ORACLE’
PEOPLESOFT ENTERPRISE

Oracle's PeopleTools PeopleBook

PeopleTools 8.52: Application Engine

October 2011

ORACLE

PeopleTools 8.52: Application Engine
SKU pt8.52tape-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
Oracle's PeopleSoft Application ENGINE Preface ... Xi
APPLCAtION ENZING .ooeeiiiiieiieiece ettt ettt et e e bt e bt e bt e bt e bt e beesbe e be e bt e beenbeenteeteens xi
PeopleBooks and the PeopleSoft Online LiDIarycccocveevieviieviiiciieiieieeie et esveesreeveeveeveeveeseens xi
Chapter 1
Getting Started With AppliCation ENQINEocvieeieie ettt s r e nne e 1
PeopleSoft Enterprise Application ENgine OVEIVIEWcccccveviieriierierieenieeniieieeieeseesseesseesseesseesseesseesseessesnns 1
PeopleSoft Enterprise Application Engine Implementationc.cccoceeiieiieiieeiiieiie e 2
Chapter 2
O1aTel= g E=To[o [TaTo ITAY o] o] F o= 4 Lo N =g Vo 1 o 1= SR 5
Application Engine FundamentalScccoociiiiiiiiiiiiie ettt ettt eve e sb e e s sre e et eeneaeenneennns 5
IMETa-SQL oottt et e e e ettt e e e e bt e e e e tta e e e e taeee e ttaeeaantaee e e tbaaeertaeeeabaaeeartaeeaantaeeearreaennns 5
Application Engine Program ELEMENtScccooiiiiiiiiiiiiiiii ettt 6
SECTIOMS ettt ettt ettt et ettt ettt e at e e ateeat e e at e eat e ea et e at e sa b e eabeeateeateeuteeaeesateeabesabeeateeatesatesateeas 6
7<) 1 PR SRS 6
F o510 1 1SS SRURUPRORN 6
StAte RECOTAS .ttt sttt s b e st s bt e sa e s bt e s bt e s bt e sbeesbeesbeenbeenbeenbees 8
Application Engine Program TYPEScccceviiiiieiienierierie e steete st stteste st e steestaesseesseessaesseessaesseesseesseenseensens 8
Application Engine Program TYPEScooioiiiiiiiiiiieieese ettt ettt ettt e be bbb nee e 8
Daemon Program TYPE ..cooceiiiiiiiieeeeeee ettt ettt e et e e et e e st e e et e e e bt e e s e nteeeenabeeas 9
Transform Program TYPE ..cc.eecieciiiieiieiterit ettt ettt ettt teete et e esbeenbeenseenseenseenseenseenseenses 10
Chapter 3
Creating Application ENGINE PIrOgraMS ccoiiiiiiiicieisiesieseee s ene s 11
Viewing Application Engine Programscooooiiiiiiiiiiii ettt ettt 11
USING DEfINItION VIEW oottt sttt sttt et et es e et et e s bt e st eeeseeeneeneeneas 12
USIng Program FIOW VIEW cciiiiiiiiiieiieieeteie ettt ettt ettt ettt ettt et et e e beesseenseenseensaensennns 13
Switching Between Definition and Program FIow VIEWS ccccooiiiiiiiiiiiiie e 15

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

Using the Refresh OPLiONc.ooiiieiiiieeie ettt ettt ettt ettt e te et e sbeebeenbeeneeas 16
FAtering VIEW CONENES ...vieiiiieiieiiiieeie et et esteeeteeeteeeeee e taeessseesssaessseessseeassaeassseessseessseesssesssssessseeesssennes 16
Printing Program and FIow DefiNitionscccccevciiriiriieiiieniesiestescesee e e eseesee e e e ssee e esseessaesseessaensens 19
Creating, Opening, and Renaming PrOgramscccccooiiiiiiiiiiiiienieeeseesie ettt 19

Creating NEW PrOGIAIMS ccviiiiiiiiiciieie ettt ettt e b et e e e et e esbeesseesseesseasseesseesseesseasseesseessenns 20

Opening EXIStING PTOZIAMS ccvvciiiiieiieieeie ettt ettt ettt s et e estesssesstesnteenseensesnseensesnsennsennsas 20

ReNaming PrOGIAIMS coouiiiiiiieieetete ettt ettt ettt et et e et e e et eeateeaeeeateeneeenneeneas 20
Copying or Moving Program EISMENLS cccecviiviieiiiiiieiicieeie ettt eae e s re v e essesssessaessaessnessnenenas 21
Testing Application ENngine PrOZramS ccceviieiieriiiierierieeteseesie ettt et e sttt steeseeesseesseesneessnessnens 21
Setting Program PIOPEITIES cociiiieiiiiieii ettt ettt ettt ettt et e b e et et et eteebeembeebeeneeenteeneeens 23

ACCESSING PIOPEITIES .viiviiiieiieiieiieitestteste et et et esseestesteesteesbeesseesseessaesseesseesseesssessaessaesseesssessesensses 23

Setting General PrOPEITIES ccccevierieriiiieieeeie ettt e e st e st esetessaeseaesaaesnaesssesnsesssessnesasesnsesnnes 23

Setting State RECOTd PrOPEITIES cviiiiiiiiieiiieciee ettt ettt e e s te e s beeesveeeaaeeseeeeseessseessseenns 23

Specifying Temporary TaDIESccccccieviieriieiierierieseese ettt eeste e e e e e seesseesseesseesseesseesseessaesseens 25

Setting Advanced PTOPETHIES coouiiuiriiiiiiiietee sttt ettt sttt ae s 26
AQAING SECLIONS .eiiieiiiieciieeiie ettt e etee et ettt e st e st e e s teeesbeeetaeessseessseesssaeassesassaeessseessseeassaessseeassseensseesseenses 28

UNderstanding SECHOMNS cccviiciieciieiieiieieeteete e steetesaesaessaesssessbesssessaessaesssesssesssesssesssesssesseesssesssessnes 28

INSEITING SECTIOMS .uveiuiiniiiiiiietent ettt ettt ettt et et b e bt ettt st ettt e bt et e bt sbe e bt et e e besbe et enbeebeeabenaenees 29

LOCALING SECHIOMS .iiviiiiiieeiie et eteerte ettt e et e eteeeteeeseeestaeessseessseessseesssaeassaeessseessseessseesssesasseesnsesensseensns 29

Setting SECION PTOPEITIESeccievieriieiieiieiierteseese et e et e seestee st e teesseessaessaesseesssessaesseessaesseesssesssensns 30
AQAING SEEPS ettt sttt h et e e a e bt bt e sh e e e h e e e a e e eh e e ehteeheeeheeeateeaeeehteehtesbeesaeeeneeeneenaes 31

INSEITING SEEPS weiivieiiieeiit ettt e et e st e et ee et e e tee e tbeesebeessbeeasseessseeessaeassaeesssaesssaessseassseeanseeansseensseenssennns 31

Setting Up Step PIOPEITIES ccveeviieriieiieieriteritestesee et seesteeste e s e e steesseessaestaessaessaessaessaessaessaesssenssennns 32
SPECITYING ACLIONS ..eeiiitieiieie ettt ettt ettt et et e et e e bt e bt e bt e bt e be e bt e bt e bee bt essee st e st eabeenbeesseesseesseanseenseas 33

UNderstanding ACHONS cciiviieciieeiierieieeteeteeteereereeteebeebeesbeesseesseassaesseesseesseesssesseesseesseesseesseesseessees 34

INSEILING ACLIONS 1ouviiiieiietietieieeie et et et et eteeteesbeesteesteesseesseenseessaesseanseanseensaenseenseensensseenseenseesennsenns 35

Setting ACON PTOPEITIES oceiiiiiiiiiiiie ettt sttt st st e saeesaeesaeesaeesaeen 35

SPecifying SQL ACHONS ..ocoiiiieiieiiesiecieetesteete sttt e st e steesteestae bt e eaessaesseesssasseesssesssesssesseesssesssesssenses 37

SPECITYING DO ACHONS ..eeviieiieiieiieieeit ettt et et e bt este et e esteesteasbeenseenseensesssesnsesnsesnseanseensesnsesssennsennns 38

Specifying PeopleCode ACLIONS oocieiiiiieiieieeie ettt ettt ettt et e b e bt e beeste e bt e bt e beebeebeeeeens 40

Specifying Call SECtION ACLIONS ...c.cccvieieiieeiiereiteeteetesresresaesreseaeseessaesssesssesssesssesssesssesssesssesssessenns 41

Specifying Log MeESSAZE ACLIONS ...eevierierieriienieeieeiestestteseesteeseteseeesetesaaeseaesssesasesssesssesssesssesnsesnsesnss 42

SPECifyINg XSLT ACHONS .iiociiiiciiieiieeeieeeiee et e st e eteeestte e beesbeesbeesseeesseeesseessseessseassseeassaeesseessseensses 43
Chapter 4
Developing EffiCIeNt PrOgraMS ..ottt 45
USING StAte RECOTAS .nvviiiiiiiciie ettt e st et e st e st e s taesttestaessaessaessaessaestaasssesssessesssesssesssesssenssensns 45

Understanding State RECOTAS ...c..oiuiiiiiiiiiiiiieee ettt 45

Sharing State RECOIAS icoiiiiiieiiieciiecee ettt ettt e et e e e e etaeeebeessseessbeeesseeessaeensseesseensses 46

Choosing a Record Type for State RECOTAS cc.vcviiiviieiiieiieiieieeieee ettt ettt re s e seenseens 47
SENZ COMIMILS .euveuteruieterteettetet ettt ettt et bt ettt sb et e b s bt e st et e bt ebe e st e bt eb e eat et e saeebeenbenbesbeeseenbenbesbeenee 47
REUSING StAtCIMENTS ..o.eiiiiiieiiie ettt e et e et e et e e tbe e tbeeesbeessseessseeessaeessaeensseessseessseessseesnsseessseanes 48

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Using the Bulk INSEIt FEATUIE oociiiiiiiiiieeee ettt st sttt sttt e st e sate st e eas 50
USING SEt PTOCESSINEZ ..vviiiiiiiiieeiieetie et ettt e st e et e e tee e teeestbeessbeessbeesssaeasseesssaeassseesseesssaessseeanseesseeenseeans 50
Understanding Set PrOCESSINEG ...c.eccvieciieiiiiiieieeiieieeie et ettt eteeste e eseesse e beesseessaenseessaesseesseesseesseensees 51
Using Set Processing EffeCtiVELy oouieiiiiei ettt st e 51
Avoiding ROW-DY-ROW PrOCESSING ...occviiiiiiiiiiiiiieiieie ettt ete et re et e e beesbeessaesseessaesreenns 53
Using Set Processing EXAMPIES c.ccoieiiiiiiiiiiieiicieeieee ettt sre st st snsesnaesnnesnsesnnesnnes 54
Chapter 5
Using Meta-SQL and POPIECOUEc.ociiiiiiiieieeeeee et nr e 59
Understanding Application Engine Meta-SQL oociiiiiiiiiiiee ettt 59
Using PeopleCode in Application Engine Programsc.cccccciviiiiiiiiiieiiiiieie et ere v eveereseveeeve e 60
Understanding PeopleCode and Application Engine Programsc.cccceeveevenininienicnenieenceceeene 60
Deciding When to Use PeopleCodeooiiiiiiiiiiiiieiee ettt 62
Considering the Program EnvVIronmentcccccevieiiiiiiiienieniereeseesee e seeseeeseeseessaesraessaesenessnesenas 63
Accessing State Records with PeopleCodeoccoiviiiiiiieiieiieeeeee ettt 64
USING H/TREN LOZIC .eeiiiiiieiiieiieeee ettt ettt ettt e et e e s tv e e be e st eessbeeestaeessseesseesssaessseessseesnseeans 65
Using PeopleCode iN LOOPS ...viciieiieiieiieieeie ettt eie e et esseesseessaessaessaesseessaessaessaesseesseesseesseesees 65
Using the AESECHON ClASS ..coiiiiiiiieieiieieetee sttt et sttt sttt st nbe e 66
Making Synchronous Online Calls to Application Engine Programsccccceeviieviiiviienieeeree e 66
USING the FIlE ClaSS .oviiiiiiiiiiieiierieie ettt ettt et et e et e b e et e et e esseesseesseesseesseessessseasseassenssesssenssensseans 67
Calling COBOL MOGUIES cueiuiiiiiiniiiieisieetete ettt sttt st ettt sttt sb et e e sbeeaeens 67
Calling PeopleTo0ls APIS ..oceeiiiiie ettt ettt e et e et e e st e e ssbeeesseeessaeessaeesseessseenssens 70
Using the CommitWork FUNCHON coviiiiiiiiiie ettt saeseae e s e ssnesssesssessnesnnenns 70
Calling WINWORD Mail METZE ...oooiieiieiiiiieieeie ettt ettt ettt et ettt stesatesatesatesnseensesnsesnsesnnaens 71
Using PeopleCode EXAMPIES ...cccccciiiiiiiiiiieiiiectieieteste ettt et esteesteesteesteestsestaessaessaessaestsesssesssenssensens 71
Including Dynamic SQL ooiiiiiiieieececte ettt e ste e st e sttt e steestaesteessaessaessaesseesraessaesneensaenraens 73
Using Application Engine Meta-SQL co.oiiiiiiiiie ettt sttt st saeesbe e e e 74
Y2\ o TSRS 74
YN 4 (0T ¢ 1 1 1 PRSP 74
DDARSECLION .ttt ettt ettt ettt et et et e et e e et e eateea et eateeateeateeateeabeeabeenteenteeateeateeateenteenteenteenteea 75
Y2 e 1 7<) SO OSSR UTU PP 75
DOASOTDIALE ...ttt et et b e e h ettt b et h e e bt et e bt bt e a e et e bt et et et be et e nte b enten 75
DOASOTDAEOVE .ttt ettt et e b e s bt e s bt e s hteeh e e sbeesbeesbtesheesheesaeesstesbtesheesatesneeenteeneas 75
JOBINARYSORT ettt ettt b ettt e se e et e e et en e e tesbeeneeneeaseeneeneeeeenene 75
DOBINA et bbbttt b et b e e bt et b e bt st et bt bt et e nees 76
@S ettt ettt ettt e e a ettt ea bt et e e bt ea et ea et e a et eate e bt eateeateenteeateenteeateeatas 78
L] (<73 {11 1) ST 78
QOCOALESCE .ottt ettt ettt ettt et e st e e st e s s e be et e eseessesseeseessesseeseessensesseeseensensesseeneensans 79
DOCOMITIA ..ttt ettt ettt et e et e a bt e e bt eat e e et e e ateeateea bt eabeembeemteeateeabeeabeembeenteenteenteens 79
DOCOMCAL ittt ettt ettt et ettt ettt et e bt et et e bt et e et e et e e bt e bt e bt e aeeteen 80
GOCUITENEIDALEIN ..ottt et e bt e e bt e e et e st e s bt e e bt e e bt e e bt e e bteesabeesateas 80
B84 (S 111 D 2111 13| USRS 80

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Contents

vi

QOCUrTentDAtETIMEIN ..ooiiiiiiiiieee e et e e e e et e e e eaae e e eeta e e e eeaae e e eearaeeeenreeas 81
2CUITeNtDAtETIMEOUL ...ooviiiiiii ittt ettt et e e e e e et e e e teeeeteeeeteeeeaeeesaaeesnreeeteeenseeenns 81
QOCUITENITIMEIN ..ooiiiiiiiii ettt e e e et e et e e te e e teeeeaaeeeabeesaseesaseeeseeereeanes 81
QOCUITENITIMEOUL .oooiiiiiiiiie e et eete e e e et e e e et e e e e et e e eeteeeeeeareeeeeteeeeeeseeeeeanens 81
Y D E: 11T 2N [« KOTSRS 82
QDI ALEDIITT oottt ettt e e b e e te e e tee e tae et e eatbeeabeeeteeetaeenns 82
QBDIALEIN oo e e e e e e et a e e e e e e e e ttaaaaaeeeaattbaaaaaeeaaattaaaaaeeeeaarrbaaaaaaan 82
QBDALENULL ..ot et ettt et e e e e e et e e e ete e e te e e eteeeetaeeetaeeeteeeaeeeaeeeateeeereeeereeens 83
) D 171 1 | USRS 83
QODIALEPAIT eeeieiceiee e e e e e e e e e et e e e et e e e e ete e e e e teeeeeetbeeeeateaeeereeas 83
0D AtETIMEDIITT ..ot ettt ettt e et e e e ae e e ae e e ae e e reeeeteeeeane e 83
QD ALETIMEIN .eoiiiiiieiieceee ettt e e et e e e te e e taeeeabeeeabeeebee e tae e taeeataeeenreeeteeeteean 84
Q0DAteTIMENUIL oottt e e ettt e e e e ete e e e eetteeeeetaeeeetaeeeeeataeeeetaseeenateaeenns 84
QD ALETIMEOUL .ottt ettt ettt e et e e et e e eteeeetaeeeteeeteeeseeeteeeseeeeseeeesseessssesnseesseseeseeanes 84
QODICCIDIV et e et e e e—teeee—aa e eeraaeeeitateeearaeeeeirreeeeatreeeans 85
QODIECIMILLL ..o e e ettt e e et e e e e tte e e e e aa e e e e tbeeeeetaeeeeabeeeeeataaeeattaeeeaateeeeaaraeas 85
QODTTIM oottt e e e et e e e et e e e te e e eae e e e e e e e taeeeteeebeeeeteeeeteeeetaeeeteeereeereeenteean 85
QOETTDEICRECK oo et e e e et e e e et e e e et e e e et e e e e ere e e e e tae e e eeareeeeenreas 85
QBEXECULE oottt et e e et e et e et e e et e e et e e eteeeteeeeteeeeteeeeteeeeateeateeateeeteeeteeenareenes 86
QOEXCCULEEAILS .eeiieiiieiie ettt ettt e e e et e e et e e et e e et e e eteeeabeeeteeeteeeeaeeeeateesaneeeareas 87
QOFITSTROWS ettt et ettt e ettt e e et e e eeta e e e eeteeeeetaeeeeetreeeeetseeeeeetseeeenareeeeeteeeeensseeeanes 88
QOGEIPTOZTEXE ceiiiiiiii ettt ettt et e e b e eb e e tb e e ebeetbeesbeesbeesbessbeesbeesseesbeessessseesseesseesseesseerseans 89
QBINSEITSEIECT ..ottt et et e e et e et e e et e e et e e e teeebee e taeeeabeeeaae e et e e eteeeteeetreennes 90
O0INSEItSEIECtWItNLONES ..eeiiiiiiiiiieitee ettt ettt bbbt s e e e 90
QBJODINSTAINCE ...eiveeieie ettt e e et e et e e et e e eateeeaeeeateeeteeeeteeeeteeeeaseeeaeeeeaseeeteeeteeeseeennes 90
QOJOMN oottt ettt e b e e e be e e aeeeteeeeteeeeateeatbeeataeeaaeeeteeereeeteeereeenreeenareans 90
QOLETIPATEIL ..ottt e et e et e e et e e e et e e e e e ta e e e eetaeeeeetteeeeetaeeeeatreeeeataeeeanes 91
IR ottt e et e et e e e—eeeaeee—eeeateeeateeeeaeeataeeeteeetesereeenaeean 91
QBLAKCEXACT .eveiiiiiiiee et et ettt et e e e et e e be e eeta e etee e taeeetaeeeabeeebeeeateeetee e teeeeareenareas 91
D) D5) AU RRURURERRTRN 92
QBLASTBINGA .ottt ettt e et e e et e et e eeaeeeetee e taeeeaeeeteeeteeeteeeateeeeneeanns 94
) 3311 2 | 1 F: Y U 95
B0\, (6 T« E USROS 96
QONEXt ANA YOPIEVIOUS ..oviiieiieiiii ettt ettt et e e e e te e et e et e e eteeeetaeeetaeeeaeeeeaaeeenseeeteseeseeennes 97
DONOUPPETCASE .ttt ettt ettt ettt e sa bt e s et e s a bt e s ate e e bt e s bt e eabee e beeeabteeeabeesabeessbeesnbeesbeeensaeanes 97
QONUMTOCRNAT ..o ettt et e e ettt e e e e tt e e e e tteeeeeabaeeeenaseeeeeaseeeeensbeeeennteseeanseeas 98
QOPTOCESSIMSIANCE .oiiiiiiiiiiiii ettt ettt e et e e et e e e tte e e e atbeeeeatbeeeeataeeesassaeesssaaeeansseeesnssseeeansreeas 98
QORESOIVEMELASQL ...ttt ettt ettt ettt et e et e et e et e ent e et e eateenteenteenteenteenteea 98
QOREIUIMCOAE oot e ettt e e ettt e e e ett e e e eetbaeeeeataeeesetseeeeestaeeestasaesnsseaeeanraeaeanes 100
B N L4 110 <) SRRSO 101
QOROUNA oot e et e et e e e e ta e e e eetaeeeeeaaeeeeeetaeeeeetaeeeeetaeeeentaeeeentreeaeanes 101
QOROUNACUITENICY .ottt ettt et ettt ettt st et et e et e et e e bt eabeeabeenbeeneean 101
QORUNCONIIOL ..o et ettt e et e et e e et e e e teeeteeeteeeetseeetseesaseesareeeseeenseeans 102
S CIECT et e e e e et — e e et e e e ee—eeeee—eeeeatteeeaataeeeeataeeeataeeeeaaaeeean 102
IS ST011 £ L AT 103

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

DOSPACE .ottt ettt et sttt et ettt ettt et ettt ettt et eab e en et e enne s 104
B0 L USRS 104
DOSQLEROWS ..ttt e ettt e e ettt e e e e taeeestbaee e saaeeesssaeeeassaeeeassaeeeansseeeaantaaeeassaeeaasseeaannns 105
DOSUDSIIINZ .ottt ettt b e bt ettt be et et s bt e bt et e st e sheeat et e s b e ebe et e b e ebeesaenee e 105
00 1 o) USSR 106
DTSt ettt h e bbbt b e bbbt e bt e b e e b e s bt e she e s bt e bt e beennee 106
B XS <1 't USSR SUTR 107
B0 1147 2N« o TSRS 107
DOTIIMEIN ettt b ettt b et et e s bt e a et e s bt e bt et et e e bt e st e te s bt eut et e sbesbeentenbens 107
DOTIMENULL .ottt ettt ettt et et e et e et e e bt e teenteeabeeabeenbeenbeeneean 107
DOTIMEOUL ..ottt ettt ettt et et e st e e bt e et e st e es e e e e bt eseem e e seeseeneenseaseeseensenseseeentensenseas 108
DOTIMEPATT ..ottt h et b e e a ettt e bt et e bt sb e bt et e e bt eae et e bt ebe et enaenaes 108
QOTTIMSUDSIE ettt ettt ettt et et e e bt e bt et e e be e be e bt e bt e bt e beenbeenbeebeenbeenbeensean 108
DOTTUNCALE ettt ettt ettt ettt e bt et e bt et et e et e et e et e et e et e et e e bt e bt enbeenbeenseen 109
QOTTUNCALETADIE ...eeieiieii ettt et sttt st e st e s st e s st e e st e sbeesaeesseesneesneenseenaeas 109
QOUPAALESTALS eieeiiiie ettt ettt ettt et ettt et h et eh e s h e e sat e eh e e ea e e e bt e ebeeehteshteeaeeeaeenaeenbeas 110
18 o) 1< (ST 114
Chapter 6
Managing Application ENGINE ProgramsS ...t 115
Running Application Engine PrOgramsccccccieiiiiiiiieiieiieieeie ettt ettt ettt seeaeens 115
Understanding Program RUn OPtiONS cccceciiiiiiiiiiiiiieiieecieesieesreeeteeeeeeeiaeesaeessseessseesssaessseesnnes 115
Creating Process DEfINItIONS c.cccvicieiiiiiiiiniiiierieseestesteste st et esteesteeseeestaesseessaessaessaessaesseesssesseenses 116
Listing Process Definition Parametersc.ccooceoiieiienieiienieseeie ettt ettt ettt 117
Starting Programs with the Application Engine Process Request Pagec.ccccoeevvviiviiiiiiiecrecenenen, 118
Using PeopleCode to Invoke Application Engine Programsccccecvvvivevieniiiecieecieeieeeeeee e 120
Using the Command Line to Invoke Application Engine Programsc.ccocoviiiiiiiinienieieieee 121
Debugging Application ENgine PrOZramsccccoeciiiiiieiiieiieeiie et ctee ettt eteeseve e veesveessseesnseeenene s 124
Enabling the Application Engine DebUZEErcccooiiviiiiiiiienierieierteree et 124
Setting Debug@ing OPLIONS cocieiieiiieiieeeteee ettt ettt ettt ettt et e et e ebeebeenteeateenteeateeabeeneeeneas 125
Restarting Application Engine PrOGramscccocceiiiiiieiiienieiieiie st seesresresneseessaessaesenesenesssessnessnessnenns 129
Understanding RESLAIT cccviiiiiiiiiiiiie ettt ettt e e te et e s be e e et e enteesseesseenseenseenseensens 129
Determining When to Use RESTArt ccoiiiiiiiiiiiiiiie ettt ettt sttt 130
Controlling Abnormal TErMINAtIONS cceeeviriiiiiiiieiieeieetesteseeseeseeseeesaessressaessaesseesseesseesssesseessees 132
Restarting Application Engine Programsccocccovoiiiiiiiiiiiiieieceeeete ettt 132
Starting Application Engine Programs from the Beginningcccccccveviieviiiincieicieciieeee e 133
Enabling and Disabling RESIATt cccccuieeiiiiiiiiiiciieie ettt ere e e et e e b e eve b e esseesseesseesseesseenns 134
Caching the Application ENGINe SEIVET c.ccocoeiiiiiiiiiiiiiiinteteese ettt sttt 134
Freeing Locked Temporary TabIESccccioiiiiiiiiiiie et ete ettt ve e eveeetaeetveeaae e sbeessseessseans 135

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

Contents

viii

Chapter 7
Calling Application Engine Programsfrom COBOL ..o 137
Adding Copybooks t0 COBOL PrOGIramsccceceriiiriiieiiieieeieeieeieeteeieete et eeeeteetesbesnseeneeensesnneenseeas 137
ASSIZNING COPYDOOK VAIUES ..ooviiiiiiiiiiiieciieciecitecte sttt ste e s a e s tr e s tv e s ebestbestbesaaessbesssesssessseessesssenns 139
Handling COBOL EITOTS ccciiiiiiieriesieitesieesteesteestesteeseeesteesseesssessaesssesssesseesssesssesssesssesssssssssssesssesssensses 143
Chapter 8
Tracing Application ENGINE PIrOgraMSoooiiiiiiiiereee et s 145
Understanding Tracing Application Engine Programsccoccceviirienienieiieieteieee e 145
Understanding Trace RESUILS coviioiiiiiiiiciice ettt s veseb e s tb e s taeetbestbeseaesevesenas 145
TTACE FIle SECHIONS ..oeiiiieeiiieee ettt st et be s b et be e st ete b eneeneen 146
SEEP TTACES eeeeeiieetie ettt ettt ettt e st e bt e e bt e e bt e e bt e e subeesabee s bee e baeeabbeenbbeesabeesabeeebaeeneee 149
SOQL TTACES weeiiiiiiieeiiiieeecieee ettt e ettt e e eett e e e eetteeeeettaeeestaaeeeasssseeaassesesssaseeaassesaanssaesessseeeanssesessseeeennsseeas 149
Statement TImMINGS TTACES ...ccvecvieciierieiieieese et esite st et este et e bt e st esseesseesseesseesseesseeseessaesseesseesseenseensees 149
Database OPtiMIZEr TTACES cceeeciieiiiiiiieeieeeieeeiee et e et e st e e e beesteeereeeeaeeseseessseessseessseeansseessseensnes 151
Enabling Application ENgine TIACINGcccvevieriiiriieriierieesieeieeteesteesieesteereesseesseeseesseesseessesssesssesssesssessseans 154
Setting Command Line OPLIONS cceevieriierierieiieiteieerieeseeste e ee st esseesseesseesseesseesseesseesseesseesseesseenses 154
Setting Parameters in Server Configuration Filescccooviiiiiiiiiiiiiiccie e 155
Setting Options in PeopleSoft Configuration Managercccceevveevieviieniienieenieesieereereereeveeseeneens 155
Locating TTaC FIlES .oviiciiiiiieiiieiieeestt ettt ettt ettt ettt et e e be et e et e enseenseenseenseenseenseenseenseensesnsenns 156
Chapter 9
USINg TeMPOTary TADIES ...t r e e r e 159
Understanding Temporary Tablesccooociiiiiiiiiieeieeceeeee ettt e e e et eetae e tveessbeeseseeesseas 159
Creating Temporary Table INSTANCES cccccveiieiiiiieeierierieree et te et vesaesaessae b e sesessbessaesesesssennnas 161
Understanding Temporary Table INStANCES coceeviiriiiiiiiiiinieieieie et 161
Defining Temporary TabIesccc.oooiiiiiiiiiiecee ettt e e e tae e ta e e stae e eaeesssaesnbeeenees 162
Setting the Number of Temporary Table INStANCEScccccevveriirieriieriesieriereereesee e e ee e e 162
Building Table INSANCES ooiieiieiieieeieeie ettt et ettt e st e s e s e entesatesatesaeesnnesnseenes 164
Managing Temporary Table INSTANCES c.ccccviieciiiiiiiiiieeie ettt eteeetee et e e sve e s aeesbeeesbeessseeensneens 164
Understanding Temporary Table Instance NUMDEIS c.ccccoeciiiiiiiiiiiiiieiicicieeee e 165
Assigning Temporary Tables t0 PrOZIamS cocooiiiiiiiieiieieie ettt 165
AdJusting Meta-SQL ..oioeiiieiie ettt et e et e st e e e be e e tb e e tbeeerbeeerbeeenreeenraeesreennres 168
Making EXtErNal CallSc.cccviveiiiieiiiiiirieiie et e st st see e seeseeesteeseaeseaessaessaestaessaesssesssesssessaessaesssesseenssensns 170
Viewing Temporary Table USAZE cccceiieiiiiiiiii ettt ettt ettt ete et eate et e steeaeeens 172
Viewing Temporary Table Usage by RECOIAccooiiiiiiiiiiiiiciiciece ettt 172
Viewing Temporary Table Settings by Programccccceviiriiinienienieneeceeceeee e 173

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Viewing Online INStance USAZEcceoiiiiiiiiiieiieeie ettt sttt st e st esaee e ens 174
Resolving the Temporary Table Usage Warning MeESSAZEcccccvevververienienresrenresnesieesenessnesenenns 174
o = PSPPSR PP PRSI TPPO 177

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix

Oracle's PeopleSoft Application Engine
Preface

This PeopleBook discusses PeopleSoft Application Engine.

Application Engine

Application Engine is designed to help you develop, test, and run background SQL processing programs. This
PeopleBook explains the concepts and advantages of Application Engine, how to develop Application Engine
programs in Application Designer, how to run and debug programs, and the use of the special tools to
maintain your programs.

The "About These PeopleBooks Preface" contains general product line information, such as related
documentation, common page elements, and typographical conventions.

Note. DB2 UDB for OS/390 and z/OS is the official IBM name for the database management system
(DBMS). In the current PeopleTools release, Oracle no longer supports the OS/390 operating system, only
z/08, its replacement. For the sake of brevity, this PeopleBook sometimes refers to DB2 UDB for OS/390
and z/OS as DB2 z/0S, and it sometimes refers to DB2 UDB for Linux, UNIX, and Windows as DB2
UNIX/NT.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

» Understanding the PeopleSoft online library and related documentation.

* How to send PeopleSoft documentation comments and suggestions to Oracle.

» How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

» Understanding PeopleBook structure.

» Typographical conventions and visual cues used in PeopleBooks.

» ISO country codes and currency codes.

» PeopleBooks that are common across multiple applications.

» Common elements used in PeopleBooks.

» Navigating the PeopleBooks interface and searching the PeopleSoft online library.

» Displaying and printing screen shots and graphics in PeopleBooks.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. Xi

Preface

« How to manage the locally installed PeopleSoft online library, including web site folders.
» Understanding documentation integration and how to integrate customized documentation into the library.
* Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Xii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started With Application Engine

This chapter provides an overview of PeopleSoft Enterprise Application Engine and discusses:

» Application Engine implementation.

e Other sources of information.

PeopleSoft Enterprise Application Engine Overview

Application Engine is a PeopleTool designed to help you develop background SQL processing programs.
This tool is intended to be used by developers with knowledge of SQL, SQL tools, and PeopleTools.

Application Engine offers an alternative to writing COBOL or SQR programs for background SQL
processing. While Application Engine does not generate, parse, or understand SQL, it does execute SQL that
you provide.

This diagram shows the program structure of Application Engine:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Getting Started With Application Engine

Chapter 1

Application

Action

Action

Actian

Application Engine program structure

PeopleSoft Enterprise Application Engine Implementation

This section provides information to consider before you begin to use Application Engine.

Implementation of Application Engine can be divided into these activities:

» Set up properties.
» Specify actions.
» Create temporary table instances.

* Set up debugging options.

» Enable Application Engine tracing.

Setting Up Properties

To set up Application Engine properties, perform these steps:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1 Getting Started With Application Engine

Step Reference
1. Set up program properties. See Chapter 3, "Creating Application Engine Programs,"

Setting Program Properties, page 23.

2. Set up section properties. See Chapter 3, "Creating Application Engine Programs."
Setting Section Properties, page 30.

3. Set up step properties. See Chapter 3, "Creating Application Engine Programs,"
Setting Up Step Properties, page 32.

4. Set up action properties. See Chapter 3, "Creating Application Engine Programs."
Setting Action Properties, page 35.

Specifying Actions

To modify action properties, perform these steps:

Step Reference
1. Specify SQL actions. See Chapter 3, "Creating Application Engine Programs,"

Specifying SQL Actions, page 37.

2. Specify Do actions. See Chapter 3, "Creating Application Engine Programs."
Specifying Do Actions, page 38.

3. Specify PeopleCode actions. See Chapter 3, "Creating Application Engine Programs,"
Specifying PeopleCode Actions, page 40.

4. Specify Call Section actions. See Chapter 3, "Creating Application Engine Programs."
Specifying Call Section Actions, page 41.

5. Specify Log Message actions. See Chapter 3, "Creating Application Engine Programs,"
Specifying Log Message Actions, page 42.

Creating Temporary Table Instances

To set up temporary tables to improve performance, perform these steps:

Step Reference
1. Define temporary tables. See Chapter 9, "Using Temporary Tables," Defining

Temporary Tables, page 162.

2. Set up the number of temporary table instances. See Chapter 9, "Using Temporary Tables," Setting the
Number of Temporary Table Instances, page 162.

3. Build table instances. See Chapter 9, "Using Temporary Tables," Building Table
Instances, page 164.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

Getting Started With Application Engine Chapter 1

Setting Up Debugging Options

To set up debugging options for Application Engine programs, perform these steps:

Step Reference
1. Enable the Application Engine debugger. See Chapter 6, "Managing Application Engine Programs,"

Enabling the Application Engine Debugger, page 124.

2. Set up debugging options. See Chapter 6, "Managing Application Engine Programs,"
Setting Debugging Options, page 125.

Enabling Application Engine Tracing

To trace Application Engine programs, perform these steps:

Step Reference
1. Set command line options. See Chapter 8, "Tracing Application Engine Programs,"

Setting Command Line Options, page 154.

2. Set parameters in server configuration files. See Chapter 8, "Tracing Application Engine Programs."
Setting Parameters in Server Configuration Files, page 155

3. Set options in Configuration Manager. See Chapter 8, "Tracing Application Engine Programs,"

Setting Options in PeopleSoft Configuration Manager,
page 155.

Other Sources of Information

In addition to implementation considerations presented in this chapter, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, and PeopleBooks.

See Also

"Oracle's PeopleSoft Application Engine Preface," page xi
PeopleTools 8.52: Getting Started with PeopleTools

4 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding Application Engine

You use Application Engine to develop batch or online programs that perform high-volume background
processing against your data.

This chapter discusses:

» Application Engine fundamentals.

e Meta-Structured Query Language (SQL).
» Application Engine program elements.

» Application Engine program types.

Application Engine Fundamentals

Application Engine comprises two distinct components—a designer where you define your batch program
and the runtime environment where you run and monitor your program.

In Application Engine, a program is a set of SQL statements, PeopleCode, and program control actions that
enable looping and conditional logic. A program is defined in Application Designer to perform a business
process. You can use Application Engine for straight, row-by-row processing, but the most efficient
Application Engine programs are written to perform set-based processing.

Application Engine does not generate SQL or PeopleCode. It runs the SQL and PeopleCode that you include
in an Application Engine action as part of your program.

Application Engine is designed for batch processing where you have data that must be processed without user
intervention—for example, calculating salaries in payroll processing (although not printing the checks).
Another example might be converting money from one currency to another.

Meta-SQL

You can write SQL within Application Engine, or you can copy SQL statements into Application Engine
from any SQL utility with few, if any, changes. This capability enables you to write and fine tune SQL
statements before you try to incorporate them into an Application Engine program.

Database platforms can have different syntax rules, especially in regard to date, time, and other numeric
calculations. Generally, you can work around syntax differences using PeopleSoft meta-SQL, which
Application Engine supports. Meta-SQL is a set of predefined terms (meta-strings) designed to replace
relational database management system (RDBMS)-specific SQL syntax with a common syntax.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Understanding Application Engine Chapter 2

In addition, PeopleSoft meta-SQL enables you to dynamically generate portions of SQL code. For example,
to join two tables based on their common keys, use the following meta-string:

%Joi n(COWON_KEYS, PSAESECTDEFN ABC, PSAESTEPDEFN XYZ)
At runtime, the function would be expanded into the following:

ABC. AE_APPLI D = XYZ. AE_APPLI D

AND ABC. AE_SECTI ON = XYZ. AE_SECTI ON
AND ABC. DBTYPE = XYZ. DBTYPE

AND ABC. EFFDT = XYZ. EFFDT

Application Engine Program Elements

An Application Engine program comprises the set of processes to carry out a given task. It is made up of
these key elements:

e Sections
* Steps
e Actions

» State records

Sections

Sections include one or more steps and are equivalent to a COBOL paragraph or an SQR procedure. All
Application Engine programs must contain at least one section entitled MAIN.

