
Oracle's PeopleTools PeopleBook

PeopleTools 8.52: PeopleSoft Component
Interfaces

October 2011

PeopleTools 8.52: PeopleSoft Component Interfaces
SKU pt8.52tcpi-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

Preface

PeopleSoft Component Interfaces Preface ... ix

PeopleSoft Component Interfaces ... ix
PeopleBooks and the PeopleSoft Online Library ... ix

Chapter 1

Getting Started with PeopleSoft Component Interfaces .. 1

Overview .. 1
Implementing PeopleSoft Component Interfaces .. 1

Implementing the Excel to Component Interfaces Utility .. 2

Chapter 2

Understanding Component Interfaces ... 3

Understanding Component Interfaces .. 3
Component Interface Architecture .. 3
Component Interface Attributes ... 4

Name .. 4
Keys .. 4
Properties .. 4
Collections .. 5
Methods .. 5

Component Interface Definitions and Views .. 5

Chapter 3

Developing Component Interfaces ... 9

Creating Component Interface Definitions .. 9
Understanding Creating Component Interface Definitions ... 9
Creating New Component Interfaces .. 10
Naming Component Interface Definitions ... 12
Associating Component Interfaces with Menus .. 12

Contents

iv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Determining the Fields to Expose in Component Interfaces .. 14
Using Keys ... 14

Understanding Keys .. 14
Adding and Deleting Keys ... 16

Setting Properties ... 16
Understanding Standard Properties .. 16
Creating User-Defined Properties .. 27
Deleting User-Defined Properties .. 28
Renaming User-Defined Properties ... 28
Creating Reference Properties ... 29
Making Properties Read-Only .. 31

Working with Collections .. 31
Working with Methods .. 32

Understanding Session Functions and Methods .. 32
Understanding Standard Methods .. 33
Understanding Collection Methods .. 37
Enabling and Disabling Standard Methods .. 41
Creating User-Defined Methods .. 42
Exporting User-Defined Methods ... 44

Validating Component Interfaces ... 44
Setting Security Options ... 45
Testing Component Interfaces .. 46

Searching Component Interfaces to Test .. 46
Testing Component Interfaces .. 49
Determining ItemByKeys Parameters ... 52

Understanding Synchronization ... 53
Writing Component Interface Programs .. 54
Understanding Runtime Considerations .. 55

General Considerations ... 55
Scope Conflicts .. 55
Interactive Mode .. 56

Chapter 4

Programming Component Interfaces Using PeopleCode ... 57

Understanding PeopleCode Behavior and Limitations .. 57
PeopleCode Event and Function Behavior ... 57
CopyRowset Language Considerations ... 59
Limitations of Client-Only PeopleCode ... 59

Generating PeopleCode Templates to Access Component Interfaces .. 59
Understanding PeopleCode Templates ... 61

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Chapter 5

Programming Component Interfaces in Java ... 63

Building APIs in Java ... 63
Setting Up the Java Environment ... 64
Generating Java Runtime Code Templates ... 65
Understanding the Java Template .. 66

Chapter 6

Programming Component Interfaces in C++ .. 71

Building APIs for C++ .. 71
Setting Up the C++ Environment ... 72

Setting Up Client Machines to Access C++ APIs .. 72
Configuring Compilers for C++ Projects ... 72

Generating C++ Runtime Code Templates ... 73
Understanding the C++ Template .. 75

Chapter 7

Programming Component Interfaces in COM ... 79

Understanding Programming Interfaces in COM .. 79
Building APIs for COM .. 79
Setting Up the COM Environment ... 80
Generating Visual Basic Runtime Code Templates .. 82
Understanding Visual Basic Templates ... 83

Chapter 8

Using the Component Interface Software Development Kit .. 87

Understanding the Component Interface SDK .. 87
Component Interface SDK Samples .. 87

Prerequisites for Using the Component Interface SDK ... 88
Using the SDK_BUS_EXPENSES Test Page ... 88
Testing the SDK_BUS_EXP Component Interface ... 89
Using the Component Interface SDK Sample in Java and C+ + .. 89

Understanding using the Component Interface SDK Samples in Java and C++ 89
Building the Component Interface SDK Sample (Java) ... 89

Contents

vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Building the Component Interface Sample (C++) .. 89
Running the Component Interface SDK Sample in Java and C++ ... 90
Interpreting the Code for the Component Interface SDK Sample (Java) .. 90
Interpreting the Code for the Component Interface SDK Sample (C++) ... 92

Using the Component Interface SDK COM Excel Sample .. 93
Running the Component Interface SDK COM Excel Sample .. 94
Understanding the Component Interface SDK COM Excel Sample Code ... 95

Using the Component Interface SDK COM ASP Sample .. 96
Running the Component Interface SDK COM ASP Sample .. 96
Understanding the Component Interface SDK COM ASP Sample Code ... 98

Chapter 9

Using the Excel-to-Component Interface Utility ... 105

Understanding the Excel-to-Component Interface Utility ... 105
Prerequisites for Using the Excel to CI Utility ... 106

Understanding Building Component Interfaces for the Excel to Component Interface Utility 106
Testing Component Interfaces .. 107
Performance Expectations .. 107
PeopleCode Behavior and Limitations ... 107
Default Properties ... 108

Running the Excel to Component Interface Utility ... 108
Granting Access to the WEBLIB_SOAPTOCI iScript ... 109
Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions 109
Enabling Macros in Microsoft Excel ... 110
Starting the Excel to Component Interface Utility .. 110
Converting Excel to Component Interface Utility Templates to the Current Excel Version 110
Viewing the Excel to Component Interface Coversheet ... 111

Setting Up Connection Information ... 111
Entering Connection Information ... 112
Translations and Multilingual Support .. 115
Connecting to the Database to Create a Template and Submit Data .. 115

Creating Templates ... 116
Understanding the Template Actions Toolbar ... 118
Entering Data into the Template .. 120

Entering Data on the Data Input Sheet .. 121
Using the Data Input Sheet .. 121

Viewing the Staged Data ... 123
Correcting and Resubmitting Data .. 124

Creating SOAP/XML Requests ... 125
Request Format ... 125
Sample Create Request .. 125
Sample Get Request .. 126

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

Sample Update Request .. 126
Sample Updatedata Request .. 126

Sending Requests .. 127
Receiving Responses .. 127

Viewing a Response if a Row Already Exists ... 127
Viewing a Sample Get Request and Response .. 128

Diagnosing and Resolving Errors ... 129
Viewing Log Files .. 129
Resolving Error Messages for Client Environments .. 129

Appendix A

Creating Component Interface-Based Services .. 131

Understanding Generating Component Interfaced-Based Services ... 131

Appendix B

Using Services to Validate Prompt Table and Translate Field Values ... 133

Understanding Validating Prompt Table and Translate Field Values ... 133
Prerequisites for Validating Prompt Table and Translate Field Values ... 134
Validating Prompt Table Field Values .. 134

Understanding Validating Set Control Fields ... 134
Using the PTLOOKUPPROMPT Service Operation .. 134

Validating Translate (XLAT) Field Values ... 135
Understanding Translate (XLAT) Table Entries ... 135
Understanding Security When Validating Translate (XLAT) Field Values ... 136
Using the PTLOOKUPXLAT Service Operation ... 136

Using Messages to Request Valid Prompt Field and Translate (XLAT) Field Values 136
Using Response Messages to Retrieve Valid Prompt Field and Translate (XLAT) Field Values 138
Examples: Validating Prompt Field and Translate (XLAT) Field Values ... 139

Example 1: Validating a Translate (XLAT) Field .. 139
Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard 140
Example 3: Filtering Field Values by Name/Value Pairs ... 142
Example 4: Specifying Set Control Field Values to Validate Field Values Controlled by Set Control

Fields ... 144
Example 5: Specifying Set Control ID Values to Validate Field Values Controlled by Set ID Values .

145

Index .. 147

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix

PeopleSoft Component Interfaces Preface

This book describes PeopleSoft component interfaces. It is written for programmers who will be accessing
PeopleSoft components, usually using external systems.

PeopleSoft Component Interfaces

A PeopleSoft component interface is a PeopleTools definition that you create in PeopleSoft Application
Designer. It enables synchronous access to a PeopleSoft component from another application.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

• Understanding the PeopleSoft online library and related documentation.

• How to send PeopleSoft documentation comments and suggestions to Oracle.

• How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

• Understanding PeopleBook structure.

• Typographical conventions and visual cues used in PeopleBooks.

• ISO country codes and currency codes.

• PeopleBooks that are common across multiple applications.

• Common elements used in PeopleBooks.

• Navigating the PeopleBooks interface and searching the PeopleSoft online library.

• Displaying and printing screen shots and graphics in PeopleBooks.

• How to manage the locally installed PeopleSoft online library, including web site folders.

• Understanding documentation integration and how to integrate customized documentation into the library.

• Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Chapter 1

Getting Started with PeopleSoft
Component Interfaces

This chapter provides an overview of PeopleSoft component interfaces and discusses how to implement them.

Overview

A component interface is a set of application programming interfaces (APIs) that you can use to access and
modify PeopleSoft database information programmatically. PeopleSoft component interfaces expose a
PeopleSoft component (a set of pages grouped for a business purpose) for synchronous access from another
application (PeopleCode, Java, C/C++, or Component Object Model [COM]). A PeopleCode program or an
external program (Java, C/C++, or COM) can view, enter, manipulate, and access PeopleSoft component
data, business logic, and functionality. Additionally, you can use the Component Interface Tester to check the
validity of your component interface and the Excel to Component Interface Utility to manage your data.

Component interfaces are created in PeopleSoft Application Designer, so you should ensure that you are
familiar with PeopleTools and Application Designer.

See PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide.

This section provides information to consider before you begin to use PeopleSoft component interfaces. In
addition to implementation considerations presented in this section, take advantage of all PeopleSoft sources
of information, including the installation guides, release notes, and PeopleBooks.

Implementing PeopleSoft Component Interfaces

PeopleSoft PeopleTools include the functionality to create component interfaces for your applications.

Complete the following tasks before you begin creating component interfaces for your implementation:

• Install your Application according to the installation guide for your database type.

See the PeopleSoft installation guide for your platform and product line.

• Establish a user profile that gives you access to PeopleSoft Application Designer and any other processes
that you will use.

See PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security."

Getting Started with PeopleSoft Component Interfaces Chapter 1

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Implementing the Excel to Component Interfaces Utility
PeopleSoft provides the Excel to Component Interface utility that enables you to upload data from Microsoft
Excel into your PeopleSoft database. Several tasks are involved in setting up the Excel to Component
Interfaces Utility.

See Chapter 9, "Using the Excel-to-Component Interface Utility," Running the Excel to Component Interface
Utility, page 108.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 2

Understanding Component Interfaces

This chapter provides an overview of component interfaces and discusses:

• Component interface architecture.

• Component interface attributes.

• Component interface definitions and views.

Understanding Component Interfaces

A component interface enables exposure of a PeopleSoft component (a set of pages grouped together for a
business purpose) for synchronous access from another application (such as PeopleCode, Java, C/C++, COM,
or XML). Component interfaces can be viewed as "black boxes" that encapsulate PeopleSoft data and
business processes, and hide the details of the underlying page and data. Component interfaces can be used to
integrate one application with another application or with external systems. Component interfaces execute the
business logic built into the component and as a result, they provide a higher level of data validation than a
simple SQL insert.

A component interface maps to one, and only one, PeopleSoft component. However, you can create multiple
component interfaces for the same component. You create component interfaces in PeopleSoft Application
Designer. Record fields on the component are mapped to the keys and properties of the component interface.
Methods are used to find, create, modify, or delete data.

Component Interface Architecture

The component interface architecture comprises three fundamental elements—components, component
interfaces, and the component interface API.

Every component interface has the following main attributes:

• Name.

• Keys (Get keys, Create keys, and Find keys).

• Properties and collections (fields and records).

• Methods.

Understanding Component Interfaces Chapter 2

4 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. In most cases, component interfaces act like their associated components, meaning that PeopleCode
events typically trigger in the same order as the component. However, several runtime exceptions relate to
component interfaces and PeopleCode processing and search dialog box processing.

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor"

Component Interface Attributes

This section discusses the name, keys, properties, collections, and methods of component interfaces.

Name
Each component interface requires a unique name that is specified when the component interface is created.
The calling programs use the name of the component interface to access properties and methods.

Keys
Keys are special properties containing values that retrieve an instance (Get keys) or a list of instances (Find
keys) of the component interface. When you create a new component interface, Get and Find keys are created
based on the search record definition for the underlying component. However, you can add, remove, or
change keys in PeopleSoft Application Designer. Create keys are created for components that have the Add
action enabled.

Properties
Properties provide access to both component data and component interface settings. Component interfaces
include two types of properties: standard and user-defined.

• Standard properties are assigned automatically when a component interface is created.

 Standard properties can be set to true or false. These properties are not displayed in the PeopleSoft
Application Designer. Examples of standard properties include InteractiveMode, GetHistoryItems, and
EditHistoryItems.

• User-defined properties map to record fields on the PeopleSoft component and are displayed in the
PeopleSoft Application Designer.

A property can correspond to a field or a scroll (collection). You can control which user-defined
properties are included on the component interface.

Note. Every PeopleSoft Application Designer definition—including the component interface—has a
definition properties dialog box in which you make design-time settings for the definition. Those properties
should not be confused with the runtime properties that are discussed here.

Chapter 2 Understanding Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Collections
A component interface collection is a special type of property that corresponds to a scroll. It contains fields
and subordinate scrolls as defined in its underlying component. By default, each collection uses the name of
the primary record for the underlying scroll.

Methods
A method is a function that performs a specific task on a component interface at runtime. As with component
interface properties, two main types of methods are available: standard and user-defined. For example, you
can use methods to save or create a new purchase order. Runtime access to each method is determined by the
security that you have for that specific method.

• Standard methods are those that are available for all component interfaces.

The Find, Get, Save, and Cancel methods are automatically generated by PeopleSoft Application
Designer when a new component interface is created. The Create method is created for components that
have the Add action enabled. In the component interface designer, standard methods are highlighted in
gray.

• User-defined methods are created in PeopleSoft Application Designer to provide added functionality to
the component interface.

These methods are functions that are made accessible through the component interface. Each function
maps to a user-defined method. In the component interface designer, user-defined methods are
highlighted in blue.

Component Interface Definitions and Views

You create, modify, and review your component interface definition by using PeopleSoft Application
Designer. You open the component interface definition just as you would any other definition, such as a page
or record.

When working with a component interface definition in PeopleSoft Application Designer, you see the
component view on the left and the component interface view on the right.

This example shows the component and component interface view in PeopleSoft Application Designer.

Understanding Component Interfaces Chapter 2

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component and component interface views in PeopleSoft Application Designer

The component view shows records and scrolls in the component, using a tree representation. The structure is
the same as the one you see on the structure tab of a component in PeopleSoft Application Designer. Drag the
fields and collections that you want exposed to the component interface view.

The component interface view shows the exposed keys, properties, and methods, using a tree representation.
When you open a component interface, properties are displayed in the order in which they appear in the
component view.

The tree nodes in both the component view and the component interface view have different icons. Some
icons are used in both the component view and the component interface view with slightly different
meanings. The following tables explain the meaning of each icon and column in the component interface
view.

Component Interface View Icons

This table lists the component interface view icons:

Component interface.

Group of keys.

Property that is a key field from the underlying record.

Chapter 2 Understanding Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

Alternate search key.

Group of properties or methods.

Collection.

Property or user-defined method.

Standard method.

Property that is a required field for the underlying record.

Item in a component interface that is no longer in sync with the underlying
component. For example, if a field on which a property depends is deleted
from the component, this icon appears.

Component Interface View Columns

The following terms describe the columns in the component interface view.

Name Name of a specific element of a component interface (such as the name of a
property or method). The default name for field properties is the field name.
The default name for collections is the primary record name.

Record Name of the underlying record on which a specific element is based. If the
underlying record name changes, the component interface continues to
point to the appropriate record.

Field Name of the field to which a component interface property points. Like the
record name, the underlying field name can change, and the component
interface continues to point to the appropriate field.

Read Only Y in this column indicates that a specific property has been marked read-
only.

Comment Identifies comments that exist in the Edit Property dialog box for the
selected key, property, or collection.

Note. In the component interface view, properties appear in the same order as they appear in the component
and are not sorted alphabetically.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

Chapter 3

Developing Component Interfaces

This chapter discusses how to:

• Create component interface definitions.

• Use keys.

• Set properties.

• Work with collections.

• Work with methods.

• Validate component interfaces.

• Set security options.

• Test component interfaces.

• Understand synchronization.

• Write component interface programs.

• Understand runtime considerations.

Creating Component Interface Definitions

This section discusses how to:

• Create new component interface definitions.

• Name component interface definitions.

• Associate component interface definitions with menus.

• Determine the fields to expose in component interfaces.

Understanding Creating Component Interface Definitions
This section discusses key concepts for creating component interface definitions.

Developing Component Interfaces Chapter 3

10 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component Structure

Because each component interface refers to a single component, you must know the structure of the
component for which you are constructing a component interface. You can use an existing component within
an application or create a new one for the sole purpose of constructing a component interface. Many parts of
the component interface, such as the keys, are created based on settings in the referenced component.

Criteria for Setting Automatic Default Properties

To be able to set automatic defaults for fields in the new component interface, the system needs the properties
to be of a specific field or page control type.

The fields should be of the following types:

• Character

• Long character

• Number

• Signed number

• Date

• Time

• Datetime

The field should be one of the following page control types:

• Edit box

• Drop-down list box

• Check box

• Radio button

The field cannot be invisible and should not be the same as the key field of the immediate parent.

Collections must have at least one child property that satisfies the field or page control criteria for providing
the field by default. Collections with no properties are not added.

For a field on a secondary page to be selected for the default properties process, it must satisfy all the criteria
for field type and page control and must be at the same level as the host page.

Additionally, the component tree that a component interface uses to order the properties lists the fields in the
record based on their order in the record definition and not the order of the fields on the page. If the
component tree lists the fields of a record based on the page, the properties of the component interface will
reflect that order.

Creating New Component Interfaces
This section discusses how to create a new component interface.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

New component interface with no properties yet defined.

To create a new component interface:

1. Select File, New from the PeopleSoft Application Designer menu.

2. Select Component Interface from the New dialog box.

3. Select the component on which to base this component interface.

After you select the appropriate component, you see a message asking whether you want the fields that
are exposed in the selected component to become the default properties of the component interface.

Note. Not all fields on the component interface can have automatic defaults created for them.

Developing Component Interfaces Chapter 3

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

4. Click Yes to confirm the default property definitions or No if you don't want any properties initially
created.

If you elect to have the property definitions automatically provided by the system by default, then all
properties that appear on the pages of the underlying component are added to the component interface.
Even though the system adds the default properties, you may need to move other properties into the
component view for the component to work.

An untitled component interface appears, showing the Get keys and Find keys. Create keys are produced
only if the underlying component can run in Add mode (the example preceding this procedure does not
have Create keys, because the search record of the underlying component cannot run in Add mode).
PeopleSoft Application Designer generates the keys for you as you drag definitions.

The standard methods Cancel, Find, Get, and Save are automatically created. The Create method is not
automatically created unless the component supports the Add mode.

Note. You can begin adding properties to a new component interface at any point. However, you cannot
add any user-defined methods to the component interface until you have saved the component interface.

5. Save the component interface.

After you have saved the component interface, you can further define user-defined methods.

Naming Component Interface Definitions
Like every other definition in PeopleTools, component interfaces must have unique names. The naming of
component interfaces should be consistent and systematic. Also, the name should not be changed after the
component interface is part of a production system—other applications depend on a consistent name with
which to reference the component interface.

If you are changing the structure of a component interface such that an existing program can no longer access
it correctly, create a new component interface rather than updating the existing one. No version property is on
a component interface, so if you must create a new version of a delivered component interface, adhere to a
standard naming guideline to avoid confusion. A suggested naming guideline is:

• LOCATION (original component interface).

• LOCATION_V2 (version two of the component interface).

Associating Component Interfaces with Menus
This applies to component interfaces built from components that are already attached to one or more menus.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Component Interface Properties-General tab

To associate a component interface with a menu:

1. Select File, Open from the PeopleSoft Application Designer menu to open an existing component
interface.

2. Select File, Definition Properties from the PeopleSoft Application Designer menu.

The Definition Properties dialog box appears.

3. Select the appropriate menu name on the General tab for this component interface.

Note. Associate a menu with a component interface only when PeopleCode is in the component that uses
the %Menu system variable.

Developing Component Interfaces Chapter 3

14 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Determining the Fields to Expose in Component Interfaces
You expose fields from a component in the component interface by dragging a record field or a scroll from
the component view into the component interface view. However, some forethought is required before
exposing a component as a component interface. You need to have a thorough understanding of the
underlying component so that you expose fields that are required in the external system. For example, if the
component has a field called SSN, you need to be sure that the SSN field is required before exposing it to the
external system. Expose only those properties that are necessary.

The component view displays fields that are available in the component buffer at runtime. For example, if a
record containing 10 fields has only 3 fields included on a page, then the component view will list only those
3 fields.

The first time that you drag a scroll from the component view to the component interface view, the system
uses the following rules to determine what properties to expose:

• Keys are exposed only at the highest-level collection in which they first appear.

In some cases, this is not appropriate. When an effective-dated component that has the same level-zero
and level-one record is exposed through a component interface, it should be exposed the same way in
which it appears on a page in the component. In this case, only one key field typically appears at level
zero and the effective-date keys appear at level one. The component interface wrapper should expose the
page in the same fashion—removing keys that do not appear in the level-zero scroll from the component
interface top-level collection and manually adding keys that appear in level-one scroll to the second-level
collection.

Typically, you do not want to expose Get keys or Create keys as properties, because these are set before a
Get or Create operation and might be inadvertently changed.

• Make sure that you do not delete all the properties within the collection; that would result in an empty
collection. If such empty collections exist, remove them; otherwise, they appear with X in the component
interface view.

• If your page does not support Add mode, then you should not expose the level-zero record of the
component, because it contains data that is not specific to the component interface that you are creating.

• Do not expose fields that are not visible in the component view.

The component optimization code might eliminate unused fields from its buffers, which results in an error
when that field is accessed by the component interface.

Using Keys

This section discusses how to add and delete keys.

Understanding Keys
The following table shows the three types of component interface keys:

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Key Type Key Characteristics

Get keys These keys automatically map to search key fields in the
search record for the underlying component. You must
change Get keys only if you modify the keys of the
component after you create a component interface.

Find keys These map to both search key fields and alternate search
key fields in the search record for the underlying
component. You can remove any Find keys based on
alternate search key fields that you don't want to make
available for searching.

Create keys If the underlying component allows the Add action, then
Create keys are generated for the component interface
automatically. They map to fields marked as Srch
(search) in the search record for the component (or the
add search record, if one is specified).

Keys are created automatically when you create a component interface. Typically, you must manually add
keys only if new search key fields are added to the underlying component after the creation of the component
interface. However, you might want to modify the Find keys—either to restrict a user from searching on a
particular key or to add an alternate search key that didn't exist when the component was created.

Component interface keys are based only on the search key fields and alternate search key fields that are
designated as list box items in the search record of the underlying component. When you create the
component interface, the keys are automatically generated from all key fields that qualify.

• Each search key field produces a Get key and a Find key.

• Each search key field also produces a Create key if the underlying component allows Add mode.

• Each alternate search key field produces a Find key.

Valid Conditions for Modifying Keys

The following conditions are valid for modifying keys.

• You can add or delete a Find key if it is based on an alternate search key field.

• You can add any type of key based on a qualifying search key field in the component, if it isn't already the
basis of an existing key of the same type.

This is necessary only if a new search key field is added to the component after you create the component
interface.

• You can delete any type of key if its underlying search key field meets one of these criteria:

• It is no longer defined as a search key field.

• It is no longer designated as a list box item.

• It has been deleted from the component.

Developing Component Interfaces Chapter 3

16 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. An X icon precedes a name in the component interface view if the field underlying a component
interface key no longer qualifies as a key. Remove keys (or any other properties) that are marked with this
symbol to ensure proper operation of the component interface.

Adding and Deleting Keys
To add a key:

1. Expand the search key collection (the first collection) in the component view.

2. Drag the key to the component interface view.

To delete a key:

1. Select the key in the component interface view.

2. Press the Del key.

Setting Properties

This section provides an overview of standard properties and discusses how to:

• Create user-defined properties.

• Delete user-defined properties.

• Rename user-defined properties.

• Create reference properties.

• Make properties read-only.

Understanding Standard Properties
Standard properties do not appear in the component interface view in PeopleSoft Application Designer. The
following tables name and define the standard properties, and list the interfaces for PeopleCode, Java, C++,
and Visual Basic.

