ORACLE’
PEOPLESOFT ENTERPRISE

Oracle's PeopleTools PeopleBook

PeopleTools 8.52: PeopleSoft Component
Interfaces

October 2011

ORACLE

PeopleTools 8.52: PeopleSoft Component Interfaces
SKU pt8.52tcpi-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
PeopleSoft Component INLerfaceS Preface ... iX
PeopleSoft Component INTETTACES cceiriiiriieiieieieee ettt et ettt et ettt et e b e eteeseenneens ix
PeopleBooks and the PeopleSoft Online LiDIarycccocveevieviieviiiciieiieieeie et esveesreeveeveeveeveeseens ix
Chapter 1
Getting Started with PeopleSoft Component INtErfacesccccvvvieceviieciece e 1
OVEIVIEW ittt ettt ettt et e bt e a et e bt e bt e st et e e bt em e et et e ebeem e et e eh e e st emt e bt estenseaeeebeemtenteebeentensenseeneeneenes 1
Implementing PeopleSoft Component INtErfacesocceeriiriiiiinienierie ettt 1
Implementing the Excel to Component Interfaces UtIlitycccccooveevierierienieniereeceeeeeeeere e 2
Chapter 2
Understanding Component INEErfACEScceiiiieie ittt 3
Understanding Component INEITACESccvecierieriieriieriiesieseeieeieeie e este et e e seesseesbeesseesseesseesseesseenseessennns 3
Component INterface ATCRItECTUIE c.iocuiiiiieiiie ettt ettt b et e bt e bt e seeesaeesbeesaeenaeas 3
Component INtErface ALIIDULEScceeiiiiiieiieiiciiece ettt e te e te e e et eesteesteesteesbsestsesssessaesseesssesssesssasns 4
INGITIE ettt bt e st b et s bt s bt e s bt e s bt e e bt e s bt e s be e sb e e sbe e e bt e b e e be e e b e e sbeesbeesbeenbeene 4
By ettt et e a e e a e st e e bt e e b e e bt e e b bt e e bt e s bt e e ba e e bt e e bt e e sabee s beeebeeeabae 4
o 40 0)S] TS S 4
COIIECLIONS ..ttt bttt b e bt ettt e bt e st et e st e e bt et e b e she e st et e bt esteneenbeebeemtentesaeemeentenbens 5
1Y 31110 T USSR 5
Component Interface Definitions and VIEWScccccevieiiiiieiieriesieeseeseeseesee et sree e saesraesreeseeessnessnesenas 5
Chapter 3
Developing COMPONENt INTEINTACESocuiiiiiirieiie ettt sb et ene s 9
Creating Component Interface DefiNItionNScccceviierierierieniertese ettt et eeeenseeseeaseennes 9
Understanding Creating Component Interface Definitionscccoevevieriieeciieeiieiiie e 9
Creating New Component INTEITACEScccveviirieriiiieiiesie ettt sa e eeseae st esenesenesenessnas 10
Naming Component Interface DefINItiONS cccecveririiiiirinieienereeeese sttt 12
Associating Component Interfaces With MENUScccocciieiiiiiiiiiiiiieie et e eaee e ens 12

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

Determining the Fields to Expose in Component Interfacescccoveiviiiriiiniiniiinenieee e 14
USINE KOYS oiiiiiieitiieitit ettt ee ettt ettt et e et e e st e e s abeeesteeesseeessseessaeasseeasseeassaeassseassseesssaessseeanseeasseeenssaenssasasseennses 14
UNAEerstanding KEYSeccivevierieiieiieiieieeie et et et et et ebeestesebessseessessseasseassesssesssesssesssesssesssesssesssessses 14
Adding and Deleting KEYS ...oocuieiiiiiieieee ettt ettt ettt ettt eneas 16
SELHNG PTOPETEIES ...vviiieiieiiieeiie ettt ettt et e ettt esteeebeessteeesteeesteeessseessseessseessseesssaeasssesssseessseessseesssessnsessssessnseeans 16
Understanding Standard PrOPETLIEScccecveiieiiieiieiieie ettt ete et eteeseeseeteeseeseenseensaensees 16
Creating User-Defined PrOPEItiEsccccoiieiiiiiiiieiiei ettt sttt st sttt e s 27
Deleting User-Defined Propertiescccvcvieviieciieiieiicie e cie s eereeve e saesvessneseresssesenesenesenessnessnessnas 28
Renaming User-Defined ProPerti€s ccoecieciieiiiiiiieieeie ettt ettt ettt enseenseense s 28
Creating Reference PrOPEItIESc.ccciiiiiiiiiiiiiiie e ette ettt ettt st e etae e ta e e tbe e sbeesssaeenbeeenseeennns 29
Making Properties Read-Onlyccccooiioiieiiiiiiiiieeeie ettt ete et ere b e e e esbeesseessaesseessaesseenns 31
Working With COIECHIONS c.iiuiiiiiiitieieereet ettt sttt sttt s b e st besbe bt e e e b 31
WOTKING With METROAS ..oeviieiiiiiiiieiieeeecee et ettt e et e e et e et eeteeestbeessbeessbeesssaassseesssaeessseensseenes 32
Understanding Session Functions and Methodsccccvecvieviiinieniieniiciieeeeee e ene e 32
Understanding Standard Methods —.......cc.ooiiiiiiiiiiiiecete et 33
Understanding Collection MEthOAS oocuiiiiiiiiiiciiieciee ettt ettt ettt e eteeeeveessbaeseveeesseaens 37
Enabling and Disabling Standard Methodscccecveviiiciiiciiiiciecie ettt ens 41
Creating User-Defined Methods —......c..coeiiiiiiiiiiiie sttt s 42
Exporting User-Defined MEthOdScccuiiiiiiiiieiiiecieee ettt e seae e ssbaeesneeenes 44
Validating Component INTETTACES ccceeviiiiiiiriiiiiiriirie ettt se et e e se e saessaessa e seesseessaenseas 44
SEttiNG SECULILY OPLIONS .eeeiieiieiieiieite et et et et et et et ebe e bt e bt e teete e teeseeabeenseenseenteenseenseenseeseenseeseenseans 45
Testing Component INTEITACES veiiiiiieiii ettt et e e e e s e e et e estae e sbeessseessseesssaeanseeessneenssens 46
Searching Component INterfaces t0 TSt ...c.cccevcieriiiriieiiierierierierte et see et e e sreesreesseesseessnesseessaens 46
Testing Component INEEITACEScccuiiiiiiiiiiiie ettt et ettt ettt eeabeeeeeaeas 49
Determining [temByKeys PArametersccccocveviieviieriieiiieieecie ettt eve v esre b ere v enns 52
Understanding SYNCRIONIZAIONcccveciieiiiiiiiiesieeieete et eteetestestesrestesbessaessaesssesssesssesssesssesssesssenssennns 53
Writing Component INterface Programscoceoiiiiiiiiiiieieeteeee ettt 54
Understanding Runtime CONSIAETAtIONS c..ccveevvievieeiiieirietiaieeteetesseeressesssesssesssesssesssesssesssesssesssssssesssensns 55
General CONSIACTATIONS eeoiertirtieieieeteei ettt ettt ettt a et b e e bt et e st e eb et e te s bt ebtenbe bt sbe et eseebeeneenees 55
SCOPE CONTIICES woiieiiieiii ettt e et e et e et e et e e sebeeesbeeesbeeessaeessseessseessseesssaeassaeensseessseessseennsens 55
3 1o ALY (G (USSR 56
Chapter 4
Programming Component I nterfaces Using PeopleCode ... 57
Understanding PeopleCode Behavior and LImitationsc.ccccceceveririenenienenteieseseeteiesieee e 57
PeopleCode Event and Function Behaviorccccoooiiiiiiiiii et 57
CopyRowset Language Considerationscoocceciereririerieneseeiereseseeete et ettt e e eesaeeees 59
Limitations of Client-Only PeopleCodecccccoviiriiiiiiieieeeeeteeeteee ettt 59
Generating PeopleCode Templates to Access Component Interfacescocevveiviinieniinieniieniieniecieene 59
Understanding PeopleCode TEeMPIAtES c.cceiuiiiiriiiieieiereet ettt ettt ettt eae e 61

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 5
Programming Component I NtErfaceSiN JAVAccooecriririnenieeeie ettt sne e 63
Building APIS 1N JAVA ..eoiiiiiieiee ettt et et ettt ettt et e e be bt et e te e te e teebeebeereentean 63
Setting Up the Java ENVITONMENT c.cccviiiiiiiiiieie ettt ete et e ere e stveeaesavestvestvessbesssessseesnessnesssesenas 64
Generating Java Runtime Code TemPLatesccccccoveiiririiieiiierierienierteseeseesteesneseeesseesseesseesseesseesseesseessees 65
Understanding the Java TemPlatecccoociiiiiiiiiiiieee ettt sbe ettt e e e e ees 66
Chapter 6
Programming Component INterfaceSin CH4 ..o sre e s sre e reenreas 71
BUilding APIS fOr C oottt e et e et e e sttt e s saeesabeeesteeessbeessseesssaesssaeasseesnsaeensseensseensses 71
Setting Up the C++ ENVIFONIMENT oceiiiiiiiiiiriiiieeeeseeeieete e etestestesaessesnsesssesssesssesssesssesssesssenssesssennns 72
Setting Up Client Machines to Access CH+ APIS ..ottt 72
Configuring Compilers for CH+ PrOJECIS ...coviivviiiiiiiieiiieieeeeese ettt eb e v b e ereebeesre e 72
Generating C++ Runtime Code TemPIatescccccevierierieiieiie et see e e e seaestaesseessaesseesens 73
Understanding the CH+ TempPlatecocooiiiiiiiiiieeeeeee ettt et et sb e bbb e 75
Chapter 7
Programming Component Interfacesin COMciiiiii e e e 79
Understanding Programming Interfaces in COMcccocviiiiiiiiiie ittt sre v sereseaeseve e 79
Building APIS fOr COM ...ttt ettt ettt ettt et et e st e satessbessseesseesseessessseanseansessseessesnsennsennns 79
Setting Up the COM ENVITONIMENT oouiiiiiiiiiiiiieie ettt ettt ettt st st e eate et e saeesateeateeatesaeeeneas 80
Generating Visual Basic Runtime Code TemPIatescccocvieiieiiieriierieriesie e seeseeseeeseresesesenesenens 82
Understanding Visual Basic TeMPLAtescccccerierieriierieniieniesiesierteseeseesteseeseeseee s e seeesseesseesseesseessnens 83
Chapter 8
Using the Component I nterface Software Development Kit ... 87
Understanding the Component Interface SDK ..ot 87
Component Interface SDK SAmMPIES ocviiiiiiiiiiicieciciece et ssbe s aessbesebeeenas 87
Prerequisites for Using the Component Interface SDK ccoociiiiiiiiiiiiiieiieeeeeee e 88
Using the SDK. BUS EXPENSES TeSt PAZEccviiiiiiiiiiciiieiee ettt evee et vaeeseve e vaeeavee s 88
Testing the SDK_BUS EXP Component INterfaceccccevierieriieniieniinieriesee sttt sne e 89
Using the Component Interface SDK Sample in Java and C+ + ..o 89
Understanding using the Component Interface SDK Samples in Java and C++ccccveeiiieiieeneenen. 89
Building the Component Interface SDK Sample (JAVA) ...coccvvvieeiiieiiieiiciecieee et 89

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Contents

vi

Building the Component Interface Sample (CH+) ..oooiiiiiiiiiiieeee e 89
Running the Component Interface SDK Sample in Java and CH+ccooevieviiiiiiiiiieceeeeeeeeee 90
Interpreting the Code for the Component Interface SDK Sample (Java)c.ccooceviriivenininienenencnen. 90
Interpreting the Code for the Component Interface SDK Sample (CH+) ..oocveviininiiicninciiicncneen 92
Using the Component Interface SDK COM EXcel Sample ccoccveviiiiiiiiiiicie e 93
Running the Component Interface SDK COM Excel Sampleccoccvvvierviieciieiiiiinieeie e 94
Understanding the Component Interface SDK COM Excel Sample Codeccocceeveeiienienieneenieanen. 95
Using the Component Interface SDK COM ASP Sample cccocovveeiieiiiiiiieieieeeereee et ve e 96
Running the Component Interface SDK COM ASP Samplecccoovieviiiiieniieieieeeeeeeeeeeeeeen 96
Understanding the Component Interface SDK COM ASP Sample Codeccoeveeviieciiieciiecieeeiee e, 98
Chapter 9
Using the Excel-to-Component Interface ULIlIYooecoeiiiiecee et 105
Understanding the Excel-to-Component Interface ULtycccocvevieriieviieciiiiieiece e eve e 105
Prerequisites for Using the EXcel to CL ULIIILY ...ccovoiiviiiieiieeieriecie et 106
Understanding Building Component Interfaces for the Excel to Component Interface Utility 106
Testing Component INTEITACESccvevcierieriirieiiesiestes ettt et e ste et e e e s reesreesta e seesseesseessaesseenns 107
Performance EXPeCtations coceieiieiiniinirieereni ettt sttt 107
PeopleCode Behavior and Limitationsccceeeciieiiieriieeciieeiiieeiee e esveesreesveesreeeseeeeneeseseessseessvens 107
Default PrOPETTIES ..icvieiieiieiiciieie ettt ettt ettt et e st e st e st e st e ssbessaessaessaesssesssesssesssesssesssesssesssensensseens 108
Running the Excel to Component Interface ULtycccoceiiiiiiiniiiiniiieeeeeteee e 108
Granting Access to the WEBLIB. SOAPTOCIL ISCIIPt ..vvieiiieeiieciieeiieeee et e 109
Enabling the Developer Menu in Microsoft Excel 2007 and Later Versionscccccoceeevevenceneennene 109
Enabling Macros in Microsoft EXCElccciiiiiiiiiiiiieeeetee ettt 110
Starting the Excel to Component Interface ULIILYccoeiiviiiiiiiiiiiiiiiecic e 110
Converting Excel to Component Interface Utility Templates to the Current Excel Version 110
Viewing the Excel to Component Interface Coversheetcoccovieriieniiniieniieniiereeeereeceeeeeiene 111
Setting Up Connection INTOrmMAationcccecviiiiiieiiieiiieeieeieeete et sreesaeesteeesbeesaeeesseeessaeesseesssessnsenns 111
Entering Connection INfOrmationccocceevieiieiienieriecee ettt se et esreesreesseesseenes 112
Translations and Multilingual SUPPOTITcoiuiiiiiiiie ettt 115
Connecting to the Database to Create a Template and Submit Dataccccceeeeierciieciinieneenie e 115
Creating TEMPIAES ...c.icvieriieriieeieieieere et ettt et et et e s bt e s st e teesseesseenseeseesseesseenseenseessaesseesseeseesesnseensenns 116
Understanding the Template Actions TOOIDArc.ccciiiiiiiiiiiiiie e 118
Entering Data into the TEMPIAtecccccveviieriiiriieiieiieieee ettt reesre et et e esreebeesbeeseesseesseesseessens 120
Entering Data on the Data Input ShEeetccooviiiiiiiiicieeeee ettt ere e eneeeas 121
Using the Data INPUL SHEETooiiiiiiiicie e et be e b e e e b e e ebeeeseseesaseenenas 121
Viewing the Staged DAtcccccciiiieiieiieieeetee ettt ettt et eebe e e e s e esse e b e esbeesseesseesseesseenseenseasseans 123
Correcting and Resubmitting Dataccccoeeiiiiiiiiiiiieieneteeee ettt 124
Creating SOAP/XIML REQUESES cccviiiiiieeiieeiieesieesteesteesteeeteeeteeeteeesaeesaeessseessseesssaasssessnsesesssesssseensses 125
REQUEST FOTMAL ..eviiiiiieiie ettt ettt e et e et e st e et eeesseeesaseessseesnseesnsaesnsaeenseeeseenns 125
Sample Create REQUESToouiiiiiiiiiiieeeee ettt sttt sttt s be et e bt eaees 125
SAMPIE GOt REGUEST ...oiiiiiieiiieieee et et ste s e e st e e s beeesbeeestae e sbeessseessseessseeansaeensseeseen 126

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Sample Update REQUESTcvieiieiieieeie ettt ettt ettt ettt ettt e teeteesbeesbe e beebeenseeseenne 126
Sample Updatedata REQUESEc.ocviiiieiiiiiecii ittt ettt aeeta e s tae s eresebestbesaaestnestaesesansnenenas 126
SENAING REQUESES ...evieiiieiiiieiie ettt ettt e st e st estae st e sssessteseaessaesssesssesssesssesssesssesssesssesnsesssens 127
RECEIVING RESPONSES ..ottt ettt ettt e at e et e et e et e enteenteeatesnteeateeaseeneas 127
Viewing a Response if @ ROW Already EXIStScccciiiiiiiieiiieiieiiecicsieseeree ettt 127
Viewing a Sample Get Request and RESPONSEcceevviiiiieiiiniieniieieiestesee et 128
Diagnosing and ResOIVING EITOTS coouiiiiiiiiiiiiieee ettt st st st s 129
VIEWING LOZ FIIES ooiciiiiiiiiicie ettt e st e b e s estb e s tbessbestbessaessbesssesssessaessaessnensns 129
Resolving Error Messages for Client ENVIronmentscccocceeveeieeneeneesieneenieesieeseesieeseesieesseenseens 129
Appendix A
Creating Component Interface-Based SErVICES ... 131
Understanding Generating Component Interfaced-Based Servicesccoccvviriiiiiiiieiiiiiniieieee e 131
Appendix B
Using Servicesto Validate Prompt Tableand Tranglate Field Valuesccccooeceveieiiciece e, 133
Understanding Validating Prompt Table and Translate Field Valuesccccvvveviivienienienienieeeeeen, 133
Prerequisites for Validating Prompt Table and Translate Field Valuesccccocevevininiinininieniicneene 134
Validating Prompt Table Field ValUEScccociiiiiiiiiiiiieeecee ettt e 134
Understanding Validating Set Control FIeldSc.ccooeivieiiiiriiiiieiiecieceeceere et 134
Using the PTLOOKUPPROMPT Service OPErationccceceeeveriereeneereeseesiesseeseesseeseesseesseesseennes 134
Validating Translate (XLAT) Field ValUEScccoeeoiiiiiiiiieciie ettt eve e e e sve e 135
Understanding Translate (XLAT) Table ENtrIESccccciveeiiriiiiiiiiriie ettt see e e eeseaesseesnee s 135
Understanding Security When Validating Translate (XLAT) Field Valuesccccocvvvvenininnnencne. 136
Using the PTLOOKUPXLAT Service OPErationccceeceeeeieerveesirierieenreeesseessseeesseeessseessseessesssnes 136
Using Messages to Request Valid Prompt Field and Translate (XLAT) Field Valuesc..cccoeoeveneeneen. 136
Using Response Messages to Retrieve Valid Prompt Field and Translate (XLAT) Field Values 138
Examples: Validating Prompt Field and Translate (XLAT) Field Valuescccccoceiiiiiiniiiiiniiniciicees 139
Example 1: Validating a Translate (XLAT) Fieldcccccooviiiiienienieneeteeeseeeeeee e 139
Example 2: Performing a Prompt Table Lookup with a Field Value Wildcardc..ccoceeviinininnienn. 140
Example 3: Filtering Field Values by Name/Value Pairscccccoceeeiiviiiviiiiieciecie e 142
Example 4: Specifying Set Control Field Values to Validate Field Values Controlled by Set Control
23 1<) U TSRS 144
Example 5: Specifying Set Control ID Values to Validate Field Values Controlled by Set ID Values .
145
0o [PSPPSR 147

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

PeopleSoft Component Interfaces Preface

This book describes PeopleSoft component interfaces. It is written for programmers who will be accessing

PeopleSoft components, usually using external systems.

PeopleSoft Component Interfaces

A PeopleSoft component interface is a PeopleTools definition that you create in PeopleSoft Application

Designer. It enables synchronous access to a PeopleSoft component from another application.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your

Understanding the PeopleSoft online library and related documentation.
How to send PeopleSoft documentation comments and suggestions to Oracle.

How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

Understanding PeopleBook structure.

Typographical conventions and visual cues used in PeopleBooks.

ISO country codes and currency codes.

PeopleBooks that are common across multiple applications.

Common elements used in PeopleBooks.

Navigating the PeopleBooks interface and searching the PeopleSoft online library.
Displaying and printing screen shots and graphics in PeopleBooks.

How to manage the locally installed PeopleSoft online library, including web site folders.

Understanding documentation integration and how to integrate customized documentation into the library.

Application abbreviations found in application fields.

PeopleTools release.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started with PeopleSoft
Component Interfaces

This chapter provides an overview of PeopleSoft component interfaces and discusses how to implement them.

Overview

A component interface is a set of application programming interfaces (APIs) that you can use to access and
modify PeopleSoft database information programmatically. PeopleSoft component interfaces expose a
PeopleSoft component (a set of pages grouped for a business purpose) for synchronous access from another
application (PeopleCode, Java, C/C++, or Component Object Model [COM]). A PeopleCode program or an
external program (Java, C/C++, or COM) can view, enter, manipulate, and access PeopleSoft component
data, business logic, and functionality. Additionally, you can use the Component Interface Tester to check the
validity of your component interface and the Excel to Component Interface Utility to manage your data.

Component interfaces are created in PeopleSoft Application Designer, so you should ensure that you are
familiar with PeopleTools and Application Designer.

See PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide.

This section provides information to consider before you begin to use PeopleSoft component interfaces. In
addition to implementation considerations presented in this section, take advantage of all PeopleSoft sources
of information, including the installation guides, release notes, and PeopleBooks.

Implementing PeopleSoft Component Interfaces

PeopleSoft PeopleTools include the functionality to create component interfaces for your applications.
Complete the following tasks before you begin creating component interfaces for your implementation:
« Install your Application according to the installation guide for your database type.

See the PeopleSoft installation guide for your platform and product line.

» Establish a user profile that gives you access to PeopleSoft Application Designer and any other processes
that you will use.

See PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security."

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Getting Started with PeopleSoft Component Interfaces Chapter 1

Implementing the Excel to Component Interfaces Utility

PeopleSoft provides the Excel to Component Interface utility that enables you to upload data from Microsoft
Excel into your PeopleSoft database. Several tasks are involved in setting up the Excel to Component
Interfaces Utility.

See Chapter 9, "Using the Excel-to-Component Interface Utility," Running the Excel to Component Interface
Utility, page 108.

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding Component Interfaces

This chapter provides an overview of component interfaces and discusses:
» Component interface architecture.
« Component interface attributes.

e Component interface definitions and views.

Understanding Component Interfaces

A component interface enables exposure of a PeopleSoft component (a set of pages grouped together for a
business purpose) for synchronous access from another application (such as PeopleCode, Java, C/C++, COM,
or XML). Component interfaces can be viewed as "black boxes" that encapsulate PeopleSoft data and
business processes, and hide the details of the underlying page and data. Component interfaces can be used to
integrate one application with another application or with external systems. Component interfaces execute the
business logic built into the component and as a result, they provide a higher level of data validation than a
simple SQL insert.

A component interface maps to one, and only one, PeopleSoft component. However, you can create multiple
component interfaces for the same component. You create component interfaces in PeopleSoft Application
Designer. Record fields on the component are mapped to the keys and properties of the component interface.
Methods are used to find, create, modify, or delete data.

Component Interface Architecture
The component interface architecture comprises three fundamental elements—components, component
interfaces, and the component interface API.
Every component interface has the following main attributes:
¢ Name.
* Keys (Get keys, Create keys, and Find keys).
» Properties and collections (fields and records).

e Methods.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

Understanding Component Interfaces Chapter 2

Note. In most cases, component interfaces act like their associated components, meaning that PeopleCode
events typically trigger in the same order as the component. However, several runtime exceptions relate to
component interfaces and PeopleCode processing and search dialog box processing.

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor”

Component Interface Attributes

This section discusses the name, keys, properties, collections, and methods of component interfaces.

Name

Each component interface requires a unique name that is specified when the component interface is created.
The calling programs use the name of the component interface to access properties and methods.

Keys

Keys are special properties containing values that retrieve an instance (Get keys) or a list of instances (Find
keys) of the component interface. When you create a new component interface, Get and Find keys are created
based on the search record definition for the underlying component. However, you can add, remove, or
change keys in PeopleSoft Application Designer. Create keys are created for components that have the Add
action enabled.

Properties

Properties provide access to both component data and component interface settings. Component interfaces
include two types of properties: standard and user-defined.

» Standard properties are assigned automatically when a component interface is created.

Standard properties can be set to true or false. These properties are not displayed in the PeopleSoft
Application Designer. Examples of standard properties include InteractiveMode, GetHistoryltems, and
EditHistoryltems.

» User-defined properties map to record fields on the PeopleSoft component and are displayed in the
PeopleSoft Application Designer.

A property can correspond to a field or a scroll (collection). You can control which user-defined
properties are included on the component interface.

Note. Every PeopleSoft Application Designer definition—including the component interface—has a
definition properties dialog box in which you make design-time settings for the definition. Those properties
should not be confused with the runtime properties that are discussed here.

4 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding Component Interfaces

Collections

A component interface collection is a special type of property that corresponds to a scroll. It contains fields
and subordinate scrolls as defined in its underlying component. By default, each collection uses the name of
the primary record for the underlying scroll.

Methods

A method is a function that performs a specific task on a component interface at runtime. As with component
interface properties, two main types of methods are available: standard and user-defined. For example, you
can use methods to save or create a new purchase order. Runtime access to each method is determined by the
security that you have for that specific method.

» Standard methods are those that are available for all component interfaces.

The Find, Get, Save, and Cancel methods are automatically generated by PeopleSoft Application
Designer when a new component interface is created. The Create method is created for components that
have the Add action enabled. In the component interface designer, standard methods are highlighted in
gray.

» User-defined methods are created in PeopleSoft Application Designer to provide added functionality to
the component interface.

These methods are functions that are made accessible through the component interface. Each function
maps to a user-defined method. In the component interface designer, user-defined methods are
highlighted in blue.

Component Interface Definitions and Views

You create, modify, and review your component interface definition by using PeopleSoft Application
Designer. You open the component interface definition just as you would any other definition, such as a page
or record.

When working with a component interface definition in PeopleSoft Application Designer, you see the
component view on the left and the component interface view on the right.

This example shows the component and component interface view in PeopleSoft Application Designer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Understanding Component Interfaces Chapter 2

\I Application Designer - Untitled - [SDK_BUS_EXP (Component Inl:erfaceﬂ - |EI|5|
@ File Edit Miew Insert Build Debug Tools Go Window Help =] x|
D|s|Ele| 8| l=e| =8
SDK_CI_SAMPLES [Companent] Mame | Recard Field | Re... | Ca.2]
@ SDK_PER_SRCHGEL [View) - Search F Elﬁ SOE BUS ExP
=-F Scroll- LevelD o FINDKEYS
e-gg) SDK_FER_SRCHGBL [View) e SDK_EMPLID SDK_PER_S.. SDK_EMP..
SDE_DERIVED [Derived) g SDE_MAME SDK_PER_S.. SDK_MAME
-5 SDE_INSTALL [Table] “ogs SDE_LAST_NAM.. SDK_PER_S.. SDE_LAS..
B- Scroll - Level 1 Primary Record: 50 EI@ GETKEYS |-
#-E51 SDK_BUS_ExF_PER [Table] e SDK_EMPLID SDK_PER_S.. SDK_EMP..
SOEk_DERMED [Derved) Ei FROFPERTIES
E Scroll - Level 2 Primarny Becord: Logan SDE_MAME SDK_PER_S.. SDK_MAME Y
----- & SDE_BIRTHDATE SDE_DERIV.. SDE_BIR... i
g SDK_DEPTID SDK_DERN.. SDK_DEP.. Y hd
< I LARY | o
Beqin validating Component Interface inkedrity -

Mo errars found.
End Component Interface walidation

A [Build A Uparade A Results p Validate §
Ready | I_l | | A

Component and component interface views in PeopleSoft Application Designer

The component view shows records and scrolls in the component, using a tree representation. The structure is
the same as the one you see on the structure tab of a component in PeopleSoft Application Designer. Drag the
fields and collections that you want exposed to the component interface view.

The component interface view shows the exposed keys, properties, and methods, using a tree representation.
When you open a component interface, properties are displayed in the order in which they appear in the
component view.

The tree nodes in both the component view and the component interface view have different icons. Some
icons are used in both the component view and the component interface view with slightly different
meanings. The following tables explain the meaning of each icon and column in the component interface
view.

Component Interface View Icons

This table lists the component interface view icons:

=] Component interface.
E) Group of keys.
e Property that is a key field from the underlying record.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding Component Interfaces

Alternate search key.

Group of properties or methods.

Collection.

Property or user-defined method.

Standard method.

Property that is a required field for the underlying record.

Item in a component interface that is no longer in sync with the underlying
component. For example, if a field on which a property depends is deleted
from the component, this icon appears.

X [3] © [Bl @ 3]

Component Interface View Columns

The following terms describe the columns in the component interface view.

Name Name of a specific element of a component interface (such as the name of a
property or method). The default name for field properties is the field name.
The default name for collections is the primary record name.

Record Name of the underlying record on which a specific element is based. If the
underlying record name changes, the component interface continues to
point to the appropriate record.

Field Name of the field to which a component interface property points. Like the
record name, the underlying field name can change, and the component
interface continues to point to the appropriate field.

Read Only Y in this column indicates that a specific property has been marked read-
only.
Comment Identifies comments that exist in the Edit Property dialog box for the

selected key, property, or collection.

Note. In the component interface view, properties appear in the same order as they appear in the component
and are not sorted alphabetically.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

Chapter 3

Developing Component Interfaces

This chapter discusses how to:

» Create component interface definitions.
e Use keys.

« Set properties.

* Work with collections.

* Work with methods.

» Validate component interfaces.

» Set security options.

« Test component interfaces.

» Understand synchronization.

* Write component interface programs.

e Understand runtime considerations.

Creating Component Interface Definitions

This section discusses how to:

» Create new component interface definitions.
* Name component interface definitions.
» Associate component interface definitions with menus.

« Determine the fields to expose in component interfaces.

Understanding Creating Component Interface Definitions

This section discusses key concepts for creating component interface definitions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Developing Component Interfaces Chapter 3

Component Structure

Because each component interface refers to a single component, you must know the structure of the
component for which you are constructing a component interface. You can use an existing component within
an application or create a new one for the sole purpose of constructing a component interface. Many parts of
the component interface, such as the keys, are created based on settings in the referenced component.

Criteria for Setting Automatic Default Properties

To be able to set automatic defaults for fields in the new component interface, the system needs the properties
to be of a specific field or page control type.

The fields should be of the following types:

» Character

» Long character
e Number

» Signed number
e Date

e Time

» Datetime

The field should be one of the following page control types:

+ Edit box

* Drop-down list box

» Check box

» Radio button

The field cannot be invisible and should not be the same as the key field of the immediate parent.

Collections must have at least one child property that satisfies the field or page control criteria for providing
the field by default. Collections with no properties are not added.

For a field on a secondary page to be selected for the default properties process, it must satisfy all the criteria
for field type and page control and must be at the same level as the host page.

Additionally, the component tree that a component interface uses to order the properties lists the fields in the
record based on their order in the record definition and not the order of the fields on the page. If the
component tree lists the fields of a record based on the page, the properties of the component interface will
reflect that order.

Creating New Component Interfaces

This section discusses how to create a new component interface.

