ORACLE’
PEOPLESOFT ENTERPRISE

Oracle's PeopleTools PeopleBook

PeopleTools 8.52: PeopleCode Developer's
Guide

October 2011

ORACLE



PeopleTools 8.52: PeopleCode Developer's Guide
SKU pt8.52tped-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.



Contents

Preface
PeopleCode DevelOper'S GUIAE PIEfACE .......ccoiiiiiiieisiereieeee et XV
Overview of PeopleCode Developer's GUIAE .........ccecuieiiiiiiiiiieeie ettt st XV
PeopleCode Typographical CONVENLIONS  .......cceevveeriieriieriiesieesieesteesteesseesseesseesseesseesseessessssessesssesssesssssssesssenns XV
PeopleBooks and the PeopleSoft Onlineg LibIary .........ccccccoveeriierieniieniiniesie et seesene e senes XVvi
Chapter 1
Getting Started With PEOPIECOUE ..o bbb r e 1
PEOPLECOAE OVETVIEW  .ntiiiieiieiiete ettt ettt ettt ettt et ettt e e e ateeate e bt e bt emteenteeateeaseeaseenbeenseensesneesnsesasenns 1
Creating PeopleCode PrOZrams .......cccccieiiiiiieiieiieieestteste ettt et esteeveesteesteesbeesbeesseesseesseesseesseesseesseessaesenns 2
Chapter 2
Understanding the PeopleCode LanQUAgE ........ccccceiieiieiesiesieeiese et ete e st sae et eaa e tesresreennenre s 5
PeopleCode Language SIIUCTUIE  .......ccvecvieciieieesieeieeieeteereeseeseesteesseesseesseesseessaesseesseesseesseessesssessseesseenseensees 5
DAtA TYPES ettt ettt e h et e bt e h e e h et e e bt e bt e e bt e bt e e bt e e bt e e sa bt e eabee ettt eabee e beeenabeesars 5
Conventional DAta TYPES  ...cc.cccveeciiiiiiieiieiiteetestesreseesteestressresssesssesseesssessaesssesssesssesssesssssssesssesssesssesseens 6
ODJECE DAtA TYPES  weevvveeeieeeierierierieitestestesttesstesteesteesseesseesseesseesseessaessaessaesseesseensaesseessaesseeseenseensensseensens 7
107071111115 115 OO O T OO OO O T O SO OO OO OO UU RO T ST PPTOPPRRUPPRPI 8
STALEIMEIES  ..eetieitieitiet ettt ettt h e e s b e s bt e s bt e s bt e sb e e sb e e sb e e s bt e bt e sbeesbeesheesb e e bt e bt eabeesbeesbeenbeenbeenbeenbeens 9
N1 T2 ¢ 1101 OSSR 10
ASSIZNMENT STALEINEIES  ...eeutiitieitieitiet ettt ettt e et e st e e bt e bt e bt e sbeesbeesbeesbeesbeesbeesbeesbeesbeesseenseenseas 10
Language COMNSIIUCTES  ..iccuiieiiieiiieiiiesieeeieeeeeetteertteeseteesteessseessseeesseeassaeassseessseessseesssessnseeanssesnsseensseennns 11
Branching Stat@mENTS  .......cccieiiiiiieiieiieieieee ettt ettt ettt et e e bt e bt esse e se e beenseesseenseenseenseenseenseenns 11
CoNAILIONAL LLOOPS  oovviieiiieiieeeiiectee et e ette ettt e e e e et e e e tee e tee e tbeessaeessseasssaessseeessaeessseesseesssesasseeesseeanes 14
FUNCHIONS ettt ettt ettt h et e st e b et et e s et es e e e et e e st em e e te e bt e et enteseeseeneentesneeneensenees 14
SUPPOTLEd FUNCHONS ..ottt ettt sttt sttt b e et e e b e e bt et e e e 15
FUnction DefiNItIONS  ..coc.eoiuieiiiiieiee ettt ettt et b e bt e bt et e bt et e e bt e b e et e enbeebeebeenee 15
Function DeClarations  ........ccceoioioieieiee ettt ettt sttt et e he et b e et nee e 16
FUNCHION CAIlS oo ettt e e et e e et e e tee e tbeesebeesabeesaseeeaseeenseeesseensseennns 16
Function RetUrn VAIUES  .....oouiiiiiieieeee ettt et ettt b e 17
Function Naming CONIICES  ....cvecieriieriieriiiriiesieeieeit ettt esteete e esreesreesseesseesseassesssesssesssessseassesssesssensss 17
2401 (113 ) 1 LSS 17
Expression FUNAamentals .......occiiiiiiiiiiiiieiece ettt ettt sre e st e s te e et eesbaesssaessneeenneaens 18