This table contains the component interface properties:

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17

Name Description, Programming Syntax

CreateKeyInfoCollection Returns a collection of items that describes the Create keys. This property is read-
only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection getCreateKeyInfoCollection()

• C++: HPSAPI_COMPINTFCPROPERTYINFOCOLLECTION
<CI_NAME>_GetCreateKeyInfoCollection(HPSAPI_<CI_NAME>)

• COM: CompIntfcPropertyInfoCollection CreateKeyInfoCollection

GetKeyInfoCollection Returns a collection of items that describes the Get keys. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection getGetKeyInfoCollection()

• C++:
HPSAPI_COMPINTFCPROPERTYINFOCOLLECTION<CI_NAME>_GetGet
KeyInfoCollection(HPSAPI_<CI_NAME>)

• COM: CompIntfcPropertyInfoCollection GetKeyInfoCollection

FindKeyInfoCollection Returns a collection of items that describes the Find keys. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection getFindKeyInfoCollection()

• C++:
HPSAPI_COMPINTFCPROPERTYINFOCOLLECTION<CI_NAME>_GetFind
KeyInfoCollection(HPSAPI_<CI_NAME>)

• COM: CompIntfcPropertyInfoCollection FindKeyInfoCollection

GetHistoryItems Controls whether the component interface runs in Update/Display mode or
Update/Display All mode when the underlying component is effective-dated. If
GetHistory is set to true, then historical data can be retrieved but not modified.
GetHistory items work in accordance with EditHistory items.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: boolean getGetHistoryItems(), void setGetHistoryItems(boolean)

• C++: BOOL <CI_NAME>_GetGetHistoryItems(HPSAPI_<CI_NAME>),
void<CI_NAME>_SetGetHistoryItems(HPSAPI_<CI_NAME>, BOOL)

• COM: Boolean GetHistoryItems

Developing Component Interfaces Chapter 3

18 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Name Description, Programming Syntax

EditHistoryItems Controls whether the component interface runs in Update/Display All mode,
Update/Display mode, or Correction mode when the underlying component is
effective-dated. If EditHistory items are set to true, then historical data can be
modified. EditHistory items work in accordance with GetHistory items.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: boolean getEditHistoryItems(), void setEditHistoryItems(boolean)

• C++: BOOL <CI_NAME>_GetEditHistoryItems(HPSAPI_<CI_NAME>),
void<CI_NAME>_SetEditHistoryItems(HPSAPI_<CI_NAME >, BOOL)

• COM: Boolean EditHistoryItems

InteractiveMode Controls whether to apply values and run business rules immediately, or whether
items are queued and business rules are run later, in a single step.

Note. You should use interactive mode when testing and debugging a component
interface. Interactive mode in a production environment slows performance because
of the number of server trips required.

 If you are using a component interface as part of a batch process in which thousands
of rows are to be inserted, running in interactive mode may reduce performance so
much on some UNIX servers that the application times out with a connection failure.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: boolean getInteractiveMode(), void setInteractiveMode(boolean)

• C++: BOOL <CI_NAME>_GetInteractiveMode(HPSAPI_<CI_NAME>),
void<CI_NAME>_SetInteractiveMode(HPSAPI_<CI_NAME>, BOOL)

• COM: Boolean InteractiveMode

StopOnFirstError When this property is set to True, the first error generated by the component interface
halts the program.

The default value is False. This property is read-only.

• Java: boolean getStopOnFirstError(), setStopOnFirstError(boolean)

• C++: BOOL <CI_NAME>_GetStopOnFirstError(HPSAPI_<CI_NAME>),
void<CI_NAME>_SetStopOnFirstError(HPSAPI_<CI_NAME>, BOOL)

• COM: Boolean StopOnFirstError

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Name Description, Programming Syntax

CompIntfcName Returns the name of the component interface class as named in PeopleSoft
Application Designer. This property is read-only.

• Java: String getCompIntfcName()

• C++: LPTSTR <CI_NAME>_GetCompIntfcName((HPSAPI_<CI_NAME>)

• COM: String GetCompIntfcName

ComponentName Returns the name of the component interface class as named in PeopleSoft
Application Designer. This property is read-only.

• Java: boolean getComponentName()

• C++: LPTSTR <CI_NAME>_GetComponentName(HPSAPI_<CI_NAME>)

• COM: Boolean GetComponentName

Description Returns the description of the component interface class as set in PeopleSoft
Application Designer. This property is read-only.

• Java: boolean getDescription()

• C++: LPTSTR <CI_NAME>_GetDescription((HPSAPI_<CI_NAME>)

• COM: String Description

Market Returns the Market setting of the component used to build this component interface.
This property is read-only.

• Java: String getMarket()

• C++: LPTSTR <CI_NAME>_GetMarket((HPSAPI_<CI_NAME>)

• COM: String Market

GetDummyRows When a new scroll is inserted on a page, that scroll is displayed even though it has no
underlying data. Any scroll that is empty has one dummy row displayed with only the
defaults set. This property is True if the dummy row is to be displayed, False if it is
not. The default value for this property is True. This property is read-write.

• Java: boolean getGetDummyRows(), void setGetDummyRows(boolean)

• C++: BOOL <CI_NAME>_GetGetDummyRows(HPSAPI_<CI_NAME>),
void<CI_NAME>_SetGetDummyRows(HPSAPI_<CI_NAME>, BOOL)

• COM: Boolean GetDummyRows

Developing Component Interfaces Chapter 3

20 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Name Description, Programming Syntax

PropertyInfoCollection Returns a collection of items that describes a specific property. The specific
properties that are available in the propertyinfocollection are listed here. This
property is read-only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection getPropertyInfoCollection()

• C++: HPSAPI_COMPINTFCPROPERTYINFOCOLLECTION
<CI_NAME>_GetPropertyInfoCollection(HPSAPI_<CI_NAME>)

• COM: CompIntfcPropertyInfoCollection PropertyInfoCollection

The CompIntfPropInfoCollection object supports the following properties:

PropertyName Description

Name This property returns the name of the object executing the property as a string. This
property is read-only.

• Java: String getName()

• C++: LPTSTR
CompIntfcPropertyInfo_GetName(HPSAPI_COMPINTFCPROPERTYINFO)

• COM: String name

RecordName This property returns the record name associated with the object executing the
property. This property is read-only.

• Java: String getRecordName()

• C++: LPTSTR
CompIntfcPropertyInfo_GetRecordName(HPSAPI_COMPINTFCPROPERTY
INFO)

• COM: String RecordName

FieldName This property returns the field name associated with the object executing the
property. This property is read-only.

• Java: String getFieldName()

• C++: LPTSTR
CompIntfcPropertyInfo_GetFieldName(HPSAPI_COMPINTFCPROPERTYI
NFO \)

• COM: String FieldName

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

PropertyName Description

LabelLong This property returns the record field Long Name value as a string. If a component
override exists for this value, it is not included. This property is read-only.

• Java: String getLabelLong()

• C++: LPTSTR
CompIntfcPropertyInfo_GetLabelLong(HPSAPI_COMPINTFCPROPERTYI
NFO)

• COM: String LabelLong

LabelShort This property returns the record field ShortName value as a string. If a component
override exists for this value, it is not included. This property is read-only.

• Java: String getLabelShort()

• C++: LPTSTR
CompIntfcPropertyInfo_GetLabelShort(HPSAPI_COMPINTFCPROPERTYI
NFO)

• COM: String LabelShort

IsCollection This property returns True if the object executing the property is a data collection,
False otherwise. If IsCollection is True, other field-oriented properties like
Required, Type, Xlat, YesNo, Prompt, and Format are undefined. If IsCollection is
False, the object represents a field and all the previous properties are defined as
described. This property is read-only.

• Java: boolean getIsCollection()

• C++: BOOL
CompIntfcPropertyInfo_GetIsCollection(HPSAPI_COMPINTFCPROPERTYI
NFO)

• COM: Boolean IsCollection

Type This property returns the field type, as a number, of the object.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface
Classes," CompIntfPropInfoCollection Object Properties.

This property is read-only.

• Java: long getType()

• C++: PSI32
CompIntfcPropertyInfo_GetType(HPSAPI_COMPINTFCPROPERTYINFO)

• COM: Long Type

Developing Component Interfaces Chapter 3

22 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PropertyName Description

OAType This property returns the field type, as a number, of the object. This property is
read-only.

• Java: long getOAType()

• C++: PSI32
CompIntfcPropertyInfo_GetOAType(HPSAPI_COMPINTFCPROPERTYINF
O)

• COM: Long OAType

Format This property returns the field format for the object executing the property (that is,
name, phone, zip, SSN, and so on) as a number. This property is read-only.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface
Classes," CompIntfPropInfoCollection Object Properties.

• Java: String getFormat()

• C++: PSI32
CompIntfcPropertyInfo_GetFormat(HPSAPI_COMPINTFCPROPERTYINFO
)

• COM: Long Format

Key This property returns True if the object executing the property is a key, False
otherwise. This property is read-only.

• Java: boolean getKey()

• C++: BOOL
CompIntfcPropertyInfo_GetKey(HPSAPI_COMPINTFCPROPERTYINFO
hCompIntfcPropertyInfo)

• COM: Boolean Key

Required This property returns True if the object executing the property is a required
property, False otherwise. This property is read-only.

• Java: boolean getRequired()

• C++: BOOL
CompIntfcPropertyInfo_GetRequired(HPSAPI_COMPINTFCPROPERTYINF
O)

• COM: Boolean Required

Xlat This property returns True if the object executing the property is associated with an
XLAT table, False otherwise. This property is read-only.

• Java: String getXlat()

• C++: BOOL
CompIntfcPropertyInfo_GetXlat(HPSAPI_COMPINTFCPROPERTYINFO)

• COM: String Xlat

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

PropertyName Description

Yesno This property returns True if the object executing the property is associated with
the Yes/No table, False otherwise. This property is read-only.

• Java: boolean getYesno()

• C++: BOOL
CompIntfcPropertyInfo_GetYesno(HPSAPI_COMPINTFCPROPERTYINFO)

• COM: Boolean Yesno

Prompt This property returns True if the object executing the property is associated with a
prompt table, False otherwise. This property is read-only.

• Java: boolean getPrompt()

• C++: BOOL
CompIntfcPropertyInfo_GetPrompt(HPSAPI_COMPINTFCPROPERTYINFO
)

• COM: Boolean Prompt

Length This property returns the length of the object executing the property. This property
is read-only.

• Java: long getLength()

• C++: PSI32
CompIntfcPropertyInfo_GetLength(HPSAPI_COMPINTFCPROPERTYINFO
)

• COM: Long Length

DecimalPosition This property returns the decimal position for the object executing the property.
This property is read-only.

• Java: long getDecimalPosition()

• C++: PSI32
CompIntfcPropertyInfo_GetDecimalPosition(HPSAPI_COMPINTFCPROPE
RTYINFO)

• COM: Long DecimalPosition

IsReadOnly This property returns True if the property marked read-only in the component
interface definition; False otherwise. This property is read-only.

• Java: boolean getIsReadOnly()

• C++: BOOL
CompIntfcPropertyInfo_GetIsReadOnly(HPSAPI_COMPINTFCPROPERTYI
NFO)

• COM: Boolean IsReadOnly

Developing Component Interfaces Chapter 3

24 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PropertyName Description

Altkey This property returns True if the object executing the property is an alternate key,
False otherwise. This property is read-only.

• Java: boolean getAltkey()

• C++: BOOL
CompIntfcPropertyInfo_GetAltkey(HPSAPI_COMPINTFCPROPERTYINFO
)

• COM: Boolean Altkey

Listboxitem This property returns True if the object executing the property is associated with a
list box, False otherwise. This property is read-only.

• Java: boolean getListboxitem()

• C++: BOOL
CompIntfcPropertyInfo_GetListboxitem(HPSAPI_COMPINTFCPROPERTYI
NFO)

• COM: Boolean Listboxitem

Example of PropertyInfoCollection

Here is a Java example that calls PropertyInfoCollection:

IcompIntfcPropertyInfoCollection oLO_PropInfoColl
IcompIntfcPropertyInfo oLO_PropInfoItem

oLO_PropInfoColl = oCI.getPropertyInfoCollection();
for (int I=0; I < oLO_PropInfoColl.getCount(); I++) {
 oLO_PropInfoItem = oLO_PropInfoColl.item(i);

 System.out.println("\t Name = " + oLO_PropInfoColl.getName());
 System.out.println("\t Record Name = " + oLO_PropInfoColl.getRecordName());
 System.out.println("\t Field Name = " + oLO_PropInfoColl.getFieldName());
 System.out.println("\t Label Long = " + oLO_PropInfoColl.getLabelLong());
 System.out.println("\t Label Short = " + oLO_PropInfoColl.getLabelShort());
 System.out.println("\t IsCollection = " + oLO_PropInfoColl.getIsCollection());
 System.out.println("\t Type = " + oLO_PropInfoColl.getType());
 System.out.println("\t OAType = " + oLO_PropInfoColl.getOAType());
 System.out.println("\t Format = " + oLO_PropInfoColl.getFormat());
 System.out.println("\t Is Get Key? = " + oLO_PropInfoColl.getKey());
 System.out.println("\t Is Required = " + oLO_PropInfoColl.getRequired());
 System.out.println("\t Is Xlat? = " + oLO_PropInfoColl.getXlat());
 System.out.println("\t Is Yesno? = " + oLO_PropInfoColl.getYesno());
 System.out.println("\t Prompt = " + oLO_PropInfoColl.getPrompt());
 System.out.println("\t Length = " + oLO_PropInfoColl.getLength());
 System.out.println("\t DecimalPosition = " + oLO_PropInfoColl.
 getDecimalPosition());
 System.out.println("\t Is Read Only? = " + oLO_PropInfoColl.
 getIsReadOnly());
 System.out.println("\t Is Alt Key? = " + oLO_PropInfoColl.getAltkey());
 System.out.println("\t Is ListBox item? = " + oLO_PropInfoColl.
 getListboxitem());

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25

Object Adapter

 The name of the property is OAType, and it holds the value of the object adapter type. Exposing this
property and supplying the associated methods enables you to detect possible data type mismatches between
the database and the component interface object.

The Java methods are:

getOAType() Returns the object adapter type.

getType() Returns the type of the property of a particular database field.

For example:

Developing Component Interfaces Chapter 3

26 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

public static void printPropertyType(String propName, ICompIntfcPropertyInfo i⇒
PropertyInfo) {

String strOAType = null;
String strDBType = null;

 try {
 switch ((int)iPropertyInfo.getOAType()) {
 /* Object Adapter Type == 0 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_BOOL:
 strOAType = "BOOL";
 break;
 /* Object Adapter Type == 1 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_NUMBER:
 strOAType = "INTEGER";
 break;
 /* Object Adapter Type == 2 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_FLOAT:
 strOAType = "FLOAT";
 break;
 /* Object Adapter Type == 3 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_STRING:
 strOAType = "STRING";
 break;
 }

 switch ((int)iPropertyInfo.getType()) {
 /* Database Type == 0 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_CHARACTER:
 strDBType = "CHARACTER";
 break;
 /* Database Type == 1 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_LONG_CHARACTER:
 strDBType = "LONG_CHARACTER";
 break;
 /* Database Type == 2 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_NUMBER:
 strDBType = "NUMBER";
 break;
 /* Database Type == 3 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_SIGNED_NUMBER:
 strDBType = "SIGNED NUMBER";
 break;
 /* Database Type == 4 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_DATE:
 strDBType = "DATE";
 break;
 /* Database Type == 5 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_TIME:
 strDBType = "TIME";
 break;
 /* Database Type == 6 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_DATETIME:
 strDBType = "DATETIME";
 break;
 }

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 System.out.println("\n" + propName +
 " Object Adapter Type is: " + strOAType +

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

 ", Database Type is: " + strDBType);
 }

Component Interface Collection Property

This table contains the component interface collection property Count.

Name Description, Programming Syntax

Count Returns the number of items in a collection.

• Java: long getCount()

• C++: PSI32
CompIntfcCollection_GetCount(HPSAPI_<CI_NA
ME>)

• COM: Integer Count

Data Item Property

This table contains the data item property ItemNum:

Name Description, Programming Syntax

ItemNum Returns the position of the row within the given
collection of a DataRow.

• Java: long getItemNum()

• C++: PSI32
<CI_NAME>_GetItemNum(HPSAPI_<CI_NAME
>)

• COM: Integer ItemNum

Note. The component interface classes contain information about PropertyInfo properties and related
PeopleCode.

Creating User-Defined Properties
User-defined properties are those properties on the underlying component that are exposed through the
component interface. User-defined properties are derived from the component to which the component
interface is associated and must be added manually. They are the specific record fields that you expose to an
external system with the component interface. You create user-defined properties in addition to the standard
properties to enable data manipulation of the component. When you create a new component interface, if you
accept the default properties, user-defined properties are created automatically for each field displayed to the
user on the underlying component.

Developing Component Interfaces Chapter 3

28 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

User-defined properties are the points where the component and the underlying database are exposed to the
external system. This is the means that component interfaces use to add or change fields and data in the
database.

To create a user-defined property, drag a record, field, or scroll from the component view to the component
interface view.

Where you insert the definition in the component interface view does not matter. When the component
interface is opened, the system automatically converts the field or record into a component interface property
and places it in the appropriate place in the list of properties. Also, when you drag a definition from the
component view into the component interface view, all child definitions are brought into the component
interface automatically. After these child properties are added to the component interface, you can remove
each property individually, if desired.

Dragging a key from the search records, which precede the level-zero record in the page view, adds a key to
all appropriate key collections (Get, Create, and Find) in the component interface. Because appropriate keys
are added automatically when a component interface is first created, you typically must add keys only if the
new keys are added to the underlying component after the creation of the component interface.

Deleting User-Defined Properties
To delete a property:

1. Select the property to be deleted.

2. Either press the Del key on the keyboard, or right-click the key and select Delete.

Standard Windows behavior is employed for selecting multiple properties using the Shift and Ctrl keys.

Renaming User-Defined Properties
Property names are automatically generated according to the corresponding fields from the component. If
these names are cryptic, you might want to rename these properties to explain them better. Renaming a
property does not change the field that the property references.

Edit Property dialog box

Important! PeopleSoft Mobile Agent is a deprecated product. The options listed in the Mobile Property
Persistence group box of the Edit Property dialog box exist for backward compatibility only.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

To rename a property:

1. Double-click the property name or right-click the property name and select Edit Name from the menu.

2. Enter the new property name.

Programs accessing this component interface must reference the new property name. For example, if
SDK_NAME was changed to NAME, programs must use NAME instead of SDK_NAME.

3. Add any comments that might be helpful.

4. Select the Read-Only check box to make this property read-only.

5. If this property is for a mobile application, select a radio button that sets the persistence of the property.

• Send Updates is the default behavior for a mobile property.

Any changes or additions to this property on a mobile instance are synchronized to the server.

• If a mobile property is set to Do not Send Updates, this property is not synchronized up to the server,
but the value is maintained on the device.

• A Derived property is used only at mobile runtime. Any values that are set or added to this property
exist only for the runtime life of the object. No persistence of this data on the device exists, so it is
subsequently never uploaded to the server.

Note. PeopleSoft Application Designer generates an error message if it detects that a component interface has
properties that resolve to the same name when creating, saving, or opening a given component interface.

For example, NAME1 and NAME_1 both resolve to the same name when PeopleSoft APIs are built. The set
and get functions that are generated for the properties RTE_CNTL_TYPE1 and RTE_CNTL_TYPE_1 are:

public String getRteCntlType1()

public void setRteCntlType1(String inRteCntlType1)

This results in a compile error. To fix this condition, name the properties so that they do not resolve to the
same name.

Creating Reference Properties
Each component interface is isolated and unaware of the other component interfaces in the system. To access
and update information from other component interfaces, references establish relationships between
component interfaces.

Create a reference property in one component interface to access data exposed in another component
interface. For example, the Customer object and the component interface exposing its properties include
properties such as the customer's name, address, and telephone numbers. Another object, Contact, includes
data associated with all contacts in the system. The link between a specific customer and its associated
contacts is owned by the Contact record, not the Customer record.

Therefore, to access contact data, the Customer component interface needs a reference property referring to
the Contact component interface. For you to update contact data from the Customer component interface, the
reference must include a valid reference path and reference backpointer to the customer ID.

Access the Create Reference dialog box by right-clicking the property and selecting Create Reference.

Developing Component Interfaces Chapter 3

30 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Create Reference dialog box

The Create Reference dialog box has the following fields:

Name Describes the name of the reference you are creating.

Related Component Interface Designates the component interface referenced from the current component
interface.

Comments Enter any comments to track the reference.

Related Key Mapping Maps the property from the related component interface to the selected
component interface property.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Valid Reference Path Supports dynamic enumeration of the objects that can be selected as the
value of the reference property being defined. This effectively filters these
values so that you can select only objects that support the defined reference.

Because references use the concept of a walkpath to go from level zero of
one component interface to level zero of another component interface, and
then "walk" down to the lower levels of the component interface, only the
level zero references are displayed in the Valid Reference Path drop-down
list of a reference definition.

Reference Backpointer Refers to the path back to the original component interface.

Making Properties Read-Only
You can make any property read-only. At runtime, the value of a read-only property can be read but not
updated.

To make a property read-only:

1. Select the property.

2. Select Edit, Toggle Read Only Access from the PeopleSoft Application Designer menu.

A Y appears in the Read Only column of the component interface view corresponding to each property
that you selected to be read-only.

Note. You can double-click the icon of any existing user-defined property to edit its name or comment or to
toggle read-only access.

Working with Collections

A collection is a property that points to a scroll, rather than a field, in the underlying component for a
component interface. A collection groups multiple fields in a scroll. All the fields in the scroll are mapped to
a property. These properties are part of the collection.

You create collections the same way you create properties—drag the scroll from the component view into the
component interface view. Consider these points when creating collections:

• When you drag a scroll into the component interface view, all child scrolls come with it.

This is the same behavior that you would expect when creating a property. Child properties are always
added automatically when you drag a field from the component view to the component interface view.
After the property or collection has been created, you can delete individual child properties or collections
manually, if necessary.

• When you drag a scroll into the component interface view, all record fields contained in that scroll come
with it—not just those from the record that defines the scroll.

The fields from all records at that scroll level are exposed as part of the same collection.

Developing Component Interfaces Chapter 3

32 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Keys that appear in parent and child scrolls are not added to child collections.

For the component interface to function as expected, the keys must remain synchronized at all levels of
the component. Having keys at lower levels makes compromising this synchronization possible.
Therefore, lower-level keys are not introduced into the component interface and are not exposed to the
user because those keys have already been set at the parent level.

• When you drag a child scroll into the component interface view, parent collections are created
automatically.

For example, if you drag just the level-two scroll from the component view into the component interface
view, a level-zero collection and a level-one collection are created automatically in the component
interface. This hierarchy of collections is necessary so that you can navigate to the child collection at
runtime.

Working with Methods

This section provides and overview of session functions and methods, standard methods and collection
methods. This section also discuses how to:

• Enable and disable standard methods.

• Create user-defined methods.

• Export user-defined methods.

Understanding Session Functions and Methods
The session functions and methods connect to a session on an Application server. This connection must be
made before you can use the component interface methods.

Component Interface Session Functions

This table contains the component interface session function createSession:

Name Description, Programming Syntax

createSession

(In PeopleCode, &session = %session)

Returns a session object.

• Java: ISession API.createSession()

• C++: HPSAPI_SESSION PSApiCreateSession()

• COM: PeopleSoft_PeopleSoft.Session
CreateObject("PeopleSoft.Session")

Component Interface Session Methods

This table contains the component interface session methods:

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

Name Description, Programming Syntax

Connect

(not used in PeopleCode)

Connects to the application server.

Use these interfaces to call with other programming
languages.

• Java: boolean connect(long apiVersion, string
server, string username, string password, byte[]
ExternalAuth)

• C++: Bool session_Connect(HPSAPI hSession,
PSI32 ApiVersion, LPTSTR server, LPSTR
username, LPTSTR password, PSAPIVAPBLOB
ExternalAuth)

• COM: connect(apiVersion As Long, server As
string, username As string, password As String,
externalAuth As Integer) As Boolean

getCompIntfc Returns a reference to a component interface.
getCompIntfc also checks to determine whether the
given user that is connecting has the appropriate
security to access the component interface.

Use these interfaces to call with other programming
languages.

• Java: I<CI_Name> getCompIntfc(string ciName)

• C++: HPSAPI_<CI_Name>
Session_GetCompIntfc(HPSAPI_SESSION
hsession, LPTSTR ciName)

• COM: <CI_Name> GetCompIntfc(ciName As
String)

Understanding Standard Methods
A method is a definition that performs a specific function on a component interface at runtime. Each standard
method is added by default when the component interface is created and is available in PeopleCode and other
programming languages. Like properties, methods are saved as part of a component interface definition. Two
main types of methods are available: standard methods and user-defined methods.

Developing Component Interfaces Chapter 3

34 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Standard Methods Description, Programming Syntax

Cancel Backs out of the current component interface, canceling
any changes made since the last save. This is equivalent
to clicking the Return to Search button online. Returns
True on success, and False on failure.

Use these interfaces to call with other programming
languages.

• Java: boolean cancel()

• C++: BOOL
<CI_NAME>_Cancel(HPSAPI_<CI_NAME>
hObj)

• COM: Function Cancel() As Boolean

Create Creates a new instance of a component interface. This is
equivalent to creating a new record in Add mode online.
Returns True on success, and False on failure.

Use these interfaces to call with other programming
languages.

• Java: boolean create()

• C++: BOOL
<CI_NAME>_Create(HPSAPI_<CI_NAME>
hObj)

• COM: Function Create() As Boolean

Find Performs a partial key search for a particular instance of
a component interface, using the search keys at level 0.
Returns a collection of component interface instances
which match the search criteria. If no component
interface instances match the search criteria, the count
on the collection is zero.

Use these interfaces to call with other programming
languages.

• Java: <CI_NAME>Collection find()

• C++: HPSAPI_<CI_NAME>COLLECTION
<CI_NAME>_Find(HPSAPI_<CI_NAME> hObj)

• COM: Function Find() As <CI_NAME>Collection

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Standard Methods Description, Programming Syntax

Get Retrieves a particular instance of a component interface.
This is equivalent to opening a record in Update/Display
or Correction mode when online with a PeopleSoft
application. Returns True on success, and False on
failure.

Use these interfaces to call with other programming
languages.

