ORACLE’
PEOPLESOFT ENTERPRISE

Oracle's PeopleTools PeopleBook

PeopleTools 8.52: PeopleSoft Optimization
Framework

October 2011

ORACLE

PeopleTools 8.52: PeopleSoft Optimization Framework
SKU pt8.52topt-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
PeopleSoft Optimization Framework Preface ... Vii
PeopleSoft Optimization FrameWOTKccooiiiiiiiiiieieieieee ettt et ettt e ee e vii
PeopleBooks and the PeopleSoft Onlineg LiDIarycccccvovieviiiciieiieiieieeie et ere e ereeveeveevesveesnes vii
Chapter 1
Getting Started with PeopleSoft Optimization Framework ..o ceece e 1
PeopleSoft Optimization FrameWork OVEIVIEWc.ccccvvcuiviiriiieeiieeieerieiesresresereseessresssesssessaessnesssesssesssessnes 1
PeopleSoft Optimization Framework Implementationcoccovieiiirienienienieseeeeseee e 2
Chapter 2
Under standing PeopleSoft Optimization Framework ... ses e s 3
OPHIMIZALION 1eiiiiiiiiiicieecieesiee et e et e et e e aeestee e beeesbeeesteeesseeessseessseesssaesssaeasseeassseassseesseessseessseessseesssseensesenses 3
PeopleSoft Optimization Framework COMPONENLS ceccveeviieciieciieniieieeieesieereereeseeseesseesseesseesseensesssesssenns 3
PeopleSoft Optimization Framework System ArchiteCtureoccoocieeiiriiiienieeieee et 4
Optimization-Based Application DeVEIOPMENtc.cccevviiiiiiiieiieiieiiesiesee st e see e e steesteestaesaeesreesraesreesaesees 6
Chapter 3
Designing Analytic TYPE DEfINITIONS ...cc.ccieiiiice ettt et sre s reeaaentenre s 9
Understanding Analytic Type Definitionsccccoeciieriieiiieiiieieeieeie ettt sre e esaesnsessaesenesnsesnnes 9
Understanding Optimization Application Record DEeSIZNcccceeiiiiiiiiiiiieiieieieieee e 10
Optimization Application RECOTAS c.eoviiiiiiiiiiiicieicecee ettt r et s eee s teesenesaneseeas 10
SCENArio MANAZEIMENL ...c.eeviiieieiieeieeieete et steeteeteetessbeessessteassessseassessseasseasseassesnsesnsesssesssesssennsensennses 10
Assigning Permissions for Designing Optimization ReCOrdscccoocieiiiiienieniienieiienieseeseesiee e 11
Creating and Building Optimization RECOTAS cocciiiiiiiiiiiicieciecie ettt srae s eae s eaeseeas 12
Creating Analytic Type DEfINItiONSccccceviiiiciieieiierie ettt e s et e s sseestaestaessaesseesseeseenseas 13
Defining an ANALYLIC TYPE cooviiiiieiieee et ettt s e e st esb e e esbeeebaeebseesaaeesssaeesbeeenseens 14
Configuring Analytic Type RECOTAS ..ooviiiiiiiiiiiiicitct ettt ettt e esb e b e sseebaenseens 16
Configuring Models for OptimMiZation cccceceevieriririiinineteee ettt ettt s eaeens 19
Associating Analytic Types with Analytic ModelSc.cccciiiiiiiiiiiiiieceecee e 22

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

Configuring Analytic Type TranSaCtiONS ccceevieeiieeiiieieeieete ettt e ie ettt et eteeeeeteeaeenteeneeeeeeneeeas 22
Running the Optimization SyStem AUI c.cccveiiiiiiiiiiieiieeie ettt e te e e e steesraesraeste e beebeesseesseas 25
Changing Existing Analytic Type DefiNitioNnSccccceevierieriierierieereese et et esee e teebeesseesseeseeseesseenns 26

Changing Optimization Application RECOTASccooiiiiiiiiiieiieeeeet e 26

Changing Optimization TTANSACLIONS ecceereerieriereesieseeseesteeseesseesseesseesssesseesssesssesseesseesssesssesssessees 26
Administering Optimization ENGINES ccccceviiiriirieiieiie ettt e e e e steessaesanessaessnessnens 27

Setting Up Integration BrOKETc.oooiiiiiiiiiiie ettt et et 27
Updating SOIVET LICENSES ...vicviiiieiieiiciiiiiciieeteete et e eeresbe et estvestbestbessbessbesssesssesssesssesssesssesssesssesseesssenssensns 27
Chapter 4
Optimization PEOPIECOUERc.oiiiiiiiieieese sttt st b bttt sae st s e e ene e 29
Using Optimization PeopleCode on the Application SEIVETccccevvievierierienierieree e 29
Using Optimization PeopleCode in an Application Engine Programccccoiiiiiiiiiniiniiiienececenes 30
Performing Optimization in PEoPpIleCodec.cccviviiiiiiieiiiciiciicieete et ser et eerressneseneeens 30

Creating New ANalytic INSTANCES cceeciieiieiiieieiie ettt ste et st ee e e stesatesaaesnsesnseensesnsesnsesnnenns 31

Loading Analytic Instances Into an Analytic SEIVETcccccciiiiiiiiiieiie e 31

Running Optimization TrANSACHIONS c.cccvercververiieriresreeresteasestessessessseesseassessesssesssssssesssesssesssesssenns 32

Invoking the Optimization PeopleCode Plug-In ..ot 33

Shutting Down Optimization ENGINEScccciiiiiiiiiiiiiiie ettt e sreeeteeeveesebeeseaeesbaessseeeseeanes 34

Deleting Existing ANalytic INSTANCES c.ecvvveviieciieiieiieieeiteeie et eere e saeeressresesesssesssessnessnesssesssensnas 34

Programming for Database Updatescccccooriiiirieiiniiieeieeteeet ettt 35
Using Lights-Out Mode With OptimiZatiOnccceccuieiiieiiiieeiie et e st e ereeereeeseeeeseaeessseessseessseeas 35

Understanding Lights-0Ut MOAEcoecuieciiiciiiiiiie ettt et e b e sbeesaessbeseseessessseessessseans 35

Creating @ REqUESE MESSAZE ..eooiiiiiiiiiieeiie ettt ettt ettt ettt e st e s atesateesteeateentesanesntesaseeneas 37

Creating a RESPONSE IMESSAZE ...cccvierevieriieeiieeiieeiteesteesteesreesseessseeasseeessseessseessseesssessssesssssesnsssensseennns 41

Editing the Request PEopIECOAE ooouiiiiiiieiieieieteeee ettt te et eseesseenseennes 42

Editing the Response PEopIeCodecooiiiiiiiiiiiiieee ettt sttt ettt 46
Optimization Built-in FUNCHONSccciiiiiiiiiiiiiiiccteeeteiete ettt ettt ste e s te e te e te e baessaestaesbeesssessaesenas 48

CreatCOPLENZING ..ocviiiiiiieieceeeec ettt e st e st e sseesatessaestaestaessaesssesssesssessnessnesssesnsensses 48

CreatCOPLINTETTACE ieiieiieie ettt et et et e bt et et e e eateeabeeabeenbeenteeneeenteens 50

DeleteOPIPIODINST ..oicviiieiiciicie ettt ettt ettt e et e et e esbeesb e e b e esseesseesseessaessaessaesseesseesseesseesses 51

L1 @01 271V 1 USRS 53

GEtOPLPIODINSTLIST ..eeiiiiiiiiiie ettt et e et e et e e st e e st e e eebeeesbae e sseessseesssaessseeessesensseenns 54

INSEItOPIPTODINSE ..oiiviiiiieiietictee ettt ettt e ettt et et e e b e esbeesbeasseessaesseesseesseesseasseasseessaessenns 55

ISVAlIAOPLPIODINSE oiiieiieiieceie ettt sttt e s e st e s atesntessaesnnessnesasesnsesnsesnsesnsennsenns 57
OptENGINE Class MEthOdS ooviiiiiiiiie ettt ettt et s e st e e et e e ebte e taeesabeessseessseeessaeensseessseennns 58

CheCkOPIENGINESTALUS ...ocvviiiiiiiiiieiieeieeie et e st e see st e sae st estaessaessaesssesssesssesssesssessaesssesssesssesssenssessseans 58

FAITROWSEE .oeeeeeiieeieeie ettt ettt ettt et et et et e et et e e abeeab e eat e enseenteeateenseanseenseenseenseensesaseanseenseanseensennsenns 60

GEEDALE ..ottt h ettt h et bt s h e e eh e ea e e e a e e e bt e ehteshtesateeateeateeateentesatesateeas 62

(11 D 11T N e) PSR 63

GEEDALETIIME ..eiviiiieiietie ettt ettt et et e bt e s bt e sttesaeesseeestesatesatesseesneesneesnsesstessnesneesnsesnsesneas 64

GEtDATETIMEATTAY ..eeivieeiie et eeieeete e et e st e e et e e teeesteeetaeessbeessseeasseessseeassaeansseesseesssaesssesssseeasseesnseeessenn 65

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

GEOINUIMIDET ottt ettt e et e e te e e te e e te e e tbeeeabeeeabeeesseeensaeesssaesssaesaseassseasssesensseesseensseennns 66
GENUMDEIAITAY .oeovviiiiiiieieeie ettt et ettt ereeteebeebeesbeetseesbessbeesseasseesseesseesseessesssessseassessseassesssesssesssensns 67
GEESIIINIZ oiiiiieiieiieie et ettt et e e et e bt et e ettesttesaaessseesbeassesssesssessseassesssesssesssesseesssesssesssesssesssesssesssenssensns 68
GEESIIINZATITAY .oeeiitieitieitie ettt ettt et e st e e bt e bt et e e bt e teebe e bt e bt eabeen bt enteenteeaseembeenbeenbeenseenteenseenseenses 69
L LT 15T TSP 71
GELTIMEATITAY .oieiieieeieeieete et ete et e ettt e st e stteeatesstesstessaesseesseesssesssesssessaesssesssesssesssesssensaessaesseesssenssenses 71
GEETTACELEVEL ..ottt ettt ettt ettt e e et eeate s et e eateeateemtesateentesnneens 72
RUNASYNCH ittt sttt ettt e et e e s te e s be e be e be e saesaessaessaesssassaessaessaesseeses 74
RUNSYNCR ettt ettt e st e bt e bt et e e steesseesseesseesseessaessaesseesseensnesees 75
SEETTACELEVEL ..ottt ettt ettt ettt e b e e bt et et e e bt e bt e bt e bt e et enteenteenteenseeaees 77
SIUIDOWIL ettt ettt ettt st e s et e e teeaten e e et eseentenseaseeseensenseeseeneeseetesneenseneas 79
OPtENGINE Class PrOPETIES ...ccveivieiieiiieiieieeie e eteste et ettt sttesatesetesatesstessseessessaesnsesnsesnsesnsesssesnsenssenns 80
DEAIIMSES ooieiiieiieeiee ettt ettt e et e et e et e e bt e e tb e e tbe e et bee et ae e bt e e bae e tbeeatbaearbeearbeeanreeentaeeraeesreennns 81
DTS P 1 (<Ta] 13 OSSPSR 82
OptBase APPLICAtION CIASS ..c..evuiiiiiiiieiieitetee ettt sttt ettt b et e st bt et enaesbeeseeneens 83
OptBase Class MEthOAS oociiieiieciie ettt et e et e et e e tae e tbeessbeessbeesssaeessseesssessseessseesnsenns 84
GetParmMDAate ...oouiiiiiiei ettt sttt st eaees 84
GEtPAIMDAEATTAY ..eeoiiieiiiietie ettt ettt ettt e ea e st e s bt e e bt e s bt e enbteesabeesabeesabeesabeesabeeenbeean 85
GetParmDAateTImME ooeiiiiiiie ettt ettt et et ettt ettt sttt 86
GetParmDAatETIMEATITAY ...occvieiieiieieeie e ete ettt ste e s e st e st e st esteestaestaesseesssessnesssessaesseesseesseenseenses 86
GEtParMINUIMDET ..ooiiiiiiiiice ettt et e et e e e b e e e b e e e beeeabeeestaeessseessseessseassseesnsesaseeanes 87
GEtParMINUMDETATTAY .viivieiieiieieeiteeie et ete et e ebeeteebeesbeesseesseesseesseesseesseasseesseessesssessseesseessessseesessenns 88
GetParmINt .ottt ettt ettt et et ettt et ettt et et eas 88
GEtPaAMINTATTAY ..ottt ettt e bt e e be e e bt e e sabeesabeesabeesabeesbeeenbaeeaee 89
GEtPAIMISIIINE o.eviiiiiii ettt ettt e et e e eesbeesbeesbeesbeesbeesbeesbeasseasseasseasseassessseasseessessseessensseans 90
GEtPAIMSIIINZATITAY ..oevviieiiiieieiieeeeeteete e sttt e stesteesetesstesstessaesseesssesssesssesssesssesssesssesssesssesssesssesssenssenns 90
GEtPAIMITIIME .oeeieiiiii ettt ettt e b et e bt et e e e et e e bt e bt e bt e beenteenbeenbeenbeanbeeeeenteans 91
GEtPAIMTIMEATITAY cvviivieiieiietieteete e et e et e et e eaeetbeesbessbeesbeesbeesseasseasseasseasseasseasseassesssesssesssesssenssessseans 92
IIIE ettt bttt bbbt h e ea e et e bt bt e st et e bt et et e s bt e st et e nteeaeenten 92
OPEDEIEtECAIIDACK eviiieiiieiecce ettt et et e et e et e e s tb e e eabeeesbaeesae e tbeesseessbeeenseeenseeas 93
OPNSEITCAIIDACK ..oiviiiieciiiciecte ettt s e st e st e st e s b e staestaestbessbessseesaessaessaesssesssesssesssenssenssens 94
OptPostUpdateCallbackco.ooiiiiiiiiiiie ettt sttt st 94
OPtPrelpdateCallback cociiiiiiiiieceeeee ettt e et e e stb e e sabe e s b e e snbaeenbaeenbaeenenes 95
OPLREITESNCAIIDACK ...ocviiciiiceiiciiciecece ettt ettt et e et e et e esbeesbeesseesseesseesseesseesseessaesseens 96
SetOUtPULPAIMDALE eoiiiiiiiiic ettt s sttt st s e s 97
SetOUtPUtPAIMDALEATTAY ..eeeovieieiieiiieeiieeteeette ettt steesveesbeeebeeesbeeeteeesaeesssaessseessseessseeesseeensseesssesnsses 97
SetOUtPUtPArMDALETIIME ...cveevieiieiieiieieete et ete et ettt et e ebe e b e ssbesebeesseesseesseassessseassessseassesssesssenssensns 98
SetOutputParmDAatETIMEATTAY oooveriiriiiiiierieeteere ettt ettt st ettt st et e saesbeeatens 99
SetOUtPUtPAIMINUIMDET ...oiiiiicie ettt et e bt e e et eestbeessbeessseeessaeessseessseesssens 99
SetOutpUtParMINUMDEIATITAY vocciiiiiiieeie ettt ettt e e st eseestaeseaessaesssessaesssessaessaesssenssensnas 100
SetOULPULPAIMINT ...ooiiiiii ettt ettt et e ba e e bt e e sateesabeesabeeenee 101
SetOULtPUtPAIMINTAITAY ...oeiiiieeiie et ettt e st e e st eeeteesstbe e sbeessbeesssaesssaessseeensseensseennns 101
SetOULPULPATIMISIIING ..evvieiiieieeieeiecee ettt st e st e seesteesteestaestaesseesseessaessaessaesseesseesseenses 102
SetOUtPUtPAIMSIINGATTAY c..veetieiieieee ettt ettt et et et e et e bt et e et et e enteenseeabeeaeeeneas 103
SetOULPULPAIMITIME ...ooiiiiiiiiecieecee ettt e et e e e e st e e ssseessbeeessaeessaeensseessseessseesnseeenses 103

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Contents

SetOUtPUtPAIMTIMEATTAY ..ooeeeeeiieiieie ettt ettt ettt ettt et e bt et e bt et e e teenbeesbe e beeseeseeseenne 104
OptInterface Class MEthOAScccviiviiiiiiicii ettt st e s tb e s taestaesaaestaestaestsasssesssessaesseens 105
F 121101, (o (<] USSR 105
ACHIVALEODJECLIVE .eiiiiiieiieiieeete ettt ettt ettt et e bt et e bt e bt e be e be e be e bt e bt enbeebe e beeabe e beebeeseeseens 106
I 1S 1o o 110 (o T [PP 107
DUMPMSZTOLOZ ittt ettt et e et e et e e s at e e sat e e sateesabeesabeeeaeeenseeeseeeenseesnseesnses 107
FINAROWINUINL .ottt et e et e et e et e e e tb e e st e e esbeeessbe e sseessbeessseeassesensseensseesss 108
GEESOIULION 1uviiiiiiiieitie ettt ettt e st e st e st e bt e bt e teesteesseesseasssesseassaesaesseesseesssessaessaeseesseesseessaesseesses 109
GetSOIUtIONDIELAIL ...eoiiiiieiieeee ettt ettt ettt e e e e et e et e et e enbeenbeenseenseenteenseenns 111
ISIMOAEIACEIVE ..eieeeiieiiie ettt ettt e e et e et e e tb e e e st eesabeeeabeeestaeessbeessaesasaeessaesssseenssaensseenssesssses 113
RESOTEBOUNAS ..iviiiiiiiiiiciecie ettt et et estaesta e st estbestbestbessaesssesssesssesssesssenssesssesssenssenssens 113
SetVariableBOUNAS oociiiiieiieieeie ettt ettt e et set e saeesaaesatesatesatesnteeaaesaaesateensesnnennnas 114
NI AV 1o -1 0] [4 o <SOSR SURUPRP 116
SOIVE oottt ettt et bt bt b e et e et b e et b e et b e e st e et b e arb e et b e atbeatbeatbeatbeetbearaeasaeessensrennns 117
Chapter 5
Administering Optimization Server COMPONENTS cociiiiieiereseee s se e see e e sae e esaenaesrens 121
0o 1= SRS 123

Vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleSoft Optimization Framework
Preface

This PeopleBook describes PeopleSoft Optimization Framework.

PeopleSoft Optimization Framework

PeopleSoft Optimization Framework provides a foundation for building applications that use the
optimization-based, decision-making capability in the PeopleTools environment. This PeopleBook is written
for PeopleSoft application developers who write PeopleCode to use optimization transactions.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

Understanding the PeopleSoft online library and related documentation.
How to send PeopleSoft documentation comments and suggestions to Oracle.

How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

Understanding PeopleBook structure.

Typographical conventions and visual cues used in PeopleBooks.

ISO country codes and currency codes.

PeopleBooks that are common across multiple applications.

Common elements used in PeopleBooks.

Navigating the PeopleBooks interface and searching the PeopleSoft online library.

Displaying and printing screen shots and graphics in PeopleBooks.

How to manage the locally installed PeopleSoft online library, including web site folders.

Understanding documentation integration and how to integrate customized documentation into the library.

Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

Chapter 1

Getting Started with PeopleSoft
Optimization Framework

PeopleSoft Optimization Framework provides a foundation for building applications that use the
optimization-based, decision-making capability in the PeopleTools environment. This chapter provides an
overview of the PeopleSoft Optimization Framework and discusses how to implement PeopleSoft
Optimization Framework.

PeopleSoft Optimization Framework Overview

This section provides an overview of the conceptual information available about the PeopleSoft Optimization
Framework:

» Understanding PeopleSoft Optimization discusses optimization and the framework components and
architecture, as well as doing optimization-based development.

» Designing Analytic Type Definitions provides overviews of analytic type definitions and optimization
application records.

It also discusses how to use these items and develop your own application-based optimization.

* Optimization PeopleCode contains the reference material for the PeopleCode used in PeopleSoft
Optimization Framework, as well as considerations for creating optimization PeopleCode programs.

* Administering Optimization Server Components provides an overview of optimization administration and
discusses configuring the optimization engines.

See Also

Chapter 2, "Understanding PeopleSoft Optimization Framework," page 3

Chapter 3, "Designing Analytic Type Definitions," Creating Analytic Type Definitions, page 13
PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode"

Chapter 5, "Administering Optimization Server Components," page 121

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Getting Started with PeopleSoft Optimization Framework Chapter 1

PeopleSoft Optimization Framework Implementation

The functionality to use the PeopleSoft Optimization Framework, as well as to create your own Optimization
plug-in (OP)), is delivered as part of standard PeopleSoft PeopleTools that are provided with all PeopleSoft
products.

Several activities must be completed before you can use the PeopleSoft Optimization Framework in your
implementation.

 Install your PeopleSoft application according to the installation guide for your database type.
See Enterprise PeopleTools Installation guide for your database platform.

« Establish a user profile that provides access to PeopleSoft Application Designer and any other processes
you will use.

See PeopleTools 8.52; Security Administration, "Security Administration Preface."

» Follow the general overview and instructions in this document to design your application to take
advantage of PeopleSoft Optimization Framework, populate the appropriate records, build the application
pages, retrieve the result data, as well as configure the application server, the analytic server, and the
optimization engines.

See Also

Chapter 2. "Understanding PeopleSoft Optimization Framework." page 3

Chapter 5, "Administering Optimization Server Components," page 121

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding PeopleSoft Optimization
Framework

This chapter discusses:

» Optimization.

« PeopleSoft Optimization Framework components.

» PeopleSoft Optimization Framework system architecture.

» Optimization-based application development.

Optimization

In the context of PeopleSoft Optimization Framework, optimization means deciding on the best course of
action given a range of alternatives. You use PeopleSoft Optimization Framework and the PeopleTools
environment to build applications that use optimization-based decision-making.