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ili



Contents

COMSTANES  .vviiiieiiiieeeitee e ettt e ettt e e ettt e ettt e eebteeeettaeesansaeeeansseeeansaaesassseeeansseaeessaeeeassssesanssaeesassseesansseeennns 18
FUNCHIONS @S EXPIESSIONS  ..vvieiiieiiieiiieiiieeitieeiteesteeseteeseteessseessseeessesessasesseessseesssessssesssseessssesssseensseensns 20
SYSLEM VATTIADIES  1..viiiieiieiieiieiieie ettt ettt et et et e e st esbe e e essaesseesseesseesseesseessaessaesseenseesseensensseenseensenns 20
1Y 7 13 001U 20
Record Field REfEreNnCeS  .....ooouiiiiieieiee ettt ettt et eneeneas 21
Definition Name REfErENCES  .....cccveciiiiiieiiieiieieeie ettt sre e s r e s e ssse st e seaeseaesenesnnesnnessnes 22
PeopleCode ReSErved WOTAS  .....oociiiiiiiciiiecieeceecee ettt et e et e et e etaeeeaeesabeessbaeesseeenneaans 23
Y25 1 01 SRS 25
SUPPOTLEd Variable TYPES  .ooueeeieeieiiieieiieeie ettt ettt e st e st e st eseaessteseaessaesssesasesssessaessnessnesssesnsennes 25
User-Defined Variables  ........cocoiiiiiiiieiie ettt sttt st sa e be e bt e bt e sbeesbeesbeenaeas 26
User-Defined Variable Declaration and SCOPE  ....cccvevviiiiiiieiiiiiiiecieeee et sresnesnesaesenesraesenessnesenesenes 26
Variable DECIAration .......ccccciiciiiiiiiieie ettt ettt e te et et et e et e et e enbeeabeenseenseenseenseenbeenseenseenseenseenns 27
User-Defined Variable INTtAlZAtION  .......cooiiiiiiiiiiieeee et 28
Restrictions 0n Variable USE  ........cooieiieiiiieieeeeeeee ettt sttt ee s neeees 28
Scope 0f Local Variables ......cc.cooiiiiiiiiiiieieetee ettt ettt st st e e 29
Duration of Local Variables ......c.cocuoiiiiiiiii ettt ettt et e 29
Variables and FUNCHIONS  ......ooiiiiiiiieeeeee ettt sttt b et stesbe et enbeeneas 30
RECUISIVE FUNCHONS  ..ioiiiiiiiiciii ettt ettt e st e e et ee e bae e abeestbeesebeesnsesenbasenseeennes 31
State of Shared Objects Using PeopleSoft Pure Internet Architecture .........ccccocceevvieviierceencieesiee e, 31
L0 1S 110 PSS UROPSRTS 32
IMAth OPETALOTS  ..eeuvieiieiietiettete et et et et et et e bt e bt e bt e bt e st e be e teeabeenbeanseenseenbeenseanseenbeenseenseenseenseenseenns 32
Operations on Dates and TIMES  .....cccccieeiiiiiiiiiiiiicie ettt eteere v e sbesbesreereerbeseressseessesssesssesssesssensnas 33
StriNG CONCALENALION  ....ecuviieiieieeieeteeteeteeteeteetesteeseasseesseesseasseasseasseasseesseasseassesssesssessseessesssenssensseenses 33
] o< 211+ ) SRR 34
COMPATISON OPETALOTS  .oovvveeiiiererieiiierteesiteesteeeseeessreessseesssaessseessseesseesssesassesassseessseessseessseessessssesssssennes 34
BO0Ian OPEIAtOrS  ....ocviiiieieeiieieeie et eteeteete et estestestaesstessaesssesseesseessaessaesssesssesssesssessaesssesssesssesssessees 35
Chapter 3
Under standing Objects and Classesin PeopleCode ... 37
CIaSSES ANA ODJECES  ..eetieiieitieitieitieetie sttt ettt et e st e st e e st e e st e e s te e s bt e ebtesseesbtesbeeshtesaeesseesneasatesseesseesaeesneenneesneens 37
CLASSES  +.ueeueetieuietee e et e et e et e et e e e bt et e es e et et e e st e a e e et eaeea e e s e eeeeseen s e st e Rt enten e e et eneenteseeneen e e teaseeneenteteereententens 37
L0 10} 1577 3RS P R 38
ODbjJect INSTANTIALION  ...iitiitieiieie ettt ettt et e bt e bt e bt e e e bt e bt eabe e beebeenteenbeenbeenbeanseeeeenteens 38
Creating and USING ODJECES  ...vviviieriieriieiieiiesieesieesieesteesteesteeseesseesseesseesseesseesseesseesseesseesssessessseessesssessseessesssens 38
INStANtIAtiNg ODJECLS  .oouvieriieriieiieitietiett ettt et et et et eteeteesteeabeenbeenseenseenseesseanseanseansesnsesnsesnsesnsesnsennses 39
Chan@ing PTOPETTIES  ...c.viiiiiiiiieeiieeiieeiteete ettt e et e et e e st e e e beeebeeetaeetbeesseessseessseessseesssaeassseessseessseenssens 39
INVOKING MEROAS  ..oiiiiiiiiiiciece ettt ettt e et e b e st e s b e e sbeesbeesbeasbeesbeasseessessseassessseassenssas 40
COPYINEZ ODJECES .ottt ettt ettt ettt et ettt b et e b s bt e bt et e s bt eb e e st et e e bt e bt et e ntesbeeatenbesbesbeeneens 41
ASSIZNING ODJECTS  1uvviiiiiiiiieetie et erteerte ettt eeteeebeeeteeesteeetaeessseessseessseesssaesssseessseessseessseessseessseesssssessseessses 41
PaSSING ODJECLS  1ouvieiieiiieiieiieiteteest et et et et e et e esteesbe e seesseesseessaesseesseasseesseasseasseasseesseasseassesssenssesssenssenssennes 42

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Contents

Chapter 4
Referencing Data in the Component BUFEr ..o 45
Understanding Component Buffer Structure and Contents ..........coccecevereeriininennienenenieenesceeenieseeeenee 45
Component Buffer CONEENTS  .......coociiiioiiiiiie ettt ettt e etee st e e teeetae e sveessbeessseesssaesssaeesseeanes 45
ROWSELS and SCTOII ATEAS  ..oouiiiiiieiee ettt sttt et st ettt s be et e e bt et e e e e e 47
Record Fields and the Component Buffer ...........coccoiiiiiiiiiiiieeete e 48
Specifying Data with Contextual ReferenCes .........cccviiviiiiiiiciiciicicec et r e b v e 49
Understanding Current CONTEXE .....ccuvevvieiiieerieeiieiieeiieesieesteesteeseeseeseesseesseesseesseesseessessseessessseessesssesssesnes 49
Using Contextual ROW RefEreNCes ........cccoooiiiiiiiiiiiiiiet ettt 51
Using Contextual Buffer Field REfrences ........cccoviioiiiiiiiiiicecececete e 52
Specifying Data with References Using Scroll Path Syntax and Dot Notation .........c.cccceeeevveevvvenrenrennenen. 54
Understanding SCroll Paths ......coouioiiiiiie ettt ettt et 54
Structuring Scroll Path Syntax in PeopleTools 7.5 ..ottt 54
Referencing Scroll Levels, Rows, and Buffer Fields ........ccccoociriiiniinieniiceeeeeeeeee e 57
Chapter 5
ACCESSING the DAt BUFTEr ... et nr e 65
Understanding Data BUTTEr ACCESS ...coouiiiiiiiiiieiiieeie ettt ettt s ve e e tee e tae e taeestbeesssaessreeenseeennes 65
Data BUTTET ACCESS  .eouteiiitieiieieeie ettt sttt ettt sttt et e et e e h e et et e e bt eae e s e b e eseeneeateeaeeneensessesseentesennean 65
AACCESS CLASSES  .eeuviuieuieniiitieitete ettt ettt ettt bttt h et e b s bt e bt et e bt e bt e st et e bt e bt et et eb e e st et sheebe et enbesaea 65
Data Buffer Model and Data ACCess CLaSSES  ......coveeriiiiiiieiieniieiieriee sttt sttt 66
Understanding Data Buffer Classes EXAMPIES .......ccocciveiiriiiiiiiieiie ettt sne e stae e e senessneses 66
Employee Checklist Page SIHUCTUIE  ......cc.ooiiiiiiiiiiiiiieee ettt 67
Object Creation EXAMPLES  ....cccviiiiiiiiieiiieciie ettt et steesb e e s beeeaeeetaeestseessseesssaesssaeenseeessseenens 70
Data Buffer Hierarchy EXampPIes .......ccccccveviiiiiieciiiiieiecie ettt sve e ssaessaessaestaessnessnessnessnas 76
ROWSEt EXAMPIES  ..eeiiiieiieiieieeetet ettt ettt ettt ettt e e ate et e e ateeateeatesntesntesatesnsesnnesneas 80
Hidden Work Scroll EXaAmMPIE ......cociiiiiiiiiieciee ettt sttt e teeere e aeessbeesssaesssaeensaeensnes 82
Understanding Current CONEXLE  ....ccvvevieeriieriieeiietiesieesteesteesteeseeseeseesseesseesseesseesseasseessesssesssesssesssesssesssesssennns 83
Accessing Secondary Component Buffer Data  ..........coocoeiiiiiiiiiiiicee e 85
Instantiating Rowsets Using Non-Component Buffer Data ...........cccccveviiiiiiiiiieceeceeeee e 85
Chapter 6
PeopleCode and the COMPONENT PrOCESSON  ......cccciviiiiiieie e steeeeste et e st e sre e aesresreeneenee e 87
Understanding the Component PrOCESSOT  .......ccuoiuiiuiiiiiirieeieee ettt 87
Events Outside the Component Processor FIOW  .....c..ooiiiiiiiiiiiiieeeeeeeeceee et 87
PeopleCode Program TTIZEETS  ....cceeeeieieriieieierie et ceie ettt et et et et e e st et et e s et enee e e seseeeseenseeseeneeneesseeneenean 88
Understanding PeopleCode Program TTIZZETS ......ccceoiririeiieriniieieiesiesiceie ettt 88