• Java: boolean get()

• C++: BOOL
<CI_NAME>_Save(HPSAPI_<CI_NAME> hObj)

• COM: Function Get() As Boolean

Save Saves an instance of a component interface. This is
equivalent to clicking the Save button in the online
system. Returns True on success, and False on failure.
You should cancel after a save.

Use these interfaces to call with other programming
languages.

• Java: boolean save()

• C++: BOOL
<CI_NAME>_Save(HPSAPI_<CI_NAME> hObj)

• COM: Function Save() As Boolean

GetPropertyByName Returns the value of a property that is specified by
name. This function typically is used only in
applications that cannot get the names of the component
interface properties until runtime.

Use these interfaces to call with other programming
languages.

• Java: Object getPropertyByName(String str)

• C++: HPSAPI_OBJECT
<CiCollectionItem>_GetPropertyByName(HPSAPI
_<CI_COLLECTION_ITEM> hColItem, LPTSTR
Name)

• COM: Function GetPropertyByName(name As
String)

Developing Component Interfaces Chapter 3

36 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Standard Methods Description, Programming Syntax

SetPropertyByName Sets the value of a property that is specified by name.
This function typically is used only in applications that
cannot set the names of the component interface
properties until runtime.

Use these interfaces to call with other programming
languages.

• Java: long setPropertyByName(String str, Object o)

• C++: PSI32
<CiCollectionItem>_SetPropertyByName(HPSAPI
<CI COLLECTION_ITEM> hColItem, LPTSTR
name, HPSAPI_OBJECT Value)

• COM: Function SetPropertyByName(name As
String, value) As Long

GetPropertyInfoByName

(In PeopleCode, CompIntfPropInfoCollection)

Returns specific information, such as length, about the
definition of a property that is specified by name. This
function typically is used only in applications that
cannot get the names of component interface properties
until runtime or by applications that need to provide a
dynamic list of values that would normally be found in
prompt tables.

Use these interfaces to call with other programming
languages.

• Java: IcompIntfcPropertyInfo
getPropertyInfoByName(String name)

• C++:
HPSAPI_COMPINTFCPROPERTYINFO<CiProp
OrItem>_GetPropertyInfoByName(HPSAPI_<CIP
ROPORITEM> hPropOrItem, LPTSTR name)

where CiPropOrItem is the name of either a
property or an item in a collection.

• COM: Function GetPropertyInfoByName(name As
String) As CompIntfcPropertyInfo

See PeopleTools 8.52: PeopleCode API
Reference, "Component Interface Classes,"
CompIntfPropInfoCollection Object Properties.

By default, each component interface is created with four standard methods—Cancel, Find, Get, and Save.
Additionally, the Create standard method is generated if Create keys have been added to the component
interface.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Example for GetPropertyInfoByName

The GetPropertyInfoByName method returns an object containing the property information. Here is a Java
example that calls GetPropertyInfoByName:

IcompIntfcPropertyInfo oCompIntfcPropertyInfo
oCompIntfcPropertyInfo = oCI.getPropertyInfoByName(tempName);
System.out.println(oCompIntfcPropertyInfo.getName());
if (!oCompIntfcPropertyInfo.getIsCollection()) {
 System.out.println("\t Format = " + oCompIntfcPropertyInfo.getFormat());
 System.out.println("\t Type = " + oCompIntfcPropertyInfo.getType());
}
System.out.println("\t Is Required = " + oCompIntfcPropertyInfo.
 getRequired());
System.out.println("\t Is Collection? = " + oCompIntfcPropertyInfo.
 getIsCollection ());
System.out.println("\t Is Read Only? = " + oCompIntfcPropertyInfo.
 getIsReadOnly());
System.out.println("\t Is Get Key? = " + oCompIntfcPropertyInfo.getKey());
System.out.println("\t Label Long = " + oCompIntfcPropertyInfo.
 getLabelLong());
System.out.println("\t Label Short = " + oCompIntfcPropertyInfo.
 getLabelShort());
System.out.println("\t Length = " + oCompIntfcPropertyInfo.getLength());
System.out.println("\t Name = " + oCompIntfcPropertyInfo.getName());
System.out.println("\t Is Xlat? = " + oCompIntfcPropertyInfo.getXlat());
System.out.println("\t Is Yesno? = " + oCompIntfcPropertyInfo.
 getYesno());

Note. When creating a new component interface, you must save the component interface before the standard
methods are created. PeopleSoft Application Designer adds the standard methods upon the first save of a new
component interface.

Understanding Collection Methods
The first item in a component interface collection is always indexed as item 1 from PeopleCode and COM
programs, which is consistent with other PeopleCode processing. From Java and C++ programs, this item is
indexed as item 0.

Component Interface Collection Properties

This table contains the component interface collection properties:

Developing Component Interfaces Chapter 3

38 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Data Collection Method Action, Usage

Count Returns the number of items in a collection.

Use these interfaces to call with other programming
languages.

• Java: long getCount()

• C++: PSI32 <CiCollectionName>_GetCount
(HPSAPI_<CI_COLLECTION_NAME> hCol)

• COM: Count As Long

ItemByName

(not used in PeopleCode)

Returns the property in the collection. It takes Name as a
parameter.

Use these interfaces to call with other programming
languages.

• Java: ICompIntfcPropertyInfo itemByName(String
Name)

• C++:
CompIntfcPropertyInfoCollection_ItemByName
(HPSAPI_COMPINTFCPROPERTYINFOCOLLE
CTION, LPTSTR Name)

• COM: Function ItemByName(name As String) As
CompIntfcPropertyInfo

InsertItem(Index) Inserts a new item. This is equivalent to clicking the
Add button to insert a new row when online. It takes
Index as a parameter and follows the same conventions
for performing business rules (PeopleCode) as the
online system.

Use these interfaces to call with other programming
languages.

• Java: <CiCollectionName> insertItem(long Index)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_InsertItem(HPSAPI_<CI_CO
LLECTION_NAME> hCol, PSI32 Index)

• COM: Function InsertItem(index As long) As
<CI_COLLECTION_ITEM>

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Data Collection Method Action, Usage

DeleteItem(Index) Deletes the item that is designated by Index. This is
equivalent to clicking the Delete button to delete the
selected row when online.

Use these interfaces to call with other programming
languages.

• Java: boolean deleteItem(long Index)

• C++: BOOL
<CiCollectionName>_DeleteItem(HPSAPI_<CI_C
OLLECTION_NAME> hCol, PSI32 Index)

• COM: Function DeleteItem(index As Long) As
Boolean

Item(Index) Takes an item number as a parameter and returns a
definition of the type that is stored in the specified row
in the collection. For example, if the collection is a data
collection, the return value is a DataRow. If the
collection value is a PropertyInfoCollection, then the
return value is a PropertyInfo definition, and so on.

Use these interfaces to call with other programming
languages.

• Java: <CiCollectionName> item(long Index)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_Item(HPSAPI_<CI_
COLLECTION_NAME> hCol, PSI32 Index)
(HPSAPI_COMPINTFCPROPERTYINFOCOLLE
CTION, PSI32)

• COM: Function Item(item As Long) As
<CI_COLLECTION_ITEM>

ItemByKeys(keys) Identifies and finds a specific item, based on keys. The
keys vary according to the design of the collection.

Use these interfaces to call with other programming
languages.

• Java: <CiCollectionName> itemByKeys(String
Key1, String Key2, …)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_ItemByKeys
(HPSAPI_<CI_COLLECTION_NAME > hCol,
LPTSTR Key1, LPTSTR Key2, …)

• COM: Function ItemByKeys(KEY_1 As String,
KEY_2,…) As <CI_COLLECTION_ITEM>

Developing Component Interfaces Chapter 3

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Data Collection Method Action, Usage

CurrentItem Returns the current effective DataRow in the collection.
The behavior is consistent with effective date rules that
are used online. This method works with effective-dated
records only.

Use these interfaces to call with other programming
languages.

• Java: <CiCollectionName>currentItem()

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_
CurrentItem(HPSAPI_<CI_COLLECTION_NAME
> hCol)

• COM: Function CurrentItem() As
<CI_COLLECTION_ITEM>

CurrentItemNum

(CurrentItemNumber)

Returns the item number of the current effective
DataRow in the collection. The behavior is consistent
with effective date rules that are used online. This
method works with effective-dated records only.

Use these interfaces to call with other programming
languages.

• Java: long currentItemNum()

• C++: PSI32 <CiCollectionName>_
CurrentItemNum(HPSAPI<CI_COLLECTION_
NAME> hCol)

• COM: Function CurrentItemNum() As Long

GetEffectiveItem(DateString, SeqNum) Returns the DataRow that would be effective for the
specified date and sequence number. This is a more
general case of the GetCurrentItem function, which
returns the definition that is effective at this moment.
This method works with effective-dated records only.

Use these interfaces to call with other programming
languages.

• Java: <CiCollectionName> getEffectiveItem(String
Date, long SeqNum)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_
GetEffectiveItem(HPSAPI_<CI_COLLECTION_N
AME> hCol, LPTSTR Date, PSI32 SeqNum)

• COM: Function GetEffectiveItem(Date As String,
SeqNum As Long) As <CI_COLLECTION_ITEM>

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

Data Collection Method Action, Usage

GetEffectiveItemNum(DateString, SeqNum) Returns the item number of the DataRow in the
collection that would be effective for the specified date
and sequence number. This is a more general case of the
GetCurrentItemNum function, which returns the number
of the definition that is effective at this moment. This
method works with effective-dated records only.

Use these interfaces to call with other programming
languages.

• Java: long getEffectiveItemNum(string Date, long
SeqNum)

• C++: <CiCollectionName>_GetEffectiveItemNum(
HPSAPI_<CI_COLLECTION_NAME> hCol,
LPTSTR Date,PSI32 SeqNum)

• COM: Function GetEffectiveItemNum(Date As
String, SeqNum As Long)

Enabling and Disabling Standard Methods
You can control whether standard methods are accessible at runtime.

Developing Component Interfaces Chapter 3

42 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Enabling standard methods for runtime accessibility on the Properties-Standard Methods tab

To enable or disable standard methods:

1. Select File, Definition Properties from the PeopleSoft Application Designer menu.

The Definition Properties dialog box appears.

2. Select the Standard Methods tab.

You can enable or disable any of the standard methods selecting the corresponding check box. Doing so
determines whether the method is available at runtime when the component interface is accessed. The
Create option is available only if the component interface has Create keys.

Creating User-Defined Methods
This section discusses how to create user-define methods.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

Creating user-defined methods in PeopleCode

To create a user-defined method:

1. Right-click anywhere in the component interface view.

2. Select View PeopleCode from the menu.

The PeopleCode editor appears. If you are using a new component interface, no PeopleCode will appear
in the editor because no user-defined methods have been created.

3. Write the required PeopleCode functions.

PeopleCode functions that you write are stored in a single PeopleCode program that is attached to the
component interface and associated with the Methods event.

Note. New user-defined methods do not appear in the list of methods until you save the component
interface. Double-click the icon of any existing user-defined method to return to this PeopleCode
program.

4. Set permissions for the methods that you created.

You must set permissions for every user-defined method. If you set permission to Full Access, at runtime
that function is exposed to external systems as a method on the component interface object.

Developing Component Interfaces Chapter 3

44 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Exporting User-Defined Methods
If you want a user-defined component interface to be exportable, meaning used by code that instantiates the
component interface, the method PeopleCode definition must include a Doc statement. It is in the form of:

Doc <documentation for method>

where <documentation for method> describes what the method does

For example, the following method returns true if foo is positive; otherwise, it returns false.

Function MyFooBar(int foo) returns boolean
Doc
if (foo >0) then
return True;
else
return False;
end-if;
end-function;

If a component interface method is to be exposed in a web service, the Doc statement should describe the
standard method after which it will be called and show an indication of each type of input parameter it
requires. In the following example, the SetPassword method on the USER_PROFILE component interface
has been exposed to a web service. The Doc statement in this case has a string following the Doc keyword
and consists of comma-separated values: the method name Get, a string containing the new password, and
another string for the confirmation password.

Function SetPassword(&password As string, &passwordConfirm As string) Returns⇒
 boolean
 Doc "GET, NewPasswd, ConfirmPasswd

Validating Component Interfaces

Validation ensures that the structure of a component interface is still valid. Over time, the structure of a
component interface can become invalid due to component structural changes and modifications. For
example, this can happen whenever a component deletes or adds a record or field. It can also happen if the
keys on the component are added or removed. Properties and keys that no longer synchronize with their
associated components are marked with an X icon.

Note the following points about validating component interfaces:

• PeopleSoft Application Designer also validates each component interface upon its creation.

• The validation process determines only whether the underlying component of a component interface has
changed. It does not validate the PeopleCode that is associated with a component interface. To validate
the PeopleCode, open the component and select Tools, Validate from the PeopleSoft Application
Designer menu.

• If a component interface definition becomes invalid, you cannot save changes to it in PeopleSoft
Application Designer.

• If a component interface definition is associated with an active Integration Broker service, you cannot
delete it.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45

To correct an invalid component interface, you might have to delete properties for which appropriate fields or
records no longer exist. If the structure of the source component has changed, you might have to delete old
properties and re-add the new properties in their appropriate locations. You may also need to rename a
property or collection.

To validate a component interface:

1. Open the component interface in PeopleSoft Application Designer.

Validation occurs automatically whenever you open a component interface in PeopleSoft Application
Designer.

2. Select Tools, Validate for Consistency from the PeopleSoft Application Designer menu to validate an
open component interface.

As you change components or other related definitions, you should validate a component interface that is
already open in PeopleSoft Application Designer.

Setting Security Options

After creating a component interface, you must set security for it. Each individual method also needs to be
provided security. Security for the component interface is provided through the PeopleSoft Internet
Architecture pages. Component interface permissions are set at the permission list level in PeopleSoft
security.

Setting access permissions for methods

To set up component interface security:

1. Sign in to the PeopleSoft Pure Internet Architecture through the browser, and select PeopleTools,
Security, Permissions & Roles, Permission Lists.

2. Select the permission list for which you want to set security.

The Permission List component appears.

Developing Component Interfaces Chapter 3

46 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

3. Access the Component Interfaces page.

4. Select the component interface for which you want to set security.

To add another component interface to the list, click the Add button.

5. Click Edit.

The Component Interface Permissions page appears, showing all of the methods (both standard and user-
defined) in the component interface and their method of access.

6. Set the access permission for each method.

Select Full Access or No Access. You must grant full access to at least one method to make the component
interface available for testing and other online use.

7. Click OK when you are done.

8. Save the page.

Testing Component Interfaces

After setting the security for a component interface, you can test the contents and behavior using the
component interface tester. You should test the component interface before using it in your external system.
This proactive tool helps you discover problems with the underlying component or the component interface
itself, including user-defined methods. When you are testing a component interface, real data from the
database is used. Therefore, if you save the information that you change by calling the Save method, the
information is changed in the database.

With the component interface tester, you can:

• Test the component interface in interactive mode.

• Retrieve history items.

• Test the standard, custom, and collection methods.

Searching Component Interfaces to Test
To test the component interface, you search for the component interface to test, and then you test it.

Access the Component Interface Tester search dialog box:

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Component Interface Tester search dialog box

To search for a component interface to test:

1. Open the component interface in PeopleSoft Application Designer.

2. Select Tools, Test Component Interface from the PeopleSoft Application Designer menu.

The Component Interface Tester search dialog box appears. This dialog box displays the keys (in the left-
hand columns) for getting, creating, or finding an instance of the component interface. The right-hand
columns provide a place for you to enter sample key values for testing.

3. Enter key values.

a. Double-click the column to the right of any displayed keys.

b. Enter the value in the right-hand column.

The data that is used for the test corresponds to the key values that you enter here. In the preceding
example, we have entered an employee ID of 6602.

Developing Component Interfaces Chapter 3

48 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Interactive Mode In interactive mode, any action request occurs immediately. Each property
being set causes an immediate trip to the application server (or database
server in two-tier mode). This differs from noninteractive mode, in which
actions are often held and later sent in batches. For example, in
noninteractive mode, if you set a property, the property is not validated
until you perform the save. However, in interactive mode the property is
validated immediately. This means that edit processing (and other
processing, such as FieldChange PeopleCode) occurs for each set property.

Whether you select this option depends on how you expect a particular
component interface to be used and what you are currently testing. In a real
production system, this parameter can significantly affect performance, but
it makes little difference in the test component. In noninteractive mode,
errors and properties are not updated until a method is run. By default,
Interactive Mode is selected in the component interface tester.

Get History Items Select to retrieves history data. This option applies to effective-dated fields
only and is equivalent to running in either Update/Display or
Update/Display All mode.

Edit History Items Select to enable editing and saving of history data. This option applies to
effective-dated fields only and is equivalent to running in either
Update/Display or Correction mode.

Get Dummy Rows Specify whether to get dummy rows. This option is selected as a default.

The component processor provides dummy rows to enable quick data entry
when the level you are accessing does not have any data. Because of this,
an API that does not need this row finds it and exposes it to the user. The
application that uses the API now has to determine whether the row is a
dummy row and accordingly decides to execute Item or InsertItem.

Setting the GetDummyRow to false enables the component interface
processor to handle the counts accordingly. With this property set to false,
users do not have to use item and InsertItem when adding new data at levels
1 to 3. Instead, they can comfortably always use InsertItem.

Get Existing Clicking Get Existing is equivalent to opening a record in Update/Display
or Correction mode online. It retrieves one instance from the database.
After you click the Get Existing button, the Component Interface Tester
dialog box appears.

Create New Clicking Create New is equivalent to creating a new row in Add mode
online. If your component does not support the Create method, this button
is disabled. After you click the Create New button, the Component
Interface Tester dialog box appears.

Getting Existing Records by Using Partial Keys

If you want to retrieve a partial key, click the Find button on the Component Interface Tester page. The Find
Results dialog box appears:

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

Component Interface Tester — Find Results dialog box

 You can choose the specific instance by selecting and clicking the Get Selected button. If you do not enter a
partial key before clicking Find, all key values in the database are returned (subject to the maximum count of
300, just as when online). This is the same as calling the Find method through the component interface API,
followed by selecting a value from the Find results, setting the Get key, and calling the Get method. After you
click the Get Selected button, the Component Interface Tester dialog box appears.

Testing Component Interfaces
After you have searched for and retrieved the component interface, the Component Interface Tester dialog
box appears.

Developing Component Interfaces Chapter 3

50 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component Interface Tester dialog box

Testing Component Interface Properties

From the Component Interface Tester dialog box, change the value of a property, double-click a value, and
enter a new value. Some basic validation is done when you leave the field, which is equivalent to leaving a
field using the Tab key in the online case. This validation includes system edit, FieldChange PeopleCode
events, and FieldEdit PeopleCode events. Further validation can be done when the Save method is called
(SaveEdit, SavePreChange, Workflow, and SavePostChange). If errors occur or warnings are encountered,
messages are displayed in the Error Message Log area at the bottom of the window. The error message log
displays the same text that would appear in the PSMessages collection of the Session object if you accessed
the component through the Component Interface API.

Testing Component Interface Methods

Test component interface methods by right-clicking the component interface name.

A menu appears that shows the Save and Cancel standard methods and any user-defined methods that exist
for the component interface. The Find, Create, and Get standard methods are not valid for an instantiated
component, and therefore are not shown.

If a component interface method requires one or more parameters, a dialog box in which you can enter the
parameters appears. After the method is executed, the same dialog box appears again, displaying changes to
the parameters that were caused by the method. The return value of the function appears in the title of the
dialog box. If a component interface requires no parameters, you do not see the initial dialog box, but you do
see the return value dialog box following the function call.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

GetPropertyInfoBy Name(). Enter parameters: dialog box

Note. Because running a component interface method can result in a change to the component interface
structure, PeopleSoft Application Designer always redraws the component interface tree in its collapsed form
following a method call.

Testing Collection Methods

Test collection methods by right-clicking the collection name.

A menu appears that shows the standard collection methods. Select the collection method that you want to
test for this component interface. After you select a collection method to test, the Enter parameters dialog box
prompts you to enter an item number for the collection method that you are testing. The value that you enter
for index [Number] is used to retrieve, insert, or delete an item, according to the following rules.

After you enter an index number, the result appears in the dialog box. If a return value is sent, it is displayed
in the title bar. Otherwise, the message No value is displayed. Click OK or Cancel to dismiss the dialog box.

Collection Method Rules

This table contains the collection method rules:

Collection Method Purpose

Item(index) Returns the row at the specified index. Only the success
or failure of this routine is of interest from inside the test
component.

InsertItem(index) Inserts a new row either before the index that you
specify if the collection is effective-dated or following
the index if it isn't effective-dated.

Developing Component Interfaces Chapter 3

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Collection Method Purpose

DeleteItem(index) Deletes the row that is designated by the index number
that you specified in the Enter parameters dialog box.

ItemByKeys(key1, key2, …) Returns the row corresponding to the specified keys.
Only the success or failure of this routine is of interest
from inside the test component.

CurrentItem This method returns the effective row in an effective-
dated record. Only the success or failure of this routine
is of interest from inside the test component.

GetEffectiveItem(DateString, SeqNum) Returns the data row that would be effective for the
specified date and sequence number. This is a more
general case of the GetCurrentItem function, which
returns the definition that is effective at this moment.
This method works with effective-dated records only.

GetEffectiveItemNum(DateString, SeqNum) Returns the item number inside the collection of the data
row that would be effective for the specified date and
sequence number. This is a more general case of the
GetCurrentItemNum function, which returns the number
of the definition that is effective at this moment. This
method works with effective-dated records only.

Note. Component interface classes contain information about collection methods.

Determining ItemByKeys Parameters
You can get the signature for the ItemByKeys method (or any other method) when testing a component
interface. This is helpful for the ItemByKeys method, because its signature is different for each component
interface.

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

Viewing the signature of the ItemByKeys method

To determine ItemByKeys parameters:

1. Open the definition.

2. Select Tools, Test Component Interface.

3. Find or get an appropriate populated component interface.

4. Navigate to the appropriate collection.

5. Right-click, and select ItemByKeys from the menu.

A dialog box appears, showing the specific parameters and types and the order in which you should call
ItemByKeys.

In the preceding example, the keys for the SDK_BUS_EXP_PER ItemByKeys method are SDK_EMPID
(String) and SDK_EXP_PER_DT (String).

Understanding Synchronization

The Component Interface Properties Synchronization tab is used with PeopleSoft Mobile Agent.

Important! PeopleSoft Mobile Agent is a deprecated product. The Component Interface Properties
Synchronization tab exists for backward compatibility only.

PeopleSoft Mobile Agent extends the functionality of PeopleSoft Pure Internet Architecture to disconnected
mobile devices, enabling users to continue working with their PeopleSoft applications on a laptop computer
or personal digital assistant (PDA) while disconnected from the internet or local network.

Developing Component Interfaces Chapter 3

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 Properties—Synchronization tab

Writing Component Interface Programs

The following chapters in this PeopleBook describe how to write component interface programs in several
programming languages.

Also, the PeopleTools PeopleCode Reference contains a chapter that describes the component interface
classes, including detailed instructions on the life cycle of a component interface and how to implement a
component interface program in PeopleCode. You can use this information to help design your component
interface program in other programming languages.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes."

Chapter 3 Developing Component Interfaces

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

Understanding Runtime Considerations

In many ways, accessing a component interface is functionally equivalent to working with an online
component. However, some important differences exist between component interfaces and components. This
section describes how those differences affect interactive operation, functionality designed for graphical
interfaces, client versus server operation, and several miscellaneous situations. These considerations, unless
otherwise noted, apply to all the programming languages listed in this manual.

General Considerations
This section discusses general considerations for component interface programs.

WinMessage Unavailable

You cannot use the WinMessage API in a component that will be used to build a component interface. Use
the MsgGet() function instead.

Email from a Component Interface

To use a component interface to send email, use the TriggerBusinessEvent PeopleCode event, not SendMail.

Related Display

Related display fields are not available for use in a component interface because they are not held in the
buffer context that the component interface uses.

Row Inserts

If row insert functionality has been disabled for a page, you must take care when calling inserts against the
corresponding component interface. Any PeopleCode associated with buttons used on the page to add rows
will not be invoked by the component interface when an insert is done.

Note. If a component has logic that inserts rows on using the RowInsert event, the component interface
cannot identify the change and locate the rows that were inserted by the application code. Generic interfaces
such as Excel to Component Interfaces utility and the WSDLToCI will not function correctly when using this
type of dynamic insert.

Custom Field Formats

Custom field formats that are defined dynamically via Peoplecode are not enforced by component interfaces,
as they are evaluated by the page processor and not available to the component interface processor. Only the
static formats defined in the Application Designer will be applied.

Scope Conflicts
This section discusses scope conflicts for component interface programs.

Developing Component Interfaces Chapter 3

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Infinite Processing Loops

A component interface should not call itself in any of the PeopleCode included within its component
definition, because this may result in an infinite loop of the component interface. A component interface also
should not call itself from a user-defined method.

Multiple Instances of a Component Interface

Because of potential memory conflicts, COM or C++ applications should not create multiple, simultaneous
instances of the same component interface, either within a single procedure, or in both a parent and a child
procedure.

Interactive Mode
This section discusses interactive mode considerations for component interface programs.

UNIX Server Performance

If you are using a component interface as part of a batch process in which thousands of rows are being
inserted, running in interactive mode may reduce performance enough on some UNIX servers to produce a
connection failure. Prevent this by setting the InteractiveMode property to False.

Hidden Edit Validation Errors

If the InteractiveMode property is set to True, and if a transaction sets a property to a value that isn't allowed
in a prompt edit field, the edit field value is reset back to its original value. The error is logged in the
PSMessages collection; however, the Save method runs without errors. Check the value of both the Save
method and the collection ErrorPending property to discover all of the errors.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Chapter 4

Programming Component Interfaces
Using PeopleCode

This chapter provides an overview of PeopleCode behavior and limitations and discusses how to:

• Generate a PeopleCode template.