A section is a set of ordered steps that is executed as part of a program. You can call sections (and other
programs) from steps within other sections.

A program must contain at least one section. Running the program always starts with the section defined as
MAIN.

Steps

Steps are the smallest unit of work that can be committed within a program. Although you can use a step to
execute a PeopleCode command or log a message, typically you use a step to execute a SQL statement or to
call another section. The SQL or PeopleCode that a step executes are the actions within the step.

When a section is called, its steps execute sequentially. Every program begins by running the first step of the
required section called MAIN and ends after the last step in the last section completes successfully.

Actions

You can specify multiple types of actions for inclusion within a step. Multiple actions are commonly
associated with a single step.

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Copyright

Understanding Application Engine

Do Actions

Do actions contain a SQL Select statement designed to return results on which subsequent actions depend.
For instance, if a Select statement returns no rows, then subsequent actions may not need to execute. A Do
action is equivalent to a COBOL Perform statement and has similar constructs.

The four types of Do actions are:

e Do While
e Do When
e Do Select
e Do Until
SQL

Most SQL actions contain a single SQL statement. These actions can perform the following types of SQL
statements:

+ Update
« Delete
e Insert
+ Select

A SQL action differs from a Do action, which also contain SQL, in that the SQL action does not control
the flow of the program.

PeopleCode

You can include PeopleCode in a PeopleCode action. Application Engine PeopleCode provides an excellent
way to build dynamic SQL, perform simple if/else edits, set defaults, and other operations that do not require
a trip to the database. It also enables you to reference and change active Application Engine state records.

Most importantly, PeopleCode provides access to the PeopleSoft integration technologies, such as PeopleSoft
Integration Broker, Component Interfaces, Business Interlinks, and file processing.

Log Message

You use a Log Message action to write a message to the message log based on a condition in your program.
This functionality gives your program multi-language capability. The system stores the message generically
as a message set, message number, and parameter values. When a user views the messages using the
Application Engine Message Log page, the system retrieves the appropriate message string from the message
catalog based on the user's language preference.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

Understanding Application Engine Chapter 2

Call Section

You can also insert an action that calls another section. The called section can be in the same program as the
calling section, or it can be in an external program. This capability enables you to chunk your program into
more maintainable, reusable pieces. If a section already exists in one program, then rather than copying it into
another program you can just call it.

Note. Application Engine supports up to 99 levels of nested Call Section actions. For example, the first called
section can call a second, which can call a third, and so on up to 99 calls.

State Records

A state record is a PeopleSoft record that must be created and maintained by the Application Engine
developer. This record defines the fields a program uses to pass values from one action to another. Think of
the fields of the Application Engine state record as the working storage for your Application Engine program.

An Application Engine state record can be either a physical record or a work record, and you can associate
any number of state records with a program. You must key physical state records by process instance.

Application Engine Program Types

This section discusses:
» Application Engine program types.
* Daemon program type.

» Transform program type.

Application Engine Program Types

Application Engine has five types of programs. You specify the type in the Program Properties dialog box for
your program definition. The types are:

» Standard, which is a normal entry-point program.

» Upgrade Only, which is used in PeopleSoft upgrade utilities.
e Import Only, which is used by PeopleSoft import utilities.

« Daemon Only, a type of program used as a daemon process.

» Transform Only, a program type used to support Extensible Stylesheet Language Transformations
(XSLT).

8 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding Application Engine

Daemon Program Type

Application Engine provides a daemon process, called PSDAEMON, that runs continuously when PeopleSoft
Process Scheduler is running and is intended for recurring jobs. It polls the system, checking for certain
conditions to occur. A predefined set of conditions is an event. When the conditions are true, PSDAEMON
schedules a process to handle the event.

PSDAEMON supports limited tracing because it runs indefinitely. Specifically, it only allows Application
Engine tracing at the step and SQL levels, in addition to the standard PeopleSoft SQL and PeopleCode
tracing. It does not support other options, such as Timings and DB Optimizer tracing.

You activate PSDAEMON in PeopleSoft Process Scheduler or from the command line.

Note. One PSDAEMON process can run for each row in the PS_ SERVERDEFN table. The
PS SERVERDEFN.DAEMONENABLED field must be set to 1.

Starting PSDAEMON from the Command Line
The command line syntax is:

psdaenon [-CT dat abase_type] [-CD database_nane] =
[-CO userl D [-CP password] -R server_nane

Use the —R option to query PS_SERVERDEFN, obtaining the daemon group, sleep time, and recycle count
(terminate after N iterations). Server _name is the key value for PS_ SERVERDEFN. You do not need to pass
ProcessInstance (—I) or AE Program ID (—AI).

Starting a Daemon Program from PeopleSoft Process Scheduler

Before starting a daemon Application Engine program, you must add the program to the Daemon Group page
in PeopleSoft Process Scheduler.

To add a daemon program:

1. Select PeopleTools, Process Scheduler, Daemon Group.
2. Select the Add New Value page.

3. Enter a daemon procedure group name and click Add.

4. On the Daemon Group page, add the appropriate programs to the program name list.

Restarting the AEDAEMONMGR Program

AEDAEMONMGR is a restartable Application Engine program that commits after each daemon procedure.
When PSDAEMON executes, it determines whether it must restart AEDAEMONMGR following an
abnormal end to a program.

If a restart is not required, PSDAEMON assigns a new process instance and runs AEDAEMONMGR from
the beginning. Because of this design, PeopleSoft Process Scheduler does not have to determine whether
PSDAEMON exited due to an error or because it had reached the recycle count.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

Understanding Application Engine Chapter 2

AEDAEMONMGR uses the Daemon Group page value to get related daemon procedures from

PS DAEMONGROUP in order, and then it initiates each procedure. After all procedures have been executed,
AEDAEMONMGR logs a sleep message and returns control to PSDAEMON. The sleep time is used only to
log an informational message at the end of each cycle, for example, "Sleeping for N minutes...." It also logs a
message at the beginning of each cycle so that an administrator can monitor the runtime and sleep-time of a
specific PSDAEMON process.

If an error occurs in AEDAEMONMGTR, if the recycle count has been reached, or if
PSSERVERSTAT.DAEMONACTION ="1' (indicating that PeopleSoft Process Scheduler is idle), then
PSDAEMON exits. Otherwise, it sleeps for the requested number of minutes and then calls
AEDAEMONMGR again.

Using PSDAEMON to Start Parallel Processing

Within a daemon group, programs are invoked sequentially and one program does not execute until the
previous program has completed. The programs contained in a daemon group should be quick programs that
scan information to find events. When an event is discovered, the daemon program can use the
ProcessRequest class to invoke programs that are not of the daemon type. These non-daemon type
Application Engine programs can execute in parallel. For that reason, do not include application-specific
processing in a PSDAEMON type program.

See Also

PeopleTools 8.52: PeopleSoft Process Scheduler, "Defining PeopleSoft Process Scheduler Support
Information," Defining Process Type Definitions

Transform Program Type

Transform Only type programs enable different systems to communicate with one another by transforming
messages into appropriate formats. When you specify an Application Engine program as a Transform Only
program, you must specify actions of type XSLT or PeopleCode. You can use transform programs to:

* Apply a transformation to a message to make its structure comply with the requirements of the target
system.

» Perform a data translation on a message so its data is represented according to the conventions of the
target system.

» Determine whether to pass a message through to its target by filtering it based on its content.
See Also

PeopleTools 8.52: PeopleSoft Integration Broker, " Applying Filtering, Transformation and Translation,"
Developing Transform Programs Using PeopleSoft Application Engine

10 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

An Application Engine program includes a logically ordered set of sections, steps, and actions. An executable

program must contain at least one section, called MAIN, used to identify the starting point of the program.
Also, it should contain at least one step, and each step should contain at least one action.

This chapter discusses how to:

* View Application Engine programs.
 Filter view contents.

e Print program and flow definitions.
» Create, open, and rename programs.
» Copy or move program elements.

» Test Application Engine programs.
» Set program properties.

* Add sections.

e Add steps.

» Specify actions.

Viewing Application Engine Programs

This section discusses how to:

e Use Definition view.

» Use Program Flow view.

» Switch between Definition and Program Flow views.

» Use the Refresh option.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

11

Creating Application Engine Programs Chapter 3

Using Definition View

You use Definition view to create definitions within a defined hierarchical structure, in which nodes represent
the definitions. A node is the visual representation of a section, step, or action that you can select, collapse,
modify, and so on.

The sections that appear in Definition view do not necessarily appear in the order that they execute. To see
the actual order in which the sections execute, switch to Program Flow view.

In addition to using a mouse, you can navigate in this view using the following keyboard combinations:
e Press Ctrl+Home to scroll to the top of the program definition and select the first node.

» Press Ctrl+End to scroll to the end of the program definition and select the last visible node.

e Press Tab to move from the currently selected field to the next updateable field.

* Press Ctrl+Down Arrow to move from the currently selected node to the next node.

» Press Ctrl+Up Arrow to move from the currently selected node to the previous node.

The following example shows the Definition view:

Definition IP'n:ugram Flowy I

|5 ection [Step |Action |
—| [MAIN | Al etaennindian | Adelide (5
—| &3 StantUp | £ ey caiaer mamezme | Akt ez
Cormmit After: Frequency: Or Erraor;
0o [Default | | &bt
|Log Message | {arAecsams savasine
Message Set: Mumber:
[108 |
= ZS|RunProc | S Sasenn Frocecteadcd | Akt ez
Cormmit After: Frequency: Or Erraor;
0oz [Default |1 | &bt

(Do Select | for Sata dbaccnidios
Rellze Statement: Do Select ¥
1| | 3

Example of Application Designer Definition view

Definition View Pop-up Menu

The following table describes each item you see when you right-click a Definition view window. Certain
menu items are enabled only when a particular definition is selected.

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Menu Command

Description

View PeopleCode Launches the PeopleCode Editor with the appropriate PeopleCode loaded.
Enabled when a PeopleCode action is selected.

View SQL Launches the SQL Editor with the appropriate SQL loaded. Enabled when an
action containing SQL is selected.

View XSLT Launches the SQL Editor with the related Extensible Stylesheet Language
Transformations (XSLT) text loaded. Enabled only for Transform Only
program types when an XSLT action is selected.

Cut Removes the selected item and copies it to a clipboard. Here, the word
clipboard refers to a PeopleTools-only repository for sharing PeopleTools
objects. You cannot copy or paste into another program.

Copy Copies the selected item.

Paste Pastes the contents of the PeopleTools clipboard (the most recently cut or
copied item) to the current location of the cursor.

Delete Removes the currently selected node from the program definition.

Refresh View Refreshes the current view and reorders the definition objects as necessary.

Show Comment

Reveals the comments associated with the selected definition object.

Insert Section

Inserts a new section into the current program at the place where the cursor is
positioned. This option is enabled only when you have selected MAIN or
another section.

Insert Step/Action

Inserts a new step and action within the currently selected section. This
option is enabled only when you have selected a section or a step.

Insert Action

Inserts a new action within the currently selected step. This option is enabled
only when you have selected a step or action.

Jump to This Program Flow

Switches to the Program Flow view with the first occurrence of the currently
selected definition in focus.

Print

Displays the print dialog box for the definition view.

Insert Section Into Project

Applies to sections. Inserts the currently selected section into the current
project.

Using Program Flow View

Program Flow view is a read-only view that shows the expected sequence of steps to execute for the program
you are developing. The following example shows the Program Flow view:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Creating Application Engine Programs Chapter 3

14

Definition Program Flow l

: Step 2 TESTMUM =

F Call Section - TESTHUM. GBL. default. 1900-01-01
{Bs| Step1: INTEGERS
oL soL
{Bs| Step 2 INTRESLT
.
TB| Step 2 INTMSG
{i| Step 3 FILE4/D
£ Call Section - FILE.GBL. default.1300-01-01
Tl Step1: FILE4/D
| PeopleCode
{i| Step 4 SESSION !
Call Section - SESSION. GEL. default. 1900-01-01
E Step 1: Sesion
I v -
$3elect(AE_TINT_15) SELECT %Bind(AE_TNT 15) + 3Bind(AE_TNT 14) + &
$Bind (AE INT 13) + %Bind(AE_INT 12) + %Eind(&E_INT 11} +
$Bind (AE INT 10) + %Eind(AE_INT 9) + %Eind(AE INT &) +
$Bind (AE INT 7) + %Bind(AE INT &) + %Bind(AE INT 5 +
$Bind (AE INT 4) + %Bind(iE INT 3) + %Bind(AE INT 2} + ;|

Example of Application Designer Program Flow view
You can control the amount of detail that appears for each definition by clicking it to expand to the next level.
You also can view the SQL or PeopleCode in the lower (splitter) window area by clicking the lower window.

If a primary step node (one that is not the result of a section call) is selected, the Print Options dialog box
permits printing to begin either at that step node or the entire program prints. However, if a secondary step
node (one that is the result of a section call), a secondary action node, a call section action node, a SQL node,
or a PeopleCode node is selected in the Program Flow view, then the Print Options dialog box only permits
the entire program to be printed.

To display the pop-up menu for a node, right-click the node. You do not have to select the node first.

You also can display the comments associated with definitions by selecting View, Show All Comments or,
for a particular node, right-click and select Show Comment.

You can double-click SQL or PeopleCode statements to launch the editors.

Program Flow Pop-up Menu

The following table describes each pop-up menu item in the Program Flow view:

Menu Command Description

View PeopleCode Launches the PeopleCode Editor with the appropriate PeopleCode loaded.
Enabled when a PeopleCode action is selected.

View SQL Launches the SQL Editor with the appropriate SQL loaded. Enabled when an
action containing SQL is selected.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Menu Command Description
Refresh View Refreshes the current view and reorders the definition objects as necessary.
Show Comment Reveals the comments for a single definition object that appears in the

Program Flow view.

Jump to This Definition Switches to the Definition view with the first occurrence of the currently

selected definition object in focus.

Print Launches the print dialog box for the program view.

Switching Between Definition and Program Flow Views

By default, navigation within either view does not affect the currently active row in the other view. This
functionality enables you to retain your place in one view while scrolling through the other.

To switch between the two views, use any of the following methods:

View tabs

As with any tabbed interface, if you select a tab, the associated view interface becomes active. When you
return to the previous view, it remains positioned on the current or last selected node within the program
when you switched. This positioning is true whether you selected the item or just placed the cursor within
an edit box.

View menu

Select a section or step in the current view (note that selecting an action does not enable this functionality;
you can jump only from parent nodes). Then select View, Jump to Program Flow or View, Jump to
Definition, depending on the currently active view. When you select one of these commands, the focus of
the target view depends on what you selected in the previous view. For example, if you selected Section
C, Step 4 in Definition view and you select View, Jump to Program Flow, then Section C, Step 4 is the
focus of the Program Flow window. If the selected item is in a program that is not open already, then
Application Engine opens the appropriate program and navigates to the requested node in the view
window.

Pop-up menu

The same commands as the View menu are also available from the pop-up menu.

Switching Within Program Flow View

While you are in Program Flow view, you can select these options from the pop-up menu:

Go to Next Reference

Select to switch to the next reference of a particular definition object. This option helps you navigate
quickly through a program. For instance, if references to Section C, Step 4 appear three times because of
multiple calls to this object at runtime, then you can select Go to Next Reference to navigate quickly and
easily to each reference or call.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Creating Application Engine Programs Chapter 3

e Jump to this Definition

Select to go directly to the definition node in the Definition view that pertains to the current selection in
the Program Flow view.

Using the Refresh Option

As you develop an Application Engine program, you may be inserting, renaming, and deleting definitions. In
a large program, you can easily lose your place or become disoriented. The Refresh option reorders all the
nodes for the current definition according to the following logic:

» For standard program definitions, the MAIN section always appears first (Library program types do not
contain a MAIN section because they contain only callable sections).

The remaining sections appear alphabetically by name, which makes it easy to locate a section within the
program definition. At runtime, the system runs sections through Call Section actions within steps, not by
the order in which the sections are defined.

» Steps are never automatically reordered in the Definition view; at runtime, they run in the sequence in
which you defined them.

» Actions are always logically reordered within a step based on their action type, which defines their
runtime sequence.

Note. When you save a modified definition, the system automatically refreshes the view.

Application Engine inserts any delete requests for a given section into the current project, regardless of the
Tools, Options setting in Application Designer.

For example, suppose you delete a section node from the current Application Engine program and then you
reinsert a section node and rename it the same name as the section you just deleted. The section object is not
inserted into the project, regardless of your Tools, Options setting, because a delete action already exists for
this object. To resolve this situation, either remove the delete request manually before inserting the new copy
request or reset the proper flags manually in the upgrade project that changes the action type from Delete to

Copy.

Filtering View Contents

Section filtering options enable you to filter the current view so that you see only sections and steps based on
specified criteria.

To enable or modify the filtering options, select View, Section Filtering. You can select from the filtering
options described in this table:

Menu Command Description

No Filtering Select to see all objects in your program, regardless of any section attributes
such as Market, Database Type, Effective Date, and Effective Status.

16 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs
Menu Command Description
Default Select to display the definition filter according to the default filtering criteria.
If you change the value of any filter option and click OK, you have defined a
custom filter.
Custom Select to display the definition filter dialog box and define custom filtering
options for the current view.

Behavior of Section Filtering Options

When using the section filtering options, keep in mind that:

The default is No Filtering; therefore, all section definitions are included in this view.

If you select Custom filtering, the default filtering options appear while you are in the current session of
Application Designer.

If you modify these filtering options and click OK, the new options are stored as the currently active
options and the view is updated accordingly.

If you select the Default filter option, the original default options appear in the dialog box.

After clicking OK, the view reappears with only those sections that qualify. However, if you change the
default options and do not click OK, then these options are stored as a custom filtering request and the
view reappears as necessary.

If no platform-specific section is defined for the target filter value, then the default (base platform) is
always included because it represents the Application Engine runtime behavior more accurately.

If you select Section Filtering, Default, or Section Filtering, Custom, then the following dialog box appears:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

17

Creating Application Engine Programs Chapter 3

18

Definition Filter |

Section I

M arket: ||T-"-"- i

Kl

Blatform: IMil:rl:uscuft j

A of Date: |zunn-n4-11

g o= o
T L 1] T L] T In]!
T ar b 2 B0 3 i
H H 4 5 g T H
5 10 E 12 1 14 15
e —
1 1 18 1A 20 21 22
28 24 25 2 b 28 28
20 1 F z 4 5 g

| aF. I Cancel

Definition Filter dialog box

In this example, only definitions that represent the following criteria appear in the Definition and Program
Flow views.

Market Select a market code to see only the definitions within that market. To see
all market-related definitions for a program, you could update the default
profile or define a custom filter by selecting (none) from the Market drop-
down list box. The example shows only sections that pertain to the Italian
market (market code ITA).

Platform Select the platform filtering. The example shows only the sections that are
defined for the Microsoft SQL Server platform. Select Default to display
sections defined to be database-platform-independent (the default platform).
Specific platforms include Oracle, DB2 UDB for OS/390 and z/OS,
DB2/UNIX, Informix, Microsoft, and Sybase.

Asof Date Select the date filtering. The example shows sections with an As of Date
equal to or greater than April 7, 2000. Select None to display all sections,
regardless of effective date.

Active Status Select to show active section definitions.

Note. All filtering options pertain only to section-level nodes.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Printing Program and Flow Definitions

You can print the program definition or program flow, depending on which view you are in when you select
Print.

To print an Application Engine program definition:
1. Right-click and select Print in either the Program Flow or Definition view or select File, Print.

2. Select print options.

Program ID Select to print the whole program.

All Sections Select for all sections to be expanded in the printed report but on/y for
the primary Application Engine program that is being printed and only if
that program is an application library. Otherwise, only the MAIN
section, first section, or called section is printed.

All Steps Select to print all the steps in the section.

All Attributes Select to print all detail level attributes for the specified node and its
children.

SQL Statements Select to print, for every SQL type action, the text of each SQL
statement.

PeopleCode Statements Select to print the text of the PeopleCode statements for every

PeopleCode action.

Comments Select to print the long description comments for the selected node and
its children.

Include External Calls Select to print the section detail of all external calls.

Max No. of Levels(maximum Specify the maximum number of recursive levels to print for the

number of levels) specified call sections, including both external section calls and internal
section calls. This edit box is always enabled. You can only set the
maximum number of levels to a value greater than or equal to /.

Creating, Opening, and Renaming Programs

This section discusses how to:

+ Create new programs.

e Open existing programs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Creating Application Engine Programs Chapter 3

Rename programs.

Creating New Programs

To create a new program definition:

1.
2.

Select File, New or press Ctrl + N.

In the New dialog box, select App Engine Program from the Definition Type drop-down list and click
OK.

Save and name your program.

Select File, Save As, enter the name of your program in the Save Name As edit box, and click OK.

Note. You should also provide a program description and specify its owner in the properties dialog box for
the new program.

See Chapter 3. "Creating Application Engine Programs," Setting Program Properties, page 23.

Opening Existing Programs

To open an existing program:

1.
2.
3.

Select File, Open.
In the Open Definition dialog box, select App Engine Program from the Definition Type drop-down list.

Enter your search criteria for the program you want, select your program in the search results list, and
click Open to open the program.

Renaming Programs

To rename a program:

1.
2.

20

Select File, Rename.

In the Rename dialog box, make sure that App Engine Program appears as the definition type.
In the box that contains your search results, click the program that you want to rename.

Click Rename.

Place the cursor in the box that appears around the highlighted program name.

Enter a new name for the program.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

7. Click Rename again and respond appropriately in the Confirm Rename dialog box.

Note. The system automatically modifies all static references in other programs to the renamed program.
For instance, if you call the renamed program from another Application Engine program, the Call Section
action in the calling program is modified to reflect the new program name. All sections and steps are
saved under the new name. Only one occurrence of a program name can exist for a given database.

Note. If the renamed program is called in a dynamic Do action, then the reference is not modified
automatically. You should manually check and modify any embedded references to the new program
name in CallAppEngine or other PeopleCode functions.

Copying or Moving Program Elements

The following procedures apply to sections, steps, and actions. Note that when these functions are performed
for a given object, the result applies not only to the selected object but also includes its defined children, if
they exist. Also note that all references to menu items apply not only to the main menu bar items but also to
their related items in the context menu, as applicable.

To copy a definition:

1. Select a definition.

2. Select Edit, Copy.

3. Position the cursor where you want to put the copied definition and select Edit, Paste.
To move a definition:

1. Select a definition object.

2. Select Edit, Cut.

3. Position the cursor at the target location and select Edit, Paste.

Testing Application Engine Programs

After creating or modifying your program, you can test it in two-tier mode while in Application Designer.
You use the Run Request dialog box:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

Creating Application Engine Programs Chapter 3

Program Mame: AETESTPROG

Fur Contral D IHUND'I

¥ Bun minimized

Lag File Name: Ic:htemp"-.f-‘-.ETESTF'HEIG.Ing

Process Instance: IEI

s I Cancel

Run Request dialog box

To run an Application Engine program in two-tier mode:

1. Select Edit, Run Program from the Application Designer toolbar.
The Run Request dialog box appears.

2. Enter appropriate values.

When you click OK, these values are passed as runtime parameters to the initiated Application Engine
runtime executable.

Run Control ID Enter the run control ID of the program that you are testing.

Run Minimized Select to have the window of the requested process minimized when it is
submitted to run.

Output Log to File Select to write the output log to a file.

Log File Name Specify the log file name (enabled only when the Output Log to File
check box is selected).

Process I nstance Specify the process instance for this run request or use the default value
of zero if you do not need an instance number.

3. Click OK.

22 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Setting Program Properties

This section discusses how to:
e Access properties.

« Set general properties.

» Set state record properties.
» Specify temporary tables.

» Set advanced properties.

Accessing Properties

When you have an Application Engine program open in Application Designer, you can view and modify the
properties assigned to an entire program just as you would a step or a section.

To view or modify the properties associated with a program, click the Properties button or select File,

Definition Properties while the program is open. You can also press Alt+Enter. The Program Properties
dialog box appears.

Setting General Properties

Access the Program Properties dialog box and select the General tab. You can specify identification values
for your Application Engine program.

Owner ID (Optional) Enter the owner ID for the program. The owner ID is a way to
identify which definitions are owned by which PeopleSoft applications,
such as PeopleSoft General Ledger, Accounts Receivables, and so on. The
values in the drop-down list are Translate table values associated with the
OBJECTOWNERID field.

Setting State Record Properties

Select the State Records tab.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

Creating Application Engine Programs

Chapter 3

Program Properties

Qualify Search;
I.-’-‘-.E et List |
Fecord List

Gereral State Recards | Temp Tal:nlesl .-’-'-.u:l'-.fann::edl

— Selected:

Eemayve |

|.-’-‘-.E INTTEST AET

&AE_UIPGEIDH_AET
AEMASSCHMG_AET

AE_TESTAPPL_AET

" Default State Recard

0k, Cancel

Program Properties dialog box: State Records tab

Qualify Search

Get List
Record List

Selected

24

Enter any wildcard characters or complete table names to limit the results
that appear in the record list. By default, the Record List text box contains
all record names that end with the extension AET. This extension identifies
the record as an Application Engine record.

Click to populate the Record List text box.
This text box contains the results of your state record search.

Select state records for use with a particular program. Click Add to include
selected records from the record list into the selected list. Click Remove to
remove selected records from the selected list. Indicate which state record
will act as the default state record by selecting its check box. For your
default state record, you need to reference only field names in your
PeopleCode and SQL (for the active program). When you reference a non-
default state record, you do so by using recname.fieldname.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Specifying Temporary Tables

Select the Temp Tables tab.

Program Properties E
General] State Becords Temp Tables l.-’-‘-.dvanu:ed]

Clualify Search: Selected:
I [GetList | |
Fiecord Lizt
AEE=T_TaA0O

R untirme:

Instance Cownt: |—1 I; nnn-sg.:reagsrganbeled:s canmnok
Share Tablez in Orline Mode [f+ Continue
" Abort
Ok

Program Properties dialog box: Temp Tables tab

Temporary tables store intermediate results during a program run.

Creating Application Engine Programs

Note. You must have defined required temporary tables in your database before you can associate them with

an Application Engine program.

Qualify Search Enter any wildcard characters or complete table names to limit the results
that appear in the record list. By default, the Record List text box contains
only records that are of type Temporary Table. You apply this attribute
when you create the record in Application Designer.

Get List Click to populate the Record List text box.

Record List This text box contains the results of your search for temporary tables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

25

Creating Application Engine Programs

Selected

Instance Count

Share Tablesin Online M ode

Insert Selected list into
Project

Runtime

Chapter 3

Select temporary tables for use with a particular program. Click Add to
include selected records that appear in the record list. Click Remove to
exclude selected records that appear in the selected list.

Enter the number of physical tables to be created for each dedicated table
for this program during the SQL Build procedure in Application Designer.
Typically, you would set this number to equal the maximum number of
parallel program runs that you anticipate. For instance, if you expect up to
five instances of the same program to run simultaneously, then you would
set the instance count to 5.

Select to enable online temporary table sharing. By default, this check box
is not selected.If the temporary tables need to be shared for this particular
Application Engine program when run in online mode, this has to be
selected. When an online Application Engine instance cannot allocate itself
a dedicated temporary table, this instance will share a temporary table
already used by another instance(s), improving the online performance.

If the active Application Engine program definition belongs to a project,
select this check box to include the dedicated temporary tables for this
program within the same project.

Control how an Application Engine program acts if an instance of its
specified dedicated temporary tables is not available. If you select
Continue, then Application Engine uses the base version, or undedicated
version, of the temporary tables. If you select Abort, then the program exits
with an error message.

Note. If the table is keyed by PROCESS INSTANCE and the application SQL includes the process instance
in the Where clause, then multiple processes can share the table. The best performance, however, occurs
when a program runs against a dedicated temporary table instance.

See Also

Chapter 9, "Using Temporary Tables," page 159

Setting Advanced Properties

26

Select the Advanced tab.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Program Properties

[Disable Restart
[Application Libramy

[Eatch Only

Generall State Hec:n:nrdsl Temp Tables Advanced I

tezzage Set IEI hd I
Frogram Tvpe: | Standard - I

Upgrade Only (a
[rpart Ol
Transform Dnl! =

s

Program Properties dialog box: Advanced tab

Disable Restart

Application Library

Batch Only

M essage Set

Select to disable the built-in restart capabilities for a particular program.

In some cases, you may want a program to contain only a collection, or
library, of common routines (in the form of callable sections) that you do
not want to run as a standalone program. When sections are defined as
public, other programs can call the sections, or routines, that exist in the
library at runtime. Because this type of program is not designed to run as a
standalone program, it does not require the MAIN section, or initial entry
point. Select this check box to rename or remove any existing MAIN
section.

Note. An application library is the appropriate location to store a collection
of shared Application Engine program sections. Libraries are not intended
for storing a specific SQL action within a section. To share common SQL,
use the SQL repository.

Select for batch-only programs. Batch-only programs are not run from the
CallAppEngine PeopleCode function. Any dedicated temporary table used
for batch-only programs does not have online instances created.

Specify the default message set value for this program. The system uses this
message set value for all Log Message actions for which the message set is
not specified.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

Creating Application Engine Programs

Chapter 3

Program Type Select from:

Standard: Used by standard entry-point programs.
Upgrade Only: Used by PeopleSoft upgrade utilities only.
Import Only: Used by PeopleSoft import utilities only
Daemon Only: Use for daemon type programs.

Transform Only: Support for XSLT programs.

Adding Sections

This section provides an overview of sections and discusses how to:

o Insert sections.
* Locate sections.

» Set section properties.

Understanding Sections

28

A section comprises steps and is similar to a COBOL paragraph or a PeopleCode function. You can create
sections that are platform-independent or platform-specific, intended for a particular market, and effective-

dated.

Whenever you create a new program, you simultaneously create a section called MAIN. The MAIN section
identifies the entry point of the program so that it can be called by another program.

Section Execution Order

A section is unique based on program and section names, and based on its intended database platform and
effective date. When you execute an Application Engine program, it executes sections based on the following

order of precedence:

1. If a section for the current market exists, then run it.

Otherwise, execute the default GBL (global) market section.

2. Ifasection for the current platform, or database exists, execute it.

Otherwise, execute the default database platform section.

3. If multiple effective-dated sections exist, execute the section with the most recent effective date based on

the current (run) date.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

For example, suppose you have two versions of a particular section, SECTO1 for the Public Sector market and
SECTO1 for the Global market. If you request to run the public sector version of the program, Application
Engine executes the Public Sector version of SECTO1. If the program is running on Oracle, Application
Engine then looks for an Oracle version of SECTO1 for Public Sector.

Inserting Sections

To insert a section:

L.

2.

3.

Select Insert, Section, or right-click and select Insert Section.

The default name for a section that you insert is Section N, where N is an incremental number intended to
provide a unique name for each section object. Unless you rename sections, the sections you add are
named SectionN+1, where N is the last section you inserted. Consequently, the names are Sectionl,
Section2, Section3, and so on.

The designer inserts the new section directly beneath the subordinate objects within the owning section of
the highlighted object. For instance, if Section2 were selected, then Section4 would be inserted between
Section2 and Section3 rather than after Section3.

Note. Sections are always reordered alphabetically by name when you save to make locating a section
easier. However, run order depends on internal call section references and is, therefore, independent of the
order in which sections are inserted and displayed.

Enter the remaining section property values.

Save the program.

Locating Sections

Various methods are available for locating references to sections within an entire database as well as within a
program.

Finding Call Section References

You can generate a list of all the references to a particular section. The list applies only to Application Engine
programs defined within a single database.

To locate section references:

—

Open the program containing the shared, or called, section.
Select Edit, Find References.
The Find Definition References dialog box appears.

On the Call Sections tab, select the appropriate section from the Section name drop-down list or enter the
name.

By default, the current program name and MAIN section appear in the dialog box.

Click OK.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

Creating Application Engine Programs Chapter 3

5.

In the output window, view the generated list.

The output window lists the programs and sections that call a particular program. This list also shows the
total call references made to a particular section. Call sections within the current program appear first in
the list.

Double-click an item in the output window list to automatically navigate the definition view to that calling
section.

Finding Sections Within the Current Program

Within large and complicated Application Engine programs, such as those upgraded from a previous release,
having more than 100 sections is not uncommon. Rather than scrolling through a large program, use the Go
To Section feature.

Note. This feature applies only to the current program.

To automatically navigate to a selected section:

1.

Select Edit, Go To Section.
The Find Definition References dialog box appears.

On the Go To Section tab, select the appropriate section from the Section name drop-down list or enter
the name of the section.

Click OK.

The Definition view scrolls to the first occurrence of the section with the name you selected.

Setting Section Properties

Controls that specify section properties are located in the Definition view. For example, for each section
included in your program, a node, as shown in the following example, appears. You specify all of the
attributes to associate with a particular section from this node:

{3 MAIN [AN dhe scription | MAIN, GBL.{hase). 1800-07-0
Market: Platform: Eftective Date: Effective Status: Section Type: Auto Committ. Access:
[zEL | [thase Jo1i0141900 [active [Frepare Only |[Adter Step [Public

Section object

The values you specify at the section level generally apply to all the objects contained within that section.

Section Name Develop a naming convention and use it consistently throughout your

projects. You are limited to eight characters.

Market Select the market for which the section is intended. If a particular market is

30

irrelevant to your batch program, keep the default market value of Global
(GBL).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Platform

Effective Date
Effective Status

Section Type

Auto Commit

Public

Creating Application Engine Programs

Select the target database platform for which this section definition will run.
Leave the default value for all sections whose defined actions are not
specific to a given database platform.

To make a particular section effective-dated, enter a target date.
Specify whether a section is active or enabled at runtime.

If the program terminates abnormally, this value specifies whether you
must restart the section.

If a section controls a procedure that, if not run to completion, could corrupt
or desynchronize your data, then select Critical Updates. Otherwise, accept
the default value of Prepare Only.

Select to specify the commit level for the section. You can have no commit
or you can have Application Engine commit after the step successfully
completes.

Select to enable a section to be called from another program.

Adding Steps

A step represents the smallest unit of work that can be committed in a program. When you create a program,
you have a default MAIN section and step that is initially named StepO1.

This section discusses how to:

« Insert steps.

« Setup step properties.

Inserting Steps

To insert a step:

1. Highlight the section or step that you want to precede the new step.

For example, if you want the new step to be the first step in the section, select the section node.
Otherwise, select the existing step that you want the new step to follow.

Note. The name of the section in which you insert the step appears to the right of the step description. In
large programs, this step enables you to determine the section in which a step resides if the section is not
in view. Also, note that a sequence number appears on each step (001, 002, 003, and so on) so that you
can determine the order of a step within a section. The sequence numbering for steps begins at 001 within

each section.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Creating Application Engine Programs Chapter 3

2. Select Insert, Step/Action.

By default, the steps are given a default name of StepN+1 beginning with Step0I. Rename the step to
better define the type of action this step contains.

Note. The designer continues to increment the step name until it has a unique step name within a section.
If the designer is unable to create a unique name after 50 attempts, a new step is not inserted.

3. Specify a step name and the remaining values.

To rename a step, position the cursor in the step name edit box and enter a custom name. Only accept the
default name for building quick, simple programs and for training purposes.

Setting Up Step Properties

You set up step properties in Definition view.

Step Name Enter a name (up to eight characters).

Commit Specify the commit level for the step:

» Default: Select to inherit whatever commit level you specified for the
section in which the step resides.

» Later: Select to postpone the commit until a subsequent commit occurs.
Here you can override the section-level commit if it is set to After Step.

o After Step: Select if you have a commit level of None specified at the
section level. This selection enables you to override the section-level
commit and commit a specific step within a section with no other
commits.

Frequency Enabled only when a step contains one of the following actions: Do While,
Do Select, or Do Until. Enter the numeric frequency with which
Application Engine should commit. If non-zero, Application Engine
commits every N iterations and then again after the last iteration.

32 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

On Error Specify how Application Engine should respond to an error at the step

level. The On Error routine behaves the same for both SQL and
PeopleCode actions. The program only terminates on errors, not warnings.
Select from:

» Abort: The application terminates with an error message.
o Ignore: The program continues but logs an error message.
» Suppress:The program continues and presents no error message.

e SQL: Usually a program terminates if a SQL Prepare statement or
execute fails. If you select Ignore or Suppress, errors on running
programs are suppressed, but errors on compiles still cause the program
to terminate. Thus, if you select to reuse an Update statement, the
program fails on the compile if the SQL is incorrect, but it does not fail
on a duplicate key error or similar error when the program runs.

» PeopleCode: The program has a PeopleCode error if the return code
satisfies the statement | f (nRet & PCM ERROR).

Status Select to activate a step. If the step is currently applicable to your program

(and working), you will probably want to keep it active.

Note. The On Error property does not apply to compile errors (for example, specifying erroneous SQL
statements). It checks only for execution-type errors. If your program has a syntax error, the program
terminates.

Specifying Actions

This section provides an overview of actions and discusses how to:

Insert actions.

Set action properties.

Specify SQL actions.

Specify Do actions.

Specify PeopleCode actions.
Specify Call Section actions.
Specify Log Message actions.

Specify XSLT actions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

Creating Application Engine Programs Chapter 3

Understanding Actions

34

You can include eight types of actions within a step, and a step can contain multiple actions. The actions you
define for a step depend on the results that your program requires at each stage of execution.

The only mutually exclusive actions within a single step are Call Section and SQL Statement; you cannot add
a Call Section action to a step that already contains a SQL Statement action, and vice versa. You can include
only one of each action type within a single step. Because eight types of actions are available and two of these
are mutually exclusive, the maximum number of actions a single step can contain is seven.

Action Execution Order
At runtime, the system evaluates actions by type and runs them within a strict hierarchy. For example, if both
a Do When and PeopleCode action exist within a given step, then Application Engine always executes the Do

When action first.

The following diagram shows the sequence and level of execution for each type of action:

WHEN a SELECT returns a row.

— WHILE a SELECT returns a row.

For every row returned from a SELECT,
continue in the following order:

Execute PeopleCode if any.

Loop

Execute SCL or Execute the Section.

Insert message into the Message Log.

UNTIL a SELECT returns a row,

Action execution hierarchy

As you add actions to a step in the Definition view, the actions are initially inserted after the selected
definition (the owning step or a previous action). However, following a save request or a refresh of the view,
the designer reorders all actions to match the execution hierarchy. This feature helps you visualize the
sequence in which each step of your program logic runs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Note. A SQL action and a Call Section action are interchangeable and mutually exclusive. Only one of these
two actions can appear within a step.