PeopleSoft Optimization Framework enables applications to specify their business objectives, define the
conditions, and set resource constraints. PeopleSoft Optimization Framework then applies advanced
mathematical modeling and solution techniques to find solutions that meet input criteria. In contrast to
sequential, query-based applications, which require users to analyze criteria and make decisions one by one,
the solution generated by optimization exceeds, or at least matches, a solution generated by a person.

PeopleSoft Optimization Framework Components

PeopleSoft Optimization Framework contains the following main elements:

« Optimization application tables.

PeopleSoft database tables that store source data, result data, control parameters, and user state
information.

* Optimization engine.

An instance of the optimization engine is a process managed by a type of PeopleSoft application server,
called an Analytic Server. The optimization engine has a generic interface to bind with different
optimization plug-ins to provide a variety of optimization services. It also brings data from the
optimization application tables into memory. This in-memory data is synchronized with the database
changes with each optimization transaction.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding PeopleSoft Optimization Framework Chapter 2

Optimization dispatcher.

Within the analytic server, the optimization dispatcher provides a generic interface for application
programmers to use PeopleCode to access the optimization engine.

Optimization plug-in (OPI).

An OPI is created specifically for optimization-based applications, such as consultant scheduling or
supply chain planning and scheduling. The application knowledge and business logic of an optimization
problem resides in the OPI. The OPI implements the optimization transactions that solve the problem
using the source data as input and generating the result data as output. If your application is delivered with
the Optimization PeopleCode plug-in, you are able to adapt the plug-in to a variety of optimization tasks.

Note. An OPI is created by PeopleTools development with support from PeopleSoft application
development. An OPI is provided with the installed PeopleSoft applications that use PeopleSoft
Optimization Framework. No OPI is in the PeopleTools installation. Your PeopleSoft application
documentation discusses the available plugins and their required implementation steps and parameters.

PeopleSoft Optimization Framework System Architecture

The following diagram illustrates PeopleSoft Optimization Framework architecture components and shows
the sequence of use during a typical optimization transaction:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding PeopleSoft Optimization Framework

PeopleSoft Database

PeopleSoft
Application
Tables

Q &

Meta Data
{transaction)

Optimization
Application
Records

i

\Ok

i

Analytic Server

!

Optimization
Dispatcher

POQQ

Optimization Engine

e Optimization
o Transactions

Tuxedo Transaction

Tuxedo Transaction

Tuxedo Transaction—

Tuxedo Transaction—e

o
o
-

Web Server

PeopleSoft Optimization Framework architecture

When an optimization-based application runs, the following actions occur:

1.

The source data is loaded from PeopleSoft application tables into the optimization application records.

Depending on the amount of data, this can typically be done as a batch job.

A web server sends a request through Oracle Tuxedo to have the analytic server perform a PeopleSoft
transaction using optimization.

Upon receiving the request, the optimization dispatcher, within the analytic server, locates the correct
optimization engine and sends the optimization transaction to it through Oracle Tuxedo.

The optimization engine gets the metadata (optimization transaction name, parameters, and data types of
the parameters) from the analytic type definition in the PeopleSoft application database.

It uses this information to check the integrity of the optimization transaction request. It also synchronizes
the data in memory with changes in the optimization application tables.

The optimization engine reads the changed data (all the data, if this is the first time the data is being read)

from the optimization application records into memory.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding PeopleSoft Optimization Framework Chapter 2

6.

10.

11.

The optimization engine loads the appropriate OPI and passes the optimization transaction request to it.

The OPI is loaded during the first request to the optimization engine. It remains loaded until the
optimization engine is shut down.

The OPI processes the transaction and provides result data in the form of output parameters to the
optimization engine.

The OPI might also change data in memory to be saved to the database.
The optimization engine writes the changed data in memory to the optimization application tables.
The optimization engine returns the result data to the optimization dispatcher.

The application server completes the PeopleSoft transaction with the result data and returns a success
code to the user and to the web server through Oracle Tuxedo.

After the user is satisfied with the optimization result data, the result data can be copied from the
optimization application tables to the PeopleSoft application tables.

Optimization-Based Application Development

To build an optimization-based application:

L.

Design the analytic type definition.

Define the structure of the optimization application records and the specifications for the optimization
transactions that you need for your application. Use PeopleSoft Application Designer to:

a. Create record definitions for the optimization application records and build them to create the database
tables.

b. Create an analytic type definition, including the record definitions that you created and the
specifications for the optimization transactions.

c. Ifneeded, insert one or more optimization models into the analytic type definition.

Optimization models are developed specifically for, and delivered with, your PeopleSoft application.
Each optimization model is a mathematical representation of the business problem for the
optimization engine to solve.

Populate the application records with appropriate source data.

Using standard tools (such as PeopleCode, PeopleSoft Application Engine, and PeopleSoft Integration
Broker), provide a mechanism to populate the optimization application records with source data. You can
also use PeopleSoft application records directly instead of creating special optimization application
records. By accessing the tables directly, you use fewer computer resources. However, accessing the
application tables directly increases the dependency between the application design and the OPI design.

Note. Though you can populate the source data using PeopleSoft Integration Broker, you cannot actually
access the analytic server or use analytic or optimization PeopleCode in a messaging PeopleCode
program.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding PeopleSoft Optimization Framework

3. Build the application pages.

Using PeopleSoft Application Designer, build pages using the optimization application records to enable
users to edit or view the source and result data and to interact with the optimization application. These
pages use the PeopleCode OptEngine or Analyticlnstance class, provided by the optimization dispatcher,
to send optimization transactions to the optimization engine. Building pages for optimization applications
uses the same process as building pages for any PeopleSoft application.

4. Retrieve the result data.

Using standard PeopleTools, provide a mechanism to retrieve the result data in the optimization
application records and copy it to the PeopleSoft application tables.

Note. If you rename any records or record fields that are used by your optimization-based application, the
analytic type and optimization model definitions that use the record or field automatically reflect your
changes. However, you must also ensure that any PeopleCode program, Application Engine program, or other
tools account for those changes as well.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

Chapter 3
Designing Analytic Type Definitions

This chapter provides overviews of analytic type definitions and optimization application record design and
discusses how to:

» Assigning permissions for designing optimization records.
» Create and build optimization records.

« Create analytic type definitions.

* Run the optimization system audit.

» Change existing analytic type definitions.

* Administer optimization engines.

» Update solver licenses.

Understanding Analytic Type Definitions

An analytic type definition groups the optimization application records, the optimization transactions, and the
Optimization plug-in (OPI) together as one entity. The optimization application records contain the data
stored in the database. The data is populated into memory in the optimization engine. The optimization
transactions define the interface between the application server and the OPI, which performs the optimization
computation. Use PeopleSoft Application Designer to create the analytic type definition for an optimization
application.

An Optimization Problem Example

To illustrate the steps of creating an optimization-based application, consider the following example: Create
an optimal exercise schedule that makes use of exercise machine availability and satisfies individuals'
exercise preferences. To create an optimization application for this problem, you need input data about:

» Exercises that burn a set number of calories per minute.
« People who know how long they want to exercise and how many calories they want to burn.

The goal of your application is to generate a list containing an exercise and the duration of exercise
appropriate to each person, based on the input data.

To implement the analytic type definition for this example, you would:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

Designing Analytic Type Definitions Chapter 3

Create and populate a set of records containing the input data about the exercises and the participants.
These are the optimization application records for this application.

Define a set of optimization transactions and their parameters that, when implemented, process the
optimization application records to achieve the goal.

Note. For this example, assume that an OPI (QEOPT.DLL) already exists that implements these transactions.

Understanding Optimization Application Record Design

This section discusses:

Optimization application records.

Scenario management.

Optimization Application Records

You use PeopleSoft Application Designer to design optimization application records to contain source data,
result data, and other data. You also decide how the optimization engine uses these records for
synchronization. For each record that you create, decide:

Which data fields the record should contain.

Among other data, these records contain the data from the PeopleSoft application database that is used in
the optimization process.

How the optimization engine uses the record for synchronization.

If the record is read once, the optimization engine reads this data during the initial load only. If the record
is readable, the optimization engine checks for updates with every optimization transaction. If the record
is writable, the optimization engine is allowed to modify the data in the database. All records except read-
once records must have a VERSION field.

Whether the record should be scenario-managed.

A record should be scenario-managed if it contains data pertaining to multiple analytic instances. Such
records must have a PROBINST key field, which the optimization engine uses as an additional key for
storing and retrieving multiple solutions.

Scenario Management

10

In PeopleSoft Optimization Framework, scenario management is the mechanism to manage different source
and result data sets using the same tables. A set of source data and associated result data is called an analytic
instance. You can break down large optimization problems into smaller, more manageable problems (or
analytic instances) that can each be solved independently. Individual analytic instances can share common
data.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

This concept can be extended to what-if scenarios to plan for potential business situations. Separate analytic
instances can be created with what-if data and solved using optimization separately, without fear of affecting
live data.

In terms of the exercise example, any number of people might want exercise schedules using the optimization
application. Exercise goal data and the optimization-generated exercise schedule data are unique to each
person. However, different people share the same set of exercise machines. In this case, it is logical to treat
the generation of an individual person's exercise schedule as a separate analytic instance.

In the exercise example, you would mark the data that is specific to each person (such as exercise goals and
exercise schedules) as scenario-managed, and the data that is shared by all people (such as exercise machines)
as nonscenario-managed. All scenario-managed records must include the PROBINST field as part of the
primary key. This 20-character field identifies data that is specific to an analytic instance. During runtime, the
optimization engine loads data for scenario-managed records based on the user-specified value for the
PROBINST field. At any moment, the optimization engine contains data for only one analytic instance.

The following record, QE_ ROSM_BIODATA, contains the name of a person who exercises, and physical
data about the person. This record is read once and is scenario-managed. Notice the use of the PROBINST
field:

=& QF_ROSM_BIODATA {Record)

Fecord Fields IRE.;.;.rd Type l
Num| Field Hame | Type | Len | Format Short Hame Long Hame |
| 1 |PROBINST Char 20 Upper | Analptic Inst Analytic Instance
| 2 |QE_SEX Char 1 Upper Sex Sex
| 3 |QE_HEIGHT Mbr 4] Height Chart Height
| 4 |QE_WEIGHT Mbr K] Weight Weight

QE_ROSM_BIODATA record

Assigning Permissions for Designing Optimization Records

For users to create and build optimization records, they must have access to the Optimization Model Designer
in PeopleSoft Application Designer. This is accomplished by providing permission list access to the
Optimization Model object.

To assign permissions for designing optimization records:
1. Select PeopleTools, Security, Permission Lists.

The Permission Lists—General page appears.
2. Click the PeopleTools tab.

The Permission Lists—PeopleTools page appears.

3. Inthe PeopleTools Permissions section under the Application Designer Access check box, click the
Definition Permissions link.

The Definition Permissions page appears.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

Designing Analytic Type Definitions Chapter 3

4. In the Object list, locate the Optimization Model object.
5. From the drop-down list select an option:
» Full Access. Users can read, create and modify optimization records.
* No Access. (Default.) Users cannot view, create, or modify optimization records.
» Read-only Access. Users can view optimization records.
6. Click the OK button.
The Definition Permissions page appears.

7. Click the Save button.

Creating and Building Optimization Records

To create and build optimization application records:
1. Create the optimization application record definitions using PeopleSoft Application Designer.
a. Select Start, Programs, PeopleSoft 8.xx, Application Designer.
b. Enter your signon information, and click the OK button.
The Application Designer window appears.
c. Select File, New from the tool menu.

d. Select the Record option, and click the OK button.

2. For every optimization application record that is readable, create an optimization delete record by cloning
the optimization application record.

Clone the record by performing a Save As operation on the optimization application record and renaming
the optimization delete record to be similar to the original optimization application record. Use a naming
convention for all optimization delete records. For example, the optimization delete record for the record
QE R HOLIDAYS might be named QE_ R HOLIDAYDEL.

Alternatively, use a sub-record definition that is shared by the optimization application record and the
delete record.

Note. Oracle strongly recommends that you keep the optimization application record and its associated
optimization delete record in sync with each other.

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

3. For every optimization application record that is readable, associate that record with its optimization
delete record using the these steps:

a. In PeopleSoft Application Designer, open the optimization application record.
b. Select File, Definition Properties.
c. Select the Use tab in the Record Properties dialog box.

d. Enter the name of the optimization delete record in the Optimization Delete Record field.

4. Open (or create) a project and insert all the optimization application records and optimization delete
records into the project.

5. Create the tables from these records.
a. Select Build, Project.

The Build dialog box appears, showing the optimization application records and optimization delete
records in the project.

b. Select the Create Tables check box, and make sure that the Create Triggers check box is clear.
c. Click the Build button.

6. Create optimization database triggers from these records.
a. Select Build, Project.

The Build page appears, showing the optimization application records and optimization delete records
in the project.

b. Select the Create Triggers check box.

c. Click the Build button.

Note. Optimization delete records can be used by several analytic types. When a record is deleted from an
analytic type, the associated delete record is not needed if this record is not used elsewhere.

Creating Analytic Type Definitions

This section discusses how to:

» Define an analytic type.
« Configure analytic type records.
» Configure models for optimization.

» Associate Analytic Types with Analytic Models.

Note. When working with analytic type definitions, you can use the typical drag-and-drop features offered by
PeopleSoft Application Designer. For example, you can drag record definitions and drop them into the
analytic type record list, which is maintained on the Record tab of the analytic type definition.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Designing Analytic Type Definitions Chapter 3

Defining an Analytic Type

In PeopleSoft Application Designer, select File, New, Analytic Type. A new analytic type definition appears,
containing tabs for transactions, records, and models. The definition combines these items with an OPI to
form the basis of an optimization application.

This is an example of the analytic type definition:

B

% QEOPT {Analytic Type]

14

Analytic Type — Transactions tab

Fecords | Modelz Tranzactions l
Transaction Hame | Lock Flag | Description |
1 DATA_CACHE _IMSPECT r Tranzaction to inspect a cer
2 | DATA_CACHE_INSF_MIIL r Tranzaction to inzpect multirows
3 | DATA_CACHE_MULT_TES r |nzert updatedelete muti rows
4 |DATA_CACHE_TEST r Data Cache Test - Transaction which test the inzert/delete/update row in d
5 |GET_SUmMaARY r Get Exercize Summary
E |LICEMSE_TEST r Test License code for different math solvers - CPLEX, DASH, ete.
7 |PLUGIMMGR_TEST_CALL r Test callback
3 |PLUGINMGR_TEST_CREA r Create for plugninmaortest
9 |PLUGINMGR_TEST_MISC r |Ipdate, inzert, etc to cache
10 | PLUGINMGR_TEST MOk r Warious actions to datacache
11 | PLUGINMGR_TEST_THRAM r Fun pluginmartest trans
12 |PROG_METER_TEST r Testz the progress meter
13 |S0LVE r Salve
14 | TEST_BAD_OUTPUT r The QEOPT test plug-n will deliberately return an unknown parameter.
15 |TEST_DETAILED _MSGS r The QEOPT plug-in will zend a range of detailed messages ta the AppServer
16 [TEST_DUkkY r A durnmy trangaction referenced by the Problem Type definition but is not ref
17 |TEST_E=CEPTIONM r The QEOPT plug-in throws an exception that iz handled by OptE ngine logic.
18 [TEST_LOMG_TRAMS r The tranzaction pretends bo wark for a specified period of time. zeful for te
19 [TEST_OPT_IMTERFACE r Test Optinteface
20 | TEST_PARAMETERS r Smoke test for parameter pazsing.
21 |TEST_PCODE_EWAL r Testing PeopleCode Eval feature
22 |TEST_RETRY_LODAD r
23 |TEST_REWERT_TRAMS r Test failing a transaction workz

To complete the analytic type definition, you should configure the analytic type properties, then insert and
configure the records, the optimization models, and the transactions, in that order.

To access the Analytic Type Properties — Attributes dialog:

1.

From the Analytic Type — Transaction tab, select File, Definition Properties.

2. Select the Attributes tab.

This is an example of the Analytic Type Properties — Attributes tab:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

hnalytic Type Properties

General Attributes]

FeopleCode Plugin - |+

Designing Analytic Type Definitions

X

Flugin Library Mame |

Flugin Library Yersion |

Meszage Set 1D |

Flugin Application Clazs

Package gE_DPTTEST

Llass | OptPCE val

Analptic Ingtance Application Classz

Ll Lo

Fackage |

Clazs |

[
=

ak. | Cancel |

Analytic Type Properties — Attributes tab

PeopleCode Plugin

Select to indicate that the analytic type should use the Optimization
PeopleCode plug-in.

Select this check box only if the analytic type is to be used with
optimization. If the analytic type is to be used with the analytic calculation
engine, do not select this check box.

Psopidplugin is automatically entered in the Plugin Library Name field,
which is read-only.

If you use this plug-in, you must also use the Package and Class fields to
specify an application class that was developed to adapt the Optimization
PeopleCode plug-in to your optimization application.

See PeopleTools 8.52: PeopleCode API Reference, "Optimization
PeopleCode," Invoking the Optimization PeopleCode Plug-In.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

15

Designing Analytic Type Definitions

Plugin Library Name

Plugin Library Version

Message Set 1D

Plugin Application Class—
Package

Plugin Application Class—
Class

Analytic Instance Application
Class— Package

Analytic Instance Application
Class— Class

See Also

Chapter 3

Enter the name of the OPI library.

Enter only the portion of the name that is specific to this library. Ignore
operating system-specific prefixes (such as lib) and suffixes (such as .dll).
In the exercise example, in Microsoft Windows, the library is libgeopt.dll.
You would enter only geopt here.

If you selected the PeopleCode Plugin check box, this field contains the
value psopidplugin, and is read-only.

Enter the application release version of the plug-in. The optimization
engine uses this to confirm that the correct version of the plug-in library is
used at runtime.

Enter the message set ID in the message catalog containing the messages
for the optimization application. The OPI uses this to access messages from
the message catalog.

If you selected the PeopleCode Plugin check box, you must specify here the
application package containing the application class to use with the
Optimization PeopleCode plug-in for your optimization application.

If you selected the PeopleCode Plugin check box, you must specify here the
application class containing the optimization PeopleCode program to use
with the Optimization PeopleCode plug-in for your optimization
application.

This class must be a subclass of the PT_OPT BASE:OptBase application
class.

If this analytic type is to be used with the PeopleSoft Analytic Calculation
Engine, specify the application package name to associate with this analytic
type, that contains the functionality to be used with the analytic type when
it is created, deleted, or copied.

See PeopleTools 8.52: Analytic Calculation Engine, "Managing Analytic
Servers," Creating, Deleting, and Copying Analytic Instances.

If this analytic type is to be used with the PeopleSoft Analytic Calculation
Engine, specify the name of the class in the application package that
contains the Create, Copy, and Delete classes.

PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide

Configuring Analytic Type Records

To configure analytic type records, in the analytic type definition, select the Record tab, and then select

Insert, Record.

16

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

The Analytic Type Record Property dialog box appears as shown:

Analytic Type Record Property E|
Fizears [eme |DEOPT_ASSIGMMNT Ea
Read Once |
Synchronization Order [Readable v
"writable [w
Drezcription

Scenano Managed [+

CallB ack [
Record Fields

Field Hame Select
1 |PROEINST 3
2 _|QEOPT_RF_ID I
3 |EMPLID v
4 |ST&RT_DT v
5 |END_DT r
6 |GEOPT_SCHED_HRS r
7 |vERSION ~

Cancel

Analytic Type Record Property dialog box

Note. You can access the properties of an existing analytic type record by right-clicking the record and
selecting the Analytic Type Record Properties option.

Record Name Select the record to use in the analytic type definition.

Note. If you select a derived/work record, remember that its scope in
optimization PeopleCode is different from that in other PeopleCode. When
you use the CreateOptEngine or CreateAnalyticInstance function, each
derived/work record is instantiated at level zero of the analytic instance
rowset. The record persists, and you can continuously modify its data
across multiple transactions, until you shut down the optimization engine
using the ShutDown method.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17

Designing Analytic Type Definitions

Synchronization Order

Read Once

Readable

Writable

18

Chapter 3

Indicates the order in which the optimization engine reads the optimization
application records. If a record has dependencies on another record, the
dependent record should be read later. For example, the
QE_RSM_EXERTGT record (synchronization order number is 4) depends
on data in the QE_ RO MACH_CALS record (synchronization order
number is 1). This order is determined by the application logic.

Select to have the record read only once during the initial load of the
analytic instance into the optimization engine.

You cannot select the Writeable check box if the Read Once check box is
selected.

The optimization engine reads these records only once during the initial
data load. The assumption is that the data in these records does not change
(or the user doesn't care if it changes) from the initial load of the
optimization engine until shutdown.

For the exercise machine problem, you might create a record that contains
the name of an exercise machine and the number of calories one can burn
on it. This information needs to be read only once by the optimization
engine. Furthermore, the information will not change, so a VERSION field
is not required.

Select to have the record checked for updates by the optimization engine
with every optimization transaction.

Readable records, besides being loaded during the initial load, are checked
for updates by the optimization engine at the beginning of every
optimization transaction. For every readable optimization application
record, you must also create a corresponding optimization delete record and
associate the readable record with the delete record. This process is
explained later in this chapter.

Note. Oracle recommends that you keep the analytic type records in sync
with the optimization delete records.

For the exercise machine example, an appropriate readable record contains
the name of a person who exercises, the start time and duration of the
exercise, and the number of calories that the person wants to burn. This
record is readable and scenario-managed. It has a VERSION field and a
PROBINST field that contain the name of the person. Because this is pure
source data, this data is not writable.

Select to enable the optimization engine to modify rows for this record. A
record can be both readable and writable. Records more likely to be
readable and writable than just writable.