• Understand the PeopleCode template.

Understanding PeopleCode Behavior and Limitations

Note the behavior and limitations discussed in this section when you write PeopleCode for a component
interface.

PeopleCode Event and Function Behavior
PeopleCode events and functions that relate exclusively to the graphical user interface and online processing
cannot be used by component interfaces. These include:

• Search dialog processing.

When you run a component interface, the SearchInit, SearchSave, and RowSelect events do not fire. This
means that any PeopleCode associated with these events will not run. The first event to run is RowInit.

• Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the CheckMenuItem,
DisableMenuItem, EnableMenuItem, HideMenuItem, and UncheckMenuItem functions are not available.

• Transfers between components, including modal transfers.

The TransferPage, DoModalPageGroup, and IsModalPageGroup functions cannot be used.

• Dynamic tree controls.

Functions related to this control, such as GetSelectedTreeNode, GetTreeNodeParent,
GetTreeRecordName, RefreshTree, and TreeDetailInNode cannot be used.

• ActiveX controls.

The PSControlInit and PSLostFocus events are not supported, and the GetControl function cannot be
used.

Programming Component Interfaces Using PeopleCode Chapter 4

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• DoSave() and DoSaveNow().

The DoSave() and DoSaveNow() pcode functions are not supported. You should use the component
interface Save() method and wrap the DoSave() and DoSaveNow() functions so that they do not execute
when called from a component interface.

• Functions that are ignored in a component interface call.

Some PeopleCode functions are ignored if they are called through a component interface. These functions
are:

• WinMessage

• CheckMenuItem

• DisableMenuItem

• EnableMenuItem

• HideMenuItem

• UncheckMenuItem

• SetCursorPos

• TransferPanel

• TransferPage

• DoModalComponent

• IsModalComponent

• DoModalPanelGroup

• IsModalPanelGroup

• GetSelectedTreeNode

• GetTreeNodeParent

• RefreshTree

• TreeDetailInNode

• GetControl

• DoSave

• DoSaveNow

• Gray

• Ungray

Chapter 4 Programming Component Interfaces Using PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 59

CopyRowset Language Considerations
 In previous PeopleSoft releases, CopyRowset* functions for component interfaces were not sensitive to the
language code on PSCAMA. Because of this, related language processing did not take place when language
code on PSCAMA was different from the base language code. PeopleSoft now detects the language code in
PSCAMA.

Limitations of Client-Only PeopleCode
Component interfaces can run on either the client or the server. By default, a component interface runs on the
server. It runs on the client only if the code calling the component interface is running on a client machine.

Component interfaces must run either entirely on the server or entirely on the client. To ensure this runtime
restriction, component interface references declared in PeopleCode must be declared as local, not global,
variables.

Some built-in functions are always client-only; others are client-only under specific conditions.

Some built-in functions behave differently when used in three-tier mode, as opposed to two-tier mode.

Generating PeopleCode Templates to Access Component Interfaces

To access a component interface using PeopleCode, PeopleSoft Application Designer generates a template in
the form of boilerplate PeopleCode that you can adapt to your purposes. This section describes how to
generate the template code.

Programming Component Interfaces Using PeopleCode Chapter 4

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode generated by dragging and dropping a component interface

To generate a PeopleCode template for a component interface:

1. Open the desired component interface definition in PeopleSoft Application Designer.

2. Insert the component interface into a project.

a. Select Insert, Current Object into Project.

b. Save the project.

3. Open the PeopleCode editor.

You can associate component interface PeopleCode with a record, a component, a service operation
handler, or an Application Engine program.

4. Select the component interface from the project workspace.

Drag and drop the object from the project into the PeopleCode Editor.

5. Make any necessary changes to the PeopleCode in the PeopleCode Editor window.

This is specially important on components that have multiple scrolls at the same level, as the automatic
code generation may have difficulty determining the parent of the collection (scroll). Therefore, the
template code should be inspected and corrected as needed.

Chapter 4 Programming Component Interfaces Using PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

Understanding PeopleCode Templates

The code shown in this section is a dynamically generated PeopleCode template that you can use as a starting
point. Replace all default values or <*> notations with specific values or references to valid PeopleCode
variables (replace this entire three-character string: <*>).

Note. The requirement to populate a non-create key is no longer a requirement to do the initial save.

PeopleCode runs only if you are connected. This means that you do not have to explicitly connect. Instead,
connect to the existing session, using the %Session system variable.

See PeopleTools 8.52: PeopleCode API Reference, "Quick Reference for PeopleCode Classes," Session
Classes Methods and Properties.

You cannot connect to a different database through PeopleCode.

Set the PeopleSoft session error message mode. This property is used to determine how messages are output.
This property takes either a numeric value or a constant. The default value is 1
(%PSMessages_CollectionOnly).

 This property sets the value for the session. You can change modes during a session, for example, if you're
starting a component interface. However, after you run the component interface, you should set the value
back. Here is the list of modes that you can use:

Mode Value Purpose

0 Return no messages.

1 Default. Log messages into the PSMessage collection.

2 Display a pop-up message or dialog box.

3 Log messages into the PSMessage collection and pop up
a message dialog box.

See PeopleTools 8.52: PeopleCode API Reference, "Session Class," PSMessagesMode.

PeopleCode Template Notes

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

Set the keys for the component interface. In this example SDK_EMPLID is the Get key.

The get() method retrieves data from the database, associated with the key values.

Get and print properties at level 0.

Programming Component Interfaces Using PeopleCode Chapter 4

62 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS_EXP_PER).

Get and print properties at level 1.

 Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Get collection at level 2 (SDK_BUS_EXP_DTL).

 &oSdkBusExpDtlCollection = &oSdkBusExpPer.SDK_BUS_EXP_DTL;

Get and print properties at level 2.

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

Chapter 5

Programming Component Interfaces in
Java

This chapter discusses how to:

• Build APIs in Java.

• Set up the Java environment.

• Generate Java runtime code templates.

• Understand generated Java code.

Building APIs in Java

If you plan to access your component interface from a Java external application, you must create a component
interface API. The APIs are in the form of *.java source code files, which should be compiled into Java
classes.

To build the component interface bindings:

1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of which
one is open.

2. Select Build, PeopleSoft APIs.

The Build PeopleSoft API Bindings dialog box appears.

3. Select the Build check box in the Java Classes group box.

For the target directory, enter the directory in which you want the Java class source files to be created.

4. Click OK to build the bindings that you selected.

The files that constitute the bindings are built in the location that you specified. If the operation is
successful, a Done message appears in the PeopleSoft Application Designer Build window.

Programming Component Interfaces in Java Chapter 5

64 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

5. Compile the APIs that you just generated.

You could use one of these commands:

• Example 1:

cd %PS_HOME%\class\PeopleSoft\Generated\CompIntfc
javac −classpath %PS_HOME%\class\psjoa.jar *.java

• Example 2:

cd c:\pt8\class\PeopleSoft\Generated\PeopleSoft
javac −classpath %PS_HOME%\class\psjoa.jar *.java

Setting Up the Java Environment

When deploying component interfaces on a local client machine or web server with Java bindings, you must
have:

• The third-party Java application.

• The application server and database.

• The Java Virtual Machine (JVM) supplied with Sun Microsystems Java Development Kit (JDK). The
JDK may already be installed on your system. To verify that the JVM is installed, check the
%PS_HOME%\JRE directory. If it is not installed, you can obtain download information at the Oracle
web site.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html.

To set up your client machine to access the component interface API using Java:

1. If it is not already installed on your system, install the Sun Microsystems JDK to enable the JVM.

You can download the JDK to any location, for example c:\bea\jkd<version>.

2. Set the environment variable PATH to include the directory containing jvm.dll.

For example, you might set it at c:\bea\jkd<version>\jre\bin\client; or, if the PeopleTools install is done
locally, the path is <PS_HOME>\jre\bin\client.

3. Set the environment variable CLASSPATH to include:

• The file psjoa.jar (typically <PS_HOME>\class\psjoa.jar).

• The target directory selected during the Build API process (<PS_HOME>\class).

Note. In previous releases, sites using UNIX servers received the following error message when invoking a
component interface through the PeopleSoft Java Object Adapter (PSJOA): PSProperties not loaded from
file. To resolve this issue, copy the pstools.properties file to the component interface execution directory.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 5 Programming Component Interfaces in Java

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

Generating Java Runtime Code Templates

To access a component interface through external APIs using Java, PeopleSoft Application Designer
generates a template in the form of boilerplate Java code that you can adapt to your purposes.

External Java APIs are located in the <PS_CFG_HOME>\ExtAPI_Java directory.

This section describes how to generate the template code.

Generating Java template

To generate a Java template for a component interface:

1. Open a component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

Programming Component Interfaces in Java Chapter 5

66 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

3. Select Generate Java Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note. The template file is generated in the directory specified by the TEMP or TMP system environment
variable on your client machine.

4. Edit the generated file and modify the source code to suit your needs.

5. Compile the source code to generate a class file.

In the case of the example used in this manual, you could use this command:

javac −classpath c:\temp;c:\pt8\class;c:\PT8\class\psjoa.jar SDK_BUS_EXP.java

Understanding the Java Template

You can use the Java template as a starting point for your Java program. This section contains a skeleton of
the generated Java template for a component interface named SDK_BUS_EXP, which is part of the
component interface SDK. The template has been edited for length.

Import all the required classes.

import java.io.*;
import psft.pt8.joa.*;
import PeopleSoft.Generated.CompIntfc.*;
public class SDK_BUS_EXP {
 public static ISession oSession;

 public static void main (String args[]) {
 try {
 //***** Set Connect Parameters *****
 String strServerName, strServerPort, strAppServerPath;
 String strUserID, strPassword;

 //Build Application Server Path
 strAppServerPath = strServerName + ":" + strServerPort;

Note. To enable Jolt failover and load balancing in the PeopleSoft Pure Internet Architecture, you can supply
multiple application server domains for the strAppServerPath variable. Separate the domain names with a
comma, and make sure that no spaces are included, for example, strAppServerPath =
//APPSRVR1:8000,//APPSRVR2:9000

Create the PeopleSoft Session object to enable access to the PeopleSoft system.

The Session object controls the environment and enables you to do error handling for all APIs from a central
location.

 //***** Create PeopleSoft Session Object *****
 oSession = API.createSession();

Connect to the application server by using the connect method of the Session object.

Chapter 5 Programming Component Interfaces in Java

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

//***** Connect to the App Server *****
//if the Jolt Password is to be provided, switch to the the second
//version of the statement below
if (!oSession.connect(1, strAppServerPath, strUserID,
strPassword, null)) {
//if (!oSession.connectS(1, strAppServerPath, strUserID,
//strPassword, null, strJoltPwd)){
System.out.println("\nUnable to Connect to the Application Server.
Please verify it is running");
ErrorHandler();
return;
}

If the application server is configured to use a domain connection password other than the default value, use
the connectS method, currently shown commented out in the previous Java template example, instead of the
Connect method. The connectS method takes in all the same parameters as the Connect method, plus a
domain Connection password as an additional parameter:

connectS(1, strAppServerPath, strUserID, strPassword, null, strJoltPwd);

You define the domain connection password using the DomainConnectionPwd field in the Security section of
the application server configuration file, configuration.properties.

See PeopleTools 8.52: System and Server Administration, "Setting Application Server Domain Parameters,"
DomainConnectionPwd and PeopleTools 8.52: System and Server Administration, "Working with Jolt
Configuration Options," Configuring Domain Connection Password.

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

 ISdkBusExp oSdkBusExp;
 String ciName;
 ciName = "SDK_BUS_EXP";
 oSdkBusExp = (ISdkBusExp) oSession.getCompIntfc(ciName);
 if (oSdkBusExp == null) {
 System.out.println("\nUnable to Get Component Interface " +
 ciName);
 ErrorHandler();
 return;
 }

 //***** Set the Component Interface Mode *****
 oSdkBusExp.setInteractiveMode(false);
 oSdkBusExp.setGetHistoryItems(true);
 oSdkBusExp.setEditHistoryItems(false);

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

//***** Set Component Interface Get/Create Keys *****
 String strSdkEmplid;
 System.out.print("\nEnter SdkEmplid: ");
 strSdkEmplid = inData.readLine();
 oSdkBusExp.setSdkEmplid(strSdkEmplid);

The get() method retrieves data from the database, associated with the key values.

Programming Component Interfaces in Java Chapter 5

68 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

//***** Execute Get *****
 if (!oSdkBusExp.get()) {
 System.out.println("\nNo rows exist for the specified keys.
 \nFailed to get the Component Interface.");
 ErrorHandler();
 return;
 }

Get and print properties at level 0.

 System.out.println("oSdkBusExp.SdkName: " +
 oSdkBusExp.getSdkName());

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS_EXP_PER).

 ISdkBusExpSdkBusExpPerCollection oSdkBusExpPerCollection;
 ISdkBusExpSdkBusExpPer oSdkBusExpPer;
 oSdkBusExpPerCollection = oSdkBusExp.getSdkBusExpPer();

Get and print properties at level 1.

for (int i17 = 0;
 i17 < oSdkBusExpPerCollection.getCount(); i17++) {
 oSdkBusExpPer = oSdkBusExpPerCollection.item(i17);

 System.out.println("oSdkBusExpPer.SdkExpPerDt: " +
 oSdkBusExpPer.getSdkExpPerDt());

Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Get collection at level 2 (SDK_BUS_EXP_DTL).

 ISdkBusExpSdkBusExpPerSdkBusExpDtlCollection
 oSdkBusExpDtlCollection;
 ISdkBusExpSdkBusExpPerSdkBusExpDtl oSdkBusExpDtl;
 oSdkBusExpDtlCollection = oSdkBusExpPer.getSdkBusExpDtl();

Get and print properties at level 2.

 for (int i211 = 0;
 i211 < oSdkBusExpDtlCollection.getCount(); i211++) {
 oSdkBusExpDtl = oSdkBusExpDtlCollection.item(i211);

 System.out.println("oSdkBusExpDtl.SdkChargeDt: " +
 oSdkBusExpDtl.getSdkChargeDt());

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

 }
 }

Disconnect from the Application server by using the disconnect method of the Session object. This method
clears the buffers and releases the memory.

Chapter 5 Programming Component Interfaces in Java

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69

 //***** Disconnect from the App Server *****
 oSession.disconnect();
 return;
 }
 catch (Exception e) {
 e.printStackTrace();
 System.out.println("An error occurred: ");
 ErrorHandler();
 }
 }
}

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

Chapter 6

Programming Component Interfaces in
C++

This chapter discusses how to:

• Build the APIs for C++.

• Set up the C++ environment.

• Generate C++ runtime code templates.

• Understand the C++ template.

Building APIs for C++

If you plan to access your component interface from a C++ external application, you must create a component
interface API. The APIs are in the form of C header files (*.h), which need to be included in the calling
program.

To build the component interface bindings:

1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of which
one is open.

2. Select Build, PeopleSoft APIs.

The Build PeopleSoft API Bindings dialog box appears.

3. Select the Build check box in the C Header Files group box.

For the target directory, enter the directory in which you want the C++ header file to be created, typically
<PS_HOME>\bin\client\winX86.

4. Click OK to build the bindings that you selected.

The peoplesoft_peoplesoft._i.h file that constitutes the bindings is built in the location that you specified.
If the operation was successful, a Done message appears in the PeopleSoft Application Designer Build
window.

Programming Component Interfaces in C++ Chapter 6

72 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Setting Up the C++ Environment

When deploying component interfaces on a local client machine with C++ bindings, you must have:

• The third-party C++ application.

• The Application server and database.

• The Java Virtual Machine (JVM) supplied with the Sun Microsystems Java Development Kit (JDK)
found in the %PS_HOME%\JRE directory.

• Your compiler, configured for the C++ project.

Third-Party Applications

For applications written in C or C++, note that:

• The function names generated by the Build APIs process can be quite long. You may want to consider
creating classes within your C++ code to mask this length throughout your program.

• When you create your installation for your C or C++ program, make sure that you include the setup of the
path to the psapiadapter.dll.

Setting Up Client Machines to Access C++ APIs
To set up your client machine to access the component interface API using C++:

1. Install the PeopleSoft File Server.

See PeopleSoft Installation Guide, "Using the PeopleSoft Installer."

2. Set the environment variable PS_HOME to point to the installed PeopleSoft PeopleTools directory (for
example, c:\pt852).

3. 3. Set the environment variable PATH to include the directory containing jvm.dll and the directory
containing the PeopleTools client binaries.

For example, %PS_HOME%\bin\client\winx86; or, if the PeopleTools installation is done locally, the
path is <PS_HOME>\jre\bin\client.

4. Install the JVM supplied with the Sun Microsystems JDK. The JVM is located in the %PS_HOME%\JRE
directory.

5. Set the environment variable CLASSPATH to include the psjoa.jar file (typically
<PS_HOME>\class\psjoa.jar).

Configuring Compilers for C++ Projects
To configure a compiler for the C++ project:

Chapter 6 Programming Component Interfaces in C++

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 73

Note. These instructions assume that you are using Microsoft Visual C++. If you use a different compiler,
apply the equivalent settings for that product.

1. Create a new project in Microsoft Visual C++.

2. Select Tools, Options.

3. Select the Directories tab.

4. Click the New button in the Options dialog box.

5. Enter the path to the SDK include files, for example:

C:\PT840\SDK\PSCOMPINTFC\SRC\C++\SAMPLES\INC

6. Click OK to save the options.

7. Open the Project Settings dialog box.

8. Select the C/C++ tab.

9. Select the General category.

10. Add PS_WIN32 to the preprocessor definitions.

11. Select the Link tab.

12. Select the Input category.

13. Specify the full path to psapiadapter.lib for the Object/library modules.

This is typically <PS_HOME>\src\lib\psapiadapter.lib. Make sure that this is the only entry for
psapiadapter.lib.

14. Click OK to save the settings.

Generating C++ Runtime Code Templates

To access a component interface through external APIs using C++, PeopleSoft Application Designer
generates a template in the form of boilerplate C++ code that you can adapt to your purposes.

External C++ APIs are located in the <PS_CFG_HOME>\ExtAPI_C directory.

This section describes how to generate the template code.

Programming Component Interfaces in C++ Chapter 6

74 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Generating C++ template

To generate a C++ template for a component interface:

1. Open a component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

3. Select Generate C Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note. The template file is generated in the directory specified by the TEMP or TMP system environment
variable on your client machine.

4. Add the generated template file to the project.

In Microsoft Visual C++:

a. Open the project created earlier.

b. Select Project, Add To Project, Files.

c. Select the generated file.

d. Click OK.

Chapter 6 Programming Component Interfaces in C++

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 75

5. Edit the generated file and modify the source code to suit your needs.

6. Build the project to generate an executable (.exe) file.

Understanding the C++ Template

The C++ template can be used as a starting point for your C++ program. This section contains a skeleton of
the generated C++ template for a component interface named SDK_BUS_EXP, which is part of the
component interface SDK. The template has been edited for length.

Include all the required header files.

#ifdef PS_WIN32
#include "stdafx.h"
#endif

#include "cidef.h"
#include "apiadapterdef.h"
#include "PSApiAdapterInter.h"
#include "PSApiExternalLib.h"
#include "peoplesoft_peoplesoft_i.h"
#include <stdio.h>
#include <iostream.h>
#include <wchar.h>

HPSAPI_SESSION hSession;
TCHAR tmpValue[1024];

.....

void main(int argc, char* argv[])
{
 //***** Set Connect Parameters *****
 TCHAR strServerName[40], strServerPort[10], strAppServerPath[80];
 TCHAR strUserID[80], strPassword[80];

 //Build Application Server Path
 _stprintf(strAppServerPath, _T("%s:%s"), strServerName, strServerPort);

Note. To enable Jolt failover and load balancing in the PeopleSoft Internet Architecture, you can supply
multiple application server domains for the strAppServerPath variable. Separate the domain names with a
comma, and make sure that no spaces are included, for example, strAppServerPath =
//APPSRVR1:8000,//APPSRVR2:9000.

Create the PeopleSoft Session object to enable access to the PeopleSoft system.

The Session object controls the environment and enables you to perform error handling for all APIs from a
central location.

Programming Component Interfaces in C++ Chapter 6

76 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 //***** Create PeopleSoft Session *****
 PSAPIVARBLOB ExternalAuth;
 memset(&ExternalAuth, 0, sizeof(PSAPIVARBLOB));
 hSession = PSApiCreateSession();
 if (!hSession)
 {
 wprintf(L"\nUnable to Create Session\n");
 return;
 }

Connect to the Application server by using the Session_Connect() function.

 //***** Connect to the App Server *****
 if (!Session_Connect(hSession, 1, strAppServerPath, strUserID,
 strPassword,ExternalAuth))
 {
 wprintf(L"\nUnable to Connect to Application Server\n");
 ErrorHandler();
 return;
 }

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

 //***** Get Component Interface *****
 HPSAPI_SDK_BUS_EXP hSdkBusExp;
 TCHAR ciName[30];
 _tcscpy(ciName, _T("SDK_BUS_EXP"));
 hSdkBusExp = (HPSAPI_SDK_BUS_EXP) Session_GetCompIntfc(hSession,
 ciName);
 if (!hSdkBusExp)
 {
 wprintf(L"\nUnable to Get Component Interface %s\n", ciName);
 ErrorHandler();
 return;
 }

 //***** Set the Component Interface Mode *****
 SdkBusExp_SetInteractiveMode(hSdkBusExp, false);
 SdkBusExp_SetGetHistoryItems(hSdkBusExp, true);
 SdkBusExp_SetEditHistoryItems(hSdkBusExp, false);

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

 //***** Set Component Interface Get/Create Keys *****
 TCHAR strSdkEmplid[80];
 wprintf(L"\nEnter SdkEmplid: ");
 _getts(strSdkEmplid);
 SdkBusExp_SetSdkEmplid(hSdkBusExp, strSdkEmplid);

The <CI_NAME>_Get() function retrieves data from the database associated with the key values.

 //***** Execute Get *****
 if (!SdkBusExp_Get(hSdkBusExp))
 {
 wprintf(L"\nUnable to Get Component for the Search keys provided.\n");
 ErrorHandler();
 return;
 }

Get and print properties at level 0.

Chapter 6 Programming Component Interfaces in C++

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

 wprintf(L"SdkBusExp.SdkName: %s\n",
 printProperty(SdkBusExp_GetSdkName(hSdkBusExp), tmpValue));

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS_EXP_PER).

 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PERCOLLECTION
 hSdkBusExpSdkBusExpPerCollection;
 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PER hSdkBusExpSdkBusExpPer;
 hSdkBusExpSdkBusExpPerCollection =
 SdkBusExp_GetSdkBusExpPer(hSdkBusExp);

Get and print properties at level 1.

 for (int i17 = 0; i17 < SdkBusExpSdkBusExpPerCollection_GetCount
 (hSdkBusExpSdkBusExpPerCollection); i17++)
 {
 hSdkBusExpSdkBusExpPer = SdkBusExpSdkBusExpPerCollection_Item
 (hSdkBusExpSdkBusExpPerCollection, i17);
 wprintf(L"oSdkBusExpSdkBusExpPer.SdkExpPerDt: %s\n",
 printProperty
 (SdkBusExpSdkBusExpPer_GetSdkExpPerDt(hSdkBusExpSdkBusExpPer),
 tmpValue));

Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Get collection at level 2 (SDK_BUS_EXP_DTL).

 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PER_SDK_BUS_EXP_DTLCOLLECTION
 hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection;
 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PER_SDK_BUS_EXP_DTL
 hSdkBusExpSdkBusExpPerSdkBusExpDtl;
 hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection =
 SdkBusExpSdkBusExpPer_GetSdkBusExpDtl(hSdkBusExpSdkBusExpPer);

Get and print properties at level 2.

 for (int i211 = 0; i211 <
 SdkBusExpSdkBusExpPerSdkBusExpDtlCollection_GetCount
 (hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection); i211++)
 {
 hSdkBusExpSdkBusExpPerSdkBusExpDtl =
 SdkBusExpSdkBusExpPerSdkBusExpDtlCollection_Item
 (hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection, i211);

 wprintf(L"oSdkBusExpSdkBusExpPerSdkBusExpDtl.SdkChargeDt:
 %s\n", printProperty
 (SdkBusExpSdkBusExpPerSdkBusExpDtl_GetSdkChargeDt
 (hSdkBusExpSdkBusExpPerSdkBusExpDtl), tmpValue));

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

 }
 }

Disconnect from the Application server by using the disconnect method of the Session object. This method
clears the buffers and releases the memory.

Programming Component Interfaces in C++ Chapter 6

78 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 //***** Disconnect from the App Server *****
 Session_Disconnect(hSession);

 return;
}

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

Chapter 7

Programming Component Interfaces in
COM

This chapter discusses how to:

• Build APIs for COM.

• Set up the COM environment.

• Generate a Visual Basic runtime code template.

• Understand the Visual Basic template.

Understanding Programming Interfaces in COM

 The Microsoft Visual Basic 6 design environment is no longer supported by Microsoft, and the runtime
binaries have limited support on only certain Windows platforms. Microsoft has published a "Support
Statement for Visual Basic 6.0 on Windows Vista, Windows Server 2008 and Windows 7" on its web site that
contains addition information.

See http://msdn.microsoft.com/en-us/vbasic/ms788708.