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v



Contents

Accessing PeopleCode PrOGrams ........ccccoociiiiiiieiieeie ettt st sttt et esaee e 89
Associating Execution Order of Events and PeopleCode ........cccoeeviiiiiiiiiiieiicieciecee e 91
Component Processor BERAVIOT ........cccveviieiiiiiiieiieieee ettt et ssb e esseesseenseenseenseenns 94
Component Processor Behavior from Page Start to Page Display  .....cccooeeiieiieniiniiniecececee 95
Component Behavior Following User Actions in the COMPONENt  .......cceeeveevveevieeireereeieeieere e eve e 96
ProCESSING SEQUENICES  ...ooiviiiiiiiiiiiieieste ettt te et et e et e st e staesatesstesstesseessaessaesssesssesnsesssesssessnesnsesnsesnsesssens 98
FIOW CRATES <.ttt ettt et e st e s bt e s bt e s bt e bt e bt e sbeeebeesbee bt e bt e sbeesbeesbeesneenseanseas 99
Default PrOCESSINE  ..vocviiiiiiiieiieciectestestestte st e st et e st e steesteestaestaestaessbessbessaesseesssesssasssesssesssesseesseenssenses 100
Search Processing in Update MOAES  .......ccceecvieciieiiieiieiecie ettt etesnte et e snaesnsesnsesneeennes 102
Search Processing in Add MOAES  ......oocuiiiiiiiiiiiicie ettt et eaee et e e ta e e sbeeeeseeenreeenes 106
Component Build Processing in Update MOdes ........cccccveviiiiiiienienieriertereesee e see e 109
ROW SEIECE PTOCESSING  ..veeuiieiieiieiieiieie ettt ettt ettt ettt e et et e et e enteenseentesnbeenseenseensesnsesnsennsennns 110
Component Build Processing in Add MOdAES  ......cc.eeviiiiiieiciiiiiieeie ettt 112
Field MOGIICATION  .oueieieiieiiitiee ettt ettt ettt et ettt et e e st e e st et e st eneeneeeeaneeneeeenees 113
ROW INSEIt PTOCESSING  ...eouiiiiiieiieieiteeiteteste sttt ettt sttt ettt st et e st e ebeentens 117
ROW DEIEIE PTOCESSING  .iovviiiiieiiieiiie ettt ettt et ste e st e et e e tee e tae e tbeessbeessseessseeensaesnsaeensseensseensees 119
BULLONS ettt ettt et et ettt ettt et ettt et e e s 121
PrOMIPES ettt sttt bt e h ettt h b e e s ate e e bt e eab e e e bt e e bt e e bteesabeesates 121
POP-UP MENU DISPIAY  ...eeeieiieiieceeeee ettt ettt et e et e et e et eessbeessseessseeesseeensseensseessseesssens 122
Selected TemM PrOCESSING ...cc.vcciiiriieiiieriieieeeseesie et et et e e et e steeste e seesseesseesseessaesseesseesseesseesseesseensennes 122
SAVE PrOCESSINE  ..oueieiiieieeie et ettt ettt et ettt ettt et e et e et e et e eat e satesatesatesatesatesatesatesaeesatesnsasneenneas 123
PeopleSoft Pure Internet Architecture Processing Considerations ...........cceceecveevveevieeieeeireecrescveevesinesneens 125
Deferred Processing MOAE  ....cccvvecvieiieiiiiieie ettt sttt e st et e s saessaessaesstesssesssesssessnesssesssesnsenssas 125
odeTe] o) (Lo T (S EA =) £ S SSUSUSR 128
ACHIVALE EVEINL .ottt ettt ettt et e et e e st et et e b e st et ente et ent e teeaeeneenes 129
FIieldChange EVENt ........cccoiiiiiiieiiesiee sttt ettt st e s e e staesseessaessaesaeessaesseasssesssensnenseens 129
FieldDefault EVENE  .....ooiiiieee ettt ettt b e bt e bt e bt e sbe e be e bt e beebeeteas 130
FIeldEIt EVENE ..ottt ettt e e e st e e st et e st eneene e tesaeeneeneeeeeenen 130
FieldFOrmula EVENt  .....cocooiiiiiiieieeeee ettt ettt sttt sbe et sb e et ee e 131
ItemSelected EVENt ..ottt et et sb e bbbt e bt e bt e st e bt e bt e naee s 131
POStBUILA EVENT ..ottt ettt e et e e st s et e bt e st et e e e eneeneeeeeees 132
PreBuild EVENT  ..eoiiiiiee ettt ettt sttt s h et b e b 132
PrePopup EVENt .ottt ettt e e st e e e be e e ta e e abeeesbeeesbeeenreeenraeetreennnas 132
ROWDEIELE EVEINT ..ottt ettt ettt e e et b ettt sb e e st et e eteeae et e eeeneeneenee 133
ROWINIE EVENT oo ettt et e et e e e te e e tseeeaseeeabeesaseeeareseraeeseeens 133
ROWINSEIt EVEINT .ottt ettt sttt st st sat e sae e satesaeesaeeeaeeeas 134
ROWSEIECE EVENT ..ottt sttt b e ettt e b et e et ese et e stesbeeneentens 136
SAVEEIt EVENE  .oeiiiiiiiiiiiceeeeeee ettt ettt e et e st e e s b e e ebe e e bt e e tbe e tbeeaabeeeateeenraeetaeenens 136
SavePOStCRANZE EVENLE  ..ocviiiiiiciiece ettt e e et e e e e e s e e et e e entae e aaeenaeennes 137
SavePreChange EVENt  .......cccooiiiiiieiesieseeee ettt sttt e s e e sta e se e seessaesseessaessaesseenseeseas 137
SearchInit EVENT .....ooiiiiiiiieeeece ettt ettt et e e s v e e et e e be e e tae e tbeessbeeenseeensaeenseeenens 138
SEArChSAVE EVEINT ..ottt ettt e b e bttt et e bt e b e beenbeebean 139
WOTKIIOW EVEIE oottt ettt st a et b e e et et et bt et eaesaes 140
PeopleCode Execution in Pages with Multiple Scroll ATeas ......ccccoocerierieiiiiieiiereeseeeeee e 140

Vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Contents

Chapter 7
PeopleCode and PeopleSoft Pure Internet ArcChitE€CtUre ........ocoooiriieiieininiseseeees e 143
Considerations Using PeopleCode in PeopleSoft Pure Internet Architecture ..........ccoccovvvveirivneiniiennenne, 143
Using PeopleCode with PeopleSoft Pure Internet ArchiteCture ........ccocveveevienienienieneereeseeseeve e 144
USING INTETNET SCIIPLS  cuvvevvieeiieiieiieieesieesteestteteesteteesseesseesseesseesseesseesseesseesseesseesseessasssessseesseesseessessseens 144
Using the Field Object Style PrOPEItY  ....cocieiiiiiiiieiiece ettt st 144
L0 Ta Yo 1 T U LY O N T PSR 145
Using HTML Definitions and the GetHTMLText Function .........cccccoceeeierineneeienineeeenesceeeeee 146
Using HTML Definitions and the GetJavaScriptURL Method ..........ccooiiiiiiiiiiiieeee 147
Using PeopleCode to Populate Key Fields in Search Dialog BOXES  ....cccocceevvevienienieiienieseee e 148
Calling DLL Functions on the Application SEIVET .......ccccoecvrieriirriieeieeieeeeeieeteeeeeteeresnseesseessesnsessseennes 148
Sample Cross-Platform External Test FUNCHION ........c.cccciiiiiiiiiiiiiiicieccee e e 149
Updating the Installation and PSOPTIONS Tables ......ccccceevieriiirienienienieseeeeeesree e re et se e srae e 151
Chapter 8
Using Methods and Built-1N FUNCLIONS ......c.coiiiiiiiieeeeeesi et 153
Understanding Restrictions on Method and Function USE ...........ccecveeiieiiiiiniiniieiie e 153
Think-Time FUNCLIONS  .....iiiiiiiiiiee ettt ettt ettt et et e et e bt et e e teenteenteenee 154
WinMessage and MessageBoX FUNCHONS  .....cc.icoiiiiiiiiieriieiieiiciceieese ettt sre e sre e veesseesaeseens 155
Program Execution with Fields Not in the Data Buffer ..........ccccoooiiiiiiiniinieee 157
Errors and WAITINGS  .....oociiiiiiiiiiie e ctieeieeerite vt e siveesaeesteeebeeesbeeessaeesseessseesssaesssaessssessseeessssesssesssses 157
DOSAVE FUNCHON .ttt ettt et e bt e st e b e ebeese et e teeneeneenteseeeneenean 157
Record Class Database MethOds ........cccuviiiiiiiiiiiieeeeee ettt ettt et ennes 158
SQL Class Methods and FUNCHONS  .......oooiiiiiiiiiiii ettt ettt e e tae e e eateeeenns 158
Component Interface Restricted FUNCHONS  .....c.ooviiiiiiiiiiiieciesiesee ettt snesresne e sene 159
Searchlnit PeopleCode Function REStriCtioNS  ........ccceviriiiienininiininienteeneseetee et 159
CallAPPENGINE FUNCHON  ...ooiiiiiiiiiciieciie ettt ettt ettt e et eete e estaeesabeessseesssaesssaessseesnseeenses 160
ReturnToServer FUNCLION  .....oo.ooiiiiiiieeee ettt ettt sttt st 160
GEtPage FUNCLION  ...eiiiiiiiiiieeee ettt ettt ettt et et e bt e te e be e be e bt e bt enseeseeseenne 160
GetGrid and GetAnalyticGrid FUNCHIONS  ....c.cccvieiiiiieiieiecieeieertete ettt eve v veebeereesveesveenes 161
PUblish MEthOd ..ottt ettt sb et e st sb e et e e b eaeenee 161
SyncRequest METhOA  ....ooeiiiiiei ettt ettt ettt et et e et e et e e teenteenteeaneeas 161
Implementing Modal TTanSTEIS ........ccccviieiieiieiieiiereese ettt ettt et te e e b e e reesbeesbeessaessaesseesseeses 161
Understanding Modal TTansSfers  .........cceccveciecieiieiieie ettt ettt eteebe e seeseesseete e seesseesseenseensaens 161
Implementing Modal TTanSTers  ........coooieriiiiiiiee ettt sttt be e b b e neeas 163
Implementing the Multi-Row INSert FEAture .........cccoocivciiiiieiiieiiecieciecieste et 164
Using the ImageReference FIield .........coocioiiiiiiieicce e 165
Inserting Rows Using PeopleCode .......occuiiiiiiiiiiiciieieeet ettt ettt e et e e ve e seb e e sabeessseeesneeensneenes 166
USING OLE FUNCHONS  ...viiiiiiiiitieiiesiesieesitesiteste et et esteesseessaesseessaessaessaesseesseesseessesssessseassesssesssesssesssesssensses 167