10 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

\I Application Designer - Untitled - [Component Interfacez (Component Interface)] - |I:I|1|
@ File Edit Yiew Insert Buld Debug Tools Go ‘Window Help =53] x|

0|=8g & #|=e = 8E

S0k _CI_SAMFLES [Component]

Fecaord bo L
= E Scroll - Level 0 E‘@ GETEEYS
H-f5 SDK_PER_SRCHGBL [View] egle SDK_EMPLID SDK_PER_SF.. SOK_EMPLID
SDK_DERMED [Denved] E“%b FIMDEEYS
(=] SDK_INSTALL [T able) -a SDK_EMPLID SDK_PER_SR... SDK_EMPLID
EE Scroll - Level 1 Primamy Recard: SDFE_BUS_EX o SDE_LAST_MAME_.. SDK_PER_SR.. SDE_LAST_.
-k=d SDK_BUS_EXP_PER [Table] gy SDE_MAME SDK_PER_SF.. SOK_MAME
- SDE_DERMED [Derived) =-J§ METHODS
E Scroll - Level 2 Primamny Record: 5DK_BUS & Cancel
¢ Fird
¢ Get -
4| | ¥ _-----C? Save -

Begin validating Component Interface integrity
Mo errars faund. |
End Compaonent |nterface walidation

[»

|

A k' Build b Ungrade A Resuts b Validate /
Ready l_ l— l— l— S

New component interface with no properties yet defined.

To create a new component interface:

1. Select File, New from the PeopleSoft Application Designer menu.
2. Select Component Interface from the New dialog box.

3. Select the component on which to base this component interface.

After you select the appropriate component, you see a message asking whether you want the fields that
are exposed in the selected component to become the default properties of the component interface.

Note. Not all fields on the component interface can have automatic defaults created for them.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

Developing Component Interfaces Chapter 3

4. Click Yesto confirm the default property definitions or No if you don't want any properties initially
created.

If you elect to have the property definitions automatically provided by the system by default, then all
properties that appear on the pages of the underlying component are added to the component interface.
Even though the system adds the default properties, you may need to move other properties into the
component view for the component to work.

An untitled component interface appears, showing the Get keys and Find keys. Create keys are produced
only if the underlying component can run in Add mode (the example preceding this procedure does not
have Create keys, because the search record of the underlying component cannot run in Add mode).
PeopleSoft Application Designer generates the keys for you as you drag definitions.

The standard methods Cancel, Find, Get, and Save are automatically created. The Create method is not
automatically created unless the component supports the Add mode.

Note. You can begin adding properties to a new component interface at any point. However, you cannot
add any user-defined methods to the component interface until you have saved the component interface.

5. Save the component interface.

After you have saved the component interface, you can further define user-defined methods.

Naming Component Interface Definitions

Like every other definition in PeopleTools, component interfaces must have unique names. The naming of
component interfaces should be consistent and systematic. Also, the name should not be changed after the

component interface is part of a production system—other applications depend on a consistent name with
which to reference the component interface.

If you are changing the structure of a component interface such that an existing program can no longer access
it correctly, create a new component interface rather than updating the existing one. No version property is on
a component interface, so if you must create a new version of a delivered component interface, adhere to a
standard naming guideline to avoid confusion. A suggested naming guideline is:

» LOCATION (original component interface).

« LOCATION V2 (version two of the component interface).

Associating Component Interfaces with Menus

This applies to component interfaces built from components that are already attached to one or more menus.

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Gieneral I Standard Methu:u:lsl S_I,Inu:hn:unizatinnl

ﬁ SDK_BUS_ExP

Component: SOk_ClI_SAMPLES

M ark.et GEL

Drescription: ISDK Buzniesz Expenze Cl

b M arne: I =]
Camments:

SDFE Bughiess Expenze Cl

H IO

Owner |D: [PeopleTools

L]

Last Updated
Date/Time: 07503 41705k

By Uszer FPLSOFT

s I Cancel

Component Interface Properties-General tab

To associate a component interface with a menu:

1. Select File, Open from the PeopleSoft Application Designer menu to open an existing component
interface.

2. Select File, Definition Properties from the PeopleSoft Application Designer menu.
The Definition Properties dialog box appears.

3. Select the appropriate menu name on the General tab for this component interface.

Note. Associate a menu with a component interface only when PeopleCode is in the component that uses
the %Menu system variable.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Developing Component Interfaces Chapter 3

Determining the Fields to Expose in Component Interfaces

You expose fields from a component in the component interface by dragging a record field or a scroll from
the component view into the component interface view. However, some forethought is required before
exposing a component as a component interface. You need to have a thorough understanding of the
underlying component so that you expose fields that are required in the external system. For example, if the
component has a field called SSN, you need to be sure that the SSN field is required before exposing it to the
external system. Expose only those properties that are necessary.

The component view displays fields that are available in the component buffer at runtime. For example, if a
record containing 10 fields has only 3 fields included on a page, then the component view will list only those
3 fields.

The first time that you drag a scroll from the component view to the component interface view, the system
uses the following rules to determine what properties to expose:

» Keys are exposed only at the highest-level collection in which they first appear.

In some cases, this is not appropriate. When an effective-dated component that has the same level-zero
and level-one record is exposed through a component interface, it should be exposed the same way in
which it appears on a page in the component. In this case, only one key field typically appears at level
zero and the effective-date keys appear at level one. The component interface wrapper should expose the
page in the same fashion—removing keys that do not appear in the level-zero scroll from the component
interface top-level collection and manually adding keys that appear in level-one scroll to the second-level
collection.

Typically, you do not want to expose Get keys or Create keys as properties, because these are set before a
Get or Create operation and might be inadvertently changed.

» Make sure that you do not delete all the properties within the collection; that would result in an empty
collection. If such empty collections exist, remove them; otherwise, they appear with X in the component
interface view.

» If your page does not support Add mode, then you should not expose the level-zero record of the
component, because it contains data that is not specific to the component interface that you are creating.

* Do not expose fields that are not visible in the component view.

The component optimization code might eliminate unused fields from its buffers, which results in an error
when that field is accessed by the component interface.

Using Keys

This section discusses how to add and delete keys.

Understanding Keys

The following table shows the three types of component interface keys:

14 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Key Type Key Characteristics

Get keys These keys automatically map to search key fields in the
search record for the underlying component. You must
change Get keys only if you modify the keys of the
component after you create a component interface.

Find keys These map to both search key fields and alternate search
key fields in the search record for the underlying
component. You can remove any Find keys based on
alternate search key fields that you don't want to make
available for searching.

Create keys If the underlying component allows the Add action, then
Create keys are generated for the component interface
automatically. They map to fields marked as Srch
(search) in the search record for the component (or the
add search record, if one is specified).

Keys are created automatically when you create a component interface. Typically, you must manually add
keys only if new search key fields are added to the underlying component after the creation of the component

interface. However, you might want to modify the Find keys—either to restrict a user from searching on a
particular key or to add an alternate search key that didn't exist when the component was created.

Component interface keys are based only on the search key fields and alternate search key fields that are
designated as list box items in the search record of the underlying component. When you create the
component interface, the keys are automatically generated from all key fields that qualify.

» Each search key field produces a Get key and a Find key.
» Each search key field also produces a Create key if the underlying component allows Add mode.

» Each alternate search key field produces a Find key.

Valid Conditions for Modifying Keys
The following conditions are valid for modifying keys.
* You can add or delete a Find key if it is based on an alternate search key field.

e You can add any type of key based on a qualifying search key field in the component, if it isn't already the
basis of an existing key of the same type.

This is necessary only if a new search key field is added to the component after you create the component
interface.

* You can delete any type of key if its underlying search key field meets one of these criteria:
» Itis no longer defined as a search key field.
» Itis no longer designated as a list box item.

» It has been deleted from the component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Developing Component Interfaces Chapter 3

Note. An X icon precedes a name in the component interface view if the field underlying a component
interface key no longer qualifies as a key. Remove keys (or any other properties) that are marked with this
symbol to ensure proper operation of the component interface.

Adding and Deleting Keys
To add a key:
1. Expand the search key collection (the first collection) in the component view.
2. Drag the key to the component interface view.
To delete a key:
1. Select the key in the component interface view.

2. Press the Del key.

Setting Properties

This section provides an overview of standard properties and discusses how to:

e Create user-defined properties.

» Delete user-defined properties.

* Rename user-defined properties.
» Create reference properties.

» Make properties read-only.

Understanding Standard Properties

Standard properties do not appear in the component interface view in PeopleSoft Application Designer. The
following tables name and define the standard properties, and list the interfaces for PeopleCode, Java, C++,
and Visual Basic.

This table contains the component interface properties:

16 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

Name

Description, Programming Syntax

CreateKeyInfoCollection

Returns a collection of items that describes the Create keys. This property is read-
only.

Use these interfaces to call with other programming languages.
e Java: IcomplntfcPropertylnfoCollection getCreateKeyInfoCollection()

¢ C++: HPSAPI COMPINTFCPROPERTYINFOCOLLECTION
<CI_ NAME> GetCreateKeyInfoCollection(HPSAPI <CI NAME>)

e COM: ComplntfcPropertyInfoCollection CreateKeyInfoCollection

GetKeylInfoCollection

Returns a collection of items that describes the Get keys. This property is read-only.

Use these interfaces to call with other programming languages.
e Java: IcomplntfcPropertyInfoCollection getGetKeyInfoCollection()

e G+
HPSAPI COMPINTFCPROPERTYINFOCOLLECTION<CI NAME> GetGet
KeyInfoCollection(HPSAPI <CI NAME>)

* COM: ComplntfcPropertyInfoCollection GetKeyInfoCollection

FindKeyInfoCollection

Returns a collection of items that describes the Find keys. This property is read-only.

Use these interfaces to call with other programming languages.
e Java: IcomplntfcPropertyInfoCollection getFindKeyInfoCollection()

o (CH++:
HPSAPI COMPINTFCPROPERTYINFOCOLLECTION<CI NAME> GetFind
KeyInfoCollection(HPSAPI <CI_ NAME>)

¢ COM: ComplntfcPropertylnfoCollection FindKeyInfoCollection

GetHistoryltems

Controls whether the component interface runs in Update/Display mode or
Update/Display All mode when the underlying component is effective-dated. If
GetHistory is set to true, then historical data can be retrieved but not modified.
GetHistory items work in accordance with EditHistory items.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.
» Java: boolean getGetHistoryltems(), void setGetHistoryltems(boolean)

e C++: BOOL <CI_ NAME> GetGetHistoryltems(HPSAPI <CI NAME>),
void<CI_NAME>_ SetGetHistoryltems(HPSAPI <CI NAME>, BOOL)

e COM: Boolean GetHistoryltems

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

17

Developing Component Interfaces

Chapter 3

Name

Description, Programming Syntax

EditHistoryltems

Controls whether the component interface runs in Update/Display All mode,
Update/Display mode, or Correction mode when the underlying component is
effective-dated. If EditHistory items are set to true, then historical data can be
modified. EditHistory items work in accordance with GetHistory items.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.
* Java: boolean getEditHistoryltems(), void setEditHistoryltems(boolean)

« C++: BOOL <CI NAME> GetEditHistoryltems(HPSAPI_<CI_NAME>),
void<CI NAME> SetEditHistoryItems(HPSAPI <CI NAME >, BOOL)

e COM: Boolean EditHistoryltems

InteractiveMode

Controls whether to apply values and run business rules immediately, or whether
items are queued and business rules are run later, in a single step.

Note. You should use interactive mode when testing and debugging a component
interface. Interactive mode in a production environment slows performance because
of the number of server trips required.

If you are using a component interface as part of a batch process in which thousands
of rows are to be inserted, running in interactive mode may reduce performance so
much on some UNIX servers that the application times out with a connection failure.

The default value is False. This property is read-only.
Use these interfaces to call with other programming languages.
* Java: boolean getlnteractiveMode(), void setInteractiveMode(boolean)

e C++: BOOL <CI_ NAME> GetlInteractiveMode(HPSAPI <CI NAME>),
void<CI_NAME> SetInteractiveMode(HPSAPI <CI_ NAME>, BOOL)

e COM: Boolean InteractiveMode

StopOnFirstError

When this property is set to True, the first error generated by the component interface
halts the program.

The default value is False. This property is read-only.
¢ Java: boolean getStopOnFirstError(), setStopOnFirstError(boolean)

e (C++: BOOL <CI_NAME> GetStopOnFirstError(HPSAPI <CI NAME>),
void<CI_NAME> SetStopOnFirstError(HPSAPI <CI_NAME>, BOOL)

¢ COM: Boolean StopOnFirstError

18

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

Name Description, Programming Syntax

ComplntfcName Returns the name of the component interface class as named in PeopleSoft
Application Designer. This property is read-only.
e Java: String getComplIntfcName()
e C++: LPTSTR <CI_ NAME> GetComplntfcName((HPSAPI <CI NAME>)
¢ COM: String GetComplntfcName

ComponentName Returns the name of the component interface class as named in PeopleSoft
Application Designer. This property is read-only.
¢ Java: boolean getComponentName()
e C++: LPTSTR <CI_NAME> GetComponentName(HPSAPI <CI NAME>)
* COM: Boolean GetComponentName

Description Returns the description of the component interface class as set in PeopleSoft
Application Designer. This property is read-only.
e Java: boolean getDescription()
¢ C++: LPTSTR <CI_NAME>_GetDescription((HPSAPI <CI_NAME>)
¢ COM: String Description

Market Returns the Market setting of the component used to build this component interface.
This property is read-only.
e Java: String getMarket()
e C++:LPTSTR <CI_ NAME> GetMarket((HPSAPI <CI NAME>)
e COM: String Market

GetDummyRows When a new scroll is inserted on a page, that scroll is displayed even though it has no
underlying data. Any scroll that is empty has one dummy row displayed with only the
defaults set. This property is True if the dummy row is to be displayed, False if it is
not. The default value for this property is True. This property is read-write.
¢ Java: boolean getGetDummyRows(), void setGetDummyRows(boolean)
e (C++: BOOL <CI_ NAME> GetGetDummyRows(HPSAPI <CI NAME>),

void<CI NAME> SetGetDummyRows(HPSAPI <CI NAME>, BOOL)

¢ COM: Boolean GetDummyRows

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Developing Component Interfaces

Chapter 3

Name

Description, Programming Syntax

PropertylnfoCollection

Returns a collection of items that describes a specific property. The specific
properties that are available in the propertyinfocollection are listed here. This
property is read-only.

Use these interfaces to call with other programming languages.

Java: IcomplIntfcPropertyInfoCollection getPropertylnfoCollection()

C++: HPSAPI COMPINTFCPROPERTYINFOCOLLECTION
<CI_NAME>_GetPropertylnfoCollection(HPSAPI <CI NAME>)

COM: ComplntfcPropertylnfoCollection PropertyInfoCollection

The ComplIntfPropInfoCollection object supports the following properties:

PropertyName Description
Name This property returns the name of the object executing the property as a string. This
property is read-only.
e Java: String getName()
* C++: LPTSTR
ComplntfcPropertyInfo GetName(HPSAPI COMPINTFCPROPERTYINFO)
* COM: String name
RecordName This property returns the record name associated with the object executing the
property. This property is read-only.
e Java: String getRecordName()
e C++: LPTSTR
ComplntfcPropertylnfo GetRecordName(HPSAPI COMPINTFCPROPERTY
INFO)
e COM: String RecordName
FieldName This property returns the field name associated with the object executing the
property. This property is read-only.
* Java: String getFieldName()
* C++: LPTSTR
ComplntfcPropertylnfo GetFieldName(HPSAPI COMPINTFCPROPERTYTI
NFO\)
e COM: String FieldName

20

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

PropertyName Description
LabelLong This property returns the record field Long Name value as a string. If a component
override exists for this value, it is not included. This property is read-only.
* Java: String getLabelLong()
* C++: LPTSTR
ComplntfcPropertylnfo GetLabelLong(HPSAPI COMPINTFCPROPERTYI
NFO)
* COM: String LabelLong
LabelShort This property returns the record field ShortName value as a string. If a component
override exists for this value, it is not included. This property is read-only.
* Java: String getLabelShort()
e C++: LPTSTR
ComplntfcPropertylnfo GetLabelShort(HPSAPI COMPINTFCPROPERTYTI
NFO)
e COM: String LabelShort
IsCollection This property returns True if the object executing the property is a data collection,
False otherwise. If IsCollection is True, other field-oriented properties like
Required, Type, Xlat, YesNo, Prompt, and Format are undefined. If IsCollection is
False, the object represents a field and all the previous properties are defined as
described. This property is read-only.
* Java: boolean getlsCollection()
+ C++:BOOL
ComplntfcPropertylnfo GetlsCollection(HPSAPI COMPINTFCPROPERTYT
NFO)
* COM: Boolean IsCollection
Type This property returns the field type, as a number, of the object.
See PeopleTools 8.52: PeopleCode API Reference, "Component Interface
Classes," ComplIntfPropInfoCollection Object Properties.
This property is read-only.
e Java: long getType()
* C++:PSI32
ComplntfcPropertylnfo GetType(HPSAPI COMPINTFCPROPERTYINFO)
e COM: Long Type

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

Developing Component Interfaces

22

Chapter 3

PropertyName Description
OAType This property returns the field type, as a number, of the object. This property is
read-only.

* Java: long getOAType()

e C++:PSI32
ComplntfcPropertyInfo_GetOAType(HPSAPI_ COMPINTFCPROPERTYINF
0)

e COM: Long OAType

Format This property returns the field format for the object executing the property (that is,
name, phone, zip, SSN, and so on) as a number. This property is read-only.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface

Classes," CompIntfPropInfoCollection Object Properties.

* Java: String getFormat()

 C++:PSI32
ComplntfcPropertylnfo GetFormat(HPSAPI COMPINTFCPROPERTYINFO
)

e COM: Long Format

Key This property returns True if the object executing the property is a key, False
otherwise. This property is read-only.

e Java: boolean getKey()

* C++:BOOL
ComplntfcPropertylnfo GetKey(HPSAPI COMPINTFCPROPERTYINFO
hComplntfcPropertyInfo)

* COM: Boolean Key

Required This property returns True if the object executing the property is a required
property, False otherwise. This property is read-only.

* Java: boolean getRequired()

e« C++:BOOL
ComplntfcPropertylnfo GetRequired(HPSAPI COMPINTFCPROPERTYINF
0)

* COM: Boolean Required

Xlat This property returns True if the object executing the property is associated with an

XLAT table, False otherwise. This property is read-only.
* Java: String getXlat()

+ C++:BOOL
ComplntfcPropertylnfo GetXlat(HPSAPI COMPINTFCPROPERTYINFO)

* COM: String Xlat

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

PropertyName Description
Yesno This property returns True if the object executing the property is associated with
the Yes/No table, False otherwise. This property is read-only.
* Java: boolean getYesno()
e C++:BOOL
ComplntfcPropertylnfo GetYesno(HPSAPI COMPINTFCPROPERTYINFO)
* COM: Boolean Yesno
Prompt This property returns True if the object executing the property is associated with a
prompt table, False otherwise. This property is read-only.
e Java: boolean getPrompt()
« C++:BOOL
ComplntfcPropertylnfo GetPrompt(HPSAPI COMPINTFCPROPERTYINFO
)
* COM: Boolean Prompt
Length This property returns the length of the object executing the property. This property
is read-only.
* Java: long getLength()
 C++:PSI32
ComplntfcPropertylnfo GetLength(HPSAPI COMPINTFCPROPERTYINFO
)
* COM: Long Length
DecimalPosition This property returns the decimal position for the object executing the property.
This property is read-only.
* Java: long getDecimalPosition()
* C++:PSI32
ComplntfcPropertyInfo GetDecimalPosition(HPSAPI COMPINTFCPROPE
RTYINFO)
e COM: Long DecimalPosition
IsReadOnly This property returns True if the property marked read-only in the component
interface definition; False otherwise. This property is read-only.
e Java: boolean getlsReadOnly()
« C++:BOOL
ComplntfcPropertylnfo GetlsReadOnly(HPSAPI_ COMPINTFCPROPERTYI1
NFO)
* COM: Boolean IsReadOnly

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

Developing Component Interfaces Chapter 3

PropertyName Description

Altkey This property returns True if the object executing the property is an alternate key,

False otherwise. This property is read-only.
* Java: boolean getAltkey()

e C++:BOOL
ComplntfcPropertylnfo GetAltkey(HPSAPI COMPINTFCPROPERTYINFO
)

* COM: Boolean Altkey

Listboxitem This property returns True if the object executing the property is associated with a

list box, False otherwise. This property is read-only.
* Java: boolean getListboxitem()

+ C++:BOOL
ComplntfcPropertylnfo GetListboxitem(HPSAPI COMPINTFCPROPERTYI
NFO)

¢ COM: Boolean Listboxitem

Example of PropertyInfoCollection

Here is a Java example that calls PropertylnfoCollection:

| conpl ntfcPropertylnfoCollection oLO ProplnfoColl
| conpl ntfcPropertylnfo oLO Proplnfoltem

oLO Propl nfoColl = oCl.getPropertylnfoCollection();
for (int 1=0; I < oLO ProplnfoColl.getCount(); |++) {
oLO Proplnfoltem = oLO ProplnfoColl.iten(i);

Systemout.println("\t Nane = " + oLO Propl nfoColl.getNane());
Systemout.println("\t Record Name = " + oLO _Propl nfoColl.get RecordNane());
Systemout.println("\t Field Name = " + oLO ProplnfoColl.getFieldNane());
Systemout.println("\t Label Long = " + oLO ProplnfoColl.getLabel Long());
Systemout.println("\t Label Short =" + oLO ProplnfoColl.getLabel Short());
Systemout.println("\t IsCollection =" + oLO ProplnfoColl.getlsCollection());
Systemout.printin("\t Type =" + oLO Propl nfoColl.getType());
Systemout.println("\t OAType = " + oLO_ProplnfoColl.get QAType());
Systemout.println("\t Format = " + oLO _ProplnfoColl.getFormat());
Systemout.println("\t Is Get Key? = " + oLO ProplnfoColl.getKey());
Systemout.printin("\t Is Required =" + oLO ProplnfoColl.getRequired());
Systemout.printin("\t Is Xlat? =" + oLO ProplnfoColl.getXl at());
Systemout.println("\t Is Yesno? =" + oLO ProplnfoColl.getYesno());
Systemout.println("\t Prompt =" + oLO _ProplnfoColl.getPronpt());
Systemout.println("\t Length =" + oLO _ProplnfoColl.getLength());
Systemout.println("\t Decimal Position =" + oLO ProplnfoColl.

get Deci nal Posi tion());
Systemout.printin("\t Is Read Only? =" + oLO ProplnfoColl.

getl sReadOnl y());
Systemout.printin("\t Is Alt Key? =" + oLO ProplnfoColl.getAtkey());
Systemout.println("\t Is ListBox iten? =" + oLO _ProplnfoColl.

get Li stboxitem());

24 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Object Adapter

The name of the property is OAType, and it holds the value of the object adapter type. Exposing this
property and supplying the associated methods enables you to detect possible data type mismatches between
the database and the component interface object.

The Java methods are:

getOAType() Returns the object adapter type.

getType() Returns the type of the property of a particular database field.

For example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25

Developing Component Interfaces

Chapter 3

public static void printPropertyType(String propName, |ConplntfcPropertylnfo i=

Propertylnfo) {

String strOAType = nul|;
String strDBType = null;
try {
switch ((int)iPropertylnfo.get OAType()) {
/* Object Adapter Type == */

case Cl PropertyTypes. PSPROPERTY_OA TYPE BOCL:
strQAType = "BOOL";
br eak;

/* Object Adapter Type == 1 */

case Cl PropertyTypes. PSPROPERTY_OA TYPE_ NUMBER:
strQAType = "I NTEGER";
br eak;

/* Cbject Adapter Type == 2 */

case Cl PropertyTypes. PSPROPERTY_OA TYPE FLOAT:
str OAType = "FLOAT",
br eak;

/* Object Adapter Type == 3 */

case Cl PropertyTypes. PSPROPERTY_OA TYPE_STRI NG
strOAType = "STRING';
br eak;

}

switch ((int)iPropertylnfo.getType()) {
/* Dat abase Type == 0 *
case Cl PropertyTypes. PSPROPERTY_DB TYPE_CHARACTER:
strDBType = "CHARACTER';
br eak;
/* Dat abase Type == */

case Cl PropertyTypes. PSPROPERTY_DB_TYPE_LONG CHARACTER:

st rDBType = "LONG _CHARACTER';
br eak;

/* Dat abase Type == 2 */

case Cl PropertyTypes. PSPROPERTY_DB_TYPE_NUMBER:
strDBType = "NUVBER';
br eak;

/* Dat abase Type == */

case Cl PropertyTypes. PSPROPERTY_DB TYPE_SI GNED_NUMBER:
st rDBType = "SI GNED NUMBER';
br eak;

/* Dat abase Type == */

case Cl PropertyTypes. PSPROPERTY_DB TYPE DATE:
st rDBType = "DATE",
br eak;

/* Database Type == 5 */

case Cl PropertyTypes. PSPROPERTY_DB_TYPE_TI ME:
strDBType = "TI ME";
br eak;

/* Dat abase Type == 6 */

case Cl PropertyTypes. PSPROPERTY_DB TYPE_DATETI ME:
st r DBType = "DATETI VE";
br eak;

}

catch (Exception e) {
e.printStackTrace();

}

Systemout.println("\n" + propNane +
" Object Adapter Type is: " + strQAType +

26 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

, Database Type is: " + strDBType);

Component Interface Collection Property

This table contains the component interface collection property Count.

Name Description, Programming Syntax

Count Returns the number of items in a collection.
e Java: long getCount()

e (C++:PSI32

ComplntfcCollection GetCount(HPSAPI <CI NA
ME>)

e COM: Integer Count

Data Item Property

This table contains the data item property ItemNum:

Name Description, Programming Syntax

ItemNum Returns the position of the row within the given
collection of a DataRow.

* Java: long getltemNum()
* C++:PSI32
<CI NAME> GetltemNum(HPSAPI <CI NAME

>)

* COM: Integer ItemNum

Note. The component interface classes contain information about PropertyInfo properties and related
PeopleCode.

Creating User-Defined Properties

User-defined properties are those properties on the underlying component that are exposed through the
component interface. User-defined properties are derived from the component to which the component
interface is associated and must be added manually. They are the specific record fields that you expose to an
external system with the component interface. You create user-defined properties in addition to the standard
properties to enable data manipulation of the component. When you create a new component interface, if you

accept the default properties, user-defined properties are created automatically for each field displayed to the
user on the underlying component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

Developing Component Interfaces Chapter 3

User-defined properties are the points where the component and the underlying database are exposed to the
external system. This is the means that component interfaces use to add or change fields and data in the
database.

To create a user-defined property, drag a record, field, or scroll from the component view to the component
interface view.

Where you insert the definition in the component interface view does not matter. When the component
interface is opened, the system automatically converts the field or record into a component interface property
and places it in the appropriate place in the list of properties. Also, when you drag a definition from the
component view into the component interface view, all child definitions are brought into the component
interface automatically. After these child properties are added to the component interface, you can remove
each property individually, if desired.

Dragging a key from the search records, which precede the level-zero record in the page view, adds a key to
all appropriate key collections (Get, Create, and Find) in the component interface. Because appropriate keys
are added automatically when a component interface is first created, you typically must add keys only if the
new keys are added to the underlying component after the creation of the component interface.

Deleting User-Defined Properties

To delete a property:
1. Select the property to be deleted.
2. Either press the Del key on the keyboard, or right-click the key and select Delete.

Standard Windows behavior is employed for selecting multiple properties using the Shift and Ctrl keys.

Renaming User-Defined Properties

28

Property names are automatically generated according to the corresponding fields from the component. If
these names are cryptic, you might want to rename these properties to explain them better. Renaming a
property does not change the field that the property references.

Edit Property x|

Fecord: PSTIMEZOME
Field: DSTEMD

Comment: kobile Property Persistence
¥ Send Updates
" Do not Send Updates

[Read Only Access {" Derived

Edit Property dialog box

Important! PeopleSoft Mobile Agent is a deprecated product. The options listed in the Mobile Property
Persistence group box of the Edit Property dialog box exist for backward compatibility only.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

To rename a property:
1. Double-click the property name or right-click the property name and select Edit Name from the menu.
2. Enter the new property name.

Programs accessing this component interface must reference the new property name. For example, if
SDK NAME was changed to NAME, programs must use NAME instead of SDK_NAME.

3. Add any comments that might be helpful.
4. Select the Read-Only check box to make this property read-only.
5. If this property is for a mobile application, select a radio button that sets the persistence of the property.
» Send Updates is the default behavior for a mobile property.
Any changes or additions to this property on a mobile instance are synchronized to the server.

» If a mobile property is set to Do not Send Updates, this property is not synchronized up to the server,
but the value is maintained on the device.

» A Derived property is used only at mobile runtime. Any values that are set or added to this property
exist only for the runtime life of the object. No persistence of this data on the device exists, so it is
subsequently never uploaded to the server.

Note. PeopleSoft Application Designer generates an error message if it detects that a component interface has
properties that resolve to the same name when creating, saving, or opening a given component interface.

For example, NAME1 and NAME 1 both resolve to the same name when PeopleSoft APIs are built. The set
and get functions that are generated for the properties RTE CNTL TYPE1 and RTE CNTL TYPE 1 are:

public String getRteCntlTypel()
public void setRteCntlTypel(String inRteCntlTypel)

This results in a compile error. To fix this condition, name the properties so that they do not resolve to the
same name.

Creating Reference Properties

Each component interface is isolated and unaware of the other component interfaces in the system. To access
and update information from other component interfaces, references establish relationships between
component interfaces.

Create a reference property in one component interface to access data exposed in another component
interface. For example, the Customer object and the component interface exposing its properties include
properties such as the customer's name, address, and telephone numbers. Another object, Contact, includes
data associated with all contacts in the system. The link between a specific customer and its associated
contacts is owned by the Contact record, not the Customer record.

Therefore, to access contact data, the Customer component interface needs a reference property referring to
the Contact component interface. For you to update contact data from the Customer component interface, the
reference must include a valid reference path and reference backpointer to the customer ID.

Access the Create Reference dialog box by right-clicking the property and selecting Create Reference.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

Developing Component Interfaces Chapter 3

x|
M arme: I
Related
Compaonent Interface: I j
Cornmets:
Felated key Mapping:
Cl Property Felated Cl Property
CURREMCY_CD
Walid Reference Path:
From Object I1zing Feference
CURREMCY_CD_CI
Reference
Backpainter: j
Qg I Cancel |
Create Reference dialog box
The Create Reference dialog box has the following fields:
Name Describes the name of the reference you are creating.

Related Component Interface Designates the component interface referenced from the current component

interface.
Comments Enter any comments to track the reference.
Related Key Mapping Maps the property from the related component interface to the selected

component interface property.

30 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

Valid Reference Path Supports dynamic enumeration of the objects that can be selected as the

value of the reference property being defined. This effectively filters these
values so that you can select only objects that support the defined reference.

Because references use the concept of a walkpath to go from level zero of
one component interface to level zero of another component interface, and
then "walk" down to the lower levels of the component interface, only the
level zero references are displayed in the Valid Reference Path drop-down
list of a reference definition.

Refer ence Backpointer Refers to the path back to the original component interface.

Making Properties Read-Only

You can make any property read-only. At runtime, the value of a read-only property can be read but not
updated.

To make a property read-only:

1.
2.

Select the property.
Select Edit, Toggle Read Only Access from the PeopleSoft Application Designer menu.

A Y appears in the Read Only column of the component interface view corresponding to each property
that you selected to be read-only.

Note. You can double-click the icon of any existing user-defined property to edit its name or comment or to
toggle read-only access.

Working with Collections

A collection is a property that points to a scroll, rather than a field, in the underlying component for a
component interface. A collection groups multiple fields in a scroll. All the fields in the scroll are mapped to
a property. These properties are part of the collection.

You create collections the same way you create properties—drag the scroll from the component view into the
component interface view. Consider these points when creating collections:

When you drag a scroll into the component interface view, all child scrolls come with it.

This is the same behavior that you would expect when creating a property. Child properties are always
added automatically when you drag a field from the component view to the component interface view.
After the property or collection has been created, you can delete individual child properties or collections
manually, if necessary.

When you drag a scroll into the component interface view, all record fields contained in that scroll come
with it—not just those from the record that defines the scroll.

The fields from all records at that scroll level are exposed as part of the same collection.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Developing Component Interfaces

« Keys that appear in parent and child scrolls are not added to child collections.

For the component interface to function as expected, the keys must remain synchronized at all levels of
the component. Having keys at lower levels makes compromising this synchronization possible.
Therefore, lower-level keys are not introduced into the component interface and are not exposed to the
user because those keys have already been set at the parent level.

