add children to, 17

U
USER_SCOPE, 42
utilities for localization, 29
utility classes, 44

V
validateSession method, 40
VerticalPairPanel control, 27

W
war file, 43
WizardPanel control, 27
writing server-side command listeners, 31

A B C D E F G H I J L M N O P R S T U V W

60 Index

	Contents
	Documentation Accessibility
	Introduction
	About Administration Services
	About Java Plug-in Components
	Requirements for Using Administration Services Java Plug-ins
	Prerequisite Knowledge
	Framework Concepts
	Packaged APIs for Administration Services
	Administration Services Java Packages
	Example Classes

	About the Sample Code in this Guide

	Writing Client Plug-ins
	Access Point for Plug-ins
	Class Packages
	How the Client Locates Plug-ins
	Creating the Miscellaneous Handler Class
	Adding Functionality
	Semantic Rules
	Adding a Branch to the Enterprise Tree
	Adding Children to Other Tree Nodes
	Permitting Plug-ins To Add Children To Your Tree Nodes
	Adding Context Menu Items To Tree Nodes
	Adding Options to the New Menu
	Adding Items To Menus
	Static Menu Items
	Internal Frame Menu Items
	Console Tree Menu Items

	Handling Save As
	Handling Server Connection and Disconnection

	Standard Controls
	The StandardDialog Class
	Name of Standard Dialog Class
	Dialog Creation
	Dialog Initialization
	Dialog Default Action
	Dialog Keyboard Handling, Focus Order, Action Maps, and So On
	Dialog Results
	Methods to Override

	Standard Buttons and Other Controls

	Administration Services Console Services
	Retrieving the CSS Token from the Console
	Sending E-mail

	Internationalization
	Packaging the Plug-in

	Writing Server-side Command Listeners
	Prerequisites
	Command Listeners
	Class Hierarchy
	Which Class To Extend
	Which Methods to Override
	Registering Commands
	CommandString Class
	CommandArgument Class
	CommandDescriptor Class
	Examples

	Command Handling Methods
	Method Signatures
	Grabbing Command Arguments
	Sending Results Back to the Client
	Storing Temporary Data Using the Framework

	Packaging the Code
	Loading the Code
	Utility Classes

	Glossary
	Index