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii



Contents

Understanding OLE FUNCLIONS  .....ooouiiiiiiiiiiiieiieiieie ettt ettt ettt ettt e ste e teesbeesbeesbeenseenseens 167
Using the ODJect Data TYPE  ovivviiiicieciiiieeie ettt ettt e e vesev e s b e stbeebessbestbessbeesbeesseessessseassesnnas 167
Sharing a Single ObJect INStANCE  .....cceecvieciieciieiieieeie ettt e e e be e be e e seeseesseenns 168
Using the Exec and WInEXec FUNCHONS  .....cciiiiiiiiiieiieeee et 168
Using the Select and SeleCtNew MeEthOdS ......cccoviiviieiiieiiiiiieeceee et re e reesreeaeesseeseeas 168
Understanding the Select and SelectNew Methods ........ccccovierienienienieeee e 169
Using the Select MEthOd  .....cooui ittt et ettt ettt et et 170
Using Standalone ROWSELS .......ccviiviiiiiiiiiieiieiieteitete et esie et eteesseesbeesseesbeesseesseesseesseesseesseesseesseessessseesseenns 172
Understanding Standalone ROWSELS  .....cceeviiriiiiiiiiiiiesieriertesee ettt st sseesseesee e 172
Using the Fill MEthod .......ooii ettt ettt ettt ettt 172
Using the CopyTO MEthOA  ......ocviiiiiiiciicece ettt et e s ea e s eae s evessbessbestbessaessnessnensns 173
Adding Child ROWSELS  ...cueieiiiiiiieiieeie ettt sttt ettt sttt e ssaesetesstesnsesssesneesnsesnnesnsesnsennnens 173
Using Standalone Rowsets t0 Write @ FIle  ......ccoooiiiiiiiiiice et 174
Using Standalone Rowsets to Read @ FIle  .......ccoooiiiiiiiiiiieicecce e 176
USINg Errors and WAaITINES  ....cc.eeieiiiiiieieiereeteeste ettt ettt et et sh e et besbe et et bt et eae e 178
Using Error and Warning SYNEAX  ......ccceeciiiiiiiiiiiieiiieeiieeieeeieeesiteeseveeseseessseessseeessasessssesssessssessssesssses 178
Using Errors and Warnings in Edit EVENES  ......ccccciviiiiiiiiiiiieiceceeseeseeeee ettt 178
Using Errors and Warnings in RowSelect EVENts .........cocoiiiiiiiiiiiiiiiiiiceeeeeeeesceeee e 179
Using Errors and Warnings in RowDelete EVents .......c.cccoviiiiiiiiiciieciece e 180
Using Errors and Warnings in Other EVENLS  .....c.cccovciiiiiiiiiiiicieciececie et 180
Using the RemoteCall FEAUIE ........ccciiiiiiiiiieieieeet ettt ettt ettt b bt e e e beesae e 180
Understanding RemoteCall COMPONENLS  ....c.vevvierieeriieiiesiesieesieesteesteesteesseesseesseesseesseessessseessesssesssesssens 180
Deciding Between RemoteCall and PeopleSoft Process Scheduler .........ccocevvieviiniinienieneenieneene, 183
Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall ............coccoociiiiniieen. 183
Chapter 9
Using HTML Treesand the GenerateTree FUNCLION .......ccooiiiirieieeieneniseseeeses e 185
Using the GenerateTree FUNCHON  ......c.ooieiiiiiiieeee ettt ettt ettt se et eeeas 185
Understanding HTML TTEES  ....eeouiiuirieiiiieieiesiesi ettt sttt sttt ae e 185
Building HTML TTE PAZES  ...eoeieieiiieieeieee ettt ettt sttt sttt st st esaae et ens 186
Using HTML Tree ROWSEt RECOTAS  .....iiuiiiiiiieiieiee ettt 187
Using HTML Tree Actions (EVENES)  ..cocuiiuiiiiiiiiiieieeeee ettt 190
INitializing HTML TTEES  ..cueeitieiiieitieitietiest ettt ettt ettt et et e bt e bt e bt et e e be e be e be e bt e bt enbeenbeenbeenseenne 191
Processing Events Passed from a Tree to an AppliCation  ........ccoeeeiieieiieeieneneecee e 194
Adding Mouse-Over Ability t0 HTIML TIEES  ....cccuevciieiiiiieieeie ettt ete sttt ense e ennes 199
Adding Visual Selection Node INiCatOrs .......ccceiiiiiiiiiiiiiiie ettt 200
Specifying OVerride IMAZES  .....c.ooieieiiiieieee ettt sttt et ae e 200
Chapter 10
Working With File ATTaChIMENTS .......ciiiiiere ettt 201

Viii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Contents

Understanding the File Attachment FUNCLIONS  ........cooiiiiiiiiiiiieieceteeee e 201
PeopleCode Built-in File Attachment FUNCHONS  .....c..coviiviiiiieiieiieiecie et eve s 201
Understanding the File Attachment ATChiteCture ...........ccoceviieriiiriienieriereeseeeeeee e 205
Understanding File Attachment Storage Locations ..........cccccevieriiiiiiiiiieeieeeee et 208
Understanding URL Strings Versus URL ODJECS ....cccviiviieciiiiiiiiiiecie et eereseeesvesenesnesenesenesenens 210

Developing Applications that Use File Attachment FUNCHONS  ........coeevieriininiieninirieee e 210
Application Development Process OVEIVIEW .......cccccciiiiiieiiiieiiieiieecreeeieeesireesieeeseveeseveesreesveeeseeens 211
Delivered Record DEfINItIONS .......cccvevierierieiieiieiiesieseeseeseestteseesieesseessaesseessaesssesssesssessessseesseesseenses 212
Managing Entries in File Reference Tables ..........cccccviieviieiiiniinieniereesteseeeesee e see e 214
Using the PeopleTools Test Utilities Page ........cccoociiiiiiiiiiiie e 215

Application Development CONSIAETALIONS  .......c.cccvevierierierieiieieestesresreseeseesaessresssesssesssesssssssesssesssessnes 216
File Name COonSidErations .........ccccceccieriierierierierienieseeseesteesseesseesseesseesseesseesseesseesseesseesseesseesseesseesseens 216
Restrictions on Invoking Functions in Certain PeopleCode Events .........ccccocevevciiiiciienciieecieeieeieens 217
Converting File Names for Files Uploaded by PutAttachment ...........ccccocvevierienienieneeneeeeeeeennn 217
Considerations When Using COpyAttachments ..........cccccoeevierireniiniinineneeenesieeee et 218

Application Deployment and System Configuration Considerations ...........ccccecceeeeeeerveeriveerveessreessreesveens 218
File Attachment Functions in an Environment with Multiple Application Server Domains ................ 218
Configuring the Web Server to Support Additional MIME TYPes ......cccoeceeviinienienienieniecierceeeeenn 219
Restricting the File Types That Can Be Uploaded or Downloaded .........ccccccvieeiiiiiiiciiiieeieeeeee 220
Setting Up VITUS SCANMINE ...c.eccvveciieirierieeriiesieesteesieesieeseesseesseeseesseesseesseesseessessseesseessesssesssessseessessseessees 220
Considerations When Attaching TeXt FIles .........ccociiiiiiiiiiiiiiieeeete e 223
File Attachment CRUNK S1Z€ .......cccccviiiiiiiiieeiecie st ete ettt e v et esaestaestaestbessvessbesssesssesssessnesssesssensnens 223
Using the Copy File Attachments Page .........ccooceviiiiiiieiieiiecieceeee e s s 224

Debugging File Attachment Problems ..........ccccooiiiiiiiiiiie ettt 224
Enabling Tracing on the Web Server or Application SEIVET ........cccoccveeierieiienienierreceeseeseneseneseneens 224
Problems with Transfers to and from FTP SiteS ........ccccccivviriiiiieiieieeeieee e 226
Attachments with NON-ASCII File NaMES ......ccoooiiiiiiiiiieiieeeete ettt 226
Problems UpPloading FIlES ........ccocciiiiiiieiieeieiiereeseeseestestteseestesteestaestaesssessaessaesseessaesssesssesssesseessenns 227
Passing Error Messages to the End USET ......c.cccviiiiiiiiiiiiiicececce et 227

Chapter 11

Accessing PeopleCode anNd EVENTS .......ccoiiiiiiieeeeniesieseee et nesn e nne s 229

Understanding PeopleCode Programs and EVEnts ..........cccoooiiiiiiiiiiiiiiiceeeeeee e 229

Understanding Automatic Backup of PeopleCode ........cccevieviiniinienieieeeeeeeeeeee et 230

Accessing PeopleCode in Application DESIZNET ......ccccceeciiriiiriirienieeie et see e ste e eee e seaesenesnne e 230

Accessing Record Field PeopleCode ..ottt ettt et e 233
Understanding Record Field PeopleCode ........coieciiiciieiieiiciieeee ettt e 233
Accessing Record Field PeopleCode from a Record Definition ..........ccceevveiieiiiinienieniieiceiceieeiens 234
Accessing Record Field PeopleCode from a Page Definition ........c.ccoocevienienienienienienieneenceeee 235