* When you drag a child scroll into the component interface view, parent collections are created
automatically.

For example, if you drag just the level-two scroll from the component view into the component interface
view, a level-zero collection and a level-one collection are created automatically in the component
interface. This hierarchy of collections is necessary so that you can navigate to the child collection at
runtime.

Working with Methods

This section provides and overview of session functions and methods, standard methods and collection
methods. This section also discuses how to:

« Enable and disable standard methods.
e Create user-defined methods.

» Export user-defined methods.

Understanding Session Functions and Methods

32

The session functions and methods connect to a session on an Application server. This connection must be
made before you can use the component interface methods.

Component Interface Session Functions

This table contains the component interface session function createSession:

Name Description, Programming Syntax
createSession Returns a session object.
(In PeopleCode, &session = %session) + Java: ISession API.createSession()

e C++: HPSAPI SESSION PSApiCreateSession()

e COM: PeopleSoft PeopleSoft.Session
CreateObject("PeopleSoft.Session")

Component Interface Session Methods

This table contains the component interface session methods:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Chapter 3

Developing Component Interfaces

Name

Description, Programming Syntax

Connect

(not used in PeopleCode)

Connects to the application server.

Use these interfaces to call with other programming
languages.

Java: boolean connect(long apiVersion, string
server, string username, string password, byte[]
External Auth)

C++: Bool session_Connect(HPSAPI hSession,
PSI32 ApiVersion, LPTSTR server, LPSTR
username, LPTSTR password, PSAPIVAPBLOB
External Auth)

COM: connect(apiVersion As Long, server As
string, username As string, password As String,
external Auth As Integer) As Boolean

getComplntfc

Returns a reference to a component interface.
getComplntfc also checks to determine whether the
given user that is connecting has the appropriate
security to access the component interface.

Use these interfaces to call with other programming
languages.

Java: I<CI_Name> getComplntfc(string ciName)

C++: HPSAPI <CI Name>
Session_GetComplntfc(HPSAPI SESSION
hsession, LPTSTR ciName)

COM: <CI_Name> GetComplntfc(ciName As
String)

Understanding Standard Methods

A method is a definition that performs a specific function on a component interface at runtime. Each standard
method is added by default when the component interface is created and is available in PeopleCode and other
programming languages. Like properties, methods are saved as part of a component interface definition. Two
main types of methods are available: standard methods and user-defined methods.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

33

Developing Component Interfaces

Chapter 3

Standard Methods

Description, Programming Syntax

Cancel

Backs out of the current component interface, canceling
any changes made since the last save. This is equivalent
to clicking the Return to Search button online. Returns
True on success, and False on failure.

Use these interfaces to call with other programming
languages.

e Java: boolean cancel()

« C++:BOOL
<CI_NAME> Cancel(HPSAPI <CI NAME>
hObj)

e COM: Function Cancel() As Boolean

Create

Creates a new instance of a component interface. This is
equivalent to creating a new record in Add mode online.
Returns True on success, and False on failure.

Use these interfaces to call with other programming
languages.

* Java: boolean create()

« C++: BOOL
<CI_NAME>_Create(HPSAPI_<CI NAME>
hObj)

e COM: Function Create() As Boolean

Find

Performs a partial key search for a particular instance of
a component interface, using the search keys at level 0.
Returns a collection of component interface instances
which match the search criteria. If no component
interface instances match the search criteria, the count
on the collection is zero.

Use these interfaces to call with other programming
languages.

* Java: <CI_ NAME>Collection find()

« C++: HPSAPI_<CI_ NAME>COLLECTION
<CI_NAME> Find(HPSAPI <CI_NAME> hObj)

¢ COM: Function Find() As <CI_NAME>Collection

34

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Standard Methods Description, Programming Syntax

Get Retrieves a particular instance of a component interface.
This is equivalent to opening a record in Update/Display
or Correction mode when online with a PeopleSoft
application. Returns True on success, and False on
failure.

Use these interfaces to call with other programming
languages.

e Java: boolean get()

e (C++: BOOL
<CI_NAME>_Save(HPSAPI_<CI_NAME> hObj)

* COM: Function Get() As Boolean

Save Saves an instance of a component interface. This is
equivalent to clicking the Save button in the online
system. Returns True on success, and False on failure.
You should cancel after a save.

Use these interfaces to call with other programming
languages.

e Java: boolean save()

+ (C++: BOOL
<CI_NAME> Save(HPSAPI <CI_NAME> hObj)

e COM: Function Save() As Boolean

GetPropertyByName Returns the value of a property that is specified by
name. This function typically is used only in
applications that cannot get the names of the component
interface properties until runtime.

Use these interfaces to call with other programming
languages.

* Java: Object getPropertyByName(String str)

e C++: HPSAPI OBJECT
<CiCollectionltem>_ GetPropertyByName(HPSAPI
_<CI_COLLECTION_ITEM> hColltem, LPTSTR
Name)

* COM: Function GetPropertyByName(name As
String)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Developing Component Interfaces Chapter 3

Standard Methods Description, Programming Syntax

SetPropertyByName Sets the value of a property that is specified by name.
This function typically is used only in applications that
cannot set the names of the component interface
properties until runtime.

Use these interfaces to call with other programming
languages.

* Java: long setPropertyByName(String str, Object 0)

e C++:PSI32
<CiCollectionltem>_SetPropertyByName(HPSAPI
~<CI_COLLECTION_ITEM> hColltem, LPTSTR
name, HPSAPI OBJECT Value)

e COM: Function SetPropertyByName(name As
String, value) As Long

GetPropertylnfoByName Returns specific information, such as length, about the
definition of a property that is specified by name. This
function typically is used only in applications that
cannot get the names of component interface properties
until runtime or by applications that need to provide a
dynamic list of values that would normally be found in
prompt tables.

(In PeopleCode, ComplIntfPropInfoCollection)

Use these interfaces to call with other programming
languages.

* Java: IcomplntfcPropertyInfo
getPropertyInfoByName(String name)

e Ci+
HPSAPI COMPINTFCPROPERTYINFO<CiProp
Orltem>_GetPropertylnfoByName(HPSAPI <CIP
ROPORITEM> hPropOrltem, LPTSTR name)

where CiPropOrltem is the name of either a
property or an item in a collection.

* COM: Function GetPropertyInfoByName(name As
String) As ComplIntfcPropertyInfo

See PeopleTools 8.52: PeopleCode API
Reference, "Component Interface Classes,"
ComplntfPropInfoCollection Object Properties.

By default, each component interface is created with four standard methods—Cancel, Find, Get, and Save.
Additionally, the Create standard method is generated if Create keys have been added to the component
interface.

36 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Example for GetPropertyInfoByName

The GetPropertyInfoByName method returns an object containing the property information. Here is a Java
example that calls GetPropertyInfoByName:

| conpl ntfcPropertylnfo oConplntfcPropertylnfo
oConpl ntfcPropertyl nfo = oCl. get Propertyl nf oByNane(tenpNane);
System out . printl n(oConpl ntfcPropertyl nfo.get Name());
if (!oConplntfcPropertylnfo.getlsCollection()) {
Systemout.println("\t Format " + oConplntfcPropertylnfo.getFormat());
Systemout.println("\t Type + oConpl nt f cPropertyl nfo. get Type());

Systemout.println("\t Is Required =" + oConpl ntfcPropertyl nfo.
get Requi red());
Systemout.println("\t Is Collection? =" + oConplntfcPropertylnfo.
getlsCollection ());
Systemout.printin("\t Is Read Only? = " + oConplntfcPropertylnfo.
getl sReadOnl y());
Systemout.println("\t Is Get Key? =" + oConplntfcPropertylnfo.getKey());
Systemout.println("\t Label Long =" + oConplntfcPropertylnfo.
get Label Long());
Systemout.println("\t Label Short =" + oConplntfcPropertylnfo.
get Label Short ());
Systemout.println("\t Length =" + oConplntfcPropertyl nfo.getlLength());
Systemout.println("\t Nane = " + oConpl ntfcPropertyl nfo.getName());
Systemout.println("\t Is Xlat? =" + oConplntfcPropertylnfo.getXl at());
Systemout.println("\t Is Yesno? =" + oConplntfcPropertyl nfo.

get Yesno());

Note. When creating a new component interface, you must save the component interface before the standard
methods are created. PeopleSoft Application Designer adds the standard methods upon the first save of a new
component interface.

Understanding Collection Methods

The first item in a component interface collection is always indexed as item 1 from PeopleCode and COM
programs, which is consistent with other PeopleCode processing. From Java and C++ programs, this item is
indexed as item 0.

Component Interface Collection Properties

This table contains the component interface collection properties:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Developing Component Interfaces

38

Chapter 3

Data Collection Method

Action, Usage

Count

Returns the number of items in a collection.

Use these interfaces to call with other programming
languages.

e Java: long getCount()

e C++: PSI32 <CiCollectionName> GetCount
(HPSAPI_<CI_COLLECTION_NAME> hCol)

* COM: Count As Long

ItemByName
(not used in PeopleCode)

Returns the property in the collection. It takes Name as a
parameter.

Use these interfaces to call with other programming
languages.

* Java: I[ComplntfcPropertyIlnfo itemByName(String
Name)

o (CH++:
ComplntfcPropertyInfoCollection ItemByName
(HPSAPI COMPINTFCPROPERTYINFOCOLLE
CTION, LPTSTR Name)

e COM: Function ItemByName(name As String) As
ComplntfcPropertyInfo

InsertItem(Index)

Inserts a new item. This is equivalent to clicking the
Add button to insert a new row when online. It takes
Index as a parameter and follows the same conventions
for performing business rules (PeopleCode) as the
online system.

Use these interfaces to call with other programming
languages.

* Java: <CiCollectionName> insertltem(long Index)

e C++: HPSAPI <CI COLLECTION ITEM>
<CiCollectionName> Insertitem(HPSAPI <CI _CO
LLECTION NAME> hCol, PSI32 Index)

* COM: Function Insertltem(index As long) As
<CI_COLLECTION_ITEM>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Data Collection Method Action, Usage

Deleteltem(Index) Deletes the item that is designated by Index. This is
equivalent to clicking the Delete button to delete the
selected row when online.

Use these interfaces to call with other programming
languages.

* Java: boolean deleteltem(long Index)

e (C++:BOOL
<CiCollectionName> Deleteltem(HPSAPI <CI C
OLLECTION NAME> hCol, PSI32 Index)

* COM: Function Deleteltem(index As Long) As
Boolean

Item(Index) Takes an item number as a parameter and returns a
definition of the type that is stored in the specified row
in the collection. For example, if the collection is a data
collection, the return value is a DataRow. If the
collection value is a PropertylnfoCollection, then the
return value is a PropertyInfo definition, and so on.

Use these interfaces to call with other programming
languages.

* Java: <CiCollectionName> item(long Index)

* C++: HPSAPI <CI COLLECTION ITEM>
<CiCollectionName> Item(HPSAPI <CI
COLLECTION_NAME> hCol, PSI32 Index)
(HPSAPI COMPINTFCPROPERTYINFOCOLLE
CTION, PSI32)

e COM: Function Item(item As Long) As
<CI_COLLECTION ITEM>

ItemByKeys(keys) Identifies and finds a specific item, based on keys. The
keys vary according to the design of the collection.

Use these interfaces to call with other programming
languages.

e Java: <CiCollectionName> itemByKeys(String
Keyl, String Key?2, ...)

e C++: HPSAPI <CI_COLLECTION_ITEM>
<CiCollectionName> ItemByKeys
(HPSAPI_<CI_COLLECTION_NAME > hCol,
LPTSTR Keyl, LPTSTR Key?2, ...)

e COM: Function ItemByKeys(KEY 1 As String,
KEY 2,...) As<CI COLLECTION_ITEM>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Developing Component Interfaces Chapter 3

Data Collection Method Action, Usage

Currentltem Returns the current effective DataRow in the collection.
The behavior is consistent with effective date rules that
are used online. This method works with effective-dated
records only.

Use these interfaces to call with other programming
languages.

¢ Java: <CiCollectionName>currentItem()

e C++: HPSAPI <CI_COLLECTION_ITEM>
<CiCollectionName>
Currentltem(HPSAPI_<CI_COLLECTION_NAME
> hCol)

e COM: Function Currentltem() As
<CI_COLLECTION ITEM>

CurrentltemNum Returns the item number of the current effective
DataRow in the collection. The behavior is consistent
with effective date rules that are used online. This
method works with effective-dated records only.

(CurrentltemNumber)

Use these interfaces to call with other programming
languages.

* Java: long currentltemNum()

e (C++: PSI32 <CiCollectionName>
_ CurrentltemNum(HPSAPI <CI COLLECTION
NAME> hCol)

e COM: Function CurrentltemNum() As Long

GetEffectiveltem(DateString, SeqNum) Returns the DataRow that would be effective for the
specified date and sequence number. This is a more
general case of the GetCurrentltem function, which
returns the definition that is effective at this moment.
This method works with effective-dated records only.

Use these interfaces to call with other programming
languages.

e Java: <CiCollectionName> getEffectiveltem(String
Date, long SeqNum)

e C++: HPSAPI <CI_COLLECTION_ITEM>
<CiCollectionName>_
GetEffectiveltem(HPSAPI <CI_COLLECTION N
AME> hCol, LPTSTR Date, PSI32 SeqNum)

* COM: Function GetEffectiveltem(Date As String,
SeqNum As Long) As <CI_COLLECTION_ITEM>

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Data Collection Method Action, Usage

GetEffectiveltemNum(DateString, SeqNum) Returns the item number of the DataRow in the
collection that would be effective for the specified date
and sequence number. This is a more general case of the
GetCurrentltemNum function, which returns the number
of the definition that is effective at this moment. This
method works with effective-dated records only.

Use these interfaces to call with other programming
languages.

* Java: long getEffectiveltemNum(string Date, long
SeqNum)

* C++: <CiCollectionName>_ GetEffectiveltemNum(
HPSAPI <CI_ COLLECTION NAME> hCol,
LPTSTR Date,PSI32 SeqNum)

e COM: Function GetEffectiveltemNum(Date As
String, SeqNum As Long)

Enabling and Disabling Standard Methods

You can control whether standard methods are accessible at runtime.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

Developing Component Interfaces Chapter 3

Properties |
Gereral Standard Methods | S_I,Inn::hrn:-nizatin:nnl

¥ Cancel
[T | Ereate
W Find

k. I Cancel

Enabling standard methods for runtime accessibility on the Properties-Standard Methods tab

To enable or disable standard methods:

1. Select File, Definition Properties from the PeopleSoft Application Designer menu.
The Definition Properties dialog box appears.

2. Select the Standard Methods tab.

You can enable or disable any of the standard methods selecting the corresponding check box. Doing so
determines whether the method is available at runtime when the component interface is accessed. The
Create option is available only if the component interface has Create keys.

Creating User-Defined Methods

This section discusses how to create user-define methods.

42 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

‘\'[Application Designer - Untitled - [W0ORKLIST _Methods [Component Interface PeopleCode]]

D File Edit “iew Inzert Build Debug Toolz Go Favonrte: wWindow Help _|5’|5|

DBg] g fle =EE | s ¥ =]t s

r Untiled WORKLIST [componentinterface] j Methods j

Local Eowset srsfelectMax: .
Local 3QL &zqlUpdateMax, ssqglCheckFooled:

Local Record &recP3WORELIST:

PanelGroup array of string &Userlistc:

_I,-'ﬂ'
AddUzerforEntry

4dd a user to the list njf user for doentries to be performed.

returns true if successful

w4

Function AddUserforEntry(sUser As string)
sUzerList.Pushi«lUser) ;

End-Function;

¥ ["
—_— DoEntries ;I
— =
L Buildd Find CObject Feferences Upgrade 4 Results A Validate ,f
Fieady L | Y

Creating user-defined methods in PeopleCode

To create a user-defined method:

1.

Right-click anywhere in the component interface view.

2. Select View PeopleCode from the menu.

The PeopleCode editor appears. If you are using a new component interface, no PeopleCode will appear
in the editor because no user-defined methods have been created.

Write the required PeopleCode functions.

PeopleCode functions that you write are stored in a single PeopleCode program that is attached to the
component interface and associated with the Methods event.

Note. New user-defined methods do not appear in the list of methods until you save the component
interface. Double-click the icon of any existing user-defined method to return to this PeopleCode
program.

Set permissions for the methods that you created.

You must set permissions for every user-defined method. If you set permission to Full Access, at runtime
that function is exposed to external systems as a method on the component interface object.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

Developing Component Interfaces Chapter 3

Exporting User-Defined Methods

If you want a user-defined component interface to be exportable, meaning used by code that instantiates the
component interface, the method PeopleCode definition must include a Doc statement. It is in the form of:

Doc <docunentation for nethod>
where <documentation for method> describes what the method does
For example, the following method returns true if f00 is positive; otherwise, it returns false.

Functi on MyFooBar (i nt foo) returns bool ean
Doc

if (foo >0) then

return True

el se

return Fal se;

end-if;

end-functi on;

If a component interface method is to be exposed in a web service, the Doc statement should describe the
standard method after which it will be called and show an indication of each type of input parameter it
requires. In the following example, the SetPassword method on the USER PROFILE component interface
has been exposed to a web service. The Doc statement in this case has a string following the Doc keyword
and consists of comma-separated values: the method name Get, a string containing the new password, and
another string for the confirmation password.

Functi on Set Password(&password As string, &passwordConfirm As string) Returns>
bool ean
Doc "GET, NewPasswd, ConfirnPasswd

Validating Component Interfaces

44

Validation ensures that the structure of a component interface is still valid. Over time, the structure of a
component interface can become invalid due to component structural changes and modifications. For
example, this can happen whenever a component deletes or adds a record or field. It can also happen if the
keys on the component are added or removed. Properties and keys that no longer synchronize with their
associated components are marked with an X icon.

Note the following points about validating component interfaces:

» PeopleSoft Application Designer also validates each component interface upon its creation.

» The validation process determines only whether the underlying component of a component interface has
changed. It does not validate the PeopleCode that is associated with a component interface. To validate
the PeopleCode, open the component and select Tools, Validate from the PeopleSoft Application
Designer menu.

» Ifa component interface definition becomes invalid, you cannot save changes to it in PeopleSoft
Application Designer.

» Ifa component interface definition is associated with an active Integration Broker service, you cannot
delete it.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

To correct an invalid component interface, you might have to delete properties for which appropriate fields or

records no longer exist. If the structure of the source component has changed, you might have to delete old
properties and re-add the new properties in their appropriate locations. You may also need to rename a

property or collection.

To validate a component interface:

1. Open the component interface in PeopleSoft Application Designer.

Validation occurs automatically whenever you open a component interface in PeopleSoft Application

Designer.

2. Select Tools, Validate for Consistency from the PeopleSoft Application Designer menu to validate an

open component interface.

As you change components or other related definitions, you should validate a component interface that is

already open in PeopleSoft Application Designer.

Setting Security Options

After creating a component interface, you must set security for it. Each individual method also needs to be
provided security. Security for the component interface is provided through the PeopleSoft Internet
Architecture pages. Component interface permissions are set at the permission list level in PeopleSoft

security.

Component Interface Permissions

CURRENCY_CD _Cl

Component Interface Customize | Find | IEII i First [4] 1-5of 5
Permission n -
Method [MethodAcsess
Cancel | Full Access v|
Create | Full Access v|

Find | Full Access v|

Get | Full Access v|

Save | Full Access v|

Full Access (All) |

Mo Access (All) |

Setting access permissions for methods

To set up component interface security:

1. Sign in to the PeopleSoft Pure Internet Architecture through the browser, and select PeopleTools,

Security, Permissions & Roles, Permission Lists.
2. Select the permission list for which you want to set security.

The Permission List component appears.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

45

Developing Component Interfaces Chapter 3

3. Access the Component Interfaces page.
4. Select the component interface for which you want to set security.
To add another component interface to the list, click the Add button.

5. Click Edit.

The Component Interface Permissions page appears, showing all of the methods (both standard and user-
defined) in the component interface and their method of access.

6. Set the access permission for each method.

Select Full Access or No Access. You must grant full access to at least one method to make the component
interface available for testing and other online use.

7. Click OK when you are done.

8. Save the page.

Testing Component Interfaces

After setting the security for a component interface, you can test the contents and behavior using the
component interface tester. You should test the component interface before using it in your external system.
This proactive tool helps you discover problems with the underlying component or the component interface
itself, including user-defined methods. When you are testing a component interface, real data from the
database is used. Therefore, if you save the information that you change by calling the Save method, the
information is changed in the database.

With the component interface tester, you can:

» Test the component interface in interactive mode.
» Retrieve history items.

» Test the standard, custom, and collection methods.

Searching Component Interfaces to Test

To test the component interface, you search for the component interface to test, and then you test it.

Access the Component Interface Tester search dialog box:

46 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component Interface Tester - Enter key value.@%

— 'Get' keys for Component Interface [double-click to set]

Ko

[Get Existing

'Create’ keps for Component Interface [double-click to zet]

kae SDK_STOCK_TICKER
kete SDK_STOCK_EXCHAMNGE

Create Mew

'Find' keys for Component Interface [double-click to set]

ke SDK_STOCK_TICKER
ke SDR_STOCK_ExCHAMGE

ke SDK_STOCKCOMP _NAME

Find

¥ |rteractive Mode [get properties immediately]
[Get Histamy ltems
[Edit History Items
v Get Dummy Bows

Cancel

EoEd

Component Interface Tester search dialog box

To search for a component interface to test:

1. Open the component interface in PeopleSoft Application Designer.

Developing Component Interfaces

2. Select Tools, Test Component Interface from the PeopleSoft Application Designer menu.

The Component Interface Tester search dialog box appears. This dialog box displays the keys (in the left-
hand columns) for getting, creating, or finding an instance of the component interface. The right-hand

columns provide a place for you to enter sample key values for testing.

3. Enter key values.

a. Double-click the column to the right of any displayed keys.

b. Enter the value in the right-hand column.

The data that is used for the test corresponds to the key values that you enter here. In the preceding
example, we have entered an employee ID of 6602.

47

Developing Component Interfaces Chapter 3

Interactive Mode In interactive mode, any action request occurs immediately. Each property
being set causes an immediate trip to the application server (or database
server in two-tier mode). This differs from noninteractive mode, in which
actions are often held and later sent in batches. For example, in
noninteractive mode, if you set a property, the property is not validated
until you perform the save. However, in interactive mode the property is
validated immediately. This means that edit processing (and other
processing, such as FieldChange PeopleCode) occurs for each set property.

Whether you select this option depends on how you expect a particular
component interface to be used and what you are currently testing. In a real
production system, this parameter can significantly affect performance, but
it makes little difference in the test component. In noninteractive mode,
errors and properties are not updated until a method is run. By default,
Interactive Mode is selected in the component interface tester.

Get History Items Select to retrieves history data. This option applies to effective-dated fields
only and is equivalent to running in either Update/Display or
Update/Display All mode.

Edit History Items Select to enable editing and saving of history data. This option applies to
effective-dated fields only and is equivalent to running in either
Update/Display or Correction mode.

Get Dummy Rows Specify whether to get dummy rows. This option is selected as a default.

The component processor provides dummy rows to enable quick data entry
when the level you are accessing does not have any data. Because of this,
an API that does not need this row finds it and exposes it to the user. The
application that uses the API now has to determine whether the row is a
dummy row and accordingly decides to execute Item or Insertltem.

Setting the GetDummyRow to false enables the component interface
processor to handle the counts accordingly. With this property set to false,
users do not have to use item and Insertltem when adding new data at levels
1 to 3. Instead, they can comfortably always use Insertltem.

Get Existing Clicking Get Existing is equivalent to opening a record in Update/Display
or Correction mode online. It retrieves one instance from the database.
After you click the Get Existing button, the Component Interface Tester
dialog box appears.

Create New Clicking Create New is equivalent to creating a new row in Add mode
online. If your component does not support the Create method, this button
is disabled. After you click the Create New button, the Component
Interface Tester dialog box appears.

Getting Existing Records by Using Partial Keys

If you want to retrieve a partial key, click the Find button on the Component Interface Tester page. The Find
Results dialog box appears:

48 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

— Find Besultz [click itemn to select]

Component Interface Tester - Find Results

CURREMCY_CD
DESCR
CURRENCY_CD_CI [26E]
CURREMCY_CD
DESCR
CURRENCY_CD_CI [267]
CURREMCY_CD
DESCR
CURRENCY_CD_CI [268]
CURREMCY_CD
DESCR
CURRENCY_CD_CI [269]
CURREMCY_CD
DESCR
CURRENCY_CD_CI [270]
CURREMCY_CD
DESCR

ZaR
Rand

Zhik.
Zambian Kwacha

ZRM
Mew Zaire

R
Zaire

WEC
Fhodeszian Dollar

w0
Zimbabwe Daollar

ﬂ Get Selected I
Cancel |

d

a

| B

Component Interface Tester — Find Results dialog box

Developing Component Interfaces

You can choose the specific instance by selecting and clicking the Get Selected button. If you do not enter a
partial key before clicking Find, all key values in the database are returned (subject to the maximum count of
300, just as when online). This is the same as calling the Find method through the component interface API,
followed by selecting a value from the Find results, setting the Get key, and calling the Get method. After you

click the Get Selected button, the Component Interface Tester dialog box appears.

Testing Component Interfaces

After you have searched for and retrieved the component interface, the Component Interface Tester dialog

box appears.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

49

Developing Component Interfaces Chapter 3

i Component Interface Tester ﬂ

|Lix-'e Component Yiew. Double-click to change walues, Right click to execute methods.

[tern M ame WYalue |
=8 SDK_BUS_EXF
- GetfeyinfoCollection
- FindKeyinfoCollection

¢ SDK_BIRTHDATE 05/01/1950
=B SDK_BUS_EXP_PER

¢ SDK_DEPTID 21700

o g SDK_MAME Peppen.Jacques

Error beszage Log

Component Interface Tester dialog box

Testing Component Interface Properties

From the Component Interface Tester dialog box, change the value of a property, double-click a value, and
enter a new value. Some basic validation is done when you leave the field, which is equivalent to leaving a
field using the Tab key in the online case. This validation includes system edit, FieldChange PeopleCode
events, and FieldEdit PeopleCode events. Further validation can be done when the Save method is called
(SaveEdit, SavePreChange, Workflow, and SavePostChange). If errors occur or warnings are encountered,
messages are displayed in the Error Message Log area at the bottom of the window. The error message log
displays the same text that would appear in the PSMessages collection of the Session object if you accessed
the component through the Component Interface API.

Testing Component Interface Methods
Test component interface methods by right-clicking the component interface name.

A menu appears that shows the Save and Cancel standard methods and any user-defined methods that exist
for the component interface. The Find, Create, and Get standard methods are not valid for an instantiated
component, and therefore are not shown.

If a component interface method requires one or more parameters, a dialog box in which you can enter the
parameters appears. After the method is executed, the same dialog box appears again, displaying changes to
the parameters that were caused by the method. The return value of the function appears in the title of the
dialog box. If a component interface requires no parameters, you do not see the initial dialog box, but you do
see the return value dialog box following the function call.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Developing Component Interfaces

GetPropertyInfoByMName(). Enter parameters:

X
|N ame [String]: || | ok I

Cancel

GetPropertylnfoBy Name(). Enter parameters: dialog box

Note. Because running a component interface method can result in a change to the component interface
structure, PeopleSoft Application Designer always redraws the component interface tree in its collapsed form
following a method call.

Testing Collection Methods
Test collection methods by right-clicking the collection name.

A menu appears that shows the standard collection methods. Select the collection method that you want to
test for this component interface. After you select a collection method to test, the Enter parameters dialog box
prompts you to enter an item number for the collection method that you are testing. The value that you enter
for index [Number] is used to retrieve, insert, or delete an item, according to the following rules.

After you enter an index number, the result appears in the dialog box. If a return value is sent, it is displayed
in the title bar. Otherwise, the message No value is displayed. Click OK or Cancel to dismiss the dialog box.
Collection Method Rules

This table contains the collection method rules:

Collection Method Purpose

Item(index) Returns the row at the specified index. Only the success
or failure of this routine is of interest from inside the test
component.

Insertltem(index) Inserts a new row either before the index that you
specify if the collection is effective-dated or following
the index if it isn't effective-dated.

Copyright

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

Developing Component Interfaces Chapter 3

Collection Method Purpose

Deleteltem(index) Deletes the row that is designated by the index number
that you specified in the Enter parameters dialog box.

ItemByKeys(keyl, key2, ...) Returns the row corresponding to the specified keys.
Only the success or failure of this routine is of interest
from inside the test component.

Currentltem This method returns the effective row in an effective-
dated record. Only the success or failure of this routine
is of interest from inside the test component.

GetEffectiveltem(DateString, SeqNum) Returns the data row that would be effective for the
specified date and sequence number. This is a more
general case of the GetCurrentltem function, which
returns the definition that is effective at this moment.
This method works with effective-dated records only.

GetEffectiveltemNum(DateString, SeqNum) Returns the item number inside the collection of the data
row that would be effective for the specified date and
sequence number. This is a more general case of the
GetCurrentltemNum function, which returns the number
of the definition that is effective at this moment. This
method works with effective-dated records only.

Note. Component interface classes contain information about collection methods.

Determining ItemByKeys Parameters
You can get the signature for the [temByKeys method (or any other method) when testing a component

interface. This is helpful for the [temByKeys method, because its signature is different for each component
interface.

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

ItemByKeys(). Enter paramekers:

X
SDK_EMPLID [String} [o, |

SDK_EXP_PER_DT [String] | Cancel

Viewing the signature of the ltemByKeys method

To determine ItemByKeys parameters:

1. Open the definition.

2. Select Tools, Test Component Interface.

3. Find or get an appropriate populated component interface.
4. Navigate to the appropriate collection.

5. Right-click, and select ltemByKeys from the menu.

A dialog box appears, showing the specific parameters and types and the order in which you should call
ItemByKeys.

In the preceding example, the keys for the SDK_BUS_EXP PER ItemByKeys method are SDK_EMPID
(String) and SDK_EXP PER DT (String).

Understanding Synchronization

The Component Interface Properties Synchronization tab is used with PeopleSoft Mobile Agent.

Important! PeopleSoft Mobile Agent is a deprecated product. The Component Interface Properties
Synchronization tab exists for backward compatibility only.

PeopleSoft Mobile Agent extends the functionality of PeopleSoft Pure Internet Architecture to disconnected
mobile devices, enabling users to continue working with their PeopleSoft applications on a laptop computer
or personal digital assistant (PDA) while disconnected from the internet or local network.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

Developing Component Interfaces Chapter 3

Generall Standard Methods Synchronization

¥ Synchronizable

— Conflict Besalution
{* Server wWinz
 Device "Wing

= Custam

— &pplication Meszages

tezzage Set Mumber: I

— Upload changes from mobile device?

= Yes
+ Mo, restore server values at synchronization brne

= Mo, retain curent device values

Related Cantent Project: Select I Clear I

s I Cancel |

Properties—Synchronization tab

Writing Component Interface Programs

The following chapters in this PeopleBook describe how to write component interface programs in several
programming languages.

Also, the PeopleTools PeopleCode Reference contains a chapter that describes the component interface
classes, including detailed instructions on the life cycle of a component interface and how to implement a
component interface program in PeopleCode. You can use this information to help design your component
interface program in other programming languages.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes."

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Developing Component Interfaces

Understanding Runtime Considerations

In many ways, accessing a component interface is functionally equivalent to working with an online
component. However, some important differences exist between component interfaces and components. This
section describes how those differences affect interactive operation, functionality designed for graphical
interfaces, client versus server operation, and several miscellaneous situations. These considerations, unless
otherwise noted, apply to all the programming languages listed in this manual.

General Considerations

This section discusses general considerations for component interface programs.

WinMessage Unavailable

You cannot use the WinMessage API in a component that will be used to build a component interface. Use
the MsgGet() function instead.

Email from a Component Interface

To use a component interface to send email, use the TriggerBusinessEvent PeopleCode event, not SendMail.