A writable record contains result data from the optimization engine. For the
exercise machine example, the system calculates this data every time you
request an exercise summary. For this reason, it is purely writable.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Scenario Managed

Callback

Record Fields

Designing Analytic Type Definitions

Select to indicate that the record will contain data pertaining to multiple
analytic instances.

Note. Scenario-managed records must have a PROBINST key field.

See Chapter 3, "Designing Analytic Type Definitions," Scenario
Management, page 10.

Select to enable the optimization engine to update its working data
whenever this record changes.

Your analytic type definition might include a record that you expect to
change during the course of the optimization. If you want those changes to
be taken into account by the optimization, you can define it as a callback
record, so you can use provided PeopleCode callback methods to
dynamically propagate those changes to the derived data structures of the
optimization. A callback record must be readable and writable.

Warning! If you select this check box for a record, you must ensure that
you override all of the abstract callback placeholder methods that are
defined in the extended PT_OPT_ BASE:OptBase application class, even if
it contains only a Return statement. Otherwise your Optimization
PeopleCode plug-in will fail.

See PeopleTools 8.52: PeopleCode API Reference, "Optimization
PeopleCode," OptBase Application Class.

In the Record Fields list, select the fields in this record that need to be read
into the optimization engine.

These are the fields that the OPI can access. Key fields and the VERSION
field (if it exists) are always selected automatically. To conserve memory
used by the optimization engine, select only the necessary fields.

When the analytic type definition is saved, if there are fields that have not
been selected but are being mapped to a cube or dimension, an error
message is displayed, and you must go back and correct the error before
you can save the analytic type definition. If there is a record in the analytic
type definition that has none of its fields mapped to any cube or dimension,
a warning message is displayed when you try to save the analytic type
definition. You can continue to save the analytic type definition after you
have acknowledged the warning message; you do not have to change
anything in the definition.

Configuring Models for Optimization

You need to specify and configure analytic type models for optimization only if both of the following

conditions are true:

* You selected the PeopleCode Plugin check box in the analytic type properties, indicating that your
analytic type definition should use the Optimization PeopleCode plug-in.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Designing Analytic Type Definitions

20

Chapter 3

« Your application documentation indicates that an optimization model is necessary for the optimization

application you are developing.

In the analytic type definition, select the Models tab, and then select Insert, Optimization Model.

The Analytic Type Optimization Model Property dialog box appears.

Madel Name |E_PSé4_MODEL

Solver Settings

Active

Solver Setting Solver Type
I‘MI

2 |

o]

Cancel

Analytic Type Optimization Model Property dialog box

Note. Your application documentation discusses which models to specify, and what configuration settings to
make for each model. You can access the properties of an existing analytic type model by right-clicking the
model and selecting the Analytic Type Model Properties option.

Model Name Select the optimization model required to implement an optimization
application with this analytic type.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

Solver Settings A solver setting is a collection of solver parameters with default values that
define a particular solver behavior suitable for the optimization model.
Specify one or more solver settings to make available to your optimization
application, including:

» Solver Setting.
Enter the name of the solver setting.
* Solver Type.

Select the solver type: LP (linear programming), MIP (mixed integer
programming), or LPMIP (both).

e Active.

Select the active solver setting. Only one solver setting can be active at
a time.

Configuring Solver Parameters

For each solver setting that you specify, you can configure one or more Solver parameters.

In the Analytic Type Optimization Model Properties dialog box, double-click a solver setting to access the
Analytic Type Optimization Solver Property dialog box. This dialog box has a grid with two columns:
Parameter ID and Parameter Value:

Solver Mame |

Solver Parameters

Parameter ID Parameter Yalue
(1 |IntSa _l g

2 |

| k. | Cancel

Analytic Type Optimization Solver Property dialog box

Each solver type has a different set of available parameters, and each parameter has a default value. When
you select a solver parameter from the Parameter ID drop-down list box, its default value appears in the
Parameter Value cell, and a new row appears for adding another parameter. Your application documentation
discusses which parameters to specify for each solver setting, and what value to specify for each parameter.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

Designing Analytic Type Definitions Chapter 3

Creating Mathematical Formulation Files

In addition to the analytic server log files, you can also create a mathematical formulation file for debugging.
This file is written in either MPS or LP format and can be requested for technical debugging purposes. The
file type is generally LP; however, if the system cannot create an LP file it creates an MPS file. The filename
is either AnalyticType_Analyticinst.LP or AnalyticType_Analyticlnst. MPS, with AnalyticType being the name
of the analytic type and Analyticlnst being the name of the analytic instance ID. This file is generally written
to the same directory as the application server log. Also, this directory can be configured in the application
server configuration file.

You indicate whether to write this file by specifying a solver parameter.

In the Analytic Type Optimization Model Properties dialog box, double-click a solver setting to access the
Analytic Type Optimization Solver Property dialog box. This dialog box has a grid with two columns:
Parameter ID and Parameter Value.

Select the WriteMPS option for Parameter ID. In the Parameter Value column, enter 1 to write the file or O to
not write the file.

Associating Analytic Types with Analytic Models

For PeopleSoft Analytic Calculation Engine, you only need to associate an analytic type with an analytic
mode.

In the analytic type definition, select the Models tab, and then select Insert, Analytic Model.

The Analytic Type Analytic Model Property dialog box appears, as shown:

Analytic Type Analytic Model Property &|

Analytic Model | QE_ALLFUNCTION k3

v Automatically add recaord(s] and field(s] used in model

ok | Cancel |

Analytic Type Analytic Model Property dialog box

Select the name of the analytic model that you want to associate with the analytic type. If you specify to add
all the records and fields that are used in the model, they are automatically added to the records on the
Records tab.

Configuring Analytic Type Transactions
In the analytic type definition, select the Transactions tab, and then select Insert, Transaction.

The Analytic Type Transaction Property dialog box appears, as shown:

22 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

Analytic Type Transaction Propenty

Tranzaction Mame |M.-'1‘-.|:H|NE_.-':‘-."-.-".-':‘-.|L.-'3.ELE [Lock Flag

L Return if exercize maching iz available at given time.
D ezcription

Farameter Attributes

Mame Type Input/Output| Attributes VYalue
FMACHIME _MARME String [rpt R equired
BEGIM_DATE DateTime [Fipt R equired
EMD_DATE DateTime | ript A equired
Aeh|LARLE |nteger Cukput I A,

Y o -l=-|r.u|m|—l

OF. | Canizel |

Analytic Type Transaction Property dialog box

Note. You can access the properties of an existing analytic type transaction by right-clicking the transaction
and selecting the Analytic Type Transaction Properties. option.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Designing Analytic Type Definitions

Transaction Name

Lock Flag

Parameter Attributes

Chapter 3

Enter the case-sensitive name of the transaction.

If the PeopleCode Plugin check box is selected in the analytic type
properties, this value must match the name of a method defined in the
application class that you specified for this analytic type.

If the PeopleCode Plugin check box is not selected in the analytic type
properties, this value must match the name of a service defined in the OPI
that you selected in the analytic type properties.

The transaction name that you specify must be distinct within an analytic
type.

For the exercise machine example, three transactions are needed. The
QEOPT.DLL OPI implements these transactions:

» SOLVE solves the exercise machine problem.
* GET SUMMARY produces a summary of exercises for a person.

+ IS MACHINE AVAILABLE returns whether an exercise machine is
available for a specified time.

The transaction name can contain up to 30 characters.

See PeopleTools 8.52: PeopleCode API Reference, "Optimization
PeopleCode," OptBase Application Class.

Select this option to prevent changes to the optimization application tables
while this transaction runs. Typically, this flag should be set for extremely
fast but critical transactions where data integrity is crucial. In the exercise
planning example, optimization transactions do not need the lock flag.

Important! The lock flag can hamper performance, so use it with caution.

Each transaction can have any number of parameters.

If the application class method corresponding to this transaction has parameters, you must define a row in this
grid with equivalent attributes for each of the parameters.

Name

24

Enter the name of the parameter. The name must match the transaction
parameter name defined in the OPI, or the equivalent method parameter
defined in the application class that you specified for this analytic type.

The transaction parameter name can contain up to 20 characters, and it must
be distinct within an analytic type.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

Type Select the parameter type (Sring,Integer,Double,Date,DateTime, Time, or
arrays of these types, or Record Array). The type must match the
transaction parameter type defined in the OPI, or the equivalent method
parameter type defined in the application class that you specified for this
analytic type.

Note. Do not pass an array of type Integer as a transaction parameter. Use
an array of type Number instead.

I nput/Output Select Input,Output, or Both.

Attributes Select Required,Optional, or Default (the parameter has a default value).
This is not applicable to output parameters.

Note. If an input parameter is required, it must be supplied when you use
either the RunSynch or RunAsynch PeopleCode methods.

Value If the Attributes field is set to Default, enter a default value for this
parameter. If the type is Record Array, enter the name of the record.
Otherwise, leave this blank.

Running the Optimization System Audit

After you have created the analytic type definition, run SYSAUDIT with the optimization options selected.
This ensures that the definition is valid and consistent.

To run the optimization system audit in the PeopleSoft application:

1. Select PeopleTools, Utilities, Audit, Perform System Audit.

2. Enter a run control ID.

3. On the System Audit page, select the Audit Optimization Integrity check box, and click the Run button.

4. On the Process Scheduler Request page, ensure that the System Audit check box is selected, select a
server name, and click the OK button.

5. When the System Audit page reappears, click the Process Monitor link (to the left of the Run button).
6. On the Process List page, at the end of the line for SYSAUDIT, click the Details link.
7. On the Process Detail page, click the View Log/Trace link.
8. On the View Log/Trace page, click the SYSAUDIT XX file name.
This file contains the audit report for your optimization.
See Also

PeopleTools 8.52: Data Management, "Ensuring Data Integrity," Running SYSAUDIT

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25

Designing Analytic Type Definitions Chapter 3

Changing Existing Analytic Type Definitions

This section discusses how to change:

Optimization application records.

Optimization transactions.

Changing Optimization Application Records

To change optimization application records in an analytic type definition:

1.
2.

Shut down all the running optimization engines that use this analytic type definition.

Shut down other optimization engines if record definitions are being shared by other analytic type
definitions.

Delete all existing analytic instances using the DeleteOptProbInst PeopleCode function.
See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," DeleteOptProblnst.
Empty the optimization application tables.

Make record definition changes and build the records in PeopleSoft Application Designer.

See Chapter 3. "Designing Analytic Type Definitions," Creating and Building Optimization Records,
page 12.

Open the analytic type in PeopleSoft Application Designer, insert any new records or make appropriate
changes to reflect changed record definitions, and save the analytic type.

Run SYSAUDIT with the optimization options selected.

Skip the steps about inserting transactions.

Change the OPI to reflect the changes to optimization application records.

If the records do not match the plug-in, the program will fail.

Call the InsertOptProblnst PeopleCode function to re-create analytic instances.

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," InsertOptProblnst.

Changing Optimization Transactions

To change optimization transactions in an analytic type definition:

1.

26

Shut down all the running optimization engines that use the analytic type definition.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Designing Analytic Type Definitions

2. Open the analytic type definition in PeopleSoft Application Designer, insert any new transactions or make
appropriate changes to existing ones, and save the analytic type.

Skip the steps about inserting records.
3. Change the OPI to reflect the changes to optimization transactions.

4. Change optimization PeopleCode to reflect the changes (add, remove, and update parameters).

Administering Optimization Engines

An optimization engine is an instance of an analytic server.

You can use the Analytic Server Administration — Analytic Domain Summary page to administer all

optimization engines. To access the Analytic Server Administration — Analytic Domain Summary page from
PIA, select PeopleTools, Utilities, Administration, Analytic Server Administration.

See PeopleTools 8.52: Analytic Calculation Engine, "Managing Analytic Servers."

Setting Up Integration Broker

Before you can use lights-out mode and other optimization features, you must first configure PeopleSoft
Integration Broker for basic messaging.

The only PeopleSoft Integration Broker elements that are specific to optimization engine administration are
two transactions delivered with your PeopleSoft application. One transaction is type InSync, the other is type
OutSync, and both use the OPT CALL message. Ensure that they are both active on the Transactions page of
the default local node definition.

See PeopleTools 8.52: PeopleSoft Integration Broker, "Getting Started with PeopleSoft Integration Broker."

Updating Solver Licenses

Use the Administer License page to update a solver software license. PeopleSoft Optimization Framework
uses third-party solver software. In some cases, the solver software is activated by a license.

Note. Currently, no optimization application requires updating the solver license. You should update solver
licenses only on instructions from PeopleSoft.

To update solver licenses:
1. Inabrowser, select PeopleTools, Utilities, Optimization, Solver Licenses.
2. Enter an optimization solver type, such as LP/MIP.
The optimization engine identifies the third-party solver software by its solver type.

3. On the Administer License page, enter the new license code in the Encrypted License Code field.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

Chapter 4

Optimization PeopleCode

This chapter discusses how to:

Use optimization PeopleCode on the application server.

Use optimization PeopleCode in an Application Engine program.

Perform optimization in PeopleCode.
Use lights-out mode with optimization.
Use optimization built-in functions.
Use OptEngine class methods.

Use OptEngine class properties.

Use the OptBase application class.
Use OptBase class methods.

Use Optlnterface class methods.

Important! The optimization PeopleCode classes are not supported on IBM z/OS and Linux for IBM System
z platforms.

Using Optimization PeopleCode on the Application Server

While running optimization PeopleCode on the application server, ensure that changed data is committed to
the database before calling the CreateOptEngine optimization function and the following OptEngine class

methods:

RunSynch

RunAsynch
CheckOptEngineStatus
ShutDown
SetTraceLevel
GetTraceLevel

InsertOptProblnst

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

29

Optimization PeopleCode Chapter 4

* DeleteOptProblnst

Note. The PeopleCode functions CommitWork and DoSaveNow can be called within a step to save
uncommitted data to the database before calling the listed functions and methods. Keep in mind that forcing a
commit on pending database updates is a serious step; it prevents roll-back on error. CreateOptEngine,
ShutDown, InsertOptProblnst, and DeleteOptProblnst calls modify the database, so take care when
terminating the Application Engine program without committing the changes made by those calls.

Using Optimization PeopleCode in an Application Engine Program

When you write an optimization PeopleCode program in an Application Engine program and you schedule it
in PeopleSoft Process Scheduler, you must set the process definition with a process type of Optimization
Engine. Other process types do not allow optimization PeopleCode in Application Engine programs.

While using optimization PeopleCode in Application Engine programs, make sure data is committed before
calling the CreateOptEngine optimization function and the following OptEngine class methods:

« RunSynch

* RunAsynch

* CheckOptEngineStatus
e ShutDown

e SetTraceLevel

* GetTraceLevel

» InsertOptProblnst

» DeleteOptProblnst

Note. You can call the PeopleCode functions CommitWork and DoSaveNow within a step to save
uncommitted data to the database before calling the listed functions and class methods. Keep in mind that
forcing a commit on pending database updates is a serious step; it prevents roll-back on error.
CreateOptEngine, ShutDown, InsertOptProblnst, and DeleteOptProblnst calls modify the database, so take
care when terminating the Application Engine program without committing the changes made by those calls.

Performing Optimization in PeopleCode

30

This section discusses how to:

» Create new analytic instances.

» Load analytic instances into an analytic server.
* Run optimization transactions.

» Invoke the Optimization PeopleCode plug-in.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

e Shut down optimization engines.
» Delete existing analytic instances.

» Program for database updates.

Creating New Analytic Instances
To create a new analytic instance for an analytic type:

1. Call the function InsertOptProblnst with the analytic type and analytic instance as parameters to create an
analytic instance ID.

2. Use Application Engine or a similar mechanism to load the optimization application tables with data.
Use the analytic instance ID as the key value in scenario-managed optimization application tables.

The analytic instance is now ready to be loaded into an analytic server.

Note. You can load multiple copies of the same analytic instance into multiple instances of an analytic server,
provided that each instance of the analytic server resides in a different application server domain. Each
analytic instance loaded into a given domain must be unique. Within a given domain, you cannot have the
same analytic instance in more than one analytic server. The analytic server maintains data integrity by
checking to see if the data has been altered by another user (refer to the steps in the optimization system
architecture description). Try to maintain data consistency when the same analytic instance uses the same
database in different domains.

See Also

Chapter 2. "Understanding PeopleSoft Optimization Framework." PeopleSoft Optimization Framework
System Architecture, page 4

PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," InsertOptProblnst

Loading Analytic Instances Into an Analytic Server

Use the CreateOptEngine function to load an analytic server with an analytic instance. It takes analytic
instance ID and a mode parameter with %Synch and %Asynch as possible values and returns a PeopleCode
object of type OptEngine.

You can run the PeopleCode on the application server or from Application Engine.

Loading Analytic Instances by Running PeopleCode on the Application Server

To block PeopleCode from running on the application server until the load is done (synchronous mode), use
the %Synch value for the mode parameter. An error is generated if the load isn't successful. The application
server imposes a timeout beyond which the PeopleCode and optimization engine load are terminated. Here is
a code example:

Local Opt Engi ne &myopt;
&nyopt = CreateQpt Engi ne(" PATSM TH', %Bynch);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Optimization PeopleCode Chapter 4

To load the analytic server without blocking the PeopleCode from running (asynchronous mode) on the
application server, use the %Asynch value for the mode parameter. The analytic server performs a preliminary
check of the load request and returns the OptEngine object if it is successful or an error if it is unsuccessful. A
successful return does not mean that the load was successful. You must then use repeated
CheckOptEngineStatus methods on the returned OptEngine object to determine whether the analytic engine is
done with the load and whether it was successful. Here is a code example:

Local Opt Engi ne &myopt;
&myopt = Creat eOpt Engi ne(" PATSM TH', %Asynch) ;
Loading Analytic Instances by Running PeopleCode in Application Engine

Both synchronous (%Synch) and asynchronous (%Asynch) modes block the PeopleCode from running on
Application Engine until the load is done. Use only %Asynch while loading an optimization engine.

The absolute number of optimization engine instances that may be loaded in a given domain is governed by a
configuration file loaded by Tuxedo during its domain startup.

See Also
PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," CheckOptEngineStatus

Chapter 5. "Administering Optimization Server Components." page 121

Running Optimization Transactions

32

You send an optimization transaction to the optimization engine using the RunSynch and RunAsynch
methods. Both are methods on an OptEngine object. The OptEngine object can be created either by calling
CreateOptEngine (if the optimization engine is not loaded already) or by calling GetOptEngine (if the
optimization engine is already loaded). Both RunSynch and RunAsynch have the same signature, except that
RunSynch runs the optimization transaction in synchronous mode and RunAsynch runs it in asynchronous
mode. Both return an integer status code. You can run transactions either on the application server or with
Application Engine.

To invoke an optimization transaction:

1. Use the GetOptEngine function to get the OptEngine object as a handle for the optimization engine that
has loaded an analytic instance ID.

Use the CreateOptEngine function to create the OptEngine object for a new optimization engine if the
analytic instance has not been loaded.

2. Call RunSynch or RunAsynch to send an optimization transaction to the optimization engine to be run in
synchronous or asynchronous mode.

3. Ifthe transaction is run in synchronous mode (RunSynch), use the OptEngine methods GetString,
GetNumber, and so on, to retrieve the output result from the optimization transaction.

The transaction names, parameter names, and data types are viewable in the analytic type in Application
Designer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

4. If the transaction is run in asynchronous mode, use the OptEngine method CheckOptEngineStatus to
check the status of the optimization transaction in the optimization engine.

After the transaction is done, result data is available in the database for retrieval using standard
PeopleCode mechanisms.

Running Optimization Transactions from the Application Server

To block the PeopleCode from running on the application server until the optimization transaction is done
(synchronous mode) and receives the results, use RunSynch to send an optimization transaction. An error
status code is returned if the transaction isn't successful. If successful, you can use other methods to retrieve
the results from the transaction call. The application server imposes a timeout beyond which the PeopleCode
and optimization engine transaction are terminated.

To run a transaction without blocking PeopleCode from running (asynchronous mode) on the application
server, use RunAsynch to send an optimization transaction. In this mode, the optimization engine performs a
preliminary check of the transaction request and returns a success or failure status code. A successful return
does not mean that the transaction is successful; it means only that the syntax is correct. You must then use
repeated calls to the CheckOptEngineStatus method on the OptEngine object to determine whether the
optimization engine is done with the transaction and whether it is successful.

RunAsynch does not allow transaction output results to be returned. Use this method for long-running
transactions that return results entirely through the database.
Running Optimization Transactions from Application Engine

Both synchronous (RunSynch) and asynchronous (RunAsynch) methods block the PeopleCode from running
on Application Engine until the optimization transaction is done. RunSynch allows output results to be
returned, but it should be used for transactions that are fast (less than 10 seconds). RunAsynch does not have
a time limit, but it does not return output results.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," RunAsynch

Invoking the Optimization PeopleCode Plug-In

If you're developing an optimization application that uses the Optimization PeopleCode plug-in, you must do
the following to invoke the plug-in:

» Develop a PeopleCode application class that extends the PT_OPT_BASE:OptBase class.

» Define methods in your application class that use the PeopleCode Optlnterface class to perform your
optimization functions.

» Define an analytic type that specifies the Optimization PeopleCode plug-in, by selecting the PeopleCode
Plugin check box in the analytic type properties.

+ In the analytic type properties, specify the application package and application class that you developed.

» Define transactions in your analytic type definition that correspond to the methods you developed in your
application class, with corresponding parameters.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

Optimization PeopleCode Chapter 4

See Also

Chapter 3, "Designing Analytic Type Definitions," Creating Analytic Type Definitions, page 13
PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," CreateOptlnterface
PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," OptBase Application Class

PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," Optlnterface Class Methods

Shutting Down Optimization Engines

Use the GetOptEngine function to get the OptEngine object as a handle for the optimization engine that
loaded an analytic instance ID.