Accessing Component Record Field PeopleCode .........ccoocvieeiiiiiiiiiiiiieciecieciese et senesene e 236
Understanding Component Record Field PeopleCode .......ccccooviiiiiiieniinieieeeee e 236
Accessing Component Record Field PeopleCode .......ccooeiiieiiiiiiiiiiii et 236

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix



Contents

Accessing Component Record PeopleCode ..........oooiiiiiiiiiiiiiiieeee et 237
Understanding Component Record PeopleCode ........cooieviieiiiiiieiiiiececteeeteeeee et 237
Accessing Component Record PeopleCode ......c.occvviiiiiiiiiiieieciececece et 238

Accessing Component PEopleCode ..........cooiiiiiiiiiiiiieee ettt 238
Understanding Component PEOPIECOAE ......c.cccviiiiiiiiiiiieiiecicste sttt sreesra e ereenes 239
Accessing Component PEopleCode ........ccoeviiriiriiiieiieee ettt snae s 239

AccesSing Page PEOPIECOAE ......ooouiiiiiiieiieie ettt ettt ettt ettt ettt ettt 239
Understanding Page PeopleCode ......c.ccieviieiiiiiiieiicieceete et vessvessbesebe b e sabeessessnessnenens 239
AccessSing Page PEoPleCode ......occvviiiieiieiieciie ettt ettt ettt e seensees 240

Accessing Menu [tem PeoPleCode ........ccooviiiiiiiiiieciic ettt et et v e e seb e e eebeeeabeeenes 240
Understanding Menu [tem PeopleCode .......ccccviiiiiiiieiieriesiesee sttt ettt esaeres 240
Defining PeopleCode Pop-Up Menu ItemMS  .......ccceeciieiiiiiiiieiieiiecie ettt 241
Accessing Menu [tem PeopleCode ......occiiiiiiiiiiiiccc ettt s e eaee e 241

Copying PeopleCode with a Parent Definition ........cccccvvciiiiiiieiiiicieeiesie e sene e 241

Upgrading PeopleCode PrOZIams .........ccccoviiiiiiiiiiieieiese ettt et sttt 242

Chapter 12

UsiNg the PeOPIECOOE EQITOr  .......ooieeeeeiiee ettt sttt s ee e e et e s ne e e e seesreeneeneens 243

Navigating Between PeopleCode Programs ..........cccoociiiiiieiiie ettt e et eevee e e seveesvae e 243
Understanding the PeopleCode Editor WINdOW  ........ccceeieiiiriiiierierieseeeeeee et 243
Navigating Between Programs Associated With a Definition and Its Children .........c..ccccecininnine. 245
Navigating Between Programs Associated With EVents ........ccccoocveviiiiiiiiinciece e 245

Using the PeopleCode EdItOr .......ccocciiiiiiiiiiiieeieecieseste ettt ae st st e ssaessaessaesnaessaessnesssessnes 246
Understanding the PeopleCode EdItOr .........ooieiiiiiiiiiiieeieeteee ettt 247
Writing and Editing PeopleCode .......oocviioiiiiiiecieeceecte ettt et 247
Find and Replace DIalogs .....ccccoeciiiiiiiiiiesie ettt ste et eeseaessaessaessaessaessaessnessaessnesssessnessnens 248
LI Ko T BT 1 Lo -SSP SRUPRURRRN 249
Validate SYNtax ULIIILY  .ooccvccieiiieieiiieese ettt e et ebe v e e sse e beebe e beesseesaesseesseesseesssesseesseens 249
Formatting Code AUtOMAtICAILY  .......cooieriieiieiieiieiteie ettt ettt te et e e ta e se e seesaeseensaens 250
Using Drag-and-Drop Editing  .....cccooiiiiiiiiee ettt ettt st st 250
Accessing PeopleCode External FUNCHIONS  ....c.ccoviiviiiiiieiiieiieiieieeie ettt re e sve e veesvaeseeneens 251
Accessing PeopleCode Application Packages and Application Classes .........ccccecevenerceenenenceciennene. 251
Accessing Definitions and Associated PeopleCode .........occooiiiiiiiiiiiiiieieeeeeeee e 253
ACCESSING HEIP  ovioviieiicit ettt ettt e s b e s tb e e et e e taestbessbesssessbesssessaesraesssesssesssenssenseens 254
SN UP HEIP  ooeeieieieee ettt ettt ettt et e te et e e be e bt e b e e seesaesseeseesseenseenseas 254
Changing Colors in the PeopleCode Editor ........cccciiiiiiiiiiiiiiieciiecieecee e 255
Selecting a Font for the PeopleCode EdItOr .........cccoeviiiiiiiiiiieiie et sve e 255
Changing Word Wrap in the PeopleCode Editor .......ccccocieviiiiiiiiiininiiieieneeeeseeeeeeee e 255
Using the PeopleCode EVENt PrOPETTIES .......cccciiiiiiiiiieiiieciie ettt evee e e et eereeeeneesaveeeenas 257

Generating PeopleCode Using Drag-and-DIrop .......ccoccvveiiiiiiiiiiiiieieciereeete et seeseneseee e e 257
Generating References to DefInitions .........coceoiiiiiiiiiiiiiiieie ettt 257
Generating PeopleCode for a Business Interlink  ..........ccccooveiiiiiiiiiiiiecee e 258