When inserting actions, remember that:

You cannot have more than one action of a specific type within the same step.
You cannot have a SQL action and a Call Section action within the same step.

You can define only XSLT type actions for programs defined as Transformation types (see the program
properties).

Inserting Actions

To insert an action:

1.
2.

Highlight the step in which you want to insert an action.
Insert the action.

You do this using one of the following methods:

» Select Insert, Step/Action.

» Right-click the step and select Insert Step/Action.

Select the action type from the drop-down list or, when current action type is selected, enter the first one
or two characters of the desired action type and then press Tab. The first (or only) type qualified by your
entry is updated in this control.

Enter a description of the action.

Specify the appropriate properties for the action you selected.

Setting Action Properties

To modify action properties, the Definition view must be active. Because you can include a variety of actions
within a step, different sets of properties are specific to particular action types. Depending on the action type
you select, the properties that appear will change.

For example, you can specify the reuse feature with a SQL action. This feature does not apply to a
PeopleCode action; instead, you would need to specify how to respond to the return value of the PeopleCode
program.

This example shows how you can select action-specific properties for different action types:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Creating Application Engine Programs

36

Chapter 3

ah]u Select |Dc- Select descrintion |
Relze Statement. Do Select Type:
[Fo |selectFetch |
alcml Section | Calf Section description |
Section Mame: Program I

[sTATS

|aETESTPROG | Dynamic

Actions and their associated properties

PeopleCode and all SQL action types invoke the related PeopleTools Editor to define or maintain the related

text.

ReUse Statement Property

The ReUse Statement property is available for all SQL action types (SQL, Do When, Do While, Do Until, Do
Select). You use the ReUse Statement property to optimize the SQL in your batch program. A ReUse
Statement converts any %BIND references to state record fields into real bind variables (:1, :2, and so on),
enabling the Application Engine runtime process to compile the statement once, dedicate a cursor, and then
run it again with new data as often as your program requires. When you use SQL or a Do action to process a
large volume of rows one at a time, inside a fetch loop, compiling each statement that you issue can affect
performance significantly. ReUse Statement is a way to combat possible performance slowdowns.

Note. You can have Application Engine recompile a reused statement by using the %ClearCursor function.

When setting the ReUse Statement option, choose from these values:

Bulk I nsert

No

Yes

When used in conjunction with statements like | NSERT | NTO

tabl enane (fieldl, field2...) VALUES (%8I ND(refl),
9Bl ND(r ef 2) , the Bulk Insert feature offers the most powerful
performance enhancement related to the ReUse Statement feature. This
option turns on a ReUse Statement and, in addition, holds all the data in a
buffer and performs an insert only after a large number of rows have
gathered in the buffer. The number of rows allowed to gather in the buffer
depends on your database platform. Storing data in the buffers is applicable
only if you selected Bulk Insert and the SQL is an Insert statement. For
statements other than Insert, the system ignores the Bulk Insert option.

Select this option to disable a ReUse Statement. With ReUse deselected, the
Application Engine runtime process recompiles the SQL statement every

time the loop runs. By default, a ReUse Statement is disabled.

Select this option to enable basic ReUse Statement functionality.

Note. The ReUse Statement property can improve performance significantly. However, do not use it if
%BIND variables are building parts of the SQL statement or are in the field list of a Select statement (this
note does not apply if you use the Static option in %BIND).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Specifying SQL Actions

This is the default action type for the first action within a given step. Use this action to perform the following
SQL commands on multiple rows:

« Update
e Insert

« Delete
» Select

Note. Before you insert SQL (select View, SQL) into a SQL action within a new Application Engine
program, you must have saved the program previously. Saving is required because the program name you use
to save the definition is used to relate your program with the SQL objects you are about to create. The same is
true for inserting PeopleCode.

With a SQL action, you use the SQL Editor to create and modify a SQL statement. Following are some
examples of SQL statements:

uSel ect (AF_PERFM AET. PREV_ASOF_DT)

SELECT %Dat eQut (ASOF_DT)

FROM PS_AF_FCST_SCHTBi nd(EPM_CORE_AET. TABLE_APPEND, NOQUOTES)
WHERE AFDEFN | D = 9Bi nd(AF_CORE_AET. AFDEFN | D)

AND ASOF DT = (SELECT MAX(ASOF_DT)

FROM PS_AF_FCST_SCHT®i nd(EPM_CORE_AET. TABLE_APPEND, NOQUOTES)
WHERE AFDEFN | D = 9®i nd(AF_CORE_AET. AFDEFN_| D)

AND ASOF_DT < 9Bi nd(AF_PERFM AET. ASOF_DT))

Note. If you intend to include multiple SQL statements within a single action, you should use the meta-SQL
construct % EXECUTE. The previous sample SQL statement sample contains bind variables from a previous
Application Engine action.

No Rows Property

In addition to the ReUse Statement property, the No Rows property is available for SQL actions. If the SQL
(Insert, Update, or Delete) associated with the SQL action does not return any rows, you must specify what
the Application Engine program should do.

For example, you could use the No Rows property when you insert into a temporary table and then intend to
perform further operations on the inserted rows (provided that some rows meet the criteria). If the initial
combination of Insert and Select statements provides no rows, you could save the program from having to
reselect on the temporary table before executing another operation, or you could prevent the program from
performing set operations on the table with no qualifying rows.

When you set the No Rows property, choose from the following values:

Abort The program terminates.

Section Break Application Engine exits the current section immediately, and control
returns to the calling step.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Creating Application Engine Programs Chapter 3

Continue The program continues processing.

Skip Step Application Engine exits the current step immediately and moves on to the
next step. Application Engine ignores the commit for the current step at
runtime. If the current step contains only one action, then use Skip Step
only to bypass the commit.

Note. Using the No Rows property in conjunction with a Truncate Table operation is unreliable. Some
database platforms report zero rows affected for truncations, regardless of how many rows were in the table.

Specifying Do Actions

Although distinct from the others, these four types of Application Engine actions can be grouped together:

Do When
» Do While
e Do Until

* Do Select

Use these actions to control the running of your program. These action types enable you to control the
execution of subsequent sections, actions, or SQL statements, depending on the results of a Do SQL
statement in the form of a Select statement. If you coded in COBOL, you would perform similar actions using
the If and While functions.

Any of the Do actions can control the running of a section, a SQL statement, a PeopleCode program, or a log
message. For example, a Do Select can run a SQL statement for each row returned by the included Select
statement.

Do When

When using a Do When action, note that:

» The Do When action is a Select statement that allows subsequent actions to be run if any rows of data are
returned.

e This action is similar to a COBOL If statement.

A Do When statement runs before any other actions in a step. If the Do When statement returns any rows,
the next action is executed. If the Do When conditions are not met, the remaining actions within that step
are not executed. Your program runs a Do When action only once when the owning step executes.

» The only property that you can specify for a Do When action is the ReUse Statement property, which
applies to all SQL-based actions.

38 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Do While

The Do While action is a Select statement that, if present, runs before subsequent actions of the step. If the
Do While statement does not return any rows of data, the action terminates. The Do While statement is
identical to the COBOL While statement. Subsequent actions within the step are executed in a loop as long as
at least one row is returned by the Select statement for the Do While action. If the Do While statement does
not return any rows, the step is complete.

The only property that you can specify for a Do While action is the ReUse Statement property, which applies
to all SQL-based actions.
Do Until

A Do Until action is a Select statement that runs after each action when a step completes. If the Select
statement returns any rows of data, the step terminates. When using a Do Until action, note that:

* Youuse a Do Until action if you want the processing actions to execute at least once and to execute
repeatedly until a certain condition is true, such as a Select statement returns some rows.

* You can use a Do Until action to stop a Do Select action prematurely.

For example, if a Select statement for a Do Until action does not return any rows, then the actions in the
step are repeated (except if a Do When action appears in the step). Normally, a Do Select action continues
until no rows are returned. If any rows of data are returned, the Do Select action stops and the step is not
repeated.

» The only property that you can specify for a Do Until action is the ReUse Statement property, which
applies to all SQL-based actions.
Do Select

The Do Select action is a Select statement that executes subsequent actions once for every row of data that the
Do Select statement returns. For instance, a Do Select statement can run a SQL statement for each row
returned from the Select statement. The subsequent actions within the step are executed in a loop based on the
results of the Select statement. The type of the Do Select determines the specific looping rules.

Like the other Do actions, you can specify the ReUse Statement property for the Do Select action; this
property applies to all SQL-based actions.

In addition to the ReUse Statement property, you must also specify this Do Select property: Do Select Type.

Note. Application Engine does not commit a step containing a Do Select action with the Select/Fetch option
enabled until the entire step completes successfully, regardless of the other options you have selected.

For example, suppose at the step level you specified to commit every 100 iterations of the step. One of the
actions of this step is a Do Select action with Select/Fetch selected. Because Application Engine does not
checkpoint or commit while a Do Select action is active, the transaction performed by the actions within a
step is not committed until the entire step completes successfully. This note also applies if any sections are
called from inside the loop.

Do Select Type Property

When you specify the Do Select Type property in a Do Select action, you select from the following values:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Creating Application Engine Programs Chapter 3

Select/Fetch Application Engine opens a cursor for the Do Select action and then, within
that cursor, Application Engine performs a Fetch statement for each
iteration of the loop to get each row from the Select statement. When a
Fetch statement results in an end of table message, the looping is complete.
You cannot restart this type of Select statement because Application Engine
does not perform a checkpoint or a commit within the step containing this
action while Select/Fetch is running. Ultimately, your program ignores the
commit settings at runtime until the outermost Select/Fetch completes.

Note. When an Application Engine program is not set up for the capability
to restart, then commits are not controlled, monitored, or restricted by
Application Engine. When Restart is disabled, commits are controlled by
the program.

Re-Select For each iteration of the loop, Application Engine opens a cursor and
fetches the first row. Your program processes the first row returned from
the Select statement. The cursor is reopened for each iteration of the loop.
With this type of Fetch statement, you typically want some aspect of the
loop to eventually cause the Select statement to return no rows. Otherwise,
no mechanism is in place by which to exit the loop. This type of Do Select
is restartable.

Restartable This option is similar to Select/Fetch in that Application Engine opens the
cursor associated with the Do Select action once, and then it performs a
Fetch statement on each iteration of the loop to get each row from the
Select statement. However, unlike the Select/Fetch option, you can restart
this action because Application Engine performs a checkpoint in the middle
of the step. Application Engine treats this loop as if it is restartable, but it
does not manage the restart. Make sure that the SQL you include within this
action is such that, upon restart, the program recognizes where the previous
run failed and where to restart processing. For example, you can employ a
processed switch or base the next Select statement on the key.

Specifying PeopleCode Actions

Use this action type to insert PeopleCode within your Application Engine program. You can invoke the
PeopleCode Editor directly from the designer interface to code your PeopleCode programs.

With a PeopleCode action, you can specify only one property: On Return.

Use the On Return value to determine how your Application Engine program reacts based on the return of
your PeopleCode program. The On Return setting takes effect if your PeopleCode program issues a "return 1"
or "exit 1." You can use the True keyword in place of a non-zero numeric return.

When you specify the On Return property, you select from the following values:

Abort The program issues an error and exits immediately.

Break The program exits the current step and section, and control returns to the
calling step.

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Skip Step The program exits the current step and continues processing at the next step
in the section. If this step is the last one in the section, then the calling step
resumes control of the processing.

Specifying Call Section Actions

Use the Call Section action to call another section defined in an Application Engine program. You can call a
local section defined within your current program, and you can make external calls to a section defined in
another Application Engine program.

The external section you intend to call must have its access property set to Public. If the access property of a
section is set to Private, that section can be called only from within the same program. By default, the access
property of a section is Private. If you attempt to make a call to a section that does not allow external calls,
you receive an error message at runtime.

Note. You can call only programs that reside within the same database as the calling program.

Program ID Property

Because you can call sections defined in the current program or within external programs, you must first
specify the program ID of the program containing the section you intend to call.

The default value is (current). If you call a section defined in another program, make sure that you first select
the appropriate external program from the Program ID drop-down list. This drop-down list contains the
names of all program definitions that currently exist in the database.

Section Name Property

Select from names defined in the program that appears in the Program ID list. To call a section that is defined
in an external program, select the program name in the Program ID edit box before selecting the section
name.

Also use the Call Section action to call an entire external program. First select the program ID, and then select
section name MAIN. At runtime, this call executes the entire program defined by the value in the Program ID
field.

Note. Application Designer does not prevent you from calling the Main section of the current program or the
current section. For instance, Sectionl can contain a step that has a local call section reference for Sectionl.
This reference enables recursive calls and should, therefore, be used with caution.

Dynamic Property

Use the AE_APPLID and AE_SECTION fields in the state record to run different sections, depending on the
conditions a program encounters during runtime.

You must define these two fields in the default state record for the program. If AE_ APPLID is not present or
is blank (at runtime), the current program is substituted for the AE_APPLID value. If AE_ SECTION is not
present or is blank, an error occurs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

Creating Application Engine Programs Chapter 3

When issuing a dynamic call, both the section and the program ID must be dynamically set. You enable a
dynamic call by first having your program store different section names in the AE_SECTION field and
different program names in AE_ APPLID field. The values you insert in these fields are normally based on
various conditions met within your program. Then you create a Call Section action that calls the section name
defined in the state record field by selecting the Dynamic check box.

Selecting Dynamic automatically populates the AE_SECTION field with the symbolic value %Section and
the Program ID field with the symbolic value % AEAPPLID. At runtime, the program calls the section name
stored in AE_SECTION that belongs to the program name defined by AE_ APPLID.

Program Properties of Called Sections

When you call a section defined in an external program, the current program (the program containing the
defined call section) defines the properties that apply to the running process. Suppose tracing is enabled for
the current program but disabled for the called program section. In this case, the called program has the trace
option enabled at runtime because it inherits the properties of the calling program.

For example, if program A calls program B, and program B calls program C, then the properties of A apply to
both programs B and C. The calling program always controls the properties for the called program. In this
case, program A controls the properties for program B and because program B inherits the properties of
program A, when program B calls program C the properties of program A also apply to program C.

Note. Although program properties are inherited, state records do not follow this inheritance model.

State Records of Called Programs

When you call a program from another program, the default state record of the called program becomes active
until processing returns to the initial program. However, all of the state records associated with both programs
are available. State records that are common between the two programs share values. To communicate
between the two programs or share %BIND variables, define the same state records in both programs.

Specifying Log Message Actions

42

Use this type of action to write a message to the message log. The message log refers to the PeopleTools table
(PS_MESSAGE_LOG) where execution messages reside. Any substitution parameters are written to
PS MESSAGE LOGPARM. The following example shows a Log Message action:

lS|Lv|:|ng| Messzage |Lc-g Me ssage description |
Mezsage Set: Mumbet: Parameters:
[10862 |zra |sBINDAF_CORE_AET AFDEFN_ID)

Example of a Log Message action

You can use the Log Message action to insert any type of message. Typically, a Log Message action writes
error messages to the message log, but you can also write informational or status messages.

Note. You can also use MessageBox PeopleCode to populate PS MESSAGE LOG instead of using the Log
Message action. Using MessageBox PeopleCode enables you to record errors encountered within Application
Engine PeopleCode programs easily.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

M essage Set and Number Select a message defined in the message catalog.

Parameters Enter values to insert in the log message. This field should be a comma-
delimited list of values to substitute for the message variables (%1, %2, and
so on) in the message text. These parameters can be hard-coded values or
%Bind references. The specified information is inserted into the
PS MESSAGE LOG at runtime, and any %Bind values are replaced by the
current state record field values. Then you can view the logged messages
from the Process Monitor page.

For example, using message set 1012, number 10, the message reads "The total number of %1 rows exceeds
the control count value, %2," and you need the following parameters:
Invoice, %Bind(CONTROL CNT)

Suppose you run this program with the CONTROL CNT field value of 120. When the process ends, the
following message would be included on the Process Details dialog box in Process Monitor: "The total
number of Invoice rows exceeds the control count value, 120."

Specifying XSLT Actions
You use XSLT actions only for transform programs.
See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation,"
Using XSLT for Transformation

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

Chapter 4

Developing Efficient Programs

This chapter discusses how to:
» Use state records.

e Set commits.

¢ Reuse statements.

» Use the Bulk Insert feature.

» Use set processing.

Using State Records

This section provides an overview of state records and discusses how to:

e Share state records.

» Choose a record type for state records.

Understanding State Records

You assign variables for your Application Engine program through state records, while sections, steps, and
actions pass values to subsequent program steps through state records.

You can have up to 200 state records associated with a particular Application Engine program. However, only
one record can be the default state record. You can specify both work (derived) and physical (SQL table)
records to be used as state records. The only difference is that derived state records cannot have their values
saved to the database at commit time, and so the values are lost during a restart. Therefore, Application
Engine erases the contents of derived state records at commit time if Restart is enabled for the current
process.

A Application Engine state record must have a process instance defined as the first field and the only key
field, and the state record name must end with AET.

Not all the database columns referenced in your program must be in the state record, just the columns that
must be selected into memory so those values can be referenced in a subsequent program action. You may
also want to include additional fields to hold pieces of dynamic SQL, to use as temporary flags, and so on.

Application Engine supports long fields, unlike COBOL or Structured Query Reports (SQR). However, it
allows only one long field per state record. You set a maximum size for the field in Application Designer and
make sure that the data space is compatible with the size of the field that you set.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45

Developing Efficient Programs Chapter 4

Application Engine also supports image fields and long text fields.

=8 AETESTPROG_AET [Record)

Fecord Fields IRE.;.;.m Type I

Mum Field Hame Type| Len | Format =~

AE_CMV_FILL_CHAR Char 1 Upper
AE_CHY_JUSTIFY Char 1 pper

| AFE STRIF ZERO Char 1 | UDDE[_ILI
4 3

Sample state record

&7

1 |PROCESS_INSTANCE

2 |AE_INT_1 Mbr 1

3 |RECHAME Char 15 |pper
4 |AE_CMNY_IM_FLD_MM Char 18 |Upper
5 |AE_CMV_DOUT_FLD_MHM Char 18 |Upper
E

7

a8

During batch processing, Application Engine automatically performs all state record updates. When a
program starts, it inserts a row into the state record that corresponds to the process instance assigned to that
program run. Application Engine updates the record whenever a commit operation occurs. When restart is
enabled and a commit occurs, all state records that have been updated in memory are written to the database,
except for derived state records, which are initialized instead.

After the program completes successfully, Application Engine deletes the corresponding row in the state
record. There is only one row in the state record for each process instance. Multiple programs can use the
same state record, and each program has its own row based on the unique process instance key.

To set values in the state record, you use the %SELECT construct in a SQL statement or write PeopleCode
that references the state field with the standard record.field notation. To reference fields in the state record,
use the %BIND construct.

Sharing State Records

46

State records can be used by multiple sections and by multiple programs. When you call a section in another
program, any additional state records defined for that program (as in state records that are not already in use
by the calling program) are initialized, even if the program has been called previously during the run.
However, state records that are common to both programs retain their current values.

To reference variables that exist within a state record, use the following:
9Bl ND(f i el dnane)

Unless a specific record name is specified preceding the fieldname, %BIND references the default state
record. To reference a state record other than the default, use the following:

98l ND(r ecor dnane. fi el dnane)

In the case of a called program or section, if the called program has its own default state record defined, then
Application Engine uses that default state record to resolve the %BIND(fieldname). Otherwise, the called
program inherits the default state record of the calling program. In theory, the called program does not require
a state record if all the fields it needs for processing exist on the calling program's state record.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Developing Efficient Programs

For those state records that are shared between programs (during an external call section), any changes made
by the called program remain when control returns to the calling program. Any subsequent actions in the
calling program can access residual values left in the common state records by the called program. This can
be useful to return output values or status to the calling program, yet it can also cause unforeseen errors.

Generally, a called program should not share state records with the caller unless you need to pass parameters
between them. Most programs have their own set of state records unless a program calls another program that
requires specific input or output variables. In that case, you must include the state record of the called
program into the calling program's state record list, and make sure to set the input values before issuing the
call section.

Choosing a Record Type for State Records

As a general rule, to preserve state record field values across commits in your program, you should store
those values in a state record with a record type of SQL Table. Only derived/work-type state records store
values that don't need to be accessed across commits. Derived/work records are, however, an excellent choice
for temporary flags and dynamic SQL containers that are set and then referenced immediately. Because these
values aren't needed later, you don't want to have to save them to the database at each commit. When you
create your state record in Application Designer, you should have an idea regarding how your state record
will be used. With this information, you can select the appropriate record type to build.

With Application Engine programs, state records that are derived/work records function the same as SQL
Table records. However, there is one notable distinction: unless you have disabled Restart, derived work
records have their field values reinitialized after each commit. Therefore, unless you anticipate this behavior,
you may encounter problems. One quick way to diagnose such a problem is to examine a trace. Typically,
you see %BIND variables resolved to values prior to a commit, and then after the commit, they have no
value.

This behavior is necessary to ensure consistency in the event of an abnormal termination and restart. During
the restart, Application Engine begins, or restarts, at the point of the last successful commit and restores the
values of any state records with corresponding database tables. Derived/work records aren't associated with a
physical database table, and consequently they can't be restored in the event of a restart.

Setti

Copyright

ng Commits

For new Application Engine programs that you develop, by default, the commit values at the section and the
step level are turned off. No commits occur during the program run, except for the implicit commit that
occurs after the successful completion of the program.

You are responsible for dividing your program into logical units of work by setting commit points within
your program. Typically, a good time to commit is after Application Engine completes a self-contained task.
How often you apply commits affects how your program performs in the event of a restart. For set processing
programs, commit early and often. For row-based processing, commit after every N iterations of the main
fetch loop that drives the process.

If you have a step with a Do While, Do Until, or a Do Select action, you can set the frequency option, which
drives your commit level. This setting enables you to set a commit at the step level that occurs after a
specified number of iterations of your looping construct. Application Engine programs commit whenever they
are instructed to do so, so you can enable the frequency option as well as have other individual commits
inside of a loop.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Developing Efficient Programs Chapter 4

The only restriction for batch runs occurs when you have restart enabled, and you are inside a Do Select
action that is of the Select/Fetch type (instead of Re-select or Restartable). With Select/Fetch, all commits
inside the loop are ignored, including the commit frequency if it is set.

The Restartable option is similar to Select/Fetch, except that you are implying to Application Engine that
your SQL is structured in such a way that it filters out rows that have been processed and committed. This
enables a successful restart. One technique for accomplishing this is to have a processed flag that you check
in the Where clause of the Do Select action, and you perform an update inside the loop (and before the
commit) to set the flag to ¥ on each row that you fetch.

The commit logic is designed to perform a commit regardless of whether any database changes have
occurred. The program commits as instructed, except when the program is restartable and at a point where a

commit would affect restart integrity—inside a non-restartable Do Select action, for example.

When you set a step to commit by default, the commit frequency of the step is controlled by the auto commit
setting of the section. If the section is set to commit after every step, then the program commits. Otherwise,
the program never commits unless the step is explicitly set to commit afterward.

Note. The Commit After, Later setting at the step level enables you to override the section setting if you do
not want to commit after a particular step.

%TruncateTable Considerations

Some databases, such as Oracle, issue an implicit commit for a truncate command. If there were other
pending (uncommitted) database changes, the results would differ if an abend occurred after the
%TruncateTable. To ensure consistency and restart integrity, Application Engine checks the following:

» Whether there are pending changes when resolving a %TruncateTable.
« Ifthe program is at a point where a commit is not allowed.

If either condition is true, Application Engine issues delete from syntax instead.

Considerations with the No Rows Setting

The default for the No Rows setting (on the action) is Continue. This setting controls how your program
responds when a statement returns no rows. In the case of %UpdateStats, you may want to set No Rows to
Skip Step and thus skip the commit. For example, suppose you have a single Insert statement into a table,
followed by an %UpdateStats. If the stats were current before the Insert statement, and the Insert statement
affects no rows, then the %UpdateStats is unnecessary.

Reusing Statements

One of the key performance features of Application Engine is the ability to reuse SQL statements by
dedicating a persistent cursor to that statement.

Unless you select the ReUse property for a SQL action, %BIND fields are substituted with literal values in
the SQL statement. The database has to recompile the statement every time it runs.

48 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

However, selecting ReUse converts any %BIND fields into real bind variables (:1, :2, and so on), which
enables Application Engine to compile the statement once, dedicate a cursor, and re-execute it with new data
multiple times. This reduction in compile time can improve performance significantly.

In addition, some databases have SQL statement caching. Every time they receive SQL, they compare it
against their cache of previously carried out statements to see if they have seen it before. If so, they can reuse
the old query plan, but only if the SQL text matches exactly. This circumstance is unlikely with literals
instead of bind variables.

When using the ReUse property, note that:

» The ReUse property is valid only for SQL actions.

« Use the ReUse property only if you do not use bind variables for column names.
» Use the ReUse property only if you have no %BIND variables in the Select list.

+ Ifthe SQL is dynamic, as in you are using %BIND to resolve to a value other than a standard bind value,
and the contents of the bind change each time the statement is executed, then you cannot enable the
ReUse property.

In this situation, the SQL is different (at least from the database perspective) each time and, therefore,
cannot be reused.

» Ifyou use the NOQUOTES modifier inside %BIND, a STATIC is implied.

For dynamic SQL substitution, the %BIND has a Char field and NOQUOTES to insert SQL rather than a
literal value. If you enable the ReUse property, the value of the Char field is substituted inline instead of
using a bind marker (as in :1, :2, and so on). The next time that the action is carried out, the SQL that it
runs is the same as the previous one, even if the value of a static bind has changed.

» To prepare a reused statement from the beginning, because one of the static binds has changed and the
SQL has to reflect that change, use %ClearCursor.

* When making calls to an external section, program, or library, the reusable cursors are retained upon
exiting the program. However, if the calling program attempts to call another external section thereafter,
the reusable cursors are discarded.

If you are running DB2 on OS/390 or AS/400, use the ReUse property only when you are not using %BINDS
as operands of the same operator, as shown in the following example:

UPDATE PS_PO WRK1
SET TAX = 9Bl N STATE) + %8| ND(FED)

This example causes error -417. You can modify the SQL so that you can use the ReUse property
successfully. Suppose your program contains the following SQL:

UPDATE PS_PO WRK1
SET TAX = 0
WHERE 9Bl ND(TAX_EXEMPT) = 98I ND(TAX_STATUS)

If you modify it to resemble the following SQL, the ReUse property works:
UPDATE PS_PO WRK1

SET TAX = 0
VWHERE %8BI ND(TAX_EXEMPT, STATIC) = %8I ND(TAX_STATUS)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

Developing Efficient Programs Chapter 4

Using the Bulk Insert Feature

By buffering rows to be inserted, some databases can get a considerable performance boost. Application
Engine offers this nonstandard SQL enhancement for the following databases: Oracle, Microsoft SQLServer,
and DB2. This feature is named Bulk Insert. For those database platforms that do not support the Bulk Insert
feature, this flag is ignored.

You should consider using this feature only when an Insert SQL statement is called multiple times in the
absence of intervening Commit statements.

Application Engine ignores the Bulk Insert setting in the following situations:

e The SQL is not an Insert statement.

* The SQL is other than an Insert/Values statement that inserts one row at a time.
For instance, the following statements are ignored: Insert/Select, Update, or Delete.

» The SQL does not have a Values clause.

» The SQL does not have a field list before the Values clause.

Note. Application Engine also ignores the Bulk Insert feature when all three of the following conditions are
true: the database platform is Oracle, the record contains an EFFDT (effective date) field, and the record
contains a mobile trigger. A mobile trigger is required because an Oracle database does not allow the reading
of mutating tables in a row trigger.

When the Bulk Insert setting is ignored, Application Engine still runs the SQL; it just does not take advantage
of the performance boost associated with the feature.

To prepare or flush a Bulk Insert statement because one of the static binds has changed and the SQL has to
reflect that, use %ClearCursor. A flush occurs automatically before each commit.

Using Set Processing

This section provides an overview of set processing and discusses how to:

» Use set processing effectively.
e Avoid row-by-row processing.

» Use set processing examples.

50 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

Understanding Set Processing

Set processing is a SQL technique used to process groups, or sets of rows, at one time rather than processing
each row individually. Set processing enables you to apply a business rule directly to the data (preferably
while it resides in a temporary table) in the database using an Update or Insert/Select statement. Most of the
performance gain is because the processing occurs in the database instead of loading the data into the
application program, processing it, and then inserting the results back into the database tables. Because the
data never leaves the database with set processing (whether it remains in the same table), you effectively
eliminate the network round-trip and database API overhead.

Note. Because the updates in set processing occur within the database, use temporary tables to hold transient
data while your program runs. Although temporary tables are not required for set processing, they are often
essential to achieve optimum performance of your batch program.

Using Set Processing Effectively
The information in the topics that follow applies if you are developing new or upgrading older Application
Engine programs to adhere to a set-based model.
SQL Expertise

You should be a SQL expert if you are developing row-by-row programs with Application Engine and
especially if you are developing set-based programs. The following concepts are particularly important:

e Group by and Having clauses.

» Complex joins.

» Subqueries (correlated and non-correlated).

» Tools for your database to analyze complex SQL statements for performance analysis.

Typically, you use these SQL constructs to refine or filter a set to contain only the rows that meet specific
criteria. In Application Engine, you code using SQL, and Application Engine passes that SQL directly to the
database, where it is processed. If you have a complex SQL statement that works functionally, it may not
perform well if it is not tuned properly.

Planning

Well-constructed, robust, and efficient Application Engine programs are usually the product of a detailed
planning stage in which loops, program flow, the use of temporary tables, sections, steps, and so on are
discussed.

Ideally, you should address batch processing as a whole while you are designing the system. Sometimes,
system analysts and developers focus primarily on the online system during the database design, and then
they consider the batch component within the existing database design. Set processing works best in an
environment in which data models are optimized for set processing.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

Developing Efficient Programs Chapter 4

52

For example, you could have a separate staging table for new data that has not been processed rather than
having numerous cases of existing rows in a table being updated. In set processing, processing the data after
moving it to a temporary table using an Insert or Select statement is easier than using an update. Avoid
performing updates on real application tables, and try to perform your updates on temporary tables. You can
structure your data model to minimize updating real application tables.

Another important consideration is keeping historical data separate from active transactions. After the life
cycle of given piece of transaction data is over, so that no more updates are possible, consider moving that
data to an archive or history table and deleting it from the real transaction table. This action minimizes the
number of rows in the table, which improves performance for queries and updates to your active data.

Temporary Tables

Although temporary tables are not required for set processing, well-designed temporary tables complement
your set-based program in a variety of ways.

Creating temporary tables enables you to achieve one of the main objectives of set-based processing: the
processing remains on the database server. By storing transient data in temporary tables, you avoid the batch
program fetching the data, row by row, and running the business rule, processing the data, and then passing
the updated data back to the database. If the program ran on the client, you would encounter performance
issues because of the network round-trip and the diminished processing speed of a client compared to the
database platform.

Design your temporary tables to:

» Hold transaction data for the current run or iteration of your program.
» Contain only those rows of data affected by the business rule.

» Present key information in a denormalized, or flattened, form, which provides the most efficient
processing.

» Switch the keys for rows coming from the master tables, if needed.

A transaction may use a different key than what appears in the master tables.

Denormalized Tables

The most efficient temporary tables store data in denormalized form. Because most programs need to access
data that resides in multiple tables, you should consolidate all of the affected and related data into one table, a
temporary table. The program runs more efficiently against a flattened, temporary table rather than relying on
the system to materialize complex joins and views to retrieve or update necessary data for each transaction.

If your program requires the use of a complex view to process transactions, then resolve the view into a
temporary table for your program to run against. Each join or view that needs to materialize for each
transaction consumes system resources and affects performance. In this approach, the system applies the join
or view once (during the filtering process), populates the temporary table with the necessary information that
the program needs to complete the transaction, and then runs the program against the temporary table as
needed.

For example, consider the following situation:

A program needs to update 10,000 rows in the Customer table, which contains 100,000 rows of data. The
Customer table is keyed by setID. To complete the transaction, the program references data that resides in a
related table called PS_ SET CNTRL REC. PS SET CNTRL_REC is used to associate setID and
BUSINESS UNIT values. The transaction is keyed by BUSINESS UNIT.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

Given this set of circumstances, the most efficient processing method would be similar to the following:

» Isolate affected or necessary data from both tables and insert it into a temporary table.

Now, instead of dealing with a 10,000-row Customer table and a join to a related table, the program faces
a 10,000-row temporary table that contains all of the required data to join directly to the transaction data,
which can also be in a temporary table. If all necessary columns reside in the temporary tables, then the
program can modify all the rows at once in a simple Update statement.

This example presents two different uses of temporary tables. In one situation, the temporary table is
designed to hold setup and control data in a modified form. In the other situation, the temporary table is
designed to hold transaction data in a denormalized form, perhaps with additional work columns to hold
intermediate calculations.

» Make sure the data appears in a denormalized form for optimum processing.

« Because the transaction is keyed by BUSINESS UNIT, you should also key the temporary table that
holds the control data by BUSINESS UNIT.

In this case, the table that holds the control data is the Customer table.

Avoiding Row-by-Row Processing

A set-based program and row-by-row processing are not mutually exclusive: some rules do call for row-by-
row processing, but these rules are the exceptions. You can have a row-by-row component within a mostly
set-based program.

For example, suppose your program contains five rules that you will run against your data. Four of those rules
lend themselves well to a set-based approach, while the fifth requires a row-by-row process. In this situation,
run the four set-based steps or rules first, and then run the row-by-row step last to resolve the exceptions.
Although not pure set-based processing, you will obtain better performance than if the entire program used a
row-by-row approach.

When performing a row-by-row update, reduce the number of rows and the number of columns that you
select to an absolute minimum to decrease the data transfer time.

For logic that cannot be coded entirely in set, try to process most of the transactions in set and process only
the exceptions in a row-by-row loop. A good example of an exception is the sequence numbering of detail
lines within a transaction when most transactions have only a single detail line. You can set the sequence
number on all the detail lines to 1 by default in an initial set-based operation, and then carry out a Select
statement to retrieve only the exceptions (duplicates) and update their sequence numbers to 2, 3, and so on.

Avoid the tendency to expand row-by-row processing for more than is necessary. For example, if you are
touching all of the rows in a table in a specific row-based process, you do not necessarily gain efficiency by
running the rest of your logic on that table in a row-based manner.

When updating a table, you can add another column to be set in the Update statement. However, do not add
another SQL statement to your loop simply because your program is looping. If you can apply that SQL in a
set-based manner, then in most cases you achieve better performance with a set-based SQL statement outside
the loop.

The rest of this section describes techniques for avoiding row-by-row processing and enhancing performance.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

Developing Efficient Programs Chapter 4

Filtering

Using SQL, filter the set to contain only those rows that are affected or meet the criteria and then run the rule
on them. Use a Where clause to minimize the number of rows to reflect only the set of affected rows.
Two-Pass Approach

Use a two-pass approach, wherein the first pass runs a rule on all of the rows and the second pass resolves any
rows that are exceptions to the rule. For instance, bypass exceptions to the rule during the first pass, and then
address the exceptions individually in a row-by-row manner.

Parallel Processes

Divide sets into distinct groups and then run the appropriate rules or logic against each set in parallel
processes. For example, you could split an employee data population into distinct sets of hourly and salary
employees, and then you could run the appropriate logic for each set in parallel.

Flat Temporary Tables

Flatten your temporary tables. The best temporary tables are denormalized and follow a flat file model for
improved transaction processing.

For example, payroll control data might be keyed by setID and effective dates rather than by business unit
and accounting date. Use the temporary table to denormalize the data and switch the keys to business unit and
accounting date. Afterwards, you can construct a straight join to the Time Clock table and key it by business
unit and date.

Technigues to Avoid

Note that:

« Ifyou have a series of identical temporary tables, examine your refinement process.

* You should not attempt to accomplish a task that your database platform does not support, as in complex
mathematics, non-standard SQL, and complex analytical modeling.

Use standard SQL for set processing.

e Although subqueries are a useful tool for refining your set, make sure that you are not using the same one
multiple times.

If you are using the same subquery in more than one statement, you should probably have denormalized
the query results into a temporary table. Identify the subqueries that appear frequently and, if possible,
denormalize the queried data into a temporary table.

Using Set Processing Examples

Each of the following topics contains an example of set processing.

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

Payroll

In this example, suppose the payroll department needs to give a 1000 USD salary increase to everyone whose
department made more than 50,000 USD profit. The following pseudocode enables you to compare the row-
by-row and set-based approaches.

* Row-by-Row:

declare A cursor for select dept_id fromdepartnment where profit > 50000;

open A

fetch Ainto p_dept_id

whil e sqgl _status == K
updat e personnel set salary = (sal ary+1000) where dept _id = p_dept _id;
fetch Ainto p_dept_id;

end whil e;

cl ose A

free A

e Set-Based:

updat e personnel set salary = (salary + 1000)
where exists
(select "X from departnent
where profit > 50000
and personnel .dept _id = departnent.dept _id)

Note. The set-based example employs a correlated subquery, which is important in set-based processing.

Temporary Tables

One technique for improving database performance is to use temporary tables to hold the results of common
subqueries. Effective dating and setID indirection are common types of subqueries that you can replace with
joins to temporary tables. With the joins in place, you can access the temporary table instead of doing the
subquery multiple times. Not only do most databases prefer joins to subqueries, but if you combine multiple
subqueries into a single join as well, the performance benefits can be significant.

In this setID indirection example, you see a join from a transaction table (keyed by BUSINESS UNIT and
ACCOUNTING_DT) to a setup table (keyed by SETID and EFFDT).

If using a single SQL statement, you need to bring in PS_SET CNTRL_REC to map the business unit to a
corresponding setID. Typically, you do this in a subquery. You also need to bring in the setup table a second
time in a subquery to get the effective date (MAX(EFFDT) <= ACCOUNTING_DT). If you have a series of
similar statements, performance may be negatively affected.

The alternative is to use a temporary table that is the equivalent of the setup table. The temporary table is
keyed by BUSINESS UNIT and ACCOUNTING_DT instead of SETID and EFFDT. You populate it
initially by joining in your batch of transactions (presumably also a temporary table) once, as described
previously, to get all the business units and accounting dates for this batch. From then on, your transaction
and setup temporary tables have common keys, which allow a straight join with no subqueries.