Related Display

Related display fields are not available for use in a component interface because they are not held in the
buffer context that the component interface uses.

Row Inserts

If row insert functionality has been disabled for a page, you must take care when calling inserts against the
corresponding component interface. Any PeopleCode associated with buttons used on the page to add rows
will not be invoked by the component interface when an insert is done.

Note. If a component has logic that inserts rows on using the RowlInsert event, the component interface
cannot identify the change and locate the rows that were inserted by the application code. Generic interfaces
such as Excel to Component Interfaces utility and the WSDLToCI will not function correctly when using this
type of dynamic insert.

Custom Field Formats

Custom field formats that are defined dynamically via Peoplecode are not enforced by component interfaces,
as they are evaluated by the page processor and not available to the component interface processor. Only the
static formats defined in the Application Designer will be applied.

Scope Conflicts

This section discusses scope conflicts for component interface programs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

Developing Component Interfaces Chapter 3

Infinite Processing Loops

A component interface should not call itself in any of the PeopleCode included within its component
definition, because this may result in an infinite loop of the component interface. A component interface also
should not call itself from a user-defined method.

Multiple Instances of a Component Interface

Because of potential memory conflicts, COM or C++ applications should not create multiple, simultaneous
instances of the same component interface, either within a single procedure, or in both a parent and a child

procedure.

Interactive Mode

56

This section discusses interactive mode considerations for component interface programs.

UNIX Server Performance

If you are using a component interface as part of a batch process in which thousands of rows are being
inserted, running in interactive mode may reduce performance enough on some UNIX servers to produce a
connection failure. Prevent this by setting the InteractiveMode property to False.

Hidden Edit Validation Errors

If the InteractiveMode property is set to True, and if a transaction sets a property to a value that isn't allowed
in a prompt edit field, the edit field value is reset back to its original value. The error is logged in the
PSMessages collection; however, the Save method runs without errors. Check the value of both the Save
method and the collection ErrorPending property to discover all of the errors.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Programming Component Interfaces
Using PeopleCode

This chapter provides an overview of PeopleCode behavior and limitations and discusses how to:

Generate a PeopleCode template.

Understand the PeopleCode template.

Understanding PeopleCode Behavior and Limitations

Note the behavior and limitations discussed in this section when you write PeopleCode for a component
interface.

PeopleCode Event and Function Behavior

PeopleCode events and functions that relate exclusively to the graphical user interface and online processing
cannot be used by component interfaces. These include:

Search dialog processing.

When you run a component interface, the Searchlnit, SearchSave, and RowSelect events do not fire. This
means that any PeopleCode associated with these events will not run. The first event to run is RowlInit.

Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the CheckMenultem,
DisableMenultem, EnableMenultem, HideMenultem, and UncheckMenultem functions are not available.

Transfers between components, including modal transfers.
The TransferPage, DoModalPageGroup, and IsModalPageGroup functions cannot be used.
Dynamic tree controls.

Functions related to this control, such as GetSelectedTreeNode, GetTreeNodeParent,
GetTreeRecordName, RefreshTree, and TreeDetaillnNode cannot be used.

ActiveX controls.

The PSControllnit and PSLostFocus events are not supported, and the GetControl function cannot be
used.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Programming Component Interfaces Using PeopleCode Chapter 4

« DoSave() and DoSaveNow().

The DoSave() and DoSaveNow() pcode functions are not supported. You should use the component
interface Save() method and wrap the DoSave() and DoSaveNow() functions so that they do not execute
when called from a component interface.

» Functions that are ignored in a component interface call.

Some PeopleCode functions are ignored if they are called through a component interface. These functions
are:

* WinMessage

e CheckMenultem

» DisableMenultem

* EnableMenultem

* HideMenultem

» UncheckMenultem

» SetCursorPos

» TransferPanel

e TransferPage

» DoModalComponent
» IsModalComponent
» DoModalPanelGroup
» IsModalPanelGroup
* GetSelectedTreeNode
* GetTreeNodeParent

» RefreshTree

* TreeDetaillnNode

* GetControl

e DoSave

* DoSaveNow

e QGray

e Ungray

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Programming Component Interfaces Using PeopleCode

CopyRowset Language Considerations

In previous PeopleSoft releases, CopyRowset* functions for component interfaces were not sensitive to the
language code on PSCAMA. Because of this, related language processing did not take place when language
code on PSCAMA was different from the base language code. PeopleSoft now detects the language code in
PSCAMA.

Limitations of Client-Only PeopleCode

Component interfaces can run on either the client or the server. By default, a component interface runs on the
server. It runs on the client only if the code calling the component interface is running on a client machine.

Component interfaces must run either entirely on the server or entirely on the client. To ensure this runtime
restriction, component interface references declared in PeopleCode must be declared as local, not global,
variables.

Some built-in functions are always client-only; others are client-only under specific conditions.

Some built-in functions behave differently when used in three-tier mode, as opposed to two-tier mode.

Generating PeopleCode Templates to Access Component Interfaces

To access a component interface using PeopleCode, PeopleSoft Application Designer generates a template in
the form of boilerplate PeopleCode that you can adapt to your purposes. This section describes how to
generate the template code.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 59

Programming Component Interfaces Using PeopleCode Chapter 4

‘\I Application Designer - QEDMO844 - [CURRENCY_CD_CI.Methods (Component Inter - |EI|5|
[J) File Edit View Insert Build Debug Toolks Go Window Help ==
0|88 S| &[=|\ =8 S wlw| B Blelsle] o
{:l Appiication Packages ;I ICUFIHENEY_ED_EI [componentinterface] jlh’lethuds j
{17 Approval Rule Sets [*]: sfilelog.Weiteline ("soCurrencyCdCi. COUNTREY = 7 | ;I
{“_"| Business Interlink soCurrencyCdAdCi. COUNTRY) ; rem soCurrencyCdCi. COUNTRY =
{{] Business Processes [*1: sfilelog.Writeline ("soCurrencyCdCi. CUE_SYHMEOL = ™ |
Ea Component Inketface soCurrencyCdACi.CUR_3YMEOL) ; rem soCurrencyCdCi.CUR_SYMEOL =
CLIRRE] O [*]: sfilelog.Writeline ("soCurrencyCACi.DECIMAL _POSITIONS = ™ |
gs QE_GL .D.CCOLIT soCurrencyCdCi.DECIMAL PO3IITIONI): rem coCurrencyCdCi.DECIMAL POSITIONS
95 QE_MB_COLIRSE = [*]:; e&filelog.Writeline("soCurrencyCdCi.3CALE POSITIONS = ™ |
Sﬁ QE_MB_E\-'ENTS_(soCurrencyCACi. 3CALE_POSITIONS) » rem soCurrencyCACi.3CALE_POSITIONS =
- = = [*]: rem ***%% End: Get/Set Component Interface Properties #%%%#; o
@3 QE_MB_PROF DI} *EEEE Execute Save ®*%%%: rem If Not soCurrencyCdCi.Zawe() Then:; rem
gﬁ QE_MB_PROFESS: errorHandler () rewm throw CreateException(d, 0, "Sawve failed™); re
g (JE_MB_SCH_DEF End-If; rem ***%*%* Execute Cancel *#*%%; rem If Not
G QF _MB_STUDENT, soCurrencyCdCi.Cancel() Then: rem errorHandler(); rem throw
95 QE_M‘5‘_5T'-|DET‘\1T.v CreateException(l, 0, "Cancel failed™); rewm End-If:;catch exception
al OE "":D“":I—I seX rem Handle the
) = exception: &filelog.Writeline(sex.Todcring()) rend-try efilelog.Writeline
%4 Develo. .. "End”) ;sfilelog.Close() ; —
= 4| | 3
3 Relationships defintion[z] in project. ;l

B0 CI Property PeopleCode definition[z] in project.
2 Optimization Modelz definition[z] in project.
1413 total definition[z] in project.

1 Companent Interfaces definition(z] inzerted. j
Ak Build A Uparade A Results £ validate f
Ready Ln 66, Col 1 v

PeopleCode generated by dragging and dropping a component interface

To generate a PeopleCode template for a component interface:
1. Open the desired component interface definition in PeopleSoft Application Designer.
2. Insert the component interface into a project.
a. Select Insert, Current Object into Project.
b. Save the project.
3. Open the PeopleCode editor.

You can associate component interface PeopleCode with a record, a component, a service operation
handler, or an Application Engine program.

4. Select the component interface from the project workspace.
Drag and drop the object from the project into the PeopleCode Editor.
5. Make any necessary changes to the PeopleCode in the PeopleCode Editor window.

This is specially important on components that have multiple scrolls at the same level, as the automatic
code generation may have difficulty determining the parent of the collection (scroll). Therefore, the
template code should be inspected and corrected as needed.

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Programming Component Interfaces Using PeopleCode

Understanding PeopleCode Templates

The code shown in this section is a dynamically generated PeopleCode template that you can use as a starting
point. Replace all default values or <*> notations with specific values or references to valid PeopleCode
variables (replace this entire three-character string: <*>).

Note. The requirement to populate a non-create key is no longer a requirement to do the initial save.

PeopleCode runs only if you are connected. This means that you do not have to explicitly connect. Instead,
connect to the existing session, using the %Session system variable.

See PeopleTools 8.52: PeopleCode API Reference, "Quick Reference for PeopleCode Classes," Session
Classes Methods and Properties.

You cannot connect to a different database through PeopleCode.

Set the PeopleSoft session error message mode. This property is used to determine how messages are output.
This property takes either a numeric value or a constant. The default value is 1
(%PSMessages CollectionOnly).

This property sets the value for the session. You can change modes during a session, for example, if you're
starting a component interface. However, after you run the component interface, you should set the value
back. Here is the list of modes that you can use:

Mode Value Purpose

0 Return no messages.

1 Default. Log messages into the PSMessage collection.

2 Display a pop-up message or dialog box.

3 Log messages into the PSMessage collection and pop up
a message dialog box.

See PeopleTools 8.52; PeopleCode API Reference, "Session Class," PSMessagesMode.

PeopleCode Template Notes

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

Set the keys for the component interface. In this example SDK_EMPLID is the Get key.
The get() method retrieves data from the database, associated with the key values.

Get and print properties at level 0.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

Programming Component Interfaces Using PeopleCode Chapter 4

62

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.
Get collection at level 1 (SDK_BUS EXP_ PER).
Get and print properties at level 1.

Similar code is generated for the properties SDK_EMPLID and SDK_BUS _EXP SUM in the
SDK _BUS EXP_PER collection.

Get collection at level 2 (SDK_BUS _EXP DTL).
&oSdkBusExpDt | Col | ecti on = & SdkBusExpPer. SDK_BUS EXP_DTL;
Get and print properties at level 2.

Similar code is generated for the properties SDK_EMPID, SDK_EXP PER DT, SDK _EXPENSE CD,
SDK_EXPENSE AMT, SDK CURRENCY_ CD, SDK BUS PURPOSE, and SDK DEPTID.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Programming Component Interfaces in
Java

This chapter discusses how to:

* Build APIs in Java.

e Setup the Java environment.

» Generate Java runtime code templates.

» Understand generated Java code.

Building APIs in Java

If you plan to access your component interface from a Java external application, you must create a component
interface API. The APIs are in the form of * java source code files, which should be compiled into Java
classes.

To build the component interface bindings:
1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of which
one is open.

2. Select Build, PeopleSoft APIs.

The Build PeopleSoft API Bindings dialog box appears.
3. Select the Build check box in the Java Classes group box.

For the target directory, enter the directory in which you want the Java class source files to be created.
4. Click OK to build the bindings that you selected.

The files that constitute the bindings are built in the location that you specified. If the operation is
successful, a Done message appears in the PeopleSoft Application Designer Build window.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

Programming Component Interfaces in Java Chapter 5

5. Compile the APIs that you just generated.

You could use one of these commands:

+ Example I:

cd %S _HOVE% cl ass\ Peopl eSof t \ Gener at ed\ Conpl ntfc
javac —classpath %S HOVE% cl ass\psjoa.jar *.java

» Example 2:

cd c:\pt8\class\Peopl eSof t\ Gener at ed\ Peopl eSof t
javac -classpath %S HOVE% cl ass\psjoa.jar *.java

Setting Up the Java Environment

64

When deploying component interfaces on a local client machine or web server with Java bindings, you must
have:

» The third-party Java application.
» The application server and database.

» The Java Virtual Machine (JVM) supplied with Sun Microsystems Java Development Kit (JDK). The
JDK may already be installed on your system. To verify that the JVM is installed, check the
%PS_HOMEY%\RE directory. If it is not installed, you can obtain download information at the Oracle
web site.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html.

To set up your client machine to access the component interface API using Java:

1. Ifitis not already installed on your system, install the Sun Microsystems JDK to enable the JVM.
You can download the JDK to any location, for example c:\bea\jkd<version>.

2. Set the environment variable PATH to include the directory containing jvm.dIL

For example, you might set it at c:\bea\jkd<version>\jre\bin\client; or, if the PeopleTools install is done
locally, the path is <PS_HOME>\jre\bin\client.

3. Set the environment variable CLASSPATH to include:
» The file psjoa.jar (typically <PS HOME>\class\psoa.jar).

» The target directory selected during the Build API process (<PS_ HOME>\class).

Note. In previous releases, sites using UNIX servers received the following error message when invoking a
component interface through the PeopleSoft Java Object Adapter (PSJOA): PSProperties not loaded from
file. To resolve this issue, copy the pstools.properties file to the component interface execution directory.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 5

Programming Component Interfaces in Java

Generating Java Runtime Code Templates

To access a component interface through external APIs using Java, PeopleSoft Application Designer

generates a template in the form of boilerplate Java code that you can adapt to your purposes.

External Java APIs are located in the <PS_CFG_HOME>\ExtAPI Java directory.

This section describes how to generate the template code.

\'[Application Designer - Untitled - [CURRENCY_CD_CI {Component Interface}]

@File Edit “iew Insert Build Debug Tools Go ‘Window Help

=0l x|
=181x]

D|2|8|g] 8| 4|=e = 8]=
CURREMCY_CD_COMP [Componen | M armme
CURRERCY_CD_TEL [Table] - £
B~ Serol - Level 0 Yiew Definition
View PeopleCode Cv_CO_... CURREMCY_CD
Edit: Properky: CYCD_.. DESCR
::': Eame t CY CD_.. CURRENCY CD
it Commen
Edit Reference v D CURBENCY CD
Create Reference - B
gy Toggle Read Only Access CY_CO_.. CURRENCY_CD
- Delste C¥_CO_... EFFCT b
Z Component Interface Properties g:gg: EEFS—SHTATUS
-4 Validake For Consistency Cv_CD_... DESCRSHORT
- Cv_CD_... COUNTRY
g Test Component Inkerface CY_CD_.. CUR_SYMBOL
4 I I ﬂ ﬂ “ ¥ Generate Visual Basic Template L CD DECIMAL_POS Llﬂ
Generate Java Template
Beqin validating Companent Interface inteaqrity Esnazie € Templ sz =
Mo emors found.
End Companent Interface walidation
AT Buid b Upgrade b Results } Validate /
Generate Java template A

Generating Java template

To generate a Java template for a component interface:

1. Open a component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

65

Programming Component Interfaces in Java Chapter 5

3. Select Generate Java Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note. The template file is generated in the directory specified by the TEMP or TMP system environment
variable on your client machine.

4. Edit the generated file and modify the source code to suit your needs.
5. Compile the source code to generate a class file.
In the case of the example used in this manual, you could use this command:

javac —classpath c:\tenp;c:\pt8\class;c:\PT8\class\psjoa.jar SDK BUS EXP.|ava

Understanding the Java Template

66

You can use the Java template as a starting point for your Java program. This section contains a skeleton of
the generated Java template for a component interface named SDK_BUS EXP, which is part of the
component interface SDK. The template has been edited for length.

Import all the required classes.

i nport java.io.?*;
i mport psft.pt8.)oa.*;
i mport Peopl eSoft. Gener at ed. Conpl ntfc. *;
public class SDK _BUS _EXP {
public static |Session oSession,;

public static void main (String args[]) {
try {
[[***** Set Connect Paraneters *****
String strServerNane, strServerPort, strAppServerPath;
String strUserl D, strPassword,;
//Bwld Application Server Path
st rAppServerPath = strServerName + ":" + strServerPort;

Note. To enable Jolt failover and load balancing in the PeopleSoft Pure Internet Architecture, you can supply
multiple application server domains for the strAppServerPath variable. Separate the domain names with a
comma, and make sure that no spaces are included, for example, strAppServerPath =
//APPSRVR1:8000,//APPSRVR2:9000

Create the PeopleSoft Session object to enable access to the PeopleSoft system.

The Session object controls the environment and enables you to do error handling for all APIs from a central
location.

[[***** Create Peopl eSoft Session Object *****
oSession = APl . createSession();

Connect to the application server by using the connect method of the Session object.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Programming Component Interfaces in Java

[1***** Connect to the App Server ***x*

/1if the Jolt Password is to be provided, switch to the the second
/lversion of the statement bel ow

if (!oSession.connect(1, strAppServerPath, strUserlD,

strPassword, null)) {

/1if (!oSession.connectS(1, strAppServerPath, strUserlD,
/lstrPassword, null, strJoltPwd)){

Systemout.println("\nUnabl e to Connect to the Application Server.
Pl ease verify it is running");

Error Handl er () ;

return;

}

If the application server is configured to use a domain connection password other than the default value, use
the connectS method, currently shown commented out in the previous Java template example, instead of the
Connect method. The connectS method takes in all the same parameters as the Connect method, plus a
domain Connection password as an additional parameter:

connect S(1, strAppServerPath, strUserlD, strPassword, null, strJoltPwd);

You define the domain connection password using the DomainConnectionPwd field in the Security section of
the application server configuration file, configuration.properties.

See PeopleTools 8.52: System and Server Administration, "Setting Application Server Domain Parameters,"
DomainConnectionPwd and PeopleTools 8.52: System and Server Administration, "Working with Jolt
Configuration Options," Configuring Domain Connection Password.

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

| SdkBusExp oSdkBusExp;
String ci Nane;
ci Name = " SDK_BUS_EXP";
0SdkBusExp = (I SdkBusExp) oSessi on. get Conpl ntfc(ci Nane);
if (0oSdkBusExp == null)
Systemout.println("\nUnable to Get Conponent Interface " +
ci Nane) ;
ErrorHandl er () ;
return;

}

[1***** Set the Conponent Interface Mbde *****
0SdkBusExp. set I nteracti veMode(fal se);
0SdkBusExp. set Get Hi storyl tens(true);
0SdkBusExp. set Edi t Hi storyltens(fal se);

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

[***** Set Conponent Interface Get/Create Keys *****
String strSdkEnpli d;
Systemout.print("\nEnter SdkEnplid: ");
st rSdkEnplid = i nDat a. readLi ne();
0SdkBusExp. set SAkEnpl i d(str SdkEnpl i d);

The get() method retrieves data from the database, associated with the key values.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

Programming Component Interfaces in Java Chapter 5

68

//***** Execute C_:et *kk k%
i f (!oSdkBusExp. get (
System out. printl
\nFailed to get
ErrorHandl er () ;
return;

{
‘\'nNo rows exist for the specified keys.

)
n(
t he Conponent Interface.");

Get and print properties at level 0.

System out . printl n("oSdkBusExp. SdkName: " +
0SdkBusExp. get SdkNare()) ;

Similar code is generated for the properties SDK BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS EXP PER).

| SdkBusExpSdkBusExpPer Col | ecti on oSdkBusExpPer Col | ecti on;
| SdkBusExpSdkBusExpPer oSdkBusExpPer ;
0SdkBusExpPer Col | ecti on = oSdkBusExp. get SdkBusExpPer () ;

Get and print properties at level 1.

for (int i17 = 0;
i 17 < oSdkBusExpPer Col | ection. get Count (); i17+4) {
0SdkBusExpPer = oSdkBusExpPer Col | ection.iten(i17);

System out . printl n("oSdkBusExpPer. SdkExpPerDt: " +
oSdkBusExpPer . get SdkExpPer Dt ()) ;

Similar code is generated for the properties SDK_EMPLID and SDK_BUS EXP_SUM in the
SDK BUS _EXP_PER collection.

Get collection at level 2 (SDK_BUS _EXP DTL).

| SdkBusExpSdkBusExpPer SdkBusExpDt | Col | ecti on

0SdkBusExpDt | Col | ecti on;
| SdkBusExpSdkBusExpPer SdkBusExpDt | oSdkBusExpDt| ;
0SdkBusExpDt | Col | ecti on = oSdkBusExpPer . get SAkBusExpDt| () ;

Get and print properties at level 2.

for (int i211 = O;
i 211 < oSdkBusExpDt| Col | ection. get Count (); i211++) {
0SdkBusExpDt | = oSdkBusExpDt| Col | ection.iten(i?211);

System out. printl n("oSdkBusExpDt| . SdkChargeDt: " +
0SdkBusExpDt | . get SdkChar geDt ()) ;

Similar code is generated for the properties SDK_EMPID, SDK_EXP PER DT, SDK _EXPENSE CD,
SDK_EXPENSE AMT, SDK CURRENCY_ CD, SDK BUS PURPOSE, and SDK DEPTID.

}
}

Disconnect from the Application server by using the disconnect method of the Session object. This method
clears the buffers and releases the memory.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

[1***** Disconnect fromthe App Server ***x*
oSessi on. di sconnect () ;
return;

}

catch (Exception e) {
e.printStackTrace();
Systemout.println("An error occurred: ");
ErrorHandl er () ;

—

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Programming Component Interfaces in Java

69

Chapter 6

Programming Component Interfaces in
C++

This chapter discusses how to:

¢ Build the APIs for C++.

e Setup the C++ environment.

e Generate C++ runtime code templates.

» Understand the C++ template.

Building APIs for C++

If you plan to access your component interface from a C++ external application, you must create a component
interface API. The APIs are in the form of C header files (*.h), which need to be included in the calling
program.

To build the component interface bindings:
1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of which
one is open.

2. Select Build, PeopleSoft APIs.
The Build PeopleSoft API Bindings dialog box appears.
3. Select the Build check box in the C Header Files group box.

For the target directory, enter the directory in which you want the C++ header file to be created, typically
<PS_HOME>\bin\client\winX86.

4. Click OK to build the bindings that you selected.

The peoplesoft peoplesoft. i.h file that constitutes the bindings is built in the location that you specified.
If the operation was successful, a Done message appears in the PeopleSoft Application Designer Build
window.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

Programming Component Interfaces in C++ Chapter 6

Setting Up the C++ Environment

When deploying component interfaces on a local client machine with C++ bindings, you must have:

The third-party C++ application.
The Application server and database.

The Java Virtual Machine (JVM) supplied with the Sun Microsystems Java Development Kit (JDK)
found in the %PS_HOME%\JRE directory.

Y our compiler, configured for the C++ project.

Third-Party Applications

For applications written in C or C++, note that:

The function names generated by the Build APIs process can be quite long. You may want to consider
creating classes within your C++ code to mask this length throughout your program.

When you create your installation for your C or C++ program, make sure that you include the setup of the
path to the psapiadapter.dIl.

Setting Up Client Machines to Access C++ APIs

To set up your client machine to access the component interface API using C++:

1.

Install the PeopleSoft File Server.
See PeopleSoft Installation Guide, "Using the PeopleSoft Installer.”

Set the environment variable PS HOME to point to the installed PeopleSoft PeopleTools directory (for
example, c:\pt852).

3. Set the environment variable PATH to include the directory containing jvm.dll and the directory
containing the PeopleTools client binaries.

For example, %PS _HOME%\bin\client\winx86; or, if the PeopleTools installation is done locally, the
path is <PS_ HOME>\jre\bin\client.

Install the JVM supplied with the Sun Microsystems JDK. The JVM is located in the %PS _HOME%\JRE
directory.

Set the environment variable CLASSPATH to include the psjoa.jar file (typically
<PS_HOME>\class\psjoa.jar).

Configuring Compilers for C++ Projects

To configure a compiler for the C++ project:

72

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Programming Component Interfaces in C++

Note. These instructions assume that you are using Microsoft Visual C++. If you use a different compiler,
apply the equivalent settings for that product.

1.
2.

10.
11.
12.
13.

14.

Create a new project in Microsoft Visual C++.
Select Tools, Options.

Select the Directories tab.

Click the New button in the Options dialog box.

Enter the path to the SDK include files, for example:
C: \ PT840\ SDK\ PSCOVPI NTFC\ SRC\ C++\ SAMPLES\ | NC

Click OK to save the options.

Open the Project Settings dialog box.

Select the C/C++ tab.

Select the General category.

Add PS_WIN32 to the preprocessor definitions.
Select the Link tab.

Select the Input category.

Specify the full path to psapiadapter.lib for the Object/library modules.

This is typically <PS_HOME>\src\lib\psapiadapter.lib. Make sure that this is the only entry for

psapiadapter.lib.

Click OK to save the settings.

Generating C++ Runtime Code Templates

To access a component interface through external APIs using C++, PeopleSoft Application Designer
generates a template in the form of boilerplate C++ code that you can adapt to your purposes.

External C++ APIs are located in the <PS_ CFG_HOME>\ExtAPI C directory.

This section describes how to generate the template code.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

73

Programming Component Interfaces in C++ Chapter 6
] Application Designer - Untitled - [CURRENCY_CD_CI {Component Interface)] -0l x|
@ File Edit Wiew Insert Build Debug Tools Go ‘Window Help - 8] x|

74

SEEEE R E

CURREMCY_CD_COMP [Componen | M armme Fecard Comn.
ﬁ Seroll - Level O Eﬁ’g Wiews Definition
- % iew PeopleCode
REMCY_CD_.. CURREMNCY_CD
¢ | EditProperty REMCY_CD_.. DESCR
- EditName
© Edit Comment REMCY_CD_... CURREMNCY_CD
E"‘g Edit: Reference
© ' Create Reference REMCY_CD_... CURREMNCY_CD
= Toggle Read @nly Access
Delete REMCY_CD_.. CURREMCY_CD
REMCY_CLD_... EFFDT b
Component Interface Properties REMCY_CD_... EFF_STATUS
)) REMCY_CD_... DESCR
‘Walidate For Consistency RENCY_CD_. DESCRSHORT
Test Companent Interface REMCY_CD_.. COUNTRY
REMCY_CD_.. CUR_SYMBOL
Generate Wisual Basic Template FFNCY TN NFCIkAL POS ﬁ
1 I I il_ Generate Java Template D
Generate C Template
Begin validating Companent Interface integrity N
Mo erars found.
End Companent Interface walidation
A [Buid A Upgrade b Results } Validate /
Generate C Template A

Generating C++ template

To generate a C++ template for a component interface:

1. Open a component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

3. Select Generate C Template.

When the template is successfully generated, a message appears stating the name and location of the

template file.

Note. The template file is generated in the directory specified by the TEMP or TMP system environment
variable on your client machine.

4. Add the generated template file to the project.

In Microsoft Visual C++:

a. Open the project created earlier.

b. Select Project, Add To Project, Files.

c. Select the generated file.

d. Click OK.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Programming Component Interfaces in C++

5. Edit the generated file and modify the source code to suit your needs.

6. Build the project to generate an executable (.exe) file.

Understanding the C++ Template

The C++ template can be used as a starting point for your C++ program. This section contains a skeleton of
the generated C++ template for a component interface named SDK_BUS EXP, which is part of the
component interface SDK. The template has been edited for length.

Include all the required header files.

#i f def PS_W N32
#i ncl ude "stdaf x. h"
#endi f

#i ncl ude "ci def. h"

#i ncl ude "api adapt er def. h"

#i ncl ude "PSApi Adapterlnter.h”

#i ncl ude " PSApi Ext ernal Li b. h"

#i ncl ude "peopl esoft _peopl esoft _i.h"
#i ncl ude <stdio. h>

#i ncl ude <i ostream h>

#i ncl ude <wchar. h>

HPSAPI _SESSI ON hSessi on;
TCHAR t mpVal ue[1024] ;

void main(int argc, char* argv[])

[[***** Set Connect Paraneters *****
TCHAR strServer Nane[40], strServerPort[10], strAppServerPath[80];
TCHAR strUser| D 80], strPassword[80];

//Build Application Server Path
_stprintf(strAppServerPath, T("%:%"), strServerNane, strServerPort);

Note. To enable Jolt failover and load balancing in the PeopleSoft Internet Architecture, you can supply
multiple application server domains for the strAppServerPath variable. Separate the domain names with a
comma, and make sure that no spaces are included, for example, strAppServerPath =
//APPSRVR1:8000,//APPSRVR2:9000.

Create the PeopleSoft Session object to enable access to the PeopleSoft system.

The Session object controls the environment and enables you to perform error handling for all APIs from a
central location.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

75

Programming Component Interfaces in C++ Chapter 6

[1***** Create Peopl eSoft Session ***x**

PSAPI VARBLOB Ext er nal Aut h;

nenset (&Ext er nal Aut h, 0, si zeof (PSAPI VARBLOB)) ;
hSessi on = PSApi Creat eSessi on();

i f (!hSession)

wprintf(L"\nUnable to Create Session\n");
return;

}

Connect to the Application server by using the Session_Connect() function.

[1***** Connect to the App Server ***x*
if (!Session_Connect(hSession, 1, strAppServerPath, strUserlD,
st r Passwor d, Ext er nal Aut h))

wprintf(L"\nUnabl e to Connect to Application Server\n");
ErrorHandl er () ;
return;

}

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

[***** Get Component Interface *****

HPSAPI _SDK_BUS_EXP hSdkBusExp;

TCHAR ci Nane[30] ;

_tcscpy(ci Nanme, _T("SDK BUS EXP"));

hSdkBusExp = (HPSAPI _SDK BUS EXP) Session_Get Conpl ntfc(hSession,

ci Nane) ;
i f (!hSdkBusExp)
{
wprintf(L"\nUnable to Get Component Interface %\n", ci Nanme);
ErrorHandl er () ;
return;
}

[[***** Set the Conponent Interface Mbde *****
SdkBusExp_Set | nt eract i veMode(hSdkBusExp, fal se);
SdkBusExp_Set Get Hi st oryl t ens(hSdkBusExp, true);
SdkBusExp_Set Edi t H st oryl t ems(hSdkBusExp, fal se);

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

[1***** Set Conponent Interface Get/Create Keys ***x**
TCHAR st r SdkEnpl i d[80] ;

wprintf(L"\nEnter SdkEnplid: ");

_getts(strSdkEnplid);

SdkBusExp_Set SdkEnpl i d(hSdkBusExp, str SdkEnplid);

The <CI_NAME> Get() function retrieves data from the database associated with the key values.

[[***** Execute Get *****
i f (!SdkBusExp_Get (hSdkBusExp))
{

wprintf(L"\nUnable to Get Conmponent for the Search keys provided.\n");

ErrorHandl er () ;
return;

}

Get and print properties at level 0.

76 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Programming Component Interfaces in C++

wpri nt f (L" SdkBusExp. SdkNane: %s\n",
print Property(SdkBusExp_Get SdkNane(hSdkBusExp), tnpVal ue));

Similar code is generated for the properties SDK BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS EXP PER).

HPSAPI _SDK_BUS_EXP_SDK_BUS_EXP_PERCOLLECTI ON
hSdkBusExpSdkBusExpPer Col | ecti on;
HPSAPI _SDK_BUS EXP_SDK_BUS_EXP_PER hSdkBusExpSdkBusExpPer ;
hSdkBusExpSdkBusExpPer Col | ecti on =
SdkBusExp_Get SdkBusExpPer (hSdkBusExp) ;

Get and print properties at level 1.

for (int i17 = 0; 117 < SdkBusExpSdkBusExpPer Col | ecti on_Get Count
(hSdkBusExpSdkBusExpPer Col | ection); i17++)

hSdkBusExpSdkBusExpPer = SdkBusExpSdkBusExpPer Col | ection_Item
(hSdkBusExpSdkBusExpPer Col | ection, i17);
wprint f (L" oSdkBusExpSdkBusExpPer . SdkExpPer Dt : %s\ n",
print Property
(SdkBusExpSdkBusExpPer _Get SdkExpPer Dt (hSdkBusExpSdkBusExpPer) ,
t npVal ue)) ;

Similar code is generated for the properties SDK _EMPLID and SDK_BUS EXP SUM in the
SDK_BUS _EXP_PER collection.