Use the OptEngine method named ShutDown to shut down the optimization engine. This ends the
optimization engine process with the current analytic instance ID. Based on application server settings, the
system restarts a new, unloaded optimization engine process that can be loaded with any other analytic
instance.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," ShutDown

Deleting Existing Analytic Instances

34

To delete an existing analytic instance for an analytic type:
1. Shut down any optimization engines that have this analytic instance currently loaded.

2. Using Application Engine or a similar mechanism, delete the data in the optimization application tables
pertaining to that analytic instance.

Use the analytic instance ID as the key value to find and delete analytic instance rows from scenario-
managed optimization application tables.

3. Use the function DeleteOptProblnst with the analytic type and analytic instance as arguments to delete the
analytic instance ID from PeopleTools metadata.

Note. If you try to delete an existing analytic instance that is loaded in a running optimization engine,
DeleteOptProblnst returns %OptEng_Fail, and the optional status reference parameter is set to
%OptEng_Exists.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," DeleteOptProbInst

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Optimization PeopleCode

Programming for Database Updates

Y ou must plan for uncommitted database changes in your optimization PeopleCode. The PeopleSoft
Optimization Framework detects pending database updates, and generates a failure status if data is not
committed to the database before certain optimization methods are called.

This checking for database updates happens in runtime for the CreateOptEngine function and the following
methods: RunSync, RunAsync, Shutdown, GetTraceLevel, and SetTraceLevel. Ensure that your PeopleCode
performs proper database updates and commits before you execute these methods. If you use the optional
parameter for detailed status that is available for these functions, or the DetailedStatus property that is
available for the methods, you can check for the status of %OptEng DB _Updates Pending to see if there is a
pending database update.

Note. The pending database update may have happened considerably earlier in the code. Forcing a commit
within your PeopleCode to avoid this problem prevents roll-back on database error. Forcing a commit should
be used with care.

The InsertOptProblnst and DeleteOptProblnst functions can be called only inside FieldChange,
PreSaveChange and PostSaveChange PeopleCode events, and in Workflow.

This database update checking happens in compile time for the following functions: InsertOptProblnst and
DeleteOptProblnst. Make sure that there are no pending database updates before you execute these methods.

Using Lights-Out Mode with Optimization

Unde

Copyright

This section provides an overview of lights-out mode, and discusses how to:

* Create a request message.
» Create a response message.
« Edit the request PeopleCode.

+ Edit the response PeopleCode.

rstanding Lights-out Mode

Some optimization applications can take several hours to run. These are typically run as overnight batch jobs
every night when the work load is small to regenerate the optimization solution and have it ready for end
users to use in the morning hence the term lights-out mode.

In the current release, application messages communicate between the Application Engine batch job and the
online optimization engine. After the Application Engine job completes and the optimization solution has
been written to the database, an application message initiates the download of the data from the database
batch job to the online optimization engine.

Lights-out mode uses an Application Engine PeopleCode program within PeopleSoft Process Scheduler to
send requests to an application server and receive responses from it. Within the application server, the
OnRequest PeopleCode runs an optimization engine process.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Optimization PeopleCode Chapter 4

36

This diagram illustrates the lights-out process:

Application Server Process Scheduler
request
Optimization Applgf;g:ﬁ;ﬂ;f: age ¢ ROWSET Application Engine Message
Engine PeopleCode > Publish PeopleCode
response

Lights-out process

This request and response is in the form of a rowset as shown by the example supplied with optimization, the
OPT CALL message. Also supplied as an example is an Application Engine message publish PeopleCode
program called PT_OPTCALL.

Important! Application Engine includes an action of type Log Message. which PeopleSoft Process Scheduler
uses to record its activity in the PS MESSAGE LOG table. The PeopleCode MessageBox and WinMessage
built-in functions also record their activity in the PS MESSAGE LOG table.

During lights-out optimization, these processes can conflict with each other or with the optimization engine
when one process locks a row of the table, and another process tries to access the same row.

To prevent this conflict, pay close attention to where the MessageBox or WinMessage built-in functions are
used in your Application Engine PeopleCode. In general, there can't be any outstanding database updates
pending when communicating with the optimization engine using application messages.

The OPT_CALL Message

The OPT_CALL message is an example of what the lights-out process uses as the message for optimization.
The OPT_CALL message has a structure using a record, PT_OPTPARMS, having the fields PARMKEY and
VALUE which represent a name/value pair. These send requests and responses from the Application Engine
PeopleCode in PeopleSoft Process Scheduler to and from the message OnRequest PeopleCode in the
application server.

The OPT CALL message also uses a record, PT_ OPTDETMSGS, which contains the information needed for
processing a detailed message.

This is an example of the Message Definition page (select PeopleTools, Integration Broker, Integration Setup,
Messages) showing the OPT_CALL message definition:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Message Definition Schema

Waming: Structure references work records. Explanation
Schema Exists: Ma
Part Message

Message: OPT_CALL

Version: VERSIOMN_1
[] Exclude Description in Schema

|Optimizatinn Msg [single Level 0 Row
[include Namespace
] Suppress Empty XML Tags

Description:

Owner |D: | FeopleTools v

Comments: |Wse for & to kick cut Optimization Job under
App Senver domain

Message Type

Rowset-based
Nonrowset-based

)) Container
Senice Operation References
View Records Only View Included Fields Qnly Add Record to Root
Left | Right
[= oOPT_cALL

= & pT OPTDETMSGS
E & PT OPTPARMS
& « PARMKEY
& o PTVALUE

Save Save As

Feturn to Search

Message Definition page — OPT_CALL message definition

The OPT_CALL message is associated with the OPT CALL service operation. The OPT_CALL service
operation defines the OPT _CALL application package as a handler. This application package implements the
Integration Broker methods needed to handle any messaging PeopleCode.

Creating a Request Message
This section provides an overview of the request message and describes how to create messages that:
» Create an optimization engine.
» Check optimization engine status.
* Run an optimization engine transaction.
» Set the trace level.
* QGet the trace level.

« Shutdown an optimization engine.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Optimization PeopleCode

38

Chapter 4

Understanding the Request Message

For optimization, the Application Engine PeopleCode in PeopleSoft Process Scheduler sends a request
OPT_CALL message. The message uses rowsets built from PT_OPTPARMS records as the request. You can
use the following rowset structures as an example of how to perform certain optimization actions, by sending
them as requests from the application engine program in the process scheduler to the message notification

PeopleCode in the application server.

Creating an Optimization Engine

To create an optimization engine, structure the rowset as follows, using the PT_OPTPARMS record. You set
key values using the PARMKEY field, and then set a value for that key field in the VALUE field.

PARMKEY Field VALUE Field

OPTCMD CREATE
Causes the PeopleCode program implementing the Integration Broker
OnRequest method to load an optimization engine. The OPT _CALL
example executes the CreateOptEngine function.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler job.

SYNCH Y if this optimization engine load is to occur synchronously, N if

asynchronously.

Checking Optimization Engine Status

To check optimization engine status (for example, to see when it finishes loading), structure the rowset as
follows, using the PT_OPTPARMS record.

PARMKEY Field

VALUE Field

OPTCMD CHECK STATUS
Causes the PeopleCode program implementing the Integration Broker
OnRequest method to check the status of an optimization engine. The
OPT_CALL example executes the CheckOptEngineStatus function.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler job.

Running a Transaction

To run a transaction, structure the rowset as follows, using the PT_OPTPARMS record.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Optimization PeopleCode

PARMKEY Field VALUE Field

OPTCMD RUN
Causes the PeopleCode program implementing the Integration Broker
OnRequest method to run an optimization transaction. The OPT_CALL
example executes the GetOptEngine method and either the RunSynch or
RunAsynch method.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler job.

SYNCH Y for a synchronous transaction, N for asynchronous.

TRANSACTION The name of the transaction to run.

The names of one or more transaction The value of each named transaction parameter.

parameters.

Setting the Trace Level

To set a trace level, structure the rowset as follows, using the PT_OPTPARMS record.

PARMKEY Field

VALUE Field

OPTCMD SET TRACE LEVEL
Causes the PeopleCode program implementing the OnRequest Integration
Broker method to set the severity level at which events will be logged for
an optimization engine. The OPT CALL example executes the
SetTraceLevel method.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler job.

COMPONENT One of the following values:

* %0Opt_Engine server activity of the running optimization engine.

* %0Opt_Utility low level elements that support the running
optimization engine.

e %0Opt_Datacache the in-memory database cache.

e %0Opt_Plugin the plugin being used for the running optimization
engine.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Optimization PeopleCode

40

Chapter 4

PARMKEY Field

VALUE Field

SEVERITY LEVEL

The severity level to log.

The following list starts with the most severe level; the level you specify
includes all higher levels. For example, if you specify %Severity Error, it
logs %Severity Fatal, %Severity Status, and %Severity Error messages
and filters out the others.

e %Severity Fatal

e %Severity Status

* %Severity Error

e %Severity Warn

* %Severity Info

e %Severity Tracel

e %Severity Trace2

Getting the Trace Level

To get a trace level, structure the rowset as follows, using the PT_OPTPARMS record.

PARMKEY Field VALUE Field

OPTCMD GET TRACE LEVEL
Causes the PeopleCode program implementing the OnRequest Integration
Broker method to get the severity level at which events will be logged for
an optimization engine. The OPT CALL example executes the
GetTraceLevel method.

PROBINST Set to the name of the analytic instance.

PROCINSTANCE Set to the name of the process instance for this process scheduler job.

COMPONENT One of the following values:

* %0Opt_Engine server activity of the running optimization engine.

* %0Opt_Utility low level elements that support the running
optimization engine.

e %0Opt_Datacache the in-memory database cache.

* %0Opt_Plugin the plugin being used for the current opt engine.

Shutting Down an Optimization Engine

To shut down an optimization engine, structure the rowset as follows, using the PT_OPTPARMS record.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

PARMKEY Field VALUE Field

OPTCMD SHUTDOWN
Causes the PeopleCode program implementing the OnRequest Integration
Broker method to shut down an optimization engine. The OPT CALL
example executes the Shutdown method.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler job.

Creating a Response Message

This section provides an overview of the response message and describes how to create messages that:

* Send optimization status.

» Send a detailed message.

Understanding the Response Message

For optimization, the message PeopleCode in application server receives the request messages, performs an
optimization actions, and sends response OPT CALL messages. One message uses rowsets built from

PT _OPTPARMS records, the other uses rowsets from PT _DETMSGS records. You can use the rowset
structures in the next section (Sending Optimization Status) as an example of how to send responses from the
message notification PeopleCode in the application server to the application engine program in the process
scheduler.

Sending Optimization Status

To send the status of the optimization functions and methods called within the PeopleCode program
implementing the OnRequest Integration Broker method, structure the rowset as follows using the

PT _OPTPARMS record. The optimization functions and messages are called in response to the request input
message. You set key values using the PARMKEY field, and then set a value for that key field in the VALUE
field.

PARMKEY Field VALUE Field

STATUS The return status of the optimization function or method that is called in
the message PeopleCode.

DETAILED STATUS The optional detailed status returned by many of the optimization
functions and methods.

Copyright

Sending a Detailed Message

To send a detailed message, structure the rowset as follows, using the PT _DETMSGS record. You set key
values using the PARMKEY field, and then set a value for that key field in the VALUE field.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

Optimization PeopleCode

Chapter 4
PARMKEY Field VALUE Field
MSGSET The message set number. In the case of optimization, the message
set number is 148.
MSGNUM The name of the detailed message.
PARMCOUNT The number of message parameters for the detailed message. There

can be up to five parameters.

MSGPARMI1 The first parameter value.
MSGPARM?2 The second parameter value.
MSGPARM3 The third parameter value.
MSGPARM4 The fourth parameter value.
MSGPARMS The fifth parameter value.

Editing the Request PeopleCode

42

The PT_OPTCALL Application Engine program serves as a template. It is delivered with all the sections
marked as inactive. You can edit the program to suit your needs, then mark the appropriate sections active
before running it. You can also use the program as a guide to creating your own Application Engine program.

The program uses these steps to send request messages to perform the following tasks:
1. Load the optimization engine.
2. Wait for the optimization engine load to finish.

3. Run an optimization transaction against the loaded optimization engine.
4. Wait for the optimization transaction to finish running.

5. Set the trace level.
6. Get the trace level.
7. Shut down the optimization engine.
You can edit steps 1 and 3 to run an optimization transaction. You can also use the entire program as a
template to create your own Application Engine program.

Loading an Optimization Engine

In step 1, enter the name of your analytic instance. In this example, the name of the analytic instance is
FEMALEL.

If you have multiple domains, enter the local node name and the machine name and port number for your

application server. In this case, the local node name is %oLocalNode and the machine name and port number
are f00111111:9000.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Copyright

Optimization PeopleCode

Local Message &NSG
Local Message &response;

Conponent string &probid,;
Conponent string & sSync;
Conponent string &procinst;
Local integer &nlnst;

Local string &url;

Local Rowset &rs;
Local Row &row;
Local Record &rec;

Local string &stNane;
Local integer &stVal;

&VBG = Creat eMessage(OPERATI ON. OPT_CALL);
& s = &VBG CGet Rowset () ;

& ow = &rs. Get Row(1);

&rec &r ow. Get Recor d(Recor d. PT_OPTPARM) ;
&r ec. PARMKEY. Val ue = "OPTCMD';

&rec. VALUE. Val ue = "CREATE";

& s.lnsert Rom 1);

& ec = &rs. Get Row(2) . PT_OPTPARMNS;
&r ec. PARMKEY. Val ue = " PROBI NST";
& ec. VALUE. Val ue = "FEMALEL";
&probid = "FEMALEL";

& s.lnsertRow 2);

& ec = &rs. Get Row 3) . PT_OPTPARMS;

& ec. PARMKEY. Val ue = " PROCI NSTANCE";

&nl nst = Record. PT_OPT_AET. PROCESS | NSTANCE. Val ue;
& ec. VALUE. Val ue = String(&nlnst);

&procinst = String(&nlnst);

& s. |l nsertRow 3);

&rec = &rs. Get Row(4). PT_OPTPARNMS;
&r ec. PARWKEY. Val ue = " SYNCH';

& ec. VALUE. Val ue = "N*;

& sSync = "N';

/* Specify the Application Server domain URL (f00111111:9000 in this exanple)
*/
& esponse = 9% nt Br oker. SyncRequest (%.ocal Node, "//fo00111111: 9000 e");

| f &response. ResponseStatus = 0 Then
&st Name = &response. Get Rowset (). Get Row(1) . Get Recor d(Recor d. PT_OPTPARMB) . Get
Fi el d(Fi el d. PARMKEY) . Val ue;
&stVal = Val ue(& esponse. Get Rowset (). Get Row(1) . Get Recor d(Record. PT_
OPTPARME) . Get Fi el d(Fi el d. VALUE) . Val ue) ;
I f &stNanme = "STATUS" And
&stVal = Y% ptEng Fail Then
/* Check detail ed nessage here */
t hrow Creat eException(148, 2, "Can not send to OptEngine");
End- I f;
End- I f;

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

43

Optimization PeopleCode Chapter 4

Running An Optimization Transaction

In step 3, enter the name of your optimization transaction and its parameter name/value pairs. In this example,
the transaction name is TEST_LONG_TRANS the first parameter name/value pair is Delay_in_Secs and 30,
and the second parameter name/value pair is Seep0_Work1 and O.

The parameter values are stored as strings. You may need to convert them in the OnRequest PeopleCode.

44 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Copyright

Optimization PeopleCode

Local Message &NSG
Local Message &response;

Local Rowset &rs, &respRS;
Local Row &row,
Local Record &rec, &nsgRec;

Conponent string &probid;
Conponent string &procinst;
Conponent string & sSync;

Local string &url = ;
Local integer &parnCount, &rsgSet, &nrsgNum

&VBG = Creat eMessage(OPERATI ON. OPT_CALL) ;
& s = &NVMSG Get Rowset () ;

& ow = &rs. Get Row(1);

& ec = & ow. Get Recor d(Record. PT_OPTPARMS) ;
&r ec. PARMKEY. Val ue = "OPTCMD";

& ec. VALUE. Val ue = "RUN';

& s.lnsertRow 1);

& ec = & s. Get Row 2) . PT_OPTPARMS;
&r ec. PARWKEY. Val ue = "PROBI NST";
& ec. VALUE. Val ue = &probi d;

& s. |l nsertRow 2);

& ec = &rs. Get Row 3) . PT_OPTPARMS;

& ec. PARMKEY. Val ue = " PROCI NSTANCE";
&rec. VALUE. Val ue = &procinst;

& s.lnsert Rom 3);

& ec = &rs. Get Row4) . PT_OPTPARMS;
&r ec. PARMKEY. Val ue = " SYNCH';

& ec. VALUE. Val ue = & sSync;

& s.lnsert Rom 4);

& ec = &rs. Get Row(5). PT_OPTPARNS;

&r ec. PARMKEY. Val ue = " TRANSACTI ON';
& ec. VALUE. Val ue = "TEST_LONG TRANS";

& s. |l nsert Rowm 5);

&rec = &rs. CGet Row 6). PT_OPTPARMS;

&r ec. PARMKEY. Val ue = "Del ay_i n_Secs";
&rec. VALUE. Val ue = "30";

&rs.lnsert Row 6);

& ec = &rs. Get Row 7). PT_OPTPARMS;

& ec. PARMKEY. Val ue = "Sl eep0_Work1";
&rec. VALUE. Val ue = "0";

/* SyncRequest will carry a url */

SQ.Exec("sel ect URL from PSOPTSTATUS where PROBINST=:1 AND URL NOT LIKE '%0';",

&probid, &url);
If &url = "" Then

t hrow Creat eException(148, 2, "Can not send to OptEngine");
End- | f;

/* Specify the Application Server domain URL.
(This was specified in Step 1 in this exanple.)
*/
& esponse = 9% nt Broker. SyncRequest (%.ocal Node, &url);

I f &response. ResponseStatus = 0 Then

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

45

Optimization PeopleCode Chapter 4

&st Name = &response. Get Rowset (). Get Row(1) . Get Recor d(Recor d. PT_OPTPARM) . Get
Fi el d(Fi el d. PARMKEY) . Val ue;

&stVal = Val ue(& esponse. Get Rowset (). Get Row(1) . Get Recor d(Record. PT_
OPTPARMES) . Cet Fi el d(Fi el d. VALUE) . Val ue) ;

I f &stNanme = "STATUS" And
&stVal = Y% ptEng Fail Then
t hrow Creat eException(148, 2, "Can not send to OptEngine");
End- | f;

/* Check Detail ed nmsg here */
If & sSync = "Y' And
&stVal = % pt Eng_Success Then

& espRS = &response. Get Rowset () ;
& owNum = &r espRS. Acti veRowCount ;
For & loop = 1 To & owNum
&rsgRec = & espRS. Get Rowm & | oop) . Get Recor d(Recor d. PT_OPTDETMSGS) ;
I f (&rsgRec. Get Fi el d(Fi el d. MSGSET) . Val ue <> 0) Then
&nsgSet = Val ue(&nsgRec. Get Fi el d(Fi el d. MSGSET) . Val ue) ;

&sgNum = Val ue(&nsgRec. Get Fi el d(Fi el d. MSGNUM . Val ue) ;
&parml = &msgRec. Get Fi el d(Fi el d. MSGPARML) . Val ue;
&arnmR = &msgRec. Cet Fi el d(Fi el d. MSGPARM) . Val ue;
&parnB = &msgRec. Get Fi el d(Fi el d. MSGPARM) . Val ue;
&parmd = &nsgRec. Get Fi el d(Fi el d. MSGPARM) . Val ue;
&parnb = &nmsgRec. Get Fi el d(Fi el d. MSGPARM) . Val ue;

&string = MsgCet Text (&nsgSet, &mrsgNum " Message Not Found", &parni,
&par n2, &parnB, &parmd, &parnb);

End- | f;
End- For ;

End- | f;

End- | f;

Editing the Response PeopleCode

46

The OPT_CALL message definition serves as a template. It is delivered to work with the PT_OPTCALL
Application Engine program. You can edit the program to suit your needs, or use it as a guide when creating
your own response message program.

OPT_CALL Message Program

The OPT_CALL application package implements the Integration Broker method OnRequest. The
PeopleCode in this method shows application messages for lights-out mode.

Depending upon the request message, the OnRequest method PeopleCode calls appropriate optimization
functions and methods to perform these tasks, and sends a response message containing the returned status
and detailed messages from the optimization functions and methods.

You can use the OnRequest method PeopleCode as a template to create your own response message
PeopleCode program. For example, you can edit it to run an optimization transaction, which is shown below
as an example. This example is edited to match the examples for step 1 and step 3 in the PT_OPTCALL
program.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Processing the Transaction Parameters

Edit the OPT_CALL application program OnRequest method to enter the name of your optimization
transaction and the name/value pairs for its parameters. In this example, the transaction name is
TEST_LONG_TRANS the first parameter name/value pair is & delayParm and & delay (maps to
Delay_in_Secs from the request message), and the second parameter name/value pair is & sleepParm and
&isSeep (maps to Seep0_Workl from the request message).

The parameter values are stored as strings in step 3 of the Application Engine program. You may need to
convert them here to your desired format. Here is a section of the application program showing the places to
edit.