For the example, the original setup table (PS_ITEM_ENTRY TBL) is keyed by SETID, ENTRY_ TYPE and
EFFDT.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

Developing Efficient Programs Chapter 4

The denormalized temporary table version (PS_ITEM _ENTRY TAO) is keyed by PROCESS INSTANCE,
BUSINESS UNIT, ENTRY_TYPE and ACCOUNTING_ DT, and carries the original keys (SETID and
EFFDT) as simple attributes for joining to other related setup tables, as in PS_ ITEM_LINES TBL for this
example.

If the program references the setup table in only one Insert/Select or Select statement, you would not see
increased performance by denormalizing the temporary table. But if several SQL statements are typically
executed in a single run, all of which join in the same setup table with similar setID and effective date
considerations, then the performance cost of populating the temporary table initially provides long-term
advantages.

* Original setup table version:

I NSERT | NTO PS_PG _PENDDST_TAO (.. .)

SELECT

((1.ENTRY_AMI_BASE - |.VAT_AMI_BASE) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT /=
100),

((1.ENTRY_AMTI - |.VAT_AMI) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT / 100),

FROM PS_PENDING | TEM |, PS PG REQUEST TAO R, PS | TEM LINES TBL L,
PS_| TEM ENTRY TBL E, PS_SET CNTRL_REC S, PS BUS UNIT_TBL AR B

WHERE

AND L. ENTRY_REASON = |. ENTRY_REASON

AND L. SETID = E. SETID

AND L. ENTRY_TYPE = E. ENTRY_TYPE

AND L. EFFDT = E. EFFDI

AND E. EFF_STATUS = ' A

AND S. RECNAME = ' | TEM ENTRY_TBL'

AND S. SETID = E. SETID

AND S. SETCNTRLVALUE = |.BUSI NESS_UNI T

AND E. ENTRY_TYPE = | . ENTRY_TYPE

AND E. EFFDT = (SELECT MAX(EFFDT) FROM PS_I TEM ENTRY_TBL Z

WHERE Z. SETID = E. SETID

AND Z. ENTRY_TYPE = E. ENTRY_TYPE
AND Z. EFF_STATUS = ' A
AND Z. EFFDT <= | . ACCOUNTI NG DT)

AND B. BUSI NESS UNIT = |.BUSI NESS_UNI T

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

« Denormalized temporary table version:

I NSERT | NTO PS_| TEM ENTRY_TAO

Developing Efficient Programs

SELECT DI STI NCT 9@l ND(PROCESS_| NSTANCE), | . BUSI NESS_UNI T, | . ACCOUNTI NG DT,

E. ENTRY_TYPE. ..

FROM PS_PENDI NG | TEM |, PS PG REQUEST TAO R,
PS_| TEM ENTRY TBL E, PS SET CNTRL REC S, PS BUS UNIT TBL_AR B
WHERE R PROCESS | NSTANCE = 9@l ND(PROCESS | NSTANCE)

AND R PGG_GROUP_TYPE = 'B
AND | . POSTED FLAG = ' N

AND R GROUP_BU = | . GROUP_BU

AND R GROUP_ID = |.GROUP_I D

AND E. EFF_STATUS = ' A

AND S. RECNAME = ' | TEM ENTRY_TBL'

AND S. SETID = E. SETID

AND S. SETCNTRLVALUE = | . BUSI NESS_UNI T

AND E. ENTRY_TYPE = |.ENTRY_TYPE

AND E. EFFDT = (SELECT MAX(EFFDT) FROM PS_I TEM ENTRY_TBL Z

WHERE Z. SETID = E. SETID

AND B. BUSI NESS_UNI' T
/

AND Z. ENTRY_TYPE = E. ENTRY_TYPE
AND Z. EFF_STATUS = ' A

AND Z. EFFDT <= |. ACCOUNTI NG DT)
= 1. BUSI NESS_UNI T

| NSERT | NTO PS_PG PENDDST_TAO (...)

SELECT ...

((I.ENTRY_AMI_BASE

100),

((I.ENTRY_AMI - [|.VAT_AM)

- |. VAT_AMI_BASE) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT /=

* L.DST_LINE_MULTI PLR * L.DST_LI NE_PERCENT / 100),

FROM PS_PENDI NG | TEM |, PS_PG REQUEST TAO R, PS_I TEM LI NES_TBL L,
PS_| TEM ENTRY_TAO E

VHERE

AND L. ENTRY_REASON = | . ENTRY_REASON
AND L. SETID = E. SETI D

AND L. ENTRY_TYPE = E. ENTRY_TYPE
AND L. EFFDT = E. EFFDT

AND E. BUSI NESS_UNI T

E
AND E. ACCOUNTI NG_DT
E

Platform Issues

= |.BUSINESS_UNI T
= | . ACCOUNTI NG DT

.ENTRY_TYPE = |.ENTRY_TYPE

Set processing does not behave the same on every database platform. On some platforms, set processing can
encounter performance breakdowns. Some platforms do not optimize update statements that include

subqueries.

For example, environments that are accustomed to updates with subqueries get all the qualifying department
IDs from the Department table and then, using an index designed by an application developer, update the
Personnel table. Other platforms read through every employee row in the Personnel table and query the

Department table for each row.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

57

Developing Efficient Programs Chapter 4

On platforms where these types of updates are a problem, try adding some selectivity to the outer query. In
the following example, examine the SQL in the Before section and then notice how it is modified in the After
section to run smoothly on all platforms. You can use this approach to work around platforms that have
difficulty with updates that include subqueries.

Note. In general, set processing capabilities vary by database platform. The performance characteristics of
each database platform differ with more complex SQL and set processing constructs. Some database
platforms allow additional set processing constructs that enable you to process even more data in a set-based
manner. If performance needs improvement, you must tailor or tune the SQL for your environment. You
should be familiar with the capabilities and limitations of your database platform and be able to recognize,
through tracing and performance results, the types of modifications you need to incorporate with the basic set
processing constructs described.

e Basic version:

UPDATE PS_REQ LI NE
SET SOURCE_STATUS = '

WHERE

EXI STS

(SELECT ' X' FROM PS_PO | TM STG STG

WWHERE

STG PROCESS_| NSTANCE =98I ND{ PROCESS_| NSTANCE) ~ AND
STG PROCESS_| NSTANCE =PS_REQ LI NE. PROCESS_| NSTANCE AND
STG STAGE_STATUS = '|' AND

STG BUSI NESS_UNI T = PS_REQ LI NE. BUSI NESS_UNI T AND

STG REQ I D = PS_REQ LI NE. REQ | D AND

STG REQ LI NE_NBR = PS_REQ LI NE. LI NE_NBR)

» Optimized for platform compatibility:

UPDATE PS_REQ LI NE
SET SOURCE_STATUS = ' 1"

WHERE
PROCESS | NSTANCE = 9@| ND(PROCESS | NSTANCE) AND
EXI STS

(SELECT ' X' FROM PS_PO_| TM STG STG

WHERE

STG PROCESS_| NSTANCE =98I ND{ PROCESS_| NSTANCE) ~ AND
STG PROCESS_| NSTANCE =PS_REQ LI NE. PROCESS_| NSTANCE AND
STG STAGE_STATUS = 'I' AND

STG BUSI NESS_UNI T = PS_REQ LI NE. BUSI NESS_UNI T AND

STG REQ I D = PS_REQ LI NE. REQ | D AND

STG REQ LI NE_NBR = PS_REQ LI NE. LI NE_NBR)

Note. This example assumes that the transaction table (PS_REQ_ LINE) has a PROCESS INSTANCE
column to lock rows that are in process. This is another example of designing your database with batch
performance and set processing in mind.

This modification enables the system to limit its scan through PS REQ LINE to only those rows that the
program is currently processing. At the same time, it enables a more set-friendly environment to first scan the
smaller staging table and then update the larger outer table.

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

This chapter provides an overview of Application Engine meta-Structured Query Language (SQL) and
discusses how to:

» Use PeopleCode in Application Engine programs.
* Include dynamic SQL.

« Use Application Engine meta-SQL.

Understanding Application Engine Meta-SQL

Application Engine meta-SQL is divided into the following categories:
¢ Construct
A construct is a direct substitution of a value that helps to build or modify a SQL statement.
* Function
A function performs an action on its own or causes another function to be called.
* Meta-variable

A meta-variable allows substitution of text within SQL statements.

Note. Some meta-SQL elements can be used only in Application Engine programs, some can be used both in

Application Engine programs and in other environments, and some cannot be used in Application Engine

programs at all. This PeopleBook discusses only meta-SQL elements that can be used in Application Engine.

You can find a complete reference to all PeopleSoft meta-SQL elements in PeopleTools 8.52 PeopleBook:
PeopleCode Language Reference.

See Also

Chapter 5. "Using Meta-SQL and PeopleCode." Using Application Engine Meta-SQL. page 74

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," Understanding Meta-SQL

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

59

Using Meta-SQL and PeopleCode

Chapter 5

Using PeopleCode in Application Engine Programs

This section provides an overview of PeopleCode and Application Engine programs and discusses how to:

Understanding PeopleCode and Application Engine Programs

Decide when to use PeopleCode.
Consider the program environment.
Access state records with PeopleCode.
Use If/Then logic.

Use PeopleCode in loops.

Use the AESection class.

Make synchronous online calls to Application Engine programs.

Use the file class.

Call COBOL modules.

Call PeopleTools application programming interfaces (APIs).
Use the CommitWork function.

Call WINWORD Mail Merge

Use PeopleCode examples.

Inserting PeopleCode into Application Engine programs enables you to reuse common function libraries and
improve performance. In many cases, a small PeopleCode program used instead of Application Engine
PeopleCode is an excellent way to build dynamic SQL, perform simple If/Else edits, set defaults, and perform
other tasks that do not require a trip to the database.

Scope of Variables

This table presents the different types of variables typically used in Application Engine programs and their
scope:

60

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using Meta-SQL and PeopleCode

Type of Variable

Scope

Comments

State record (work record)

Transaction (unit of work)

Using a work record as your
Application Engine state record
means that the values in the work
record cannot be committed to the
database. Commits happen as
directed, but any values in work
records are not retained after a
commit.

State record (database record)

Application Engine program

Using a database record as your
Application Engine state record
preserves the values in the state
record on commit, and the
committed values are available in
the event of a restart.

Local PeopleCode variables

PeopleCode program

Local PeopleCode variables are
available only for the duration of
the PeopleCode program that is
using them.

Global PeopleCode variables

Application Engine program

Global PeopleCode variables are
available during the life of the
program that is currently running.
Any global PeopleCode variables
are saved when an Application
Engine program commits and
checks points; therefore, they are
available in the event of a restart.

Component PeopleCode variables

Application Engine program

Component PeopleCode variables
act like global variables in
Application Engine.

Action Execution Order

A step can contain only one PeopleCode action because no other types of actions are required within a step in
conjunction with a PeopleCode action (or program). If you include other actions with your PeopleCode action

within the same step, keep in mind the hierarchy when you run it.

With PeopleCode actions, Application Engine runs the PeopleCode program before the SQL, Call Section, or
Log Message actions, but a PeopleCode program runs after any program flow checks.

Because multiple action types exist, they must execute in agreement within a system; therefore, the order in

which actions execute is significant. At runtime, actions defined for a given step are evaluated based on their
action type. All of the action types exist within a strict hierarchy of execution. For example, if both a Do

When action and a PeopleCode action exist within a given step, then the Do When action always runs first.

The following example shows the sequence and level of execution for each type of action:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

61

Using Meta-SQL and PeopleCode Chapter 5

WHEN a SELECT returns a row.

— WHILE a SELECT returns a row,

For every row returned from a SELECT,
continue in the following order:

Execute PeopleCode if any.

Loop

Execute SCL or Execute the Section.

Insert message into the Message Log.

UNTIL a SELECT returns a row.

Example of action execution hierarchy

Deciding When to Use PeopleCode

62

Application Engine is not intended to run programs that include only PeopleCode actions. The primary
purpose of Application Engine is to run SQL against your data.

Use PeopleCode primarily for setting If, Then, Else logic constructs, performing data preparation tasks, and
building dynamic portions of SQL statements; rely on SQL to complete the bulk of actual program
processing. Also use PeopleCode to reuse previously developed online logic. PeopleCode is the tool to use to
take advantage of new technologies such as component interfaces and application classes.

Most programs must verify that a certain condition is true before they run a particular section. For example, if
the hourly wage is less than or equal to X, do Step A; if not, fetch the next row. In certain instances, you must
modify variables that exist in a state record. PeopleCode enables you to set state record variables
dynamically.

Avoid rowset processing in an Application Engine program. Loading data into a rowset can use a significant
amount of memory, which this formula approximates:

mem = nrows * (row overhead + nrecords * (rec overhead + nfields * (field overhead) + average cumulative
fielddata))

where

« nmemis the amount of memory required to store the rowset.

*« nr ows is the number of rows.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

« row over head is the overhead per row.

* nrecor ds is the number of records per row.

« rec over head is the record overhead (approximately 40 bytes).

« nfi el ds is the number of fields in the record.

« field overhead is the overhead per field (approximately 80 bytes).

« average cumul ative fi el ddat a is the average amount of data per field.

Using this formula, a rowset containing 500,000 rows with one record per row, 50 fields, and 200 bytes per
field would require approximately 2.3 gigabytes of memory.

Considering the Program Environment

When writing or referencing PeopleCode in a PeopleCode action, you must consider the environment in
which the Application Engine program runs. Environment indicates the differences between online and batch
modes. Application Engine programs usually run in batch mode; consequently, your PeopleCode cannot
access pages or controls as it can while running in online mode. Any PeopleCode operations that manipulate
pages will not run successfully. Even if you invoke your Application Engine program online from a record or
a page using the CallAppEngine PeopleCode function, the Application Engine PeopleCode still does not have
direct access to component buffers.

Any record field references that appear in a PeopleCode action can refer only to fields that exist on an
Application Engine state record. Component buffers, controls, and so on are still inaccessible even if you
define the page records as state records in the Program Properties dialog box. An Application Engine program
can access only state records or other objects you create in PeopleCode.

However, you do have several options for passing data from a component buffer to an Application Engine
program: you can use the CallAppEngine PeopleCode function or you can define global variables.
Passing Parameters Through the CallAppEngine Function

For individual page fields and simple PeopleCode variables such as numbers and strings, you can use the
CallAppEngine PeopleCode function to pass values as parameters.

To use the CallAppEngine function:

1. Declare a record object in PeopleCode.
For example, Local Record &WRecord; .

2. Assign record objects to any state record that you want to pass to the Application Engine program.
Record objects are parameters to the CallAppEngine function.

3. Set the appropriate values on that state record.

4. Include the record object in the function call.

After these values are set in the state record, all the actions in a particular program, not just the PeopleCode
actions, can use the values.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

Using Meta-SQL and PeopleCode Chapter 5

Defining Global Variables

You can define global variables or objects in PeopleCode before you call an Application Engine program.
Application Engine PeopleCode actions are able to access only the variables you define; however, the
PeopleCode could set a state record field equal to a number or string variable for use by other Application
Engine actions.

Also, an Application Engine PeopleCode program can read or update a scroll area or a grid using a global
rowset object. When accessing a scroll area or a grid from Application Engine PeopleCode, the same rules
apply and the same illegal operations are possible that you see with accessing PeopleCode not in an
Application Engine program.

The parameters submitted in a CallAppEngine are by value. These parameters seed the specified Application
Engine state record field with a corresponding value. If that value changes within Application Engine by
updating the state record field, then the component data will not be affected. The only way to update
component buffers or external PeopleCode variables from Application Engine is to use global PeopleCode
variables and objects.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CallAppEngine

Accessing State Records with PeopleCode

Running PeopleCode from Application Engine steps enables you to complete some simple operations without
having to use SQL. For example, to assign a literal value to an Application Engine state record field using
SQL, you may have issued a statement similar to this one:

YSELECT(MY_AET. MY_COLUWN)
SELECT ' BUSI NESS_UNI ' FROM PS_| NSTALLATI ON

You can use a PeopleCode assignment instead:
MY_AET. MY_COLUWN = "BUSI NESS_UNI T";

Similarly, you can use a PeopleCode If statement instead of a Do When action to check the value of a state
record field.

When accessing state records with PeopleCode, keep in mind that:

« State records are unique to Application Engine programs.

» Within Application Engine PeopleCode, state record values can be accessed and modified using the
standard r ecor dnane. f i el dnane notation.

Note. When you launch an Application Engine program from PeopleSoft Process Scheduler, you can generate
a process warning status after the program completes by including and modifying the AE_ APPSTATUS field
in a state record. You can generate the warning status by setting AE_ APPSTATUS to a value of 1.

64 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Using If/Then Logic

From PeopleCode, you can trigger an error status, or false return, by using the Exit function. Use the On
Return value in the PeopleCode action properties to specify how your Application Engine program behaves
according to the return of your PeopleCode program. This example shows the On Return property:

alPEDmECDdE |Peup.l’e|3c--:fe description |
on Return:
| Skip Step |

Example of On Return action property

By default, the program terminates, similar to what happens when a SQL error occurs. By changing the On
Return value to Skip Step, however, you can control the flow of your Application Engine program.

You can use Exit to add an If condition to a step or a section break. For example:

If StateRec.Fieldl ="'N
Exit(1);

El se

/* Do processing */
End-if;

You must specify a non-zero return value to trigger an On Return action. The concepts of "return 1" and
"return True" are equivalent; therefore, if the return value is non-zero or True, then Application Engine
performs what you specify for On Return, as in Abort or Skip Step. However, if the program returns zero or
False, Application Engine ignores the selected On Return value.

Using PeopleCode in Loops

You can insert PeopleCode inside of a Do loop, but be careful when using PeopleCode inside of high-volume
Do loops (While, Select, Until). Minimize the number of distinct programs inside the loop. You should avoid
having PeopleCode perform the actual work of the program and instead use it primarily to control the flow
(If, Then logic), build dynamic SQL, or interact with external systems.

Using bind variables instead of literals to pass values to SQL statements is essential in PeopleCode loops or if
the PeopleCode is called in a loop. If the PeopleCode loops, Application Engine probably will use a dedicated
cursor, which saves the overhead of recompiling the SQL for all iterations. If the PeopleCode is called from
within a loop, Application Engine does not reduce the number of compiles, but it avoids flooding the SQL
cache (for those database servers that support SQL cache) when it uses bind variables. Do not use bind
variables for values in a Select list or for SQL identifiers, such as table and column names, as some databases
do not support them.

Note. Null bind values of type DateTime, Date, or Time are always resolved into literals.

On database platforms for which this feature is implemented, setting BulkMode to True often results in
significant performance gains when inserting rows into a table within a loop.

In general, avoid PeopleCode calls within a loop. If you can call the PeopleCode outside of the loop, use that
approach to increase overall performance.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

Using Meta-SQL and PeopleCode Chapter 5

Using the AESection Class

The AESection PeopleCode class enables you to change the properties of an Application Engine program
section dynamically, without having to modify any of the Application Engine tables directly. This capability
enables you to develop rule-based applications that conform dynamically to variables that a user submits
through a page, such as the Application Engine Request page.

The AESection class provides the following flexibility:
» Portions of SQL are determined by checks before a run.
» The logic flow conforms as rules change, and the program adjusts to the rules.

When using an AESection object:

« Ensure that you require primarily dynamic capabilities with the SQL your program generates.

» Ensure that the rules to which your program conforms are relatively static or at least defined well enough
that a standard template could easily accommodate them.

» Consider using SQL definitions to create dynamic SQL for your programs to avoid the complexity created
by the AESection object using the StoreSQL function.

» The AESection class is designed to dynamically update SQL-based actions only, not PeopleCode, Call
Section, or other actions.

You can add a PeopleCode action to your generated section, but you cannot alter the PeopleCode.
» The AESection class is designed to use for online processing.

Typically, dynamic sections should be constructed in response to a user action.

Note. Do not call an AESection object from an Application Engine PeopleCode action.

See Also

PeopleTools 8.52: PeopleCode API Reference, "AESection Class"

Making Synchronous Online Calls to Application Engine Programs

66

To make synchronous online calls to an Application Engine program, use the PeopleCode function
CallAppEngine.

Note. If you make a synchronous call, users cannot perform another PeopleSoft task until the Application
Engine program completes. Consider the size and performance of the Application Engine program called by
CallAppEngine. You should ensure that the program will run to successful completion consistently within an
acceptable amount of time.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

If an Application Engine program called by CallAppEngine terminates abnormally, the user receives an error,
similar to other save time errors, that forces the user to cancel the operation. The CallAppEngine function
returns a value based on the result of the Application Engine call. If the program was successful, it returns a
zero; if the program was unsuccessful, it returns a value other than zero.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CallAppEngine

Using the File Class

The file layout class enables you to perform file input and output operations with Application Engine using
PeopleCode. A file object enables you to open a file (for reading or writing), read data from a file, or write
data to it. Using the combination of the file class and Application Engine provides an effective method to
integrate (or exchange) the data stored in a legacy system with your PeopleSoft system. The file class
facilitates the creation of a flat file that both your legacy system and Application Engine programs support.

An Application Engine program running on the application server uses a file object to read the file sent from
the legacy system and to translate it so that the file can update affected PeopleSoft application tables. For the
PeopleSoft system and the legacy system to communicate, you first must construct a file object that both
systems can use to insert and read data.

Attain rowset and record access for a file using a file layout definition. You create the file layout definition in
Application Designer, and it acts as a template for the file that both systems read from and write to. This file
layout definition simplifies reading, writing, and manipulating complex transaction data with PeopleCode.

Generally, use the file class and Application Engine combination when you cannot implement the PeopleSoft
Integration Broker solution.

See Also

PeopleTools 8.52: PeopleCode API Reference, "File Class"

Calling COBOL Modules

Using the PeopleCode RemoteCall function, you can call COBOL modules from a PeopleCode action. This
option supports existing Application Engine programs that call COBOL modules. You also can use it to
upgrade Application Engine programs from previous releases.

PTPECOBL Program
The PTPECOBL interface program is a PeopleSoft executable that enables you to invoke your called COBOL

module and pass it required values. You code the RemoteCall function to invoke PTPECOBL, which in turn
calls the specified COBOL module.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

Using Meta-SQL and PeopleCode Chapter 5

68

If you use PTPECOBL, you do not have to write your own executable to process this task. However,
PTPECOBL does not perform any SQL processing other than retrieving a list of state record values.
Consequently, if your current logic requires previous SQL processing, you may want to write your own
executable file to call your COBOL module. In most situations, PTPECOBL saves you from having to write a
custom executable file to handle each call to a generated dynamically loadable code (.GNT) file.

PTPECOBL performs the following tasks:

1.
2.

Initializes the specified state record in memory.
Invokes the COBOL module specified in your PeopleCode.
Submits required parameters to the called COBOL module.

Updates the state record as necessary, issues a commit, and then disconnects from the database after your
program completes.

Note. While your COBOL program runs, it can access and return values to the state record.

Shared Values in Application Engine and COBOL

The following options are available for sharing values between the Application Engine program and a called
COBOL program:

Use state records.

If you add field names, Application Engine enables you to pass state record values to the called COBOL
program and to get changes passed back to the calling PeopleCode program. If you pass the state record
values in this way, use PTPECACH to retrieve and update values just as PTPEFCNV does.

Code custom SQL.

If you do not pass initial values using state record fields, you need to insert the appropriate SQL in your
called COBOL module to retrieve the appropriate values. Then, to return any updated values to the calling
Application Engine program, you must insert the appropriate SQL into a PeopleCode program.

If your COBOL program needs values that do not appear in a state record field, then you can pass
PeopleCode variables and values. These variables and values are then retrieved and updated by calling
PTPNETRT from within your COBOL program.

Create a custom executable file.

If you include extra SQL processing and use non-state record values, for consistency purposes, creating a
custom executable file might be a better approach. It enables you to call your program directly and have it
perform all the PTPNETRT processing. Remember that a RemoteCall command can only call an
executable program, not a GNT file.

Syntax and Parameters

This example shows a sample RemoteCall function issued from an Application Engine PeopleCode action to
a COBOL module:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Renmot eCal | (" PSRCCBL", ?
" PSCOBOLPROG', "PTPECOBL", ?
" AECOBOLPROG', "MY_GNT", ?
" STATERECCRD', " MY_AET",?
"PRCSI NST", MY_AET. PROCESS_| NSTANCE, ?
"RETCODE", &RC, ?
"ERRMBG', &ERR _MSG, ?
"FI ELD1", MY_AET. FI ELD1, ?
“FI ELD2", MY_AET. Fl ELD2);

This table describes each parameter in the RemoteCall function:

Parameters Description

PSRCCBL The Remote Call dispatcher, which runs the specified COBOL program using
the connect information of the current operator.

PSCOBOLPROG Specify the name of the COBOL program to run, which in this case is
PTPECOBL.

This parameter makes the remote call from Application Engine distinct from a
normal remote call. When you enter this parameter, in effect you enable the
following parameters, some of which are required.

AECOBOLPROG Specify the name of the COBOL module you are calling; for example,
MY GNT.
STATERECORD Specify the appropriate state record that your Application Engine program will

share with your COBOL module; for example, MY AET. PTPECOBL then
reserves space in memory for all of the fields in the state record, regardless of
whether they will ultimately store values for processing.

PRCSINST Specify the state record and Process Instance field; for example,

MY _ AET.PROCESS INSTANCE. This setting retrieves the current process
instance value that appears on the state record and submits it to your COBOL
module using PTPECOBL.

RETCODE and ERRMSG (Optional) Include RETCODE if you need to return information about any
potential problems that the COBOL processing encountered, or use it if your
Application Engine program must know whether it completed successfully.

Fieldnames and Values Specify any fields in the state record that contain initial values for your
COBOL module. The quoted field names you specify must exist in the
specified state record. The corresponding value can be a PeopleCode variable, a
record.field reference, or a hard-coded value.

Commit and RemoteCall
When using RemoteCall and an Application Engine program:
» The called COBOL module runs as a separate unit of work.

* Run a commit in the step immediately preceding the step containing the RemoteCall PeopleCode action
and also in the step containing the Remote Call PeopleCode action.

These two actions enable the COBOL process to recognize the data changes made up to the point that it
was called, and minimizes the time when the process might be in a non-restartable state.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69

Using Meta-SQL and PeopleCode Chapter 5

e Ifyouinsert SQL processing into your COBOL module, your module makes commit updates.
PTPECOBL does not issue any commits.

« Ifthe intent of your COBOL process is to update the value of a passed state record field, then the calling
Application Engine PeopleCode is responsible for ensuring that the state record field is modified, and the
Application Engine program is responsible for committing the state record updates.

* Consider how your COBOL module will react in the event of a restart.

Because the work in COBOL will have already completed and been committed, will your module ignore a
duplicate call or be able to undo or redo the work multiple times? You face similar issues when you run a
remote call from PeopleCode.

» Typically, when a COBOL program updates the database and then disconnects or terminates without
having issued an explicit commit or rollback, an implicit rollback occurs.

Without an explicit commit, the database does not retain any updates.

Note. By default, RemoteCall does not generate any log files after the program completes. To generate and
retain the .out and .err log files, you must set the RCCBL Redirect parameter in the PeopleSoft Process
Scheduler configuration file to a value of /.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," SetNextPanel.
See Also

PeopleTools 8.52: PeopleSoft Process Scheduler, "Using the PSADMIN Utility," Editing the PeopleSoft
Process Scheduler Configuration File

Calling PeopleTools APIs

You can call all of the PeopleTools APIs from an Application Engine program. When using APIs, remember
that:

» All the PeopleTools APIs contain a Save method.

However, when you call an API from your Application Engine program, regardless of the Save method of
the API, the data is not saved until the Application Engine program issues a commit.

» Ifyou called a component interface from an Application Engine program, all the errors related to the API
are logged in the PSMessage collection associated with the current session object.

« If you sent a message, errors are written to the message log and the Application Engine message log.

» If an Application Engine program called from a message subscription PeopleCode encounters errors and
the program exits (with Exi t (1)), the error is written to the message log and is marked as an error

Using the CommitWork Function

This function commits pending changes (inserts, updates, and deletes) to the database. When using
CommitWork, remember that:

70 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

« This function applies only to a batch Application Engine program.

If the program is invoked by CallAppEngine, the CommitWork function is ignored. The same is true for
commit settings at the section or step levels.

» This function can be used only in an Application Engine program that has restart disabled.

e The CommitWork function is useful only when you are processing SQL one row at a time in a single
PeopleCode program, and you need to commit without exiting the program.

In a typical Application Engine program, SQL commands are split between multiple Application Engine
actions that fetch, insert, update, or delete application data. You use the section or step level commit
settings to manage the commits.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CommitWork

Calling WINWORD Mail Merge

If the Process Scheduler is booted using a shared drive on another machine and you intend to call a
WINWORD mail merge process from Application Engine, then you must do one of the following to ensure
successful completion:

1. Configure the Process Scheduler to run Application Engine programs using psae instead of psaesrv.

2. Ensure the generated document is saved locally, not on a shared network drive.

Using PeopleCode Examples

The following topics provide examples of common ways that you can use PeopleCode within Application
Engine programs.

Do When Actions

Instead of a Do When action that checks a %BIND value, you can use PeopleCode to perform the equivalent
operation. For example, suppose the following SQL exists in your program:

YSELECT(EXI STS) SELECT 'Y' FROM PS_| NSTALLATI ON WHERE 98I ND(TYPE) = 'X'),
Using PeopleCode, you could insert this code:
If TYPE = ' X Then
Exit(0);
El se
Exit(1);
End-i f;

If you set the On Return parameter on the PeopleCode action properties to Skip Step, this code behaves the
same as the Do When action. The advantage of using PeopleCode is that no trip to the database occurs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

Using Meta-SQL and PeopleCode Chapter 5

72

Dynamic SQL
If you have a Select statement that populates a text field with dynamic SQL, such as the following:

Y%SELECT(AE_\WHERE1)
SELECT ' AND ACCOUNTI NG DT <= 9@Bi nd(ASOF_DATE)

You can use this PeopleCode:

AE_WHERE1 = "AND ACCOUNTI NG DT <= 9@i nd(ASOF_DATE) ";

Sequence Numbering

If you typically use Select statements to increment a sequence number inside of a Do Select, While, or Until
loop, you can use the following PeopleCode instead:

SEQ NBR = SEQ NBR + 1,

Using PeopleCode rather than SQL can affect performance significantly. Because the sequencing task occurs
repeatedly inside a loop, the cost of using a SQL statement to increment the counter increases with the
volume of transactions your program processes. When you are modifying a program to take advantage of
PeopleCode, the areas of logic you should consider are those that start with steps that run inside a loop.

Note. You can also use the meta-SQL constructs %Next and %Previous when performing sequence
numbering. These constructs may improve performance in both PeopleCode and SQL calls.

Rowsets

You can use rowsets in Application Engine PeopleCode; however, using rowsets means you will be using
PeopleCode to handle more complicated processing, which degrades performance.

Math Functions

Use the math functions that your database offers whenever possible.

Internally, PeopleCode assigns types to numeric values. Calculations for the Decimal type are processed in
arrays to ensure decimal point uniformity across hardware and operating system environments. This
processing is much slower than calculations for type Integer, which are processed at the hardware level.

When PeopleCode converts strings to numeric values, it does so using the internal Decimal type. For
performance reasons, avoid calculations using these values.

A third type of numeric value is the Float type. It is not used as frequently for the following reasons:
» Constants are never stored as Float types in the compiled code.
For example, 2.5 is always Decimal type.

» The only way to produce a Float value is by using built-in functions, such as Float or the Financial math
functions.

Use the Float type to produce a float result only if all operands are also of the Float type. Float operations
occur at the hardware level.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

PeopleCode does not offer optimum performance when processing non-Integer, non-Float math calculations.
To perform calculations with these numeric types, consider allowing the database to perform the calculations
in COBOL.

PeopleCode supports a range of mathematical functions and numeric types. In general, if a complex
calculation is run repetitively in an Application Engine program, you should carefully analyze whether to
perform the calculation in a PeopleCode action or use the relational database management system (RDBMS)
functions through a SQL action. Using SQL may require PeopleSoft meta-SQL to handle platform
differences, but it may be the most efficient way to update field values. If SQL is not appropriate, consider
numeric typing in PeopleCode, as it affects the speed and accuracy of the calculation.

SQL Class

Instead of using the SQL class within PeopleCode, have Application Engine issue the SQL and use a Do
Select action that loops around sections containing PeopleCode actions.

Coding all of the logic within a single PeopleCode program might appear to be easier, but splitting the logic
into smaller pieces is preferable because you will have better performance and will get more detailed commit
control. Within a PeopleCode program, you can commit in certain cases using the CommitWork function.
You can always issue a commit between Application Engine steps.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CommitWork.
See PeopleTools 8.52: PeopleCode API Reference, "SQL Class," Understanding SQL Objects and
Application Engine Programs.

Arrays

Instead of using arrays in Application Engine PeopleCode, explore the use of temporary tables for storing
pertinent or affected data. Arrays offer the following advantages:

» Data is available for restarts.
* An RDBMS is efficient at managing and searching tables.
« Temporary tables lend themselves to set-based processing.

You can use the Statement Timings and PeopleCode Detail Timings trace options to generate an Application
Engine timings report to determine whether your program is spending significant time processing arrays.

Including Dynamic SQL

Typically, developers include dynamic constructs in Application Engine programs to change SQL based on
various runtime factors or on user-defined entries on a page. You can include dynamic SQL in Application
Engine programs in a variety of ways. For example, you can:

» Include dynamic sections using the AESection object.

» Change SQL using the SQL class.

» Reference SQL in your own tables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 73

Using Meta-SQL and PeopleCode Chapter 5

The AESection class is designed primarily for online section building; therefore, it will not be the most
frequently used solution.

Use the SQL class to store SQL in a SQL definition that you can also access in Application Designer. Then, if
you have a few SQL statements to run, generate the SQL IDs based on some methodology, such as a
timestamp, and then store these in a table.

When the program runs, your SQL could query this table based on process and extract the appropriate SQL
IDs to be run with a SQL action in a Do Select loop.

%SQL(9Bl ND(MY_SQLI D, NOQUOTES))

For a dynamic Do action, the AE_ APPLID and the AE_SECTION fields must appear in the default state
record.

Using Application Engine Meta-SQL

This section describes the meta-SQL constructs, functions, and meta-variables you can use in Application
Engine.

Note. The SQL Editor does not validate all of the meta-SQL constructs, such as %Bind and %Select.
Messages might appear stating that these constructs are invalid.

%Abs

Description

Because the %Abs function can be used in more than just Application Engine programs, it is documented in
the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Abs

%AeProgram

Description

Use the %AeProgram meta-variable to specify a quoted string containing the currently running Application
Engine program name.

74 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%AeSection

Description

Use the %AeSection meta-variable to specify a quoted string containing the currently running Application
Engine section name.

%AeStep

Description

Use the %AeStep meta-variable to specify a quoted string containing the currently running Application
Engine Step name.

%AsOfDate

Description

Use the %AsOfDate meta-variable to specify a quoted string containing the as of date used for the current
process.

%AsOfDateOvr

Description

Use the %AsOfDateOvr meta-variable only as a parameter of the %ExecuteEdits function to override the
default use of the system date with the value of a field on a joined record.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Table, page 106

%BINARYSORT

Description

Because the %BINARYSORT construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

75

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %BINARYSORT

%Bind

76

Syntax
9Bi nd([recordnane.]fieldname [, NOQUOTES][, NOARAP][, STATI()

Description

Use the %Bind construct to retrieve a field value from a state record. You can use %Bind anywhere in a SQL
statement. When run, %Bind returns the value of the state record field identified within its parentheses.
Notes About %Bind

Typically, when you use %Bind to provide a value for a field or a Where condition, the type of field in the
state record that you reference with %Bind must match the field type of the corresponding database field used
in the SQL statement.

On most platforms, you cannot use a literal to populate a Long Varchar field. You should use the %Bind
(recordname.fieldname) construct.

In the case of an external call to a section in another program, if the called program has its own default state
record defined, then Application Engine uses that default state record to resolve the %Bind(fieldname).
Otherwise, the called program inherits the default state record of the calling program.

All fields referenced by a %Select construct must be defined in the associated state record.

You must use the Date, Time, and DateTime output wrappers in the Select list that populates the state record
fields to ensure compatibility across all supported database platforms.

For example:
» First SQL Action
%5el ect (dat e_end)
SELECT %bat eCut (date_end)
FROM PS_EXAMPLE
» Second SQL Action
| NSERT | NTO PS_EXAMPLE
VALUES(9Bi nd(dat e_end))
Bind Variables and Date Wraps

The behavior of bind variables within Application Engine PeopleCode and normal PeopleCode is the same.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

If you compare Application Engine SQL to PeopleCode (of any type), then the system processes bind

variables differently.

If you use the following approach:

AND TL_EMPL_DATAL. EFFDT <= %P(1))

Then in PeopleCode you issue

%SQL(MY_SQL, %Dateln(:1))

which assumes that you referenced the literal as a bind variable.

Or in Application Engine SQL, you issue

¥SQL(MY_SQL, 9&Bi nd(date field))
¥SQL(MY_SQL, 98i nd(date field, NOARAP))

Parameters

Parameter Description

Recordname The name of a state record. If you do not specify a particular state record,
Application Engine uses the default state record to resolve the %Bind (fieldname).

Fieldname The field defined in the state record.

NOQUOTES If the field specified is a character field, its value is automatically enclosed in
quotes unless you use the NOQUOTES parameter. Use NOQUOTES to include a
dynamic table and field name reference, even an entire SQL statement or clause, in
an Application Engine SQL action.