Get collection at level 2 (SDK_BUS EXP DTL).

HPSAPI _SDK_BUS EXP_SDK BUS_EXP_PER SDK BUS EXP_DTLCOLLECTI ON
hSdkBusExpSdkBusExpPer SdkBusExpDt | Col | ecti on;

HPSAPI _SDK _BUS EXP_SDK BUS EXP_PER SDK BUS EXP_DTL
hSdkBusExpSdkBusExpPer SdkBusExpDt | ;

hSdkBusExpSdkBusExpPer SdkBusExpDt | Col | ecti on =

SdkBusExpSdkBusExpPer Get SdkBusExpDt | (hSdkBusExpSdkBusExpPer) ;

Get and print properties at level 2.

for (int 1211 = 0; 1211 <
SdkBusExpSdkBusExpPer SdkBusExpDt | Col | ecti on_Get Count
(hSdkBusExpSdkBusExpPer SdkBusExpDt | Col | ection); i211++)

hSdkBusExpSdkBusExpPer SdkBusExpDt | =
SdkBusExpSdkBusExpPer SdkBusExpDt | Col | ection_Item
(hSdkBusExpSdkBusExpPer SdkBusExpDt | Col | ecti on, i211);

wpri nt f (L" 0oSdkBusExpSdkBusExpPer SdkBusExpDt | . SdkChar geDt :
%\ n", printProperty
(SdkBusExpSdkBusExpPer SdkBusExpDt | _CGet SdkChar geDt
(hSdkBusExpSdkBusExpPer SdkBusExpDt 1), tnpVal ue));

Similar code is generated for the properties SDK EMPID, SDK_EXP PER DT, SDK EXPENSE CD,
SDK_EXPENSE AMT, SDK_CURRENCY_CD, SDK BUS PURPOSE, and SDK_DEPTID.

}
}

Disconnect from the Application server by using the disconnect method of the Session object. This method
clears the buffers and releases the memory.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Programming Component Interfaces in C++ Chapter 6

[1***** Disconnect fromthe App Server ***x*
Sessi on_Di sconnect (hSessi on);

return;

78 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Programming Component Interfaces in
COM

This chapter discusses how to:

* Build APIs for COM.

e Setup the COM environment.

* Generate a Visual Basic runtime code template.

» Understand the Visual Basic template.

Understanding Programming Interfaces in COM

The Microsoft Visual Basic 6 design environment is no longer supported by Microsoft, and the runtime
binaries have limited support on only certain Windows platforms. Microsoft has published a "Support
Statement for Visual Basic 6.0 on Windows Vista, Windows Server 2008 and Windows 7" on its web site that
contains addition information.

See http://msdn.microsoft.com/en-us/vbasic/ms788708.

Therefore, component interface APIs built in Microsoft Visual Basic should be migrated to Java or to a new
technology such as PeopleSoft Integration Broker's component interface-based services.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Creating Component Interface-Based Services"

Building APIs for COM

If you plan to access your component interface from a COM external application, you must create a
component interface API. The generated APIs are in the form of registry entries and type library files.

To build the component interface bindings:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

http://msdn.microsoft.com/en-us/vbasic/ms788708

Programming Component Interfaces in COM Chapter 7

1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of which
one is open.

2. Select Build, PeopleSoft APIs.
The Build PeopleSoft API Bindings dialog box appears.
3. Select the Build check box in the COM Type Library group box.

a. For the target directory, enter the directory in which you want the COM type library to be created,
typically <PS_HOME>\bin\client\winX86.

b. Enter the COM server DLL location to specify where the PeopleSoft API Adapter (psapiadapter.dll) is
typically located: <PS_HOME>\bin\client\winX86.

4. (Optional) Select the AutoRegister check box to execute the registry file immediately upon building the
APIL

This causes your client machine registry to be updated immediately without having to register the registry
entry manually.

5. (Optional) Select the Clean-up Registry check box to clean up the registry if you previously generated the
Peoplesoft Peoplesoft.reg file.

This is needed so that the older registry settings do not remain and conflict with settings made by the
latest version.

6. Click OK to build the bindings that you selected.

The files that constitute the bindings are built in the location that you specified. If the operation was
successful, a Done message appears in the PeopleSoft Application Designer Build window and the client
machine should contain a Peoplesoft Peoplesoft.reg and PeopleSoft PeopleSoft.tlb file.

Setting Up the COM Environment

80

When deploying component interfaces on a local client machine or web server with COM bindings, you need
to have:

* The third-party COM application.
» The application server and database.

» The Java Virtual Machine (JVM) supplied the with Sun Microsystems Java Development Kit (JDK),
found in the %PS_HOME%\JRE directory.

» A copy of the type library called PeopleSoft PeopleSoft.tlb that you generated during the Build
PeopleSoft API Bindings process.

This type library is not specific to a single database instance—it is specific to those database objects.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Programming Component Interfaces in COM

A copy of the registry file called PeopleSoft PeopleSoft.reg that you generated during the Build
PeopleSoft API Bindings process.

This registry file is not specific to a single database instance.

To set up your client machine to access the component interface API using COM:

Note. A reboot of the client machine may be required after you follow these steps.

1.

Install the PeopleSoft file server.
See PeopleSoft 8.52 Installation Guide, "Using the PeopleSoft Installer.”

2. Set the environment variable PS_ HOME to point to the installed PeopleSoft PeopleTools directory (for
example, c:\pt852).

3. Set the environment variable PATH to include the directory containing jvm.dll and the directory
containing the PeopleTools client binaries.

For example, %PS _HOME%\bin\client\winx86; or, if the PeopleTools installation is done locally, the
path is <PS_ HOME>\jre\bin\client.

Set the environment variable CLASSPATH to include the file psjoa.jar (typically
<PS_HOME>\class\psjoa.jar).

Note. The following steps assume that you are using Microsoft Visual Basic. If you use a different
compiler, apply the equivalent settings for that product.

Open the Visual Project File pscitester.vbp or sdk_bus_exp.vbp in Microsoft Visual Basic.

Select Project, References, and add the Peoplesoft PeopleSoft.tlb type library.

Third-Party Application

Copy the type library and registry files to the directory containing the external API on each client machine
from which you want to use the COM API.

Apply the API registry settings by double-clicking Peoplesoft Peoplesoft.reg.

Warning! The registry file includes references to the external API and type library files and their locations
on the original client machine where they were built, so those files must be in the same locations on the
current client. If the directory structure is different, you must edit Peoplesoft Peoplesoft.reg to reflect the
current machine before you apply the registry settings.

If your program is early-binding, the code contains a direct reference to the path of the type library.
Therefore, as you deploy, you must have the type library in the same directory on each machine.
If your program is late-binding, the code does not contain a reference to the path of the type library.

The code looks in the registry for the path to the type library. Therefore, as you deploy, you can have the
type library in different directories on each machine. You must update the registry settings as part of the
deployment. This is a more flexible approach.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

Programming Component Interfaces in COM Chapter 7

Generating Visual Basic Runtime Code Templates

When you want to access a component interface through external APIs by using Microsoft Visual Basic,
PeopleSoft Application Designer generates a template in the form of boilerplate Visual Basic code that you
can adapt to your purposes.

External COM APIs are located in the <PS_ CFG_HOME>\ExtAPI COM directory.

This section describes how to generate the template code.

‘\I Application Designer - Untitled - [CURRENCY_CD_CI {(Component Interfacel}] - IEIIil
m File Edit Wiew Insert Build Debug Tools Go Window Help - |E’|5|
Dls(Ee| & &=l =(E8E
CURREMCY_CD_COMP [Componen | Marme Record

@ CURREMCY_CD_TEL [Table] - ¢ Elﬂﬁ Vier Definition
E Scroll - Level 0 =

View PeopleCode

REMCY_CD_... CURREMCY_CD

¢ Edit Praperty REMCY_CD_... DESCR
O Editame

5 Edit Comment RENCY_CD_... CURRENCY_CD
E,g Edit Reference

© Y CresteReference REMCY_CD_.. CURREMCY_CD
= Toggle Read Cnly Access

REMNCY_CD_... CURREMCY_CD

REMWCY _CD_... EFFDT o
Component Interface Properties REMCY_CD_... EFF_STATUS

REMWCY_CD_... DESCR

REMCY_CD_... DESCRSHORT

Delete

Validate For Consistency

Test Component Interface HEMCY_CD_.. COUMTRY
REMCY_CD_... CUR_SYMEOL
8 Generate Yisual Basic Template FHMMY T NECIMAL PAS f
1| | Ml 7 Generate Java Termplate | s
Generate C Template
Begin validating Component Interface integrity -

Mo emors found.
End Component Interface walidation

A # I Buid } Upgrade } Resufs p Validate /

Generate Visual Basic template l_ &

Generating Visual Basic template

To generate a Visual Basic template for your component interface:
1. Open the desired component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Programming Component Interfaces in COM

3. Select Generate Visual Basic Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note. The template file is generated in the directory specified by the TEMP or TMP system environment
variable on your client machine.

4. Open the generated file and modify the source code as needed.

Understanding Visual Basic Templates

You can use the Visual Basic template as a starting point for your Visual Basic program. This section
contains a skeleton of the generated Visual Basic template for a component interface named
SDK BUS EXP, which is part of the component interface SDK. The template has been edited for length.

Declare the Session object.

Di m oSessi on As Peopl eSoft _Peopl eSoft. Sessi on

Private Sub main()
On Error GoTo ErrorHandl er
"*xxx*x Set Connect Parameters ***x*
Dim strServerNane As String, strServerPort As String,
st r AppServerPath As String
DimstrUserI D As String, strPassword As String

"Build Application Server Path
strAppServerPath = strServerName & ":" & strServerPort

Note. To enable Jolt failover and load balancing in the PeopleSoft Internet Architecture, you can supply
multiple application server domains for the strAppServerPath variable. Separate the domain names with a
comma, and make sure no spaces are included, for example:

str AppServerPath = //APPSRVR1: 8000, / / APPSRVR2: 9000

Create the PeopleSoft Session object to enable access to the PeopleSoft system. The Session object controls
the environment and enables you to do error handling for all APIs from a central location.

"**x*x% Create Peopl eSoft Session Ohject *****
Set o0Session = Createject (" Peopl eSoft. Sessi on")

Connect to the Application server by using the Connect method.

"**%x% Connect to the App Server **x**
I f Not oSession. Connect(1l, strAppServerPath, strUserlD, strPassword, 0) Then

Err. Rai se 1001, "", "Unable to connect to Application Server"
Call ErrorHandl er ()
Exit Sub

End |f

Get a reference to the component interface providing its name. A runtime error occurs if the component
interface does not exist.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

Programming Component Interfaces in COM Chapter 7

Di m oSdkBusExp As SDK BUS_EXP

Dimci Name As String

ci Name = "SDK_BUS_EXP"

Set 0SdkBusExp = o0Sessi on. Get Conpl nt f c(ci Nane)
I f oSdkBusExp Is Not hi ng Then

Err. Rai se 1001, "", "Unable to Get Conponent Interface " & ci Nane
Call ErrorHandl er()
Exit Sub

End If

"*xx%% Set the Conponent Interface Mode *****
oSdkBusExp. I nteracti veMbde = Fal se
0SdkBusExp. Get Hi storyltens = True

0SdkBusExp. Edi t Hi storyltens = Fal se

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

"rxxx% Set Component Interface Get/Create Keys *****
DimstrSDK EMPLID As String

strSDK_EMPLI D = | nput Box("Enter SDK EMPLID: ")
0SdkBusExp. SDK_EMPLI D = strSDK_EMPLI D

The Get method retrieves data from the database associated with the key values.

T %% % %% Execute C_:et * k k k%
I f Not o0SdkBusExp. Get() Then
Err.Raise 1001, "", "No rows exist for the specified keys. Failed to get the>
Conponent | nterface"
Call ErrorHandl er ()
Exit Sub
End |f

Get and print properties at level 0.

Debug. Print "oSdkBusExp. SDK_NAME: " & o0SdkBusExp. SDK_NAME
0SdkBusExp. SDK_NAME = <*>

Similar code is generated for the properties SDK_BIRTHDATE and SDK DEPTID.

Get the collection at level 1 (SDK_BUS_EXP PER).

Di m oSdkBusExpPer Col | ecti on As
SDK_BUS_EXP_SDK_BUS_EXP_PERCol | ecti on
Di m oSdkBusExpPer As SDK_BUS EXP_SDK BUS_EXP_PER
Set o0SdkBusExpPer Col | ection = 0SdkBusExp. SDK BUS EXP_PER

Get and print properties at level 1.
Dimi 17 As Integer
For i17 = 1 To oSdkBusExpPer Col | ecti on. Count
Set o0SdkBusExpPer = oSdkBusExpPer Col | ection.lten(i17)

Debug. Print "oSdkBusExpPer.SDK _EXP_PER DT: " &
0SdkBusExpPer . SDK_EXP_PER DT

Similar code is generated for the properties SDK_EMPLID and SDK_BUS EXP_SUM in the
SDK BUS EXP PER collection.

Get collection at level 2 (SDK_BUS_EXP DTL).

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Programming Component Interfaces in COM

Di m oSdkBusExpDt| Col | ecti on As
SDK_BUS_EXP_SDK_BUS_EXP_PER _SDK_BUS_EXP_DTLCol | ecti on
Di m oSdkBusExpDt| As
SDK BUS EXP_SDK BUS EXP_PER SDK BUS EXP_DTL
Set 0SdkBusExpDt| Col | ection = o0SdkBusExpPer. SDK _BUS EXP_DTL

Get and print properties at level 2.

Dimi211 As |nteger

For 1211 = 1 to oSdkBusExpDtl Col | ecti on. Count

Set 0SdkBusExpDt| = oSdkBusExpDtl Col I ection.lten(i211)

Debug. Print "oSdkBusExpDtl|.SDK_CHARGE DT: " &
0SdkBusExpDt | . SDK_CHARGE_DT

Similar code is generated for the properties SDK_EMPID, SDK_EXP PER DT, SDK _EXPENSE CD,
SDK _EXPENSE AMT, SDK CURRENCY_ CD, SDK BUS PURPOSE, and SDK DEPTID.

Next
Next

Disconnect from the Application server by using the disconnect method of the Session object. This method
clears the buffers and releases the memory.

"**x%x% [sconnect fromthe App Server *****
If Not oSession Is Nothing Then
oSessi on. Di sconnect
Set o0Sessi on = Not hi ng
End If
Exit Sub

End Sub

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

Chapter 8

Using the Component Interface Software
Development Kit

This chapter provides an overview of the component interface software development kit (SDK) and discusses
how to:

» Set SDK prerequisites.

» Use the SDK BUS EXPENSES test page.

e Test the SDK BUS EXP component interface.

» Use the component interface SDK Java and C++ sample.
» Use the component interface SDK COM Excel sample.

* Use the component interface SDK COM ASP sample.

Understanding the Component Interface SDK

The PeopleSoft component interface SDK is installed with the PeopleTools installation. It provides resources
to assist you in developing and testing component interface-based integration between PeopleSoft and third-
party applications. The SDK contains sample definitions with data and source code. For easy identification,
all of the definition names start with SDK_. The SDK is installed in the PeopleSoft home directory
(PS_HOME) under sdk.

Note. The SDK definitions and associated data are for development purposes only and should not be used in a
production environment.

Component Interface SDK Samples

Programming samples for the component interface SDK_BUS EXP are part of the SDK. The samples are
available in four languages—Java, C++, VBA, and ASP.

The component interface source code is located in the <PS HOME>\SDK\PSCOMPINTFC directory.

Note. The source files mentioned in this section are located relative to the installed PeopleSoft home
directory (PS_ HOME).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Using the Component Interface Software Development Kit

Prerequisites for Using the Component Interface SDK

To call a PeopleSoft component interface, you must have:
* A working understanding of PeopleTools components.
» A working understanding of Java, C++, or COM.

» The application server and database installed.

The Java Virtual Machine (JVM) installed that is supplied with the Sun Microsystems Java Development
Kit (JDK), found in the %PS _HOME%\IRE directory.

88

Usin

g the SDK_BUS_ EXPENSES Test Page

The SDK includes a component interface, called SDK_BUS EXP, which is part of the sample development
project and is delivered with the SDK. It is built on the component SDK_CI_SAMPLES, which contains the
page SDK BUS EXP. The page exposes information about employee business expenses for external access.

Note. The component SDK_CI_SAMPLES is a sample and is not for business use.

SDK Business Expenses

THIS PAGE IS PART OF THE SDK AND IS NOT FOR BUSINESS USE

Sullivan Theresa Employee ID: g102 Da::: 08/06/1945 DeptiD: 1ggpo
Birth:
Business Expense Periods Find | View & First | < [y
*Expense Period End Date: El
Insert Row
Expense Period Total: UsD 4
Business Expense Details Find | View Al First K 10f1 n Last
*Charge Dt Expense Code Expense Amount Business Purpose Department El
v | usp @ | | Q

SDK_BUS_EXPENSES page

To test the SDK_BUS EXPENSES test page:

L.

Provide access to the SDK_CI_SAMPLES component, using PeopleTools security.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Chapter 8 Using the Component Interface Software Development Kit

2. Select PeopleTools SDK, PeopleTools SDK, Use, SDK CI Samples.

3. Search for and select an employee ID.

Testing the SDK_BUS_EXP Component Interface

To test the SDK_BUS EXP component interface:
1. View the component interface definition through the PeopleSoft Application Designer.

2. Test the component interface definition, using the component interface tester.

Using the Component Interface SDK Sample in Java and C+ +

This section describes how to use the component interface SDK sample in Java and C++.

Understanding using the Component Interface SDK Samples in Java and C++

The component interface sample programs for Java and for C++ are provided as part of the component
interface SDK and follow the same sequence of options. The source files are located in
<PS_HOME>\sdk\pscompintfc\src\<java or ct++>\samples\sdk bus_exp.

Building the Component Interface SDK Sample (Java)

The component interface sample program for Java is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\java\samples\sdk bus_exp.

The Java source code for the sample is in the following file: sdk bus_exp.java
Before you run the sample, you must build the APIs and set up the Java environment.
To build the Java component interface sample:

1. Set your java classpath to include the external API classes you already built and the psoa.jar library
delivered under <PS_HOME>\class\psjoa.jar

2. Compile the source using javac sdk bus_exp.java

Building the Component Interface Sample (C++)

The component interface sample program for C/C++ is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\cpp\samples\sdk bus_exp.

The C++ source code for the sample is in the following file: sdk_bus_exp\sdk bus_exp.cpp

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

Using the Component Interface Software Development Kit Chapter 8

Before you run the sample, you must build the APIs and set up the C++ environment. To build the C++
component interface sample:

1.
2.

Open the sdk_bus_exp workspace in the Microsoft Visual C++ editor.

Build the project by selecting Build, Rebuild All.

Running the Component Interface SDK Sample in Java and C++

To run the compiled Java or C++ component interface sample:

1.

In a DOS window, change directories to the location of the sdk bus_exp directory.

After you launch the executable sdk_bus_exp, the system prompts you for parameters one at a time.
At each prompt, enter the appropriate value and press Enter.

Select option 1 to sign in. You are then prompted to provide the connect information.

If the connect succeeds, a menu appears where you can perform Get or Find functions.

Get details for an employee.

Select option 1 to get details for an employee. You are then prompted with the different update modes and
the employee ID for which you want to display information. Enter the employee ID 8001 and press Enter.
This displays the level 0 data and the options that you can perform.

Select a business expense period at collection level 1.

Select option 8, Item, to select a business expense period. Selecting this option displays a list of available
business expense periods for the selected employee.

Select the expense period that you want to work with.
Select a business expense detail item at collection level 2..

Select option 18, Item, to select a business expense detail within the selected business expense period.
Selecting this option displays a list of available business expense details within the selected business
expense periods.

Interpreting the Code for the Component Interface SDK Sample (Java)

The following discussion refers to the Java sample program, sdk bus_exp.java. (The code has been edited for
length.) It explains the runtime options shown above.

90

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

L.

Using the Component Interface Software Development Kit

Import all the required classes:

The code example shows how to import the required classes:

package sdk_bus_exp;

i mport java.io.*;

i mport java.util.*;

i mport psft.pt8.)oa.*;

i mport Peopl eSoft. Gener at ed. Conpl ntfc. *;
public class sdk_bus_exp {

Declare all the required objects.

Only one active period and one active detail record are possible at any time. Users are prompted to select
the needed values if they are not active.

Collection Object Level Item Object for Collection

oSdkBusExpCollection Root (SDK_BUS EXP) oSdkBusExp

oSdkBusExpPerCollection Level 1 (SDK BUS EXP PER) oSdkBusExpPer

0SdkBusExpDtlCollection Level 2 0SdkBusExpDtl
(SDK_BUS EXP PER DTL)

In addition, the ComplIntfPropInfoCollection object is used to access the structure of a component
interface. It is not specific to a component interface.

Declare the PeopleSoft session object.

Connect to the application server.

Instantiate the component interface.

Perform a Get or Create to access the component interface.

You must provide the keys to access the record that you want to modify.
Use the appropriate methods to access the component interface properties.

There are standard methods and user-defined methods defined for the session, the component interface,
and the component interface collections.

The executeMethod function is used to invoke a method specified as a function parameter (nMethodIn).

The component interface Java SDK sample has 25 options:

SDK Option

Where Executed

1 through 5

On the component interface.

6 through 15

SDK BUS EXP PER collection.

16 through 25

SDK BUS EXP DTL collection

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

91

Using the Component Interface Software Development Kit Chapter 8

Options 1 through 4 and options 6 through 25 are similar in behavior to those described in PeopleTools 8.52:
PeopleCode API PeopleBook for a component Interface and its collections.

Option 5, InsertBusExpDtlDefaults, is the user-defined method of the SDK_BUS EXP component interface.
This method is defined in PeopleCode inside the component interface definition.

The logic used in the corresponding options of these collections is identical.
See PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes."

This is the main method. It performs such functions as starting the session, getting the component interface,
and disconnecting:

public static final void main(Stri ng[] args) Systemout.printin(" ");
Systemout.printin("\t 1) Sign In
Systemout.printin("\t q) Qit ");

System out. printl n(");

System out. print (" Commnd to execute (1, q) [1]: ");
char Tenp = readCharacter();

switch (charTenp) {case 'q':case "Q:.....

di sconnect Fr omAppSer ver () ;

return;

def aul t:

get Connect Par aneters();

i f (connect ToAppServer()) {

0SdkBusExp = (I SdkBusExp) oSessi on. get Conpl ntfc(m strCl Nane) ;
while (getKeyType()) {

nmet hodl nt = sel ect Met hod() ;

while (methodint !'= 0)

execut eMet hod(et hodl nt) ;

if (nmethodlnt == 2) {

net hodl nt = O;

} else {

nmet hodl nt = sel ect Met hod() ;

Interpreting the Code for the Component Interface SDK Sample (C++)

The following listings of code are taken from the C++ sample program, sdk bus_exp.cpp. (The code has been
edited for length.)

1. Include all the headers.

#i fdef PS_W N32

#i ncl ude "stdafx. h"

#endi f

#i ncl ude "cidef. h"

#i ncl ude "api adapt erdef. h"

#i ncl ude " PSApi Ext er nal Li b. h"

#i ncl ude " PSApi Adapterlnter.h"

#i ncl ude "Peopl eSoft _Peopl eSoft _i.h"
#i ncl ude <stdi o. h> #i nclude <stdlib. h>
#i ncl ude <i ostream h>

#i ncl ude <wchar. h>

2. Declare the PeopleSoft session handle.
HPSAPI _SESSI ON hSessi on;

92 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using the Component Interface Software Development Kit

3. Declare all the required objects. Only one active period and one active detail record are possible at any

time.
Collection Object Level Item Object for Collection
hSdkBusExpCollection Root (SDK_BUS EXP) hSdkBusExp
hSdkBusExpPerCollection Level 1 (SDK BUS EXP PER) hSdkBusExpPer
hSdkBusExpDtlCollection Level 2 (SDK BUS EXP PER DTL) | hSdkBusExpDtl

Collection ObjectLevelltem Object for CollectionhSdkBusExpCollectionRoot
(SDK_BUS_EXP)hSdkBusExphSdkBusExpPerCollectionLevel 1
(SDK_BUS _EXP PER)hSdkBusExpPerhSdkBusExpDtlCollection Level 2
(SDK_BUS_EXP_PER_DTL)hSdkBusExpDtl

The function executeMethod is used to launch the appropriate method depending upon the user input
(nMethodlIn).

The component interface C++ SDK sample has 25 options:

SDK Optionl through 5 SDK_BUS _EXP PER collection.6 through 25SDK_BUS EXP DTL collection

SDK Option Where Executed

1 through 5 On the component interface.

6 through 15 SDK BUS EXP PER collection
16 through 25 SDK BUS EXP DTL collection

Options 1 through 4 and options 6 through 25 are similar in behavior to those described in PeopleTools 8.52:
PeopleCode API PeopleBook for a component Interface and its collections.

Option 5, InsertBusExpDtlDefaults, is the user-defined method of the SDK BUS EXP component interface.
This method is defined in peoplecode inside the component interface definition.

The logic used in the corresponding options of these collections is identical.

See PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes."

Using the Component Interface SDK COM Excel Sample

The component interface sample program for Microsoft Excel is provided as part of the component interface
SDK, located in <PS_ HOME>\sdk\pscompintfc\src\com\samples\vba.

The Visual Basic source code for the sample is in the following file: sdk _bus_exp.xlsm.

Before you run the sample, you must build the APIs and set up the COM environment.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

Using the Component Interface Software Development Kit Chapter 8

Running the Component Interface SDK COM Excel Sample

94

When running the Microsoft Excel sample, you use the Get and Find sheet to find an employee.

2

3 |[EmplId 80

4

5 |Last Hame

B

¢/ |Name

o |Enter full Employee ID for Get function

S |Enter partial or no information for Find function

10 |Select an Employee ID, and press Get selected after search

11 |Business expense Period for Schumacher,Simon emplid 8001

12 a001 ASD Schumacher Simaon
13 a0s2 AVERY Awery Joan
14

Sheet 2: Find and Get an Employee

To run the Microsoft Excel component interface sample:

1.
2.

Launch Microsoft Excel.
Open the Microsoft Excel sample spreadsheet.

The Microsoft Excel spreadsheet is located in
<PS HOME>\sdk\pscompintfc\src\com\samples\vba\sdk bus_exp.

. When prompted about macros, select Enable Macros.

Attach PeopleSoft References to the spreadsheet.

This example uses early bindings and hence requires attaching references to the spreadsheet. Select Tools,
Macro, Visual Basic Editor from the Microsoft Excel menu. This opens the VBA editor.

Select Tools, References from the menu. A dialog box appears, listing all the available references. Select
the reference PeopleSoft PeopleSoft.

Sign in to the sdk_bus_exp sample.

Sheet 1 of the sdk_bus_exp spreadsheet is the sign-in page. Provide the connect information and press
Tab to navigate out of the fields. Click Connect to establish the connection.

Find an employee by using the Find keys.
The Find and Get keys are located on Sheet 2.
Select an employee from the list.

Select an employee ID from the list by making the cell active and then clicking the GET selected button.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

10.

11.

Using the Component Interface Software Development Kit

Get an Employee by providing the Get key.

Enter the complete employee ID in cell B3. Press Tab to navigate out of the cell, and click Get
(EMPLID). A list of all the available periods is displayed.

View details.
To view the details for the listed business expense periods, click the Toggle Details button.
Add a new business expense period.

Click the Insert period button. This redirects you to Sheet 3. Enter the business expense period date. Press
Tab and click the Save New Period button.

Add a new business expense detail.

Click the Insert Detail button. This redirects you to Sheet 3. Enter the charge date, expense code, amount,
department ID, and business purpose. Press Tab, and save the new detail by clicking the Save New Detail
button.

You can list the expense periods for the employee.

11 |Business Expéns_na Period for Schumacher,Simon emplid 8001

12 [Period Number Period Dated Period Total

13 |Period # 1 SME2001 1660.910034
14

15 |Period # 2 11,/9/2000 B30 7300293
16

Expense periods

Understanding the Component Interface SDK COM Excel Sample Code

The following listings of code are taken from the Microsoft Excel sample program, sdk bus_exp.xlsm. (The

cod
Vie

e has been edited for length.)

w the code by selecting Tools, Macro, Visual Basic Editor from the menu.

Declare the PeopleSoft session object.

List Business Expense Periods, using the Item method to get a specific item of the type
SDK BUS EXP PER.

List Business Expense Details, using the Item method to get a specific item of the type
SDK BUS EXP DTL.

To save a new business expense period, use the Insertltem method. This method inserts a new row and
returns an item of the type SDK_BUS EXP PER. The item contains the properties. Set the properties and
execute the Save method.

To save a new business expense detail, use the Insertltem method. This method inserts a new row and
returns an item of the type SDK_BUS EXP DTL. The item contains the properties. Set the properties
and execute the Save method.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

Using the Component Interface Software Development Kit Chapter 8

Using the Component Interface SDK COM ASP Sample

The component interface sample program for ASP is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\comisampl es\asp\sdk_bus _exp.

The ASP source code for the samples is in these files.

Before you run the sample, you must build the APIs and set up the COM environment.

Running the Component Interface SDK COM ASP Sample

96

When running the ASP sample, you use the Get key to find an employee.

SDE BEusiness Expenses Component Interface - Search
Sign Off

'Get' Keys for Component Interface

SDK_EMFLID 5001

E

ASP Get key

To run the Component Interface SDK COM ASP component interface sample:

1.
2.

Install and configure the IIS web server.

Create a virtual directory to point to <PS_HOME>\sdk\pscompintfc\src\com\samples\asp\sdk bus_exp.
Start the web server.

Run the SDK example through the browser.

The web address http://machinename/sdkSDK_BUS EXP_Signon.asp launches the SDK application.
Provide the connect information and click Submit.

Get details for an employee.

Enter the Get key (SDK_EMPLID) and click the Get button. This lists all the business periods for the
selected employee ID.

Update a business expense period.
a. Click the Update button to update the business expense period.
b. Update the expense period end date.

c. Click the Save button.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using the Component Interface Software Development Kit

8. Insert a business expense period.
a. Click the Insert button to update the business expense period.
b. Add the new expense period end date.

c. Click the Save button.

9. Delete a business expense period.

a. Click the Delete button to delete the business expense period. You are prompted to decide to delete
the row.

b. Click OK to confirm the delete.

c. Click Cancel to cancel the operation

10. Update a business expense detail.

Select a business expense period by clicking the Update button from the business expense period row.
11. Insert a business expense detail.

a. Click the Insert button to insert a new business expense period.

b. Enter the values for charge date, expense code, expense amount, currency code, business purpose,
and department ID.

c. Click the Save button to save changes.
12. Delete a business expense detail.
a. Click the Delete button to delete the business expense detail.
You are prompted to decide to delete the row.
b. Click OK to confirm the delete.

c. Click Cancel to cancel the operation.

You can list the expense periods for the employee:

Listing Details for Employee ID: 8001

Business Period List
ployee Period Number Period Total "*"*0 B yyoric with Period
2001 1 1660 91 051652001 Update Insert Delete
2001 2 22395 11/09,/2000 Update Insert | Delete
[ext

Expense periods

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

Using the Component Interface Software Development Kit Chapter 8

Understanding the Component Interface SDK COM ASP Sample Code

98

This section discusses the ASP files that are included in the component interface SDK COM ASP. The files
included are described in the following table:

File Name Use

SDK BUS EXP_ DeleteBusinessExpenseDetail.asp Deletes a specific expense detail row an allows to insert or
delete expense details from existing expense periods.

SDK BUS EXP DeleteBusinessExpensePeriod.asp Deletes a specific expense period an allows to insert or
delete expense details from existing expense periods.