If & rans = "TEST _LONG TRANS" Then
&REC = &rs. Get Row(6) . PT_OPTPARME;
&del ayPar m = &REC. PARMKEY. Val ue;
&del ay = Val ue(&REC. VALUE. Val ue) ;

&REC = &rs. Get Row(7). PT_OPTPARMNS;
&sl eepPar m = &REC. PARMKEY. Val ue;
& sSl eep = Val ue(&REC. VALUE. Val ue) ;

&yopt = Get Opt Engi ne(& nst, &det St atus);
If (&wyopt = Null) Then

&opt status = % Opt Eng_Fai | ;
End- I f;

I f &mwopt <> Null And & sSync = "Y" Then
&opt status = &nyopt. RunSynch(& rans, &del ayParm &del ay, &sl eepParm & sSl eep

&det St at us = &nyopt . Det ai | edSt at us;
End- | f;

If &yopt <> Null And & sSync = "N' Then
&nmyopt . Processl nst ance = &procl nst;
&opt status = &nyopt. RUNASynch(& rans, &del ayParm &del ay, &sleepParm & s
Sl eep) ;
&det St at us = &nyopt. Det ai | edSt at us;
End-1f; /* iif nyopt=null */
End- | f;

Building a Status Response Message

This section shows the a response message to send a status message for the OPT_CALL message in the
application server.

/* Insert detailed status and detail ed nsgs i nto Response nsg rowset */

& espRS = &response. Get Rowset () ;

& espRS. Get Row(1) . Get Recor d(Recor d. PT_OPTPARMS) . Get Fi el d(Fi el d. PARVWKEY) . Val ue
" STATUS";

&r espRS. Get Row(1) . Get Recor d(Recor d. PT_OPTPARMS) . CGet Fi el d(Fi el d. VALUE) . Val ue =
String(&opt st atus);

& espRS. | nsert Row(1) ;

& espRS. Get Row(2) . Get Recor d(Recor d. PT_OPTPARMS) . Get Fi el d(Fi el d. PARWKEY) . Val ue
"DETAI LED_STATUS";

& espRS. Get Row(2) . Get Recor d(Recor d. PT_OPTPARMS) . CGet Fi el d(Fi el d. VALUE) . Val ue =
String(&det St at us) ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Optimization PeopleCode

Chapter 4

Building a Detailed Response Message

This section shows a response message to send a detailed message for the OPT_CALL message on the

application server.

/*Ei ther optcnd or
/created correctly */

I f &myopt = Null

inst is not passed in correctly, or optengine is not |oaded

Then

&msgRec = &respRS. Get Rowm 1) . GCet Recor d(Recor d. PT_OPTDETMSGS) ;
I f & sParnmBad = True Then

&nsgRec. Get Fi el d(Fi el d. MSGSET) . Val ue
&nsgRec. Get Fi el d(Fi el d. MSGNUM . Val ue

End- | f;
End- I f;

/[* 1If it is sync transaction

I f &myopt <> Nul
="y
= "RUN' And

& sSync
&opt cd

&optstatus =

/* First two rows have been inserted because of PT_OPTPARMS for two status

codes */

And

And

148;
505;

insert Detail Msg to response nsg */

% pt Eng_Success Then
&arrArray = &nyopt. Detail Msgs;
For & loop = 1 To &arrArray. Len

If & loop > 2 Then
&r espRS. I nsert Row(& | oop - 1);

End- | f;

&mrsgRec
&mrsgRec.
&mrsgRec.
&nmsgRec.
&msgRec.
&msgRec.
&rsgRec.
&rsgRec.
&mrsgRec.
End- For ;

End- | f;

= &r espRS. Get Row(& | oop) . Get Recor d(Recor d. PT_OPTDETMSGS) ;

Cet Fi
Cet Fi
Cet Fi
Cet Fi
Get Fi
Get Fi
Cet Fi
Cet Fi

el d(Fi
el d(Fi
el d(Fi
el d(Fi
el d(Fi
el d(Fi
el d(Fi
el d(Fi

el d.
el d.
el d.
el d.
el d.
el d.
el d.
el d.

MSGSET) . Val ue = String(&rrArray [& | oop][1
MSGNUM . Val ue = String(&rrArray [& | oop][2
PARMCOUNT) . Val ue = String(&arrArray [& | oop
MSGPARML) . Val ue String(&arrArray []
MSGPARM?) . Val ue
MSGPARMB) . Val ue
VMSGPARMA) . Val ue
MSGPARMB) . Val ue

[&
String(&arrArray [&
String(&rrArray [& | oop]
String(&rrArray [&
String(&arrArray [&i

Optimization Built-in Functions

This section discusses the optimization functions. The functions are discussed in alphabetical order.

CreateOptEngine

48

Syntax

Creat eOpt Engi ne(anal ytic_inst, {%Gynch | %ASynch}[, &detailedstatus] [,
processi nst ance])

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Description

Optimization PeopleCode

The CreateOptEngine function instantiates an OptEngine object, loads an optimization engine with an
analytic instance and returns a reference to it.

Parameters
Parameter Description
Analytic_inst Specify the analytic instance ID, which is a unique ID for this analytic instance in

this optimization engine. This is supplied by users when they request that an
optimization be run.

%Synch | %Asynch

Specify whether the optimization engine is synchronous or asynchronous. The
values are:

* %Synch: run the optimization engine synchronously.

* %Asynch: run the optimization engine asynchronously.

& detail edstatus

Specify a variable that the engine uses to give further information about the
evaluation of this function. The value returned is one of the following:

* %OptEng_Success: The function completed successfully.
* %OptEng_ Fail: The function failed.

* %OptEng Invalid Aiid: The analytic instance ID passed to the function is
invalid.

* %OptEng_Exists: An optimization engine instance already exists and is
loaded.

e %OptEng Method Disabled: A method is disabled or not valid.

e %OptEng DB Updates Pending: indicates that database updates are pending.

processinstance

Enter the process instance ID. You use this parameter only with lights-out
processing, most likely with the subscription PeopleCode for application message.

Note. This optional parameter is positional. If you use it, you must also use the
& detailedstatus parameter.

The state record that you use with Application Engine contains the process
instance ID.

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode,"
Using Lights-Out Mode with Optimization.

See PeopleTools 8.52 : Application Engine, "Developing Efficient Programs,"
Using State Records.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

Optimization PeopleCode Chapter 4

Returns

If successful, CreateOptEngine returns an OptEngine PeopleCode object. If the function fails, it returns a null
value. Examine the optional status reference parameter in case of a Null return for additional information
regarding the failure.

Example
An OptEngine object variable can be scoped as Local, Component, or Global.

You declare OptEngine objects as type OptEngine. For example:

Local Opt Engi ne &WOpt Engi ne;
Conmponent Opt Engi ne &WOpt ;
d obal Opt Engi ne &WOpt Eng;

The following example loads an optimization engine with the analytic instance:

Local Opt Engi ne &myopt;

Local string &probinst;

Local string &ransaction;
Local integer &detail edstatus;

&pr obi nst = Get Recor d(Recor d. PSOPTPRBI NST) . Get Fi el d(Fi el d. PROBI NST) . Val ue;
&nyopt = Creat eOpt Engi ne(&pr obi nst, %synch);

The following example shows the use of the optional status parameter:

&yopt = Creat eQpt Engi ne(&probi nst, %Synch, &detail edstatus);
if &wyopt = Null then
if &detail edstatus = %ptEng_lnvalid_Piid then
[*performsonme action */

end_if;
end_if;
CreateOptinterface
Syntax

50

CreateOptiInterface()

Description

The CreateOptlnterface function instantiates an OptInterface object.

Note. You can use this function and the Optlnterface methods only within an application class that you
extend from the OptBase application class, or within PeopleCode that you call from that application class.
This ensures that the OptInterface PeopleCode runs only on the optimization engine.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Parameters

None.

Returns

Optimization PeopleCode

If successful, CreateOptInterface returns an Optlnterface PeopleCode object. If the function fails, it returns a

null value.

Example

You declare Optlnterface objects as type Optlnterface. For example:

Local Optlnterface &WOptlInterface;
Conponent Optlnterface &WOptlnt;
d obal Optlinterface &WOptlnt;

The following example instantiates an Optlnterface object:

Local Optlinterface &nylnterface;
Int &status;

&yl nterface = CreateOptlInterface(&addtional Status);
if (&wlinterface !'= NULL) then
&status = &nylnterface. Acti vat eModel (" RMO TEST") ;
if (&status = %Optinter_Fail) then
/* exam ne &nmylnterface.Detail edStatus for reason */

end-if;
el se

/* CreateOptlnterface has returned NULL */
/* take sone corrective action here */

end_if;

DeleteOptProbinst

Copyright

Syntax

Del et eOpt Probl nst (probi nst[, &detail edstatus])

Description

The DeleteOptProblnst function deletes the analytic instance ID from PeopleTools metadata. This function
can be called only inside FieldChange, PreSaveChange and PostSaveChange PeopleCode events, and in

Workflow.

Note. Use this function to delete the analytic instance ID after deleting data in optimization application tables

for this analytic instance.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

51

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

probinst Enter the analytic instance ID to delete.

& detailedstatus (Optional) This status reference parameter returns an integer value giving further
information about the evaluation of this function. The value returned is one of the
following:

e %OptEng_Success: The function completed successfully.

e %OptEng_Fail: The function failed.

* %OptEng_Invalid Piid: The analytic instance ID passed to the function is
invalid.

e %OptEng_Sql Exception: A SQLerror is encountered when access database.

* %OptEng_Exists: An analytic server loaded with this analytic instance still
exists.

Returns

Returns %OptEng_Success if successful; otherwise returns %OptEng_Fail.

Example

The following example deletes the instance for an analytic type:

Note. Whenever you add records to an analytic type, you must call DeleteOptProblnst to delete the old
analytic type instances and then call InsertOptProblnst to recreate them.

Local string &probinst;

Local string &probtype;

Local integer &ret;

&pr obi nst = "PATSM TH";

&pr obt ype = " QEOPT";

&ret = Del et eOpt Probl nst (&probi nst, &probtype);
If &ret <> %ptEng_Success Then

QEOPT_WRK. MESSAGE_TEXT = "Del ete of analytic instance " | &probinst | ™"
failed.";
El se

QEOPT_WRK. MESSAGE_TEXT = "Analytic Instance " | &probinst | " deleted.";
End- | f;

The following example shows the use of the optional status parameter:

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Local integer &detail edstatus;

& et = Del et eOpt Probl nst (&probi nst, &probtype, &detail edstatus);

If &ret <> % ptEng _Success AND &detail edstatus=%ptEng _Invalid Piid then
QEOPT_WRK. MESSAGE_TEXT = "Del ete of analytic instance " | &probinst | " failed

for bad piid.";

El se
QEOPT_WRK. MESSAGE_TEXT = "Anal ytic Instance " | &probinst | deleted.";

End- | f;

GetOptEngine

Syntax

Get Opt Engi ne(probi nst [, &det ai | edst at us])

Description

The GetOptEngine function returns a handle to an optimization engine that is already loaded with the analytic
instance.

Note. You cannot call GetOptEngine from a domain other than the application server.

Parameters

Parameter Description

probinst Enter the analytic instance ID, which is unique ID for this analytic instance in this
optimization engine.

& detailedstatus (Optional) This status reference parameter returns an integer value giving further
information about the evaluation of this function. The value returned is one of the
following:

* %OptEng_Success: The function completed successfully.
* %OptEng_ Fail: The function failed.
* %OptEng Invalid Piid: The analytic instance ID passed to the function is
invalid.
Returns

Returns an OptEngine PeopleCode object if successful, a null value otherwise.

Example

The following example causes an optimization engine to shut down its analytic instance:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

Optimization PeopleCode Chapter 4

d obal string &probinst;
Local Opt Engi ne &myopt;
Local integer &status;

&nyopt = Get Opt Engi ne(&pr obi nst) ;

If &myopt <> NULL then

&status = &nyopt. Shut Down() ;

QEOPT_WRK. MESSAGE_TEXT = "Analytic Instance ID " | &probinst
| " has been shutdown successfully.";

End-if;

Or, you can use the optional status parameter:

&nyopt = Get Opt Engi ne(&pr obi nst, &det ai | edst at us) ;

i f &myopt=NULL and &detail edstatus=%ptEng Invalid Piid then

/* perform sone action */
End-if;

GetOptProbinstList

Syntax

Get Opt Probl nst Li st (Probl enType , QutputErrorCode [, Prefix] [, &detail edstatus])

Description

The GetOptProblnstList function gets the list of all analytic instance IDs in an analytic type.

Parameters

Parameter Description

ProblemType Enter the name of the analytic type that you created in Application Designer.

OutputErrorCode Future use. Always returns zero.

Prefix (Optional) Enter a string. If used, this prefix causes the returned list to include
only the analytic instance IDs that start with this prefix. If not used, all the analytic
instance IDs in the analytic type are returned.

& detailedstatus (Optional) This status reference parameter returns an integer value giving further
information about the evaluation of this function. The value returned is one of the
following:

e %OptEng_Success: The function completed successfully.
* %OptEng_Fail: The function failed.

* %OptEng Invalid Piid: The analytic type name passed to the function is
invalid.

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Returns

Returns an array of strings containing the optimization analytic instance list.

Example
The following example shows the usage of GetOptProblnstList to fill the display field on a page:

A obal string &probinst;

Local integer &detail edstatus;
Local integer &l oop;

Local array of string & nstarray;

QEOPT. OPERATOR = %Jser | d;
& nstarray = CGet Opt Probl nstLi st (QEOPT. PROBTYPE, &ret, &detail edstatus);

I f &ret <> % ptEng_Success Then
QEOPT_WRK. MESSAGE_TEXT = "Coul d not get anal ytic instances
for analytic type " | QEOPT. PROBTYPE ;
El se
For & loop = 1 To & nstarray. Len
QEOPT_WRK. MESSAGE_TEXT = QEOPT_WRK. MESSAGE_TEXT | & nstarray[& loop] | " ";
End- For ;
End- I f;

The following example shows the use of the optional status parameter:

& nstarray = Get Opt Probl nstLi st (QEOPT. PROBTYPE, &ret, &detail edstatus);

If &ret <> % ptEng_Success and &detail edstatus=%ptEng Invalid Piid Then
QEOPT_WRK. MESSAGE_TEXT = "Could not get analytic instances for analytic type "

| QEOPT. PROBTYPE | "because bad piid" :
End- | f;

InsertOptProblinst

Syntax

I nsert Opt Probl nst (probi nst, Probl enType[, &detail edstatus] [, Description])

Description
The InsertOptProblnst function inserts a new analytic instance ID into the PeopleTools metadata.

The InsertOptProblnst function can be called only inside FieldChange, PreSave and PostSave PeopleCode
events, and in Workflow.

Note. You must use this function to create the analytic instance ID before inserting data into optimization
application tables for this analytic instance.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

probinst Enter the analytic instance ID to be inserted into the analytic type.

ProblemType Enter the name of the analytic type that you created in Application Designer.

& detailedstatus (Optional) This status reference parameter returns an integer value giving further
information about the evaluation of this function. The value returned is one of the
following:

e %OptEng_Success: The function completed successfully.

e %OptEng_Fail: The function failed.

* %OptEng_Invalid Piid: The analytic instance ID passed to the function is
invalid.

Description (Optional) Specify a description for the analytic instance. This parameter takes a
string value.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.
Example

Local string &probinst;

Local string &probtype;

Local integer &ret;

Local integer &detail edstatus;

&probi nst = "PATSM TH";
&probtype = "QECPT";
&pr obDescr = "New QEOPT i nstance"”;
& et = I nsert Opt Probl nst (&probi nst, &probtype, &probDescr);
I f &ret <> %ptEng_Success Then
QEOPT_WRK. MESSAGE_TEXT = "I nsert of analytic instance "
| &probinst | " failed.";
El se
QEOPT_WRK. MESSAGE_TEXT = "Anal ytic Instance " | &probinst | " created.";
End- | f;

The following example shows the use of the optional status parameter:

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

& et = I nsert Opt Probl nst (&probi nst, &probtype, &detail edstatus);
If &ret <> % ptEng_Success and &detail edstatus=%ptEng Invalid Piid Then
QEOPT_WRK. MESSAGE_TEXT = "Insert of analytic instance "
| &orobinst | " failed for bad piid.";
End-i f;
IsValidOptProbinst
Syntax

| sVal i dOpt Probl nst (probinst [, &detail edstatus])

Description

IsValidOptProblnst determines if a given analytic instance exists in the optimization metadata.

Parameters

Parameter Description

probinst Enter the analytic instance ID to be validated.

& detailedstatus (Optional) This status reference parameter returns an integer value giving further
information about the evaluation of this function. The value returned is one of the
following:

e %OptEng_Success: The function completed successfully.
* %OptEng_Invalid Piid: The analytic type name passed to the function is
invalid.
Returns

This method returns a constant. Valid values are:

Value Description
%OptEng_Success Returned if method succeeds.
%OptEng_Fail Returned if the method fails.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Optimization PeopleCode Chapter 4

Example

Local string &probinst;
Local integer &detail edstatus;
Local integer &ret;

&pr obi nst = "PATSM TH';

& et = |sVal i dOpt Probl nst (&probi nst, &detail edstatus);

If &ret <> % ptEng_Success and &detail edstatus=%ptEng Invalid Piid Then
<perform sone action>

End-if;

OptEngine Class Methods

This section discusses the optimization methods for the OptEngine PeopleCode class. The methods are listed
in alphabetical order.

CheckOptEngineStatus

Syntax
CheckOpt Engi neSt at us()

Description

The CheckOptEngineStatus method returns the status of the optimization engine, using a combination of its
return value and the DetailedStatus OptEngine class property. Keep the following in mind:

» The value returned by CheckOptEngineStatus is the operational status of the optimization engine.

» The DetailedStatus property indicates the completion status of the OptEngine method call
CheckOptEngineStatus.

For example, CheckOptEngineStatus can return %OptEng_Idle and DetailedStatus is %OptEng Success. For
CheckOptEngineStatus, DetailedStatus can have the value:

* %OptEng_Success
* %OptEng_Fail

* %OptEng_Not Available

Note. Before this method is called, the CreateOptEngine or GetOptEngine must be called.

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Returns

Optimization PeopleCode

Returns an integer for the status of the optimization engine. These numbers are message IDs belonging to
message set 148 in the message catalog.

Numeric Value

Constant Value

Description

21

%OptEng_Not Loaded

The optimization engine process is
running, but is not currently loaded
with an application problem.

22

%OptEng Busy Loading

The optimization engine is busy
loading an application problem. It will
not accept transaction requests until
loading completes.

23

%OptEng_Idle

The optimization engine is loaded with
an application problem and waiting for
a transaction request.

24

%OptEng Busy

The optimization engine is busy
processing a transaction request for the
loaded application problem. It will not
accept additional transaction requests
until the current one completes.

26

%OptEng_Unknown

An error has occurred. The
optimization engine status cannot be
determined.

Example

This PeopleCode example shows optimization engine status being checked:

Local Opt Engi ne &myopt;
Local string &probinst;

Local integer &status;

&nyopt = Get Opt Engi ne(" PATSM TH') ;
/* Initialize the DESCRLONG field in the QE FUNCLIB OPT record to null. */

CGet Level O() . Get Row(1) . Get Recor d(Recor d. QE_FUNCLI B_OPT) . DESCRLONG. Val ue s
&status = &nyopt. CheckOpt Engi neSt at us() ;
Get Level O() . Get Row(1) . Get Recor d(Record. QE_FUNCLI B_OPT) . DESCRLONG. Val ue = " Opt

Engi ne status = " | MsgCet (148, &status,

You can also retrieve the detailed status:

Local integer &detail edstatus
&status = &nyopt. CheckOpt Engi neSt at us() ;
&det ai | edstat us = &nyopt. Det ai | edSt at us;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

"Coul d not send to the OptEngine.");

59

Optimization PeopleCode Chapter 4

FillRowset

Syntax
Fi | | Rowset (PARAM NAME, &Rowset[, &functionstatus])

Description

This method gets the value of a transaction output parameter that is a rowset. This cannot be used with the
RunAsynch method; RunSynch is needed to make the transaction output parameter values immediately
available.

When using the OptEngine DetailedStatus property, keep the following in mind:
» The value returned by FillRowset is the operational status of the optimization engine.

» The OptEngine DetailedStatus property indicates the completion status of the OptEngine method call
FillRowset.

For example, FillRowset returns %OptEng_Fail, and DetailedStatus is %OptEng Method Disabled.
For FillRowset, the DetailedStatus property can have the value:
* %OptEng Success.
* %OptEng Fail.
* %OptEng Method Disabled.
This indicates that the method is disabled or not valid.

* %OptEng Wrong Parm Type

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.

See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type

Transactions, page 22.

& Rowset Enter the rowset containing the values. This rowset must be a single record rowset,
and the record must match the record name associated with the transaction
parameter in the analytic type definition.

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Copyright

Optimization PeopleCode

Parameter Description

& functionstatus (Optional) This status reference parameter returns an integer value giving further
information about the evaluation of this function. The value returned is one of the
following:

e OptEng_Success: The function completed successfully.
* OptEng_Fail: The function failed.