NOWRAP If the field is of type Date, Time, or DateTime, the system automatically wraps its
value in %Dateln or %DateOut, unless you use the NOWRAP parameter.
Therefore, if the state record field is populated correctly, you do not need to be
concerned with the inbound references, although you can suppress the inbound
wrapping with the NOWRAP modifier inside the %Bind. Furthermore,
Application Engine skips the inbound wrapper if the %Bind (date) is in the select
field list of another %Select statement. This is because the bind value is already in
the outbound format, and the system selects it into another state record field in
memory. In this circumstance there is no need for either an outbound wrapper or
an inbound wrapper. For example,

First SQL action:

¥sel ect (dat e_end)

SELECT %at eCut (date_end)
FROM PS_GREG

Second SQL action:

| NSERT | NTO ps_greg
VALUES(9Bi nd(dat e_end))

STATIC The STATIC parameter enables you to include a hard-coded value in a reused
statement. For %Bind instances that contain dynamic SQL, this parameter must be
used in conjunction with the NOQUOTES parameter for proper execution of a
reused statement.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Using Meta-SQL and PeopleCode Chapter 5

Example

UPDATE PS_REQ HDR
SET | N_PROCESS_FLG = 9%Bi nd(MY_AET. | N_PROCESS_FLG),
PROCESS_| NSTANCE = 9@i nd(PROCESS_| NSTANCE)
WHERE | N_PROCESS FLG = ' N
AND BUSINESS UNIT || REQID
IN (SELECT BUSINESS UNIT || REQ I D
FROM PS_PO_REQRCON_ WK1
WHERE PROCESS | NSTANCE = 9Bi nd(PROCESS_| NSTANCE))

In the previous example, %Bind (PROCESS INSTANCE) assigns the value of the field
PROCESS_INSTANCE in the default state record to the PROCESS INSTANCE field in table
PS REQ HDR.

The %Bind construct is also used in a Where clause to identify rows in the table PS PO_REQRCON_ WK1,
in which the value of PROCESS INSTANCE equals the value of PROCESS INSTANCE in the default state
record.

% Cast

Description

Because the %Cast function can be used in more than just Application Engine programs, it is documented in
the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Cast

%C ClearCursor

78

Syntax

%l ear Cur sor ({ program section, step,action | ALL})

Description

Use the %ClearCursor function to recompile a reused statement and reset any STATIC %Bind variables.
When you use the %ClearCursor function, remember that:

« The function must be located at the beginning of the statement.

* %ClearCursor can be the only function or command contained in the statement.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode
Parameters
Parameter Description
program Specify the name of the Application Engine program containing the reused
statement you want to recompile.
section Specify the name of the section containing the reused statement you want to
recompile.
step Specify the name of the step containing the reused statement you want to
recompile.
action Specify one of the following values:
* D: Do Select.
* H: Do When.
e N: Do Until.
* W: Do While.
* S:SQL.
ALL Clear all cursors in the current Application Engine program.
%COALESCE
Description

Because the %COALESCE function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %COALESCE

% Comma

Description

Use the %Comma meta-variable to specify a comma. This meta-variable is useful when you must use a

comma but commas are not allowed because of parsing rules. For example, you might use this meta-variable
if you want to pass a comma as a parameter to the %SQL meta-SQL function.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

79

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %SQL

% Concat

Description

Because the %Concat meta-variable can be used in more than just Application Engine programes, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Concat

% CurrentDateln

Description

Because the %CurrentDateln meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %CurrentDateln

% CurrentDateOut

Description

Because the %CurrentDateOut meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %CurrentDateOut

80 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

% CurrentDateTimeln

Description

Because the %CurrentDateTimeln meta-variable can be used in more than just Application Engine programs,
it is documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %CurrentDateTimeln

% CurrentDateTimeOut

Description

Because the %CurrentDateTimeOut meta-variable can be used in more than just Application Engine
programs, it is documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %CurrentDateTimeOut

%CurrentTimeln

Description

Because the %CurrentTimeln meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %CurrentTimeln

%CurrentTimeOut

Description

Because the %CurrentTimeOut meta-variable can be used in more than just Application Engine programs, it
is documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %CurrentTimeOut

%DateAdd

Description

Because the %DateAdd function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateAdd

%DateDiff

Description

Because the %DateDiff function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateDiff

%Dateln

Description

Because the %Dateln construct can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Dateln

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%DateNull

Description

Because the %DateNull meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateNull

%DateOut

Description

Because the %DateOut function can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateOut

%DatePart

Description

Because the %DatePart function can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DatePart

%DateTimeDiff

Description

Because the %DateTimeDiff function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateTimeDiff

%DateTimeln

Description

Because the %DateTimeln construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateTimeln

%DateTimeNull

Description

Because the %DateTimeNull meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateTimeNull

%DateTimeOut

Description

Because the %DateTimeOut function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DateTimeOut

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

%DecDiv

Description

Because the %DecDiv function can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DecDiv

%DecMult

Description

Because the %DecMult function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DecMult

%DTTM

Description

Because the %DTTM function can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %DTTM

%EffDtCheck

Description

Because the %EffDtCheck construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

85

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %EffDtCheck

%Execute

86

Syntax

YExecute([/])
commandl{; | /}
comuand2{; | /}...
commandN{; | /}

Description

Use the %Execute function to execute database-specific commands from within your Application Engine
program. Also, the %Execute function enables you to include multiple statements in a single Application
Engine action without encountering database-specific differences. For instance, in some instances you could
code a single Application Engine action to contain multiple SQL statements, and they might run successfully
on one database platform. However, if you attempt to run the same code against a different database platform,
you might encounter errors or skipped SQL.

By default, Application Engine expects a semicolon to be used to delimit multiple commands within an
%Execute function statement. You can instruct Application Engine to use a forward slash (/) delimiter instead
by placing a forward slash inside the function parentheses.

Note. When you use the %Execute function, it must be located at the beginning of the statement and must be
the only function or command contained in the statement. The action type must be SQL.

Example

The following code enables you to use an Oracle PL/SQL block in an %Execute statement:

YExecut e(/)
DECLARE
counter | NTEGER,
BEG N
FOR counter := 1 TO 10
UPDATE psl ock SET version = version + 1;
END FOR;
END;
/

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

%ExecuteEdits

Syntax

%Execut eEdi t s(type, recordnane [alias][, fieldl,field2, ...])

Description

Use the %ExecuteEdits function to apply data dictionary edits in batch. The %ExecuteEdits function is
Application Engine-only meta-SQL. You cannot use it in COBOL, SQR, or PeopleCode, not even in
Application Engine PeopleCode.

Notes About %ExecuteEdits

Note the following points about the %ExecuteEdits function:

Consider performance carefully when using this function.

Prompt table and Translate table edits have a significant effect because they involve correlated
subqueries. Run a SQL trace at runtime so that you can view the SQL generated by %ExecuteEdits. Look
for opportunities to optimize it.

In general, %ExecuteEdits is best used on a temporary table.

If you must run it against a real application table, you should provide Where clause conditions to limit the
number of rows to include only those that the program is currently processing. Process the rows in the
current set at one time rather than row by row.

With %ExecuteEdits, you cannot use work records in a batch, set-based operation.

All higher-order key fields used by prompt table edits must exist in the record that your code intends to
edit, and the field names must match exactly. For example,

%Execut eEdi t s(%Edi t _Pronpt Tabl e, MY_DATA TMP)

The record MY _DATA_TMP contains the field STATE with a prompt table edit against

PS REGION_VW, which has key fields COUNTRY and REGION. The REGION field corresponds to
STATE, and COUNTRY is the higher-order key. For %ExecuteEdits to work correctly, the

MY DATA TMP record must contain a field called COUNTRY. The edited field (STATE) can use a
different name because Application Engine always references the last key field (ignoring EFFDT).

In Application Engine, %ExecuteEdits uses the system date when performing comparisons with effective
date (EFFDT); however, in some cases this date is not appropriate (Journal Edit, Journal Import, and so
on). In these situations, use Journal Date when comparing with EFFDT. To override the use of the default
system date with a selected field from a joined table, use %AsOfDateOvr. For example,

%Execut eEdi t s(YAsOf Dat eOvr (alias.fieldnane), 9Bind(...)...)
Restrict the number and type of edits to the minimum required.

Do not edit fields that are known to be valid or that are given default values later in the process. Also
consider using a separate record with edits defined specifically for batch or provide a list of fields to be
edited.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Using Meta-SQL and PeopleCode Chapter 5

Parameters
Parameter Description
type Specify any combination of the following (added together):
e %Edit Required
* %Edit YesNo
* %kEdit DateRange
* %Edit PromptTable
* %Edit TranslateTable
recordname Specify the record used to obtain the data dictionary edits.
fieldl, field2, ... Specify a subset of the fields of the record to which edits apply.
Example

Suppose you want to insert rows with missing or invalid values in three specific fields, selecting data from a
temporary table but using edits defined on the original application table. Notice the use of an alias, or
correlation name, inside the meta-SQL.:

I NSERT | NTO PS JRNL_LINE_ ERROR (...)
SELECT ... FROM PS_JRNL_LINE TMP A
WHERE A. PROCESS | NSTANCE = 9Bl ND(PROCESS_| NSTANCE)
AND %EXECUTEEDI TS(%Edit _Required + %&dit_Pronpt Tabl e, ?
JRNL_LINE A, BUSINESS UNI'T, JOURNAL_I D, ACCOUNTI NG DT)

To update rows that have some kind of edit error in a temporary table, you can use custom edits defined in the
temporary table record:

UPDATE PS_PENDI TEM TAO

SELECT ERROR_FLAG = 'Y

WHERE PROCESS | NSTANCE = 9@! ND(PROCESS | NSTANCE)

AND %EXECUTEEDI TS(%Edit _Required + %dit _YesNo + %Edit Dat eRange +?
%Edit _Pronpt Tabl e + %&dit_Transl at eTabl e, PEND TEM TAO)

%FirstRows

Description

Because the %FirstRows meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

88 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %FirstRows

%GetProgText

Syntax
% et ProgText (&Pr og, &Sect i on, &Var ket , &Pl at f or m &Ef f dt , &St ep, &Event)

Description

The %GetProgText function returns a string with the text of a PeopleCode program uniquely identified by the

parameters.

Parameters
Parameter Description
&Prog A string with the name of an Application Engine program.
&Section A string with the name of an Application Engine program section.
&Market A string specifying the market for an Application Engine program section.
&Platform A string specifying the platform for an Application Engine program section.
&Effdt A string specifying the effective date for an Application Engine program section.
&Step A string specifying a step in an Application Engine program section.
&Event A string specifying the PeopleCode event.

Returns

A string containing the text of a PeopleCode program.

Example

&Peopl eCodeText = Get ProgText (" DYNROLE PUBL", "MAIN', "GBL", "default",
"1900-01- 01", "Step03", "OnExecute");

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Using the SQL Editor"

%InsertSelect

Description

Because the %InsertSelect construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %InsertSelect

%lInsertSelectWithLongs

Description

Because the%lInsertSelectWithLongs construct can be used in more than just Application Engine programs, it
is documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %InsertSelectWithLongs

%dJoblnstance

Description

Use the %Joblnstance meta-variable to specify the numeric (unquoted) PeopleSoft Process Scheduler job
instance.

%dJoin

Description

Because the %Join construct can be used in more than just Application Engine programs, it is documented in
the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Join

%LeftParen

Description

Use the %LeftParen meta-variable to specify a left parenthesis. Usage is similar to %Comma.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode." %Comma, page 79

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %SQL

%Like

Description

Because the %Like construct can be used in more than just Application Engine programs, it is documented in
the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Like

%LikeExact

Description

Because the %LikeExact construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %LikeExact

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

Using Meta-SQL and PeopleCode Chapter 5

%List

Syntax

%.i st ({FIELD LI ST | FIELD LI ST_NOLONGS | KEY_FIELDS | ORDER BY}, recordnane |
correlation_id])

Description

The %List construct expands into a list of field names delimited by commas. The fields included in the
expanded list depend on the parameters.

Note. This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Considerations for Using %List
When using %List in an Insert/Select or Insert/Values or %Select statement, you must have matching pairs of

%List (or %ListBind) variables in the target and source field lists. Use the same list type argument and record
name to ensure consistency.

Parameters

Parameter Description

FIELD LIST Use all field names in the given record. You can select only one option from
FIELD LIST, ORDER BY, FIELD_ LIST NOLONGS, or KEY FIELDS.

KEY FIELDS Use all key fields in the given record. You can select only one option from
FIELD LIST, FIELD LIST NOLONGS, KEY FIELDS, or ORDER BY.

ORDER BY Use all the key fields of recordname, adding the DESC field for descending key
columns. This parameter is often used when the list being generated is for an
Order By clause. You can select only one option from FIELD LIST,

KEY FIELDS, ORDER BY, or FIELD LIST NOLONGS.

FIELD LIST NOLONGS Use all field names in the given record, except any long columns (long text or
image fields.) You can select only one option from FIELD LIST, ORDER_BY,
KEY FIELDS, or FIELD LIST NOLONGS.

recordname Identify either a record or a subrecord that the field names are drawn from. This
can be a bind variable, a record object, or a record name in the form recname. You
cannot specify RECORD.recname, a record name in quotation marks, or a table
name.

correlation_id Identify the single-letter correlation ID to relate the record specified by
recordname and its fields.

92 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using Meta-SQL and PeopleCode

Example

The following is a good example of using %List. Both the Insert and Select statements use the same %List
variable:

| NSERT | NTO PS_PO DI STRIB_STG (%8ql (POCOVMMONDI STSTGFLDLSTU)
. 9.ist(FIELD LIST, CF16_AN_SBR)

., MERCHANDI SE_AMT

., MERCH_AMI_BSE

., QTY_DEMAND

, QTY_PO

, QTY_PO_STD

. QTY_REQ

SELECT %Sql (POCOMMONDI STSTGFLDLSTU)

., 9%.ist(FIELD LI ST, CF16_AN SBR)

., MERCHANDI SE_AMT
., MERCH_AMT_BSE

., QTY_DEMAND

. QTY_PO

, QTY_PO _STD

, QIY_REQ

FROM PS_PO DI ST_STG WRK WRK

WHERE WRK. PROCESS | NSTANCE = 9@i nd(PROCESS_| NSTANCE)

The following example shows a poor example of how to use %List. The Insert and Select field lists both use
%List, but the Select field list is only partly dynamic; the rest is hard-coded.

| NSERT | NTO PS_EN_TRN_CMP_TMP (9%.i st (FI ELD_LI ST, EN_TRN_CVP_TMP))
SELECT B.EIP_CTL_ID

. 9%.i st (SELECT_LI ST, EN_BOM COVPS A)
, E. COPY_DI RECTI ON

, E.BUSINESS_UNI T_TO

. E. BOM TRANSFER_STAT

. N

, B. MASS_MAI NT_CODE

, 0

FROM PS_EN_BOM COVPS A

, PS_EN_ASSY_TRN_TMVP B

. PS_EN_TRNS_TWP E

WHERE . . .

The following example shows the previous poor example rewritten in a better way:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

Using Meta-SQL and PeopleCode Chapter 5

| NSERT | NTO PS_EN_TRN_CWMP_TMP (EI P_CTL_I D,
%.i st (FI ELD_LI ST, EN_BOM COWPS)
COPY_DI RECTI ON
BUSI NESS_UNI T_TO
BOM TRANSFER_STAT
EN_MVC_UPDATE_FLG
MASS_MAI NT_CODE
EN_MVC_SEQ FLQ01

, EN_MMC_SEQ FLG20)

SELECT B.EIP_CTL_ID

, 9.ist(FIELD _LIST, EN_BOM COWPS A)
E. COPY_DI RECTI ON

E. BUSI NESS_UNI T_TO

E. BOM TRANSFER_STAT

"N

B. MASS_MAI NT_CODE

0

0

FROM PS_EN_BOM COVPS A
, PS_EN_ASSY_TRN_TWP B
, PS_EN_TRNS_TWP E
WHERE . . .

The following code segment is another poor example. Only the field list of the Insert statement is dynamically
generated, and the Select statement is statically coded. If the table STL NET TBL is reordered, the Insert
statement will be incorrect.

| NSERT | NTO PS_STL_NET_TBL (%.i st (FIELD LI ST, STL_NET_TBL))
SELECT : 1

~NoO O~ WN

i:i??]\/l PS_| NSTALLATI ON

The following code shows the previous poor example rewritten in a better way:
| NSERT | NTO PS_STL_NET_TBL (%.i st (FI ELD LI ST, STL_NET_TBL))
VALUES (%.i st (BIND_LI ST, STL_NET_TBL MY_AET))

%ListBind

94

Syntax

%.i st Bind({FIELD LI ST | FIELD LI ST_NOLONGS | KEY_FIELDS}, recordnane [
State record_alias])

Description

The %ListBind meta-SQL construct expands a field list as bind references for use in an Insert/Value
statement.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

Note. This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Considerations for Using %ListBind

When using %ListBind in an insert/select or insert/values or %Select statement, you must have matching
pairs of %List or %ListBind in the target and source field lists, using the same list type argument and record

name to ensure consistency.

Parameters
Parameter Description
FIELD LIST Use all field names in a record. You can select only one option from

FIELD_LIST, FIELD LIST NOLONGS, or KEY FIELDS.

FIELD LIST NOLONGS

Use all field names in a record, except any long columns (long text or image
fields). You can select only one option from FIELD LIST,
FIELD LIST NOLONGS, or KEY FIELDS.

KEY FIELDS Use all key field names in a record. You can select only one option from
FIELD LIST, FIELD LIST NOLONGS, or KEY FIELDS.
recordname Identify either a record or a subrecord that the field names are drawn from. This

can be a bind variable, a record object, or a record name in the form recname. You
cannot specify RECORD.recname, a record name in quotation marks, or a table
name.

State_record_alias

Specify the Application Engine state record buffer that contains the values (this
could be different than the record used to derive the field list). If missing, the
default state record is assumed.

Example

| NSERT | NTO PS_TARGET (FI ELD1, FIELD2, 9%.i st(FlIELD_LIST, CF_SUBREC), FIELDN) >

VALUES (98i nd(MY_AET. FI ELD1), 9%Bi nd(MY_AET. FI ELD2), 9%.i st Bi nd(FlI ELD_LI ST, CF =
SUBREC MY_AET), 98i nd(MY_AET. FI ELDN))

%ListEqual

Syntax

%.i st Equal ({ALL | KEY },

Description

Recordnane [alias], RecordBuffer [, Separator])

The %ListEqual construct maps each field, possibly to an alias with a %Bind value, with a separator added
before each equality. Each field is mapped as follows:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

Using Meta-SQL and PeopleCode

Chapter 5

alias. X = 98i nd(rechuffer. X

This construct can be used in the Set clause of an Update statement or in a Where clause.

Note. This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Parameters

Parameter Description

ALL | KEY Specify if you want all fields or just key fields.

recordname Identify either a record or a subrecord that the field names are drawn from. This
can be a bind variable, a record object, or a record name in the form recname. You
cannot specify RECORD.recname, a record name in quotation marks, or a table
name.

alias (Optional) Specify an alias to precede each field name.

RecordBuffer Specify the record buffer for the bind variables (this could be different than the
record used to derive the field list).

Separator If you want to specify a logical separator, specify either AND or OR with this
parameter. If you do not specify a separator, no logical separator is used; the value
of a comma is used instead.

Example

UPDATE PS_TEMP

SET 94.i st Equal (ALL, CF_SUBREC, MY_AET)
WHERE 9%.i st Equal (KEYS, TEMP, MY_AET, AND)

%Mod

96

Description

Because the %Mod function can be used in more than just Application Engine programs, it is documented in
the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Mod

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%Next and %Previous

Description

Use the %Next and %Previous functions to return the value of the next or previous field in a numbered
sequence. These functions are valid in any Application Engine SQL action and should be used when
performing sequence-numbering processing. Typically, you use them instead of a %Bind construct. These
functions use the current value of the number field as a bind variable and then increment (%Next) or
decrement (%Previous) the value after the statement runs successfully. A number field indicates the numeric
field of the state record that you initially set to a particular value (as in 1 to start).

If the statement is a Select and no rows are returned, the field value is not changed. The substitution rules are
the same as for %Bind. For example, if the ReUse property is enabled, then the field is a true bind (":n'
substituted). Otherwise, inline substitution occurs.

Example
You could use these functions in an Update statement within a Do Select action:

e Do Select action

YSELECT(fieldl, field2, ...) SELECT keyl, key2, ... FROM PS_TABLE WHERE ...
ORDER BY keyl, key2, ..."

- SQL

UPDATE PS_TABLE SET SEQ NBR = %\ext (seq_field) WHERE keyl = 9Bi nd(fi el dl)
AND key2 = 9Bi nd(fi el d2) .

With a Do Select action, the increment/decrement occurs once per run, not once for every fetch. So unless
your Do Select action implements the Reselect property, the value is changed only on the first iteration of the
loop. Alternatively, with the Reselect property or Do While and Do Until actions, every iteration reruns the
Select statement and then fetches one row. With these types of loops, the value changes on every iteration.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode." %Bind. page 76

%NoUpperCase

Description

Because the %NoUpperCase construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %NoUppercase

%NumToChar

Description

Because the %NumToChar construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %NumToChar

%Processinstance

Description

Use the %ProcessInstance meta-variable to specify the numeric (unquoted) process instance.

%ResolveMetaSQL

Syntax
%Resol veMet aSQL(&SQL, %DbType)

Description

The %ResolveMetaSQL function returns a string with any meta-SQL in the string expanded to platform-
specific SQL, similar to the text that is returned on the Meta-SQL tab when using the Resolve Meta-SQL
option in the SQL Editor.

If &SQOL does not contain any meta-SQL, then the function returns a string identical to &SQOL.

%DBType value represents the type of current database.

98 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Parameters
Parameter Description
&SQOL Specify a string containing the SQL to be resolved.
%DBType %DBType value is DB2

For more information on valid values to %DBType:

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," FetchSQL.

Returns

A string with meta-SQL expanded to platform-specific SQL.

Example

Here is an example:

&SQ . Text = FetchSQL(SQL. PTLT_CODE_MARKET) ;
&Resol veSQ.Text = Resol veMet aSQL(&SQ.Text , DB2) ;

Suppose &SQLText contains the following SQL:

| NSERT | NTO 9%Tabl e(PTLT_ASSGN_TASK) (PTLT_FEATURE_CODE
. PTLT_TASK_CODE
, PORTAL_NANE
, PTLT_TASK_CODE2
. MENUNANE
, OBJECTOMNER! D)
SELECT A. EOLT_FEATURE_CODE
, uSql (PTLT_TASK_CODE, A. PNLGRPNAME, A. MARKET)
, ' EMPLOYEE'
, uSql (PTLT_TASK CODE, A. PNLGRPNAME, A. MARKET)
, A, MENUNANE

FROM 9%Fabl e(EOLT_FEAT COWP) A
, 9abl e(PTLT_TASK) B
, 9%abl e(PTLT_TASK_LOAD) C
WHERE %8q| (PTLT_TASK CODE, A. PNLGRPNAME, A. MARKET) = B. PTLT_TASK CODE
AND B. PTLT TASK CODE = C. PTLT_TASK CODE
AND B. PTLT_LOAD METHOD = C. PTLT_LOAD METHOD
AND A. MENUNAME <> '
AND A. MENUNAMVE <> C. MENUNANE
AND NOT EXI STS (
SELECT ' X'
FROM 9%Fabl e(PTLT_ASSGN_TASK) Z
WHERE Z. PTLT_FEATURE _CODE = A. EOLT_FEATURE_CODE
AND Z. PTLT_TASK CODE = %8ql (PTLT_TASK CODE, A. PNLGRPNAME, A. MARKET))

&ResolveSQLText would contain the following text (depending on your database platorm):

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

Using Meta-SQL and PeopleCode Chapter 5

| NSERT | NTO PS_PTLT_ASSGN_TASK(PTLT_FEATURE_CODE
, PTLT_TASK_CODE
, PORTAL_NANE
, PTLT_TASK_CODE2
. MENUNANE
, OBJECTOANER! D)
SELECT A. EOLT_FEATURE_CODE
, RTRI M SUBSTR(A. PNLGRPNAVE

1
,18)) || "' || A MARKET

, ' EMPLOYEE'

, RTRI M SUBSTR(A. PNLGRPNAVE
1

,18)) || "' || A MARKET

, A, MENUNAMVE

FROM PS_EOLT_FEAT_COMP A
., PS_PTLT_TASK B
, PS_PTLT_TASK_LOAD C
WHERE RTRI M SUBSTR(A. PNLGRPNAME, 1,18)) || '.' || A MARKET = B. PTLT_TASK_CODE
AND B. PTLT_TASK CODE = C. PTLT_TASK_CODE
AND B. PTLT_LOAD METHOD = C. PTLT_LOAD METHOD
AND A. MENUNAME <> ' '
AND A. MENUNAMVE <> C. MENUNANE
AND NOT EXI STS (
SELECT ' X
FROM PS_PTLT_ASSGN TASK Z
WHERE Z. PTLT_FEATURE CODE = A. EOLT_FEATURE CODE
AND Z. PTLT_TASK_CODE = RTRI M SUBSTR(A. PNLGRPNAME, 1,18)) || '.' || A. MARKET)

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Using the SQL Editor"

%ReturnCode

Description

Use the %ReturnCode meta-variable to evaluate or specify the return code of the last Application Engine
program step performed. If the operation fails, breaks, or generates an error, %ReturnCode is set to one of the
following types of return codes:

» Database (SQL) call errors.

» PeopleCode function errors.

* GEN_ERROR, when produced by general runtime exceptions.

 AE _ ABORT, when produced by application or runtime logic, including some memory-related errors.

If the application process is not terminated, %ReturnCode is reset to the default value of 0 for each
subsequent successful operation.

100 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%RightParen

Description

Use the %RightParen meta-variable to specify a right parenthesis. Usage is similar to that of %Comma.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode." %Comma, page 79

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %SQL

%Round

Description

Because the %Round function can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Round

%RoundCurrency

Syntax
9%RoundCur rency(expression, [ALIAS.Jcurrency_field)

Description

Use the %RoundCurrency function to return the value of an amount field rounded to the currency precision
specified by the Currency Control Field property of the field, as defined in the Application Designer Record
Field Properties dialog box. For this function to work, you must have the Multi-Currency option selected on

the PeopleTools Options page.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," Using
Administration Ultilities.

This function is an enhanced version of the Application Engine &ROUND construct that appeared in
previous releases, and it is valid only in Application Engine SQL; it is not valid for SQLExecs or view text.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

Using Meta-SQL and PeopleCode Chapter 5

You can use this function in the Set clause of an Update statement or the Select list of an Insert/Select
statement. The first parameter is an arbitrary expression of numeric values and columns from the source
tables that computes the monetary amount to be rounded. The second parameter is the control currency field
from a particular source table (the Update table, or a table in the From clause of an Insert/Selectstatement).
This field identifies the corresponding currency value for the monetary amount.

Note. Remember that the as of date of the Application Engine program is used for obtaining the currency
rounding factor. The currency rounding factor is determined by the value of DECIMAL POSITIONS in the
corresponding row in PS CURRENCY CD_TBL, which is an effective-dated table.

If multicurrency is not in effect, the result is rounded to the precision of the amount field (either 13.2 or 15.3
amount formats are possible).

Example
UPDATE PS_PENDI NG _DST
SET MONETARY_AMOUNT =

oRoundCur r ency(FOREI GN_AMOUNT * CUR_EXCHNG RT, CURRENCY_CD)
WHERE GROUP_BU = 9@i nd(GROUP_BU) AND GROUP_I D = %Bi nd(GROUP_| D)

%RunControl

Description

Use the %RunControl meta-variable to specify a quoted string containing the current run control identifier.
The run control ID is available to your program when using %RunControl, regardless of whether the
AEREQUEST table contains a row.

%Select

Syntax
%Sel ect (statefieldl], statefield2]...[, statefieldN)
Select fieldl[, field2]...[, fieldN

The statefields must be valid fields on the state record (they may be fieldname or recordname.fieldname, as
with %Bind), and fields must be either valid fields in the From tables or hard-coded values.

Description

Use the %Select construct to identify the state record fields to hold the values returned by the corresponding
Select statement. The %Select construct is required at the beginning of all Select statements. For example,
you need one in the flow control actions and one in the SQL actions that contain a Select statement.

You use the %Select construct to pass variables to the state record, and you use the %Bind construct to
retrieve or reference the variables.

102 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Example

Consider the following sample statement:
YSELECT(BUSI NESS_UNI T, CUST_I D)
SELECT BUSI NESS UNI' T, CUST_ID

FROM PS_CUST_DATA
WHERE PROCESS | NSTANCE = 9Bl ND(PROCESS_| NSTANCE)

The following steps illustrate the execution of the previous statement:

1. Resolve bind variables.

The string %Bind(PROCESS INSTANCE) is replaced with the value of the state record field called
PROCESS_INSTANCE.

2. Execute the SQL Select statement.
3. Perform a SQL Fetch statement.

If a row is returned, the state record fields BUSINESS UNIT and CUST _ID are updated with the results.
If the Fetch statement does not return any rows, all fields in the %Select construct retain their previous
values.

Note. All fields referenced by a %Select construct must be defined in the associated state record. Also,
aggregate functions always return a row, so they always cause the state record to be updated. As such, for
aggregate functions, no difference exists between using %Selectlnit or %Select.

%Selectlnit

Syntax
%5el ectlnit(statefiel dl], statefield2]...[, statefieldN)
Select fieldl], field2]...[, fieldN

The statefields must be valid fields on the state record (they may be fieldname or recordname.fieldname, as
with %Bind), and fields must be either valid fields in the From tables or hard-coded values.

Description

Use the %Selectlnit construct to identify the state record fields to hold the values returned by the
corresponding Select statement.

The %Selectlnit construct is identical to the %Select construct with the following exception: if the Select
statement returns no rows, then %SelectInit re-initializes the buffers. In the case of a %Select construct where
no rows are returned, the state record fields retain their previous values.

Note. For aggregate functions, no difference exists between using %Selectlnit or %Select.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

Using Meta-SQL and PeopleCode Chapter 5

%Space

Description
Use the %Space meta-variable to specify a single space. Usage is similar to %Comma.
See Also

Chapter 5, "Using Meta-SQL and PeopleCode." %Comma, page 79
PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %SQL

%SQL

104

Description

Use the %SQL construct to specify a SQL object, which replaces the %SQL construct in a statement. This
construct enables commonly used SQL text to be shared among Application Engine and PeopleCode
programs. In Application Engine, you use %Bind to specify bind variables. In PeopleCode SQL, you can use

:record.field
or
01

If you create SQL objects that you plan to share between Application Engine and PeopleCode programs, the
%SQL construct enables you to pass parameters for resolving bind variables without being concerned with
the difference in the bind syntax that exists between Application Engine and PeopleCode. However, you must
tailor the base SQL statement that uses %SQL to represent a shared object with binds to Application Engine
or to PeopleCode.

When a SQL object specified has more than one version, the database type always takes precedence. That is:

» If one or more versions of a SQL definition are found for the database type of the current database
connection and if any of the versions have an effective date less than or equal to the current date, then the
most recent version is used.

» If no versions are found for the current database type or if all of the versions have effective dates greater
than the current date, then the system looks for an effective version of the SQL definition under the
database type Generic. If no version is found, an error occurs.

Example

For example, assume that your SQL is similar to the following:

UPDATE PS TEMP_TBL SET ACTI VE = %8I ND(MY_AET. ACTI VE)
WHERE PROCESS | NSTANCE = %°r ocessl nst ance

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

This code would not be valid if the SQL ran in PeopleCode. However, if you define your SQL as shown, you
could use parameters in %SQL to insert the appropriate bind variable:

UPDATE PS_TEMP_TBL SET ACTIVE = %°(1)
WHERE PROCESS | NSTANCE = %°r ocessl nstance

From Application Engine, the base SQL, or source statement, might look like this:
%SQL(SQL_I D, 9Bl ND(MY_AET. ACTI VE))

The PeopleCode SQL might look like this:

%SQL(SQL_I D, : MY_AET. ACTI VE)

Note. You can use %SQL only to reference SQL objects created directly in Application Designer. For
instance, you cannot use %SQL to reference SQL that resides within a section in an application library.
Common SQL should be stored as a proper SQL object.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %SQL

%SQLRows

Description
Use the %SQLRows meta-variable to specify whether a SQL action returned any rows.

You can use %SQLRows in any Application Engine SQL statement, but the underlying value is affected only
by SQL actions. It is not affected by Do When, Do Select, Do While, and Do Until actions. For Select
statements, the value can only be 0 or 1: row not found or rows found, respectively. It does not reflect the
actual number of rows that meet the Where criteria. To find the number of rows that meet the Where criteria,
code a Select Count (*) statement.

%Substring

Description

Because the %Substring function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Substring

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

Using Meta-SQL and PeopleCode Chapter 5

%Table

Syntax

%rabl e(r ecnane)

Description
Use the %Table construct to return the SQL table name for the record specified with recname.

This construct can be used to specify temporary tables for running parallel Application Engine processes
across different subsets of data.

Example
For example, the following statement returns the record PS ABSENCE HIST:
o@abl e(ABSENCE_HI ST)

If the record is a temporary table and the current process has a temporary table instance number specified,
then %Table resolves to that instance of the temporary table PS ABSENCE HISTnn, where nn is the
instance number.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Table

%Test

Description

Because the %Test construct can be used in more than just Application Engine programs, it is documented in
the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Test

106 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%Textin

Description

Because the %TextIn construct can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TextIn

%TimeAdd

Description

Because the %TimeAdd construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TimeAdd

%Timeln

Description

Because the %Timeln construct can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Timeln

%TimeNull

Description

Because the %TimeNull meta-variable can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Using Meta-SQL and PeopleCode Chapter 5

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TimeNull

%TimeOut

Description

Because the %TimeOut construct can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TimeOut

%TimePart

Description

Because the %TimePart function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TimePart

%TrimSubstr

Description

Because the %TrimSubstr function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TrimSubstr

108 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

%Tru

%Tru

Copyright

Using Meta-SQL and PeopleCode

ncate

Description

Because the %Truncate function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Truncate

ncateTable

Syntax

%l runcat eTabl e(t abl e nane)

Description

Use the %TruncateTable construct to invoke a bulk delete command on a table. This construct is functionally
identical to a Delete SQL statement with no Where clause, but it is faster on databases that support bulk
deletes. If you are familiar with COBOL, this construct is an enhanced version of the COBOL meta-SQL
construct with the same name.

Some database vendors have implemented bulk delete commands that decrease the time required to delete all
the rows in a table by not logging rollback data in the transaction log. For the databases that support these
commands, Application Engine replaces %TruncateTable with Truncate Table SQL. For the other database
types, % TruncateTable is replaced with Delete From SQL.

You should commit after the step that immediately precedes the step containing the %TruncateTable
statement. In general, you should use this construct early in your Application Engine program as an
initialization task. In addition, avoid using this meta-SQL when your Application Engine program is started
from the PeopleCode CallAppEngine function.

Unlike the COBOL version, Application Engine determines if a commit is possible before making the
substitution. If a commit is possible, Application Engine makes the substitution and then forces a checkpoint
and commit after the delete runs successfully.

If a commiit is not possible, Application Engine replaces the meta-SQL with a Delete From string. This string
ensures restart integrity when your program runs against a database for which an implicit commit is
associated with Truncate Table or for which rollback data is not logged.

For databases that either run an implicit commit for %TruncateTable or require a commit before or after this
meta-SQL, replace %TruncateTable with an unconditional delete in the following circumstances:

e A commit is not allowed, as in an Application Engine program called from PeopleCode.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

Using Meta-SQL and PeopleCode Chapter 5

« The program issues a non-select SQL statement since the last commit occurred. In such a situation, data is
likely to have changed.

e You are deferring commits in a Select/Fetch loop within a restartable program.

Note. To use a record name as the argument for %TruncateTable (instead of an explicit table name), you must
include a %Table meta-SQL function to resolve the unspecified table name. For example, to specify the
record PO_WEEK as the argument, use the following statement:

%runcat eTabl e(%rabl e(PO VEEEK)) .

See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Table, page 106

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %TruncateTable

%UpdateStats

110

Syntax

%Jpdat eSt at s(record nane ,[H G LOW)
For example,

%Jpdat eSt at s(PO_WRK1)

The default is LOW.

Description

Use the %UpdateStats construct to generate a platform-dependent SQL statement that updates the system
catalog tables used by the database optimizer in choosing optimal query plans. Use this construct after your
program has inserted large amounts of data into a temporary table that will be deleted before the end of the
program run. This construct saves you from having to use dummy seed data for the temporary table and
having to update statistics manually.

Notes About %UpdateStats

For databases that either run an implicit commit for %UpdateStats or require a commit before or after this
meta-SQL, Application Engine skips %UpdateStats in the following circumstances:

e A commit is not allowed, as in an Application Engine program called from PeopleCode.
« The program issues a non-select SQL statement since the last commit occurred.

In such a situation, data is likely to have changed.
* You are deferring commits in a Select/Fetch loop in a restartable program.

Application Engine skips %UpdateStats even if the previous condition is false.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

The following table shows how the %UpdateStats construct is resolved by the supported database systems:

Database Function Behavior

MSS %UpdateStats Specifying LOW produces the statement

UPDATE STATI STI CS t abl enane
Specifying HIGH produces the statement

UPDATE STATI STI CS t abl enamre W TH FULLSCAN

Sybase %UpdateStats LOW and HIGH = UPDATE ALL STATISTICS tablename

Oracle %UpdateStats Oracle uses DDL templates (in PSDDLMODEL) to determine SQL statements
for %UpdateStats. Use DDLORA.DMS to change.

Specifying LOW produces the statement

execut e DBMS_STATS. GATHER TABLE_STATS (ownname=>=

' PT8468908' , tabname=>' PSSTATUS , esti nate_percent=>
>20, nethod_opt=> 'FOR ALL | NDEXED COLUWNS S| ZE>

1', cascade=>TRUE)

Specifying HIGH produces the statement

execut e DBMS_STATS. GATHER_TABLE_STATS (ownnanme=>=
' PT848908' , tabnane=>' PSSTATUS , esti mate_percent =>=

dbns_st ats. aut o_sanpl e_si ze, nmethod_opt=> "'FOR ALL>
| NDEXED COLUMNS SI ZE 1', cascade=>TRUE)

DB2 UNIX %UpdateStats In DB2 UNIX, %UpdateStats is performed by issuing sqlustat() calls that are
equivalent to SQL statements. The sqlustat() is an internal DB2 API call
function rather than an SQL command.