SDK BUS EXP FUNCLIB.asp Contains all the common functions and needs to be
included in any other ASP page when you build the ASP
program

SDK BUS EXP_GetBusinessExpenses.asp Lists all the business expense periods for the selected
employee.

SDK BUS EXP_GetSearchParameters.asp Prompts for the Find and Get Keys.

SDK BUS EXP_ GetSearchResults.asp Lists all the employees for the provided Find keys

SDK BUS EXP InsertBusinessExpenseDetail.asp Updates the expense period data, as well as inserts and

deletes business expense data.

SDK BUS EXP InsertBusinessExpensePeriod.asp Inserts a new business expense period.

SDK BUS EXP NewBusinessExpensePeriod.asp Inserts a new expense period and end date, provides
options to insert or delete expense details.

SDK BUS EXP_SaveBusinessExpenseDetail.asp Saves submitted business expense details data.

SDK BUS EXP_ SaveBusinessExpensePeriod.asp Updates the end date of an existing expense period, and
provides options to insert or delete expense details.

SDK BUS EXP_Signon.asp Provides signon information and connects to the
application server.

SDK BUS EXP UpdateBusinessExpensePeriod.asp Updates or deletes expense period details data from and
existing expense period.

SDK_BUS_EXP_DeleteBusinessExpenseDetail.asp

This ASP file deletes a specific expense detail row an allows to insert or delete expense details from existing
expense periods.

To use the SDK_ BUS EXP DeleteBusinessExpenseDetail.asp page:

1. Get the connection information forwarded from the previous page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using the Component Interface Software Development Kit

2. Get the key fields.

3. Getthe SDK BUS EXP PER collection in Sub insertBusinessExpenseDetail.
4. Getthe SDK BUS EXP PER collection, using the Item method.

5. Execute the Deleteltem method.

6. Execute the Save method.

SDK_BUS_EXP_DeleteBusinessExpensePeriod.asp

This ASP file deletes a specific expense period and allows to insert or delete expense details from existing
expense periods.

To use the SDK_ BUS EXP DeleteBusinessExpensePeriod.asp page:
1. Get the connection information forwarded from the previous page.
2. Get the key fields.

3. The submitted expense period is deleted.

To view the updated SDK_BUS EXP PER collection, execute the Cancel method. Set the keys and
execute the Get method. The function getBusinessExpensePeriods displays the business expense periods.

4. Execute the Save method.

5. Execute the Cancel method.

SDK_BUS_EXP_FUNCLIB.asp

This ASP file contains all the common functions and needs to be included in any other ASP page when you
build the ASP program. It includes utility functions for checking required fields, extracting the host name to
which the client connects, and confirming and submitting the user input.
SDK_BUS_EXP_GetBusinessExpenses.asp

This ASP file lists all the business expense periods for the selected employee.

To use the SDK BUS EXP GetBusinessExpenses.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the Key Field.

3. Set the Component Interface Get Key.

4. Get the business expense periods by executing the function getBusinessExpensePeriods.

The function getBusinessExpensePeriods gets the business expense period, and then loops through the
collection, using the Item method to get a specific business expense period. Each property in that item is
then displayed.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

Using the Component Interface Software Development Kit Chapter 8

100

5. The Update button is of the type submit.

Because the form action is set to SDK_ BUS EXP_UpdateBusinessExpensePeriod.asp, this page is
launched. The Insert and Delete buttons use the JavaScript functions insertBusinessExpensePeriod() and
deleteBusinessExpensePeriod().

6. Submit the page.

Use the JavaScript function insertBusinessExpensePeriod to set the form.action to SDK BUS EXP
InsertBusinessExpensePeriod.asp and submit the page.

SDK_BUS_EXP_GetSearchParameters.asp

This ASP file prompts for the Find and Get Keys. You can also set the component interface modes:
Interactive Mode, Get History Items, and Edit History Items.

To use the SDK_ BUS _EXP_ GetSearchParameters.asp page:
1. Get the connection information forwarded from the previous page.

2. Use Sub getSearchParameters prompts the user for the Get or Find key and the component interface
modes (interactive, get history items, and edit history items).

3. Use Sub getSearchParameters to call the appropriate page for Get and Find, using the JavaScript function
invokeMethod().

SDK_BUS_EXP_GetSearchResults.asp

This ASP file is called if the Find option was selected.

To use the SDK_ BUS _EXP GetSearchResults.asp page:

1. Get the connection information forwarded from the previous page.
2. Get the Find keys.

3. Get the search result.

The function getSearchResults lists all the employees for the provided Find keys by setting the Find keys
and executing the Find method.

4. Loop through the collection to list all the employee IDs.

SDK_BUS_EXP_InsertBusinessExpenseDetail.asp

This ASP file enables the user to update the expense period data, as well as insert and delete business expense
data. Sub insertBusinessExpenseDetail inserts a business expense detail for the selected business expense
period.

To use the SDK_BUS EXP InsertBusinessExpenseDetail.asp page:
1. Getthe SDK BUS EXP PER collection in Sub insertBusinessExpenseDetail.
2. Getthe SDK_ BUS EXP_PER collection, using the Iltem method.

3. Getthe SDK BUS EXP DTL collection.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Using the Component Interface Software Development Kit

Get the SDK_ BUS EXP DTL using the Item method.

Create a form to get the properties for SDK BUS EXP DTL.
Get the connection information forwarded from the previous page
Get the key fields.

Submit the form.

The Save button calls the JavaScript function saveBusinessExpenseDetail, sets action of the form to
SDK BUS EXP SaveBusinessExpenseDetail.asp, and submits the form.

SDK_BUS_EXP_InsertBusinessExpensePeriod.asp

This ASP file enables the user to insert a new business expense period.

To use the SDK_BUS EXP_InsertBusinessExpensePeriod.asp page:

1.
2.

Get the connection information forwarded from the previous page.

Get the key fields.

Call the insertBusinessExpensePeriod function to insert a new business expense period.

Get the business expense period.

Insert a new item into the collection.

Use the Insertltem method is used to insert a new item in the SDK_BUS EXP_ PER collection.
A field to enter the SDK_ BUS PER DT is created.

Submit the form.

Use the Save button to the JavaScript function newBusinessExpensePeriod. This function sets the action
of the form to SDK_BUS EXP NewBusinessExpensePeriod.asp and submits the form.

SDK_BUS_EXP_NewBusinessExpensePeriod.asp

This ASP file enables the user to update the expense period data as well as insert and delete business expense
details.

To use the SDK_BUS EXP NewBusinessExpensePeriod.asp page:

1.
2.
3.

Get the connection information forwarded from the previous page.
Get the key fields.
Get the SDK_BUS_EXP PER_COLLECTION.

Execute the Insertltem method. Set the SDK_EXP_ PER DT property and execute the Save method.

SDK_BUS_EXP_SaveBusinessExpenseDetail.asp

This ASP file enables the user save submitted business expense details.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

Using the Component Interface Software Development Kit Chapter 8

To use the SDK_BUS _EXP_ SaveBusinessExpenseDetail.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Save the business expense detail and get the SDK_BUS _EXP PER collection.

Using Submit saveBusinessExpenseDetails accomplishes both of these tasks. First it saves the business
expense detail and then it gets the SDK_BUS EXP PER collection.

4. Use the Item method to get SDK BUS EXP PER.
5. Getthe SDK BUS EXP DTL collection.
6. Getthe SDK BUS EXP DTL, using the Insertltem method. Set the properties.

7. Execute the Save method.

SDK_BUS_EXP_SaveBusinessExpensePeriod.asp

This ASP file enables you to update the end date of an existing expense period, and provide options to insert
or delete expense details.

To use the SDK_ BUS EXP SaveBusinessExpensePeriod.asp page:
1. Get the connection information forwarded from the previous page.
2. Get the key fields.

3. Save the business expense period for the selected employee ID and business expense period. Get the
specific business expense period by using the Item method. Set the SDK_EXP PER DT property with
the new value and execute the Save method.

SDK_BUS_EXP_Signon.asp
This section describes the behavior of the SDK BUS EXP Signon.asp sample.

This ASP file enables the user to provide signon information and connect to the application server. When you
provide and submit the form action, the code in SDK_BUS EXP GetSearchParameters.asp is invoked. When
you click the Submit button, the JavaScript function checkRequiredFields() runs, which checks whether all
the connect information is provided. The connection information is forwarded to the next page, using hidden
fields.

SDK_BUS_EXP_UpdateBusinessExpensePeriod.asp

This ASP file enables you to update or delete expense period details data from and existing expense period.
To use the SDK BUS EXP UpdateBusinessExpensePeriod.asp page:

1. Get the connection information forwarded from the previous page.

2. Get the key fields.

3. Update business expense details for the selected employee ID and business expense period

102 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using the Component Interface Software Development Kit

4. Get the business expense period to modify using Sub updateBuseinssExpensePeriod.

Submitting updateBusinessExpensePeriod gets the business expense period collection. It passes
PERIODNUM to the Item method to get the business expense period to be modified.

This page also lists the business expense details, using the getBusinessExpenseDetails function.
5. Use the Save button to save the changes and submit the form.

The Save button uses the JavaScript function saveBusinessExpensePeriod to save changes made to the
business expense period. The function saveBusinessExpensePeriod sets the form action to
SDK _BUS EXP SaveBusinessExpensePeriod.asp and submits the form.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

Chapter 9

Using the Excel-to-Component Interface
Utility

This chapter provides an overview of the Excel-to-Component Interface utility and discusses how to:

* Run the Excel to Component Interface utility.
e Setup connection information.

» Create templates.

» Enter data on the data input sheet.

* View staged data.

* Create SOAP/XML requests.

« Send requests.

» Receive responses.

» Diagnose and resolve errors.

* Add new languages.

Understanding the Excel-to-Component Interface Utility

Use the Excel to Component Interface utility and component interfaces to upload data from Microsoft Excel
into PeopleSoft databases. Each source workbook contains both worksheets and Excel Visual Basic code
modules that execute business logic for each transaction.

Use the Microsoft Excel workbooks as a template to create worksheets that are specific to the business logic
that you need to use when you are uploading data to the PeopleSoft system. You can copy the data input sheet
to other workbooks for distribution without copying the code modules.

The code formats spreadsheet data into a PeopleSoft readable Document Object Model (DOM) structure, and
submits it to the PeopleSoft database. Next a PeopleCode program parses the DOM structure and uses the
component interface to create entries in the PeopleSoft database, validating the data submitted against the
business logic that is built into the PeopleSoft component. Because the component interface is a wrapper
around the component, all logic applied during data entry is applied when you are loading data through this
tool.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

Using the Excel-to-Component Interface Utility Chapter 9

The component interface executes all the necessary PeopleCode events and the field-level edits. Based upon
results from saving the component interface, another DOM is created in the PeopleCode that returns success,
warnings, errors, or a combination of the three to the Microsoft Excel document. Records in error can be
corrected and resubmitted.

Prerequisites for Using the Excel to CI Utility

To use the Excel to CI utility you must have the following software installed.
Check the My Oracle Support web site for the currently certified versions of software supported.
* Microsoft Excel.
* Microsoft Visual Basic 6.0 SP5: Run-Time Redistribution Pack.
You can download this software from the Microsoft website.
See http://www.microsoft.com/downloads/Search.aspx?displaylang=en.
* Microsoft Core XML Services (MSXML) 6.0 or higher.
You can download this software from the Microsoft website.

See http://www.microsoft.com/downloads/Search.aspx?displaylang=en.

Understanding Building Component Interfaces for the Excel to
Component Interface Utility

106

To use the Excel to Component Interface utility effectively, you must have a complete understanding of the
component that you are using and the component interface that is built around it. In addition, you should
know what data needs to be entered and which fields on the component need to be exposed as component
interface properties. Fields that are not relevant for data input should not be exposed on the component
interface. This reduces processing time when you are loading data, as well as saving time when you are
building the template because no need to delete unnecessary properties on the template will exist.

Some component interface structures will need to be modified before they can be used to load data through
the utility. Components that have logic to insert multiple rows in child collections, and then require more
values to be set on those collections, will need modification to the component to work with the Excel to
Component Interface utility. Change the component so that the logic to insert and partially populate these
rows does not happen by default through the component interface.

%Complntfc and %CompIntfcName can be used so that this logic does not fire either from any component
interface or from the component interface that you created for use with the Excel to Component Interface
utility.

Additionally, components that have no keys at level 0, but rely on logic at level 0 to load the level 1
collection, cannot be loaded by using the Excel to Component Interface utility.

Component interfaces that rely on CommitWork to save the data cannot be used in the Excel to Component
Interface utility.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

http://www.microsoft.com/downloads/Search.aspx?displaylang=en
http://www.microsoft.com/downloads/Search.aspx?displaylang=en

Chapter 9

Using the Excel-to-Component Interface Utility

Prompt and translate table values are validated when data is saved and submitted to the database through the
Excel to Component Interface utility. This is different from the behavior on the page when prompts and
translates are validated interactively. Some components may use prompts that are dynamically populated. For
those situations, you must know what the valid values for the prompt will be.

Note. Remember that any changes made to the structure of a component interface will also need to be
reflected in the template. Always ensure that the component interface and the template in the Excel to
Component Interface utility are in sync. Structural changes made in only the component interface will cause
an error in the Excel to Component Interface utility when data is submitted to the database.

Testing Component Interfaces

Before using the Excel to Component Interface utility run the component interface through the component
interface tester in three-tier mode. Testing the component interface enables you to troubleshoot any problems
before running the component interface through the utility. If the component interface does not work in the
tester, it will not work in the Excel to Component Interface utility either. The component interface tester is
located on the Tools menu in PeopleSoft Application Designer.

See Chapter 3. "Developing Component Interfaces," Testing Component Interfaces, page 46.

Performance Expectations

The performance of a component interface depends entirely upon the underlying component. If the
component has a complex user interface with many pages and scrolls, the component interface generally will
have a slower processing time. The best performance times are found with small and medium-complexity
component interfaces.

PeopleCode Behavior and Limitations

Copyright

Certain PeopleCode functions and events that are specific to the user interface do not execute through the
component interface. You will need to modify PeopleCode for the component, pages, and records when you
build the component interface for the component.

PeopleCode events and functions that relate exclusively to the page interface and online processing cannot be
used by component interfaces. These include:

» Search dialog processing.

* Menu PeopleCode and pop-up menus.

» Transfers between components, including modal transfers.
e Dynamic tree controls.

» ActiveX controls.

» DoSave and DoSaveNow.

» Functions that are ignored in a component interface call.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Using the Excel-to-Component Interface Utility Chapter 9

See Chapter 4, "Programming Component Interfaces Using PeopleCode," Understanding PeopleCode
Behavior and Limitations, page 57 and PeopleTools 8.52: PeopleCode API Reference, "Component Interface

Classes," Understanding Component Interface Class.

Default Properties

When you create a new component interface in PeopleSoft Application Designer, the system can create
default properties for all the fields exposed on the component interface that meet certain criteria.

When you are creating a new component interface, the following requirements must be met to qualify as a
default property.

The fields should be of the following types:

Character
Long character
Number
Signed number
Date

Time

Datetime

The field should be one of the following page control types and must be exposed on the page:

Edit box
Drop-down list box
Check box

Radio button

See Chapter 3. "Developing Component Interfaces," Creating New Component Interfaces, page 10.

Running the Excel to Component Interface Utility

This section discusses how to:

108

Grant access to the WEBLIB_SOAPTOCI iScript.

Enable the Developer menu in Microsoft Excel 2007 and Later Versions.
Enable macros in Microsoft Excel.

Start the Excel to Component Interface utility.

Converting Excel to Component Interface utility templates to the current Excel version.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility

« View the Excel to Component Interface utility coversheet.
See Also

Chapter 9, "Using the Excel-to-Component Interface Utility." Prerequisites for Using the Excel to CI Utility,
page 106

Granting Access to the WEBLIB_SOAPTOCI iScript

To use the Excel to Component Interface utility, you must grant access to the iScript WEBLIB_SOAPTOCI
in the permission list of the user who is building the template.

See PeopleTools 8.52: Security Administration, "Setting Up Permission Lists."

Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions

The Developer menu in Microsoft Excel contains options to work with Microsoft Visual Basic, macros, sheet
properties, and so on.

In Microsoft Excel 2007 and later versions the Developer menu is not automatically enabled and does not
appear on the menu ribbon in the default view of the Excel workspace. In the other versions of Microsoft
Excel supported for use with the Excel to Component Interface utility, the Developer menu appears by

default.
The following example shows the menu ribbon that appears in the default Microsoft Excel 2007 workspace
view:
’EE{ o Microsaft Excel
5)
- Hame Insert Page Layout Farmulas Data Feviewr Wiews

| o

The menu ribbon that appears in the default Microsoft Excel 2007 workspace.

To use the Excel to Component Interface utility, you need access to some of the features accessed through via
the Developer menu, and therefore you must enable the menu. The following example shows Microsoft Excel
2007 workspace with the Developer menu enabled on the menu ribbon:

(D) = - Microsaft Excel
H

37
—-/I Hame Insert Page Layout Farmulas [rata Rewiew: Wiey Developer

- fe |

The Developer menu enabled on the Microsoft Excel 2007 menu ribbon.

Once enabled, the Developer menu appears on the far right on the menu ribbon.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

Using the Excel-to-Component Interface Utility Chapter 9

To enable the Developer menu in Microsoft Excel 2007 and later versions:
1. Launch Microsoft Excel 2007 or your later version.
2. In the upper left corner of the workspace, click the circular Microsoft Office icon.
The Recent Documents menu appears.
3. Click the Excel Options button at the bottom of the menu.
The Excel Options page appears.
4. In the Top Options For Working with Excel section, check the Show Developer Tab in the Ribbon option.
5. Click the OK button.

The Microsoft Excel 2007 workspace appears and the Developer menu appears on the menu ribbon.

Enabling Macros in Microsoft Excel

The Excel to Component Interface utility relies on macros; therefore, you must enable macros in Microsoft
Excel for the utility to work. When a Microsoft Excel spreadsheet is opened, the system displays a dialog box
asking you to select whether to enable macros on the spreadsheet. Always select Enable Macros so that the
macros delivered with the Excel to Component Interface utility can function.

To ensure that the macros are available to run, you must set the security level in Microsoft Excel to allow
macros to open.

To enable macros in Microsoft Excel:

1. Open the Excel to Component Interface utility.

2. From the Excel menu, select Tools, Macros, Security.
3. Select either Medium or Low to enable the macros.

4. Select OK.

Starting the Excel to Component Interface Utility

The Excel to CI utility spreadsheet is located in the PS HOME/excel directory. The file name is
ExcelToCI2007.xIsm.

Converting Excel to Component Interface Utility Templates to the Current
Excel Version

110

You can use customized Excel-to-CI templates based on versions of Microsoft Excel released previous to
Excel 2007. To preserve the macros embedded in your customized Excel-to-CI templates, you must convert
the templates to Excel 2007 format.

Excel 2007 files have the extension .xIsm.

To convert an Excel-to-CI template to Excel 2007 format:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility

1. Open a template in Excel 2007.
2. Click the Microsoft Office Button and choose Save As.
3. Click Excel Macro-enabled Workbook.
A Save As dialog box appears.
4. Choose a save location and enter a name for the workbook.
5. The workbook name must have the extension XIsm, such as myworkbook.xlsm

6. Click the Save button.

Viewing the Excel to Component Interface Coversheet

The coversheet of the Excel to Component Interface utility workbook gives a brief overview of the process
flow and functionality of the tool.

Access the Coversheet tab in ExcelToCI2007.x1sm:

PeopleSofle Excel To CI Utility

The purpose of this workbook is to upload data from Excel into PeopleSoft using the Component Interface to execute business logic for
each transaction. This source workbook contains both worksheets and Excel VBA code modules. The Worksheets can be copied to other
workbooks for distribution without copying the code modules.

Process:
1) Connection Information sheet: The information provided on this sheet is required to create a new template or submit data to the database. ¥ou will
need to specify emironment information as well as information in regard to how each transaction should be handled. The Action will be filled in
autornatically.

2) Template sheet: Here you create the ternplate that you are going to use. The template is based upon the structure of a Component Interface on the
PeopleSoft database.

2.1. New Template: When prompted, enter the name of your PeopleSoft User ID, password, and the Component Interface you wish to use. The
connect information previously provided is used to retrieve the PeopleSoft Component Interface properties. The Component Interface structure is
displayed graphically.
2.2. Manipulate Template: Here input cells are selected for inclusion on the Data Input and Staging & Submisson sheets. The purpose of each
buttan provided to allow manipulation of the template is more fully described by mousing owver the button an the toolbar.
2.3. New Data Input: This button copies the selected input cells into the Data Input sheet. The Data Input sheet becomes active, and you will be
prompted before the structures and data on that sheet are deleted.

3) Data Input sheet: Here you enter data values for submission to the PeopleSoft database.
3.1. Stage Data for Submission: The data entered on the Data Input sheet is then staged in hierarchical form in preparation for submission to the
database.

4) Staging & Submission sheet: The |ast step is to format the data and submit to the database.
4.1. Submit Data: This submits the data to the database. Your PeopleSoft User ID and Password will be reguired. Each row submitted is marked
with the reply from the database which will either be OR, Warning, or Error.
4.2. Post Results: This posts the status for each row submitted to the database on the Data Input sheet so that data in a status of error can be
corrected and resubrnitted.

Coversheet tab

Setting Up Connection Information

This section discusses how to:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

Using the Excel-to-Component Interface Utility Chapter 9

« Enter connection information.

» Connect to the database to create a template and submit data.

Entering Connection Information

112

Access the Connect Information tab in ExcelToCI2007.xIsm by clicking the Connection Information tab:

S ExcelToCI2007 xlsm [Read-Only] - Microsoft Excel

rnghlachineMName - = | yourPlaserver

Connect Information

ourPlAsener

EMPLOYEE
ps
PT_LOCAL
ENG

Connection Information tab

The information on this page is required to create a new template or to submit data to the database. You will
need to specify environment information as well as information about how data should be transmitted. The
Action field will be populated automatically based on your setup and the component interface that the
template is associated with.

The initial connection settings will be the PeopleSoft default values. You will need to modify these values for
your specific implementation of PeopleSoft. If you are unsure what to enter for these values, check with your
system administrator.

The connection options are:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Web Server Machine Name

Pr otocol

HTTP Port

Portal

PeopleSoft Site Name

Node

L anguage Code

Chunking Factor

Error Threshold

Submit Blanks as Input

Using the Excel-to-Component Interface Utility

The name of the PeopleSoft web server to which you are connecting.

The protocol used to access the web server. The default is HTTP. The
preferred protocol is HTTPS.

The HTTP port number that the web server uses. The default is 80.

The name of the portal you are using. EMPLOYEE is a default portal
shipped with PeopleSoft.

The PeopleSoft site name that you entered when you installed the
PeopleSoft Internet Architecture. The default is ps.

The PeopleSoft default local node name. The default is PT_LOCAL.

The code for the language in which the data is submitted to the database. If
no language code is specified, the base language is used.

See Chapter 9, "Using the Excel-to-Component Interface Utility,"
Translations and Multilingual Support, page 115.

The number of rows of data to be transmitted to the database at one time.
The default is 40.

The total number of errors that are permitted before submission to the
database ceases. When the error threshold is exceeded, an error message
appears and submission to the database stops.

When this option is set to Yes and a character input field selected for input
contains only blank spaces, the field will be included for submission instead
of being ignored. This option is set to No by default, for backwards
compatibility.

If full-width blank space Unicode characters are entered as an input value in
ExcelToCl, (this is achieved by using an encoding that supports such
Unicode characters) the field will be submitted, the blanks will be sent, and
the value will not be trimmed before it is saved to the database.

If regular ASCII blank spaces (also known as half-width characters) are
entered as a value for a character field, the field will be submitted, but the
value will be trimmed, so an empty string will be saved. In essence, the
field value will be cleared.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

Using the Excel-to-Component Interface Utility Chapter 9

Action The value for this field is supplied by the system when the component
interface is retrieved from the database. However, you can change the
supplied value by selecting it from the Action drop-down list.

The types of actions available are based on the structure of the component
interface. The actions are:

e Create.

This option is available if the component interface has create keys. Use
this mode when new keys are being added at level 0.

e Update.

This option is available if the component interface does not have create
keys. Use this mode if you are adding new children to an existing
parent.

» UpdateData.

Use this option to update specific non-key values that already exist. The
system uses the keys to locate the row, and when a match is found, the
row is updated with new data. If a key match is not found by the
system, it displays an error message indicating which collection was
missing a key match.

When using the UpdateData action, you must provide all keys for the
collection for the system to modify the data.

Note. If you want to insert an effective-dated collection at Level 1
containing a child collection at Level 2, you may need to use UPDATE to
insert the parent row at level 1 and then use UPDATEDATA to insert the
child row at level 2. This is because child rows are copied forward from the
current effective-dated collection as a result of the insertion of a new
effective-dated parent row. These child rows will be updated by the
component processor with the new effective date, and may have the same
level 2 keys as the Level 2 child row that you are trying to submit from
ExcelToClI.

See PeopleTools 8.52: PeopleTools Portal Technologies, "Understanding PeopleSoft Pure Internet
Architecture" and PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security."

Error Thresholds and Chunking

A running error count is kept for each chunk of data that is being submitted to the database. When the total
error count exceeds the error threshold that you specified on the Connection Information tab, submission to
the database stops and the system displays an error message. Rows that errored out will have a status of Error
on the data input page and should be corrected. The data submitted to the database before the error threshold
was reached will remain in the target database. Rows not yet submitted will be submitted when the data is
restaged and submitted.

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility

Translations and Multilingual Support

You can use the Excel to Component Interface utility to upload data from any installed language. The Excel
to CI utility delivers separate Excel macros for each delivered language. The macros contain the translated
strings used as labels on the main spreadsheet. The macros are located in the appropriate language directory
found in the PS_ HOME/EXCEL directory.

Enabling Non-English Languages

To enable a non-English language in the Excel to CI Utility:

« Change the language code on the spreadsheet Connect Information tab to the language to the language
you want to use.

« Change the reference to the related language macro to be used, as the default macro contains English
language strings.

To change the related language macro, in Excel select the Tools, Macro and right-click on the Visual
Basic Editor option. Once in Visual Basic, select Tools, References, and click on the RelLangMcro entry.
Change the file to be used to the one with the same name but located inside the translated language
directory of your choice. Click OK and then save the change.

» If you are using a language in which a different character set or numeric formatting is used, you need to
set the locale of your client machine to match that language. To do so, open Control Panel, Regional
settings, and select the correct language and input locale.

Connecting to the Database to Create a Template and Submit Data

Your PeopleSoft login information is needed for both creating the template and submitting data to the
database.

Access the Login dialog box by selecting the Template tab and then clicking the New Template button, or by
clicking the Submit Data button on the Staging and Submission tab:

0]

=ser ID: I

Cancel

Passwiord; I

Component Interface Mame: I

[~ Generate Log

Login dialog box

The system uses your user ID and password to ensure that you have the correct permissions to access the
component interface that you are creating the template on. You must be granted permission to access the
component interface that you are using.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Using the Excel-to-Component Interface Utility Chapter 9

User I D/Password Enter your PeopleSoft user ID and password.

Component Interface Name Enter the name of the component interface for which you want the template
created.

GenerateLog Select the Generate Log check box to create one log file for
ExcelToCI2007.xlsm and one for the SOAPTOCI Web Library.

Note. Unless you are troubleshooting errors, you should run the Excel to
Component Interface utility without creating log files. Logs should be
generated for debugging purposes only.

See Chapter 9, "Using the Excel-to-Component Interface Utility," Viewing Log Files, page 129.

Creating Templates

The template page is a graphical representation of the component interface structure that you will be using to
load data. The structure of the component interface is retrieved from the database when a new template is
built. All of the fields that are exposed through the component interface appear on the template page. Fields
that are read-only on the component interface will not appear on the template.

The new template macro builds the parent-child relationship within Microsoft Excel based upon the
component interface scroll-level definition. The system adds a new row for each scroll level and assigns a
unique identifier to it.

Access the Template tab in ExcelToCI.xlsm to create your template:

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Microsoft Excel - SDK_BUS_EXP.xls

Status

Line No

o

|
Template

S0OK_BUS_EXP

SDK_BUS_EXP_PER

Using the Excel-to-Component Interface Utility

SDK_BUS_ExP_DTL

SDK_BUS_EXP_DTL

SDK_BUS_EXP_DTL

SDK_ExP_PER_DT

SDK_CHARGE_DT

SDK_EXPENSE_CD

SDK_EXPEMNSE_AMT

110

110

CHARACTER

SIGMNED_MUMBER

15.3

/

Record Type Employee ID

Expense Period End Date Charge Date

Expense Code

5
Expense Amount

Template tab

Collection

Property

The name of the component interface collection. A collection is a property
that points to a scroll, rather than a field, in the underlying component for a
component interface.

The component interface property name. Typically, this is also the name of
the field on the page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

117

Using the Excel-to-Component Interface Utility Chapter 9

Record Type This number represents the parent/child relationship of the records. The
level O scroll record is always represented by 000. Level 1 scroll records
appear with numbers that start with 100 and always have 00 as the last two
numbers.

Level 2 scrolls are identified by numbers that start with the identifier of
their level 1 parent and end with a 0.

Level 3 scrolls are identified by the first number from the level 1 parent, the
second number from its level 2 parent, and then the third number from its
own position in the list.

The numbers for each scroll level are incremented based on the number of
records that exist at that level. For example, level 0 would be 000, level 1
would be 100, level 2 would be 110, and so on.

Note. Component interfaces that have more than 10 collections at a given
level will be incremented with alphabetic identifiers. For example, 800,
900, A00, and so on.

Field Type The standard PeopleSoft type for the field, for example, Date,Character,
and so on.
Field Length The length of the field as defined by PeopleSoft. For numeric fields and

signed number fields, the length is broken down into integer and decimal
positions. For example, a length of 15.3 indicates 15 integer positions and
three decimal positions.

Key/Required If the field is a key field, the system will display a Y to the left of the
forward slash. When the field is not a key, it will be blank. If the field is a
required field, the system will display an R to the right of the forward slash.
When the field is not required, it will be blank. This information comes
from the record definition itself.

Note. Fields that are either keys or required must be set in order to submit
data successfully.

Sequence The sequence number represents the property order in the template.
Status This field displays the load status on the Staging and Submission page.
Line Noline number This corresponds to the line number on the Input Data and the Staging and

Submission pages.

Understanding the Template Actions Toolbar

The template actions toolbar is made up of buttons that you use to create and modify a template, as well as
create a data input sheet. You can resize the toolbar and move it to any location on the page or even drag it
onto the existing standard Microsoft Excel toolbar. When you have moved the toolbar to a location, it will
remain there until you move it again. You do not need to move the toolbar each time you open the workbook.

118 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using the Excel-to-Component Interface Utility

Each button on the toolbar has help text that describes the purpose and use of each of the buttons when you

place the cursor over the button.

New Template

New Data I nput

Select Input Cell

Select All Input Cells

Restore Input Cells

Insert New Child

Include All for Submission

Include for Submission

Deselect Input Cell

Builds a new template based upon a component interface. The New
Template macro builds the parent-child relationship within Microsoft Excel
based upon the component interface structure.

When you build a new template, the system prompts you for your sign in
information.

Builds a new data input sheet based upon the selected input cells. When you
build a new data input sheet, the system prompts you as to whether you
want to overwrite the existing sheet. If you select Yes, a new data input
sheet is created, overwriting the former one.

Selects an individual cell to be included in the data input sheet. Cells that
have been selected as input cells are highlighted in pink.

Selects all properties to be included in the data input as input cells. When a
cell is selected as an input cell, it is highlighted in pink.

Restores the template to its original state and clears default values. The
fields in the template will be highlighted in gray, indicating that nothing is
included for submission.

Copies the selected row to be inserted as a new child. This creates multiple
occurrences of the same record type.

For example, if the selected row has a template identifier of 100, a new row
is inserted that also has an identifier of 100 and is an exact duplicate of the
selected row.

Note. Use Insert New Child when multiple children must be submitted
under the same parent record. Multiple children should not be created at
identifier 000.