Therefore, component interface APIs built in Microsoft Visual Basic should be migrated to Java or to a new
technology such as PeopleSoft Integration Broker's component interface-based services.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Creating Component Interface-Based Services"

Building APIs for COM

If you plan to access your component interface from a COM external application, you must create a
component interface API. The generated APIs are in the form of registry entries and type library files.

To build the component interface bindings:

http://msdn.microsoft.com/en-us/vbasic/ms788708

Programming Component Interfaces in COM Chapter 7

80 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of which
one is open.

2. Select Build, PeopleSoft APIs.

The Build PeopleSoft API Bindings dialog box appears.

3. Select the Build check box in the COM Type Library group box.

a. For the target directory, enter the directory in which you want the COM type library to be created,
typically <PS_HOME>\bin\client\winX86.

b. Enter the COM server DLL location to specify where the PeopleSoft API Adapter (psapiadapter.dll) is
typically located: <PS_HOME>\bin\client\winX86.

4. (Optional) Select the AutoRegister check box to execute the registry file immediately upon building the
API.

This causes your client machine registry to be updated immediately without having to register the registry
entry manually.

5. (Optional) Select the Clean-up Registry check box to clean up the registry if you previously generated the
Peoplesoft_Peoplesoft.reg file.

This is needed so that the older registry settings do not remain and conflict with settings made by the
latest version.

6. Click OK to build the bindings that you selected.

The files that constitute the bindings are built in the location that you specified. If the operation was
successful, a Done message appears in the PeopleSoft Application Designer Build window and the client
machine should contain a Peoplesoft_Peoplesoft.reg and PeopleSoft_PeopleSoft.tlb file.

Setting Up the COM Environment

When deploying component interfaces on a local client machine or web server with COM bindings, you need
to have:

• The third-party COM application.

• The application server and database.

• The Java Virtual Machine (JVM) supplied the with Sun Microsystems Java Development Kit (JDK),
found in the %PS_HOME%\JRE directory.

• A copy of the type library called PeopleSoft_PeopleSoft.tlb that you generated during the Build
PeopleSoft API Bindings process.

This type library is not specific to a single database instance—it is specific to those database objects.

Chapter 7 Programming Component Interfaces in COM

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

• A copy of the registry file called PeopleSoft_PeopleSoft.reg that you generated during the Build
PeopleSoft API Bindings process.

This registry file is not specific to a single database instance.

To set up your client machine to access the component interface API using COM:

Note. A reboot of the client machine may be required after you follow these steps.

1. Install the PeopleSoft file server.

See PeopleSoft 8.52 Installation Guide, "Using the PeopleSoft Installer."

2. 2. Set the environment variable PS_HOME to point to the installed PeopleSoft PeopleTools directory (for
example, c:\pt852).

3. 3. Set the environment variable PATH to include the directory containing jvm.dll and the directory
containing the PeopleTools client binaries.

For example, %PS_HOME%\bin\client\winx86; or, if the PeopleTools installation is done locally, the
path is <PS_HOME>\jre\bin\client.

4. Set the environment variable CLASSPATH to include the file psjoa.jar (typically
<PS_HOME>\class\psjoa.jar).

Note. The following steps assume that you are using Microsoft Visual Basic. If you use a different
compiler, apply the equivalent settings for that product.

5. Open the Visual Project File pscitester.vbp or sdk_bus_exp.vbp in Microsoft Visual Basic.

6. Select Project, References, and add the Peoplesoft_PeopleSoft.tlb type library.

Third-Party Application

Copy the type library and registry files to the directory containing the external API on each client machine
from which you want to use the COM API.

Apply the API registry settings by double-clicking Peoplesoft_Peoplesoft.reg.

Warning! The registry file includes references to the external API and type library files and their locations
on the original client machine where they were built, so those files must be in the same locations on the
current client. If the directory structure is different, you must edit Peoplesoft_Peoplesoft.reg to reflect the
current machine before you apply the registry settings.

• If your program is early-binding, the code contains a direct reference to the path of the type library.

Therefore, as you deploy, you must have the type library in the same directory on each machine.

• If your program is late-binding, the code does not contain a reference to the path of the type library.

The code looks in the registry for the path to the type library. Therefore, as you deploy, you can have the
type library in different directories on each machine. You must update the registry settings as part of the
deployment. This is a more flexible approach.

Programming Component Interfaces in COM Chapter 7

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Generating Visual Basic Runtime Code Templates

When you want to access a component interface through external APIs by using Microsoft Visual Basic,
PeopleSoft Application Designer generates a template in the form of boilerplate Visual Basic code that you
can adapt to your purposes.

External COM APIs are located in the <PS_CFG_HOME>\ExtAPI_ COM directory.

This section describes how to generate the template code.

Generating Visual Basic template

To generate a Visual Basic template for your component interface:

1. Open the desired component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

Chapter 7 Programming Component Interfaces in COM

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

3. Select Generate Visual Basic Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note. The template file is generated in the directory specified by the TEMP or TMP system environment
variable on your client machine.

4. Open the generated file and modify the source code as needed.

Understanding Visual Basic Templates

You can use the Visual Basic template as a starting point for your Visual Basic program. This section
contains a skeleton of the generated Visual Basic template for a component interface named
SDK_BUS_EXP, which is part of the component interface SDK. The template has been edited for length.

Declare the Session object.

Dim oSession As PeopleSoft_PeopleSoft.Session
.....

Private Sub main()
 On Error GoTo ErrorHandler
 '***** Set Connect Parameters *****
 Dim strServerName As String, strServerPort As String,
 strAppServerPath As String
 Dim strUserID As String, strPassword As String

 'Build Application Server Path
 strAppServerPath = strServerName & ":" & strServerPort

Note. To enable Jolt failover and load balancing in the PeopleSoft Internet Architecture, you can supply
multiple application server domains for the strAppServerPath variable. Separate the domain names with a
comma, and make sure no spaces are included, for example:

strAppServerPath = //APPSRVR1:8000,//APPSRVR2:9000

Create the PeopleSoft Session object to enable access to the PeopleSoft system. The Session object controls
the environment and enables you to do error handling for all APIs from a central location.

 '***** Create PeopleSoft Session Object *****
 Set oSession = CreateObject("PeopleSoft.Session")

Connect to the Application server by using the Connect method.

 '***** Connect to the App Server *****
 If Not oSession.Connect(1, strAppServerPath, strUserID, strPassword, 0) Then
 Err.Raise 1001, "", "Unable to connect to Application Server"
 Call ErrorHandler()
 Exit Sub
 End If

 Get a reference to the component interface providing its name. A runtime error occurs if the component
interface does not exist.

Programming Component Interfaces in COM Chapter 7

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 Dim oSdkBusExp As SDK_BUS_EXP
 Dim ciName As String
 ciName = "SDK_BUS_EXP"
 Set oSdkBusExp = oSession.GetCompIntfc(ciName)
 If oSdkBusExp Is Nothing Then
 Err.Raise 1001, "", "Unable to Get Component Interface " & ciName
 Call ErrorHandler()
 Exit Sub
 End If

 '***** Set the Component Interface Mode *****
 oSdkBusExp.InteractiveMode = False
 oSdkBusExp.GetHistoryItems = True
 oSdkBusExp.EditHistoryItems = False

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

 '***** Set Component Interface Get/Create Keys *****
 Dim strSDK_EMPLID As String
 strSDK_EMPLID = InputBox("Enter SDK_EMPLID: ")
 oSdkBusExp.SDK_EMPLID = strSDK_EMPLID

The Get method retrieves data from the database associated with the key values.

 '***** Execute Get *****
 If Not oSdkBusExp.Get() Then
 Err.Raise 1001, "", "No rows exist for the specified keys. Failed to get the⇒
 Component Interface"
 Call ErrorHandler()
 Exit Sub
 End If

Get and print properties at level 0.

 Debug.Print "oSdkBusExp.SDK_NAME: " & oSdkBusExp.SDK_NAME
 oSdkBusExp.SDK_NAME = <*>

 Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get the collection at level 1 (SDK_BUS_EXP_PER).

 Dim oSdkBusExpPerCollection As
 SDK_BUS_EXP_SDK_BUS_EXP_PERCollection
 Dim oSdkBusExpPer As SDK_BUS_EXP_SDK_BUS_EXP_PER
Set oSdkBusExpPerCollection = oSdkBusExp.SDK_BUS_EXP_PER

Get and print properties at level 1.

 Dim i17 As Integer
 For i17 = 1 To oSdkBusExpPerCollection.Count
 Set oSdkBusExpPer = oSdkBusExpPerCollection.Item(i17)
 Debug.Print "oSdkBusExpPer.SDK_EXP_PER_DT: " &
 oSdkBusExpPer.SDK_EXP_PER_DT

Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Get collection at level 2 (SDK_BUS_EXP_DTL).

Chapter 7 Programming Component Interfaces in COM

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

Dim oSdkBusExpDtlCollection As
 SDK_BUS_EXP_SDK_BUS_EXP_PER_SDK_BUS_EXP_DTLCollection
Dim oSdkBusExpDtl As
 SDK_BUS_EXP_SDK_BUS_EXP_PER_SDK_BUS_EXP_DTL
Set oSdkBusExpDtlCollection = oSdkBusExpPer.SDK_BUS_EXP_DTL

Get and print properties at level 2.

Dim i211 As Integer
For i211 = 1 to oSdkBusExpDtlCollection.Count
Set oSdkBusExpDtl = oSdkBusExpDtlCollection.Item(i211)
Debug.Print "oSdkBusExpDtl.SDK_CHARGE_DT: " &
 oSdkBusExpDtl.SDK_CHARGE_DT

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

 Next
 Next

Disconnect from the Application server by using the disconnect method of the Session object. This method
clears the buffers and releases the memory.

 '***** Disconnect from the App Server *****
 If Not oSession Is Nothing Then
 oSession.Disconnect
 Set oSession = Nothing
 End If
 Exit Sub
.....
End Sub

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Chapter 8

Using the Component Interface Software
Development Kit

This chapter provides an overview of the component interface software development kit (SDK) and discusses
how to:

• Set SDK prerequisites.

• Use the SDK_BUS_EXPENSES test page.

• Test the SDK_BUS_EXP component interface.

• Use the component interface SDK Java and C++ sample.

• Use the component interface SDK COM Excel sample.

• Use the component interface SDK COM ASP sample.

Understanding the Component Interface SDK

The PeopleSoft component interface SDK is installed with the PeopleTools installation. It provides resources
to assist you in developing and testing component interface-based integration between PeopleSoft and third-
party applications. The SDK contains sample definitions with data and source code. For easy identification,
all of the definition names start with SDK_. The SDK is installed in the PeopleSoft home directory
(PS_HOME) under sdk.

Note. The SDK definitions and associated data are for development purposes only and should not be used in a
production environment.

Component Interface SDK Samples
Programming samples for the component interface SDK_BUS_EXP are part of the SDK. The samples are
available in four languages—Java, C++, VBA, and ASP.

The component interface source code is located in the <PS_HOME>\SDK\PSCOMPINTFC directory.

Note. The source files mentioned in this section are located relative to the installed PeopleSoft home
directory (PS_HOME).

Using the Component Interface Software Development Kit Chapter 8

88 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Prerequisites for Using the Component Interface SDK

To call a PeopleSoft component interface, you must have:

• A working understanding of PeopleTools components.

• A working understanding of Java, C++, or COM.

• The application server and database installed.

• The Java Virtual Machine (JVM) installed that is supplied with the Sun Microsystems Java Development
Kit (JDK), found in the %PS_HOME%\JRE directory.

Using the SDK_BUS_EXPENSES Test Page

The SDK includes a component interface, called SDK_BUS_EXP, which is part of the sample development
project and is delivered with the SDK. It is built on the component SDK_CI_SAMPLES, which contains the
page SDK_BUS_EXP. The page exposes information about employee business expenses for external access.

Note. The component SDK_CI_SAMPLES is a sample and is not for business use.

SDK_BUS_EXPENSES page

To test the SDK_BUS_EXPENSES test page:

1. Provide access to the SDK_CI_SAMPLES component, using PeopleTools security.

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

2. Select PeopleTools SDK, PeopleTools SDK, Use, SDK CI Samples.

3. Search for and select an employee ID.

Testing the SDK_BUS_EXP Component Interface

To test the SDK_BUS_EXP component interface:

1. View the component interface definition through the PeopleSoft Application Designer.

2. Test the component interface definition, using the component interface tester.

Using the Component Interface SDK Sample in Java and C+ +

This section describes how to use the component interface SDK sample in Java and C++.

Understanding using the Component Interface SDK Samples in Java and C++
The component interface sample programs for Java and for C++ are provided as part of the component
interface SDK and follow the same sequence of options. The source files are located in
<PS_HOME>\sdk\pscompintfc\src\<java or c++>\samples\sdk_bus_exp.

Building the Component Interface SDK Sample (Java)
The component interface sample program for Java is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\java\samples\sdk_bus_exp.

The Java source code for the sample is in the following file: sdk_bus_exp.java

Before you run the sample, you must build the APIs and set up the Java environment.

To build the Java component interface sample:

1. Set your java classpath to include the external API classes you already built and the psoa.jar library
delivered under <PS_HOME>\class\psjoa.jar

2. Compile the source using javac sdk_bus_exp.java

Building the Component Interface Sample (C++)
The component interface sample program for C/C++ is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\cpp\samples\sdk_bus_exp.

The C++ source code for the sample is in the following file: sdk_bus_exp\sdk_bus_exp.cpp

Using the Component Interface Software Development Kit Chapter 8

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Before you run the sample, you must build the APIs and set up the C++ environment. To build the C++
component interface sample:

1. Open the sdk_bus_exp workspace in the Microsoft Visual C++ editor.

2. Build the project by selecting Build, Rebuild All.

Running the Component Interface SDK Sample in Java and C++
To run the compiled Java or C++ component interface sample:

1. In a DOS window, change directories to the location of the sdk_bus_exp directory.

After you launch the executable sdk_bus_exp, the system prompts you for parameters one at a time.

2. At each prompt, enter the appropriate value and press Enter.

Select option 1 to sign in. You are then prompted to provide the connect information.

If the connect succeeds, a menu appears where you can perform Get or Find functions.

3. Get details for an employee.

Select option 1 to get details for an employee. You are then prompted with the different update modes and
the employee ID for which you want to display information. Enter the employee ID 8001 and press Enter.
This displays the level 0 data and the options that you can perform.

4. Select a business expense period at collection level 1.

Select option 8, Item, to select a business expense period. Selecting this option displays a list of available
business expense periods for the selected employee.

Select the expense period that you want to work with.

5. Select a business expense detail item at collection level 2..

Select option 18, Item, to select a business expense detail within the selected business expense period.
Selecting this option displays a list of available business expense details within the selected business
expense periods.

Interpreting the Code for the Component Interface SDK Sample (Java)
The following discussion refers to the Java sample program, sdk_bus_exp.java. (The code has been edited for
length.) It explains the runtime options shown above.

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

1. Import all the required classes:

The code example shows how to import the required classes:

package sdk_bus_exp;
import java.io.*;
import java.util.*;
import psft.pt8.joa.*;
import PeopleSoft.Generated.CompIntfc.*;
public class sdk_bus_exp {
.....

2. Declare all the required objects.

Only one active period and one active detail record are possible at any time. Users are prompted to select
the needed values if they are not active.

Collection Object Level Item Object for Collection

oSdkBusExpCollection Root (SDK_BUS_EXP) oSdkBusExp

oSdkBusExpPerCollection Level 1 (SDK_BUS_EXP_PER) oSdkBusExpPer

oSdkBusExpDtlCollection Level 2
(SDK_BUS_EXP_PER_DTL)

oSdkBusExpDtl

In addition, the CompIntfPropInfoCollection object is used to access the structure of a component
interface. It is not specific to a component interface.

3. Declare the PeopleSoft session object.

4. Connect to the application server.

5. Instantiate the component interface.

6. Perform a Get or Create to access the component interface.

You must provide the keys to access the record that you want to modify.

7. Use the appropriate methods to access the component interface properties.

There are standard methods and user-defined methods defined for the session, the component interface,
and the component interface collections.

The executeMethod function is used to invoke a method specified as a function parameter (nMethodIn).

The component interface Java SDK sample has 25 options:

SDK Option Where Executed

1 through 5 On the component interface.

6 through 15 SDK_BUS_EXP_PER collection.

16 through 25 SDK_BUS_EXP_DTL collection

Using the Component Interface Software Development Kit Chapter 8

92 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Options 1 through 4 and options 6 through 25 are similar in behavior to those described in PeopleTools 8.52:
PeopleCode API PeopleBook for a component Interface and its collections.

Option 5, InsertBusExpDtlDefaults, is the user-defined method of the SDK_BUS_EXP component interface.
This method is defined in PeopleCode inside the component interface definition.

The logic used in the corresponding options of these collections is identical.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes."

This is the main method. It performs such functions as starting the session, getting the component interface,
and disconnecting:

public static final void main(String[] args)System.out.println(" ");
System.out.println("\t 1) Sign In ");
System.out.println("\t q) Quit ");
System.out.println(" ");
System.out.print("Command to execute (1, q) [1]: ");
charTemp = readCharacter();
switch (charTemp) {case 'q':case 'Q':.....
disconnectFromAppServer();
return;
default:
getConnectParameters();
if (connectToAppServer()) {
oSdkBusExp = (ISdkBusExp) oSession.getCompIntfc(m_strCIName);
while (getKeyType()) {
methodInt = selectMethod();
while (methodInt != 0) {
executeMethod(methodInt);
if (methodInt == 2) {
methodInt = 0;
} else {
methodInt = selectMethod();
.....

Interpreting the Code for the Component Interface SDK Sample (C++)
The following listings of code are taken from the C++ sample program, sdk_bus_exp.cpp. (The code has been
edited for length.)

1. Include all the headers.

#ifdef PS_WIN32
#include "stdafx.h"
#endif
#include "cidef.h"
#include "apiadapterdef.h"
#include "PSApiExternalLib.h"
#include "PSApiAdapterInter.h"
#include "PeopleSoft_PeopleSoft_i.h"
#include <stdio.h> #include <stdlib.h>
#include <iostream.h>
#include <wchar.h>

2. Declare the PeopleSoft session handle.

HPSAPI_SESSION hSession;

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

3. Declare all the required objects. Only one active period and one active detail record are possible at any
time.

Collection Object Level Item Object for Collection

hSdkBusExpCollection Root (SDK_BUS_EXP) hSdkBusExp

hSdkBusExpPerCollection Level 1 (SDK_BUS_EXP_PER) hSdkBusExpPer

hSdkBusExpDtlCollection Level 2 (SDK_BUS_EXP_PER_DTL) hSdkBusExpDtl

Collection ObjectLevelItem Object for CollectionhSdkBusExpCollectionRoot
(SDK_BUS_EXP)hSdkBusExphSdkBusExpPerCollectionLevel 1
(SDK_BUS_EXP_PER)hSdkBusExpPerhSdkBusExpDtlCollection Level 2
(SDK_BUS_EXP_PER_DTL)hSdkBusExpDtl

The function executeMethod is used to launch the appropriate method depending upon the user input
(nMethodIn).

The component interface C++ SDK sample has 25 options:

SDK Option1 through 5 SDK_BUS_EXP_PER collection.6 through 25SDK_BUS_EXP_DTL collection

SDK Option Where Executed

1 through 5 On the component interface.

 6 through 15 SDK_BUS_EXP_PER collection

16 through 25 SDK_BUS_EXP_DTL collection

Options 1 through 4 and options 6 through 25 are similar in behavior to those described in PeopleTools 8.52:
PeopleCode API PeopleBook for a component Interface and its collections.

 Option 5, InsertBusExpDtlDefaults, is the user-defined method of the SDK_BUS_EXP component interface.
This method is defined in peoplecode inside the component interface definition.

The logic used in the corresponding options of these collections is identical.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes."

Using the Component Interface SDK COM Excel Sample

The component interface sample program for Microsoft Excel is provided as part of the component interface
SDK, located in <PS_HOME>\sdk\pscompintfc\src\com\samples\vba.

The Visual Basic source code for the sample is in the following file: sdk_bus_exp.xlsm.

Before you run the sample, you must build the APIs and set up the COM environment.

Using the Component Interface Software Development Kit Chapter 8

94 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Running the Component Interface SDK COM Excel Sample
When running the Microsoft Excel sample, you use the Get and Find sheet to find an employee.

Sheet 2: Find and Get an Employee

To run the Microsoft Excel component interface sample:

1. Launch Microsoft Excel.

2. Open the Microsoft Excel sample spreadsheet.

The Microsoft Excel spreadsheet is located in
<PS_HOME>\sdk\pscompintfc\src\com\samples\vba\sdk_bus_exp.

3. When prompted about macros, select Enable Macros.

4. Attach PeopleSoft References to the spreadsheet.

This example uses early bindings and hence requires attaching references to the spreadsheet. Select Tools,
Macro, Visual Basic Editor from the Microsoft Excel menu. This opens the VBA editor.

Select Tools, References from the menu. A dialog box appears, listing all the available references. Select
the reference PeopleSoft_PeopleSoft.

5. Sign in to the sdk_bus_exp sample.

Sheet 1 of the sdk_bus_exp spreadsheet is the sign-in page. Provide the connect information and press
Tab to navigate out of the fields. Click Connect to establish the connection.

6. Find an employee by using the Find keys.

The Find and Get keys are located on Sheet 2.

7. Select an employee from the list.

Select an employee ID from the list by making the cell active and then clicking the GET selected button.

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

8. Get an Employee by providing the Get key.

Enter the complete employee ID in cell B3. Press Tab to navigate out of the cell, and click Get
(EMPLID). A list of all the available periods is displayed.

9. View details.

To view the details for the listed business expense periods, click the Toggle Details button.

10. Add a new business expense period.

Click the Insert period button. This redirects you to Sheet 3. Enter the business expense period date. Press
Tab and click the Save New Period button.

11. Add a new business expense detail.

Click the Insert Detail button. This redirects you to Sheet 3. Enter the charge date, expense code, amount,
department ID, and business purpose. Press Tab, and save the new detail by clicking the Save New Detail
button.

You can list the expense periods for the employee.

Expense periods

Understanding the Component Interface SDK COM Excel Sample Code
The following listings of code are taken from the Microsoft Excel sample program, sdk_bus_exp.xlsm. (The
code has been edited for length.)

View the code by selecting Tools, Macro, Visual Basic Editor from the menu.

• Declare the PeopleSoft session object.

• List Business Expense Periods, using the Item method to get a specific item of the type
SDK_BUS_EXP_PER.

• List Business Expense Details, using the Item method to get a specific item of the type
SDK_BUS_EXP_DTL.

• To save a new business expense period, use the InsertItem method. This method inserts a new row and
returns an item of the type SDK_BUS_EXP_PER. The item contains the properties. Set the properties and
execute the Save method.

• To save a new business expense detail, use the InsertItem method. This method inserts a new row and
returns an item of the type SDK_BUS_EXP_DTL. The item contains the properties. Set the properties
and execute the Save method.

Using the Component Interface Software Development Kit Chapter 8

96 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using the Component Interface SDK COM ASP Sample

The component interface sample program for ASP is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\com\samples\asp\sdk_bus_exp.

The ASP source code for the samples is in these files.

Before you run the sample, you must build the APIs and set up the COM environment.

Running the Component Interface SDK COM ASP Sample
When running the ASP sample, you use the Get key to find an employee.

ASP Get key

To run the Component Interface SDK COM ASP component interface sample:

1. Install and configure the IIS web server.

2. Create a virtual directory to point to <PS_HOME>\sdk\pscompintfc\src\com\samples\asp\sdk_bus_exp.

3. Start the web server.

4. Run the SDK example through the browser.

The web address http://machinename/sdkSDK_BUS_EXP_Signon.asp launches the SDK application.

5. Provide the connect information and click Submit.

6. Get details for an employee.

Enter the Get key (SDK_EMPLID) and click the Get button. This lists all the business periods for the
selected employee ID.

7. Update a business expense period.

a. Click the Update button to update the business expense period.

b. Update the expense period end date.

c. Click the Save button.

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

8. Insert a business expense period.

a. Click the Insert button to update the business expense period.

b. Add the new expense period end date.

c. Click the Save button.

9. Delete a business expense period.

a. Click the Delete button to delete the business expense period. You are prompted to decide to delete
the row.

b. Click OK to confirm the delete.

c. Click Cancel to cancel the operation

10. Update a business expense detail.

Select a business expense period by clicking the Update button from the business expense period row.

11. Insert a business expense detail.

a. Click the Insert button to insert a new business expense period.

b. Enter the values for charge date, expense code, expense amount, currency code, business purpose,
and department ID.

c. Click the Save button to save changes.

12. Delete a business expense detail.

a. Click the Delete button to delete the business expense detail.

You are prompted to decide to delete the row.

b. Click OK to confirm the delete.

c. Click Cancel to cancel the operation.

You can list the expense periods for the employee:

Expense periods

Using the Component Interface Software Development Kit Chapter 8

98 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding the Component Interface SDK COM ASP Sample Code
This section discusses the ASP files that are included in the component interface SDK COM ASP. The files
included are described in the following table:

File Name Use

SDK_BUS_EXP_DeleteBusinessExpenseDetail.asp Deletes a specific expense detail row an allows to insert or
delete expense details from existing expense periods.

SDK_BUS_EXP_DeleteBusinessExpensePeriod.asp Deletes a specific expense period an allows to insert or
delete expense details from existing expense periods.

SDK_BUS_EXP_FUNCLIB.asp Contains all the common functions and needs to be
included in any other ASP page when you build the ASP
program

SDK_BUS_EXP_GetBusinessExpenses.asp Lists all the business expense periods for the selected
employee.

SDK_BUS_EXP_GetSearchParameters.asp Prompts for the Find and Get Keys.