Specifying LOW is equivalent to issuing the statement
RUNSTATS ON TABLE t abl ename AND | NDEXES ALL
Specifying HIGH is equivalent to issuing the statement

RUNSTATS ON TABLE tabl enane W TH DI STRI BUTI ON AND=
DETAI LED | NDEXES ALL

Note. You cannot view the sqlustat() calls nor the RUNSTATS statement in
the SQL trace.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

Using Meta-SQL and PeopleCode

112

Chapter 5

Database Function

Behavior

DB2 390 %UpdateStats

Uses a DDL model template (in PSDDLMODEL) to format a control
statement for the DB2 UDB for OS390 and z/OS Runstats utility. Refer to the
PeopleTools Installation Guide and the Administration Guide for more details

on using %UpdateStats with DB2 UDB for OS390 and z/OS.
Specifying LOW produces the statement

RUNSTATS TABLESPACE [DBNAVE] . [TBSPCNAVE] TABLE([=
DBNAME] . [TABLE]) SAVPLE 25 [I NDEXLI ST] REPORT NO-
SHRLEVEL CHANGE UPDATE ACCESSPATH

Specifying HIGH produces the statement

RUNSTATS TABLESPACE [DBNAVE] . [TBSPCNAVE] TABLE([=

DBNAME] . [TABLE]) [| NDEXLI ST] REPORT NO SHRLEVEL=
CHANGE UPDATE ACCESSPATH

Informix %UpdateStats

Specifying LOW produces the statement

UPDATE STATI STI CS MEDI UM FOR TABLE t abl enane
Specifying HIGH produces the statement

UPDATE STATI STICS H GH FOR TABLE t abl enane

%UpdateStats Database Considerations

The following table lists potential issues that you might encounter when using %UpdateStats:

Database

Consideration

Microsoft SQL Server Sybase
UDB

Application Engine forces a commit before and after the %UpdateStats

statement.

Therefore, the system skips this meta-SQL if a commit is not allowed. For

instance, a commit is not allowed in the following situations:

* The Application Engine program is not running in batch mode.

* You have issued non-Select/Fetch SQL (in which the data is likely to

change) since the last commit.

* You are deferring commits in a Select/Fetch loop within a restartable

program.

Oracle

Oracle has an implicit commit after the %UpdateStats statement executes.

Same behavior as previous consideration.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

Database

Consideration

DB2 UDB for 0OS/390 and z/OS

For DB2 UDB for 0S/390 and z/OS, %UpdateStats requires IBM stored
procedure DSNUTILS running in an authorized Work Load Manager
Application Environment. It is also highly recommeded that individual tables
intended to be a target of the %UpdateStats function are segregated to their
own tablespaces. Refer to the following documents for more details on using
%UpdateStats: PeopleTools Installation Guide for DB2 UDB for OS/390 and
z/OS; PeopleTools Administration Guide for DB2 UDB for OS/390 and z/OS.

Note. You can trace information messages from the Runstats command on
DB2 for z/os executed as a result of issuing %UpdateStats. To enable this
trace, select the SQL Informational Trace check box on the Configuration

Manager — Trace page.

Informix IBM UDB %UpdateStats locks the table being analyzed on UDB and Informix. Therefore,
use this meta-SQL only on tables that are not likely to be concurrently
accessed by other applications and users. You might use %UpdateStats to
analyze Application Engine dedicated temporary tables.

All %UpdateStats consumes a large amount of time and database resources if run

against very large tables. Therefore, analyze permanent data tables outside of
application programs. Also, if temporary tables are likely to grow very large
during a batch run, run the batch program only with %UpdateStats enabled to
seed the statistics data or when the data composition changes dramatically.

Disabling %UpdateStats

You can disable %UpdateStats in the following ways:

* Include the following parameter on the command line when running an Application Engine program:

-DBFLAGS 1

» Change the Dbflags=0 parameter in the PeopleSoft Process Scheduler configuration file (or PSADMIN)

to Dbflags=1.

Using %UpdateStats With COBOL

You can use the %UpdateStats construct from SQL embedded in COBOL programs. Use this syntax:

%Jpdat eSt at s(t abl enane)

When you issue this construct from PeopleTools, the parameter is record name.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

Using Meta-SQL and PeopleCode Chapter 5

%Upper

Description

Because the %Upper construct can be used in more than just Application Engine programs, it is documented
in the PeopleTools 8.52 PeopleBook: PeopleCode Language Reference.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %Upper

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Application Engine Programs

This chapter discusses how to:

* Run Application Engine programs.

« Debug Application Engine programs.
« Restart Application Engine programs.
» Cache the Application Engine server.

» Free locked temporary tables.

Running Application Engine Programs

This section provides an overview of program run options and discusses how to:
» Create process definitions.

» List process definition parameters.

» Start programs with the Application Engine Process Request page.

» Use PeopleCode to invoke Application Engine programs.

« Use the command line to invoke Application Engine programs.

Understanding Program Run Options

You run Application Engine programs in one of the following modes: batch using PeopleSoft Process
Scheduler, online using a PeopleCode function, or manually using the command line. The following table
lists some differences between online and batch programs:

Online Execution Batch Execution

Started by the CallAppEngine function from Started through PeopleSoft Process Scheduler.
PeopleCode.

Program runs quickly, synchronously, and at random Programs run for longer amounts of time,
times. asynchronously, and at scheduled times.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Managing Application Engine Programs Chapter 6

Online Execution Batch Execution
Potential for simultaneous runs. Can be designed for parallel runs for performance.
Uses the online temporary table pool. Uses the batch/dedicated temporary table pool.

Batch Programs Using PeopleSoft Process Scheduler

The most typical run mode is batch. You invoke programs that run in this mode using PeopleSoft Process
Scheduler or the Application Engine Process Request page. Batch mode is also referred to as an asynchronous
run, meaning that it runs independently in the background. Application Engine runs on any operating system
that Oracle supports as an application server. If your site uses an operating system that is not supported for
Application Engine, you must run Application Engine programs on the application server. The only exception
is OS/390 (z/OS).

To run Application Engine programs on the batch server, you must install BEA Tuxedo. This condition
applies to both UNIX and Microsoft Windows NT batch servers. If you run your batch server on the same
server machine as your application server, then the application server and the batch server can share one BEA
Tuxedo installation. If your batch server is separate from your application server, then you must install BEA
Tuxedo on your batch server.

The TOOLBINSRYV parameter in the PeopleSoft Process Scheduler configuration file determines where
PeopleSoft Process Scheduler invokes an Application Engine program. For high-volume batch environments,
specify the PS HOME\bin\server\winx86 directory that exists on the same machine where the Application
Engine program runs.

Online Programs Using PeopleCode

Application Engine programs that run online are typically run from a page with the CallAppEngine
PeopleCode function. Such online processes are synchronous, meaning that subsequent processes wait for the
results. For instance, a page may be frozen until the online process returns the necessary results. With the
CallAppEngine function, no Commit statements are issued. However, if you use the asynchronous online
PeopleCode option, ProcessRequest, Commit statements are allowed.

Manual Programs Using the Command Line

Usually, you use this mod only during testing or if you need to restart a program manually.

Creating Process Definitions

Select PeopleTools, Process Scheduler, Processes to access the Processes - Process Definition page.

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Process Definition Process Definition Options Override Options Destination

Process Type: Application Engine

Hame: AEMIMITEST
*Description: |Simp|e AE test program ¥ APl Aware
Long Description: Simple AE program to test that AE works. ™ Restart Enabled?

Retry Count: 0

*Priority: | Medum] Retention Days: 0

*Process Category: |Defau|t A pefautt Category

System Constraints

Max Concurrent; Max Processing Time: minutes

Mutually Exclusive Process(es) customize | Find | B0) 8 First B0 4 o4 I Last

I_ *Process Type *Process Name Description
1] Q| Q =]

Processes - Process Definition page

To use PeopleSoft Process Scheduler for starting Application Engine batch programs, create a process
definition for each program. Running Application Engine programs is similar to running any COBOL or
Structured Query Report (SQR) program that you typically invoke with PeopleSoft Process Scheduler. Use
Application Engine as the generic process type definition. Each Application Engine program that you invoke
using PeopleSoft Process Scheduler requires a unique process definition derived from the generic process
type definition.

Note. When creating a process definition based on the Application Engine process type definition, the process
name you assign must match your Application Engine program name exactly.

Listing Process Definition Parameters

Select PeopleTools, Process Scheduler, Processes, Process Definition Options to access the Processes -
Process Definition Options page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

Managing Application Engine Programs Chapter 6

Process Definition Options

Process Type: Application Engine

Hame: AEMIMITEST

Server Name; Q

Recurrence Name:; | Q

On File Creation

File Dependency: [

\Wait for File: | Time Out Max Minutes:l

System Recovery Process
Process Type: | Z, Process Name: a

Process Groups

\AE_REQUEST Q [=] TLSALL Q [=]
[PRCSMULT] Q [=]

Processes - Process Definition Options page

Use this page to list parameters. The complete parameter list is:
+ -ct MICROSFT

* -cd %%DBNAME%%

* -co %%OPRID%%

s -cp %%OPRPSWD%%

o -1 %%RUNCNTLID%%

o -1 %%INSTANCE%%

+ -ai %%PRCSNAME%

Starting Programs with the Application Engine Process Request Page

118

You also can start an Application Engine program by using the Application Engine Process Request page.
Using this request page enables you to specify values and parameters in addition to those that appear within
PeopleSoft Process Scheduler process definitions.

Most users start Application Engine programs from an application-specific request page using PeopleSoft
Process Scheduler. A systems expert or power user may, at times, need to create custom process requests that
require multiple programs to perform parallel processing or that need to set specific, initial values in a state
record. You might use the Application Engine process request page for one of these cases.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Note. Generally, if seed data or other Application Engine request settings are required for a particular
program, the application-specific request page has SQL executables that do the work that is transparent to the
user. Typically, no user should invoke programs from the generic process request page. Use this page for
internal testing and as a basis for designing program-specific request pages.

Tables Used in the Process Request Page
The Application Engine process request page inserts values into the following tables:
« AEREQUESTTBL
Contains all of the values that appear on the page except those in the Parameters group box.
+ AEREQUESTPARM

Includes only initial state record values specified in the Parameters group box, if needed.

Note. Inserting a row in either of the Application Engine request tables is not required to run an Application
Engine program. This change is a key difference between Application Engine versions prior to PeopleTools
8, where a row in Application Engine request tables is required to start a program, regardless of how it is
invoked. The run control ID is available to your program using %RunControl, whether or not a row is
inserted into the AEREQUESTTBL table.

You need to use the Application Engine Request page to invoke Application Engine and insert a row into the
Application Engine request records only if you need to perform any of the following tasks:

» Insert initial values into the state records associated with a particular program.
» Set an as-of date for the Application Engine program to perform retroactive processing.
e Set a non-default market for the program.

» Set up a temporary table image to use if you are submitting a PeopleSoft EPM process request that
performs parallel processing. Refer to PeopleSoft EPM application documentation for details.

Note. Entries in the AEREQUESTTBL table do not have any effect on Application Engine programs called
from PeopleCode using the CallAppEngine function.

Application Engine Requests

Select PeopleTools, Application Engine, Request AE to access the Application Engine Request page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Managing Application Engine Programs Chapter 6

Application Engine Request

User ID: ETDOCAD Run Control ID::~ PORTAL_MTURG il
Program Name: PFORTAL_MEMNU Fortal Menu Impart

Process Origin: Other Process Instance: Status: Fending

Process Frequency: IOHCE :l’ Market; I :"" As Of Date; el

parameters |
State Record: | Q *Bind\fariablel‘.lame:l Q El

Value: |

Date: E‘J

Application Engine Request page

Process Origin Displays where the program was invoked, from PeopleSoft Process
Scheduler, from the command line, and so on.

Process | nstance Displays the process instance assigned to the previous program run.

Status Displays the status of the last program run, whether it is successful,
pending, and so on.

Process Frequency Specify how long a particular process request will remain active or valid:
e Always: Select to run the process request as needed.
* Once: Select if a process request is a one-time-only request.

* Don't: Select to disable a process request so that no one invokes it and
potentially corrupts data.

As Of Date If you are requesting retroactive processing, specify the appropriate as of
date.

Bind Variable Name Enter the appropriate field or bind variable for which you are inserting a
value.

Value Enter the initial value that you want to set for the specified field.

Using PeopleCode to Invoke Application Engine Programs

To call a specific Application Engine program from a page using PeopleCode, use the CallAppEngine
function in SavePreChange or SavePostChange PeopleCode. The basic syntax for CallAppEngine is:

Cal | AppEngi ne(applid [, statereclist]);

120 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Note. The RemoteCall function is no longer valid for invoking Application Engine programs in PeopleCode.
However, the RemoteCall function still applies to calling other COBOL functions. If you do not convert the
RemoteCall PeopleCode that previously called an Application Engine program to use the new function, an
error message appears.

Use CallAppEngine if the program you are invoking is a quick process. Because the process is synchronous,
users must wait for any process invoked by CallAppEngine to complete before starting another process. If the
called program causes an unreasonable delay, then use another alternative, such as the ScheduleProcess
PeopleCode function.

Use CallAppEngine when you have a complex, SQL-intensive business process that must run in batch and
online, or the process requires the use of dedicated temporary tables. If this is not the case, you are usually
better off writing the entire program in native PeopleCode. If you have written logic in PeopleCode,
presumably for online execution, and you want to reuse it in a batch program, you may be forced into row-by-
row processing. Design the batch logic first and then decide whether to have a separate online version or
reuse the batch code using CallAppEngine. Consider the trade-off between code reuse and performance. It is
inherently more difficult, but not impossible, to develop a common solution that performs adequately in both
batch and online environments.

Do not use CallAppEngine within an Application Engine PeopleCode step. If you need to call an Application
Engine program from another Application Engine program, you must use the Call Section action.

Do not use CallAppEngine to control the commit operation. Programs called with CallAppEngine are
embedded within a larger unit of work defined by the page trigger, such as a page save.

Note. Online PeopleCode that calls CallAppEngine should be set to run on the application server. You
encounter performance issues if you run PeopleCode on the client in a three-tier configuration because every
SQL statement that Application Engine issues must be serialized and then sent to the application server to be
run.

Using the Command Line to Invoke Application Engine Programs
You might invoke an Application Engine program through the command line to:

¢ Restart

When a program abends, a system administrator might restart the program using the command line. If
needed, you can locate all of the specific program and process information from Process Monitor in the
Process Request Detail dialog box. Normally, users or system administrators perform a restart from the
Process Monitor.

« Develop or test

Many developers include the command line in a batch file to launch a program they are developing or
testing. This way, they can quickly execute the batch file as needed. This method also enables separation
of development of the application program from its associated pages.

e Debug

To debug a program running on the server, you can sign into the server (using telnet, for example) and
invoke the program from the command line.

To start an Application Engine program from the command line, you must specify the Application Engine
executable (PSAE.EXE) followed by the required parameters, as shown in this example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

Managing Application Engine Programs

Chapter 6

psae -CT dbtype -CS server -CD database nanme -CO oprid -CP oprpswd?

-Rrun_control _id -Al

program.id -1 process_instance -DEBUG (Y| N)?

-DR (Y| N) -TRACE traceval ue - DBFLAGS fl agsval ue - TOOLSTRACESQ. val ue?
- TOOLSTRACEPC val ue -OT outtype -OF outformat -FP filepath

Or, if your command line options are stored in a text file, you can enter:

psae optfil ename

Note. For Microsoft Windows NT and UNIX servers, you must set the PS SERVER CFG environment
variable before you invoke an Application Engine program from the command line. PS_ SERVER CFG must
contain the fully qualified name of a correctly configured Process Scheduler PSPRCS.CFG file. When
Application Engine runs from the command line, it resolves %PS_SERVDIR% to the value of the
environment variable PS_SERVDIR instead of the parent directory of a Process Scheduler configuration.

Command Line Options

-CT

-CS

-CD

-CO

-CP

-DEBUG

-DR

122

Specify the type of database to which you are connecting. Values are
ORACLE,MICROSFT,SYBASE,INFORMIX,DB2UNIX, and DB20ODBC.

Required for Sybase and Informix. For platforms that require a server name
as part of their signon, enter the appropriate server name. This option

affects Sybase, Informix, and Microsoft SQL Server. However, for
Microsoft SQL Server, this option is valid but not required.

Enter the name of the database to which the program will connect.
Enter the user ID of the person who is running the program.

Enter the password associated with the specified user ID.

Enter the run control ID to use for this run of the program.
Specify the Application Engine program to run.

Required for restart, enter the process instance for the program run. The
default is 0, which means Application Engine uses the next available
process instance.

This parameter controls the Debug utility. Enter Y to indicate that you want
the program to run in debugging mode or enter N to indicate that you do
not.

This parameter controls restart disabling. Enter Y to disable restart or enter
N to enable restart.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

-TRACE

-DBFLAGS
-TOOLSTRACESQL
-TOOLSTRACEPC

-OT

Managing Application Engine Programs

To enable tracing from the command line, enter this parameter and a
specific trace value. The value you enter is the sum of the specific traces
that you want to enable. Traces and values are:

1: Initiates the Application Engine step trace.
2: Initiates the Application Engine SQL trace.

128:: Initiates the Application Engine timings file trace, which is similar to
the COBOL timings trace.

256. Includes the PeopleCode detail timings in the 128 trace.

1024: Initiates the Application Engine timings table trace, which stores the
results in database tables.

2048: Initiates the database optimizer explain, writing the results to the
trace file. This option is supported only on Oracle, Informix, and Microsoft
SQL Server.

4096: Initiates the database optimizer explain, storing the results in the
Explain Plan table of the current database. This option is supported only on
Oracle, DB2, and Microsoft SQL Server.

For example, to enable the 1, 2, and 128 traces, you would enter /31,the
sum of 1, 2, and 128. To indicate that you do not want any traces, enter 0. If
you do not explicitly enter 0, Application Engine uses the trace value set in
PeopleSoft Configuration Manager.

8192: Sets a trace for PeopleSoft Integration Broker transform programs.

16384: Initiates the statement timings trace but stores the results in the
PS_AE TIMINGS LG and PS_AE TIMINGS DT tables.

To disable %UpdateStats meta-SQL construct, enter /.
Enable a SQL trace.
Enable a PeopleCode trace.

(Optional) Initialize the PeopleCode meta-variable %OutDestType
(numeric).

PeopleCode example of %OutDestType:
&ProcessRgst . Qut Dest Type = %ut Dest Type ;

(Optional) Initialize the PeopleCode meta-variable %OutDestFormat
(numeric).

PeopleCode example of %OutDestFormat:
Query. RunToFi | e(Record Q yPronpt Record, %Qut Dest Format);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

Managing Application Engine Programs

-FP

optfilename

Chapter 6

(Optional) Initialize the PeopleCode meta-variable %FilePath (string).

PeopleCode example of %FilePath:

If Al (%ilePath) Then
&FI LENAVE = 9%-i |l ePath | &FI LENAMNE;
&WFI LE = GetFil e(&FI LENAMVE, "E", %-il ePath_Absol ute);
El se
&WFI LE = GetFil e(&FI LENAME, "E', %-il ePath_Rel ative);
End- I f;

If you submit a file to Application Engine as the first parameter in the
command line, Application Engine reads the contents of the file and
interprets the contents as if it were parameters entered on the command
line. This option is intended mainly for the Microsoft Windows NT or
UNIX Process Scheduler server environment. For example, you might enter
psae Stemp/myparmfile.txt.

Note. For security reasons, after Application Engine interprets the contents
of the parameter file, it immediately deletes the file.

Debugging Application Engine Programs

This section discusses how to:

» Enable the Application Engine debugger.

» Set debugging options.

Enabling the Application Engine Debugger

To run a program in debug mode:

124

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

L.

1.

Managing Application Engine Programs

Set the debug option.

You can set the debug option in the following locations:

Start PeopleSoft Configuration Manager and select the Process Scheduler tab.

In the Application Engine group, enable debug by selecting the Debug check box. This method
applies to all methods of invocation.

If you used the command line option to invoke your Application Engine program, then you can
include the -DEBUG Y parameter in the command line you submit to PSAE.EXE.

If the Debug check box is already selected in PeopleSoft Configuration Manager, then you do not
need to include the ~-DEBUG parameter in your command line.

Note. Setting debug capabilities in either PeopleSoft Configuration Manager or the command line
turns debug mode on. However, if you have debug enabled in Configuration Manager and you submit
—DEBUG N on the command line, then the PeopleSoft Configuration Manager setting defines your
default command line value and the command line can override the default.

If you have PeopleCode in your Application Engine program, enable the PeopleCode debugger.

When you launch your program and the PeopleCode action runs, enter the PeopleCode debugger.

2. Run the Application Engine program to debug.

3. At the Application Engine Debugger prompt, enter a command to enable a debugging option.

Each command is represented by a single letter, such as X,L, or M. Enter the letter that corresponds to the
option you want to engage. To see a list of the available debugging options, enter ? at the prompt.

To enable the PeopleCode debugger for Application Engine:

Sign on to PeopleTools using the same user ID that you will use to invoke the Application Engine
program.

2. Open Application Designer.

3. Select Debug, PeopleCode Debugger Mode.

Your Application Engine program can be open on the desktop, but you do not need to open the
Application Engine program or the PeopleCode action that you want to debug.

4. Select Debug, Break at Start.

This command will cause the Application Engine program to break before executing any PeopleCode
programs within it.

Setting Debugging Options

Each debugger option is represented by a single letter that you specify at the prompt. To engage the option
you select, press Enter.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

Managing Application Engine Programs

Debugging Tips

Chapter 6

Become familiar with these tips about debugging programs:

» In some cases, such as when setting breakpoints or watch fields, submenus offer additional options.

After you are familiar with the commands, you can enter multiple items on the command line to combine
commands and bypass the submenus. For example, to see a list of the breakpoints, you could enter B L.

To set a field as a watch field, you could enter W S MY_FIELD.

To set a field as a watch field on a different state record, enter W S MY AET.MY_FIELD.

Note. The exception to this option is Modify, which always displays the current value and then prompts
you to enter a new value. You can, however, enter M MY_AET.MY_FIELD to go directly to the new

value prompt.

e Letter commands are not case-sensitive.

For example, Q and q are valid commands.

Debugging Options

Option

Description

Quit

Enter Q. This option performs a rollback on the current unit of work in
the debugging run, and it ends the debugging session. It effectively
terminates your Application Engine program.

Quit is useful for testing restart. Have some work committed and some
uncommitted. Then, terminate the program at that point and roll back
the pending work. You want to make sure the program restarts from the
point of the last successful commit.

Exit

This option is valid only after one step has completed and another has
not already begun. It is not valid once you reach the action level.

Use this option as an alternative to Quit. Exit ends the program run and
the debugging session, but it also commits the current unit of that the
program has already completed. This option can be helpful when testing
your restart logic.

Commit

Enter C to commit the current unit of work in your program. This
option is valid only after a step has completed and before another
begins. It is not valid after you reach the action level.

You can use this option, for example, to use your database query tool to
check the data in your database.

126

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Option Description

Break Enter B to set a breakpoint. When the program reaches the breakpoint,
it temporarily halts execution to enable you to observe the state of the
current process.

Breakpoint options include:
Set: Enter S to set a breakpoint location.

The breakpoint location appears by default at the current location in the
program, but you can specify other sections or steps by overriding the
default values that appear in brackets.

Unset: Enter U to remove breakpoints previously set.

List: Enter L to list breakpoints. When you enter this command, make
sure that you have entered B first to specify the break option. If you
enter L from the main command prompt, you engage the Look option.

Look Enter L to observe the values currently in the state record associated
with the program you are debugging. You must specify the state record
at the Record Name prompt. By default, the default state record as
specified in your program properties appears in brackets.

You can also specify a specific field name on the state record in the
Field Name prompt. To look at all the fields in the state record, leave
the asterisk (*) within the brackets unchanged.

Modify Enter M to modify the value of a state record value for debugging
purposes. Suppose the previous steps did not set a value correctly but
you want to see how the rest of the program would perform if the
appropriate value existed in the state record. This option enables you to
help your program in the debugging or testing phase.

As with the Look command, you must specify the appropriate state
record (if you are using multiple state records), and you must specify
one field. You can modify only one field at time.

Watch Enter W to specify a field as a watch field. The program stops when the
field value changes.

Similar to the Break command, you can specify options for Set, Unset,
and List.

Step Over Enter S to run the current step to completion and stop at the next step in
the current section.

The behavior depends on the current level or the program. You start at
the step level, and then can step into the action level. If you are at the
step level and use step over, you go to the next step in the current
section, skipping over all actions (including any call sections). If you
are at the action level, step over executes the current action and stops at
the next action in the current step, or at the next step in the current
section.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

Managing Application Engine Programs Chapter 6

128

Option Description

Step Into Enter I to observe a step or called section in more detail. For instance,
you can check each SQL statement and stop. By using this option and
checking the state record at each stop, you can easily isolate problem
SQL or PeopleCode.

As with Step Over, the behavior depends on the level. At the step level,
you can step into the action level and stop before the first action in the
step. At the action level, if the current action is a call section, this
option takes you to the first step in the called section. For other action
types, this option acts the same as the Step Over option because no
deeper level exists in which to step.

Step Out of Liz Enter O. After you've stepped into a step or called section, use the
Step Out of option to run the rest of the current step or called section
and stop. As with the previous step options, the behavior of Step Out of
depends on the current level of the program.

At the step level, Step Out of completes the remaining steps in the
current section, returns to the calling section or step, and stops at the
next action in that step. If the section is MAIN and is not called by
another section or step, then Step Out of behaves the same as the Go
option.

At the action level, Step Out of completes the current step and stops at
the next step in the current section, or if the program is at the end of a
section, Step Out of returns to the calling section or step.

Go Enter G. After the program has stopped at a specific location, and
you've examined its current state, you can use the Go command to
resume the execution of the program. This is a helpful command when
you have breakpoints set. With this command, the program won't stop
at a step or action; it only stops at the next breakpoint or watch field, or
when the program runs to completion.

Run to commit Enter R. Resumes execution of your program after it has stopped. This
command forces the program to stop again after the next commit. This
is a good option to use when observing your commit strategy and how it
will affect a restart.

Example of the Look Option

To view the value stored in a specific field of the state record after a step or action, enter the appropriate field
name at the Field Name prompt. For example, if you entered AE_ TESTAPPL_AET at the Record Name
prompt and AE INT 6 at the Field Name prompt, you would see the value of the AE_INT 6 field in the

AE TESTAPPL_AET record.

You can also use an asterisk (*) as a wildcard to get a partial list. For example, if you enter AE_INT* at the
Field Name prompt, you see only the fields that start with AE_INT; this is also true for the Record Name
prompt. This feature is useful for both listing multiple fields across multiple records and as a shortcut. If you
know that only one state record starts with XXX, you do not have to type the full name, just type XXX

Example of the Modify Option

If you wanted to set the AE_INT 15 field in the AETESTPROG to 10, you would enter the record
(AE_TESTAPPL_AET) at the Record Name prompt and the field (AE_INT 15) at the Field Name prompt.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Then you would see the current value of the field. At the prompt, you could enter a new value.

Using the Look command, you can check to see that the value you specified now exists in the state record.

Example of the Watch Option

Enter S to set a watch field. After you enter S, you enter the record name (such as AE_ TESTAPPL AET) and
field name (such as AE_INT _7) at the appropriate prompts.

Enter U to unset, or remove, a watch field from the list. After you enter U, you see a list of active watch
fields. Enter the watch field ID number to remove a field. For example, if the field AE_INT_7 were second in
the watch field list, you would enter 2 to remove it.

After a step or action completes, enter L to list, or view, the values of all the fields that you included in the
watch list.

Note. You cannot set a watch on a long text field.

Restarting Application Engine Programs

A key feature of Application Engine is its built-in checkpoint and restart capabilities. If a program step
terminates abnormally or fails, you can restart the request from the last successful checkpoint or from the step
immediately preceding the step that failed. You restart the program from the process request page.

This section provides an overview of restart and discusses how to:

+ Determine when to use restart.

» Control abnormal terminations.

» Restart Application Engine programs.

» Start Application Engine programs from the beginning.

« Enable and disable restart.

Understanding Restart

Application Engine programs save to the database (perform a commit) only when an entire program
successfully completes. You must set individual commits where appropriate.

At the section level, you can set a commit after each step in a section. At the step level, you can require or
defer commits for individual steps, or you can increase the commit frequency within a step to N iterations of a
looping action, such as a Do Select of Do While, within a step.

The commit level that you select affects how restart works in a program. Each time Application Engine issues
a commit with restart enabled, it records the current state of the program. The recording of the current state
that Application Engine performs is referred to as a checkpoint.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 129

Managing Application Engine Programs Chapter 6

Using the restart feature enables you to perform commits more often in a program. Restart reduces the overall
effect on other users and processes while the background program is running because it reduces the number
of rows that are locked by the program. Fewer rows allows multiple instances of the program to run
concurrently (parallel processing), which may be useful for high-volume solutions.

With restart, if a failure occurs at any point in the process, the user can restart the program and expect the
program to behave as follows:

» Ignore the steps that have already completed up to the last successful commit.
« Begin processing at the next step after the last successful commit.

The ability for Application Engine to remember completed steps depends on a record called
AERUNCONTROL, which is keyed by process instance.

When a program runs, each time Application Engine issues a commit it also saves all of the information
required for a program restart in the AERUNCONTROL record.

Determining When to Use Restart

Usually, you want to develop programs to take advantage of Application Engine restart capabilities. Programs
that are good candidates for restart do a lot of preparation work initially, such as joining tables and loading
data into temporary work tables. Also, you should consider restart capabilities for programs that might put
data in an unstable state if they terminate abnormally during a run. As a general rule, restart is essential for
programs that primarily do set-based processing.

However, you may want to disable restart if your program has one the following characteristics:
+ It is mainly row-by-row processing.

» The overhead involved with Application Engine performing a checkpoint during the program run is not
desirable.

e The program commits after N iterations of a looping construct within a step, and the Select statement
driving the loop is composed in such a way that if the program terminated and then started again it would
ignore transactions that were already processed in the previous program run. In a sense, the program
processes the restart internally: Application Engine treats each start of a program as a fresh start, instead
of restarting a previous instance.

When developing for restart, consider the consequences if a program fails and you cannot restart the program.
Given the commit structure that you defined for your Application Engine program, would your data remain in
an usual state if a failure were to occur after any of the commits? Would it be easy to recover from such a
case?

Using Restart at the Program Level

Application Engine automatically updates all state records. When an Application Engine program starts, it
inserts a row in the state record for the assigned process instance. Then the system updates the state record
whenever the program performs a commit to store changed values into the database. Finally, the system
deletes the state record row upon successful completion of the application.

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

However, if the state record the program uses is a work record, you cannot make any database updates to the
record. Consequently, if you restart the program, you might get unexpected results because the memory was
lost when the program terminated. In fact, the system re-initializes any state records that are work records at
each commit in order to ensure consistent behavior during a normal run and a restarted run. Therefore, you
may need to make at least one of your state records a SQL table to contain values that must be retained across
commits or in case of termination.

Finally, the other consideration for programming for restart at the program level is to check both the
Application Engine Program Properties dialog box and PeopleSoft Configuration Manager to make sure the
Disable Restart check box is not selected.

Using Restart at the Section Level

The section level property associated with restart is section type, which has the options Prepare Only and
Critical Updates.

If a section only prepares data, as in selecting it, populating temporary tables, or updating temporary tables,
then set the section type to Prepare Only. However, if the section updates permanent application tables in the
database, then set the option to Critical Updates.

During runtime, when the system arrives at the first section set to Critical Updates, it sets the

AE CRITICAL PHASE value in the AERUNCONTROL record to Y. Once set, the value of

AE CRITICAL PHASE remains Y until the program completes successfully. When the program completes,
the corresponding row in AERUNCONTROL is deleted. Therefore, a Prepare Only section following the
Critical Updates section will not reset the AE CRITICAL PHASE value to N.

If your program terminates, the user can check the AE_ CRITICAL PHASE value. If it is Y, then the user
knows that the section that failed is critical and that the program should be restarted to ensure data integrity. If
AE _CRITICAL PHASE is N, restarting may not be necessary; however, as a general rule you should restart
even if AE_CRITICAL PHASE is set to N.

Using Restart at the Step Level

In the Where clause of a Do Select action in your program, you should include conditions that reduce the
answer set returned from the Select statement.

For example:

SELECT RECNAME, FI ELDNAMVE
FROM PS_AE_RECFI ELD
ORDER BY RECNAME, FI ELDNANME

If you ran this Select statement as part of a Do Select action with Restartable selected as the Do Select type,
the system might process some of the rows twice after a restart. Also, if you specified Reselect, the program
could execute in an infinite loop because no code exists to reduce the answer set. However, if you modified
the Select statement as follows, you could make it Restartable:

SELECT RECNAME, FI ELDNAME
FROM PS_AE_RECFI ELD

WHERE RECNAME > 9@ nd(RECNAME)

OR (RECNAME = 9@i nd(RECNAME) AND FI ELDNAME > 9Bi nd(FI ELDNAME))
ORDER BY RECNAME, FI ELDNANME

You can convert a Do Select action that was coded for Restartable to Select/Fetch, but the opposite is not
true.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

Managing Application Engine Programs Chapter 6

The previous example shows the use of a key column to reduce the answer set. A key column can be
convenient if your record has only one or two key fields; however, if your record has three or four keys, your
SQL would become overly complex.

Instead of matching key fields, you could add a switch to the selected table and then have the processing of
the called section modify the switch as it processes the row. In this example, your Select statement might look
like this:

SELECT CCLUWNL, COLUWMNZ,
FROM PS_TABLE1
WHERE PROCESSI NG_SW TCH=" N .

Controlling Abnormal Terminations

A controlled abnormal termination (sometimes called an abend) means that Application Engine exits
gracefully because of a calculated error condition. Examples of controlled abends are:

* SQL errors while On Error is set toAbort.
* A PeopleCode return value when On Return is set to Abort.
* A SQL statement that affects no rows when On No Rows is set to Abort.

In these situations (when Application Engine is in control), the Run Status field in Process Monitor reads
Error.

An uncontrolled termination occurs when a memory violation occurs or a user terminates a process. In these
cases, the Run Status field in Process Monitor reads Processing.

Restarting Application Engine Programs

132

You can restart an Application Engine program in one of these ways:

¢ From the command line.

+ From a process request page.

Note. The following procedures for restarting a failed Application Engine program assume that you have
rectified the error that caused the program to fail in the first place. For instance, suppose the name of a
referenced table has changed. Regardless of how many times you restart the program, it will continue to fail
until you modify all references to the old table name.

Restarting from the Command Line

Normally, only developers and system administrators use the command line for restarting Application Engine
programs. Users, in most cases, should not be expected to use this method.

You can use the command line option to restart programs that run on the client or the server. Application
Engine references only the process instance of the failed process. Therefore, if you run a process on the client
and it fails, you can restart it from the server using the server command line. Likewise, if you run a process
from the server and it fails, you can restart it from the client using the command line.

To restart an Application Engine program from the command line:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Application Engine Programs

1. Collect the command line values associated with the failed program.

These values include database type, database name, user ID and password, run control ID, program name,
and process instance. You can find these variables in the Process Details dialog box, the corresponding
state record, or the Application Engine Run Control table. Where the values reside depends on how you
invoked the program. For instance, if you invoked the program using the command line or from outside of
PeopleSoft Process Scheduler, then you cannot view details associated with the program run in the
Process Details dialog box.

2. Enter the following command line syntax at the command prompt, substituting the values from the
previous step:

PSAE. EXE -CT DB_TYPE -CD DB_NAME - CO OPRI D - CP PASSWORD - R
RUN_CONTRCL - Al PROGRAM _NAME -| PROCESS_| NSTANCE

Note. Some database platforms, such as Sybase, also require that you include a server name in the
argument list.

Restarting from a Process Request Page
The only programs you can restart from a process request page are those that run on the server.
To restart an Application Engine program from a process request page:

1. Open PeopleSoft Process Scheduler by selecting PeopleTools, Process Scheduler, System Process
Requests.

2. Locate the run control ID number of the program to restart.
3. To display the details of the failed process, click the Process Detail link.

4. On the Process Request Details page, select Restart Request and click OK.

Bad Restart Errors

If you attempt to restart a process that completed successfully according to Application Engine, you will
receive a bad restart message. You will also get this message if your Application Engine application is
defined with restart disabled.

Starting Application Engine Programs from the Beginning

Copyright

When an Application Engine program ends abnormally, you may have to decide whether you should restart
the process or start it from the beginning. As your Application Engine program ran at least part way through,
starting over may leave your data in an unknown state. Also, application logic might need to be undone,
depending on the stage of the program when it failed, what data the program had committed, and so on.

However, if restart is enabled and you attempt to start a new process that matches the run control ID and user
ID for another process, then you receive a suspend error. Because the process instance for these two processes
is different, the new request fails. This event usually occurs when a user tries to run the program again after
receiving an error on the previous attempt.

To start the program over from the beginning, you can use SQL to delete the row that corresponds to the
failed program from the Application Engine run control table and your state record.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

Managing Application Engine Programs Chapter 6

To restart an Application Engine program from the beginning:

1.

Open your native SQL editor and manually delete the row in PS. AERUNCONTROL that corresponds to
the program you want to start from the beginning.

Use the following SQL to accomplish this step:
DELETE FROM PS_AERUNCONTROL

WHERE OPRI D=OPRI D
AND RUN_CNTL_| D=Run_Control _|I D

Delete from your state record the row that corresponds to the failed program run.

Use the following SQL to accomplish this step:

DELETE FROM PS_MY_AET
WHERE PROCESS | NSTANCE=Pr ocess_I| nst ance

Note. To restart the program, you can also select Restart Request from the Process Request Details dialog
box.

Enabling and Disabling Restart

To disable restart, use any of these methods:

Select the Disable Restart check box in the Application Engine Program Properties dialog box.
To access program properties, select File, Definition properties and select the Advanced tab.
Select the Disable Restart check box in the Configuration Manager profile.

To access the profile, start Configuration Manager, select the Profile tab, and click Edit. Then select the
Process Scheduler tab.

Include the -DR Y option in the command line of PSAE.EXE.

If you disabled restart in any of these three places, restart is disabled.

If you want the program to restart in a production environment while still keeping a restart condition from
getting in the way during development and testing, you can deselect the Disable Restart check box in the
Application Engine program properties. Then, during development, you can select the Disable Restart check
box in Configuration Manager or invoke your program from the command line with the -DR Y option
without having to reconfigure the program for testing.

Caching the Application Engine Server

Application Engine caches metadata just like the application server. This caching enhances performance
because a program can refer to the local cache for any objects that it uses.