Includes all properties on the spreadsheet to be included for submission to
the database. Cells that are included for submission appear only on the
Staging and Submission sheet and do not appear on the data input sheet.
Properties that are included for submission are highlighted in blue.

Includes a single property to be included on the Staging and Submission
sheet. Properties that use default values from the template must be included
for submission. Cells that are included for submission generally are
properties that contain default values or properties that you would like to
see in the structure of the Staging and Submission sheet. Properties that are
included for submission are highlighted in blue.

Changes a cell that was previously selected as an input cell to a cell that is
included for submission. The cell is no longer included on the data input
sheet but appears as part of the structure on the Staging and Submission
sheet.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Using the Excel-to-Component Interface Utility Chapter 9

Clear Template Clears all the data and structures on this sheet.
Do Not Include for Does not include the selected property for submission to the database. If a
Submission property is not included for submission, it will not appear in the structure

that is submitted to the database on the Staging and Submission sheet.
Properties that are not included for submission will appear only on the
template worksheet and are not submitted to the database. Properties that
are not included for submission are highlighted in gray.

Note. When you create a new template or a new data input sheet, the system clears the existing worksheet of
all existing information. If you have a template or data input sheet that you need to save from previous
uploads, save a copy of the worksheet before you create a new template or data input sheet.

Entering Data into the Template

120

When determining which properties to include as input cells and which properties to include for submission,
remember that the component interface uses the same business logic and executes the same PeopleCode as if
the record were entered online using the page in your PeopleSoft application. To provide the minimal data
necessary, these fields must be provided either with default (hard-coded) values or values that you provide
using the data input sheet.

Note. You should unit test the template that you created with a few sample entries, and then verify your
results before using the interface for mass input. For example, if you forgot to select a property, you will need
to build a new data input sheet. If the results of the submission are satisfactory, continue entering data.

Adding a New Child Record

By default, each collection is represented once on the template. To insert copies of a given collection, select
that collection and click the Insert New Child button to create a copy of the selected row. The collection that
you selected is copied so that you can have two rows under the same parent.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility
A [B | € | D [E | F | G | H | [
’ Template
2 |SDK_BUS EXP
3
4 Collection|=0DK_EUS EXF |SDK_BUS_ExF PER SOk_BUS_EXP_DTL |SDK_BUS EXP_DOTL |SDK_BUS_EXP_DTL |SDK_BUS_ExF
] Property|=0k_EMPLID |SDK_EXP_FPER_OT SOK_CHARGE DT |SDK_EXPEMSE_CD |SDK_EXPENSE_AMT |SDK_CURREMC]
5 Record Type|000 100 110 110 110 110
7 Field Type| CHARACTER |DATE DATE CHARACTER SIGMED_MNUMBER CHARACTER
g Field Length|11 10 10 2 15.3 3
a Key / Required |¥/R iR /R / / /R
10 Sequence|] 2 3 4 9 =]
Status Line No Record Type Employee ID Expense Period End Date Charge Date Expense Code Expense Amount Currency Code
12 [Template aoo
13 [Template 100
14 |Template 110
15 [Template 110

Template tab — child row added

Note. On the data input sheet (when the hierarchy is flattened) you will see duplicate columns where multiple
children exist.

Adding Default Values

Some fields have default values associated with them, either in the record definition or at runtime when the
record is created on the database. Additionally, many components trigger PeopleCode, which supplies default
values, as well. To accept the database default, include the property for submission and the system default
will be used.

Some fields may exist for which you want to create your own default. For example, if you want to set the
value of a field named Status as of Effective Date to A for every row that you submit, enter that value for the
field in the template. Then include the cell for submission on the template. The field will not appear on the
data input page, but the value will appear in the field on the Submit to Database page. This is useful for
effective dates, status fields, set IDs for simple imports, and so on.

When providing values for translate fields or prompt tables, provide the field value rather than the short or
long description for the translate value. If you are unsure of the field values, check in the record or field
definition in PeopleSoft Application Designer.

Entering Data on the Data Input Sheet

The data input sheet enables you to enter data into the Excel to Component Interface utility so that it can be
loaded to the database by using the component interface that you've selected. You can enter data manually or
you can cut and paste it from another spreadsheet or third-party application.

Using the Data Input Sheet

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Access the data input tab to enter data:

121

Using the Excel-to-Component Interface Utility

Chapter 9

===

A |

B

C

=1=1x]

E [F [&6 [o [v | J | K [L T

D |

|Enter Connect Information > Build Template >

> Stage & Submit Data

Data Input Actions

[¥ Stage Data For Submission

2 |SDK_BUS_EXP

3 |Record Type 000 [Record Type 100 Record Type 110 |Record Type 110
| 4 |[Employee ID Expense Period End Date |Charge Date Expense Amount
| 5 |&001 12/6/2006 12672006 100.
| B 3001 1247 72006 12/7/2006 101.
| 7 8001 12/8/2006 12/8/2006 102.
| & 18001 12/9/2006 124972006 103.
| 9 18001 12/10/2006 121072006 104.
| 10 /3001 12/11/2006 1211172006 105.

11 8001 12012/2006 121272006 106.

~a

w

=

o

PR B —
k| = O

[ERREERRRERRENNRY Y Y R R N
LAk = O 0|00~ 00 | | LD

=

i Y]
m

4

1l » [M Coversheet # Connect Information /7 Template Data Input { Staging & Submission /

=

Data Input tab

The field labels that appear on the data input sheet are those properties that you selected as input cells on the
template. Each scroll level is identified by color. The record type from the template is also displayed for each
property.

The system creates default date, datetime, and number formats when it creates the template. You can modify
this format by using default cell formatting of Microsoft Excel when entering data, with the exception of the
d/m/yy format for dates and datetimes. Instead, always use a d/m/yyyy format for dates and datetimes. To
access the formatting feature, select Format, Cells from the Excel menu.

The data input sheet is also used to correct data that failed to submit to the database. Errors that are flagged
on the Submit to Database page are posted to the data input page, and when you have corrected them, the
items marked in error can be staged again to the Staging and Submission sheet.

Data Input Actions

The data input Actions toolbar contains the Stage Data for Submission button, which takes the data that you
entered on the data input sheet and stages it for submission to the database. When the data is staged, it appears
on the Staging and Submission sheet in the hierarchical template structure. At this point, you should check
that all fields are populated as expected. When the data is staged, it displays both the data on the data input
sheet and the data that you specified as default values.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility

Viewing the Staged Data

Access the Staging and Submission tab:

24 Microsoft Excel - SDK_BUS_EXP.xls ==l
J File Edit Wiew Insert Format Tools Data Window Help ;Iilﬂ
A | B | C | D | E | F | G | H L [0 [k | L =
|Enter Connect Information > Build Template > Input Data > |

1

2 |SDK_BUS EXP

1? |5 oo |BDD1 | | | | Staging & Submission ActionsE
12 | 3 100 12/6/2006 %Post Results W Submit Data
13 5 110 12/6/2006 100. USD
| 14 | 5] ooo 8001
| 15 5] 100 12/7/2006

16 5] 110 12/7/2006 101. USD
| 17| 7 ooo g001
|18 7 100 12/8/2006

19 7 110 12/8/2006 102, LSD
|20 8 aoo 8001
|21 8 100 12/9/2006

22 g 110 12/9/2006 103. USD
| 23] 9 aoo 8001
| 24 | 9 100 12102006

25 9 110 12/10/2006 104, USD
| 26 | 10 aoo 8001
| 27 10 100 12/11/2006

28 10 110 12/11/2006 105. USD
| 29 | 11 ooo 8001
| 30 1 100 1241272006

31 11 110 1241272006 106. USD
| 32 | =TOF
| 33
| 34 |
| 35
| 36 |
| 37
| 35
| 39 |
| 40
| 41 |
| 42

43
14 [4[» [pP Coversheet £ ConnectInformation 4 Template £ DataInput }Staging & Submissi <]

Staging and Submission tab

Staging and Submission Actions Toolbar

Post Results The results of the submission are copied to the data input sheet, where you
can view the status of each row that is submitted and make any necessary
corrections to rows that have the status of Error.

Submit Data The login dialog box appears. You must specify your user ID and password.

The system submits the data to the database in the chunks that you specified
on the Connection Information sheet.

After correcting any errors on the data input sheet, you can submit the data
again. The items that had been marked as Error will be resubmitted,
whereas those marked OK and Warning will be ignored.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

Using the Excel-to-Component Interface Utility Chapter 9

Error When Submitting Existing Keys

If you receive the error message Row already exists with the specified keys and you are in CREATE mode,
the key already exists at level O or is part of the search record.

To verify that the key exists:
1. Open the component interface in PeopleSoft Application Designer.
2. Launch the component interface tester by selecting Tools, Test Component Interface.

The component interface Tester search dialog box appears. This dialog box displays the keys (in the left-
hand columns) for getting, creating, or finding an instance of the component interface.

3. Enter the value for the key that you are testing.
4. Click Get Existing for the key that you are about to add, using the Excel to component interface utility.

If the Get Keys command returns the key, the key already exists and you must add data by using
UPDATE mode.

If you receive a message that no row exists for the key, then the key does not exist at level 0 and the data
should be added by using CREATE mode.

See Chapter 3. "Developing Component Interfaces," Testing Component Interfaces, page 46.

Correcting and Resubmitting Data

124

After you submit the data to the database, results of the process appear on the Staging and Submission sheet.
If a submission had an error, the errored status appears on the Staging and Submission sheet. Use the data
input page to correct the data and then resubmit it to the database. Continue this process of correcting errors
and resubmitting the data until no errors remain.

Note. Data that was not submitted because the error threshold was reached will have no status. When the data
that created the error is corrected on the data input sheet, the data that was not submitted will be staged to the
database.

Submission Statuses

Errors received for each record submitted appear in a comment field when you move the cursor over the
status column. The records marked OK in green have been successfully submitted and cannot be restaged for
submission and can be kept as a record of work completed.

One of the following three status values can appear when you submit data to the database:

Ok The submission to the database finished successfully. The field is
highlighted in green.

These records cannot be restaged for submission.

Warning The data was saved to the database successfully, but a warning was
generated in the process. The field is highlighted in yellow.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility

Error The data was not saved to the database due to an error. This field is
highlighted in red.

To see the error message that the component interface generated, place your
cursor over the Status field. This message indicates how the data needs to
be corrected.

Creating SOAP/XML Requests

You can construct a SOAP/XML (Simple Object Access Protocol/Extensible Markup Language) request to
create, update, or get component interface rows. The request and response contain component interface data
in a SOAP/XML format.

Request Format

The following example shows the request format:

<?xm version="1.0"7?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/" =
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<Action__Complntfc__ Cl Nane>
Tags and Data
</ Action__Complntfc__Cl Nanme>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Valid actions are Create, Get, Update, and Updatedata.
ClIname is the name of the component interface.

Tags and Data contains the tags and data for the component interface row or rows.

Sample Create Request

The following example shows a Create request:

<?xm version="1.0"?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/"
xm ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<CREATE__ Conpl nt f c__ SUPPORT_DCOC TBL>
<SUPPORT_DCC | D>PQLI CE</ SUPPORT_DCC | D>
<SUPPORT_DOC>
<DESCR>Pol i ce Report </ DESCR>
<DESCRSHORT>Pol i ce</ DESCRSHORT>
</ SUPPORT_DOC>
</ CREATE__ Conpl ntfc__ SUPPORT_DOC TBL>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

Using the Excel-to-Component Interface Utility Chapter 9

Sample Get Request

The following example shows a Get request:

<?xm version="1.0"?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/"

xm ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ ">

<SOAP- ENV: Body>
<Cet __ Conplntfc__SDK BUS EXP>
<SDK_EMPLI D>8052</ SDK_EMPLI D>

</ Get _Conpl ntfc__SDK_BUS_EXP>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Sample Update Request

The following example shows an Update request:

<?xm version="1.0"?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/"
xm ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<UPDATE__ Conpl ntfc__SDK _BUS_EXP>
<SDK_EMPLI D>8001</ SDK_EMPLI D>
<SDK_BUS_EXP_PER>
<SDK_EXP_PER DT>08/ 14/ 2002</ SDK_EXP_PER DT>
<SDK BUS EXP DTL>
<SDK_CHARGE_DT>08/ 14/ 2002</ SDK_CHARGE DT>
<SDK_EXPENSE_CD>01</ SDK_EXPENSE_CD>
<SDK_EXPENSE_AMI>1234. 56</ SDK_EXPENSE_AMT>
<SDK_CURRENCY_CD>USD</ SDK_CURRENCY_CD>
<SDK_BUS_PURPOSE>Cl i ent Vi si t </ SDK_BUS_PURPCSE>
<SDK DEPTI D>10100</ SDK_DEPTI D>
</ SDK_BUS_EXP_DTL>
</ SDK_BUS_EXP_PER>
</ UPDATE__Conpl nt fc__SDK_BUS_EXP>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Sample Updatedata Request

The following example shows an Updatedata request:

<?xm version="1.0"7?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/"
xm ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<UPDATEDATA _ Conpl nt f ¢ USER_PROFI LE>
<User | D>VP1</ User | D>
<User Descri pti on>updat ed descri pti on</User Descri pti on>
<Emai | Addr esses>
<Emai | Type>BUS</ Enai | Type>
<Emai | Addr ess>Updat ed@pdat ed. conx/ Enai | Addr ess>
</ Emai | Addr esses>
</ UPDATEDATA _Conpl ntfc__ USER PROFI LE>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

126 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using the Excel-to-Component Interface Utility

Sending Requests

To send the request, post the XML code to the URL of the PeopleSoft Pure Internet Architecture server with
the appropriate path to the iScript on the server.

Note. The PeopleSoft user ID and password must be sent in the SOAP request header with the identifiers of
userid and pwd. You should send the request on a secure site.

Use this format:
Protocol (http or https)>://<WbServer Machi neNane>: <HTTPPort >/ psc/ ps/ <Port al >=

/ <Node>/ s/
VEEBLI B_ SOAPTCOCI . SOAPTQCI . Fi el dFormul a. | Scri pt _SOAPToCI ?&di sconnect =y&post Dat aBi n=y

WebServer M achineName Machine name of the server.

HTTPPort Port of the server.
Portal Portal defined on the PeopleSoft Pure Internet Architecture server.
Node Node defined on the PeopleSoft Pure Internet Architecture server.

For example,

http://MyWebServer:80/psc/ps/EMPLOYEE/PT_LOCAL/s/WEBLIB_SOAPTOCI.SOAPTOCI.FieldFormul
a.IScript SOAPToCI?disconnect=y&postDataBin=y

Receiving Responses

This section provides examples of response types.

Viewing a Response if a Row Already Exists

This is one example of the error response. The messages vary depending on the type of error.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

Using the Excel-to-Component Interface Utility Chapter 9

<?xm version="1.0" encodi ng="UTF-8" ?>
<SOAP- ENV: Envel ope xnl ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>
<USER_PROFI LE>
<Er r or - Var ni ng>
<Message>
<Type>Error</ Type>
<MessageSet Nurmber >91</ MessageSet Nunber >
<MessageNunber >49</ MessageNunber >
<MessageText >Row al ready exists with the specified keys.
{USER_PROFI LE} (91, 49) </ MessageText >
<Expl ai nText >A rows al ready exists in the database with the
speci fi edkeys.
</ Expl ai nText >
</ Message>
</ Err or - Var ni ng>
<Key_i nformati on>
<User | D>PTDMOL10</ User | D>
</ Key_information>
</ USER_PRCFI LE>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Viewing a Sample Get Request and Response

The following XML code gets an SDK_BUS EXP component interface row for an employee with an
employee ID of 8052:

<?xm version="1.0"?>
<SDK BUS EXP acti on="CGET">
<SDK_EMPLI D key="Y">8052</ SDK_EMPLI| D>
</ SDK_BUS_EXP>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

The XML response for this employee is:

<?xm version="1.0" encodi ng="UTF-8" 7>
<SOAP- ENV: Envel ope xnml ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<SDK_BUS_EXP>
<SDK_BUS_EXP_PER>
<SDK_EMPLI D>8052</ SDK_EMPLI D>
<SDK_EXP_PER_DT>2000- 11- 09</ SDK_EXP_PER DT>
<SDK_BUS EXP_DTL>
<SDK_EMPLI D>8052</ SDK_EMPLI D>
<SDK_EXP_PER DT>2000- 11- 09</ SDK_EXP_PER DT>
<SDK_CHARGE_DT />
<SDK_EXPENSE_CD / >
<SDK_EXPENSE_AMI>0</ SDK_EXPENSE_AMT>
<SDK_CURRENCY_CD>USD</ SDK_CURRENCY_CD>
<SDK_BUS_PURPCSE / >
<SDK_DEPTID />
</ SDK_BUS_EXP_DTL>
</ SDK_BUS_EXP_PER>
</ SDK_BUS_EXP>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

128 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using the Excel-to-Component Interface Utility

Diagnosing and Resolving Errors

This section discusses how to:

e View the log files.

» Resolve error messages for client environments.

Viewing Log Files

If you select the check box to create log files when building a template or submitting to the database, two log
files are created—one that logs the activity of ExcelToCI2007.xIsm and the other that logs the SOAPTOCI

Web Library.

The log for ExcelToCI2007.xlsm is created in the temp directory on the workstation running the Microsoft

Excel spreadsheet.

The log for the Web Library, SOAPTOCI<unique_number>.log, is created on the application server in the
<PS_CFG_HOME> directory. This file contains both the SOAP request and the SOAP response.

Log files are written for each chunk of data that is sent to the database.

Resolving Error Messages for Client Environments

The following table lists common errors and error messages and their possible resolutions.

Error Message

Possible Resolution

Component not correctly registered

Reinstall Visual Basic 6.0 SP5: Run-Time Redistribution
Pack found on the Microsoft download site.

ActiveX component not correctly registered (Error 336)

Reinstall Visual Basic 6.0 SP5: Run-Time Redistribution
Pack found at the Microsoft downloads website.

Error Number: -2147024770 Description: Automation
error. The specified module could not be found.

Perform the following steps:

1.
2.

Open Windows Explorer.

Navigate to c:\winnt\system32 directory and locate
msxml6.dll.

Right-click the DLL and select Register COM Server.
The message DLLRegisterServer in
¢:\winnt\system32\msxmi 6.dll succeeded. will appear.

Click OK.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

129

Using the Excel-to-Component Interface Utility Chapter 9

Error Message Possible Resolution

Error Number: 429 Description: ActiveX component can't | Perform the following steps:

create object.
) 1. Open Windows Explorer.

2. Navigate to c:\winnt\system32 directory and locate
msxml4.dll.

3. Right-click the DLL and select Register COM Server.
The message DLLRegisterServer in
¢:\winnt\system32\msxml 6.dll succeeded. will appear.

4. Click OK.

Error Number -214722099 Description: Automation error | Perform the following steps:

in the il 1. Location and open the file Excel ToCI2007.xIsm.
2. Press Alt + F11 to open the Microsoft Visual Basic
Editor.
3. Select Tools, Add references.
4. Deselect anything that begins with Microsoft XML.
5. Browse for c:\winnt\system32msxml6.dll and click
OK.
6. Select that version of msxml and click OK.
7. Click Save.
Not Authorized (90,6) The user who is trying to access the component interface

from ExcelToClI does not have access to the component
interface. Please provide access using PeopleTools
Security.

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix A

Creating Component Interface-Based
Services

This appendix provides an overview of creating component interface-based services,

Understanding Generating Component Interfaced-Based Services

PeopleSoft Integration Broker enables you to take an existing component interface and create a service that
can invoke the component interface.

Further, it creates service operations, including request messages and response messages (if appropriate). The
system creates an inbound any-to-local routing for the service operation version, as well as handlers for each
method you choose to include in the service.

All service operations you generate from component interfaces are synchronous service operations.

After you create the service operation you can access the service definition to view and capture the WSDL.

See PeopleTools 8.52: PeopleSoft Integration Broker, "Creating Component Interface-Based Services."

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

Appendix B

Using Services to Validate Prompt Table
and Translate Field Values

This section discusses how to:

» Validate prompt table field values.

« Validate translate (XLAT) field values.

» Use messages to request valid prompt table and translate (XLAT) field values.

» Use response messages to retrieve valid prompt table and translate (XLAT) field values.

Note. This section also includes examples of request and response messages used in validating prompt table
and translate (XLAT) field values.

Understanding Validating Prompt Table and Translate Field Values

PeopleSoft delivers a service, PTLOOKUP, that enables integration partners to retrieve lists of
valid/allowable values for prompt and translate (XLAT) fields from PeopleSoft components on which
component interfaces are based, allowing them to validate their client application data against PeopleSoft
data.

PeopleSoft integration partners provide WSDL for this service to their integration partners using the Provide
Web Service wizard. The third-party integration partner uses the provided request message shape to specify
the field values to validate. They then send the request message to the PeopleSoft system to invoke the
service. The PeopleSoft system returns a response message to the integration partner with the field values
requested.

The PTLOOKUP service contains two service operations:

PTLOOKUPPROMT.v1 Use this service operation to return prompt table field values for prompt
tables contained in a component.

PTLOOKUPXLAT.v1 Use this service operation to return translate (XLAT) field values for
translate fields contained in a component.

Each service operation is synchronous and is delivered with a request message, a response message, a
handler, and a routing. The delivered metadata for these service operations is described elsewhere in this
section.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

Using Services to Validate Prompt Table and Translate Field Values Appendix B

The service operations take as their primary inputs the value being validated, the name of the table, and the
field name against which to compare. The service operations compare the input value against the lookup table
and return the result of the validation test.

Prerequisites for Validating Prompt Table and Translate Field Values

The following list outlines prerequisites for using the PTLOOKUP service to validate prompt table and
translate table field values:

» The PeopleSoft system must have Integration Broker configured and running.

» Integration partners must know and provide the field names and table names for which they are retrieving
validation information.

» Integration partners must have access to:

» PeopleSoft Application Designer to inspect PeopleSoft component, record, and field information and
properties.

» PeopleSoft Integration Broker or another services-oriented architecture environment configured and
running

Validating Prompt Table Field Values

This section discusses how to use the PTLOOKUPPROMPT service operation to validate prompt table field
values.

Understanding Validating Set Control Fields

Use service operation security permission lists to secure access to this service operation.
Requests must be sent to the PeopleSoft system using SSL or TLS.

Moreover, because prompt table field values can contain sensitive or confidential information, such as salary
grades or order categories. Access to the prompt tables targeted by the PTLOOKUPPROMPT service are
restricted by the requirement that they be added to a query access tree for which the user issuing the service
request must be granted permission.

Using the PTLOOKUPPROMPT Service Operation

134

Use the PTLOOKUPPROMPT service operation to validate prompt table field values. To access the service
operation, select PeopleTools, Integration Broker, Integration Setup, Service Operations and select the
PTLOOKUPPROMPT service operation.

PTLOOKUPPROMPT is a restricted service operation that is delivered with the following metadata:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Metadata Type Name Comments

Request Message PTLOOKUPPROMPT.V1 PTLOOKUPPROMPT.V1 is a document-based
message.

Response Message PTLOOKUPRESP.V1 PTLOOKUPRESP.V1 is a document-based
message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest handler that is
implemented using an application class.
The application class package delivered is
PT IB LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated

synchronous any-to-local routing for this service
operation.

Listening Connector

PeopleSoftServices

The default listening connector.

Validating Translate (XLAT) Field Values

This section discusses how to use the PTLOOKUPXLAT service operation to validate XLAT field values.

Note. XLAT values are effective-dated, and only the values marked as Active are used for validation.

Understanding Translate (XLAT) Table Entries

XLAT table entries associated with a field definition include the following attributes:

Attribute

Description

FIELDNAME

Field name, such as ABSENCE TYPE.

LANGUAGE_CD

Language code.

FIELDVALUE Value for the field; it must be between 1 and 4 characters long.
EFFDT Effective date.

VERSION Internal version number (system-maintained).

EFF_STATUS The status of the field, active or inactive.

XLATLONGNAME Thirty-character description; used as a label on pages and reports.
XLATSHORTNAME Ten-character description; used as a label on pages and reports.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

135

Using Services to Validate Prompt Table and Translate Field Values Appendix B

Understanding Security When Validating Translate (XLAT) Field Values

Use service operation security permission lists to secure access to this service operation.

Requests must be sent to the PeopleSoft system using SSL or TLS.

Using the PTLOOKUPXLAT Service Operation
Use the PTLOOKUPXLAT service operation to validate prompt table field values. To access the service
operation, select PeopleTools, Integration Broker, Integration Setup, Service Operations and select the

PTLOOKUPXLAT service operation.

PTLOOKUPXLAT is a restricted service operation that is delivered with the following metadata:

Metadata Type Name Comments

Request Message PTLOOKUPXLAT.V1 PTLOOKUPXLAT.V1 is a document-based
message.

Response Message PTLOOKUPXLATRESP.V1 PTLOOKUPXLATRESP.V1 is a document-based
message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest handler that is

implemented using an application class.

The application class package delivered is
PT IB_LOOKUP and the class ID is

RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this service
operation.

Listening Connector PeopleSoftServices The default listening connector.

Using Messages to Request Valid Prompt Field and Translate
(XLAT) Field Values

The request message for either service operation is a document type message, and includes one or more sets
of the following as inputs associated with the look-up operation:

136 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix B

Using Services to Validate Prompt Table and Translate Field Values

Element

Description

LookupRecName

Populate this element with the prompt table that contains the data
to validate.

This element appears only when performing a prompt table lookup
and working with the PTLOOKUPPROMPT message.

When you perform an XLAT lookup, there is only one XLAT
table for the entire PeopleSoft database and the table name,
PSXLATITEM, is fixed. As a result you do not need to provide
the table name when performing an XLAT lookup.

LookupFieldName

Populate this element with the field name to validate.

LookupFieldValue

(Optional) Populate this element with the name of the descriptor
field. The descriptor field describes the purpose of the record, not
the field.

The valid values are:
e A specific value to look up.
e Blank (empty). This will return a list of all possible values.

e A wildcard (%) value. For example, entering A% will return
all results that start with the letter A.

DescrFieldName

(Optional) Populate this element with the field name description.

LanguageCode

(Optional) Populate this element with the language code.

EffectiveDate

(Optional) Populate this element with the effective date.

SetControlFieldValue

(Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field value that is controlled
by a set control field, enter the set control field value in the
SetControlFieldValue element in the request message. The system
uses this information to extract the name of the SETID field used
to partition the data in the table.

If you do not enter the set control field value, you must enter the
set ID value in the SetIDValue element in the request message.
The SetIDValue element is described elsewhere in this table.

If you enter a set control field value and a set ID value, the system
uses the set control field value to locate the field name.

SetIDValue

(Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field value that is controlled
by a set control field, enter the set ID value in the SetIDValue
element.

If you also enter a set control field value in the request message,
as described elsewhere in this table, the system uses that value, not
the set ID value, to locate the field name.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

Using Services to Validate Prompt Table and Translate Field Values Appendix B

Element Description

FldName (Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field use this element in
conjunction with the FldNameValue element to return name/value
pairs for the field.

FldNameValue (Optional) Appears only in the PTLOOKUPPROMPT.V1 request
message for validating prompt table field values.

If you are validating a prompt table field use this element in
conjunction with the FldName element to return name/value pairs
for the field.

Examples of response messages are provided elsewhere in this appendix.

Using Response Messages to Retrieve Valid Prompt Field and
Translate (XLAT) Field Values

The following table lists the elements contained in the response message and the information contained in

each:

Element Description

RespVal This element is populated with the response value.

RespDescr This element is populated with a description of the response value.

The response value that the PeopleSoft system sends back is based on one of the following possible

conditions:

Condition Response

Input value is a perfect match. The value that was matched.
Input value is a partial match. List of matched values.
Input value is blank (empty). List of all values.

Input value not matched. List of all values.

Prompt table name or prompt field are incorrect. Error message.

Examples of response messages are provided elsewhere in this appendix.

138 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

Examples: Validating Prompt Field and Translate (XLAT) Field
Values

This section provides examples of request and response messages for the validating prompt field and translate
(XLAT) field values using the PTLOOKUPPROMPT and PTLOOKUPXLAT service operations. This
section provides codes examples that show how to:

» Validate a translate (XLAT) field.

» Perform a prompt table lookup with a field value wildcard.

« Filter field values by name/value pairs.

» Specify set control field values to validate field values controlled by set control fields.

« Specify set control ID values to validate field values controlled by set ID fields.