* OptEng Method Disabled: A method is disabled or not valid.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.
Example

The following PeopleCode example runs a synchronous optimization transaction named
RETURN_MACHINE UNAVAILABLE. It has these parameters:

e Input: MACHINE NAME to specify the machine for which we need unavailable times.

e Output: RETURN_ TIMES to specify a rowset and MACHINE WRK record containing the
BEGIN_DATE and END_DATE fields.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local Opt Engi ne &myopt;
Local integer &status;
Local string &rachnane;
Local Rowset &rs;
&yopt = Get Opt Engi ne(" PATSM TH'") ;
&machnanme = QEOPT_WRK. MACHI NE_NAME. Val ue;
/* Run the RETURN_MACHI NE_UNAVAI LABLE transaction synchronously wth input val ues.
*/
&status = &nyopt. RunSynch(" RETURN_MACHI NE_UNAVAI LABLE", "MACHI NE_NAME", &machnane);
If Not &status Then
QEOPT_WRK. MESSAGE_TEXT = " RETURN_MACHI NE_UNAVAI LABLE transaction failed.";
Ret ur n;
End- I f;
/* Get output value fromthe RETURN MACHH NE_UNAVAI LABLE transaction. */
& s = Creat eRowset (Record. MACHI NE_VRK) ;
&status = &nyopt. Fill Rowset ("RETURN TI MES", &rs);

You can also use the [new->] DetailedStatus property as follows:

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

Optimization PeopleCode Chapter 4

&status = &nyopt. Fill Rowset ("RETURN TI MES", &rs);
i f &status=%ptEng_Fail and &mryopt. Detail edSt at us=%pt Eng_Met hod_Di sabl ed t hen
/* perform sone action */

End-if;
GetDate
Syntax

Get Dat e(PARAM NAME[, &st at us])

Description

This method gets the value of a transaction output parameter with a data type of Date. This cannot be used
with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The OptEngine DetailedStatus property indicates the completion status of the OptEngine method call
GetDate. For GetDate, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns a Date object; use this method when that is the data type of the transaction output parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetNumber.

62 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

GetDateArray

Syntax
Get Dat eAr r ay(PARAM _NAME)

Description

This method gets the value of a transaction output parameter with a data type Array of Date. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The OptEngine DetailedStatus property indicates the completion status of the OptEngine method call
GetDateArray. For GetDateArray, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns an Array of Date object; use this method when that is the data type of the transaction output
parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetStringArray.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

Optimization PeopleCode Chapter 4

GetDateTime

Syntax

Get Dat eTi me(PARAM_NAVE)

Description

This method gets the value of a transaction output parameter with a data type of DateTime. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetDateTime. For GetDateTime, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns a DateTime object; use this method when that is the data type of the transaction output parameter
value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetNumber.

64 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

GetDateTimeArray

Syntax

Get Dat eTi neAr r ay (PARAM _NANME)

Description

This method gets the value of a transaction output parameter with a data type Array of DateTime. This cannot
be used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetDateTimeArray. For GetDateTimeArray, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns an Array of DateTime object; use this method when that is the data type of the transaction output
parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetStringArray.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

Optimization PeopleCode Chapter 4

GetNumber

66

Syntax
Get Number (PARAM_NANE)

Description

This method gets the value of a transaction output parameter with a data type of Number. This cannot be used
with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetNumber. For GetNumber, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns a Number object; use this method when that is the data type of the transaction output parameter
value.

Example

The following PeopleCode example runs a synchronous optimization transaction named
IS MACHINE _AVAILABLE. It has these parameters:

* Input MACHINE NAME to specify the machine.
» Inputs BEGIN_DATE and END DATE to specify the time slot.
e Output AVAILABLE FLAG to specify whether the machine is available in that time slot.

This PeopleCode example sets input parameter values and gets an output parameter value:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Optimization PeopleCode

Local Opt Engi ne &myopt;

Local integer &status;

Local string &rachnane;

Local datetine &begi ndate;

Local datetime &enddate;

&yopt = Get Opt Engi ne(" PATSM TH'") ;

&machnanme = QEOPT_WRK. MACHI NE_NAME. Val ue;

&begi ndate = QEOPT_WRK. BEG N_DATE. Val ue;

&enddat e = QEOPT_WRK. END_DATE. Val ue;

/* Run the | S_MACH NE_AVAI LABLE transaction synchronously w th input values. */

&status = &myopt. RunSynch("1S_MACHI NE_AVAI LABLE", " MACHI NE_NAME",

&machname, "BEG N _DATE", &begi ndate, "END DATE", &enddate);

If Not &status Then
QEOPT_WRK. MESSAGE_TEXT = "I S _MACHI NE_AVAI LABLE transaction failed.";
Ret ur n;

End- I f;

/* Get output value fromthe IS MACH NE_AVAI LABLE transaction. */

QEOPT_WRK. AVAI LABLE_FLAG = &nmyopt. Get Nunber (" AVAI LABLE_FLAG') ;

You can use the DetailedStatus property as follows:

QEOPT_WRK. AVAI LABLE_FLAG = &myopt. Get Nunber (" AVAI LABLE_FLAG') ;
i f &myopt. Detail edSt at us=%pt Eng _Fail then

/* perform sone action */
End-if;

GetNumberArray

Copyright

Syntax

Get Nunber Ar r ay (PARAM NAME)

Description

This method gets the value of a transaction output parameter with a data type Array of Number. This cannot
be used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetNumberArray. For GetNumberArray, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.
* %OptEng Method Disabled: this indicates that the method is disabled or not valid.

Note. Do not pass an array of type Integer as a transaction parameter. Use an array of type Number instead.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

Optimization PeopleCode Chapter 4

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3., "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns an Array of Number object; use this method when that is the data type of the transaction output
parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetStringArray.

GetString

Syntax

Get St ri ng(PARAM NAME)

Description

This method gets the value of a transaction output parameter with a data type of String. This cannot be used
with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetString. For GetString, DetailedStatus can have the value:

* %OptEng_ Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

68 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3., "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns a String object; use this method when that is the data type of the transaction output parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetNumber.

GetStringArray

Syntax
Get St ri ngAr r ay(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type Array of String. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetStringArray. For GetStringArray, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69

Optimization PeopleCode Chapter 4
Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3., "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

70

Returns an Array of String object; use this method when that is the data type of the transaction output
parameter value.

Example

The following PeopleCode example runs a synchronous optimization transaction named
ARE MACHINES AVAILABLE. It has these parameters:

» Inputs BEGIN DATE and END DATE to specify the time slot.
* Output MACHINE NAMES to specify the machines available in that time slot.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local Opt Engi ne &myopt;

Local integer &status;

Local array of string &wmachnanes;

Local datetine &begi ndate;

Local datetine &enddate;

&nyopt = Get Opt Engi ne(" PATSM TH') ;

&begi ndat e = QEOPT_WRK. BEG N_DATE. Val ue;
&enddat e = QEOPT_WRK. END_DATE. Val ue;

/* Run the ARE_MACHI NES_AVAI LABLE transaction synchronously with input val ues.

&status = &myopt. RunSynch(" ARE_MACHI NES_AVAI LABLE",
"BEG N_DATE", &begi ndate, "END DATE", &enddate);

I f &status=%ptEng Fail Then
QEOPT_WRK. MESSAGE_TEXT = "ARE _MACHI NES_AVAI LABLE transaction failed.";
Ret urn;

End- I f;

/* Get output value fromthe ARE MACHH NES AVAI LABLE transaction. */

&machnanes = &nyopt. Get StringArray(" MACH NE_NAMES") ;

The following example shows the use of the DetailedStatus property:

Local array of string &wmachnanes;
&rachnanmes = &nyopt. Get Stri ngArray(" MACH NE_NAMES") ;
i f &myopt. Detail edSt at us=%pt Eng_Fai |l then
/* perform sone action */
End-if;

*/

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

GetTime

Syntax
Get Ti me(PARAM_NAVE)

Description

This method gets the value of a transaction output parameter with a data type of Time. This cannot be used
with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetTime. For GetTime, DetailedStatus can have the value:

* %OptEng Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns a Time object; use this method when that is the data type of the transaction output parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetNumber.

GetTimeArray

Syntax

Get Ti meAr r ay (PARAM _NAME)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

Optimization PeopleCode Chapter 4

Description

This method gets the value of a transaction output parameter with a data type Array of Time. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetTimeArray. For GetTimeArray, DetailedStatus can have the value:

* %OptEng_Success.
* %OptEng_Fail.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

Parameters
Parameter Description
PARAM_NAME Enter a string for the name of the output parameter to get from the transaction that
was just performed with RunSynch. This parameter must be defined as an output
or both (input and output) in the analytic type definition.
See Chapter 3. "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

Returns an Array of Time object; use this method when that is the data type of the transaction output
parameter value.

Example

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," GetStringArray.

GetTracelLevel

72

Syntax

Get TracelLevel (conmponent)

Description
GetTraceLevel gets the severity level at which events are logged for a given component.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetTraceLevel. For GetTraceLevel, DetailedStatus can have the value:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

%OptEng_Success.

Optimization PeopleCode

This indicates that the function completed successfully.

%OptEng_Fail.

This indicates that the function failed.

%OptEng_Method Disabled.

This indicates that the method is disabled or not valid.

%O0OptEng DB Updates Pending.

This indicates that database updates are pending.

Parameters

Parameter

Description

component

Enter one of the following PeopleCode constants: Opt_Engine, Opt_Utility,
Opt_Datacache, or Opt_Plugin.

Returns

Returns one of the following.

%Severity Fatal
%Severity Status
%Severity Error
%Severity Warn
%Severity Info
%Severity Tracel

%Severity Trace2

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

73

Optimization PeopleCode Chapter 4

Example

Local Opt Engi ne &myopt;
Local integer &racelevel;

&yopt = Get Opt Engi ne(" PATSM TH'") ;

& racel evel = &myopt. Get TracelLevel (%pt _Engi ne) ;
i f &myopt.Detail edStatus = %Opt Eng_Success t hen

if (&racelevel = %Beverity Info_ then
wi nnessage("Severity level for the OptEngine is '"Info'");
End-if;
End-if;
RunAsynch
Syntax

RunAsynch(TRANSACTI ON, PARM PAI RS)

Description

The RunAsynch method requests the optimization engine to run the transaction in asynchronous mode.
When using the DetailedStatus OptEngine property, keep the following in mind:

» The value returned by RunASynch is the operational status of the optimization engine.

» The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
RunASynch.

For example, RunASynch can return %OptEng_Fail and DetailedStatus is %OptEng DB _Updates_Pending.
For RunASynch, DetailedStatus can have the value:

* %OptEng_Success: indicates that the function completed successfully.
* %OptEng_Fail: indicates that the function failed.
* %OptEng Method Disabled: indicates that the method is disabled or not valid.

* %OptEng DB Updates Pending: indicates that database updates are pending.

Parameters
Parameter Description
TRANSACTION Enter a string for the name of the transaction to run.

74 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Optimization PeopleCode

Parameter Description

PARAM_PAIRS Enter the name and value pairs (string name and value) for this transaction. Not
used if the transaction has no parameters. Parameters are defined in the analytic
type definition.
See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%0OptEng_Fail Returned if the method fails.
Example

This PeopleCode example runs an asynchronous optimization transaction named SOLVE. It has no input or
output parameters. The SOLVE transaction solves the exercise scheduling problem and puts the results into
the QE. RWSM_EXERSCH table.

Local Opt Engi ne &myopt;
Local integer &status;
&nyopt = Get Opt Engi ne(" PATSM TH'") ;
/* Run the SCOLVE transaction asynchronously with input values. */
&status = &nyopt. RunAsynch(" SOLVE") ;
I f &status=%ptEng Fail Then
QEOPT_WRK. MESSAGE_TEXT = "SOLVE transaction failed.";
Ret ur n;
End- I f;

The following example shows the use of the DetailedStatus property.

Local integer &status;

&status = nyopt. RunAsynch(" SCLVE");

i f &status=%ptEng_Fail and &nmryopt. Det ai | edSt at us=%pt Eng_Met hod_Di sabl ed t hen
<perform sonme action>

End-if;

RunSynch

Copyright

Syntax
RunSynch(TRANSACTI ON, PARM PAI RS)

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

75

Optimization PeopleCode Chapter 4

Description

The RunSynch method requests the optimization engine to run the transaction in synchronous mode.
When using the DetailedStatus OptEngine property, keep the following in mind:

» The value returned by RunSynch is the operational status of the optimization engine.

» The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
RunSynch.

For example, RunSynch can return %OptEng_Fail and DetailedStatus is %OptEng DB Updates Pending.
For RunSynch, DetailedStatus can have the value:

* %OptEng_Success: indicates that the function completed successfully.
* %OptEng_Fail: indicates that the function failed.
* %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

* %OptEng DB _Updates Pending: indicates that database updates are pending.

Parameters

Parameter Description

TRANSACTION Enter a string for the name of the transaction to run.

PARAM_PAIRS Enter the name and value pairs (string name and value) for this transaction. Not
used if the transaction has no parameters. Parameters are defined in the analytic
type definition.

See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type
Transactions, page 22.
Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%0OptEng_Fail Returned if the method fails.
Example

The following PeopleCode example runs a synchronous optimization transaction named
IS MACHINE_AVAILABLE. It has these parameters:

76 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

e Input MACHINE NAME to specify the machine.
» Inputs BEGIN DATE and END DATE to specify the time slot.
* Output AVAILABLE FLAG to specify whether the machine is available in that time slot.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local Opt Engi ne &myopt;
Local integer &status;
Local string &machnane;
Local datetine &begi ndate;
Local datetine &enddate;
&nyopt = Get Opt Engi ne(" PATSM TH') ;
&machname = QEOPT_WRK. MACHI NE_NAME. Val ue;
&begi ndat e = QEOPT_WRK. BEG N_DATE. Val ue;
&enddat e = QEOPT_WRK. END DATE. Val ue;
/* Run the IS _MACHI NE_AVAI LABLE transaction synchronously wi th input values. */
&status = &myopt. RunSynch("1S_MACHI NE_AVAI LABLE",
"MACHI NE_NAME', &machnane, "BEGQ N _DATE", &begi ndate, "END DATE", &enddate);
I f &status=%ptEng Fail Then
QEOPT_WRK. MESSAGE_TEXT = "I S _MACHI NE_AVAI LABLE transaction failed.";
Ret ur n;
End- I f;
/* Get output value fromthe IS MACH NE_AVAI LABLE transaction. */
QEOPT_WRK. AVAI LABLE_FLAG = &myopt. Get Nunber (" AVAI LABLE_FLAG') ;

Or, the following example shows the use of the DetailedStatus property.

Local integer &status;

&status = myopt. RunSynch(" SOLVE") ;

if &status=%ptEng Fail and &myopt. Detail edSt at us=%pt Eng_Met hod_Di sabl ed t hen
<perform sone action>

End-if;

SetTracelLevel

Syntax

Set TracelLevel (conponent, severity)

Description

SetTraceLevel sets the severity level at which events are logged for a given component.
When using the DetailedStatus OptEngine property, keep the following in mind:

» The value returned by SetTraceLevel is the operational status of the optimization engine.

» The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
SetTraceLevel.

For example, SetTraceLevel can return %OptEng_Fail and DetailedStatus is
%OptEng DB Updates Pending. For SetTraceLevel, DetailedStatus can have the value:

* %OptEng_Success: indicates that the function completed successfully.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Optimization PeopleCode

78

Chapter 4

* %OptEng_Fail: indicates that the function failed.

* %OptEng Method Disabled: indicates that the method is disabled or not valid.

* %OptEng DB Updates Pending: indicates that database updates are pending.

Parameters

Parameter

Description

component

Use one of the following PeopleCode constants: Opt Engine, Opt Ultility,
Opt_Datacache, or Opt_Plugin.

severity

Use one of the following PeopleCode constants. These options set the degree to
which errors are logged. You can set the tracing levels differently for various parts
of your program. This enables you to control the amount of trace information that
your program generates.

The following list shows the order of the severity, starting with the highest level.
For example, %Severity Error logs %Severity Fatal, %Severity Status, and
%Severity Error messages, while the system filters out other messages. Keep in
mind that the higher the severity, the greater the performance overhead.

* %Severity Fatal

e %Severity_Status

* %Severity Error

* %Severity Warn

* %Severity Info

* %Severity Tracel

* %Severity Trace2

Returns

This method returns a constant. Valid values are:

Value

Description

%OptEng_Success

Returned if method succeeds.

%OptEng_Fail

Returned if the method fails.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Example

Local Opt Engi ne &myopt;

Local integer &status;

Local string &rachnane;

Local datetine &begi ndate;

Local datetime &enddate;

&nyopt = Get Opt Engi ne(" PATSM TH') ;

&status = &myopt. Set TraceLevel (%pt _Engi ne, %Severity_Warn);
if &status = % ptEng_Fail then

<exanple: notify user that set trace action has fail ed>
End-if;

ShutDown

Syntax
Shut Down()

Description
The ShutDown method requests the optimization engine to shut down.

If the optimization engine cannot be contacted for shutdown, the return status is %OptEng_Fail and the
DetailedStatus property is OptEng Not Available.

When using the DetailedStatus OptEngine property, keep the following in mind:
» The value returned by Shutdown is the operational status of the optimization engine.

» The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
Shutdown.

For example, Shutdown can return %OptEng_Fail and DetailedStatus is %OptEng DB _Updates Pending.
For Shutdown, DetailedStatus can have the value:

* %OptEng_Success: indicates that the function completed successfully.
* %OptEng_Fail: indicates that the function failed.
* %OptEng_Method Disabled: indicates that the method is disabled or not valid.

* %OptEng DB Updates Pending: indicates that database updates are pending.

Note. Before this method is called, CreateOptEngine or GetOptEngine must be called. Call ShutDown to shut
down optimization engines even when running in Application Engine.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

Optimization PeopleCode Chapter 4

Parameters

None.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.
Example

This PeopleCode example shows an optimization engine being shut down:

Local Opt Engi ne &myopt;

Local integer &status;

&myopt = CGet Opt Engi ne(" PATSM TH") ;

/* Shut down the optim zation engine */

&status = &nyopt. Shut Down() ;

I f &status=%ptEng_Fail Then
QEOPT_WRK. MESSAGE_TEXT = "PATSM TH optim zati on engi ne shutdown failed.";
Ret ur n;

El se
QEOPT_WRK. MESSAGE_TEXT = "PATSM TH opti m zati on engi ne shutdown successful .";
Ret ur n;

End- I f;

The following example shows the use of the DetailedStatus property:

Local integer &status;

&status = myopt. Shut Down();

i f &status=%ptEng_Fail and &mryopt. Det ai | edSt at us=%pt Eng_Met hod_Di sabl ed t hen
<perform sone action>

End-if;

OptEngine Class Properties

This section lists the optimization properties for the OptEngine PeopleCode class. The properties are listed in
alphabetical order.

80 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

DetailMsgs

Description

The DetailMsgs property returns a list of messages generated by an optimization engine. Use DetailMsgs
after you use the RunAsynch and RunSynch methods to check the status messages for an optimization
transaction.

If the transaction fails, detailed messages are automatically shown to the user. If the transaction succeeds,
warnings and informational messages may be generated by the transaction. Use this property to retrieve those
messages and make them available to the user.

DetailMsgs provides a two-dimensional array containing the message set ID, the message number in the
message catalog, and any arguments. Each row in the two-dimensional array has the following structure:

1. Message set ID.

2. Message number.

3. Number of message arguments.
4. Argumentl.

5. Argument2.

6. Argument3.

7. Argument4.

8. Argument5.

A maximum of five arguments is supported for each message.

Note. To hold the property value returned, you need to declare an array of array of type Any.

Note. Before this method is called, you must call CreateOptEngine or GetOptEngine.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

Optimization PeopleCode Chapter 4

Example

Local Opt Engi ne &myopt;
Local integer &status;
Local string &piid;

Local string &string;
Local array of array of any &arrArray;

&NEWL.|I NE = Char (10);
&string = "";

&piid = CGetRecord(Record. PSOPTPRBI NST) . Get Fi el d(Fi el d. PROBI NST) . Val ue;
&nyopt = Get Opt Engi ne(&pi i d);

&status = &nyopt. RunSynch(" TEST_TRANSACTI ON') ;
If (&status = %pt Eng_Success) then

&arrArray = &myopt. Detail Msgs;
For & loop = 1 To &arrArray. Len

&string = &string | &NEW.I NE | MsgCet Text (&arrArray [& loop][1l] /*nessage set*
!,
&arrArray [& loop][2] /*nessage id*/, "Message Not Found", &rrArray[& | oop] [4],
&arrArray [& loop][5],&rrArray [& | oop][6],
&arrArray [& loop][7], &rrArray[& | oop][8]);

End- For ;

Get Level O() . Get Row(1) . Get Recor d(Recor d. QE_FUNCLI B_OPT) . DESCRLONG. Val ue = &string;
End- | f;

DetailedStatus

Description

The DetailedStatus property contains the detailed execution status of an OptEngine method after the method
is executed.

Example

Local integer &status;

&status = nyopt. Shut Down() ;

if &status=%ptEng Fail and &mryopt. Det ai |l edSt at us=%pt Eng_Met hod_Di sabl ed t hen
<perform sone action>

End-if;

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

OptBase Application Class

This PeopleCode application class is part of the PT_OPT_BASE application package. It establishes the basic
framework for developing PeopleCode that invokes the Optimization PeopleCode plug-in. To use the plug-in,
you develop a application class that extends the OptBase application class. OptBase contains the following
types of methods:

» A set of base methods that you can extend for the purpose of handling input and output parameters.

You can use them within any method you develop that corresponds by name to a transaction in an analytic
type definition. These methods apply to the parameters that are defined for the transaction in the analytic

type.
» A set of abstract placeholder methods that you can use to implement callback capability.

You must extend these if you designate one or more records as callback records in your analytic type
definition, even if you don't add any functionality to the methods.

* An abstract placeholder method, Init, that you can extend if you want to do any preprocessing before your
first Optimization PeopleCode plug-in transaction runs.

Note. The analytic type definition to which these methods apply is the one that specifies this derived
application class.

The CreateOptlnterface function is the only optimization built-in function that you can use within an
application class that you extend from the OptBase application class, or within PeopleCode that you call from
that application class.

Optbase Callback Methods

PeopleSoft Optimization Framework has a built-in callback functionality when the OptInterface PeopleCode
calls an Optimization PeopleCode plug-in transaction, it first determines whether you designated one or more
records in your analytic type definition as callback records. For each callback record, the framework
determines if any the record's database rows have been inserted, deleted, or updated since the optimization
datacache was populated. If any changes have occurred, the framework propagates those changes to the
datacache before invoking the transaction.