134

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Application Engine Programs

Cache Directory Location

Application Engine programs that run on a Microsoft Windows NT or UNIX server lock their own cache
directory for the duration of a run. You find these directories under the master cache directory. The master
directory is created under the directory specified by the CacheBaseDir variable in the PeopleSoft Process
Scheduler configuration file. If all existing cache directories are locked, a new one is created. Cache
subdirectories are named sequentially, starting at 1.

If you do not enter a fully qualified path for the CacheBaseDir variable, then Application Engine creates a
cache directory within the directory in which the program is set to run.

Note. Do not share the CacheBaseDir variable with application servers and do not use environment variables
when specifying CacheBaseDir because the system does not resolve them. For example, do not set
CacheBaseDir to $PS_CFG_HOME.

Cache Parameters

The PSPRCS.CFG (PS_SERVER_CFQ) file has two additional cache parameters. They are:
» Enable Server Caching

» Server Cache Mode

Do not alter these settings from the delivered defaults. These settings are reserved for future use.

Freeing Locked Temporary Tables

Copyright

If you use dedicated temporary tables for Application Engine programs, then you might need to free, or
unlock, a temporary table if the program running against it terminates abnormally. Because most Application
Engine programs run through PeopleSoft Process Scheduler, typically you use Process Monitor to unlock the
temporary tables. Deleting or restarting a process using Process Monitor automatically frees the locked
temporary tables.

For the programs that you invoke outside of PeopleSoft Process Scheduler, use the Manage Abends page.
Programs running outside of Process Scheduler include those invoked from CallAppEngine PeopleCode and
the command line.

To free locked temporary tables using the Manage Abends page:
1. Select PeopleTools, Application Engine, Manage Abends.
2. Identify the program that has locked the temporary tables you want.

Use the process instance, run control ID, program name, user ID, and run date and time columns to
uniquely identify programs.

3. Click the Temp Tables link.

4. On the Temporary Tables page, click the Release button to unlock the temporary tables associated with
the program.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 135

Chapter 7

Calling Application Engine Programs from
COBOL

To facilitate the conversion of existing COBOL programs to Application Engine programs, you can call
Application Engine programs from existing COBOL code.

This chapter discusses how to:
* Add copybooks to COBOL programs.
» Assign copybook values.

+ Handle COBOL errors.

Adding Copybooks to COBOL Programs

To enable you to call Application Engine programs from COBOL programs, include the copybook called
PTCCBLAE.CBL with your COBOL programs. This copybook is located in PS HOME\src\cbl\base.

The following is the PTCCBLAE.CBL copybook:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

Calling Application Engine Programs from COBOL Chapter 7

138

*01 CBLAE

NOCLN 02 CBLAE- PRCSNAME PI C X(12) VALUE SPACE.

NCCLN 02 CBLAE- COW T- FLAG Pl C X(1) VALUE SPACE.
88 AE- COMM TS- SUCCESS VALUE 'B'.
88 AE- COWM TS- ALL VALUE ' C .

02 CBLAE- PARMS.
03 CBLAE- PARM CNT PI C 9(4) COwVP.
03 CBLAE- PARM ENT OCCURS 500 TI MES.
05 CBLAE- STATEREC PI C X(15).
05 CBLAE- FI ELDNM PI C X(18).

05 CBLAE- DATA- PTR PO NTER.
05 CBLAE- LENGTH Pl C 9999 COWP.
05 CBLAE- SCALE PI C 99 COwVP.
NOCLN 05 CBLAE- TYPE PI C X

88 CBLAE- TYPE- CHAR VALUE ' C .

88 CBLAE- TYPE- SMALLI NT VALUE ' S'.

88 CBLAE- TYPE- | NT VALUE "I ".

88 CBLAE- TYPE- DEC VALUE ' P' .

88 CBLAE- TYPE- DATE VALUE 'D .

88 CBLAE- TYPE-TI ME VALUE 'T'.

88 CBLAE- TYPE- TI MEONLY VALUE 'V .

88 CBLAE- TYPE- NUMERI C VALUE 'S 'I' "P'.

Data Transfer Process Between COBOL Programs and Application Engine Programs

To interface between COBOL programs and Application Engine programs, the process uses a file to pass
parameters from COBOL to the Application Engine program. This file is owned by the process and has the
prm extension. The location of the file is determined by the following:

» Ifan application server root directory is defined, then the file resides in the output directory of that
particular process instance.

+ If'the output directory on the application server is not defined, then the file resides in the default output
directory of the Process Scheduler domain.

» If neither of the above is defined, then the file is written to the default temp directory.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Calling Application Engine Programs from COBOL

Assigning Copybook Values

To assign values to the copybook of the calling COBOL program to be passed as parameters into the state
records of the called Application Engine program:

» Identify the fields in your COBOL program that contain the values you want to pass to the Application
Engine program.

* Load the PTCCBLAE.CBL copybook with the state record name, field name, field length (this should be
the size of the field not the size of the contents), the scale (decimal places if any), and set the field type.

» Call the PTPSETAD program to set the pointer in PTCCBLAE.CBL to the host programs variable.
» Set the variable AE-COMMIT-FLAG to either AE-COMMITS-ALL or AE-COMMITS-SUCCESS.

AE-COMMITS-ALL means that the Application Engine program commits as specified in the program.
AE-COMMITS-SUCCESS means that the Application Engine program ignores all commits and performs
one commit at the end of successful execution.

Example of Loading Values from PTPTSTAE.CBL Sample Program

Make sure the calling COBOL program has connected successfully to the database before calling the
PTPCBLAE copybook. Also ensure that the calling program is not running through a RemoteCall function.

This code is an example of how to load values from the copybook:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

Calling Application Engine Programs from COBOL Chapter 7

MOVE O TO CBLAE- PARM CNT OF CBLAE

ADD 1 TO CBLAE- PARM CNT OF CBLAE
MOVE ' QE_CBLAETST_AET' TO CBLAE- STATEREC
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE ' DESCR TO CBLAE- FI ELDNM
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE 30 TO CBLAE- LENGTH
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE 0 TO CBLAE- SCALE
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
SET CBLAE- TYPE- CHAR OF CBLAE (CBLAE- PARM CNT OF CBLAE)
TO TRUE
CALL ' PTPSETAD USI NG CBLAE- DATA- PTR
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
W DESCR OF W WORK

ADD 1 TO CBLAE- PARM CNT OF CBLAE
MOVE ' QE_CBLAETST_AET" TO CBLAE- STATEREC
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE ' QE_AE_INT_7' TO CBLAE- FI ELDNM
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE 2 TO CBLAE- LENGTH
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE O TO CBLAE- SCALE
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
SET CBLAE- TYPE- SVALLI NT
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
TO TRUE
CALL ' PTPSETAD USI NG CBLAE- DATA- PTR
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
W SM NT OF W WORK

140 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Calling Application Engine Programs from COBOL

DAOOO- CALL- AE SECTI ON.

DA0OO.

MOVE ' QE_AETESTPRG TO CBLAE- PRCSNAME OF CBLAE

SET AE-COW TS-ALL TO TRUE

CALL ' PTPCBLAE USI NG SQLRT CBLAE.
CALL- AE-EXIT.

EXIT.

Sample of the Communication Area of PTPBLAE.CBL

If the called Application Engine program updated the state records or fields that were passed by PTPCBLAE,
then the fields or records are stored in the local variables of the calling program, as identified by PTPSETAD:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

Calling Application Engine Programs from COBOL

142

* PTCCBLAE - Communi cation area for PTPCBLAE

*01 CBLAE.

NCCLN

*

NOCLN

NOCLN

02 CBLAE-PRCSNAME PIC X(12) VALUE SPACE.
Nanme of AE programto be call ed.

02 CBLAE- COWM T- FLAG PI C X(1) VALUE SPACE.

Flag to determ ne which of the follow ng conmits to nake.

88 AE- COW TS- SUCCESS VALUE 'B'.
No in-process conmt; if successful, then conmt occurs.
88 AE- COW TS- ALL VALUE ' C .
Conmits occur when defined in the AE program
02 CBLAE- PARMS.
03 CBLAE- PARM CNT Pl C 9(4) COwP.
Counter of the nunber of state records passed.
03 CBLAE- PARM ENT OCCURS 500 TI MES.
Maxi mum val ue of state record entries.
05 CBLAE- STATEREC Pl C X(15).
State record nane.
05 CBLAE-FIELDNM PIC X(18).
Fi el d nane.
05 CBLAE- DATA- PTR PO NTER.
Poi nter to your own working storage area.
05 CBLAE- LENGTH PI C 9999 COWP.
Field length of defined state record.
05 CBLAE- SCALE PI C 99 COWP.

Nunber of deci mal places.

05 CBLAE- TYPE PIC X

Fiel d data type.

88 CBLAE- TYPE- CHAR VALUE ' C .
88 CBLAE- TYPE- SMALLI NT VALUE 'S'.
88 CBLAE- TYPE- | NT VALUE " [|".
88 CBLAE- TYPE- DEC VALUE 'P' .
88 CBLAE- TYPE- DATE VALUE 'D .

Chapter 7

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Calling Application Engine Programs from COBOL

88 CBLAE- TYPE-TI ME VALUE 'T'.
88 CBLAE- TYPE- TI MEONLY VALUE 'V .
88 CBLAE- TYPE- NUMERI C VALUE 'S 'I" 'P".

Handling COBOL Errors

If your COBOL program needs error handling, try the following procedure:
1. Add a field (return code) to your state record.

2. Initialize the field to a negative value.

3. Pass the value into the Application Engine program.

4. At the successful completion of the Application Engine program, change the field value to a positive
value.

5. Check for that value in your COBOL program.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

Chapter 8

Tracing Application Engine Programs

This chapter provides overviews of tracing Application Engine programs and trace results and discusses how
to:

» Enable Application Engine tracing.

e Locate trace files.

Understanding Tracing Application Engine Programs

You can set the following traces to monitor the performance of Application Engine programs:
* Application Engine step trace.

» Application Engine SQL trace.

« Application Engine statement timings trace.

« Database optimizer trace.

Note. The general PeopleTools SQL and PeopleCode traces also apply to Application Engine programs.

Understanding Trace Results

This section discusses:

« Trace file sections.

« Step traces.

e SQL traces.

» Statement timings traces.

» Database optimizer traces.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

Tracing Application Engine Programs

Trace File Sections

Chapter 8

At the top of each trace, useful information helps you to identify the PeopleTools version, the database name,

and the database platform type.

SQL Counts and Timings Section

The first section of a trace file is the SQL section. It records the performance of application-specific SQL.
The trace values appear within a series of columns and sections. The following table describes each column

within the first section of the trace file:

Column

Description

SQL Statement

Application Engine SQL actions and stored SQL objects always have a
statement ID. The SQL Statement column shows the statement ID so
that you can attribute trace values to individual SQL statements. In the
case of SQLExec SQL, a portion of the SQL statement appears in the
first column to help you identify it. For SQL objects, use the
TraceName property in the Create SQL so that you can uniquely
identify it in the traces.

Compile Column

This column shows how many times the system compiled a SQL
statement and how long the compilation took. The term compiled refers
to the SQL statement being sent to the database to be parsed and
optimized, and it also includes the time required for the first resolution
of any PeopleSoft meta-SQL.

Execute Column

This column shows how many times the system executed the SQL
statement and the time consumed doing so. The term executed refers to
the system sending the compiled SQL to the database server to be run
against the database.

Fetch Column

This column applies to Select statements. It shows how many rows your
program fetched from the database and how much time this consumed.
The system must first execute a Select statement against the database to
find the relevant rows and generate an active set. After the set exists, the
program must still fetch the rows. Some database APIs have buffered
fetches, which means that the fetch may include more than one row.
Therefore, subsequent fetches are free until the buffer becomes empty.

Total Column

This column shows the sum of the compile, execute, and fetch times of
the SQL statement. Some database application programming interfaces
(APIs may defer a compile to the execute phase or defer an execute to
the first fetch operation.

PeopleCode SQL

This subsection is for SQL run from PeopleCode actions. Compile
counts and times for such SQL is included in execute count and times
because you do not explicitly control the ReUse feature. To determine
whether ReUse is occurring, you must do a program run after enabling
the generic PeopleTools trace for SQL statements, API calls, and so on.
As a starting point, use a trace value of 31.

146

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Tracing Application Engine Programs

Column

Description

Application Engine SQL

This subsection reveals the time attributed to Application Engine
overhead that is not directly related to the SQL within your program.
For example, the values in this section represent the SQL generated for
checkpoints, commits, and so on. If there are Commit statements
without checkpoints, it indicates that restart has been disabled, or a
restartable program has called a non-restartable program.

If the time consumed performing a checkpoint or committing seems
more than expected, you should try to reduce it if possible by setting the
commit frequency of the steps containing Do loops.

AE Program: program_name

This subsection shows SQL actions for a particular program. The action
properties that affect performance are flagged. For example, BulkInsert.
ReUse is not flagged because it is self-evident when the Execute count
is higher than the compile count.

Note. When you run a SQL trace at the Application Engine level and the PeopleTools level simultaneously,
you may see misleading results. Extra overhead is added to the overall SQL timings by the PeopleTools trace.
Tracing SQL at the Application Engine level (-TRACE) adds to the non-SQL times because PeopleTools

writes the trace data after timing the SQL.

PeopleCode Actions Section

The second section of the trace file, or PeopleCode section, records the performance associated with all the
PeopleCode actions in your program. The following table describes each column in this section:

Column Description

PeopleCode The names of the PeopleCode actions in your program.

Call How many times each PeopleCode action is called during a program
run.

Non-SQL The time spent running non-SQL actions.

SQL Time spent running SQL. The total SQL time should be similar to that
of the PeopleCode SQL subsection in the first section of the trace file.

Total The cumulative amount of time spent on an action.

Note. The system rounds to the first decimal place (tenths), but only after it calculates the sum of each action

time.

PeopleCode Built-ins and Methods Section

The third section of the trace file contains either a list or summary of the PeopleCode built-ins and methods
used. To see a list of built-ins and methods, you must enable the PeopleCode detail timings in addition to the

statement timings trace.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147

Tracing Application Engine Programs Chapter 8

If a method or built-in function takes a large amount of time, you may want to consider alternatives. For
example, if array processing dominates your runtime, consider inserting the data into temporary tables and
performing the processing on tables in the database.

Summary Data

The fourth section of the trace file contains summary data. The values in this section provide an overview of
the program run without providing too many details.

The following table describes the values that appear in this section:

Column Description

Total run time The overall amount of time a program required to
complete from start to finish.

Time in application SQL The time that your program spent executing SQL. This
value includes SQL run by both PeopleCode and SQL
actions.

Percent time in application SQL The percentage of time spent running SQL compared to

the entire program run.

Time in PeopleCode The time the program spent running PeopleCode. Time in
PeopleCode excludes SQL run from within PeopleCode.

Percent time in PeopleCode The percentage of time spent running PeopleCode
compared to the entire program run.

Total time in Cache The amount of time the program spent retrieving objects
from the cache or refreshing the cache. Total time in
cache includes all memory cache access, file cache access,
and SQL run to load managed objects such as Application
Engine program components, metadata, and so on. Time
varies according to where Application Engine finds an
object. For instance, retrieving an object that the system
cached during a previous run is faster than retrieving it
from the database.

Number of calls to Cache The actual number of calls the program made to the cache.
The number of calls to the cache remains constant for the
same Application Engine program processing the same
data.

Environment Information Section

The fifth section of the trace file contains environment information specific to Application Engine. If
programs appear to be performing poorly, check the trace value that you set.

Each trace produces an unavoidable degree of overhead. As a result, the more traces you have enabled, the
more likely you are to see degraded performance. Run only the traces you need. This section of the trace file
shows information about:

e SQL traces.

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

« PeopleCode traces.
» Application Engine traces.

» Application Engine DbFlags (%UpdateStats).

Step Traces

A step trace reports each step name that your program runs and the order it runs in. Associated with each step
is a timestamp, a Do action level, and an action type.

The trace shows the steps that run within a called section by indented formatting. For example, a step that
runs within a called section is preceded by two dots (..), while other steps are preceded by only one dot (.).

SQL Traces

The SQL trace report shows formatted SQL processes, including commits, rollbacks, and restarts. You can
also view the buffers associated with each SQL statement. Use a SQL trace to spot errors in your SQL and to
view your commit strategy.

Statement Timings Traces

The Application Engine statement timing trace report is similar to a COBOL timings trace in which you
monitor COBOL programs to evaluate performance. This trace enables you to gather performance
information to determine where program performance slows down. After you identify these spots, you might
be able to modify your program to run more efficiently, or you might want to change the database schema and
configuration to optimize program performance.

The statement timings trace is invaluable for tuning an Application Engine program. It may also be useful as
a default trace level for all production runs to provide a metric for long-term performance trends.

By examining all of the figures in this trace, you can identify areas of your program that are not running as
efficiently as possible. For instance, if compile counts are high, you can reduce the numbers by using the
Application Engine reuse feature. If inserts appear to be running slow and you have many of them, you can
increase performance by using the Application Engine bulk insert feature. Each value in the trace, including
cumulative totals, is rounded to the nearest tenth of a second, but totals are calculated using nonrounded
timings.

You can write this trace to a file or you can write the results to tables. Either way, timings trace overhead is
minimal. Internal testing reveals that the Application Engine trace has an overhead between 2 percent and 5
percent of total runtime.

By storing timings information in a table, you can store historical data in the database, which enables you to
produce reports that help with trend analysis, allow ad hoc SQL queries for longest running statements, and
so on. By storing timings data in the database, you can manipulate and customize reports to show only the
metrics in which you are most interested.

You can use third-party tools to query and present the data as detailed graphical representations of program

performance. You can also implement alarms if the performance of a program reaches a specified maximum
value in a particular area, such as SQL compile time.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149

Tracing Application Engine Programs Chapter 8

150

Note. Application Engine does not write the timings trace to a table for programs invoked by the
CallAppEngine PeopleCode function. To write to a table, a process instance is required, and programs
invoked by CallAppEngine are not assigned a process instance.

The Statements Timings (table) option, or 1024 -TRACE option, populates the following tables.

« PS BAT TIMINGS_ LOG (Parent)
This table stores general information about a program run.
« PS BAT TIMINGS DTL (Child)

This table stores detailed information about a program run, such as the execute count, fetch time, and so
on.

The SQL Timings (table) option, or the 16834 -TRACE option, populates the following tables.
« PS AE TIMINGS LG (Parent)

This table stores general information about a program run.
« PS AE TIMINGS DT (Child)

This table stores detailed information about a program run, such as the execute count, fetch time, and so
on.

PS BAT TIMINGS FN
This table stores PeopleCode detailed timing information.

PeopleSoft software provides BATTIMES.SQR as an example of the type of reports you can generate to
reflect the information stored in the BAT TIMINGS tables. You can produce a summary report for all the
programs for a specific run control ID, or you can get detailed data for a specific process instance.

To invoke the BATTIMES.SQR report through PeopleSoft Process Scheduler:
1. Select PeopleTools, Process Scheduler, Batch Timings.

The Batch Timings page appears.
2. From the Report Type drop-down list, select Detail or Summary.

3. In the Batch Timings For group box, enter the run control ID for summary reports and enter the process
instance for detail reports.

4. When you have made the appropriate selections, click the Run button.
To view batch timings using Process Monitor:
1. Select PeopleTools, Process Scheduler, Process Monitor.

2. Locate the program run associated with the current trace.

98]

Click the Job Details button.
4. In the Process Detail dialog box, click the Batch Timings link.

PeopleCode detail timings do not appear; they appear only in the file format.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

Database Optimizer Traces

The database optimizer trace provides the execution or query plan for the SQL that your Application Engine
program generates. Each SQL statement is traced only once. You can write the trace to a file or a table.

How you view the results of this trace depends on the relational database management system (RDBMS) that
you are currently using. For instance, on some platforms only the trace-to-file option is available, whereas on
others only the trace-to-table option is available. The following table shows the options available for each of
the supported platforms:

RDBMS Output
Oracle File and table

DB2 for OS/390 Table

DB2 for UDB (AIX, Sun Solaris, Microsoft Windows Table

NT)

Microsoft SQL Server File and table

Informix File

Sybase N/A

Note. PeopleTools applications do not collect optimizer data for SQL originating from PeopleCode actions
unless you run Oracle and Informix and use file output. In this case, the system traces all SQL that runs after
the first SQL action runs.

Oracle

When sending the trace to a file, Application Engine writes the trace file to the default Oracle trace directory
specified on the database server. To read the trace file, use the TKPROF utility.

To send the trace to a table on Oracle, a PLAN_ TABLE table must exist and the statement _id must be of type
VarChar2(254) instead of VarChar2(30).

When sending to a table, the PeopleSoft application updates the trace rows as follows:

» For the EXPLAIN PLAN SET STATEMENT ID, PeopleSoft software updates the STATEMENT ID
column:

EXPLAI N PLAN SET STATEMENT_I D = Appl Id. Section. Step. Type FOR sql stnt

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 151

Tracing Application Engine Programs Chapter 8

152

e orthe PLAN TABLE REMARKS column, PeopleSoft software updates the REMARKS column:
PLAN TABLE' s REMARKS col um = ' Processl nst ance- RunControl | d(QueryNo)'

Where queryno is a count of how many SQL statements have been traced up to a particular point.

Note. When tracing to a table with Oracle, PeopleSoft software does not perform optimizer traces on
%UpdateStats and %TruncateTable unless the latter resolves into a Delete statement. Alternatively, sending
the Oracle TKPROF utility to a file handles both the Analyze and Truncate commands.

Microsoft SQL Server

When you send trace output to a file, Application Engine writes the optimizer trace to the following location:
%TEMP%\psms<queueid><spid>.trc. To read the trace, use the SQL Server Profiler utility.

Note. The system writes the trace file to the server directory when you specify the trace on the client. If the
client has %Temp% set to a drive or directory that does not exist on the server, then Application Engine does
not generate a trace file.

When you send trace output to a table, Application Engine writes the trace data to the
dbo.PS_OPTIMIZER TRC table. PeopleTools creates the table automatically when you run the trace for the
first time. The trace data written to the table is identical to the data that appears in the optimizer trace file.

You use the SQL Server Profiler utility to view the optimizer results. To view the populated trace table,
specify the current server and database in the Source Table dialog box. The Owner value must be dbo, and the
Table value must be PS_ OPTIMIZER TRC.

In the trace, you find information about text, duration, and start time for:

« Execution plans.

» Remote procedure calls.

» Insert statements (Update, Delete, and Select statements).

» PeopleSoft-generated user events that associate trace data with a PeopleSoft SQL identifier.

If the Application Engine program terminates while you are using the trace option, verify that Application
Engine was not tracing a SQL statement at the moment the program terminated. If it was tracing a SQL
statement at that time, you must manually stop the trace. Otherwise, the trace thread on the server continues
to run and will lock the trace file, and each time that server process ID (SPID) is reused by the server, new
information will be appended to the locked trace file.

To stop the trace manually, submit the following command from Query Analyzer:
Xp_trace_destroyqueue queueid

The queueid variable in the file name % TEMP%\psms_queueid spid.trc is the ID that corresponds to the
queue used for the first SQL statement that the system profiled. Because this trace is only designed to trace
Application Engine SQL (not PeopleTools SQL), the queue is closed after every statement profiled.
Therefore, the queue that must be destroyed may not be the queue ID used in the trace file.

Note. If the % TEMP% variable is set to a location that does not exist, Application Engine does not generate a
trace file.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

Informix

For Informix, you can only send the trace to a file. The trace file location depends on the operating system on
which your database server runs:

« UNIX

For UNIX, Application Engine writes the plan to the sqexplain.out file. If the client program runs on the
same machine as the database server, then the sqexplain.out file appears in the current directory. When
the current database is on another computer, the sqexplain.out file is written to the PeopleSoft owner's
directory on the remote host.

e Microsoft Windows NT

For Microsoft Windows NT, Application Engine writes the plan to the
INFORMIXDIR%\sqexpln\username.out file.

DB2 for OS/390

For DB2 for OS/390, you can only send the optimizer trace to a table. To facilitate this trace:

» The PeopleSoft application selects the maximum query number from the PLAN_TABLE table,
increments it by 1000 to avoid clashing with other processes, and then increments it by 1 for every SQL
statement traced.

» The PeopleSoft application sets the SET REMARKS parameter to this value: Applld.Section.Step.Type-
RunControlld(ProcessInstance)

Note. Before using the Database Optimizer Trace, you must first create a DB2 PLAN TABLE. Refer to your
DB2 UDB for OS/390 and z/OS Administration Guide for the correct format and instructions for creating the
PLAN TABLE.

DB2 for UNIX
For DB2 for UNIX, you can only send the optimizer trace to a table. To facilitate this trace, we implemented:

EXPLAIN ALL SET QUERYNO =ProcessInstance SET QUERYTAG = 'Section.Step' FOR sq! stmt

Note. Before using the Database Optimizer Trace, you must first create the DB2 explain tables.

Database Optimizer Trace and Performance

While the database optimizer trace is enabled, performance may be affected. Typically, you turn on this trace
only when you are collecting detailed performance metrics. When you are not tuning system performance,
turn off the optimizer trace.

To prevent an administrator or perhaps a user from unwittingly turning the optimizer trace on or leaving it on
after doing performance tuning, you can disable the database optimizer trace for an entire database.

For example, if you have a production database and a development database, you might want to enable the
optimizer trace for the development database but disable it for the production database.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 153

Tracing Application Engine Programs Chapter 8

On the PeopleTools Options page, clear the Allow DB Optimizer Trace option to disable the optimizer trace
for a database.

Enabling Application Engine Tracing

By default, all Application Engine traces are turned off. To see a trace or a combination of traces, set trace
options before you run a program.

This section discusses how to:
» Set command line options.
» Set parameters in server configuration files.

» Set options in Configuration Manager.

Setting Command Line Options

154

The command line option is available for Microsoft Windows NT and UNIX, but it is not available when
calling Application Engine programs from PeopleCode.

To enable tracing from the command line, specify the “-TRACE option within the command line that you
submit to PSAE.EXE. For example:

n:\ pt 840\ bi n\ cl i ent\ wi nx86\ psae. exe -CT M CROSFT -CD PT800CES - CO PTDMO?
-CP PTDMO - R PT8GES - Al AETESTPROG -1 45 - TRACE 2

The following table describes the available TRACE option parameter values:

Value Description

0 Disables tracing.

1 Initiates the Application Engine step trace.

2 Initiates the Application Engine SQL trace.

4 Initiates the trace for dedicated temporary table allocation to an

Application Engine trace (AET) file. You can trace how the system
allocates, locks, and releases temporary tables during program runs.

128 Initiates the statement timings trace to a file, which is similar to the
COBOL timings trace to a file.

256 Initiates the PeopleCode detail to the file for the timings trace.

1024 Initiates the statement timings trace and stores the results in the
PS BAT TIMINGS LOG and PS BAT TIMINGS DTL tables.

2048 Requests a database optimizer trace file.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

Value Description

4096 Requests a database optimizer to be inserted in the Explain Plan table of
the current database.

8192 Sets a trace for PeopleSoft Integration Broker transform programs.

16384 Initiates a SQL timings trace and stores the results in the
PS AE TIMINGS LG and PS AE TIMINGS DT tables.

To specify traces on the command line, you enter the sum of the desired trace options. This action is similar
to adding the trace values using PSADMIN, such as the COBOL statement timings or the SQL statement
trace value. To specify a combination of traces, enter the sum of the corresponding trace values. For example,
to enable the step (1), the SQL (2), and the statement timings (128) traces, you would enter 131, which is the
sum of 1 +2 + 128.

To disable tracing, explicitly specify “TRACE 0. If you do not include the “-TRACE flag in the command
line, Application Engine uses the value specified in the Process Scheduler configuration file or in
Configuration Manager. Otherwise, the command-line parameters override any trace settings that may be set
in Configuration Manager.

Setting Parameters in Server Configuration Files

You can also enable traces in the configuration files for both the application server and the PeopleSoft
Process Scheduler server.

For programs invoked by PeopleCode and run on the application server, set the TraceAE parameter in the
Trace section of the Application Server configuration file (PSAPPSRV.CFG). You can use PSADMIN to set
this parameter.

In the PeopleSoft Process Scheduler configuration file, set the TraceAE parameter in the Trace section to
indicate a level of tracing. You can use PSADMIN to set this parameter.

This option is available on Microsoft Windows NT and UNIX, and it applies only to Application Engine
programs invoked in batch mode.

Note. The TraceFile parameter does not specify the location of the Application Engine trace file; it applies
only to the generic PeopleTools SQL and PeopleCode traces.

Setting Options in PeopleSoft Configuration Manager
For processes running on a Microsoft Windows workstation, you can set trace options using PeopleSoft

Configuration Manager. This procedure is valid only if you are running Application Engine programs on a
Microsoft Windows workstation in a development environment.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 155

Tracing Application Engine Programs

— Application Engine Trace
[Step
I~ saL
[T Ded. Temp. Table

[~ Statement Timings file)

[T Statement Timings ¢able)
[~ PecpleCode Detail Timings
[T DB Optimizer file)

[T DE Optimizer itable)

[T 5QL Timings able)

Application Engine Trace check boxes

To set Application Engine traces:

Chapter 8

1. Start Configuration Manager, and select the Trace tab.

2. Select the appropriate trace options.

You can select any combination of options.

3. Click either the Apply or OK button to set trace options.

Locating Trace Files

156

Locating a generated trace file depends on how you invoked the program and the operating system on which
the program runs. This table describes trace file locations based on where the program initiated:

Location Where the Program Was Initiated

Trace File Location

Microsoft Windows workstation

Look for the trace file in % TEMP%\PS\<db name>.

PeopleCode

Look for the trace file in % TEMP%\PS\db_name on
Microsoft Windows NT and in PS CFG_HOME
/log/\<db name> on UNIX and Linux systems.

Command line

Look for the trace file in the directory specified in the
Log/Output field in the PS_ SERVER_CFQG file.

PeopleSoft Process Scheduler

Look for the trace file in a subdirectory of the directory
specified in the Log/Output field in the
PS_SERVER _CFG file.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

When a program includes a process instance, Application Engine names the trace file according to this
convention: AE_Program name_ Process_Instance. AET. When a program does not include a process
instance, Application Engine names the file according to this convention: AE_Date/Time_Stamp OS
_PID.AET. The date and time stamp is in the format <month><day><hour><minute><second>, with two
values for each date element and no punctuation between the elements. For example, August 12 at 5:09 p.m.
and 30 seconds would be 0812170930.

Note. For an Application Engine program running on a server, PeopleTools writes the generic PeopleTools
trace for SQL and PeopleCode trace files to the same directories as the AET traces. The prefix of the trace file
name is also the same, and the suffix is t7c. On a Windows workstation, the system writes the trace to the file
specified in the People Tools Trace File field on the Trace tab of PeopleSoft Configuration Manager.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 157

Chapter 9

Using Temporary Tables

This chapter provides an overview of temporary tables and discusses how to:

» Create temporary table instances.
« Manage temporary table instances.
» Make external calls.

* View temporary table usage.

Understanding Temporary Tables

Because Application Engine programs run in batch mode, multiple instances of the same program often
execute in parallel. When this happens, the risk of data contention and deadlocks on tables is significant. To
avoid this risk, you can dedicate specific instances of temporary tables for each program run.

You can also use temporary tables to improve performance. For example, if you find that, multiple times
during a run the program accesses a small subset of rows from a much larger table, you can insert the
necessary rows into a temporary table as an initialization task. Then the program accesses the data residing in
the smaller temporary table rather than the large application table. This technique is similar to reading the
data into an array in memory, except that the data never leaves the database, which is an important
consideration when the program employs a set-based processing algorithm.

Any number of programs, not just Application Engine programs, can use temporary table definitions. When
you specify a temporary table on the Temp Tables tab in the Application Engine program properties,
Application Engine automatically manages the assignment of temporary table instances. When Application
Engine manages a dedicated temporary table instance, it controls the locking of the table before use and the
unlocking of the table after use.

Parallel Processing

Parallel processing is used when considerable amounts of data must be updated or processed within a limited
amount of time or a batch window. In most cases, parallel processing is more efficient in environments
containing multiple CPUs and partitioned data.

To use parallel processing, partition the data between multiple concurrent runs of a program, each with its
own dedicated version of a temporary table (for example, PS MYAPPLTMP). If you have a payroll batch
process, you could divide the employee data by last name. For example, employees with last names beginning
with A through M are inserted into PS_ MYAPPLTMP1; employees with last names beginning with N
through Z are inserted into PS MYAPPLTMP?2.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 159

Using Temporary Tables Chapter 9

160

To use two instances of a temporary table, you would define your program (for example, MYAPPL) to access
one of two dedicated temporary tables. One run would use A through M and the other N through Z.

The Application Engine program invokes logic to pick one of the available instances. After each program
instance is matched with an available temporary table instance, the %Table meta-SQL construct uses the
corresponding temporary table instance. Run control parameters passed to each instance of the MYAPPL
program enable it to identify which input rows belong to it, and each program instance inserts the rows from
the source table into its assigned temporary table instance using %Table. The following diagram illustrates
this process:

PS_MYAPPLTMP1
MYAPPL
I (250,000 Rows of Affected Data)
1
N PS_MYAPPLTMP2
MYAPPL
I {250,000 Rows of Affected Data)
2
— PS_MYAPPLTMP3
MYAPPL (250,000 Rows of Affected Data)
I3
— P5_MYAPPLTMP4
MYAPPL (250,000 Rows of Affected Data)
|
4

Multiple program instances running against multiple temporary table instances

No simple switch or check box enables you to turn parallel processing on and off. To implement parallel
processing, you must complete the following task. With each step, you must consider details about your
specific implementation.

—

Define and save temporary table records in Application Designer.

You do not need to run the SQL Build process at this point.

2. In Application Engine, assign temporary tables to Application Engine programs, and set the instance
counts dedicated for each program.
Employ the %Table meta-SQL construct so that Application Engine can resolve table references to the
assigned temporary table instance dynamically at runtime.

3. Set the number of total and online temporary table instances on the PeopleTools Options page.

4. Build temporary table records in Application Designer by running the SQL Build process.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

Creating Temporary Table Instances

This section provides an overview of temporary table instances and discusses how to:

* Define temporary tables.
» Set the number of temporary table instances.

+ Build table instances.

Understanding Temporary Table Instances

To run processes in parallel, you need to enable multiple instances of the same temporary table. You use the
PeopleTools Options page to set the number of temporary table instances for Application Engine processes
started online from the PeopleCode CallAppEngine function.

This global setting is separate from the instance count setting for a particular program. To use a temporary
table with a specific program, you assign the table to the program and set the number of instances created
when a particular program is run.

Key Fields for Temporary Tables

To take advantage of multiple instances of a temporary table, use the Temporary Table record type.

Insert the PROCESS INSTANCE field as a key on any temporary tables that you intend to use with
Application Engine. Application Engine expects Temporary Table records to contain the
PROCESS INSTANCE field.

Note. When all instances of a temporary table are in use and the Continue runtime option on the Program
Properties dialog box Temp Table tab is selected, PeopleTools inserts rows into the base table using
PROCESS INSTANCE as a key. If you do not include PROCESS INSTANCE as a key field in a temporary
table, select the Abort Temp Table tab runtime option.

Temporary Table Performance Considerations

When you run batch processes in parallel, there is a risk of data contention and deadlocks on temporary
tables. To avoid this, Application Engine has a feature that enables you to dedicate specific instances of
temporary tables for each process. When Application Engine manages a dedicated temporary table instance, it
controls the locking of the table before use and the unlocking of the table after use.

When you decide on the number of instances for temporary tables for a process, you must consider the
number of temporary tables that the process uses. The more instances you have, the more copies of the
temporary tables you will have in your system. For example, if a process uses 25 temporary tables and you
have 10 instances for a process, then you will have 250 temporary tables in your system.

On the other hand, if you are running a process in parallel and all of the dedicated temporary table instances
are in use, processing performance will be slower. Therefore, you will need to find a balance that works for
your organization.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 161

Using Temporary Tables Chapter 9

If you need more temporary table instances after you have entered production, you must rebuild all of your
temporary tables so that the database reflects the proper inventory of instances. While the build process runs,
users cannot access the database. Because of this, spend time deriving adequate estimates as to the number of
temporary tables required.

A physical table within the database, named PS_ AEONLINEINST, stores online temporary table instance
usage. If you notice performance issues related to online Application Engine program runs, enable the
Application Engine SQL and Timings trace.

If the following SQL command requires more time than normal to complete, then the number of online
temporary instances defined on the PeopleTools Options page is probably insufficient.

UPDATE PS_AEONLI NEI NST . ..

Defining Temporary Tables

To define a temporary table:

1.
2.

In Application Designer, select File, New.
Select Record from the New Definition dialog box.
Select Insert, Field, and insert the PROCESS INSTANCE field.

Select the Record Type tab and select the Temporary Table option.

Setting the Number of Temporary Table Instances

162

Select PeopleTools, Utilities, Administration, PeopleTools Options to access the PeopleTools Options page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using Temporary Tables

PeopleTools Options

Environment Long Hame:| Environment Short Hame: |
System Ty'pe:l LIndefined Database j
Language Settings
Language Code: English *Sort Order Option: | Binary Sorting j

™ Translations Change Last Update

Background Disconnect Interval: |3':' Temp Table Instances (Total): I_
r [Multi-Company QOrganization I_
W Multi-Currency Temp Table Instances (Online):
-) . -
¥ Use Business Unit in nVision *Maximum Message Size: 10.000 000
MV Use Secure Rep Rogstin nWision
: . FST
I~ Multiple Jobs Allowed Base Time Zone: Q
' Allow DB Optimizer Trace Last Help Context # Used: 100222
v
I Grant Access *Data Field Length Checking: [others]
¥ platform Compatibility Mode “Maxi Attach ¢ Chunk Si 28000
I~ Allows NT batch when CCSID<>37 Haximum Attachiment LAUNK size:
™ Save Erroris Fatal Upgrade Project Commit Limit; 50
™ SetFocus on Save Button *Enable Switch User: All -
*Case Insensitive Searching. |On - Case3ensitive Default Off ﬂ Max rows in search results
300
Style Sheet Name: IPSSTYLEDEF Q
Default rows in search results
Branding Application Package: |PT—ERANDING 200
Branding Application Class: |EIrann:IingElase

Tree Manager Options

[Use Tree Update Reservation

Max Tree Inactivity Period,min: 20

F1 Help URL: |htt|:|:h'|:|en|:|lehnDks.penpIesnﬂ.cnm:E?DDs‘F‘SOUptSEDthmsearch.htil
Ctrl-F1 Help URL: | —
VWSRP Display Mode | Display as Portlet ~|

Database Encryption Algorithm

Database Encryption Algorithm |

PeopleTools Options page

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 163

Using Temporary Tables Chapter 9

The system determines the total available number of temporary table instances for a base table according to
your settings for total and online instances on this page.