SDK_BUS_EXP_GetSearchResults.asp Lists all the employees for the provided Find keys

SDK_BUS_EXP_InsertBusinessExpenseDetail.asp Updates the expense period data, as well as inserts and
deletes business expense data.

SDK_BUS_EXP_InsertBusinessExpensePeriod.asp Inserts a new business expense period.

SDK_BUS_EXP_NewBusinessExpensePeriod.asp Inserts a new expense period and end date, provides
options to insert or delete expense details.

SDK_BUS_EXP_SaveBusinessExpenseDetail.asp Saves submitted business expense details data.

SDK_BUS_EXP_SaveBusinessExpensePeriod.asp Updates the end date of an existing expense period, and
provides options to insert or delete expense details.

SDK_BUS_EXP_Signon.asp Provides signon information and connects to the
application server.

SDK_BUS_EXP_UpdateBusinessExpensePeriod.asp Updates or deletes expense period details data from and
existing expense period.

SDK_BUS_EXP_DeleteBusinessExpenseDetail.asp

This ASP file deletes a specific expense detail row an allows to insert or delete expense details from existing
expense periods.

To use the SDK_BUS_EXP_DeleteBusinessExpenseDetail.asp page:

1. Get the connection information forwarded from the previous page.

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

2. Get the key fields.

3. Get the SDK_BUS_EXP_PER collection in Sub insertBusinessExpenseDetail.

4. Get the SDK_BUS_EXP_PER collection, using the Item method.

5. Execute the DeleteItem method.

6. Execute the Save method.

SDK_BUS_EXP_DeleteBusinessExpensePeriod.asp

This ASP file deletes a specific expense period and allows to insert or delete expense details from existing
expense periods.

To use the SDK_BUS_EXP_DeleteBusinessExpensePeriod.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. The submitted expense period is deleted.

 To view the updated SDK_BUS_EXP_PER collection, execute the Cancel method. Set the keys and
execute the Get method. The function getBusinessExpensePeriods displays the business expense periods.

4. Execute the Save method.

5. Execute the Cancel method.

SDK_BUS_EXP_FUNCLIB.asp

This ASP file contains all the common functions and needs to be included in any other ASP page when you
build the ASP program. It includes utility functions for checking required fields, extracting the host name to
which the client connects, and confirming and submitting the user input.

SDK_BUS_EXP_GetBusinessExpenses.asp

This ASP file lists all the business expense periods for the selected employee.

To use the SDK_BUS_EXP_GetBusinessExpenses.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the Key Field.

3. Set the Component Interface Get Key.

4. Get the business expense periods by executing the function getBusinessExpensePeriods.

The function getBusinessExpensePeriods gets the business expense period, and then loops through the
collection, using the Item method to get a specific business expense period. Each property in that item is
then displayed.

Using the Component Interface Software Development Kit Chapter 8

100 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

5. The Update button is of the type submit.

Because the form action is set to SDK_BUS_EXP_ UpdateBusinessExpensePeriod.asp, this page is
launched. The Insert and Delete buttons use the JavaScript functions insertBusinessExpensePeriod() and
deleteBusinessExpensePeriod().

6. Submit the page.

Use the JavaScript function insertBusinessExpensePeriod to set the form.action to SDK_BUS_EXP_
InsertBusinessExpensePeriod.asp and submit the page.

SDK_BUS_EXP_GetSearchParameters.asp

This ASP file prompts for the Find and Get Keys. You can also set the component interface modes:
Interactive Mode, Get History Items, and Edit History Items.

To use the SDK_BUS_EXP_GetSearchParameters.asp page:

1. Get the connection information forwarded from the previous page.

2. Use Sub getSearchParameters prompts the user for the Get or Find key and the component interface
modes (interactive, get history items, and edit history items).

3. Use Sub getSearchParameters to call the appropriate page for Get and Find, using the JavaScript function
invokeMethod().

SDK_BUS_EXP_GetSearchResults.asp

This ASP file is called if the Find option was selected.

To use the SDK_BUS_EXP_GetSearchResults.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the Find keys.

3. Get the search result.

The function getSearchResults lists all the employees for the provided Find keys by setting the Find keys
and executing the Find method.

4. Loop through the collection to list all the employee IDs.

SDK_BUS_EXP_InsertBusinessExpenseDetail.asp

This ASP file enables the user to update the expense period data, as well as insert and delete business expense
data. Sub insertBusinessExpenseDetail inserts a business expense detail for the selected business expense
period.

To use the SDK_BUS_EXP_InsertBusinessExpenseDetail.asp page:

1. Get the SDK_BUS_EXP_PER collection in Sub insertBusinessExpenseDetail.

2. Get the SDK_BUS_EXP_PER collection, using the Item method.

3. Get the SDK_BUS_EXP_DTL collection.

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

4. Get the SDK_BUS_EXP_DTL using the Item method.

5. Create a form to get the properties for SDK_BUS_EXP_DTL.

6. Get the connection information forwarded from the previous page

7. Get the key fields.

8. Submit the form.

The Save button calls the JavaScript function saveBusinessExpenseDetail, sets action of the form to
SDK_BUS_EXP_SaveBusinessExpenseDetail.asp, and submits the form.

SDK_BUS_EXP_InsertBusinessExpensePeriod.asp

This ASP file enables the user to insert a new business expense period.

To use the SDK_BUS_EXP_InsertBusinessExpensePeriod.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Call the insertBusinessExpensePeriod function to insert a new business expense period.

4. Get the business expense period.

5. Insert a new item into the collection.

Use the InsertItem method is used to insert a new item in the SDK_BUS_EXP_PER collection.

A field to enter the SDK_BUS_PER_DT is created.

6. Submit the form.

Use the Save button to the JavaScript function newBusinessExpensePeriod. This function sets the action
of the form to SDK_BUS_EXP_NewBusinessExpensePeriod.asp and submits the form.

SDK_BUS_EXP_NewBusinessExpensePeriod.asp

This ASP file enables the user to update the expense period data as well as insert and delete business expense
details.

To use the SDK_BUS_EXP_NewBusinessExpensePeriod.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Get the SDK_BUS_EXP_PER_COLLECTION.

Execute the InsertItem method. Set the SDK_EXP_PER_DT property and execute the Save method.

SDK_BUS_EXP_SaveBusinessExpenseDetail.asp

This ASP file enables the user save submitted business expense details.

Using the Component Interface Software Development Kit Chapter 8

102 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To use the SDK_BUS_EXP_SaveBusinessExpenseDetail.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Save the business expense detail and get the SDK_BUS_EXP_PER collection.

Using Submit saveBusinessExpenseDetails accomplishes both of these tasks. First it saves the business
expense detail and then it gets the SDK_BUS_EXP_PER collection.

4. Use the Item method to get SDK_BUS_EXP_PER.

5. Get the SDK_BUS_EXP_DTL collection.

6. Get the SDK_BUS_EXP_DTL, using the InsertItem method. Set the properties.

7. Execute the Save method.

SDK_BUS_EXP_SaveBusinessExpensePeriod.asp

This ASP file enables you to update the end date of an existing expense period, and provide options to insert
or delete expense details.

To use the SDK_BUS_EXP_SaveBusinessExpensePeriod.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Save the business expense period for the selected employee ID and business expense period. Get the
specific business expense period by using the Item method. Set the SDK_EXP_PER_DT property with
the new value and execute the Save method.

SDK_BUS_EXP_Signon.asp

This section describes the behavior of the SDK_BUS_EXP_Signon.asp sample.

This ASP file enables the user to provide signon information and connect to the application server. When you
provide and submit the form action, the code in SDK_BUS_EXP_GetSearchParameters.asp is invoked. When
you click the Submit button, the JavaScript function checkRequiredFields() runs, which checks whether all
the connect information is provided. The connection information is forwarded to the next page, using hidden
fields.

SDK_BUS_EXP_UpdateBusinessExpensePeriod.asp

This ASP file enables you to update or delete expense period details data from and existing expense period.

To use the SDK_BUS_EXP_UpdateBusinessExpensePeriod.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Update business expense details for the selected employee ID and business expense period

Chapter 8 Using the Component Interface Software Development Kit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

4. Get the business expense period to modify using Sub updateBuseinssExpensePeriod.

Submitting updateBusinessExpensePeriod gets the business expense period collection. It passes
PERIODNUM to the Item method to get the business expense period to be modified.

This page also lists the business expense details, using the getBusinessExpenseDetails function.

5. Use the Save button to save the changes and submit the form.

The Save button uses the JavaScript function saveBusinessExpensePeriod to save changes made to the
business expense period. The function saveBusinessExpensePeriod sets the form action to
SDK_BUS_EXP_SaveBusinessExpensePeriod.asp and submits the form.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

Chapter 9

Using the Excel-to-Component Interface
Utility

This chapter provides an overview of the Excel-to-Component Interface utility and discusses how to:

• Run the Excel to Component Interface utility.

• Set up connection information.

• Create templates.

• Enter data on the data input sheet.

• View staged data.

• Create SOAP/XML requests.

• Send requests.

• Receive responses.

• Diagnose and resolve errors.

• Add new languages.

Understanding the Excel-to-Component Interface Utility

Use the Excel to Component Interface utility and component interfaces to upload data from Microsoft Excel
into PeopleSoft databases. Each source workbook contains both worksheets and Excel Visual Basic code
modules that execute business logic for each transaction.

Use the Microsoft Excel workbooks as a template to create worksheets that are specific to the business logic
that you need to use when you are uploading data to the PeopleSoft system. You can copy the data input sheet
to other workbooks for distribution without copying the code modules.

The code formats spreadsheet data into a PeopleSoft readable Document Object Model (DOM) structure, and
submits it to the PeopleSoft database. Next a PeopleCode program parses the DOM structure and uses the
component interface to create entries in the PeopleSoft database, validating the data submitted against the
business logic that is built into the PeopleSoft component. Because the component interface is a wrapper
around the component, all logic applied during data entry is applied when you are loading data through this
tool.

Using the Excel-to-Component Interface Utility Chapter 9

106 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The component interface executes all the necessary PeopleCode events and the field-level edits. Based upon
results from saving the component interface, another DOM is created in the PeopleCode that returns success,
warnings, errors, or a combination of the three to the Microsoft Excel document. Records in error can be
corrected and resubmitted.

Prerequisites for Using the Excel to CI Utility
To use the Excel to CI utility you must have the following software installed.

Check the My Oracle Support web site for the currently certified versions of software supported.

• Microsoft Excel.

• Microsoft Visual Basic 6.0 SP5: Run-Time Redistribution Pack.

You can download this software from the Microsoft website.

See http://www.microsoft.com/downloads/Search.aspx?displaylang=en.

• Microsoft Core XML Services (MSXML) 6.0 or higher.

You can download this software from the Microsoft website.

See http://www.microsoft.com/downloads/Search.aspx?displaylang=en.

Understanding Building Component Interfaces for the Excel to
Component Interface Utility

To use the Excel to Component Interface utility effectively, you must have a complete understanding of the
component that you are using and the component interface that is built around it. In addition, you should
know what data needs to be entered and which fields on the component need to be exposed as component
interface properties. Fields that are not relevant for data input should not be exposed on the component
interface. This reduces processing time when you are loading data, as well as saving time when you are
building the template because no need to delete unnecessary properties on the template will exist.

Some component interface structures will need to be modified before they can be used to load data through
the utility. Components that have logic to insert multiple rows in child collections, and then require more
values to be set on those collections, will need modification to the component to work with the Excel to
Component Interface utility. Change the component so that the logic to insert and partially populate these
rows does not happen by default through the component interface.

%CompIntfc and %CompIntfcName can be used so that this logic does not fire either from any component
interface or from the component interface that you created for use with the Excel to Component Interface
utility.

Additionally, components that have no keys at level 0, but rely on logic at level 0 to load the level 1
collection, cannot be loaded by using the Excel to Component Interface utility.

Component interfaces that rely on CommitWork to save the data cannot be used in the Excel to Component
Interface utility.

http://www.microsoft.com/downloads/Search.aspx?displaylang=en
http://www.microsoft.com/downloads/Search.aspx?displaylang=en

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Prompt and translate table values are validated when data is saved and submitted to the database through the
Excel to Component Interface utility. This is different from the behavior on the page when prompts and
translates are validated interactively. Some components may use prompts that are dynamically populated. For
those situations, you must know what the valid values for the prompt will be.

Note. Remember that any changes made to the structure of a component interface will also need to be
reflected in the template. Always ensure that the component interface and the template in the Excel to
Component Interface utility are in sync. Structural changes made in only the component interface will cause
an error in the Excel to Component Interface utility when data is submitted to the database.

Testing Component Interfaces
Before using the Excel to Component Interface utility run the component interface through the component
interface tester in three-tier mode. Testing the component interface enables you to troubleshoot any problems
before running the component interface through the utility. If the component interface does not work in the
tester, it will not work in the Excel to Component Interface utility either. The component interface tester is
located on the Tools menu in PeopleSoft Application Designer.

See Chapter 3, "Developing Component Interfaces," Testing Component Interfaces, page 46.

Performance Expectations
The performance of a component interface depends entirely upon the underlying component. If the
component has a complex user interface with many pages and scrolls, the component interface generally will
have a slower processing time. The best performance times are found with small and medium-complexity
component interfaces.

PeopleCode Behavior and Limitations
Certain PeopleCode functions and events that are specific to the user interface do not execute through the
component interface. You will need to modify PeopleCode for the component, pages, and records when you
build the component interface for the component.

PeopleCode events and functions that relate exclusively to the page interface and online processing cannot be
used by component interfaces. These include:

• Search dialog processing.

• Menu PeopleCode and pop-up menus.

• Transfers between components, including modal transfers.

• Dynamic tree controls.

• ActiveX controls.

• DoSave and DoSaveNow.

• Functions that are ignored in a component interface call.

Using the Excel-to-Component Interface Utility Chapter 9

108 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Chapter 4, "Programming Component Interfaces Using PeopleCode," Understanding PeopleCode
Behavior and Limitations, page 57 and PeopleTools 8.52: PeopleCode API Reference, "Component Interface
Classes," Understanding Component Interface Class.

Default Properties
When you create a new component interface in PeopleSoft Application Designer, the system can create
default properties for all the fields exposed on the component interface that meet certain criteria.

When you are creating a new component interface, the following requirements must be met to qualify as a
default property.

The fields should be of the following types:

• Character

• Long character

• Number

• Signed number

• Date

• Time

• Datetime

The field should be one of the following page control types and must be exposed on the page:

• Edit box

• Drop-down list box

• Check box

• Radio button

See Chapter 3, "Developing Component Interfaces," Creating New Component Interfaces, page 10.

Running the Excel to Component Interface Utility

This section discusses how to:

• Grant access to the WEBLIB_SOAPTOCI iScript.

• Enable the Developer menu in Microsoft Excel 2007 and Later Versions.

• Enable macros in Microsoft Excel.

• Start the Excel to Component Interface utility.

• Converting Excel to Component Interface utility templates to the current Excel version.

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

• View the Excel to Component Interface utility coversheet.

See Also

Chapter 9, "Using the Excel-to-Component Interface Utility," Prerequisites for Using the Excel to CI Utility,
page 106

Granting Access to the WEBLIB_SOAPTOCI iScript
To use the Excel to Component Interface utility, you must grant access to the iScript WEBLIB_SOAPTOCI
in the permission list of the user who is building the template.

See PeopleTools 8.52: Security Administration, "Setting Up Permission Lists."

Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions
The Developer menu in Microsoft Excel contains options to work with Microsoft Visual Basic, macros, sheet
properties, and so on.

In Microsoft Excel 2007 and later versions the Developer menu is not automatically enabled and does not
appear on the menu ribbon in the default view of the Excel workspace. In the other versions of Microsoft
Excel supported for use with the Excel to Component Interface utility, the Developer menu appears by
default.

The following example shows the menu ribbon that appears in the default Microsoft Excel 2007 workspace
view:

The menu ribbon that appears in the default Microsoft Excel 2007 workspace.

To use the Excel to Component Interface utility, you need access to some of the features accessed through via
the Developer menu, and therefore you must enable the menu. The following example shows Microsoft Excel
2007 workspace with the Developer menu enabled on the menu ribbon:

The Developer menu enabled on the Microsoft Excel 2007 menu ribbon.

Once enabled, the Developer menu appears on the far right on the menu ribbon.

Using the Excel-to-Component Interface Utility Chapter 9

110 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To enable the Developer menu in Microsoft Excel 2007 and later versions:

1. Launch Microsoft Excel 2007 or your later version.

2. In the upper left corner of the workspace, click the circular Microsoft Office icon.

The Recent Documents menu appears.

3. Click the Excel Options button at the bottom of the menu.

The Excel Options page appears.

4. In the Top Options For Working with Excel section, check the Show Developer Tab in the Ribbon option.

5. Click the OK button.

The Microsoft Excel 2007 workspace appears and the Developer menu appears on the menu ribbon.

Enabling Macros in Microsoft Excel
The Excel to Component Interface utility relies on macros; therefore, you must enable macros in Microsoft
Excel for the utility to work. When a Microsoft Excel spreadsheet is opened, the system displays a dialog box
asking you to select whether to enable macros on the spreadsheet. Always select Enable Macros so that the
macros delivered with the Excel to Component Interface utility can function.

To ensure that the macros are available to run, you must set the security level in Microsoft Excel to allow
macros to open.

To enable macros in Microsoft Excel:

1. Open the Excel to Component Interface utility.

2. From the Excel menu, select Tools, Macros, Security.

3. Select either Medium or Low to enable the macros.

4. Select OK.

Starting the Excel to Component Interface Utility
The Excel to CI utility spreadsheet is located in the PS_HOME/excel directory. The file name is
ExcelToCI2007.xlsm.

Converting Excel to Component Interface Utility Templates to the Current
Excel Version

You can use customized Excel-to-CI templates based on versions of Microsoft Excel released previous to
Excel 2007. To preserve the macros embedded in your customized Excel-to-CI templates, you must convert
the templates to Excel 2007 format.

Excel 2007 files have the extension .xlsm.

To convert an Excel-to-CI template to Excel 2007 format:

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

1. Open a template in Excel 2007.

2. Click the Microsoft Office Button and choose Save As.

3. Click Excel Macro-enabled Workbook.

A Save As dialog box appears.

4. Choose a save location and enter a name for the workbook.

5. The workbook name must have the extension xlsm, such as myworkbook.xlsm

6. Click the Save button.

Viewing the Excel to Component Interface Coversheet
The coversheet of the Excel to Component Interface utility workbook gives a brief overview of the process
flow and functionality of the tool.

Access the Coversheet tab in ExcelToCI2007.xlsm:

Coversheet tab

Setting Up Connection Information

This section discusses how to:

Using the Excel-to-Component Interface Utility Chapter 9

112 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Enter connection information.

• Connect to the database to create a template and submit data.

Entering Connection Information
Access the Connect Information tab in ExcelToCI2007.xlsm by clicking the Connection Information tab:

Connection Information tab

The information on this page is required to create a new template or to submit data to the database. You will
need to specify environment information as well as information about how data should be transmitted. The
Action field will be populated automatically based on your setup and the component interface that the
template is associated with.

The initial connection settings will be the PeopleSoft default values. You will need to modify these values for
your specific implementation of PeopleSoft. If you are unsure what to enter for these values, check with your
system administrator.

The connection options are:

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

Web Server Machine Name The name of the PeopleSoft web server to which you are connecting.

Protocol The protocol used to access the web server. The default is HTTP. The
preferred protocol is HTTPS.

HTTP Port The HTTP port number that the web server uses. The default is 80.

Portal The name of the portal you are using. EMPLOYEE is a default portal
shipped with PeopleSoft.

PeopleSoft Site Name The PeopleSoft site name that you entered when you installed the
PeopleSoft Internet Architecture. The default is ps.

Node The PeopleSoft default local node name. The default is PT_LOCAL.

Language Code The code for the language in which the data is submitted to the database. If
no language code is specified, the base language is used.

See Chapter 9, "Using the Excel-to-Component Interface Utility,"
Translations and Multilingual Support, page 115.

Chunking Factor The number of rows of data to be transmitted to the database at one time.
The default is 40.

Error Threshold The total number of errors that are permitted before submission to the
database ceases. When the error threshold is exceeded, an error message
appears and submission to the database stops.

Submit Blanks as Input When this option is set to Yes and a character input field selected for input
contains only blank spaces, the field will be included for submission instead
of being ignored. This option is set to No by default, for backwards
compatibility.

If full-width blank space Unicode characters are entered as an input value in
ExcelToCI, (this is achieved by using an encoding that supports such
Unicode characters) the field will be submitted, the blanks will be sent, and
the value will not be trimmed before it is saved to the database.

If regular ASCII blank spaces (also known as half-width characters) are
entered as a value for a character field, the field will be submitted, but the
value will be trimmed, so an empty string will be saved. In essence, the
field value will be cleared.

Using the Excel-to-Component Interface Utility Chapter 9

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Action The value for this field is supplied by the system when the component
interface is retrieved from the database. However, you can change the
supplied value by selecting it from the Action drop-down list.

The types of actions available are based on the structure of the component
interface. The actions are:

• Create.

This option is available if the component interface has create keys. Use
this mode when new keys are being added at level 0.

• Update.

This option is available if the component interface does not have create
keys. Use this mode if you are adding new children to an existing
parent.

• UpdateData.

Use this option to update specific non-key values that already exist. The
system uses the keys to locate the row, and when a match is found, the
row is updated with new data. If a key match is not found by the
system, it displays an error message indicating which collection was
missing a key match.

When using the UpdateData action, you must provide all keys for the
collection for the system to modify the data.

Note. If you want to insert an effective-dated collection at Level 1
containing a child collection at Level 2, you may need to use UPDATE to
insert the parent row at level 1 and then use UPDATEDATA to insert the
child row at level 2. This is because child rows are copied forward from the
current effective-dated collection as a result of the insertion of a new
effective-dated parent row. These child rows will be updated by the
component processor with the new effective date, and may have the same
level 2 keys as the Level 2 child row that you are trying to submit from
ExcelToCI.

See PeopleTools 8.52: PeopleTools Portal Technologies, "Understanding PeopleSoft Pure Internet
Architecture" and PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security."

Error Thresholds and Chunking

A running error count is kept for each chunk of data that is being submitted to the database. When the total
error count exceeds the error threshold that you specified on the Connection Information tab, submission to
the database stops and the system displays an error message. Rows that errored out will have a status of Error
on the data input page and should be corrected. The data submitted to the database before the error threshold
was reached will remain in the target database. Rows not yet submitted will be submitted when the data is
restaged and submitted.

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Translations and Multilingual Support
You can use the Excel to Component Interface utility to upload data from any installed language. The Excel
to CI utility delivers separate Excel macros for each delivered language. The macros contain the translated
strings used as labels on the main spreadsheet. The macros are located in the appropriate language directory
found in the PS_HOME/EXCEL directory.

Enabling Non-English Languages

To enable a non-English language in the Excel to CI Utility:

• Change the language code on the spreadsheet Connect Information tab to the language to the language
you want to use.

• Change the reference to the related language macro to be used, as the default macro contains English
language strings.

To change the related language macro, in Excel select the Tools, Macro and right-click on the Visual
Basic Editor option. Once in Visual Basic, select Tools, References, and click on the RelLangMcro entry.
Change the file to be used to the one with the same name but located inside the translated language
directory of your choice. Click OK and then save the change.

• If you are using a language in which a different character set or numeric formatting is used, you need to
set the locale of your client machine to match that language. To do so, open Control Panel, Regional
settings, and select the correct language and input locale.

Connecting to the Database to Create a Template and Submit Data
Your PeopleSoft login information is needed for both creating the template and submitting data to the
database.

Access the Login dialog box by selecting the Template tab and then clicking the New Template button, or by
clicking the Submit Data button on the Staging and Submission tab:

Login dialog box

The system uses your user ID and password to ensure that you have the correct permissions to access the
component interface that you are creating the template on. You must be granted permission to access the
component interface that you are using.

Using the Excel-to-Component Interface Utility Chapter 9

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

User ID/Password Enter your PeopleSoft user ID and password.

Component Interface Name Enter the name of the component interface for which you want the template
created.

Generate Log Select the Generate Log check box to create one log file for
ExcelToCI2007.xlsm and one for the SOAPTOCI Web Library.

Note. Unless you are troubleshooting errors, you should run the Excel to
Component Interface utility without creating log files. Logs should be
generated for debugging purposes only.

See Chapter 9, "Using the Excel-to-Component Interface Utility," Viewing Log Files, page 129.

Creating Templates

The template page is a graphical representation of the component interface structure that you will be using to
load data. The structure of the component interface is retrieved from the database when a new template is
built. All of the fields that are exposed through the component interface appear on the template page. Fields
that are read-only on the component interface will not appear on the template.

The new template macro builds the parent-child relationship within Microsoft Excel based upon the
component interface scroll-level definition. The system adds a new row for each scroll level and assigns a
unique identifier to it.

Access the Template tab in ExcelToCI.xlsm to create your template:

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

Template tab

Collection The name of the component interface collection. A collection is a property
that points to a scroll, rather than a field, in the underlying component for a
component interface.

Property The component interface property name. Typically, this is also the name of
the field on the page.

Using the Excel-to-Component Interface Utility Chapter 9

118 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Record Type This number represents the parent/child relationship of the records. The
level 0 scroll record is always represented by 000. Level 1 scroll records
appear with numbers that start with 100 and always have 00 as the last two
numbers.

Level 2 scrolls are identified by numbers that start with the identifier of
their level 1 parent and end with a 0.

Level 3 scrolls are identified by the first number from the level 1 parent, the
second number from its level 2 parent, and then the third number from its
own position in the list.