PeopleSoft provides methods that the framework uses to apply its callback functionality. In combination with
the framework's callback changes, you might want to perform additional processing for your own purposes,
including updating any derived data structures that are used by your optimization application. You can
accomplish this by extending the callback methods and adding your own PeopleCode. Each callback method
launches under different circumstances.

Note. Don't call any of these methods in your own PeopleCode. They're called automatically at the
appropriate moment by PeopleSoft Optimization Framework, which enables your added functionality to run
within each method.

Following is a list of the abstract callback placeholder methods documented as part of the
PT _OPT BASE:OptBase application class:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

Optimization PeopleCode Chapter 4

e OptlnsertCallback

This method launches when the framework propagates to the datacache any database insertions
encountered for a callback record.

* OptDeleteCallback

This method launches when the framework propagates to the datacache any database deletions
encountered for a callback record.

» OptPreUpdateCallback

This method launches before the framework propagates each database update encountered for a callback
record.

* OptPostUpdateCallback

This method launches after the framework propagates each database update encountered for a callback
record.

e OptRefreshCallback

This method launches after the framework propagates all database deletions, insertions, and updates
encountered for all callback records.

Important! If any record in your analytic type definition is designated a callback record, you must ensure
that you extend all of the callback methods in your extended class, even if each extended method contains
only a Return statement. Otherwise your Optimization PeopleCode plug-in will fail.

See Chapter 3, "Designing Analytic Type Definitions," Configuring Analytic Type Records, page 16.

OptBase Class Methods

This section discusses the abstract base class placeholder methods for the PT_OPT BASE:OptBase
application class. The methods are listed in alphabetical order.

GetParmDate

84

Syntax
Get Par nDat e(par nNane, &par mval)

Description

The GetParmDate method retrieves a Date parameter value that passed as input by any method you develop
that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction method in
an application class that you derive from the OptBase application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Date variable to contain the value passed as input by the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmDateArray

Syntax
Get Par mDat eAr r ay(par nNane, &par nVal)

Description

The GetParmDateArray method retrieves a Date array parameter value that passed as input by any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Date array variable to contain the value passed as input by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

Optimization PeopleCode Chapter 4

GetParmDateTime

Syntax

Get Par mDat eTi nme(par mNane, &par nval)

Description

The GetParmDateTime method retrieves a DateTime parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a DateTime variable to contain the value passed as input by the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmDateTimeArray

Syntax

Cet Par nDat eTi neAr r ay(par nName, &par nival)

Description

The GetParmDateTimeArray method retrieves a DateTime array parameter value that passed as input by any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

86 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a DateTime array variable to contain the value passed as input by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmNumber

Syntax

Get Par mNunber (par nNane, &par nval)

Description

The GetParmNumber method retrieves a Number parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmVal Specify a Number variable to contain the value passed as input by the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Optimization PeopleCode Chapter 4

GetParmNumberArray

Syntax
Get Par mNunber Ar r ay(par mNane, &par nval)

Description

The GetParmNumberArray method retrieves a Number array parameter value that passed as input by any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a Number array variable to contain the value passed as input by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmint

Syntax

Get Par m nt (par nNane, &par nval)

Description

The GetParmInt method retrieves an Integer parameter value that passed as input by any method you develop
that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction method in
an application class that you derive from the OptBase application class.

88 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify an Integer variable to contain the value passed as input by the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmintArray

Syntax
Get Par m nt Arr ay(par mNane, &par nval)

Description

The GetParmIntArray method retrieves a Number array parameter value that passed as input by any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Number array variable to contain the value passed as input by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

Optimization PeopleCode Chapter 4

GetParmString

Syntax
Get Par nt ri ng(par nNane, &par nval)

Description

The GetParmString method retrieves a String parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a String variable to contain the value passed as input by the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmStringArray

Syntax

Cet Par st ri ngAr r ay(par nNane, &par nival)

Description

The GetParmStringArray method retrieves a String array parameter value that passed as input by any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a String array variable to contain the value passed as input by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmTime

Syntax

Get Par mTi ne(par nNane, &par nval)

Description

The GetParmTime method retrieves a Time parameter value that passed as input by any method you develop
that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction method in
an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmVal Specify a Time variable to contain the value passed as input by the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

Optimization PeopleCode Chapter 4

GetParmTimeArray

Init

92

Syntax
Get Par mTi neAr r ay(par nNane, &par nval)

Description

The GetParmTimeArray method retrieves a Time array parameter value that passed as input by any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a Time array variable to contain the value passed as input by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

Syntax

Init()

Description

The Init method launches when the CreateOptEngine built-in function loads an analytic instance that uses the
Optimization PeopleCode plug-in.

Use this method to perform additional processing for your own purposes, including checking table data, or
any functionality you want to apply before any plug-in transactions run. You accomplish this by adding your
own PeopleCode to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run before any other code in
your extended class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Optimization PeopleCode

Note. If you don't extend this method, PeopleSoft Optimization Framework calls its base version from the
OptBase application class.

Parameters

None.

Returns

A Boolean value: True if the method is successful, False otherwise.

OptDeleteCallback

Syntax
Opt Del et eCal | back(&Recor d)

Description

The OptDeleteCallback method launches when PeopleSoft Optimization Framework propagates to the
datacache any database deletions that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any derived
data structures that might be affected by the deletion. You accomplish this by adding your own PeopleCode to
the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must ensure
that you extend this callback method in your derived class, even if the extended method contains only a
Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

Parameter Description

& Record Specifies a record variable that contains the keys of the data row to be deleted.
Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

Optimization PeopleCode Chapter 4

OptinsertCallback

Syntax
Opt I nsert Cal | back(&Recor d)

Description

The OptlnsertCallback method launches when PeopleSoft Optimization Framework propagates to the
datacache any database insertion that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any derived
data structures that might be affected by the insertion. You accomplish this by adding your own PeopleCode
to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must ensure
that you extend this callback method in your derived class, even if the extended method contains only a
Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

Parameter Description

&Record Specifies a record variable that contains the new data row to be inserted.
Returns

A Boolean value: True if the method is successful, False otherwise.

OptPostUpdateCallback

94

Syntax
Opt Post Updat eCal | back(&0 dRecor d, &NewRecor d)

Description

The OptPostUpdateCallback method launches after PeopleSoft Optimization Framework propagates to the
datacache any database update that it encounters for a callback record.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Use this method to perform additional processing for your own purposes, including modifying any derived
data structures that might have been affected by the update. You accomplish this by adding your own
PeopleCode to the extended method. The parameters provide the previous and current content of the row.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must ensure
that you extend this callback method in your derived class, even if the extended method contains only a
Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters
Parameter Description
& OldRecord Specifies a record variable that contains the pre-update content of the data row that
was updated.
& NewRecord Specifies a record variable that contains the post-update content of the data row
that was updated.
Returns

A Boolean value: True if the method is successful, False otherwise.

OptPreUpdateCallback

Syntax
Opt Pr eUpdat eCal | back(&3 dRecor d, &NewRecor d)

Description

The OptPreUpdateCallback method launches before PeopleSoft Optimization Framework propagates to the
datacache any database update that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any derived
data structures that might be affected by the update. You accomplish this by adding your own PeopleCode to
the extended method. The parameters provide the current and future content of the row.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must ensure
that you extend this callback method in your derived class, even if the extended method contains only a
Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

Optimization PeopleCode Chapter 4

Parameters
Parameter Description
& OldRecord Specifies a record variable that contains the pre-update content of the data row to
be updated.
& NewRecord Specifies a record variable that contains the post-update content of the data row to
be updated.
Returns

A Boolean value: True if the method is successful, False otherwise.

OptRefreshCallback

Syntax
Opt RefreshCal | back()

Description

The OptRefreshCallback method launches after PeopleSoft Optimization Framework propagates to the
datacache all database insertions, deletions, and updates that it encounters for all callback records.

Use this method to perform additional processing for your own purposes, including modifying any derived
data structures that might be affected by the modifications. You accomplish this by adding your own
PeopleCode to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must ensure
that you extend this callback method in your derived class, even if the extended method contains only a
Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

None.

Returns

A Boolean value: True if the method is successful, False otherwise.

96 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

SetOutputParmDate

Syntax
Set Qut put Par nDat e(par nNane, &par nval)

Description

Use the SetOutputParmDate method to pass a Date parameter value as output from any method you develop
that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction method in
an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a Date variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmDateArray

Syntax
Set Qut put Par nDat eAr r ay(par mNane, &par nval)

Description

Use the SetOutputParmDateArray method to pass a Date array parameter value as output from any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

Optimization PeopleCode

Chapter 4

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Date array variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmDateTime

Syntax

Set Qut put Par nDat eTi nme(par nNane, &par nval)

Description

Use the SetOutputParmDateTime method to pass a DateTime parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmVal Specify a DateTime variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

98

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

SetOutputParmDateTimeArray

Syntax
Set Qut put Par nDat eTi neAr r ay(par nNane, &par nval)

Description

Use the SetOutputParmDateTimeArray method to pass a DateTime array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a DateTime array variable that contains a value to be passed as output by
the parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmNumber

Syntax

Set Qut put Par nNunber (par mNane, &par nval)

Description

Use the SetOutputParmNumber method to pass a Number parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

Optimization PeopleCode

Chapter 4

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Number variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmNumberArray

Syntax

Set Qut put Par mNunber Ar r ay(par nNane, &par nval)

Description

Use the SetOutputParmNumberArray method to pass a Number array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmVal Specify a Number array variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

100

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

SetOutputParmint

Syntax
Set Qut put Par ml nt (par nNane, &par nval)

Description

Use the SetOutputParmInt method to pass an Integer parameter value as output from any method you develop
that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction method in
an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify an Integer variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmintArray

Syntax
Set Qut put Par m nt Ar r ay(par mNamne, &par nval)

Description

Use the SetOutputParmIntArray method to pass a Number array parameter value as output from any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

Optimization PeopleCode

Chapter 4

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Number array variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmString

Syntax

Set Qut put Par nSt ri ng(par mNane, &par nval)

Description

Use the SetOutputParmString method to pass a String parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmVal Specify a String variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

102

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

SetOutputParmStringArray

Syntax
Set Qut put Par nSt ri ngAr r ay(par nNane, &par nval)

Description

Use the SetOutputParmStringArray method to pass a String array parameter value as output from any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
&parmVal Specify a String array variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmTime

Syntax
Set Qut put Par ni ne(par mNane, &par nval)

Description

Use the SetOutputParmTime method to pass a Time parameter value as output from any method you develop
that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction method in
an application class that you derive from the OptBase application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

Optimization PeopleCode

Chapter 4

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmval Specify a Time variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmTimeArray

Syntax

Set Qut put Par nTi neAr r ay(par nNane, &par nval)

Description

Use the SetOutputParmTimeArray method to pass a Time array parameter value as output from any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters
Parameter Description
parmName Specify the name of the parameter as it's defined for the Optimization PeopleCode
plug-in transaction.
& parmVal Specify a Time array variable that contains a value to be passed as output by the
parameter.
Returns

A Boolean value: True if the method is successful, False otherwise.

104

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Optinterface Class Methods

This section discusses the optimization methods for the Optlnterface PeopleCode class. The methods are
listed in alphabetical order.

Note. You can use the Optlnterface class methods only within an application class that you extend from the
OptBase application class, or within PeopleCode that you call from that application class. This ensures that
the Optlnterface PeopleCode runs only on the optimization engine.

ActivateModel

Syntax
Act i vat eMbdel (Model | D, Sol ver Set ti ngl D)

Description

The ActivateModel method designates the specified model and solver setting as active. The model and the
solver are initialized and populated with data from the current analytic instance.

Note. This method fails if the specified model (and by extension, one of its solver settings) is already active.
If you want to activate a different solver setting for the same model, you must first deactivate the model.

See PeopleTools 8.52: PeopleCode API Reference, "Optimization PeopleCode," DeactivateModel.

Parameters
Parameter Description
ModelID Specify the name of the optimization model you want to activate. This must be the
name of one of the models associated with the analytic type definition.
Solver Settingl D Specify the name of the solver setting you want to activate. This is the name you
specified for the solver setting in the analytic type definition.
Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

Optimization PeopleCode

Chapter 4

Value Description
%OptInter_Fail Returned if the solver fails to solve the problem.
Example

Local integer &esult;
Local Optlinterface &i = CreateOptlinterface();

& esult = &oi.ActivateMdel ("QE PSA MODEL", "abc");

ActivateObjective

106

Syntax

Acti vat eQbj ecti ve(Mbdel _Nane, Qbj ecti ve_Nane)

Description

Use the ActivateObjective method to activate the specified objective for an optimization model.

Parameters
Parameter Description
Model_Name Specify the name of the model.
Objective_Name Specify the name of the objective.
Returns

This method returns a constant value. Valid values are:

Value Description
%0Optlnter_Success Returned if method succeeds.
%OptInter_Fail Returned if the solver fails to solve the problem.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

DeactivateModel

Syntax

Deact i vat eMbdel (Model | D)

Description

The DeactivateModel method detaches the solver from the specified model.

Parameters
Parameter Description
ModelID Specify the name of the optimization model you want to deactivate. This must be
the name of one of the models associated with the analytic type definition.
Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

%OptInter_Fail Returned if the solver fails to solve the problem.
Example

Local integer &esult;
Local Optinterface &i = CreateOptinterface();

& esult = &oi.Deactivat eMddel (" QE_PSA MODEL");

DumpMsgTolLog

Syntax

DumpMsgToLog(LogSeverity, Message)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Optimization PeopleCode Chapter 4

Description

The DumpMsgToLog method writes the specified status message to the optimization engine log file, with the
specified severity.

Parameters
Parameter Description
LogSeverity Specify the severity level of the message, as one of the following system
constants:
* %Severity Fatal
* %Severity Status
* %Severity Error
* %Severity Warn
e %Severity Info
e %Severity Tracel
* %Severity Trace2
Message Specify as a string the text of the log message.
Returns
None.
FindRowNum
Syntax

108

Fi ndRowNum(&Record [, startrow [, endrow [, field list]]])
Where field _list is a list of field names in the form:

[fieldnamel [, fieldnane2]]...

Description

The FindRowNum method determines the row number of a row in the datacache rowset. You provide a
record with key values, and this method finds the row with the same key values and returns its row number.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode
Parameters
Parameter Description
& Record Specify a record with the same structure as the records that comprise the rowset,
with its key fields populated.
startrow Specify as an integer the starting row number of the search. Specify 0 to search
from the first row in the rowset.
endrow Specify as an integer the ending row number of the search. Specify 0 to search
through the last row in the rowset.
fieldname Specify the name of a field in the input record which contains a value to be
matched. You can specify one or more field names, in any order.
Note. If you use this parameter, the fields specified here are used to search, instead
of the record's key fields. Any value that doesn't correspond to a field name is
ignored.
Returns

The row number of the row containing the specified key values, or 0 if no row is found.

Example

The following example searches the whole scroll to find the partial key OPT SITE:

Local Record &rec
Local Optineterface &oi;

Creat eRecord(Scrol | . OPT_TRANSCOST) ;

& ec. OPT_SI TE. val ue = "New York";

i nt nRowNum = &oi .

Fi ndRowNum(& ec, 0, 0, "OPT_SITE");

The following example searches from row 5 to row 15 with the full key values New York and San Jose:

Local Record &rec
Local Optineterface &oi;

Creat eRecord(Scrol | . OPT_TRANSCOST) ;

& ec. OPT_SI TE. val ue = "New York";
& ec. OPT_STORE. val ue = "San Jose";

i nt nRowNum = &oi .

GetSolution

Syntax

Fi ndRowNum(& ec, 5, 15);

Get Sol uti on(Model I D, var Arrayl D, ski pZero [, KeyFi el dNanes, KeyFi el dval ues [,

&Sol ution]])

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

Optimization PeopleCode

110

Description

Chapter 4

The GetSolution method retrieves the model solution values generated by the Solve method.

Parameters
Parameter Description
ModelID Specify as a string the name of the optimization model for which you want the
solution. This is the name used for the model definition in Application Designer.
varArraylD Specify as a string the name of the variable array being optimized. Your
application documentation should provide this name.
skipZero Indicate whether solutions with a value of zero should be fetched. This parameter

takes a Boolean value:

* True: Don't fetch solutions with a zero value. This can increase the
performance of the GetSolution method if zero values aren't meaningful.

e False: Do fetch solutions with a zero value.

KeyFieldNames and

Specify a set of key field names as an array of string and a set of key field values

KeyFieldValues as an equal length array of ANY, with one key field value corresponding to each
key field name. You use these arrays to restrict the set of returned solutions.
Solutions are returned only for model variables with the specified key field values.
Note. If you provide either of these arrays, you must provide both. You can
include each parameter from the variable array at most only once.
& Solution Specify a rowset to contain the solutions.
Returns

This method returns a constant value. Valid values are:

Value

Description

%0OptInter Success

Returned if method succeeds.

%Optlnter Fail

Returned if the solver fails to solve the problem.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Example

Local array of string &strArray;

Local array of any &val Array;

Local integer & ndex;

Local Rowset &rowSet;

Local integer &esult;

Local string &modelld = "QE PSA MODEL";
Local string &varArrayNane = "X";

Local bool ean &bSki pZero = True;

Local Optlinterface &i = CreateOptlnterface();
&trArray = CreateArrayRept("", 0);

&al Array = CreateArrayAny();

& owSet = Creat eRowset (Record. QEOPT_VAL X VRK) ;
&strArray [1] = "EWMPLID';

&al Array [1] = 1;

&trArray [2] = "ORDER I D';

&al Array [2] = 23;

[* fetch only the part of the solution where EMPLID = 1 and ORDER ID = 23 */
& esult = &oi. GetSol ution(&mdel Id, &varArrayNane,
&bSki pZero, &strArray, &val Array, &rowSet);

GetSolutionDetail

Syntax

Get Sol uti onDet ai | (Model | D, Sol uti onType, Nane, &Sol uti on)

Description

The GetSolutionDetail method retrieves the model solution detail of the specified type generated by the Solve
method. You can retrieve dual value, slack value, or reduced cost information.

Parameters
Parameter Description
ModelID Specify as a string the name of the optimization model for which you want the
solution detail. This is the name used for the model definition in Application
Designer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

Optimization PeopleCode

Chapter 4

Parameter

Description

SolutionType

Specify a system constant indicating the type of solution detail you want to
retrieve. The value you specify here determines the content of the Name and
& Solution parameters.

* %OPT _DUAL: Retrieve the dual value attributes of the specified constraint
block.

* %OPT _SLACK: Retrieve the slack value attributes of the specified constraint
block.

* %OPT_RCOST: Retrieve the reduced cost attributes of the specified variable
array.

Name

If you specified a SolutionType of %OPT DUAL or %OPT SLACK, specify here
the name of a constraint block from the active model.

If you specified a SolutionType of %OPT RCOST, specify here the name of a
variable array from the active model.

& Solution

Specify a rowset to contain the solution details. The rowset should have the same
key fields as the constraint block or the variable array you specified with the Name
parameter.

Returns

This method returns a constant value. Valid values are:

Value

Description

%0OptInter Success

Returned if method succeeds.

%Optlnter Fail

Returned if solver fails to solve the problem.

Example

Local Rowset &dual rowset;

Local integer &esult;
Local Optinterface &oi
Local string &nrodel ld

= CreateOptlInterface();
" QE_PSA_ MODEL";

Local string &varArrayName = "X";
Local string &constrName = "Constraint_1";

/* fetch dual

val ues for

Contraint "Constraint_ 1"

in a rowset based on the QEOPT _Cl1 WRK record */

&dual _rowset = Creat eRowset (Record. GEOPT_C1_WRK) ;
& esult = &oi.GetSol utionDetail (&rodel Id, % pt_Dual, &constrName, &dual rowset);

112

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

IsModelActive

Syntax

| sModel Acti ve(Model | D)

Description

Optimization PeopleCode

Use the IsModelActive method to determine if the model specified by Modelld is active before it is used.

Parameters
Parameter Description
ModelID Specify the model ID as a string. This is the name used for the model definition in
Application Designer.
Returns

A Boolean value: true if the model is active, false otherwise.

RestoreBounds

Syntax

Rest or eBounds(nodel I D [, varArrayl D])

Description

The RestoreBounds method returns the bounding values of the specified variable array or arrays to the current

settings in the specified model.

If you previously called the SetVariableBounds method with the changeModel Bounds parameter set to true
for any variable or variable array, those bounding values still apply.

Parameters
Parameter Description
modelID Specify as a string the name of the optimization model for which you want to

restore the bounding values. This is the name used for the model definition in
Application Designer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

Optimization PeopleCode

SetVariableBounds

114

Chapter 4

Parameter Description
varArrayl D Specify as a string the name of a variable array for which you want to restore the
bounding values. Your application documentation should provide this name. If
you don't specify a variable array name, the bounding values are restored for all
variable arrays in the specified model.
Returns

%OptInter_Success if the method succeeds, %OptInter Fail otherwise.

Syntax

Set Vari abl eBounds(nodel | D, var Arrayl D, boundType, | ower Bound, upper Bound, &eyRecord

[, changeModel Bounds])

Description

The SetVariableBounds method overrides the bounding values specified for a model variable array, or for a

variable within the array.

Parameters

Parameter Description

modelID Specify as a string the name of the optimization model for which you want to
override the bounding values. This is the name used for the model definition in
Application Designer.

varArraylD Specify as a string the name of the variable array being optimized. Your
application documentation should provide this name.

boundType Specify a system constant indicating which bounding values to override. The value

you specify here determines how the lowerBound and upper Bound parameters are
applied to the specified model.