Example 1: Validating a Translate (XLAT) Field

The following code example shows a request message sent to a PeopleSoft system as part of the
PTLOOKUPXLAT service operation to obtain a list of valid field values and their descriptions for the
CERTTYPE field. Note that the LookupFieldValue element is empty (<>). As a result, the PeopleSoft
system will return a list of all valid values for the field:

<?xm version="1.0"7?>
<soapenv: Envel ope xm ns: soapenc="http://schemas. xnl soap. or g/ soap/ encodi ng/" xm ns: >
soapenv="http://schemas. xm soap. or g/ soap/ envel ope/" xm ns:wsa="http: >

[/ schemas. xnl soap. or g/ ws/ 2003/ 03/ addr essi ng/ " xm ns: xsd="http://ww. w3. org/ 2001=>
/ XMLSchenma/" xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance/ " >
<soapenv: Header xm ns: soapenv="htt p://schemas. xm soap. or g/ soap/ envel ope/ " >

<wsse: Security soap: nust Under st and="1" xm ns: soap="http://schenas. >

xm soap. or g/ wsdl / soap/" xm ns: wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01>
/ oasi s-200401- wss-wssecurity-secext-1.0.xsd">
<wsse: User nameToken>
<wsse: User name>QEDMO</ wsse: User nane>
<wsse: Passwor d>QEDMO</ wsse: Passwor d>
</ wsse: User nanmeToken>
</wsse: Security>
</ soapenv: Header >
<soapenv: Body xnl ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ " >

<XLAT_Lookup xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/ PT =
Lookup. XLAT_Lookup. V1" >
<LookupFi el dNanme>CERTTYPE</ LookupFi el dNane>
<LookupFi el dval ue></ LookupFi el dval ue>
<Descr Fi el dName>XLATSHORTNAME</ Descr Fi el dNane>
<LanguageCode></ LanguageCode>
<Ef f ecti veDat e>2010- 01- 03</ Ef f ect i veDat e>
</ XLAT_Lookup>
</ soapenv: Body>
</ soapenv: Envel ope>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

Using Services to Validate Prompt Table and Translate Field Values Appendix B

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example:

<?xm version="1.0"7?>
<soapenv: Envel ope xm ns: soapenc="http://schenmas. xn soap. or g/ soap/
encodi ng/" xm ns: soapenv="htt p://schemas. xm soap. or g/ soap/ envel ope/
" xm ns: xsd="http://ww. wW3. org/ 2001/ XM_Schema" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchena- i nst ance" >
<soapenv: Body>
<LookupResponse xm ns="http://xm ns. oracl e. com Ent erpri se/
Tool s/ schemas/ PT_Lookup. LookupResponse. V1" >
<ResponseConmp xml ns="http://xm ns. oracl e. com Enterprise/
Tool s/ schemas/ PT_Lookup. ResponseConp. V1" >
<RespVal >USER</ RespVal >
<RespDescr >User </ RespDescr >
</ ResponseConp>
<ResponseConp xm ns="http://xm ns. oracl e. conl Enterprise/
Tool s/ schemas/ PT_Lookup. ResponseConp. V1" >
<RespVal >NODE</ RespVal >
<RespDescr >Node</ RespDescr >
</ ResponseConp>
<ResponseConp xm ns="http://xm ns. oracl e. conl Enterprise/
Tool s/ schemas/ PT_Lookup. ResponseConp. V1" >
<RespVal >CERT</ RespVal >
<RespDescr >Cert </ RespDescr >
</ ResponseConp>
<ResponseConmp xm ns="http://xm ns. oracl e.com Ent erpri se/
Tool s/ schemas/ PT_Lookup. ResponseConp. V1" >
<RespVal >RO0OT</ RespVal >
<RespDescr >Root CA</ RespDescr >
</ ResponseConp>
</ LookupResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard

140

The following code example shows a request message sent to a PeopleSoft system as part of the
PTLOOKUPPROMPT service operation to perform a prompt table lookup on the Country table using a
wildcard (%) on the field value to find country names that begin with the letter U:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

<?xm version="1.0"?>
<soapenv: Envel ope xm ns: soapenc="http://schemas. xnl soap. or g/ soap/ encodi ng/
" xm ns:soapenv="http://schenmas. xnl soap. or g/ soap/ envel ope/" xm ns:wsa="http:
/1 schemas. xnl soap. or g/ ws/ 2003/ 03/ addr essi ng/ " xm ns: xsd="htt p://ww. w3. or g/
2001/ XMLSchema/ " xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance/ " >
<soapenv: Header xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<wsse: Security soap: nust Under st and="1" xm ns: soap="http://schenas. xm soap
org/ wsdl / soap/" xm ns:wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s-
200401- wss-wssecurity-secext-1.0.xsd">
<wsse: User nameToken>
<wsse: User nane>VP1</ wsse: User nane>
<wsse: Passwor d>VP1</ wsse: Passwor d>
</ wsse: User naneToken>
</ wsse: Security>
</ soapenv: Header >
<soapenv: Body xnl ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<Lookup xm ns="http://xm ns. oracl e.con Enterpri se/ Tool s/ schemas/
PT_Lookup. Pronpt _Lookup. V1" >
<LookupRecNane>COUNTRY_TBL</ LookupRecNane>
<LookupFi el dNane>COUNTRY</ LookupFi el dNane>
<LookupFi el dVal ue>W/ LookupFi el dval ue>
<Descr Fi el dName>DESCR</ Descr Fi el dNane>
<LanguageCode></ LanguageCode>
<Ef f ecti veDat e></ Ef f ecti veDat e>
</ Lookup>
</ soapenv: Body>
</ soapenv: Envel ope>

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

Using Services to Validate Prompt Table and Translate Field Values Appendix B

<?xm version="1.0" encodi ng="UTF-8"7?> <soapenv: Envel ope xm ns: soapenv=
"http://schenas. xm soap. or g/ soap/ envel ope/" xm ns: soapenc="http://schenss.
xm soap. or g/ soap/ encodi ng/ " xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Scherma"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena-i nst ance" >
<soapenv: Body><LookupResponse xm ns="http://xm ns. oracl e. conl Enterprise/
Tool s/ schemas/ PT_Lookup. LookupResponse. V1" >
<ResponseConmp xnml ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. ResponseConp. V1" >
<RespVal >UM </ RespVal >
<RespDescr>US M nor Qutlying |slands</RespDescr>
</ ResponseConp>
<ResponseConmp xnml ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. ResponseConp. V1" >
<RespVal >UGA</ RespVal >
<RespDescr >Uganda</ RespDescr >
</ ResponseConp>
<ResponseConp xm ns="http://xm ns. oracl e. conl Ent er pri se/ Tool s/ schenas/
PT_Lookup. ResponseConp. V1" >
<RespVal >UKR</ RespVal >
<RespDescr >Ukr ai ne</ RespDescr >
</ ResponseConp>
<ResponseConp xm ns="http://xm ns. oracl e. conf Ent er pri se/ Tool s/ schenas/
PT_Lookup. ResponseConp. V1" >
<RespVal >USA</ RespVal >
<RespDescr>Uni ted Stat es</RespDescr>
</ ResponseConp>
<ResponseConmp xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. ResponseConp. V1" >
<RespVal >URY</ RespVal >
<RespDescr >Ur uguay</ RespDescr >
</ ResponseConp>
<ResponseConmp xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. ResponseConp. V1" >
<RespVal >UzB</ RespVal >
<RespDescr >Uzbeki st an</ RespDescr >
</ ResponseConp>
</ LookupResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

Example 3: Filtering Field Values by Name/Value Pairs
The following code example shows a request message sent to a PeopleSoft system from an integration partner

as part of the PTLOOKUPPROMPT service operation to obtain a list of field values from the Currency table
of currencies from Argentina that start with A by using name/value pair as additional filter:

142 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

<?xm version="1.0"?>
<soapenv: Envel ope xm ns: soapenc="http://schemas. xnl soap. or g/ soap/ encodi ng/
" xm ns:soapenv="http://schemas. xnl soap. or g/ soap/ envel ope/ "xm ns: wsa="htt p:
/1 schemas. xnl soap. or g/ ws/ 2003/ 03/ addr essi ng/ " xm ns: xsd="htt p://ww. w3. or g/
2001/ XMLSchema/ " xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance/ " >
<soapenv: Header xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<wsse: Security soap: nust Under st and="1" xm ns: soap="http://schenas.
xm soap. org/ wsdl / soap/" xm ns:wsse="http://docs. oasi s-open. or g/ wss/
2004/ 01/ oasi s- 200401- wss-wssecurity-secext-1. 0. xsd">
<wsse: User nameToken>
<wsse: User nane>QEDMO</ wsse: User nane>
<wsse: Passwor d>QEDMO</ wsse: Passwor d>
</ wsse: User naneToken>
</ wsse: Security>
</ soapenv: Header >
<soapenv: Body xnl ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<Lookup xm ns="http://xm ns. oracl e.con Enterprise/ Tool s/ schemas/
PT_Lookup. Pronpt _Lookup_Al | . V1">
<LookupRecNane>CURRENCY_CD TBL</ LookupRecNane>
<LookupFi el dNane>CURRENCY_CD</ LookupFi el dNane>
<LookupFi el dVal ue>A%/ LookupFi el dVval ue>
<Descr Fi el dName>DESCR</ Descr Fi el dNane>
<LanguageCode></ LanguageCode>
<Ef fecti veDat e/ >
<Set Cont r ol Fi el dVval ue/ >
<Set | Dval ue/ >
<NaneVal Pai r xm ns="http://xn ns. oracl e. cont Ent er pri se/ Tool s/ schemas/
PT_Lookup. NaneVal Pai r. V1" >
<Fl dNanme>COUNTRY</ FI dNane>
<Fl dval >ARG</ FI dVval >
</ NaneVal Pai r >
</ Lookup>
</ soapenv: Body>
</ soapenv: Envel ope>

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example:

<?xm version="1.0"?>
<soapenv: Envel ope xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/
" xm ns: soapenv="http://schemas. xn soap. or g/ soap/ envel ope/" xm ns: xsd=
"http://ww. w3. org/ 2001/ XM_Schema" xmnl ns: xsi ="http://ww.w3. org/ 2001/
XM_.Schema- i nst ance" >
<soapenv: Body>
<LookupResponse xm ns="http://xm ns. oracl e. con Ent er pri se/ Tool s/
schemas/ PT_Lookup. LookupResponse. V1" >
<ResponseConmp xml ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/
schemas/ PT_Lookup. ResponseConp. V1" >
<RespVal >ARS</ RespVal >
<RespDescr >Argenti ne Peso</ RespDescr >
</ ResponseConp>
</ LookupResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

Using Services to Validate Prompt Table and Translate Field Values Appendix B

Example 4: Specifying Set Control Field Values to Validate Field Values
Controlled by Set Control Fields

The following code example shows a request message sent to a PeopleSoft system from an integration partner
as part of the PTLOOKUPPROMPT service operation to obtain a list of valid field values for the
VENDOR ID prompt field, a field controlled by a set control field.

When you provide the set control field value, PeopleSoft uses Set ID indirection (via the GetSetID built-in
function) to obtain the set ID value, and uses it to filter results during lookup.

This example shows specifying the set control field value to obtain the values for the field:

<?xm version="1.0"7?>
<soapenv: Envel ope xm ns: soapenc="http://schemas. xn soap. or g/ soap/ encodi ng/
"xm ns: soapenv="http://schemas. xn soap. or g/ soap/ envel ope/" xm ns: wsa="htt p:
/I schemas. xnl soap. or g/ ws/ 2003/ 03/ addr essi ng/ " xm ns: xsd="htt p: // ww. w3. or g/
2001/ XM.Schena/ " xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance/ " >
<soapenv: Header xm ns: soapenv="htt p://schemas. xm soap. or g/ soap/ envel ope/ " >
<wsse: Security soap: must Under stand="1" xm ns: soap="http://schemas. xm soap
org/ wsdl / soap/" xm ns:wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/
oasi s-200401- wss-wssecurity-secext-1.0. xsd">
<wsse: User nameToken>
<wsse: User name>VP1</ wsse: User nane>
<wsse: Passwor d>VP1</ wsse: Passwor d>
</ wsse: User naneToken>
</ wsse: Security>
</ soapenv: Header >
<soapenv: Body xnl ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<Lookup xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. Pronpt _Lookup_Al | . V1" >
<LookupRecNanme>VENDOR</ LookupRecNane>
<LookupFi el dNanme>VENDOR | D</ LookupFi el dNane>
<LookupFi el dval ue>TPDENTI ST</ LookupFi el dval ue>
<Descr Fi el dName>VENDOR_NAME SHORT</ Descr Fi el dNane>
<LanguageCode/ >
<Ef fecti veDat e/ >
<Set Cont r ol Fi el dVal ue>US001</ Set Contr ol Fi el dval ue>
<Set | Dval ue/ >
<NaneVal Pai r xm ns="http://xn ns. oracl e. cont Ent er pri se/ Tool s/ schemas/
PT_Lookup. NaneVal Pai r. V1" >
<Fl dNan®e/ >
<Fl dval / >
</ NaneVal Pai r >
</ Lookup>
</ soapenv: Body>
</ soapenv: Envel ope>

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example.

144 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix B Using Services to Validate Prompt Table and Translate Field Values

<?xm version="1.0" encodi ng="UTF-8"7?>
<soapenv: Envel ope xm ns: soapenv="htt p://schemas. xm soap. or g/ soap/ envel ope/
"xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/" xm ns: xsd="htt p:
[/ www. W3. or g/ 2001/ XM_Scherma" xm ns: xsi ="htt p://ww. w3. or g/ 2001/
XM_Schema-i nst ance" >
<soapenv: Body>
<LookupResponse xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. LookupResponse. V1" >
<ResponseConp xm ns="http://xm ns. oracl e. conl Ent er pri se/ Tool s/ schenas/
PT_Lookup. ResponseConp. V1" >
<RespVal >TPDENTI ST</ RespVal >
<RespDescr >SM LEWELL- 001</ RespDescr >
</ ResponseConp>
</ LookupResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

Example 5: Specifying Set Control ID Values to Validate Field Values
Controlled by Set ID Values

The following code example shows a request message sent to a PeopleSoft system from an integration partner
as part of the PTLOOKUPPROMPT service operation to obtain a list of valid field values for the
VENDOR _ID prompt field, a field controlled by a set control field. This example shows specifying the set
control ID value to obtain the field values:

<?xm version="1.0"7?>
<soapenv: Envel ope xm ns: soapenc="http://schemas. xn soap. or g/ soap/ encodi ng/
"xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/" xm ns: wsa="htt p:
/I schemas. xnl soap. or g/ ws/ 2003/ 03/ addr essi ng/ " xm ns: xsd="ht t p: / / www. w3. or g/
2001/ XM.Schena/ " xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance/ " >
<soapenv: Header xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<wsse: Security soap: nust Under st and="1" xm ns: soap="http://schenmas. xm soap
org/ wsdl / soap/" xm ns:wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s-
200401- wss-wssecurity-secext-1.0. xsd">
<wsse: User nameToken>
<wsse: User name>VP1</ wsse: User nane>
<wsse: Passwor d>VP1</ wsse: Passwor d>
</ wsse: User naneToken>
</ wsse: Security>
</ soapenv: Header >
<soapenv: Body xnl ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<Lookup xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schemas/
PT_Lookup. Pronpt _Lookup_Al| . V1" >
<LookupRecNanme>VENDOR</ LookupRecNane>
<LookupFi el dName>VENDCR | D</ LookupFi el dNane>
<LookupFi el dval ue>TPDENTI ST</ LookupFi el dval ue>
<Descr Fi el dNane>VENDOR_NANME_SHORT</ Descr Fi el dNane>
<LanguageCode/ >
<Ef f ecti veDat e/ >
<Set Cont r ol Fi el dVal ue/ ><Set | DVal ue>SHARE</ Set | Dval ue>
<NaneVal Pai r xm ns="http://xm ns. oracl e. coml Ent er pri se/ Tool s/
schemas/ PT_Lookup. NanmeVal Pai r. V1" >
<Fl dNane/ >
<Fl dval / >
</ NaneVal Pai r >
</ Lookup>
</ soapenv: Body>
</ soapenv: Envel ope>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

Using Services to Validate Prompt Table and Translate Field Values Appendix B

The following code example shows the response message that the PeopleSoft system returns to the integration
partner. The returned field values are returned in the <RespVal> and <RespDescr> elements, as highlighted in
the example.

<?xm version="1.0" encodi ng="UTF-8""?>
<soapenv: Envel ope xm ns: soapenv="http://schemas. xnl soap. or g/ soap/ envel ope/
"xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/" xm ns: xsd=
“http://ww. w3. org/ 2001/ XM_.Schema" xm ns: xsi ="http://ww. w3. org/ 2001/
XM.Schema- i nst ance" >
<soapenv: Body>
<LookupResponse xm ns="http://xm ns. oracl e. com Ent erprise/ Tool s/
schemas/ PT_Lookup. LookupResponse. V1" >
<ResponseConmp xml ns="http://xm ns. oracl e.com Ent erprise/ Tool s/
schemas/ PT_Lookup. ResponseConp. V1" >
<RespVal >TPDENTI ST</ RespVal >
<RespDescr >SM LEVELL- 001</ RespDescr >
</ ResponseConp>
</ LookupResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

Symbols

%Complntfc 106
%ComplntfcName 106
%Session 61

A

actions
create 114
data input 122
staging and submission 123
template actions 118
update 114
updateData 114
ActiveX controls
errors 129
unsupported events 57
alternate search keys 7
Altkey property 24
API See application programming interface
Application Designer
APIs 71
building APIs 63
C++ templates 73
COM 79
Component Interface Tester 47
creating definitions 5
Java templates 65
PeopleCode template 59
using views 5
validating component interfaces 44
application programming interfaces 1
accessing C++ APIs 72
bindings 63
building in Java 63
C++ 71
COM 79
component interface API 3, 49, 50
dummy rows 48
naming rules 29
architecture 3
attributes
collections 5
keys 4
methods 5
name 4
overview 3
properties 4
automatic field defaults 11
autoregister 80

B

backpointers 31
batch processes 18
bindings

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

C++ 71,72
COM 80
early-binding 81, 94
Java 63, 64
late-binding 81
PeopleSoft API 63, 80
buffers 14
building a component interface 106

C

C++
building APIs 71
client setup 72
configuring compilers 72
memory conflicts 56
requirements 72
runtime code templates 73
third-party applications 72
Cancel method 5, 34
cell formatting 122
character fields 10
check boxes 10
CheckMenultem 57
child records 120
child scrolls 32
chunking
Excel to Component Interface 114
log files 129
chunking factor 113
clean-up registry 80
Clear Template button 120
client-only PeopleCode 59
collection methods
rules 51
table of 37
testing 51
collection name 117
collection properties 27
collections
CreateKeyInfoCollection 17
defined 5
empty 14
FindKeyInfoCollection 17
GetKeylInfoCollection 17
overview 31
restrictions 10
search key 16
user-defined 4
collections icon 7
COM (Component Object Model) 37
APIs 79
ASP sample 96
Excel sample 94
memory conflicts 56
overview 1
requirements 80
runtime code templates 82
SDK Excel sample 93
third-party applications 81

147

Index

148

type libraries 80
CommitWork 106
compiler configuration 72
ComplntfcName 19
component buffer 14
component interface API 3, 49, 50
component interface methods
standard methods 41
user defined 43
component interfaces
adding to a menu 12
creating 11
exposing fields 14
setting security 45
testing 46, 107
validating 44
Component Interface Tester
editing history items 48
Enter key values dialog box 47
Find Results dialog box 49
getting dummy rows 48
history items 48

ItemByKeys: Enter parameters dialog box 53

ItemByKeys parameters 52
modes 48
procedures 46
Test dialog box 50
testing collection methods 51
testing methods 50
testing properties 50
component interface view 5, 6
ComponentName 19
Component Object Model
See COM (Component Object Model)
component transfers 57
component view 5
COM Type Library 80
Connection Information tab in Excel to
Component Interface 112
connection settings
defaults 112
Excel to Component Interface 112
HTTP port 113
login screen 115
portal name 113
protocol 113
web server 112
Connect method 33
CopyRowset 59
Count method 38
Count property 27

Coversheet tab in Excel to Component Interface

111
create action 114
CreateKeylInfoCollection 17
create keys 4, 12, 14, 15, 114
Create method 34
create new 48
Create Reference dialog box 30
createSession 32
Currentltem collection method 52
Currentltem method 40
CurrentltemNum method 40

D

data input actions toolbar 122
data input sheet
copying to other worksheets 105
creating 119
entering data 121
overview 122
Data Item property 27
data submission 123
date fields 10
dates 122
datetime fields 10
debugging 18, 116
DecimalPosition property 23
decimals 118
defaults
automatic 11
connection settings 112
creating 108

Excel to Component Interface 119, 120, 121

fields 121
properties 10, 12
definition name 12
definitions
design-time vs. runtime 4
in Application Designer 5
Deleteltem(index) collection method 52
Deleteltem(Index) method 39
deleting
child properties 31
Deleteltem(index) 52
Deleteltem(Index) 39
keys 14
properties 14, 28
deleting elements 7
derived properties 29
Description property 19
Deselect Input Cell button 119
design-time properties 4
DisableMenultem 57
Document Object Model (DOM) 105
DoModalPageGroup 57
Do Not Include for Submission button 120
DoSave() 58
DoSaveNow() 58
drop-down list boxes 10
dummy rows 48
dynamic tree controls 57

E

edit boxes 10
EditHistoryltems 18
edit history items 48
Edit Property dialog box 28
email 55
EnableMenultem 57
enabling macros 94
entering data 121
errors
correcting 123, 124
Data Input tab 122
diagnosing 129
in Excel to component interface 125
list of messages 129
log files 129
message log 50

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

message logs 116, 129
PSProperties not loaded from file 64
setting thresholds 113
submitting existing keys 124
thresholds 114
validation 56

Excel See Microsoft Excel

Excel to component interface
correcting data 124
error messages 129

Excel to Component Interface
building a component interface 106
Connection Information tab 112
data input sheet 122
enabling macros 110
entering connection settings 112
logging in 115
Login dialog box 115
PeopleCode limitations 107
performance 107
Staging and Submission tab 123
templates 116
Template tab 117

F

field defaults
automatic 11
criteria for 10
FieldName property 20
fields
automatic default criteria 10
decimals 118
defaults 11
exposing 14
integers 118
length 118
names 7
standard types 118
FindKeyInfoCollection 17
find keys 4, 15
Find method 5, 34
Format property 22
functions
Build API names 72
createSession 32
ignored 58
PeopleCode 43
PeopleCode limitations 57
restrictions 107
session 32

G

getComplntfc 33

GetDummyRow 48

GetDummyRows 19

GetEffectiveltem(DateString, SeqNum) collection
method 52

GetEffectiveltem method 40

GetEffectiveltemNum(DateString, SeqNum)
collection method 52

GetEffectiveltemNum method 41

get existing 48

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

GetHistoryltems 17

get history items 48

GetKeylInfoCollection 17

get keys 4, 15

Get method 5, 35

getOAType() 25

GetPropertyByName method 35

GetPropertyInfoBy Name(). Enter parameters:
dialog box 51

GetPropertyInfoByName method 36

getType() 25

H

hidden edit validation error 56
HideMenultem 57

hierarchy 121

HTTPPort 127

HTTP port 113

icons 6
Include All for Submission button 119
Include for Submission button 119
infinite processing 56
Insertltem(index) collection method 51
Insertltem method 38
Insert New Child button 119
integration
accessing external systems 3
SDK example 87
Integration SDK
COM ASP sample 96
COM sample 93
install location 87
requirements 88
samples 87
test page 88
using the Java sample 89
InteractiveMode 18
interactive mode
considerations 56
debugging 18
testing component interfaces 48
UNIX servers 18
invalid component interfaces 45
invisible fields 10
IsCollection property 21
iScript 109
IsModalPageGroup 57
IsReadOnly property 23
Item(index) collection method 51
Item(Index) method 39

ItemByKeys(key1, key2, ...) collection method
52

ItemByKeys(keys) method 39
ItemByKeys parameters 52
ItemByName method 38
ItemNum property 27
ItemSelected 57

149

Index

150

Java

bindings 63

building APIs 63

class file 66

methods 25

object adapter 25

requirements 64

runtime code template 65
Java Development Kit (JDK) 64, 72, 80
Java Virtual Machine (JVM) 64, 72, 80
Jolt failover 66

K

Key property 22
keys
adding 16
adding manually 15
creating 12
defined 4, 14
deleting 16
Excel to Component Interfaces 118
existing 124
exposing 14
getting existing records 48
icon 6
in scrolls 32
modifying 15
removing 16

L

LabelLong property 21
LabelShort property 21
language code 113, 115
languages
CopyRowset considerations 59
installed languages for Excel to Component
Interface 115
language codes 113
submitting in several languages 115
Length property 23
level-zero records 14
limitations
PeopleCode 107
Listboxitem property 24
load balancing 66
log files
generating 116
viewing 129
logging in 115
Login dialog box in Excel to Component Interface
115
long character fields 10

macros

COM sample 94

enabling 110
mapping related keys 30
Market property 19
memory

conflicts 56

releasing 68
menu PeopleCode 57
menus 12
message logs 50, 116
messages

Excel to Component Interfaces 115

PSMessages collection 56

session error messages 61
methods

collection 37

defined 5

Java 25

session 32

standard 5, 33

testing 50

user-defined 5
Microsoft

Visual Basic 81, 82
Microsoft Excel

COM sample file location 94

Excel to Component Interface utility

overview 105

using the COM sample 94
Mobile Agent

synchronization 53
mobile properties

derived 29

do not send updates 29

send updates 29
modal transfers 57
modifying keys 15
multilingual support 115
multiple instances 56

N

name column 7

Name property 20

naming guidelines 4, 12
New data input button 119
New Template button 119
node 113

Node 127

noninteractive mode 48
number fields 10

O

OaType property 22
object adapter 25
out-of-sync icon 7

P

page control types 10
parent scrolls 32

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

passwords
Excel to Component Interface 116
SOAP request header 127
PeopleCode
client-only limitations 59
CopyRowset 59
creating user-defined methods 43
generating templates 59
ignored functions 58
limitations 57
templates 61
trigger order 4
valid variables 61
PeopleCode limitations 106
peoplesoft peoplesoft. i.h 71
PeopleSoft Application Designer
See Application Designer
PeopleSoft site name 113
performance 107
permission lists 45
pop-up menus 57
Portal 127
portal name 113
Post Results button 123
PrePopup 57
Prompt property 23
properties
automatic defaulting 12
criteria for automatic defaulting 10
defined 4, 117
deleting empty 14
exposing 14
ordering 7
read-only 31
reference 29
renaming 29
standard 4, 16
testing 50
user-defined 4, 27
Properties dialog box
Synchronization tab 54
properties that are keys 6
property count 27
property icon 7
PropertyInfoCollection 20
protocol 113
PSMessages 56

R

radio buttons 10
read-only properties 7, 31
RecordName property 20
record names 7
record type

defined 118
reference backpointers 31
reference paths 31
reference properties 29
related display 55
related keys 30
requests

sending 127
required fields 118
Required property 22
required property icon 7

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

requirements 88

response types 127

Restore Input Cells button 119
row inserts 55

rules 51

run-time properties 4

runtime code templates 73
runtime exceptions 4

S

Save method 5, 35
scope conflicts 55
scroll areas 5, 31
scroll levels 107
SDK 88
SDK_BUS_EXP 87, 89
SDK_BUS EXPENSES 88
SDK BUS EXPENSES page 88
SDK_CI_SAMPLES 88
SDK (Software Development Kit)
See Integration SDK
SDK Java sample 89
SDK testing 89
search dialog processing 57
search keys 15
security 45
accessing the SDK 88
user profiles 1
Select All Input Cells button 119
Select Input Cell button 119
sequence number 118
session functions 32
session methods 32
SetPropertyByName method 36
signed number fields 10
site name 113
SOAP
log files 129
SOAP/XML requests 125
SOAPTOCI web library
generating log files 116
Stage for Submission button 122
Staging and Submission Actions toolbar 123
Staging and Submission tab 123
standard methods 5, 33, 42
disabling 41
enabling 41
standard methods icon 7
standard properties 4, 16
status 118
StopOnFirstError 18
submission statuses 124
Submit Data button 123
submitting data 123
synchronization 53

T

template actions toolbar 118
templates
adding child records 120
adding defaults 121
C++73

151

Index

152

COM 82
creating in Excel to Component Interfaces
116
entering data 120
Java 65
PeopleCode 59, 61
testing 120
Visual Basic template 83
Template tab in Excel to Component Interface
117
testing 46
SDK testing 89
third-party applications 72, 81
thresholds for errors 113
time fields 10
TransferPage 57
tree controls 57
trigger order 4
troubleshooting
hidden edit validation error 56
infinite processing loops 56
Type property 21

U

UncheckMenultem 57
UNIX servers 56
update action 114
updateData action 114
user-defined methods 5, 7
creating 42
restrictions 12
user-defined properties 4
creating 27
deleting 28
renaming 28
user ID 116
user profiles 1

Vv

validating 44
variables 61
view columns 7
view icons 6
viewing submission results 123
views 5
Visual Basic 82
component interface code 83

W

walkpaths 31

warnings 124
WEBLIB_SOAPTOCI 109
WebServerMachineName 127
web server name 112
WinMessage 55

X

Xlat property 22

Y

Yesno property 23

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

	PeopleTools 8.52: PeopleSoft Component Interfaces
	Copyright
	Contents
	Preface: PeopleSoft Component Interfaces Preface
	PeopleSoft Component Interfaces
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started with PeopleSoft Component Interfaces
	Overview
	Implementing PeopleSoft Component Interfaces
	Implementing the Excel to Component Interfaces Utility

	Chapter 2: Understanding Component Interfaces
	Understanding Component Interfaces
	Component Interface Architecture
	Component Interface Attributes
	Name
	Keys
	Properties
	Collections
	Methods

	Component Interface Definitions and Views

	Chapter 3: Developing Component Interfaces
	Creating Component Interface Definitions
	Understanding Creating Component Interface Definitions
	Creating New Component Interfaces
	Naming Component Interface Definitions
	Associating Component Interfaces with Menus
	Determining the Fields to Expose in Component Interfaces

	Using Keys
	Understanding Keys
	Adding and Deleting Keys

	Setting Properties
	Understanding Standard Properties
	Creating User-Defined Properties
	Deleting User-Defined Properties
	Renaming User-Defined Properties
	Creating Reference Properties
	Making Properties Read-Only

	Working with Collections
	Working with Methods
	Understanding Session Functions and Methods
	Understanding Standard Methods
	Understanding Collection Methods
	Enabling and Disabling Standard Methods
	Creating User-Defined Methods
	Exporting User-Defined Methods

	Validating Component Interfaces
	Setting Security Options
	Testing Component Interfaces
	Searching Component Interfaces to Test
	Testing Component Interfaces
	Determining ItemByKeys Parameters

	Understanding Synchronization
	Writing Component Interface Programs
	Understanding Runtime Considerations
	General Considerations
	Scope Conflicts
	Interactive Mode

	Chapter 4: Programming Component Interfaces Using PeopleCode
	Understanding PeopleCode Behavior and Limitations
	PeopleCode Event and Function Behavior
	CopyRowset Language Considerations
	Limitations of Client-Only PeopleCode

	Generating PeopleCode Templates to Access Component Interfaces
	Understanding PeopleCode Templates

	Chapter 5: Programming Component Interfaces in Java
	Building APIs in Java
	Setting Up the Java Environment
	Generating Java Runtime Code Templates
	Understanding the Java Template

	Chapter 6: Programming Component Interfaces in C++
	Building APIs for C++
	Setting Up the C++ Environment
	Setting Up Client Machines to Access C++ APIs
	Configuring Compilers for C++ Projects

	Generating C++ Runtime Code Templates
	Understanding the C++ Template

	Chapter 7: Programming Component Interfaces in COM
	Understanding Programming Interfaces in COM
	Building APIs for COM
	Setting Up the COM Environment
	Generating Visual Basic Runtime Code Templates
	Understanding Visual Basic Templates

	Chapter 8: Using the Component Interface Software Development Kit
	Understanding the Component Interface SDK
	Component Interface SDK Samples

	Prerequisites for Using the Component Interface SDK
	Using the SDK_BUS_EXPENSES Test Page
	Testing the SDK_BUS_EXP Component Interface
	Using the Component Interface SDK Sample in Java and C+ +
	Understanding using the Component Interface SDK Samples in Java and C++
	Building the Component Interface SDK Sample (Java)
	Building the Component Interface Sample (C++)
	Running the Component Interface SDK Sample in Java and C++
	Interpreting the Code for the Component Interface SDK Sample (Java)
	Interpreting the Code for the Component Interface SDK Sample (C++)

	Using the Component Interface SDK COM Excel Sample
	Running the Component Interface SDK COM Excel Sample
	Understanding the Component Interface SDK COM Excel Sample Code

	Using the Component Interface SDK COM ASP Sample
	Running the Component Interface SDK COM ASP Sample
	Understanding the Component Interface SDK COM ASP Sample Code

	Chapter 9: Using the Excel-to-Component Interface Utility
	Understanding the Excel-to-Component Interface Utility
	Understanding Building Component Interfaces for the Excel to Component Interface Utility
	Testing Component Interfaces
	Performance Expectations
	PeopleCode Behavior and Limitations
	Default Properties

	Running the Excel to Component Interface Utility
	Granting Access to the WEBLIB_SOAPTOCI iScript
	Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions
	Enabling Macros in Microsoft Excel
	Starting the Excel to Component Interface Utility
	Converting Excel to Component Interface Utility Templates to the Current Excel Version
	Viewing the Excel to Component Interface Coversheet

	Setting Up Connection Information
	Entering Connection Information
	Translations and Multilingual Support
	Connecting to the Database to Create a Template and Submit Data

	Creating Templates
	Understanding the Template Actions Toolbar
	Entering Data into the Template

	Entering Data on the Data Input Sheet
	Using the Data Input Sheet

	Viewing the Staged Data
	Correcting and Resubmitting Data

	Creating SOAP/XML Requests
	Request Format
	Sample Create Request
	Sample Get Request
	Sample Update Request
	Sample Updatedata Request

	Sending Requests
	Receiving Responses
	Viewing a Response if a Row Already Exists
	Viewing a Sample Get Request and Response

	Diagnosing and Resolving Errors
	Viewing Log Files
	Resolving Error Messages for Client Environments

	Appendix A: Creating Component Interface-Based Services
	Understanding Generating Component Interfaced-Based Services

	Appendix B: Using Services to Validate Prompt Table and Translate Field Values
	Understanding Validating Prompt Table and Translate Field Values
	Prerequisites for Validating Prompt Table and Translate Field Values
	Validating Prompt Table Field Values
	Understanding Validating Set Control Fields
	Using the PTLOOKUPPROMPT Service Operation

	Validating Translate (XLAT) Field Values
	Understanding Translate (XLAT) Table Entries
	Understanding Security When Validating Translate (XLAT) Field Values
	Using the PTLOOKUPXLAT Service Operation

	Using Messages to Request Valid Prompt Field and Translate (XLAT) Field Values
	Using Response Messages to Retrieve Valid Prompt Field and Translate (XLAT) Field Values
	Examples: Validating Prompt Field and Translate (XLAT) Field Values
	Example 1: Validating a Translate (XLAT) Field
	Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard
	Example 3: Filtering Field Values by Name/Value Pairs
	Example 4: Specifying Set Control Field Values to Validate Field Values Controlled by Set Control Fields
	Example 5: Specifying Set Control ID Values to Validate Field Values Controlled by Set ID Values

	Index