The numbers for each scroll level are incremented based on the number of
records that exist at that level. For example, level 0 would be 000, level 1
would be 100, level 2 would be 110, and so on.

Note. Component interfaces that have more than 10 collections at a given
level will be incremented with alphabetic identifiers. For example, 800,
900, A00, and so on.

Field Type The standard PeopleSoft type for the field, for example, Date,Character,
and so on.

Field Length The length of the field as defined by PeopleSoft. For numeric fields and
signed number fields, the length is broken down into integer and decimal
positions. For example, a length of 15.3 indicates 15 integer positions and
three decimal positions.

Key/Required If the field is a key field, the system will display a Y to the left of the
forward slash. When the field is not a key, it will be blank. If the field is a
required field, the system will display an R to the right of the forward slash.
When the field is not required, it will be blank. This information comes
from the record definition itself.

Note. Fields that are either keys or required must be set in order to submit
data successfully.

Sequence The sequence number represents the property order in the template.

Status This field displays the load status on the Staging and Submission page.

Line Noline number This corresponds to the line number on the Input Data and the Staging and
Submission pages.

Understanding the Template Actions Toolbar
The template actions toolbar is made up of buttons that you use to create and modify a template, as well as
create a data input sheet. You can resize the toolbar and move it to any location on the page or even drag it
onto the existing standard Microsoft Excel toolbar. When you have moved the toolbar to a location, it will
remain there until you move it again. You do not need to move the toolbar each time you open the workbook.

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Each button on the toolbar has help text that describes the purpose and use of each of the buttons when you
place the cursor over the button.

New Template Builds a new template based upon a component interface. The New
Template macro builds the parent-child relationship within Microsoft Excel
based upon the component interface structure.

When you build a new template, the system prompts you for your sign in
information.

New Data Input Builds a new data input sheet based upon the selected input cells. When you
build a new data input sheet, the system prompts you as to whether you
want to overwrite the existing sheet. If you select Yes, a new data input
sheet is created, overwriting the former one.

Select Input Cell Selects an individual cell to be included in the data input sheet. Cells that
have been selected as input cells are highlighted in pink.

Select All Input Cells Selects all properties to be included in the data input as input cells. When a
cell is selected as an input cell, it is highlighted in pink.

Restore Input Cells Restores the template to its original state and clears default values. The
fields in the template will be highlighted in gray, indicating that nothing is
included for submission.

Insert New Child Copies the selected row to be inserted as a new child. This creates multiple
occurrences of the same record type.

For example, if the selected row has a template identifier of 100, a new row
is inserted that also has an identifier of 100 and is an exact duplicate of the
selected row.

Note. Use Insert New Child when multiple children must be submitted
under the same parent record. Multiple children should not be created at
identifier 000.

Include All for Submission Includes all properties on the spreadsheet to be included for submission to
the database. Cells that are included for submission appear only on the
Staging and Submission sheet and do not appear on the data input sheet.
Properties that are included for submission are highlighted in blue.

Include for Submission Includes a single property to be included on the Staging and Submission
sheet. Properties that use default values from the template must be included
for submission. Cells that are included for submission generally are
properties that contain default values or properties that you would like to
see in the structure of the Staging and Submission sheet. Properties that are
included for submission are highlighted in blue.

Deselect Input Cell Changes a cell that was previously selected as an input cell to a cell that is
included for submission. The cell is no longer included on the data input
sheet but appears as part of the structure on the Staging and Submission
sheet.

Using the Excel-to-Component Interface Utility Chapter 9

120 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Clear Template Clears all the data and structures on this sheet.

Do Not Include for
Submission

Does not include the selected property for submission to the database. If a
property is not included for submission, it will not appear in the structure
that is submitted to the database on the Staging and Submission sheet.
Properties that are not included for submission will appear only on the
template worksheet and are not submitted to the database. Properties that
are not included for submission are highlighted in gray.

Note. When you create a new template or a new data input sheet, the system clears the existing worksheet of
all existing information. If you have a template or data input sheet that you need to save from previous
uploads, save a copy of the worksheet before you create a new template or data input sheet.

Entering Data into the Template
When determining which properties to include as input cells and which properties to include for submission,
remember that the component interface uses the same business logic and executes the same PeopleCode as if
the record were entered online using the page in your PeopleSoft application. To provide the minimal data
necessary, these fields must be provided either with default (hard-coded) values or values that you provide
using the data input sheet.

Note. You should unit test the template that you created with a few sample entries, and then verify your
results before using the interface for mass input. For example, if you forgot to select a property, you will need
to build a new data input sheet. If the results of the submission are satisfactory, continue entering data.

Adding a New Child Record

By default, each collection is represented once on the template. To insert copies of a given collection, select
that collection and click the Insert New Child button to create a copy of the selected row. The collection that
you selected is copied so that you can have two rows under the same parent.

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

Template tab – child row added

Note. On the data input sheet (when the hierarchy is flattened) you will see duplicate columns where multiple
children exist.

Adding Default Values

Some fields have default values associated with them, either in the record definition or at runtime when the
record is created on the database. Additionally, many components trigger PeopleCode, which supplies default
values, as well. To accept the database default, include the property for submission and the system default
will be used.

Some fields may exist for which you want to create your own default. For example, if you want to set the
value of a field named Status as of Effective Date to A for every row that you submit, enter that value for the
field in the template. Then include the cell for submission on the template. The field will not appear on the
data input page, but the value will appear in the field on the Submit to Database page. This is useful for
effective dates, status fields, set IDs for simple imports, and so on.

When providing values for translate fields or prompt tables, provide the field value rather than the short or
long description for the translate value. If you are unsure of the field values, check in the record or field
definition in PeopleSoft Application Designer.

Entering Data on the Data Input Sheet

The data input sheet enables you to enter data into the Excel to Component Interface utility so that it can be
loaded to the database by using the component interface that you've selected. You can enter data manually or
you can cut and paste it from another spreadsheet or third-party application.

Using the Data Input Sheet
Access the data input tab to enter data:

Using the Excel-to-Component Interface Utility Chapter 9

122 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Data Input tab

The field labels that appear on the data input sheet are those properties that you selected as input cells on the
template. Each scroll level is identified by color. The record type from the template is also displayed for each
property.

The system creates default date, datetime, and number formats when it creates the template. You can modify
this format by using default cell formatting of Microsoft Excel when entering data, with the exception of the
d/m/yy format for dates and datetimes. Instead, always use a d/m/yyyy format for dates and datetimes. To
access the formatting feature, select Format, Cells from the Excel menu.

The data input sheet is also used to correct data that failed to submit to the database. Errors that are flagged
on the Submit to Database page are posted to the data input page, and when you have corrected them, the
items marked in error can be staged again to the Staging and Submission sheet.

Data Input Actions

The data input Actions toolbar contains the Stage Data for Submission button, which takes the data that you
entered on the data input sheet and stages it for submission to the database. When the data is staged, it appears
on the Staging and Submission sheet in the hierarchical template structure. At this point, you should check
that all fields are populated as expected. When the data is staged, it displays both the data on the data input
sheet and the data that you specified as default values.

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

Viewing the Staged Data

Access the Staging and Submission tab:

Staging and Submission tab

Staging and Submission Actions Toolbar

Post Results The results of the submission are copied to the data input sheet, where you
can view the status of each row that is submitted and make any necessary
corrections to rows that have the status of Error.

Submit Data The login dialog box appears. You must specify your user ID and password.

The system submits the data to the database in the chunks that you specified
on the Connection Information sheet.

After correcting any errors on the data input sheet, you can submit the data
again. The items that had been marked as Error will be resubmitted,
whereas those marked OK and Warning will be ignored.

Using the Excel-to-Component Interface Utility Chapter 9

124 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Error When Submitting Existing Keys

If you receive the error message Row already exists with the specified keys and you are in CREATE mode,
the key already exists at level 0 or is part of the search record.

To verify that the key exists:

1. Open the component interface in PeopleSoft Application Designer.

2. Launch the component interface tester by selecting Tools, Test Component Interface.

The component interface Tester search dialog box appears. This dialog box displays the keys (in the left-
hand columns) for getting, creating, or finding an instance of the component interface.

3. Enter the value for the key that you are testing.

4. Click Get Existing for the key that you are about to add, using the Excel to component interface utility.

If the Get Keys command returns the key, the key already exists and you must add data by using
UPDATE mode.

If you receive a message that no row exists for the key, then the key does not exist at level 0 and the data
should be added by using CREATE mode.

See Chapter 3, "Developing Component Interfaces," Testing Component Interfaces, page 46.

Correcting and Resubmitting Data
After you submit the data to the database, results of the process appear on the Staging and Submission sheet.
If a submission had an error, the errored status appears on the Staging and Submission sheet. Use the data
input page to correct the data and then resubmit it to the database. Continue this process of correcting errors
and resubmitting the data until no errors remain.

Note. Data that was not submitted because the error threshold was reached will have no status. When the data
that created the error is corrected on the data input sheet, the data that was not submitted will be staged to the
database.

Submission Statuses

Errors received for each record submitted appear in a comment field when you move the cursor over the
status column. The records marked OK in green have been successfully submitted and cannot be restaged for
submission and can be kept as a record of work completed.

One of the following three status values can appear when you submit data to the database:

Ok The submission to the database finished successfully. The field is
highlighted in green.

These records cannot be restaged for submission.

Warning The data was saved to the database successfully, but a warning was
generated in the process. The field is highlighted in yellow.

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

Error The data was not saved to the database due to an error. This field is
highlighted in red.

To see the error message that the component interface generated, place your
cursor over the Status field. This message indicates how the data needs to
be corrected.

Creating SOAP/XML Requests

You can construct a SOAP/XML (Simple Object Access Protocol/Extensible Markup Language) request to
create, update, or get component interface rows. The request and response contain component interface data
in a SOAP/XML format.

Request Format
The following example shows the request format:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" ⇒
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Action__CompIntfc__CIName>
 Tags and Data
 </Action__CompIntfc__CIName>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Valid actions are Create, Get, Update, and Updatedata.

CIname is the name of the component interface.

Tags and Data contains the tags and data for the component interface row or rows.

Sample Create Request
The following example shows a Create request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <CREATE__CompIntfc__SUPPORT_DOC_TBL>
 <SUPPORT_DOC_ID>POLICE</SUPPORT_DOC_ID>
 <SUPPORT_DOC>
 <DESCR>Police Report</DESCR>
 <DESCRSHORT>Police</DESCRSHORT>
 </SUPPORT_DOC>
 </CREATE__CompIntfc__SUPPORT_DOC_TBL>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Using the Excel-to-Component Interface Utility Chapter 9

126 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Sample Get Request
The following example shows a Get request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Get__CompIntfc__SDK_BUS_EXP>
 <SDK_EMPLID>8052</SDK_EMPLID>
 </Get__CompIntfc__SDK_BUS_EXP>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Update Request
The following example shows an Update request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <UPDATE__CompIntfc__SDK_BUS_EXP>
 <SDK_EMPLID>8001</SDK_EMPLID>
 <SDK_BUS_EXP_PER>
 <SDK_EXP_PER_DT>08/14/2002</SDK_EXP_PER_DT>
 <SDK_BUS_EXP_DTL>
 <SDK_CHARGE_DT>08/14/2002</SDK_CHARGE_DT>
 <SDK_EXPENSE_CD>01</SDK_EXPENSE_CD>
 <SDK_EXPENSE_AMT>1234.56</SDK_EXPENSE_AMT>
 <SDK_CURRENCY_CD>USD</SDK_CURRENCY_CD>
 <SDK_BUS_PURPOSE>Client Visit</SDK_BUS_PURPOSE>
 <SDK_DEPTID>10100</SDK_DEPTID>
 </SDK_BUS_EXP_DTL>
 </SDK_BUS_EXP_PER>
 </UPDATE__CompIntfc__SDK_BUS_EXP>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Updatedata Request
The following example shows an Updatedata request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <UPDATEDATA__CompIntfc__USER_PROFILE>
 <UserID>VP1</UserID>
 <UserDescription>updated description</UserDescription>
 <EmailAddresses>
 <EmailType>BUS</EmailType>
 <EmailAddress>Updated@updated.com</EmailAddress>
 </EmailAddresses>
 </UPDATEDATA__CompIntfc__USER_PROFILE>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

Sending Requests

To send the request, post the XML code to the URL of the PeopleSoft Pure Internet Architecture server with
the appropriate path to the iScript on the server.

Note. The PeopleSoft user ID and password must be sent in the SOAP request header with the identifiers of
userid and pwd. You should send the request on a secure site.

Use this format:

Protocol(http or https)>://<WebServerMachineName>:<HTTPPort>/psc/ps/<Portal>⇒
/<Node>/s/
WEBLIB_SOAPTOCI.SOAPTOCI.FieldFormula.IScript_SOAPToCI?&disconnect=y&postDataBin=y

WebServerMachineName Machine name of the server.

HTTPPort Port of the server.

Portal Portal defined on the PeopleSoft Pure Internet Architecture server.

Node Node defined on the PeopleSoft Pure Internet Architecture server.

For example,

http://MyWebServer:80/psc/ps/EMPLOYEE/PT_LOCAL/s/WEBLIB_SOAPTOCI.SOAPTOCI.FieldFormul
a.IScript_SOAPToCI?disconnect=y&postDataBin=y

Receiving Responses

This section provides examples of response types.

Viewing a Response if a Row Already Exists
This is one example of the error response. The messages vary depending on the type of error.

Using the Excel-to-Component Interface Utility Chapter 9

128 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <USER_PROFILE>
 <Error-Warning>
 <Message>
 <Type>Error</Type>
 <MessageSetNumber>91</MessageSetNumber>
 <MessageNumber>49</MessageNumber>
 <MessageText>Row already exists with the specified keys.
 {USER_PROFILE} (91,49)</MessageText>
 <ExplainText>A rows already exists in the database with the ⇒
 specifiedkeys.
 </ExplainText>
 </Message>
 </Error-Warning>
 <Key_information>
 <UserID>PTDMO10</UserID>
 </Key_information>
 </USER_PROFILE>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Viewing a Sample Get Request and Response
The following XML code gets an SDK_BUS_EXP component interface row for an employee with an
employee ID of 8052:

<?xml version="1.0"?>
<SDK_BUS_EXP action="GET">
 <SDK_EMPLID key="Y">8052</SDK_EMPLID>
 </SDK_BUS_EXP>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XML response for this employee is:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SDK_BUS_EXP>
 <SDK_BUS_EXP_PER>
 <SDK_EMPLID>8052</SDK_EMPLID>
 <SDK_EXP_PER_DT>2000-11-09</SDK_EXP_PER_DT>
 <SDK_BUS_EXP_DTL>
 <SDK_EMPLID>8052</SDK_EMPLID>
 <SDK_EXP_PER_DT>2000-11-09</SDK_EXP_PER_DT>
 <SDK_CHARGE_DT />
 <SDK_EXPENSE_CD />
 <SDK_EXPENSE_AMT>0</SDK_EXPENSE_AMT>
 <SDK_CURRENCY_CD>USD</SDK_CURRENCY_CD>
 <SDK_BUS_PURPOSE />
 <SDK_DEPTID />
 </SDK_BUS_EXP_DTL>
 </SDK_BUS_EXP_PER>
 </SDK_BUS_EXP>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Chapter 9 Using the Excel-to-Component Interface Utility

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 129

Diagnosing and Resolving Errors

This section discusses how to:

• View the log files.

• Resolve error messages for client environments.

Viewing Log Files
If you select the check box to create log files when building a template or submitting to the database, two log
files are created—one that logs the activity of ExcelToCI2007.xlsm and the other that logs the SOAPTOCI
Web Library.

The log for ExcelToCI2007.xlsm is created in the temp directory on the workstation running the Microsoft
Excel spreadsheet.

The log for the Web Library, SOAPTOCI<unique_number>.log, is created on the application server in the
<PS_CFG_HOME> directory. This file contains both the SOAP request and the SOAP response.

Log files are written for each chunk of data that is sent to the database.

Resolving Error Messages for Client Environments
The following table lists common errors and error messages and their possible resolutions.

Error Message Possible Resolution

Component not correctly registered Reinstall Visual Basic 6.0 SP5: Run-Time Redistribution
Pack found on the Microsoft download site.

ActiveX component not correctly registered (Error 336) Reinstall Visual Basic 6.0 SP5: Run-Time Redistribution
Pack found at the Microsoft downloads website.

Error Number: -2147024770 Description: Automation
error. The specified module could not be found.

Perform the following steps:

1. Open Windows Explorer.

2. Navigate to c:\winnt\system32 directory and locate
msxml6.dll.

3. Right-click the DLL and select Register COM Server.
The message DLLRegisterServer in
c:\winnt\system32\msxml6.dll succeeded. will appear.

4. Click OK.

Using the Excel-to-Component Interface Utility Chapter 9

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Error Message Possible Resolution

Error Number: 429 Description: ActiveX component can't
create object.

Perform the following steps:

1. Open Windows Explorer.

2. Navigate to c:\winnt\system32 directory and locate
msxml4.dll.

3. Right-click the DLL and select Register COM Server.
The message DLLRegisterServer in
c:\winnt\system32\msxml6.dll succeeded. will appear.

4. Click OK.

Error Number -214722099 Description: Automation error
in the dll.

Perform the following steps:

1. Location and open the file ExcelToCI2007.xlsm.

2. Press Alt + F11 to open the Microsoft Visual Basic
Editor.

3. Select Tools, Add references.

4. Deselect anything that begins with Microsoft XML.

5. Browse for c:\winnt\system32msxml6.dll and click
OK.

6. Select that version of msxml and click OK.

7. Click Save.

Not Authorized (90,6) The user who is trying to access the component interface
from ExcelToCI does not have access to the component
interface. Please provide access using PeopleTools
Security.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

Appendix A

Creating Component Interface-Based
Services

This appendix provides an overview of creating component interface-based services,

Understanding Generating Component Interfaced-Based Services

PeopleSoft Integration Broker enables you to take an existing component interface and create a service that
can invoke the component interface.

Further, it creates service operations, including request messages and response messages (if appropriate). The
system creates an inbound any-to-local routing for the service operation version, as well as handlers for each
method you choose to include in the service.

All service operations you generate from component interfaces are synchronous service operations.

After you create the service operation you can access the service definition to view and capture the WSDL.

See PeopleTools 8.52: PeopleSoft Integration Broker, "Creating Component Interface-Based Services."

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

Appendix B

Using Services to Validate Prompt Table
and Translate Field Values

This section discusses how to:

• Validate prompt table field values.

• Validate translate (XLAT) field values.

• Use messages to request valid prompt table and translate (XLAT) field values.

• Use response messages to retrieve valid prompt table and translate (XLAT) field values.

Note. This section also includes examples of request and response messages used in validating prompt table
and translate (XLAT) field values.

Understanding Validating Prompt Table and Translate Field Values

PeopleSoft delivers a service, PTLOOKUP, that enables integration partners to retrieve lists of
valid/allowable values for prompt and translate (XLAT) fields from PeopleSoft components on which
component interfaces are based, allowing them to validate their client application data against PeopleSoft
data.

PeopleSoft integration partners provide WSDL for this service to their integration partners using the Provide
Web Service wizard. The third-party integration partner uses the provided request message shape to specify
the field values to validate. They then send the request message to the PeopleSoft system to invoke the
service. The PeopleSoft system returns a response message to the integration partner with the field values
requested.

The PTLOOKUP service contains two service operations:

PTLOOKUPPROMT.v1 Use this service operation to return prompt table field values for prompt
tables contained in a component.

PTLOOKUPXLAT.v1 Use this service operation to return translate (XLAT) field values for
translate fields contained in a component.

Each service operation is synchronous and is delivered with a request message, a response message, a
handler, and a routing. The delivered metadata for these service operations is described elsewhere in this
section.

Using Services to Validate Prompt Table and Translate Field Values Appendix B

134 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The service operations take as their primary inputs the value being validated, the name of the table, and the
field name against which to compare. The service operations compare the input value against the lookup table
and return the result of the validation test.

Prerequisites for Validating Prompt Table and Translate Field Values

The following list outlines prerequisites for using the PTLOOKUP service to validate prompt table and
translate table field values:

• The PeopleSoft system must have Integration Broker configured and running.

• Integration partners must know and provide the field names and table names for which they are retrieving
validation information.

• Integration partners must have access to:

• PeopleSoft Application Designer to inspect PeopleSoft component, record, and field information and
properties.

• PeopleSoft Integration Broker or another services-oriented architecture environment configured and
running

Validating Prompt Table Field Values

This section discusses how to use the PTLOOKUPPROMPT service operation to validate prompt table field
values.

Understanding Validating Set Control Fields
Use service operation security permission lists to secure access to this service operation.

Requests must be sent to the PeopleSoft system using SSL or TLS.

Moreover, because prompt table field values can contain sensitive or confidential information, such as salary
grades or order categories. Access to the prompt tables targeted by the PTLOOKUPPROMPT service are
restricted by the requirement that they be added to a query access tree for which the user issuing the service
request must be granted permission.

Using the PTLOOKUPPROMPT Service Operation
Use the PTLOOKUPPROMPT service operation to validate prompt table field values. To access the service
operation, select PeopleTools, Integration Broker, Integration Setup, Service Operations and select the
PTLOOKUPPROMPT service operation.

PTLOOKUPPROMPT is a restricted service operation that is delivered with the following metadata:

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 135

Metadata Type Name Comments

Request Message PTLOOKUPPROMPT.V1 PTLOOKUPPROMPT.V1 is a document-based
message.

Response Message PTLOOKUPRESP.V1 PTLOOKUPRESP.V1 is a document-based
message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest handler that is
implemented using an application class.

The application class package delivered is
PT_IB_LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this service
operation.

Listening Connector PeopleSoftServices The default listening connector.

Validating Translate (XLAT) Field Values

This section discusses how to use the PTLOOKUPXLAT service operation to validate XLAT field values.

Note. XLAT values are effective-dated, and only the values marked as Active are used for validation.

Understanding Translate (XLAT) Table Entries
XLAT table entries associated with a field definition include the following attributes:

Attribute Description

FIELDNAME Field name, such as ABSENCE_TYPE.

LANGUAGE_CD Language code.

FIELDVALUE Value for the field; it must be between 1 and 4 characters long.

EFFDT Effective date.

VERSION Internal version number (system-maintained).

EFF_STATUS The status of the field, active or inactive.

XLATLONGNAME Thirty-character description; used as a label on pages and reports.

XLATSHORTNAME Ten-character description; used as a label on pages and reports.

Using Services to Validate Prompt Table and Translate Field Values Appendix B

136 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding Security When Validating Translate (XLAT) Field Values
Use service operation security permission lists to secure access to this service operation.

Requests must be sent to the PeopleSoft system using SSL or TLS.

Using the PTLOOKUPXLAT Service Operation
Use the PTLOOKUPXLAT service operation to validate prompt table field values. To access the service
operation, select PeopleTools, Integration Broker, Integration Setup, Service Operations and select the
PTLOOKUPXLAT service operation.

PTLOOKUPXLAT is a restricted service operation that is delivered with the following metadata:

Metadata Type Name Comments

Request Message PTLOOKUPXLAT.V1 PTLOOKUPXLAT.V1 is a document-based
message.

Response Message PTLOOKUPXLATRESP.V1 PTLOOKUPXLATRESP.V1 is a document-based
message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest handler that is
implemented using an application class.

The application class package delivered is
PT_IB_LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this service
operation.

Listening Connector PeopleSoftServices The default listening connector.

Using Messages to Request Valid Prompt Field and Translate
(XLAT) Field Values

The request message for either service operation is a document type message, and includes one or more sets
of the following as inputs associated with the look-up operation:

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

Element Description

LookupRecName Populate this element with the prompt table that contains the data
to validate.

This element appears only when performing a prompt table lookup
and working with the PTLOOKUPPROMPT message.

 When you perform an XLAT lookup, there is only one XLAT
table for the entire PeopleSoft database and the table name,
PSXLATITEM, is fixed. As a result you do not need to provide
the table name when performing an XLAT lookup.

LookupFieldName Populate this element with the field name to validate.

LookupFieldValue (Optional) Populate this element with the name of the descriptor
field. The descriptor field describes the purpose of the record, not
the field.

The valid values are:

• A specific value to look up.

• Blank (empty). This will return a list of all possible values.

• A wildcard (%) value. For example, entering A% will return
all results that start with the letter A.

DescrFieldName (Optional) Populate this element with the field name description.

LanguageCode (Optional) Populate this element with the language code.

EffectiveDate (Optional) Populate this element with the effective date.

SetControlFieldValue (Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field value that is controlled
by a set control field, enter the set control field value in the
SetControlFieldValue element in the request message. The system
uses this information to extract the name of the SETID field used
to partition the data in the table.

If you do not enter the set control field value, you must enter the
set ID value in the SetIDValue element in the request message.
The SetIDValue element is described elsewhere in this table.

If you enter a set control field value and a set ID value, the system
uses the set control field value to locate the field name.

SetIDValue (Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field value that is controlled
by a set control field, enter the set ID value in the SetIDValue
element.

If you also enter a set control field value in the request message,
as described elsewhere in this table, the system uses that value, not
the set ID value, to locate the field name.

Using Services to Validate Prompt Table and Translate Field Values Appendix B

138 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Element Description

FldName (Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field use this element in
conjunction with the FldNameValue element to return name/value
pairs for the field.

FldNameValue (Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field use this element in
conjunction with the FldName element to return name/value pairs
for the field.

Examples of response messages are provided elsewhere in this appendix.

Using Response Messages to Retrieve Valid Prompt Field and
Translate (XLAT) Field Values

The following table lists the elements contained in the response message and the information contained in
each:

Element Description

RespVal This element is populated with the response value.