Temp TableInstances (Total) The difference between the total and online numbers is your EPM-

(temporary table instances managed tables. If you are not using PeopleSoft EPM, the total and online
[total]) numbers should be the same.

Temp Table Instances Enter the number of temporary table instances for Application Engine
(Online)(temporary table processes started online from the PeopleCode CallAppEngine function. In
instances [online]) general, the number you enter should be relatively small (less than 10) so

that extra instances do not affect performance.

Application Engine uses this value to identify a range of temporary tables
devoted to programs called by the CallAppEngine function. A randomizing
algorithm balances the load for the online process that is assigned to a
temporary table devoted to running the program online.

Building Table Instances

The system builds temporary table instances at the same time it builds a base table for the record
definition.When the system builds a table (as in Build, Current Object) and the record type is Temporary
Table, it determines the total number of instances of the temporary table based on the settings made on
PeopleTools Options page, and on the value of Instant Count, in Application Engine Program Properties,
Temp Tables tab in Application Designer.

When Instance Count is lowered and temporary tables are rebuilt, temporary table instances are dropped and
rebuilt. For instance, If the PeopleTools Option is set to 3 and Instance Count is 10 then there will be 14
tables in the System Catalog. If the Instance Count were lowered to 5 and tables are rebuilt ,14 tables would
still remain in the System Catalog. The last 5 tables TAO10, TAO11, TAO12, TAO13, TAO14,need to be
manually dropped to match what the Application Engine uses.

The system creates a maximum of 99 temporary table instances, even if the sum exceeds 99 for a particular
temporary table.

The naming convention for temporary table instances is: BaseTableName Number, where Number is a
number between 1 and 99, as in PS_TEST TMP23.

Note. You can take advantage of database-specific features such as table spaces and segmentation. For
instance, you may want to use the Build process to generate a data definition language (DDL) script and then
fine-tune the script before its execution, or you could place different sets of temporary tables on different
table spaces according to instance number.

Managing Temporary Table Instances

This section provides an overview of temporary table instance numbers and discusses how to:

» Assign temporary tables to programs.

* Adjust meta-SQL.

164 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

Understanding Temporary Table Instance Numbers

You use the Temp Tables tab in the Program Properties dialog box to manage the number of different batch
or dedicated temporary tables required for each program definition and the number of instances of each. You
select all the necessary temporary table records to meet the needs of your program logic.

Note. You must set the instance count on the Temp Tables tab before building the tables in Application
Designer.

Regardless of the instance counts value in the Application Engine program properties or on the PeopleTools
Options page, make sure that you have the appropriate records assigned to the appropriate programs. You also
need to ensure that the SQL inside your Application Engine program contains the correct usage of the %Table
construct.

The number of temporary table instances built for a specific temporary table record during the SQL Build
process is the value of the total temporary table instances from the PeopleTools Options page added to the
sum of all the instance count values specified on the Temp Table tab for the Application Engine programs
that use that temporary table.

For example, assume that you defined APPLTMPA as a temporary record type, the number of total temporary
table instances is set to 10, and APPLTMPA appears in the Temp Tables tab in the Program Properties dialog
box for two Application Engine programs. In one program, the instance count is set to 3, and in the other the
instance count is set to 2. When you run the SQL Build process, PeopleTools builds a total of 15 temporary
table instances for APPLTMPA.

The total and online instance counts should be equal unless your PeopleSoft application documentation
provides specific instructions for setting these values differently. When the values are equal, the Temp Table
Instances (Total) field controls the number of physical temporary table instances to be used by online
programs that Application Designer creates for a temporary table record definition. If the value for the Temp
Table Instances (Online) field is less than the value for the Temp Table Instances (Total) field, the difference
between the two numbers provides a pool of tables for backward compatibility for developers who took
advantage of the %Table (record name, instance_number) approach for manually managing temporary table
locking (such as in PeopleSoft EPM).

Assigning Temporary Tables to Programs

Open an Application Engine program in Application Designer. Select File, Definition Properties and then
select the Temp Tables tab.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 165

Using Temporary Tables Chapter 9

166

Program Properties m
General] State Records Temp Tables l.ﬂ.dvanced]

Cualify Search: Selected:
4 [GetList | | |
Fecaord List
AEEXT_Ta0

R untirme:

Instance Cont: |—1 I; nnn-s};.zrea:;ganheled:s canmnot
Share Tables in Orline Mode [f+ Continue
" Abort
Ok Cancel

Program Properties dialog box:Temp Tables tab

In the Record List box, include all the necessary temporary table records for this program.

In the Instance Count field, specify the number of copies of temporary tables for a program. Any time you
change the instance count, you should rebuild the temporary tables to ensure that the correct number of
instances is created and available for your programs.

Share Tables in Online Mode has to be selected if the online Application Engine program needs to share the
temporary table instances.

If an Application Engine program is currently sharing the temporary table instances , deselect the Share
Tables in Online Mode to make the program use dedicated temporary tables. With Share Tables in Online
Mode disabled, any temporary table instance can be accessed by only one online process at a time. In case no
temporary table instances are available for an online Application Engine process, the process has to wait until
one of the temporary table instance is released by other processes.

Note. The concept of dedicated temporary tables is isolated to the Application Engine program run. The
locking, truncate/delete from, and unlocking actions are designed to occur within the bounds of an
Application Engine program run. Therefore, the system does not keep a temporary table instance available
after the Application Engine program run is over.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Runtime Allocation of Temporary Tables

Using Temporary Tables

Online processes have their own set of dedicated temporary tables, defined globally on the PeopleTools
Options page. When you invoke a process online, PeopleTools randomly allocates a single temporary table
instance number to a program for all its dedicated temporary table needs. While the program runs, no other
program can use that instance number. Any other online process that happens to get the same instance value
waits for the first program to finish so that the instance number is unlocked.

In contrast, batch processes are allocated temporary table instances on a record-by-record basis. The system
begins with the lowest instance number available for each temporary table until all of the temporary table
instances are in use. If no temporary tables are available and you selected Continue for the If non-shared
Tables cannot be assigned group box, then the base table is used, with the process instance number as a key.

When a program ends normally or is cancelled with Process Monitor, the system automatically releases the

assigned instances.

Condition

Online

Batch

Temporary tables are allocated
using meta-SQL.

%Table(temp-tbl)

%Table(temp-tbl)

Temporary tables are allocated at
runtime.

Psae.exe randomly assigns an
instance number from the number
range on your online temporary
table setting on the PeopleTools
Options page. Psae.exe uses that
number for all tables for that
program run.

Individually allocates an instance
number based on availability on a
record-by-record basis. Psae.exe
begins with the lowest instance
number available for each
temporary table, until all of the
instances are in use.

No temporary tables are free.

For a particular record, if the
instance is currently in use and the
program is set to Continue, then the
psae.exe queues the program until
the assigned instance number
becomes free.

If the program is set to Continue,
the system uses a shared base table.

If the program is set to Abort, then
the system terminates the program.

Never queues for a table.

A temporary table is initially clear.

Yes, when program instance
becomes available.

Yes, when assigned.

An instance number is locked.

The lock is on when the program is
loading into memory.

The lock is on when the program is
loading into memory. For
restartable programs, the temporary
tables remain locked across restarts
until the program has completed
successfully or until the temporary
tables are manually released using
Process Monitor or the Manage
Abends page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

167

Using Temporary Tables

Chapter 9

Condition

Online

Batch

An instance number is unlocked.

Temp tables unlocked on
completion of program.

In the event of a kill or a crash, the
tables remain locked, and the tables
must be freed using Process
Monitor or the Manage Abends

page.

If restart is disabled, the temporary
tables are unassigned automatically
in the event of a controlled
abnormal termination.

If you cancel a process using
Process Monitor, PeopleTools frees
the temporary tables automatically.

When you use the Manage Abends
page, you must click the Temp
Tables button corresponding to the
correct process instance, and then
click the Release button on the
Temporary Tables tab of the
Application Engine program
properties.

Note. After you manually release the temporary tables from their locked state, you lose any option to restart

the program run.

Sharing Temporary Table Data

Dedicated temporary tables do not remain locked across process instances. If sequential Application Engine
programs need to share data by way of temporary tables, a parent Application Engine program should call the

programs that share data.

Adjusting Meta-SQL

A critical step in implementing parallel processing is to ensure that you have included appropriate meta-SQL
within the code that your Application Engine program runs.

168

Referencing Temporary Tables

To reference a dedicated temporary table, you must use:

%labl e(record)

You can reference any table with %Table, but only those records defined as temporary tables are replaced
with a dedicated instance table by Application Engine. When you are developing programs that take
advantage of %Table, choose temporary table indexes carefully. Depending on the use of the temporary table
in your program and your data profile, the system indexes may be sufficient. On the other hand, a custom
index may be needed instead, or perhaps no indexes are necessary at all. Consider these issues when
designing your application. You want to define indexes and SQL that perform well in most situations, but
individual programs or environments may require additional performance tuning during implementation.

Note. The default table name refers to PS_recname, where PS_recnamel,2,... represents the dedicated

temporary tables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

As Application Engine resolves any %Table, it checks an internal array to see if a temporary table instance
has already been chosen for the current record. If so, then Application Engine substitutes the chosen table
name. If not, as in when a record does not appear in the temp table list for the program, then Application
Engine uses the base table instance (PS_recname) by default. Regardless of whether %Table is in PeopleCode
SQL or in an Application Engine SQL Action, the program uses the same physical SQL table.

Populating a Temporary Table Process Instance with a Process Instance

All temporary tables should be keyed by process instance. If you use the Continue option when batch or
dedicated tables cannot be assigned, Process Instance is required as a key field. The current process instance
is automatically put into the state record, but when you insert rows into your temporary tables you must
supply that process instance. Use %ProcessInstance or %Bind(PROCESS INSTANCE) meta-SQL to return
the numeric (unquoted) process instance.

The process instance value is always zero for programs initiated with the CallAppEngine function because the
program called with CallAppEngine runs in process. That is, it runs within the same unit of work as the
component with which it is associated.

If you are using dedicated tables and have elected to continue if dedicated tables cannot be assigned, then
SQL references to dedicated temporary tables must include PROCESS INSTANCE in the Where clause.

Clearing Temporary Tables

You do not need to delete data from a temporary table manually. The temporary tables are truncated
automatically when they are assigned to your program. If a shared base table has been allocated because no
dedicated instances were available, then Application Engine performs a delete by process instance instead of
performing a truncate. In such a case, PROCESS INSTANCE is required as a high-level key.

You can perform additional deletes of temporary table results during the run, but you must include your own
SQL action that uses the %TruncateTable function. If the shared base table has been allocated because no
dedicated instances were available, then %TruncateTable is replaced with a delete by process instance instead
of a truncate.

Note. You should always use %TruncateTable to perform a mass delete on dedicated temporary tables,
especially if the Continue option is in effect.

Even if you elected to terminate the program if a dedicated table cannot be allocated, you may still use
%TruncateTable meta-SQL with dedicated temporary tables. % TruncateTable resolves to either a Truncate or
a Delete by process instance, as needed.

The argument of %TruncateTable is a table name instead of a record name. As a result, you must code your
SQL as shown in this example:

%l runcat eTabl e(% abl e(recnane))

Note. You should avoid hard-coded table names inside %TruncateTable because they preclude the possibility
of concurrent processing.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 169

Using Temporary Tables Chapter 9

Making External Calls

170

When you call one Application Engine program from another, the assignment of dedicated tables for the
called, or child, program occurs only if the calling, or parent, program is in a state where a commit can occur
immediately.

PeopleTools enables you to commit immediately so that Application Engine can commit the update it
performs to lock the temporary table instance. Otherwise, no other parallel process could perform any
assignments. In general, you should issue a commit just before the Call Section action.

While making external program calls, note that:

» If the situation is suitable for a commit, then the temporary table assignment and the appropriate truncates
occur.

» If the situation is not suitable for a commit and the called program is set to continue if dedicated tables
cannot be allocated, then the base tables are used instead and a delete by process instance is performed.

» If the situation is not suitable for a commit and the called program is set to terminate if dedicated tables
cannot be allocated, then the program run terminates.

This situation reflects an implementation flaw that you need to correct.
« The called Application Engine program is allowed to share temporary tables with the calling program.

Common temporary tables are the way you share data between the calling and called programs.
Application Engine locks only instances of temporary tables that have not already been used during the
current program run. Temporary tables that already have an assigned instance continue to use that
instance.

External Calls in Batch Mode

For batch runs, list in the program properties of the root program all of the temporary tables that any called
programs or sections use to ensure that the tables are locked sooner and as a single unit. This approach can
improve performance, and it ensures that all the tables required by the program are ready before a run starts.

External Calls in Online Mode

If the online program run is designed to use any temporary tables at any point during the CallAppEngine unit
of work, then the root program must have at least one temporary table specified in the Application Engine
program properties. This statement is true even if the root program does not use temporary tables. Having at
least one temporary table specified is required so that the system locks the instance number early so as to
avoid an instance assignment failure after the process has already started processing.

All temporary tables used by a specific program, library, or external section must be specified in that program
to ensure that the system issues truncates (deletes) for the tables being used.

If no temporary tables appear in the root program properties and if Application Engine encounters a %Table
reference for a temporary table record, then an error appears.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

Sample Implementation
The following scenario describes the runtime behavior of Application Engine and temporary tables.

Assume you have Program A and Program B and three temporary table definitions: PS TMPA, PS TMPB,
and PS_TMPC. Values on the Temporary Tables tab in the Program Properties dialog box for each program
are:

* Program A: PS_ TMPA and PS_TMPB are specified as the dedicated temporary tables, and the instance
count is 4.

» Program B: PS_TMPB and PS_TMPC are specified as the dedicated temporary tables, and the instance
count is 3.

After you run the SQL Build process in Application Designer, the following inventory of temporary tables
appears in the database.

For PS TMPA:
« PS TMPAI
« PS TMPA2
« PS TMPA3
« PS TMPA4
For PS_ TMPB:
« PS TMPBI
« PS TMPB2
« PS TMPB3
« PS TMPB4
« PS TMPBS
« PS TMPB6
« PS TMPB7
For PS_ TMPC:
« PS TMPCI1
« PS TMPC2
« PS TMPC3

Because the instance count for Program A is 4, the system builds four instances of PS_ TMPA and PS_ TMPB
for Program A to use. Because the instance count for Program B is 3, the system builds an additional three
instances of PS_ TMPB and three instances of PS_ TMPC for Program B to use.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 171

Using Temporary Tables Chapter 9

Notice that because Program A and Program B are sharing PS_ TMPB, seven instances were built. The system
derives this total by adding the instance count value from all the programs that share a particular temporary
table instance. In this case, the four from Program A and the three from Program B combine to require a total
of seven instances of PS_ TMPB to be built.

Given that this collection of temporary tables exists in your database, assume that you start Program A. At
runtime, Application Engine examines the list of temporary tables dedicated to Program A and assigns the
first available instances to Program A. Then, assuming that no other programs are running, Application
Engine assigns PS_ TMPAT1 and PS_TMPBI1 to Program A.

Suppose that shortly after you started Program A, another user starts Program B. Again, Application Engine
examines the list of temporary tables dedicated to Program B and assigns the first available instances. In this
scenario, Application Engine assigns PS TMPB2 and PS TMPCI1 to Program B. Because Program A is
already using PS_ TMPBI, the system assigns PS_ TMPB2 to Program B.

The system assigns records, such as TMPA, to programs. The base tables, such as PS TMPA, are also built,
by default, in addition to the dedicated temporary instances. If the Program Properties dialog box setting for
the Temp Tables tab is set to Continue when no instances are available, then the system uses the base table
instead of the dedicated instance.

Viewing Temporary Table Usage

This section discusses how to:

» View temporary table usage by record.
« View temporary table settings by program.
» View online instance usage.

* Resolve the temporary table usage warning message.

Viewing Temporary Table Usage by Record

172

Select PeopleTools, Application Engine, Review Temp Table Usage to access the Temp Table Usage by
Record page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using Temporary Tables

Temp Table Usage by Record Temp Table Settings by Program

Temp Table Usage by Record

Filter List by
Record (Table) I'-.Iame:| Q Program MName: Q

Lock Details

Record (Table) Hame ST AEE Total Instances Liie g View Programs
Count Instances Instances

AEEXT_TAD 1 Wiew Programs

PSMSFTMPCOM 1 10] 10 View Programs
PSMSFTMRIDS 1 10 0 10 View Programs
PEMSFTMPTEL 1 10 0 10 View Programs
PTPP_CPEFP_TNMF 1 1 0 1 View Programs
QE_AEEXT_TAD 1 5 0 5 View Programs
QE_AETEST_TAOQ 2 10 0 10 View Programs

Temp Table Usage by Record page

If you implemented temporary tables for parallel Application Engine program runs, use this page and the
Temp Table Usage by Program page to find out how the system allocates temporary tables to your programs.

Parallel processing is designed to be a performance enhancing option. However, if the demand for temporary
table instances consistently exceeds the current supply, performance suffers. Also, in other situations, your
inventory of temporary table instances may far outnumber demand. Here, you may consider reducing the
number of instances provided to conserve system resources.

This page shows you the following metrics for evaluating inventory and allocation of temporary tables.

Program Use Count Shows the instance count of the listed program.
Total Instances Shows the total number of existing instances of a temporary table.
L ocked Instances Shows the current number of instances that the system has locked for

program runs.

Unused I nstances Shows the current number of instances that are available for use.

Viewing Temporary Table Settings by Program

Select PeopleTools, Application Engine, Review Temporary Table Usage, Temp Table Settings by Program
to access the Temp Table Settings by Program page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 173

Using Temporary Tables

Chapter 9

Temp Table Usage by Record | Temp Table Settings by Program

Temp Table Settings by Program

AETESTEXT

PSMSFGENSEQ 10
PTPFP_CPPRC 1
QE_AERESTART 5
QE_AETESTEXT 5
QE_AETESTPRG 5

= =l Z = =
2 2 Z2 2 = =
= 2 2 =

Program Name Total Batch Abort |Dizable
Frogram Kame
Instances Only Flag Restart
5 I I

Filter List by
Refresh |

Record (Table) Name:| Q Program Hame: Q

Settings Details

View Records

View Records
View Records
View Records
View Records
View Records
View Records

Temp Table Settings by Program page

If the Application Engine process was started in Process Monitor, you can select PeopleTools, Application

Engine, Manage Abends to access the Manage Abends page and then the Process Monitor.

Viewing Online Instance Usage

Select PeopleTools, Application Engine, Review Online Instance Usage to access the Online Instance Usage

page.

Online Instance Usage |ResetCountstoo |
Locks Issued by Instance

Temp Table Instance Humber of Locks Issued

0]
1]
2]
3]
4]

Online Instance Usage page

Resolving the Temporary Table Usage Warning Message

If an Application Engine batch program is unable to get a dedicated temporary table because all instances are
locked, but it can use the base table, the system issues a warning. However, if the program is set to terminate
when a dedicated instance is not available, then the program terminates even if the base table can be used.

You could see the warning message in two ways:

174 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

« A warning message appears in the standard output of the process.

When running from the command prompt, the message appears in that window. When the program is
running on a server through PeopleSoft Process Scheduler, the output is sent to the standard status file,
which you can access using Process Monitor.

» A warning message appears in the AET trace file if a dedicated temporary table instance cannot be locked
because none is available.

This message appears in the trace file regardless of the trace settings you selected.

If you see the warning about base temporary table usage, then an insufficient number of temporary table
instances are defined or some locked instances must be released.

When a restartable process terminates abnormally, the temporary tables stay locked to enable a smooth
restart. However, if you do not want to restart the process, then you must release the locked temporary tables.
When you cancel the process using Process Monitor, the release of locked temporary tables occurs
automatically. If the process was not launched through PeopleSoft Process Scheduler, Process Monitor does
not track the process and you must use the Manage Abends page to release temporary tables used by
processes invoked outside of PeopleSoft Process Scheduler.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 175

Index

Symbols

%ListBind
using 95
%ResolveMetaSQL meta-SQL function 89, 98

A

action
Call Section 34
actions
Do Select 39
Do Until 39
Do When 38, 71
Do While 39
execution order 34, 61
inserting 35
setting properties 35
specifying call section 41
specifying Do 38
specifying log message 42
specifying PeopleCode 40
specifying SQL 37
specifying XSLT 43
understanding 6, 34
understanding call section 8
understanding Do 7
understanding implementation phase for
specifying 3
understanding log message 7
understanding PeopleCode 7
understanding SQL 7
active status 18
AESection class 66
APIs, calling PeopleTools 70
Application Designer 16
Application Engine 4, 5
caching the server 134
controlling abnormal terminations 132
enabling the Debugger 124
enabling traces 154
introducing See Application Engine
meta-SQL See Also meta-SQL, meta-SQL
PeopleCode See Also PeopleCode
programs
See Also Application Engine programs
requests 119
reusing SQL 48
set processing 50
specifying actions 3
understanding xi, 1, 5
understanding implementation 2
Application Engine, understanding
implementation phase for setting up properties
2
Application Engine program elements 6, 8
application engine programs
tracing 145
Application Engine programs

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

accessing properties 23
adding sections 28
AEDAEMONMGR 9
assigning temporary tables 165
calling from COBOL 137
calling PeopeTools APIs 70
copying/moving elements 21
creating, opening and renaming 19
creating process definitions 116
daemon 9
debugging 124
environment 63
executing manually via command line 116
executing online via PeopleCode 116
execution options 115
freeing locked temporary tables 135
including dynamic SQL 73
inserting actions 35
inserting sections 29
inserting steps 31
invoking via command line 121
invoking via PeopleCode 120
listing process definitions parameters 117
locating sections 29
making synchronous online calls to 66
managing 115
printing 19
restarting 129
running 115
setting action properties 35
setting advanced properties 26
setting commits 47
setting general properties 23
setting section properties 30
setting state record properties 23
setting step properties 32
shared values in COBOL programs 68
specifying actions 33
specifying temporary tables 25
starting parallel processing 10
starting via Process Request page 118
testing 21
tracing 145
transform 10
types 8
understanding 6, 11
using CommitWork 70
using PeopleCode 59
using PeopleCode (examples) 71
variables 60
viewing 11

application library 27

application servers
enabling traces in configuration files 155
running batch programs 116

arrays 73

B

BEA Tuxedo 116

177

Index

beginning 133
behavior 111

filtering section 17
bind variables 76
built-ins

peoplecode 147
bulk insert 36, 50
Bulk Insert statement 50

C

cache
setting parameters 135
caching 134
caching, Application Engine server 134
calls
batch/online mode 170
calling COBOL modules 67
calling PeopeTools APIs 70
calling programs from COBOL 137
calling programs via PeopleCode 120
calling sections in other programs 46
making external calls 170
making synchronous online calls to programs

specifying call section actions 41
understanding call section actions 8
using RemoteCall 69, 121
call section references, finding 29
COBOL 113
adding copybooks to COBOL programs 137
assigning copybook values 139
calling modules 67
calling programs 137
handling errors 143
transferring data between COBOL and
Application Engine programs 138
command line
executing manual programs 116
invoking programs 121
options 122
restarting programs 132
starting PSDAEMON 9
tracing programs 154
command line syntax 9
comments
show 13
commits
calling COBOL modules 69
making external calls 170
setting commit levels for sections 31
setting commit levels for steps 32
setting commits for programs 47
understanding restarts 40, 129
using the CommitWork function 70
using variables 60
Commit statements 50
CommitWork 70
component variables
peoplecode 61
Configuration Manager
enabling/disabling restart 134
enabling the Application Engine Debugger
124
setting trace options 155
considerations

178

no rows setting 48
Considerations
database 112
constructs
%BINARYSORT 75
%Bind 76
%Dateln 82
%DateTimeln 84
%EffDtCheck 85
Y%lInsertSelect 90
Y%lInsertSelectWithLongs 90
%Join 90
%Like 91
%LikeExact 91
%List 92
%ListBind 94
%ListEqual 95
%NoUpperCase 97
%NumToChar 98
%Select 102
%SelectInit 103
%SQL 104
%Table 106
Y%Test 106
Y%Textln 107
%TimeAdd 107
%Timeln 107
%TimeOut 108
%TruncateTable 109
%UpdateStats 110
Y%Upper 114
understanding 59
copybooks
adding to COBOL programs 137
assigning values 139
creating 11
creating new programs 19
custom 17

D

daemon program 9
database 153
database function 111
database record 61
databases
database optimizer trace 151
improving performance 55
DB2 0S/390
tracing 153
using %UpdateStats 112, 113
DB2 UNIX
tracing 153
using %UpdateStats 111
debugger 124
debugging
enabling the Application Engine Debugger
124
programs 124
setting 125
debugging options
setting up 4
default 17
definition 15
jump to 15
Definition Filter dialog box 16

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

filtering section 17
Definition view

using 12
disabling

Y%updatestats 113
Do actions 38
Do Until action 39

E

errors
abnormal terminations 132
AEDAEMONMGR 9
bad restarts 133
calling PeopeTools APIs 70
handling COBOL errors 143
responding at the step level 33
specifying log message actions 42
triggering an error status 65
using SQL trace 149

existing programs
opening 20

F

file class 67

filtering
set processing 54
views 16

flows
printing definitions 19
program flow pop-up menu 14
using program flow view 13

functions
%Abs 74
%Cast 78
%ClearCursor 78
%COALESCE 79
%DateAdd 82
%DateDiff 82
%DateOut 83
%DatePart 83
%DateTimeDiff 83
%DateTimeOut 84
%DecDiv 85
%DecMult 85
%DTTM 85
%Execute 86
%ExecuteEdits 87
%Mod 96
%Next 97
%Previous 97
%Round 101
%RoundCurrency 101
%Substring 105
%TimePart 108
%TrimSubstr 108
%Truncate 109
%TruncateTable 109
CallAppEngine 63, 66, 116, 120
CommitWork 70
Exit 65
math 72
RemoteCall 67, 121

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

understanding 59
fundamentals
Application Engine 5

G

get list 25
global variables
peoplecode 61

implementation phases, understanding
implementation 2
Informix
command line options 122
tracing 153
using %UpdateStats 112, 113
insert
section into project 13
instance count 26
instances 161

J

jump
program flow 13

L

local variables
peoplecode 61
location
cache directory 135
logging
specifying log message actions 42
understanding log message actions 7
Log Message action 42
look option
example 128

MAIN 6

market 18, 30

math functions 72

menus
Definition view popup menu 12
Program Flow view popup menu 14

message set 27

meta-SQL
adjusting for temporary tables 168
constructs, functions, and meta-variables 74
understanding 5, 59

meta-SQL functions
%ResolveMetaSQL 89, 98

meta-variables

179

Index

180

%AeProgram 74
%AeSection 75
%AeStep 75
%AsOfDate 75
%AsOfDateOvr 75
%Comma 79
%Concat 80
%CurrentDateln 80
%CurrentDateOut 80
%CurrentDateTimeln 81
%CurrentDateTimeOut 81
%CurrentTimeln 81
%CurrentTimeOut 81
%DateNull 83
%DateTimeNull 84
%PFirstRows 88
%Joblnstance 90
%LeftParen 91
%ProcessInstance 98
%ReturnCode 100
%RightParen 101
%RunControl 102
%Space 104
%SQLRows 105
%TimeNull 107
understanding 59
methods section 147
Microsoft SQL Server See MS SQL Server
modify option
example 128
MS SQL Server
tracing 152
using %UpdateStats 112

N

new programs
creating 20
numbering, sequence 72

O

Online Instance Usage page 174
online mode
external calls 170
online programs 116
On Return 40
opening existing programs 19
optimizer trace
performance 153
option 128, 129
options 125
debugging 4, 126
section filtering 17
Oracle
tracing 151
using %UpdateStats 111, 112
overview 1
overview of program types 8

P

parallel processing
adjusting meta-SQL 168
set processing 54
understanding 159
using PSDAEMON 10
PeopleCode 5
accessing state records 64
action execution order 61
AESection class 66
arrays 73
calling COBOL modules 67
deciding when to use 62
Do When actions 71
dynamic SQL 72
file class 67
invoking programs 120
making synchronous online calls 66
math functions 72
opening PeopleCode Editor 13, 14
PeopleCode sections in trace file 147
program environment 63
rowsets 72
sequence numbering 72
specifying actions 40
SQL class 73
understanding 60
understanding actions 7
using if/then logic 65
using in loops 65
using in programs (examples) 71
WINWORD 71
PeopleSoft Configuration Manager
See Configuration Manager
PeopleSoft Integration Broker 7
PeopleSoft Process Monitor See Process Monitor
PeopleSoft Process Scheduler
See Process Scheduler
PeopleTools APIs, calling 70
PeopleTools Options page 162
platforms
filtering views 18
set processing issues 57
setting section properties 30
using database optimizer trace 151
pop-up menus
Definition view 12
Program Flow view 14
printing program/flow definitions 19
Process & Definition page
definitions 116
Process Definition Options page
listing 117
Process Monitor
freeing locked temporary tables 135
locating program information 121
viewing batch timings 150
ProcessRequest 10
Process Request page
restarting programs 133
starting programs 118
process scheduler 116
Process Scheduler
enabling traces in configuration files 155
invoking BATTIMES.SQR 150
program execution options 115
restarting programs 133
running PSDAEMON 9
viewing batch timings 150

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

program
command line 132
Process Request page 133
program elements 6
program flow view
switching 15
Program Flow view 13
program flow views 15
program properties
called sections 42
setting 23
Program Properties dialog box 165
programs
renaming 20
programs, Application Engine
See Application Engine programs
program type 10, 28
program types 9
list of 8
properties
setting up See Application Engine
property
do select type 39
dynamic 41
no rows 37
program ID 41
section name 41
PSDAEMON 9
ptpecobl program 67

Q

qualify search 25

R

record list 25
refreshing views 16
refresh views
reordering definition objects 13, 15
renaming programs 19
restart
using 130
Restartable option 48
restarting 9
restarting program
bad restart error 133
enabling/disabling 134
program-level 130
section-level 131
starting programs from the beginning 133
understanding 132
restart program
understanding 129
ReUse 36, 49
rowsets 72
Run Request dialog box 21
runtime 26, 167

S

section 148

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

insert 13
section name 30
sections
execution order 28
finding 30
inserting 29
locating 29
section-level restarts 131
setting properties 30
understanding 6, 28
section type 31
sequence numbering 72
set processing
avoiding row-by-row processing 53
examples 54
planning 51
platform issues 57
understanding 50
using 51
share tables 26
Show All Comments 14
SQL 5
expertise 51
including dynamic SQL 73
meta-SQL See Also meta-SQL
MS SQL Server See Also MS SQL Server
opening SQL Editor 13, 14
reusing statements 48
set processing 50
setting the ReUse Statement property 36
specifying actions 37
trace file SQL counts section 146
tracing 149
understanding actions 7
understanding dynamic 72
using bulk insert 50
using the SQL class 73
validating meta-SQL constructs 74
SQL editor 13
SQR 6, 45
starting 10
starting a daemon program
procedure 9
statement
perform 7
select 7
state records
accessing with PeopleCode 64
called programs 42
choosing record types 47
setting properties 23
sharing 46
understanding 8, 45
step/action
insert 13
steps
inserting 31
setting properties 32
step-level restarts 131
tracing 149
understanding 6, 31
subqueries 55
Sybase
command line options 122
using %UpdateStats 111
syntax and parameters 68

Index

181

Index

182

T

tables
Process Request page 119

set processing for denormalized tables 52

temporary See Also temporary tables
techniques
avoiding 54
temporary table
instances 3
performance 161
temporary table instances
creating 3
temporary tables 25
adjusting meta-SQL 168
allocating runtime 167
assigning to programs 165
building instances 164
calling other programs 170
clearing 169
creating instances 161
defining 162

external calls in batch/online mode 170

flattening 54
freeing locked 135
improving database performance 55
key fields 161
keying by process instance 169
managing instances 164
referencing 168
resolving the usage warning 174
set processing 52
setting the number of instances 162
sharing data 168
understanding 159
understanding instance numbers 165
understanding instances 161
using 159
viewing online instance usage 174
viewing settings by program 173
viewing settings by record 172
viewing usage 172

terminations 132

testing programs 21

timings trace 149

tips
debugging 126

trace file
sections 146

trace files 156

trace results
understanding 145

tracing
Application Engine programs 145
database optimizer 151
DB2 153
enabling 4

enabling Application Engine traces 154

environment information 148
Informix 153

locating files 156

MS SQL Server 152

Oracle 151

PeopleCode actions, built-ins and methods

147
program steps 149
setting command line options 154

setting options in Configuration Manager

155

setting parameters in configuration files 155

SQL 149
SQL counts and timings 146
statement timings 149
summary data 148
transforming program 10
Tuxedo 116
two-pass approach
using 54

U

understanding 115

set processing 51

state records 45
understanding actions 7
understanding fundamentals 5
understanding tracing 145
UNIX 153
using 114

%UpdateStats 113

\'

variables
Application Engine program 60
defining global 64

meta-variables See Also meta-variables

setting the cache directory 135
view
menu 15
tabs 15
view contents
filtering 16
views
Definition 12
filtering 16
Program Flow 13
refreshing 16
switching between 15

W

watch option
example 129
work record 61

X

XSLT
specifying actions 43
viewing 13

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

	PeopleTools 8.52: Application Engine
	Copyright
	Contents
	Preface: Oracle's PeopleSoft Application Engine Preface
	Application Engine
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started With Application Engine
	PeopleSoft Enterprise Application Engine Overview
	PeopleSoft Enterprise Application Engine Implementation

	Chapter 2: Understanding Application Engine
	Application Engine Fundamentals
	Meta-SQL
	Application Engine Program Elements
	Sections
	Steps
	Actions
	State Records

	Application Engine Program Types
	Application Engine Program Types
	Daemon Program Type
	Transform Program Type

	Chapter 3: Creating Application Engine Programs
	Viewing Application Engine Programs
	Using Definition View
	Using Program Flow View
	Switching Between Definition and Program Flow Views
	Using the Refresh Option

	Filtering View Contents
	Printing Program and Flow Definitions
	Creating, Opening, and Renaming Programs
	Creating New Programs
	Opening Existing Programs
	Renaming Programs

	Copying or Moving Program Elements
	Testing Application Engine Programs
	Setting Program Properties
	Accessing Properties
	Setting General Properties
	Setting State Record Properties
	Specifying Temporary Tables
	Setting Advanced Properties

	Adding Sections
	Understanding Sections
	Inserting Sections
	Locating Sections
	Setting Section Properties

	Adding Steps
	Inserting Steps
	Setting Up Step Properties

	Specifying Actions
	Understanding Actions
	Inserting Actions
	Setting Action Properties
	Specifying SQL Actions
	Specifying Do Actions
	Specifying PeopleCode Actions
	Specifying Call Section Actions
	Specifying Log Message Actions
	Specifying XSLT Actions

	Chapter 4: Developing Efficient Programs
	Using State Records
	Understanding State Records
	Sharing State Records
	Choosing a Record Type for State Records

	Setting Commits
	Reusing Statements
	Using the Bulk Insert Feature
	Using Set Processing
	Understanding Set Processing
	Using Set Processing Effectively
	Avoiding Row-by-Row Processing
	Using Set Processing Examples

	Chapter 5: Using Meta-SQL and PeopleCode
	Understanding Application Engine Meta-SQL
	Using PeopleCode in Application Engine Programs
	Understanding PeopleCode and Application Engine Programs
	Deciding When to Use PeopleCode
	Considering the Program Environment
	Accessing State Records with PeopleCode
	Using If/Then Logic
	Using PeopleCode in Loops
	Using the AESection Class
	Making Synchronous Online Calls to Application Engine Programs
	Using the File Class
	Calling COBOL Modules
	Calling PeopleTools APIs
	Using the CommitWork Function
	Calling WINWORD Mail Merge
	Using PeopleCode Examples

	Including Dynamic SQL

	Chapter 6: Managing Application Engine Programs
	Running Application Engine Programs
	Understanding Program Run Options
	Creating Process Definitions
	Listing Process Definition Parameters
	Starting Programs with the Application Engine Process Request Page
	Using PeopleCode to Invoke Application Engine Programs
	Using the Command Line to Invoke Application Engine Programs

	Debugging Application Engine Programs
	Enabling the Application Engine Debugger
	Setting Debugging Options

	Restarting Application Engine Programs
	Understanding Restart
	Determining When to Use Restart
	Controlling Abnormal Terminations
	Restarting Application Engine Programs
	Starting Application Engine Programs from the Beginning
	Enabling and Disabling Restart

	Caching the Application Engine Server
	Freeing Locked Temporary Tables

	Chapter 7: Calling Application Engine Programs from COBOL
	Adding Copybooks to COBOL Programs
	Assigning Copybook Values
	Handling COBOL Errors

	Chapter 8: Tracing Application Engine Programs
	Understanding Tracing Application Engine Programs
	Understanding Trace Results
	Trace File Sections
	Step Traces
	SQL Traces
	Statement Timings Traces
	Database Optimizer Traces

	Enabling Application Engine Tracing
	Setting Command Line Options
	Setting Parameters in Server Configuration Files
	Setting Options in PeopleSoft Configuration Manager

	Locating Trace Files

	Chapter 9: Using Temporary Tables
	Understanding Temporary Tables
	Creating Temporary Table Instances
	Understanding Temporary Table Instances
	Defining Temporary Tables
	Setting the Number of Temporary Table Instances
	Building Table Instances

	Managing Temporary Table Instances
	Understanding Temporary Table Instance Numbers
	Assigning Temporary Tables to Programs
	Adjusting Meta-SQL

	Making External Calls
	Viewing Temporary Table Usage
	Viewing Temporary Table Usage by Record
	Viewing Temporary Table Settings by Program
	Viewing Online Instance Usage
	Resolving the Temporary Table Usage Warning Message

	Index