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Contents

Generating PeopleCode for a Component INterface ..........ccooceviiiriiniiniiiniieiieeeeeeeste e 258
Generating PeopleCode for a File Layout .......cccccoiiviiiiiiiiiiicie e 259
Chapter 13
0L aTo R aT= TS @ T I o ) (o] S 261
Understanding the SQL Editor WINAOW .......cccoiiiiiiiiieiieriereereeseesee st esie e sseesseessaesse e e essaessaessaesseens 261
Accessing SQL Definition PTOPEILIES  .......c.cooiiiiiiiiiiieie ettt ettt et ettt e te e 262
AccesSINg the SQL EQItOT  ..oviiiiiiiiiiciecieeeee ettt e ve b e e eb e s bestvestbeetbeesbessbesssessseesbesssesssesssensnas 263
Creating SQL DEefiNItIONS  ...ccvevierierieriesiesiertesiee st ettt e st et esteesseesteesse e seessaesseessaesseesseesseenseeseensees 263
Creating Dynamic View or SQL View Records .......ccocoiiiiiiiiiiiiiieieeeeee e 264
Accessing the SQL Editor from Application Engine Programs ..........c.cccceevvciiviiiniiniiecienienneseesenns 265
USINg the SQL EdItOT  ....oociiiiiiiiiciecieeeseeree sttt et este et e st e e steestaesaeesseesseeseesseesseesseesseenseensns 266
Chapter 14
Creating Application Packages and CIASSES ..........ccoiieiriiirerieieeise et 269
Understanding Application Packages ........cccooioiiiiiiiiiiieeeeeee e 269
Creating Application PACKAZES ......ccceivviiiiiiiiiiiie ettt e stae s e b e b e s b e sabestbessbessbessseessesssesssesssensnas 270
Understanding Package NamMES  .......cccccceeiiieiiieiiieiieiieieeie ettt ete e te e te et seesaesseesbeeseenseenseas 270
Creating Application Package Definitions .........cccceeviieiiieiiieiiie ettt eree e seree e 271
Using the Application Package EQItOr ........ccccoviiiiiiiiiicieieeeeee ettt ereesve v e esseeaseesneanne e 272
Editing APPLICAtION CIASSES  .....eoueiiiriiriiiieienieritetete sttt ettt ettt ettt ettt s b et e b sbeebe e e e nbesbeeaee e 273
Chapter 15
Debugging Your APPIICALION  ......c.oiieiiieiieieieeieee st r e se et n e nr s e nnenn s 275
Understanding the PeopleCode DebUZEET  ......cc.eiiiiiiiiiiieieeee ettt 275
Accessing the PeopleCode DEDUZEZET  .......occviiiiiiieiieiieiecie ettt s tb e s taestaestaesenesssenenas 275
Using PeopleCode Debugger FEatures ..........cooviiiiiiiriiiiieieieeteese ettt s 278
Visible Current Line of EXE@CULION  ...c..oiiuiiiiiiiiiieie ettt 278
ViSIDIE BIEAKPOINES  ...occiieiiiiiiiiiiieiiiesiertes ettt e st e eeste e e ese e tee st aesseesseesseesseessaessaesseessansseesseesseessens 278
HOVET INSPECT .ottt ettt e st e et e e bt e e bte e sabeesabeesabeesabeeebeeenabeenanes 279
NI Yed (S D TS] o0 e LTRSS 279
Variables PAnes  ....oc.ooiiiiiiiieiee ettt b ettt n et et e b neetens 280
L0 1] N To) | o T TSRS 283
Setting Values for Variables and PrOPerti€s ..........cccccceevciieiiiieriiieiiieeciie e eee e sveesreeseveeeeeeeeae e 285
General DeDUZZING TIPS c.vvcciieciieciieiieieeie ettt et et ete e e e e et esseesseesseesseesseesseesseessaesseessaesseesseensessens 286
Using PeopleCode Debugger OPLiONS  .......c.eeieeriieriieriieieeiieerie et esteesie ettt et e st et esbee st esbeesseesseesneesseenseas 288
Setting Up the Debugging ENVIFONMENT  ......c.cccviiiiiiiiiiiiieiieiiciccre ettt e e sveesresereeereesseesseesveesneeens 291
Compiling All PeopleCode Programs at ONCE .......ccccceevierierieniieniesieseeseesteesitesseesseesseesseesseesseeseesseenses 292

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. Xi



Contents

Xii

Setting PeopleCode Debugger Log OPLiONS  ......ceoiiiiiiiiiieeieeieeiesteste sttt sttt st e st e st saee 293
Interpreting the PeopleCode Debugger Log File ......ocoviiiiiiiiiiiiciceceeeeeee e 295
LL0Z File CONLENLS  ...eevvieriieeiiesiieiiiesiiestesteseestesttesieesteesteesseesseesseeseesseesseesseesseesseesssesaesseessenssenseenseensens 296
Other [tems in the Log FIle ..ottt e 296
Using Application LOZZING ....ccoviiiiiiiiieiieiieiteie e ete e ere vt eveebeesbessbessbeesseesseesseassesssesssesssesssesssesssesssenns 297
Setting the Application Log Fence in the Configuration File ..o 298
Using the Log Fence with PeopleSoft Analytic Calculation Engine ..........ccccoooieiiiiiiniiniiiiiicene, 298
Using the FINd In FEATUIE ......cooiiiiiiiieieieeeee ettt e et esb e e b e esbessseesbeesbessseassesssenssas 298
Finding References to Application Packages and CIasses .........ccccoecveeiiriiniinieeieeiecie et 302
PIOICQUISIEES  ..viiieiiiiiieiiie ettt ettt ettt e et e st e et e e ebeeeteeetaeetseessseeesbaeassaeasseeessaeessaeesssesseessaeasseesnsesanses 302
Finding Definition REFEIENCES ......ccvieiieiiciiiiieie ettt e b e tb e sbeerbeesveeeneeens 303
Using Cross-Reference REPOTLS  ......ccceviieiieiiiieiieeie ettt et sttt et seaestesatesnteentesnsesnnesnnenns 304
Chapter 16
IMProving Your PEOPIECOUE  .......ocoiiiiieee et 305
Reducing Trips t0 the SEIVET  ....oiiiiiiiieciecceeee ettt et e e te e e tee e tae e taeessbeessbeessseassseeesseeanes 305
COoUNLING SEIVET TTIPS  weevvieriieriieiieieesiesteesteesteesteesteesteesseesseesseesseesseesseesseessaessaesseesseesseesseesseesseessesssesnns 306
USING Deferre@d IMOAE  ...ocveieiiieiieieee ettt ettt ettt et et e et e bt enbeeteenbeebeenseenseenseensaens 306
Hiding and Disabling FIeldS ........cccieiiiiiiiieice ettt e e e e sereeearaas 307
Using the Refresh BUION  ......ooiiiiiiiiiiecieiece ettt ae st esraesreessaesseessaessaens 307
Updating Totals and BalanCes .........ccccceeiieiieiiieiieieeie ettt ettt ettt ettt este e te e be e beeseenseenseens 307
USING WaINING MESSAZES  ...veevvieeiieeiieeitieesieeesteesteesteesseessseeassseessseessssesssesssseesssessssessssssessseessseessseesns 308
Using the Fastest AIGOTITRIM  .......ccviiiiiiiieiiciieieeeee ettt sae st e b e b e ssaessaessaesssesssesssessnens 308
Using Better Coding Techniques for Improved Performance ...........ccccooieiiieiieniiniinnienieiececeeee 308
RUNNING @ SQL TTACE  .eeoeiieiiieiieciee ettt ettt e et este e et eesteeessbeessseessseessseessseeensseesseenssessssens 309
OptMIZING SQL oottt et e et et e bt e beesse e teesbeesseensae s e et aesseenseenseenseenseenreenseenns 309
Using the GetNextNumberWithGaps FUNCtion ..........ccocciiiiiiiiiiiieieeeeteee e 309
Consolidating PeopleCode Programs ........c.ccceeviiiiiieriiiiieiieieeie e et ereeveeveesreeveesseesseesseesseenns 309
Moving PeopleCode to a Component or Page Definition ...........ccccceevienierienienieneeseeseeseeseeseeenieens 309
Sending Messages in the SavePostChange Event ..........coccoooiiiiiiiiiiiieee e 310
Using Metadata and the ROWSEtCache Class .......cccevieiieiierieiieniesee sttt e e seesreesteesteeseeesseesreens 310
Setting MaxCacheMEIMOTY  .....cccviiiieiiieiieieeiteie ettt ettt et et et e e teebe e bt esseeseesseessaeseenseenseensaenseenns 310
Writing More EffiCient COAe .....cc.ioiiiiiiiiieee ettt ettt et ettt ettt eaee e 310
Writing More Efficient Code EXampPIes .........cccccveiiiiiiiieiieiieciesiesteree e se e see e sreesrae e sneeas 315
Preventing SQL INJECLION  ...c..oiiiiiiiieeieeieeie ettt ettt e st eseteebesntesstesabessaesnsesnseensesssesnsesnsesnsennses 320
Appendix A
PeopleCode EdItor SNOrt CUL KEBYS ... 323
Short Cut Keys in the PeopleCode EdItOr ........cccuiiiiiiiiiiiiiecie ettt ettt et e veesveeevee e 323

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. Xiii






PeopleCode Developer's Guide Preface

This preface provides an overview of the PeopleCode Developer's Guide and lists typographical conventions

used in PeopleCode.