RespDescr This element is populated with a description of the response value.

The response value that the PeopleSoft system sends back is based on one of the following possible
conditions:

Condition Response

Input value is a perfect match. The value that was matched.

Input value is a partial match. List of matched values.

Input value is blank (empty). List of all values.

Input value not matched. List of all values.

Prompt table name or prompt field are incorrect. Error message.

Examples of response messages are provided elsewhere in this appendix.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

Examples: Validating Prompt Field and Translate (XLAT) Field
Values

This section provides examples of request and response messages for the validating prompt field and translate
(XLAT) field values using the PTLOOKUPPROMPT and PTLOOKUPXLAT service operations. This
section provides codes examples that show how to:

• Validate a translate (XLAT) field.

• Perform a prompt table lookup with a field value wildcard.

• Filter field values by name/value pairs.

• Specify set control field values to validate field values controlled by set control fields.

• Specify set control ID values to validate field values controlled by set ID fields.

Example 1: Validating a Translate (XLAT) Field
The following code example shows a request message sent to a PeopleSoft system as part of the
PTLOOKUPXLAT service operation to obtain a list of valid field values and their descriptions for the
CERTTYPE field. Note that the LookupFieldValue element is empty (< >). As a result, the PeopleSoft
system will return a list of all valid values for the field:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:⇒
soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:⇒
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/2001⇒
/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas. ⇒
 xmlsoap.org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/ 2004/01⇒
/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>QEDMO</wsse:Username>
 <wsse:Password>QEDMO</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <XLAT_Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/ PT_⇒
Lookup.XLAT_Lookup.V1">
 <LookupFieldName>CERTTYPE</LookupFieldName>
 <LookupFieldValue></LookupFieldValue>
 <DescrFieldName>XLATSHORTNAME</DescrFieldName>
 <LanguageCode></LanguageCode>
 <EffectiveDate>2010-01-03</EffectiveDate>
 </XLAT_Lookup>
 </soapenv:Body>
</soapenv:Envelope>

Using Services to Validate Prompt Table and Translate Field Values Appendix B

140 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>USER</RespVal>
 <RespDescr>User</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>NODE</RespVal>
 <RespDescr>Node</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>CERT</RespVal>
 <RespDescr>Cert</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>ROOT</RespVal>
 <RespDescr>Root CA</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard
The following code example shows a request message sent to a PeopleSoft system as part of the
PTLOOKUPPROMPT service operation to perform a prompt table lookup on the Country table using a
wildcard (%) on the field value to find country names that begin with the letter U:

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.xmlsoap.
 org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>VP1</wsse:Username>
 <wsse:Password>VP1</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup.V1">
 <LookupRecName>COUNTRY_TBL</LookupRecName>
 <LookupFieldName>COUNTRY</LookupFieldName>
 <LookupFieldValue>U%</LookupFieldValue>
 <DescrFieldName>DESCR</DescrFieldName>
 <LanguageCode></LanguageCode>
 <EffectiveDate></EffectiveDate>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example:

Using Services to Validate Prompt Table and Translate Field Values Appendix B

142 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

<?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/" xmlns:soapenc="http://schemas.
xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body><LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>UMI</RespVal>
 <RespDescr>US Minor Outlying Islands</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>UGA</RespVal>
 <RespDescr>Uganda</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>UKR</RespVal>
 <RespDescr>Ukraine</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>USA</RespVal>
 <RespDescr>United States</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>URY</RespVal>
 <RespDescr>Uruguay</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>UZB</RespVal>
 <RespDescr>Uzbekistan</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 3: Filtering Field Values by Name/Value Pairs
The following code example shows a request message sent to a PeopleSoft system from an integration partner
as part of the PTLOOKUPPROMPT service operation to obtain a list of field values from the Currency table
of currencies from Argentina that start with A by using name/value pair as additional filter:

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.
 xmlsoap.org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/
 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>QEDMO</wsse:Username>
 <wsse:Password>QEDMO</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup_All.V1">
 <LookupRecName>CURRENCY_CD_TBL</LookupRecName>
 <LookupFieldName>CURRENCY_CD</LookupFieldName>
 <LookupFieldValue>A%</LookupFieldValue>
 <DescrFieldName>DESCR</DescrFieldName>
 <LanguageCode></LanguageCode>
 <EffectiveDate/>
 <SetControlFieldValue/>
 <SetIDValue/>
 <NameValPair xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.NameValPair.V1">
 <FldName>COUNTRY</FldName>
 <FldVal>ARG</FldVal>
 </NameValPair>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>ARS</RespVal>
 <RespDescr>Argentine Peso</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Using Services to Validate Prompt Table and Translate Field Values Appendix B

144 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example 4: Specifying Set Control Field Values to Validate Field Values
Controlled by Set Control Fields

The following code example shows a request message sent to a PeopleSoft system from an integration partner
as part of the PTLOOKUPPROMPT service operation to obtain a list of valid field values for the
VENDOR_ID prompt field, a field controlled by a set control field.

When you provide the set control field value, PeopleSoft uses Set ID indirection (via the GetSetID built-in
function) to obtain the set ID value, and uses it to filter results during lookup.

This example shows specifying the set control field value to obtain the values for the field:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
"xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.xmlsoap.
 org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>VP1</wsse:Username>
 <wsse:Password>VP1</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup_All.V1">
 <LookupRecName>VENDOR</LookupRecName>
 <LookupFieldName>VENDOR_ID</LookupFieldName>
 <LookupFieldValue>TPDENTIST</LookupFieldValue>
 <DescrFieldName>VENDOR_NAME_SHORT</DescrFieldName>
 <LanguageCode/>
 <EffectiveDate/>
 <SetControlFieldValue>US001</SetControlFieldValue>
 <SetIDValue/>
 <NameValPair xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.NameValPair.V1">
 <FldName/>
 <FldVal/>
 </NameValPair>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
"xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http:
//www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>TPDENTIST</RespVal>
 <RespDescr>SMILEWELL-001</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 5: Specifying Set Control ID Values to Validate Field Values
Controlled by Set ID Values

The following code example shows a request message sent to a PeopleSoft system from an integration partner
as part of the PTLOOKUPPROMPT service operation to obtain a list of valid field values for the
VENDOR_ID prompt field, a field controlled by a set control field. This example shows specifying the set
control ID value to obtain the field values:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
"xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/"xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.xmlsoap.
 org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>VP1</wsse:Username>
 <wsse:Password>VP1</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup_All.V1">
 <LookupRecName>VENDOR</LookupRecName>
 <LookupFieldName>VENDOR_ID</LookupFieldName>
 <LookupFieldValue>TPDENTIST</LookupFieldValue>
 <DescrFieldName>VENDOR_NAME_SHORT</DescrFieldName>
 <LanguageCode/>
 <EffectiveDate/>
 <SetControlFieldValue/><SetIDValue>SHARE</SetIDValue>
 <NameValPair xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.NameValPair.V1">
 <FldName/>
 <FldVal/>
 </NameValPair>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

Using Services to Validate Prompt Table and Translate Field Values Appendix B

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
"xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>TPDENTIST</RespVal>
 <RespDescr>SMILEWELL-001</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147

Symbols
%CompIntfc 106
%CompIntfcName 106
%Session 61

A
actions

create 114
data input 122
staging and submission 123
template actions 118
update 114
updateData 114

ActiveX controls
errors 129
unsupported events 57

alternate search keys 7
Altkey property 24
API See application programming interface
Application Designer

APIs 71
building APIs 63
C++ templates 73
COM 79
Component Interface Tester 47
creating definitions 5
Java templates 65
PeopleCode template 59
using views 5
validating component interfaces 44

application programming interfaces 1
accessing C++ APIs 72
bindings 63
building in Java 63
C++ 71
COM 79
component interface API 3, 49, 50
dummy rows 48
naming rules 29

architecture 3
attributes

collections 5
keys 4
methods 5
name 4
overview 3
properties 4

automatic field defaults 11
autoregister 80

B
backpointers 31
batch processes 18
bindings

C++ 71, 72
COM 80
early-binding 81, 94
Java 63, 64
late-binding 81
PeopleSoft API 63, 80

buffers 14
building a component interface 106

C
C++

building APIs 71
client setup 72
configuring compilers 72
memory conflicts 56
requirements 72
runtime code templates 73
third-party applications 72

Cancel method 5, 34
cell formatting 122
character fields 10
check boxes 10
CheckMenuItem 57
child records 120
child scrolls 32
chunking

Excel to Component Interface 114
log files 129

chunking factor 113
clean-up registry 80
Clear Template button 120
client-only PeopleCode 59
collection methods

rules 51
table of 37
testing 51

collection name 117
collection properties 27
collections

CreateKeyInfoCollection 17
defined 5
empty 14
FindKeyInfoCollection 17
GetKeyInfoCollection 17
overview 31
restrictions 10
search key 16
user-defined 4

collections icon 7
COM (Component Object Model) 37

APIs 79
ASP sample 96
Excel sample 94
memory conflicts 56
overview 1
requirements 80
runtime code templates 82
SDK Excel sample 93
third-party applications 81

Index

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

type libraries 80
CommitWork 106
compiler configuration 72
CompIntfcName 19
component buffer 14
component interface API 3, 49, 50
component interface methods

standard methods 41
user defined 43

component interfaces
adding to a menu 12
creating 11
exposing fields 14
setting security 45
testing 46, 107
validating 44

Component Interface Tester
editing history items 48
Enter key values dialog box 47
Find Results dialog box 49
getting dummy rows 48
history items 48
ItemByKeys: Enter parameters dialog box 53
ItemByKeys parameters 52
modes 48
procedures 46
Test dialog box 50
testing collection methods 51
testing methods 50
testing properties 50

component interface view 5, 6
ComponentName 19
Component Object Model

See COM (Component Object Model)
component transfers 57
component view 5
COM Type Library 80
Connection Information tab in Excel to

Component Interface 112
connection settings

defaults 112
Excel to Component Interface 112
HTTP port 113
login screen 115
portal name 113
protocol 113
web server 112

Connect method 33
CopyRowset 59
Count method 38
Count property 27
Coversheet tab in Excel to Component Interface

111
create action 114
CreateKeyInfoCollection 17
create keys 4, 12, 14, 15, 114
Create method 34
create new 48
Create Reference dialog box 30
createSession 32
CurrentItem collection method 52
CurrentItem method 40
CurrentItemNum method 40

D

data input actions toolbar 122
data input sheet

copying to other worksheets 105
creating 119
entering data 121
overview 122

Data Item property 27
data submission 123
date fields 10
dates 122
datetime fields 10
debugging 18, 116
DecimalPosition property 23
decimals 118
defaults

automatic 11
connection settings 112
creating 108
Excel to Component Interface 119, 120, 121
fields 121
properties 10, 12

definition name 12
definitions

design-time vs. runtime 4
in Application Designer 5

DeleteItem(index) collection method 52
DeleteItem(Index) method 39
deleting

child properties 31
DeleteItem(index) 52
DeleteItem(Index) 39
keys 14
properties 14, 28

deleting elements 7
derived properties 29
Description property 19
Deselect Input Cell button 119
design-time properties 4
DisableMenuItem 57
Document Object Model (DOM) 105
DoModalPageGroup 57
Do Not Include for Submission button 120
DoSave() 58
DoSaveNow() 58
drop-down list boxes 10
dummy rows 48
dynamic tree controls 57

E
edit boxes 10
EditHistoryItems 18
edit history items 48
Edit Property dialog box 28
email 55
EnableMenuItem 57
enabling macros 94
entering data 121
errors

correcting 123, 124
Data Input tab 122
diagnosing 129
in Excel to component interface 125
list of messages 129
log files 129
message log 50

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149

message logs 116, 129
PSProperties not loaded from file 64
setting thresholds 113
submitting existing keys 124
thresholds 114
validation 56

Excel See Microsoft Excel
Excel to component interface

correcting data 124
error messages 129

Excel to Component Interface
building a component interface 106
Connection Information tab 112
data input sheet 122
enabling macros 110
entering connection settings 112
logging in 115
Login dialog box 115
PeopleCode limitations 107
performance 107
Staging and Submission tab 123
templates 116
Template tab 117

F
field defaults

automatic 11
criteria for 10

FieldName property 20
fields

automatic default criteria 10
decimals 118
defaults 11
exposing 14
integers 118
length 118
names 7
standard types 118

FindKeyInfoCollection 17
find keys 4, 15
Find method 5, 34
Format property 22
functions

Build API names 72
createSession 32
ignored 58
PeopleCode 43
PeopleCode limitations 57
restrictions 107
session 32

G
getCompIntfc 33
GetDummyRow 48
GetDummyRows 19
GetEffectiveItem(DateString, SeqNum) collection

method 52
GetEffectiveItem method 40
GetEffectiveItemNum(DateString, SeqNum)

collection method 52
GetEffectiveItemNum method 41
get existing 48

GetHistoryItems 17
get history items 48
GetKeyInfoCollection 17
get keys 4, 15
Get method 5, 35
getOAType() 25
GetPropertyByName method 35
GetPropertyInfoBy Name(). Enter parameters:

dialog box 51
GetPropertyInfoByName method 36
getType() 25

H
hidden edit validation error 56
HideMenuItem 57
hierarchy 121
HTTPPort 127
HTTP port 113

I
icons 6
Include All for Submission button 119
Include for Submission button 119
infinite processing 56
InsertItem(index) collection method 51
InsertItem method 38
Insert New Child button 119
integration

accessing external systems 3
SDK example 87

Integration SDK
COM ASP sample 96
COM sample 93
install location 87
requirements 88
samples 87
test page 88
using the Java sample 89

InteractiveMode 18
interactive mode

considerations 56
debugging 18
testing component interfaces 48
UNIX servers 18

invalid component interfaces 45
invisible fields 10
IsCollection property 21
iScript 109
IsModalPageGroup 57
IsReadOnly property 23
Item(index) collection method 51
Item(Index) method 39
ItemByKeys(key1, key2, …) collection method

52
ItemByKeys(keys) method 39
ItemByKeys parameters 52
ItemByName method 38
ItemNum property 27
ItemSelected 57

Index

150 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

J
Java

bindings 63
building APIs 63
class file 66
methods 25
object adapter 25
requirements 64
runtime code template 65

Java Development Kit (JDK) 64, 72, 80
Java Virtual Machine (JVM) 64, 72, 80
Jolt failover 66

K
Key property 22
keys

adding 16
adding manually 15
creating 12
defined 4, 14
deleting 16
Excel to Component Interfaces 118
existing 124
exposing 14
getting existing records 48
icon 6
in scrolls 32
modifying 15
removing 16

L
LabelLong property 21
LabelShort property 21
language code 113, 115
languages

CopyRowset considerations 59
installed languages for Excel to Component

Interface 115
language codes 113
submitting in several languages 115

Length property 23
level-zero records 14
limitations

PeopleCode 107
Listboxitem property 24
load balancing 66
log files

generating 116
viewing 129

logging in 115
Login dialog box in Excel to Component Interface

115
long character fields 10

M
macros

COM sample 94
enabling 110

mapping related keys 30
Market property 19
memory

conflicts 56
releasing 68

menu PeopleCode 57
menus 12
message logs 50, 116
messages

Excel to Component Interfaces 115
PSMessages collection 56
session error messages 61

methods
collection 37
defined 5
Java 25
session 32
standard 5, 33
testing 50
user-defined 5

Microsoft
Visual Basic 81, 82

Microsoft Excel
COM sample file location 94
Excel to Component Interface utility

overview 105
using the COM sample 94

Mobile Agent
synchronization 53

mobile properties
derived 29
do not send updates 29
send updates 29

modal transfers 57
modifying keys 15
multilingual support 115
multiple instances 56

N
name column 7
Name property 20
naming guidelines 4, 12
New data input button 119
New Template button 119
node 113
Node 127
noninteractive mode 48
number fields 10

O
OaType property 22
object adapter 25
out-of-sync icon 7

P
page control types 10
parent scrolls 32

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 151

passwords
Excel to Component Interface 116
SOAP request header 127

PeopleCode
client-only limitations 59
CopyRowset 59
creating user-defined methods 43
generating templates 59
ignored functions 58
limitations 57
templates 61
trigger order 4
valid variables 61

PeopleCode limitations 106
peoplesoft_peoplesoft._i.h 71
PeopleSoft Application Designer

See Application Designer
PeopleSoft site name 113
performance 107
permission lists 45
pop-up menus 57
Portal 127
portal name 113
Post Results button 123
PrePopup 57
Prompt property 23
properties

automatic defaulting 12
criteria for automatic defaulting 10
defined 4, 117
deleting empty 14
exposing 14
ordering 7
read-only 31
reference 29
renaming 29
standard 4, 16
testing 50
user-defined 4, 27

Properties dialog box
Synchronization tab 54

properties that are keys 6
property count 27
property icon 7
PropertyInfoCollection 20
protocol 113
PSMessages 56

R
radio buttons 10
read-only properties 7, 31
RecordName property 20
record names 7
record type

defined 118
reference backpointers 31
reference paths 31
reference properties 29
related display 55
related keys 30
requests

sending 127
required fields 118
Required property 22
required property icon 7

requirements 88
response types 127
Restore Input Cells button 119
row inserts 55
rules 51
run-time properties 4
runtime code templates 73
runtime exceptions 4

S
Save method 5, 35
scope conflicts 55
scroll areas 5, 31
scroll levels 107
SDK 88
SDK_BUS_EXP 87, 89
SDK_BUS_EXPENSES 88
SDK_BUS_EXPENSES page 88
SDK_CI_SAMPLES 88
SDK (Software Development Kit)

See Integration SDK
SDK Java sample 89
SDK testing 89
search dialog processing 57
search keys 15
security 45

accessing the SDK 88
user profiles 1

Select All Input Cells button 119
Select Input Cell button 119
sequence number 118
session functions 32
session methods 32
SetPropertyByName method 36
signed number fields 10
site name 113
SOAP

log files 129
SOAP/XML requests 125
SOAPTOCI web library

generating log files 116
Stage for Submission button 122
Staging and Submission Actions toolbar 123
Staging and Submission tab 123
standard methods 5, 33, 42

disabling 41
enabling 41

standard methods icon 7
standard properties 4, 16
status 118
StopOnFirstError 18
submission statuses 124
Submit Data button 123
submitting data 123
synchronization 53

T
template actions toolbar 118
templates

adding child records 120
adding defaults 121
C++ 73

Index

152 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

COM 82
creating in Excel to Component Interfaces

116
entering data 120
Java 65
PeopleCode 59, 61
testing 120
Visual Basic template 83

Template tab in Excel to Component Interface
117

testing 46
SDK testing 89

third-party applications 72, 81
thresholds for errors 113
time fields 10
TransferPage 57
tree controls 57
trigger order 4
troubleshooting

hidden edit validation error 56
infinite processing loops 56

Type property 21

U
UncheckMenuItem 57
UNIX servers 56
update action 114
updateData action 114
user-defined methods 5, 7

creating 42
restrictions 12

user-defined properties 4
creating 27
deleting 28
renaming 28

user ID 116
user profiles 1

V
validating 44
variables 61
view columns 7
view icons 6
viewing submission results 123
views 5
Visual Basic 82

component interface code 83

W
walkpaths 31
warnings 124
WEBLIB_SOAPTOCI 109
WebServerMachineName 127
web server name 112
WinMessage 55

X
Xlat property 22

Y
Yesno property 23

	PeopleTools 8.52: PeopleSoft Component Interfaces
	Copyright
	Contents
	Preface: PeopleSoft Component Interfaces Preface
	PeopleSoft Component Interfaces
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started with PeopleSoft Component Interfaces
	Overview
	Implementing PeopleSoft Component Interfaces
	Implementing the Excel to Component Interfaces Utility

	Chapter 2: Understanding Component Interfaces
	Understanding Component Interfaces
	Component Interface Architecture
	Component Interface Attributes
	Name
	Keys
	Properties
	Collections
	Methods

	Component Interface Definitions and Views

	Chapter 3: Developing Component Interfaces
	Creating Component Interface Definitions
	Understanding Creating Component Interface Definitions
	Creating New Component Interfaces
	Naming Component Interface Definitions
	Associating Component Interfaces with Menus
	Determining the Fields to Expose in Component Interfaces

	Using Keys
	Understanding Keys
	Adding and Deleting Keys

	Setting Properties
	Understanding Standard Properties
	Creating User-Defined Properties
	Deleting User-Defined Properties
	Renaming User-Defined Properties
	Creating Reference Properties
	Making Properties Read-Only

	Working with Collections
	Working with Methods
	Understanding Session Functions and Methods
	Understanding Standard Methods
	Understanding Collection Methods
	Enabling and Disabling Standard Methods
	Creating User-Defined Methods
	Exporting User-Defined Methods

	Validating Component Interfaces
	Setting Security Options
	Testing Component Interfaces
	Searching Component Interfaces to Test
	Testing Component Interfaces
	Determining ItemByKeys Parameters

	Understanding Synchronization
	Writing Component Interface Programs
	Understanding Runtime Considerations
	General Considerations
	Scope Conflicts
	Interactive Mode

	Chapter 4: Programming Component Interfaces Using PeopleCode
	Understanding PeopleCode Behavior and Limitations
	PeopleCode Event and Function Behavior
	CopyRowset Language Considerations
	Limitations of Client-Only PeopleCode

	Generating PeopleCode Templates to Access Component Interfaces
	Understanding PeopleCode Templates

	Chapter 5: Programming Component Interfaces in Java
	Building APIs in Java
	Setting Up the Java Environment
	Generating Java Runtime Code Templates
	Understanding the Java Template

	Chapter 6: Programming Component Interfaces in C++
	Building APIs for C++
	Setting Up the C++ Environment
	Setting Up Client Machines to Access C++ APIs
	Configuring Compilers for C++ Projects

	Generating C++ Runtime Code Templates
	Understanding the C++ Template

	Chapter 7: Programming Component Interfaces in COM
	Understanding Programming Interfaces in COM
	Building APIs for COM
	Setting Up the COM Environment
	Generating Visual Basic Runtime Code Templates
	Understanding Visual Basic Templates

	Chapter 8: Using the Component Interface Software Development Kit
	Understanding the Component Interface SDK
	Component Interface SDK Samples

	Prerequisites for Using the Component Interface SDK
	Using the SDK_BUS_EXPENSES Test Page
	Testing the SDK_BUS_EXP Component Interface
	Using the Component Interface SDK Sample in Java and C+ +
	Understanding using the Component Interface SDK Samples in Java and C++
	Building the Component Interface SDK Sample (Java)
	Building the Component Interface Sample (C++)
	Running the Component Interface SDK Sample in Java and C++
	Interpreting the Code for the Component Interface SDK Sample (Java)
	Interpreting the Code for the Component Interface SDK Sample (C++)

	Using the Component Interface SDK COM Excel Sample
	Running the Component Interface SDK COM Excel Sample
	Understanding the Component Interface SDK COM Excel Sample Code

	Using the Component Interface SDK COM ASP Sample
	Running the Component Interface SDK COM ASP Sample
	Understanding the Component Interface SDK COM ASP Sample Code

	Chapter 9: Using the Excel-to-Component Interface Utility
	Understanding the Excel-to-Component Interface Utility
	Understanding Building Component Interfaces for the Excel to Component Interface Utility
	Testing Component Interfaces
	Performance Expectations
	PeopleCode Behavior and Limitations
	Default Properties

	Running the Excel to Component Interface Utility
	Granting Access to the WEBLIB_SOAPTOCI iScript
	Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions
	Enabling Macros in Microsoft Excel
	Starting the Excel to Component Interface Utility
	Converting Excel to Component Interface Utility Templates to the Current Excel Version
	Viewing the Excel to Component Interface Coversheet

	Setting Up Connection Information
	Entering Connection Information
	Translations and Multilingual Support
	Connecting to the Database to Create a Template and Submit Data

	Creating Templates
	Understanding the Template Actions Toolbar
	Entering Data into the Template

	Entering Data on the Data Input Sheet
	Using the Data Input Sheet

	Viewing the Staged Data
	Correcting and Resubmitting Data

	Creating SOAP/XML Requests
	Request Format
	Sample Create Request
	Sample Get Request
	Sample Update Request
	Sample Updatedata Request

	Sending Requests
	Receiving Responses
	Viewing a Response if a Row Already Exists
	Viewing a Sample Get Request and Response

	Diagnosing and Resolving Errors
	Viewing Log Files
	Resolving Error Messages for Client Environments

	Appendix A: Creating Component Interface-Based Services
	Understanding Generating Component Interfaced-Based Services

	Appendix B: Using Services to Validate Prompt Table and Translate Field Values
	Understanding Validating Prompt Table and Translate Field Values
	Prerequisites for Validating Prompt Table and Translate Field Values
	Validating Prompt Table Field Values
	Understanding Validating Set Control Fields
	Using the PTLOOKUPPROMPT Service Operation

	Validating Translate (XLAT) Field Values
	Understanding Translate (XLAT) Table Entries
	Understanding Security When Validating Translate (XLAT) Field Values
	Using the PTLOOKUPXLAT Service Operation

	Using Messages to Request Valid Prompt Field and Translate (XLAT) Field Values
	Using Response Messages to Retrieve Valid Prompt Field and Translate (XLAT) Field Values
	Examples: Validating Prompt Field and Translate (XLAT) Field Values
	Example 1: Validating a Translate (XLAT) Field
	Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard
	Example 3: Filtering Field Values by Name/Value Pairs
	Example 4: Specifying Set Control Field Values to Validate Field Values Controlled by Set Control Fields
	Example 5: Specifying Set Control ID Values to Validate Field Values Controlled by Set ID Values

	Index