* %OPT_LOWER _BOUND: Override only the lower bound as specified by the
lowerBound parameter. The upperBound parameter is ignored.

* %OPT_UPPER_BOUND: Override only the upper bound as specified by the
upperBound parameter. The lowerBound parameter is ignored.

* %OPT BOUND BOTH: Override both the lower bound and the upper bound
as specified by the lowerBound and upperBound parameters, respectively.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Optimization PeopleCode

Parameter

Description

|lowerBound

Specify as a number the lower bound that should be applied to a variable or a
variable array if the boundType parameter permits the override. You can also set
this parameter to one of the following system constants:

upperBound

Specify as a number the upper bound that should be applied to a variable or a
variable array if the boundType parameter permits the override. You can also set
this parameter to one of the following system constants:

& keyRecord

Specify a record with the same key fields as the variable array being optimized. To
override the bounding values specified for a single variable within the array,
populate the record's key fields to specify the variable. To override the bounding
values specified for the entire variable array, set all of the record's fields to a null
value.

Note. You must either provide values for all keys, or set them all to null values.

changeModel Bounds

Specify a Boolean value:

* true: Indicates that the specified model should be updated in memory to reflect
the specified variable bounds. Any analytic instance that invokes this model
from the active optimization engine is affected by these settings, which are
propagated to the solver in memory. This is the default value if you omit this
parameter.

» false: Indicates that the specified model should not be updated in memory, and
that the specified variable bounds apply only to the next time the Solve
method is called.

Returns

%OptInter_Success if the method succeeds, %Optinter Fail otherwise.

Example

Local Record é&rec;
Local integer & esult;
Local Optlinterface &oi
Local float &objval

= CreateOptlInterface();
= 0.0;

Local string &modelld = "Qe_PSA MODEL";
Local string &varArrayName = "X';

Local float & b = 0.0;

Local float &ub

& ec = CreateRecord(Record. QEOPT_VAL X VRK);

&r ec. QEOPT_RESI NDEX. Val ue =
& ec. QEOPT_SCLI NDEX. Val ue =

1;
2;

&r ec. QEOPT_TI MEI NDEX. Val ue = 3;

& esult = &oi. Set Vari abl eBounds(&nodel I d, &var ArrayNane,
% pt _Upper _Bound, & b, &ub, &rec, False);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Optimization PeopleCode Chapter 4

SetVariableType

Syntax

Set Vari abl eType(nodel | D, var Ar r ayl D, var Type)

Description

Use the SetVariableType method to change the data type of a model variable array.

Parameters
Parameter Description
ModelID Specify as a string the name of the optimization model for which you want to
change the variable type. This must be the name of one of the models associated
with the analytic type definition.
varArraylD Specify as a string the name of the variable array for which you want to change the
variable type. Your application documentation should provide this name.
var Type Specify one of the following system constants representing the new variable type:
e %Opt Var_ Cont: Represents a continuous variable type, which can be any
floating point value.
* %Opt Var Bin: Represents a binary variable type, for which the value can be
only O or 1.
* %Opt Var_Int: Represents an integer variable type, which can be any integer.
Returns

%OptInter_Success if the method succeeds, %OptInter Fail otherwise.

Example

Local Optinterface &i = CreateOptlinterface();

Local string &varArrayNanme = "X';

Local integer &esult;

& esult = &oi. SetVariabl eType(" QE_PSA MODEL", &varArrayNane, % Opt_Var_ Bin);
If (& esult <> % ptlnter_Success) Then

&oi . DunpMsgToLog(%Severity_Status, "Failed to change variable type ");
End- 1 f;

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Solve

Syntax
Sol ve(nodel | D, Sol uti onType [, &objValue [, name-val ue pairs]])
Where name-value pairsis a list of solver setting parameter values in the form:

[par manel, parnval uel [, parnmmane2, parmal ue2]]. ..

Description

The Solve method solves the specified model using the currently active solver settings, and provides an
objective value as the solution output. You can override the solver setting parameters. The returned solution
status is a predefined system constant.

Parameters

Parameter Description

ModelID Specify as a string the name of the optimization model you want to solve. This is
the name used for the model definition in Application Designer.

SolutionType Specify a system constant indicating the type of solution detail you want the model
to be solved for.

* %OPT_DUAL: Generate dual value attributes.
* %OPT_SLACK: Generate slack value attributes.
* %OPT_RCOST: Generate reduced cost attributes.

You can also combine any or all of these system constants, by connecting them
with a plus sign (+), for example: %OPT DUAL + %OPT RCOST.

&objValue Specify a reference to a variable of type float. This variable contains the output
objective value produced by the solver upon successfully solving the specified
optimization model.

parmname and parmvalue Specify a solver setting parameter ID and value to override the original value you
specified for the solver setting in the analytic type definition. You can override
any or all of the solver setting parameter values.

See Chapter 3, "Designing Analytic Type Definitions," Configuring Models for
Optimization, page 19.

Returns

One of the following system constants:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

Optimization PeopleCode Chapter 4

%OptInter Fail: The solver fails to solve the problem.

%O0Opt_Optimal: The solution is optimal.

%O0Opt_Infeasible: The solution is infeasible.

%O0Opt_Unbounded: The solution is unbounded.

%O0Opt_Timeup: The solver reached the time limit specified in the solver setting.

%Opt_Iterlimit: The solver reached the limit on the number of iterations specified in the solver setting.
%Opt LP Max_Sols: The solver generated maximum number of solutions without improvement.
%0Opt_Idle: The solution shows no improvement in a specified time limit.

%O0Opt_Unknown: The solver status is unknown.

%0Opt_MIP_NumSolutions: The specified number of solutions corresponding to an MIP solver reached.
%Opt_MIP_NumNodes: The specified number of nodes corresponding to an MIP solver reached.
%Opt_Aborted: The solver aborted.

%O0pt_User Exit: A user exit was encountered.

%O0pt_First LP_NoOpt: While solving an MIP, the first LP solution obtained was not optimal.

Example

Following is an example of the basic use of the Solve method:

Local Optlinterface &i = CreateOptlnterface();

Local float &objval = 0.0;

Local integer &esult;

Local string &modelld = "QE PSA MODEL";

Local string &varArrayName = "X';

Local integer &sol Type;

&sol Type = %pt RCost + % pt Dual + % Opt Sl ack;

/* Solve the problem*/
& esult = &oi. Sol ve("QE_PSA MODEL", &sol Type, &objval);

If &result = %pt_Optimal Then

&oi . DunpMsgToLog(%severity Warn, " Solution Status = " Optimal !!1");
El se

&oi . DunpMsgToLog(%Severity Warn, " Solution Status = " | &esult);
End- I f;

Following is an example of a solver setting parameter override:

118 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Optimization PeopleCode

Local Optlinterface &i = CreateOptinterface();
Local float &objval = 0.0;
Local integer &esult;

/* This overrides the solver setting for MPS_Fil enanme and generates
an MPS file called nyfile.nps instead of the nanme specified
in the current solver setting paranmeter. */

& esult = &oi. Sol ve(" QE_PSA MODEL", % pt Prinmal, &objval, "MPS Fil eNane",
"nyfile");

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Chapter 5

Administering Optimization Server
Components

An analytic server is a type of PeopleSoft application server. An optimization engine is an analytic server
loaded with an optimization analytic instance. You administer optimization engines using the standard
application server tools.

See Also

PeopleTools 8.52: System and Server Administration

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

Index

A

ActivateModel method 105
ActivateObjective method 106
Administer Engines - Administration page 27
analytic instances
creating 31
deleting 34, 51
determining presence in optimization
metadata 57
getting list of 54
inserting 55
loading into analytic servers 31
loading into optimization engines 31
scenario management 10
viewing 27
analytic servers
loading analytic instances 31
optimization architecture 4
analytic type definitions
adding analytic models 22
auditing 25
changing 26
configuring models 19
configuring records 16
configuring solvers 21
configuring transactions 22
creating via drag-and-drop 13
defining types 14
deleting analytic instances 34
mathematical formulation files 22
modifying optimization records 26
modifying optimization transactions 26
setting transaction parameter attributes 24
understanding 9
using callback records 84
Analytic Type Properties dialog box 14
Analytic Type Record Property dialog box 16
Analytic Type Transaction Property dialog box 22
Analytic Type window 14
Application Designer
creating/building optimization records 12
creating analytic type definitions 13
developing optimization-based applications 6
Application Engine See Application Engine
programs
See Also Application Engine programs
running optimization transactions 33
running PeopleCode 32
Application Engine programs
editing OPT_CALL 46
editing PT_ OPTCALL 42
terminating 30
using optimization PeopleCode 30
application servers
running optimization transactions 33
running PeopleCode 31
using optimization PeopleCode 29
application tables, optimization
See optimization tables
asynchronous mode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

loading analytic instances 31

running optimization transactions 32

running transactions 39

understanding the RunAsynch method 74
audit, optimization system 25

C

callback
OptBase callback methods 83
records See Also call back records
callback records
designating for analytic type definitions 19
designating in analytic type definitions 84
using Optbase Callback methods 83
CheckOptEngineStatus method 58
classes
OptBase See Also OptBase class methods
OptEngine See Also OptEngine class
Optlnterface
See Also Optlnterface class methods
CommitWork function 30
CreateOptEngine function
configuring analytic type records 17
loading analytic instances 31
programming for database updates 35
running optimization transactions 32
understanding 48
using optimization PeopleCode in
Application Engine programs 30
using optimization PeopleCode on
application servers 29
CreateOptInterface function 50, 83

D

databases
forcing a commit on updates 29, 30, 35
optimization application tables
See AlsO optimization tables
programming for updates 35
DeactivateModel method 107
debugging
using mathematical formulation files 22
DeleteOptProblnst function 34, 35, 51
derived/work records 17
DetailedStatus property 82
DetailMsgs property 81
dispatcher, optimization 4
DoSaveNow function 30
DumpMsgToLog method 107

E

engines
application See Also Application Engine

123

Index

124

optimization See Also optimization engines
errors

forcing commits on pending database

updates 30

loading analytic instances 31

specifying severity for request messages 40

using the DumpMsgToLog method 107

using the GetTraceLevel method 72

using the SetTraceLevel method 77

F

FillRowset method 60
FindRowNum method 108
functions
CommitWork 30
CreateOptEngine
See Also CreateOptEngine function
CreateOptInterface 50, 83
DeleteOptProblnst 34, 35, 51
DoSaveNow 30
GetOptEngine 32, 34, 53
GetOptProblnstList 54
InsertOptProblnst 35, 55
IsValidOptProblnst 57
MessageBox 36
sending optimization status 41
WinMessage 36

G

GetDateArray method 63
GetDate method 62
GetDateTimeArray method 65
GetDateTime method 64
GetNumberArray method 67
GetNumber method 66
GetOptEngine function 32, 34, 53
GetOptProblnstList function 54
GetParmDateArray method 85
GetParmDate method 84
GetParmDateTimeArray method 86
GetParmDateTime method 86
GetParmIntArray method 89
GetParmInt method 88
GetParmNumberArray method 88
GetParmNumber method 87
GetParmStringArray method 90
GetParmString method 90
GetParmTimeArray method 92
GetParmTime method 91
GetSolutionDetail method 111
GetSolution method 109
GetStringArray method 69
GetString method 68
GetTimeArray method 71
GetTime method 71
GetTraceLevel method 72

Init method 92

InsertOptProblnst function 35, 55
Integration Broker

configuring for basic messaging 27
IsModelActive Optlnterface class methods 113
IsValidOptProblnst function 57

L

licenses, updating solver 27

lights-out mode
setting up Integration Broker 27
showing application messages 46
understanding 35

MessageBox function 36
messaging
OPT_CALL message 36
request messages See Als0 request messages
response messages
See Also response messages
sending detailed messages 41
methods
OptBase callback 83
OptBase class
See Also OptBase class methods
OptEngine class
See Also OptEngine class methods
Optlnterface class
See Also Optlnterface class methods
sending optimization status 41
models
adding analytic type 22
configuring analytic type 19
optimization See Also optimization models

O

OPIs
accessing record fields 19
analytic type definitions
See Also analytic type definitions
developing PeopleCode to use 83
invoking 33
optimization architecture 4
understanding 4
using callback records 19
OPT_CALL message
sending messages 47, 48
showing messages for lights-out mode 46
understanding lights-out mode 36
OPT_CALL program 46
OptBase callback methods 83
OptBase class methods
callback 83
GetParmDate 84
GetParmDateArray 85
GetParmDateTime 86
GetParmDateTimeArray 86
GetParmlInt 88
GetParmIntArray 89

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetParmNumber 87
GetParmNumberArray 88
GetParmString 90
GetParmStringArray 90
GetParmTime 91
GetParmTimeArray 92

Init 92

OptDeleteCallback 93
OptlnsertCallback 94
OptPostUpdateCallback 94
OptPreUpdateCallback 95
OptRefreshCallback 96
SetOutputParmDate 97
SetOutputParmDateArray 97
SetOutputParmDateTime 98
SetOutputParmDateTimeArray 99
SetOutputParmInt 101
SetOutputParmIntArray 101
SetOutputParmNumber 99
SetOutputParmNumberArray 100
SetOutputParmString 102
SetOutputParmStringArray 103
SetOutputParmTime 103
SetOutputParmTimeArray 104
understanding 83

Index

plug-ins (OPIs) See Also OPIs
running the system audit 25
system architecture 4
transactions

See Also optimization transactions
understanding 3

optimization dispatcher 4
optimization engines

administering 27

creating 38

loading 42

loading analytic instances 31

OptEngine class See Also OptEngine class

optimization architecture 4

record changes, updating working data for 19

records, modifying 18

records, using 10

record updates, checking for 18

running transactions in asynchronous mode
74

running transactions in synchronous mode 75

shutting down 34, 40, 79

status, checking 58

status, viewing 38

status messages, logging 107

OptDeleteCallback method 84, 93 understanding 3
OptEngine class using the CreateOptEngine function 48
methods See Also OptEngine class methods using the GetOptEngine function 53
properties Optimization Framework See optimization
See Also OptEngine class properties components 3

OptEngine class methods optimization models

CheckOptEngineStatus 58

FillRowset 60

GetDate 62

GetDateArray 63

GetDateTime 64

GetDateTimeArray 65

GetNumber 66

GetNumberArray 67

GetString 68

GetStringArray 69

GetTime 71

GetTimeArray 71

GetTraceLevel 72

RunAsynch See Also RunAsynch method

RunSynch See Also RunSynch method

SetTraceLevel 77

ShutDown 79

using optimization PeopleCode in
Application Engine programs 30

using optimization PeopleCode on
application servers 29

OptEngine class properties

DetailedStatus 82
DetailMsgs 81

OptEngine objects 32
optimization

analytic type definitions

See Also analytic type definitions
application records

See Also optimization records
developing applications 6, 9
dispatcher 4
engines See AlsO optimization engines
implementation requirements 2
models See Also optimization models
PeopleCode

See Also optimization PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

activating 105

active 113

changing variable types 116
deactivating 107

developing optimization-based applications 6
overriding bounding values 114
restoring bounding values 113
retrieving solution details 111

retrieving solutions 109

selecting for analytic type definitions 20
solving 117

optimization PeopleCode

analytic instances, creating 31
analytic instances, deleting 34
analytic instances, loading 31
invoking OPIs 33
OptBase application class

See Also OptBase class methods
programming for database updates 35
request messages See AlSO request messages
response messages

See Also response messages
running optimization transactions 32
shutting down optimization engines 34
understanding the functions 48
using in Application Engine 32
using in Application Engine programs 30
using lights-out mode 35
using on application servers 29, 31

optimization plug-ins (OPIs) See OPIs
optimization records

analytic type definitions

See Also analytic type definitions
creating/building 12
developing optimization-based applications 6
modifying 26
optimization architecture 4

125

Index

126

scenario management
See Also scenario management
setting the synchronization order 17
understanding 10
optimization servers
administering components 121
optimization tables
locking during transactions 24
optimization architecture 4
understanding 3
optimization transactions
analytic type definitions
See Also analytic type definitions

developing optimization-based applications 6

modifying 26

optimization architecture 4

processing parameters 47

running 32, 38, 44

running in asynchronous mode 74

running in synchronous mode 75

running on application servers 33

running on the Application Engine 33
OptlnsertCallback method 84, 94
Optlnterface class methods

ActivateModel 105

ActivateObjective 106

DeactivateModel 107

DumpMsgToLog 107

FindRowNum 108

GetSolution 109

GetSolutionDetail 111

IsModelActive 113

RestoreBounds 113

SetVariableBounds 114

SetVariableType 116

Solve 117

understanding 105
OptPostUpdateCallback method 84, 94
OptPreUpdateCallback method 84, 95
OptRefreshCallback method 84, 96
Oracle Tuxedo 4

P

PeopleCode
functions See Also functions
optimization
See Also optimization PeopleCode
PeopleSoft Application Designer
See Application Designer
PeopleSoft Optimization Framework
See optimization
performance issues
locking tables during transactions 24
setting trace levels 77
plug-ins, optimization See OPIs
programs, Application Engine
See Application Engine programs
properties, OptEngine class
See OptEngine class properties
PS_MESSAGE_LOG table 36
PT DETMSGS record 41
PT _OPT_BASE:OptBase application class
See OptBase class methods
PT OPTCALL program 42
PT_OPTDETMSGS record 36

PT_OPTPARMS record
checking optimization engine status 38
getting the trace level 40
running transactions 38
sending optimization status 41
setting the trace level 39
shutting down optimization engines 40
understanding OPT _CALL messages 36
understanding request messages 38
understanding response messages 41

R

records
callback See Also call back records, 83
configuring analytic type 16
derived/work 17
optimization application
See Also optimization records
PT DETMSGS 41
PT_OPTDETMSGS 36
PT_OPTPARMS
See Also PT_OPTPARMS record
request messages
creating 37
editing PeopleCode 42
getting the trace level 40
setting the trace level 39
understanding 38
response messages
building 47, 48
creating 41
editing PeopleCode 46
understanding 41
RestoreBounds method 113
RunAsynch method
running optimization transactions 32
understanding 74
RunSynch method
running optimization transactions 32
understanding 75

S

scenario management
enabling for records 19
understanding 10
servers
analytic See Also analytic servers
optimization See Also optimization servers
web 4
SetOutputParmDateArray method 97
SetOutputParmDate method 97
SetOutputParmDateTimeArray method 99
SetOutputParmDateTime method 98
SetOutputParmIntArray method 101
SetOutputParmInt method 101
SetOutputParmNumberArray method 100
SetOutputParmNumber method 99
SetOutputParmStringArray method 103
SetOutputParmString method 102
SetOutputParmTimeArray method 104
SetOutputParmTime method 103
SetTraceLevel method 77

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

SetVariableBounds method 114
SetVariableType method 116
ShutDown method 79
Solve method 117
solvers
activating 105
configuring parameters 21
deactivating 107
selecting solver settings 21
updating licenses 27
writing log files 22
status
building status response messages 47
checking for optimization engines 38, 58
sending for optimization 41
writing status messages to optimization
engine logs 107
synchronous mode
loading analytic instances 31
running optimization transactions 32
running transactions 39
understanding the RunSynch method 75

T

tables
optimization application
See Also optimization tables
PS_MESSAGE_LOG 36
templates
editing OPT_CALL 46
editing PT OPTCALL 42
timeouts
loading analytic instances 31
running optimization transactions 33
tracing
getting for request messages 40
setting for request messages 39
transactions
configuring analytic type 22
optimization
See AlsO optimization transactions
setting parameter attributes for analytic type

Tuxedo 4

Vv

variables
%Synch and %Asynch 49
SetVariableBounds method 114
SetVariableType method 116
VERSION field 10, 19

W

web servers 4
WinMessage function 36
work/derived records 17

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

	PeopleTools 8.52: PeopleSoft Optimization Framework
	Copyright
	Contents
	Preface: PeopleSoft Optimization Framework Preface
	PeopleSoft Optimization Framework
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started with PeopleSoft Optimization Framework
	PeopleSoft Optimization Framework Overview
	PeopleSoft Optimization Framework Implementation

	Chapter 2: Understanding PeopleSoft Optimization Framework
	Optimization
	PeopleSoft Optimization Framework Components
	PeopleSoft Optimization Framework System Architecture
	Optimization-Based Application Development

	Chapter 3: Designing Analytic Type Definitions
	Understanding Analytic Type Definitions
	Understanding Optimization Application Record Design
	Optimization Application Records
	Scenario Management

	Assigning Permissions for Designing Optimization Records
	Creating and Building Optimization Records
	Creating Analytic Type Definitions
	Defining an Analytic Type
	Configuring Analytic Type Records
	Configuring Models for Optimization
	Associating Analytic Types with Analytic Models
	Configuring Analytic Type Transactions

	Running the Optimization System Audit
	Changing Existing Analytic Type Definitions
	Changing Optimization Application Records
	Changing Optimization Transactions

	Administering Optimization Engines
	Setting Up Integration Broker

	Updating Solver Licenses

	Chapter 4: Optimization PeopleCode
	Using Optimization PeopleCode on the Application Server
	Using Optimization PeopleCode in an Application Engine Program
	Performing Optimization in PeopleCode
	Creating New Analytic Instances
	Loading Analytic Instances Into an Analytic Server
	Running Optimization Transactions
	Invoking the Optimization PeopleCode Plug-In
	Shutting Down Optimization Engines
	Deleting Existing Analytic Instances
	Programming for Database Updates

	Using Lights-Out Mode with Optimization
	Understanding Lights-out Mode
	Creating a Request Message
	Creating a Response Message
	Editing the Request PeopleCode
	Editing the Response PeopleCode

	Chapter 5: Administering Optimization Server Components
	Index