Overview of PeopleCode Developer's Guide

This PeopleBook covers the concepts of PeopleCode, the programming language used in the development of
Oracle's PeopleSoft applications. Its chapters describe techniques for adding PeopleCode to applications, tips
for using PeopleCode, the interaction of PeopleCode and the Component Processor, and a number of other
specialized topics, such as the use of the PeopleCode debugger and referencing data in the component buffer.

The accompanying books, the PeopleCode API Reference and the PeopleCode Language Reference, contain
the reference material for the PeopleCode language. The chapters in these books describe the syntax and

fundamental elements of the PeopleCode language.

PeopleBooks and the Online PeopleSoft Library contains general product line information, such as related
documentation, common page elements, and typographical conventions.

PeopleCode Typographical Conventions

Throughout this book, we use typographical conventions to distinguish between different elements of the
PeopleCode language, such as bold to indicate function names, italics for arguments, and so on.

This table describes the typographical conventions used in PeopleCode:

Font Type

Description

nonospace font

Indicates a PeopleCode program or other example.

Keyword In PeopleCode syntax, keyword entries indicate
function names, method names, language constructs,
and PeopleCode reserved words that must be included
literally in the function call.

Variable In PeopleCode syntax, items in variable font are

placeholders for arguments that your program must
supply.

In PeopleCode syntax, ellipses indicate that the
preceding item or series can be repeated any number of
times.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

XV



Preface

Font Type Description

{Option1|Option2} In PeopleCode syntax, when multiple options are
available, they are enclosed in curly braces and
separated by a pipe.

[] In PeopleCode syntax, optional items are enclosed in

square brackets.

& Parameter In PeopleCode syntax, an ampersand before a parameter
indicates that the parameter is an already instantiated
object.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

* Understanding the PeopleSoft online library and related documentation.

* How to send PeopleSoft documentation comments and suggestions to Oracle.

» How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

* Understanding PeopleBook structure.

» Typographical conventions and visual cues used in PeopleBooks.

» ISO country codes and currency codes.

» PeopleBooks that are common across multiple applications.

e Common elements used in PeopleBooks.

« Navigating the PeopleBooks interface and searching the PeopleSoft online library.

» Displaying and printing screen shots and graphics in PeopleBooks.

» How to manage the locally installed PeopleSoft online library, including web site folders.

* Understanding documentation integration and how to integrate customized documentation into the library.
» Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

XVi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 1

Getting Started with PeopleCode

PeopleCode is the proprietary language used by PeopleSoft applications. This chapter provides an overview
of PeopleCode and discusses how to create PeopleCode programs.

This chapter provides information to consider before you begin to use PeopleCode. In addition to the
considerations presented in this section, you should take advantage of all PeopleSoft sources of information,
including the installation guides, release notes, and PeopleBooks.

PeopleCode Overview

This section provides an overview of the conceptual information available about the PeopleCode language.
The reference material, that is, the actual descriptions of the functions, methods and properties can be found
in the following:

» PeopleTools 8.52: PeopleCode Language Reference PeopleBook

This book contains information about PeopleCode built-in functions, meta-SQL, system variables, and
meta-HTML.

» PeopleTools 8.52: PeopleCode API Reference PeopleBook

This book contains information about all the classes delivered with Oracle's PeopleTools, as well as
specifics about each class's methods and properties.

PeopleCode resembles other programming languages. However, many aspects are unique to the language and
the PeopleTools environment. To learn more about the language, see Understanding the PeopleCode
Language.

See Chapter 2. "Understanding the PeopleCode Language." page 5.

PeopleCode is an object-oriented language. To learn about objects and how they're used in PeopleCode, see
Understanding Objects and Classes in PeopleCode.

See Chapter 3. "Understanding Objects and Classes in PeopleCode," page 37.

The component buffer is the area in memory that stores data for the currently active component. Which fields
are loaded into the component buffer, as well as how to access them, is covered in Referencing Data in the
Component Buffer.

See Chapter 4. "Referencing Data in the Component Buffer," page 45.

The system uses a data buffer as well as the component buffer. The data buffer is used to store data added
from sources other than the component, such as from a Application Engine program, an application message,
and so on. For information about this buffer, see Accessing the Data Buffer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1



Getting Started with PeopleCode Chapter 1

See Chapter 5, "Accessing the Data Buffer," page 65.

All PeopleCode is associated with a definition and an event. The events run in a particular order from the
Component Processor. To learn more about the Component Processor and the standard event set, see
PeopleCode and the Component Processor.

See Chapter 6, "PeopleCode and the Component Processor," page 87.

You should take into account certain considerations when creating applications to be used in the PeopleSoft
Pure Internet Architecture. These include how to make your code more efficient when running on the internet,
as well as considerations when using specific definitions.

See Chapter 7. "PeopleCode and PeopleSoft Pure Internet Architecture." page 143.

There are restrictions on using some of the functions and methods in the PeopleCode language, as well as
considerations for others, like using standalone rowsets and the OLE functions. These are covered in the
Using Methods and Built-in Functions chapter.

See Chapter 8, "Using Methods and Built-In Functions." page 153.

PeopleCode has a tremendous amount of specialized functionality, such as:
» Using the GenerateTree function to create a tree in your application.
» Viewing, adding, and deleting files.

See Chapter 9, "Using HTML Trees and the GenerateTree Function," Using the GenerateTree Function, page
185.

See Chapter 10, "Working With File Attachments," page 201.

Creating PeopleCode Programs

All PeopleCode programs are associated with a definition as well as an event. To learn more about where you
can place your PeopleCode, and have it executed as part of the Component Processor event flow, see
Accessing PeopleCode and Events.

See Chapter 11, "Accessing PeopleCode and Events." page 229.

Use the PeopleCode editor to create your PeopleCode programs. All the functionality of the PeopleCode
editor is described in Using the PeopleCode Editor.

See Chapter 12, "Using the PeopleCode Editor," page 243.

Every PeopleCode program is associated with a definition. The following definitions have additional
functionality associated with the PeopleCode editor:

* SQL definitions
» Application Package definitions

See Chapter 13, "Using the SQL Editor," page 261.

See Chapter 14, "Creating Application Packages and Classes." page 269.

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 1 Getting Started with PeopleCode

After you have created your program, you must run it. Often, that involves fixing any errors that you find.
The PeopleCode debugger is an integrated part of PeopleSoft Application Designer, and it has many useful
tools for determining where code errors are occurring. All the functionality is described in Debugging your
Application.

See Chapter 15, "Debugging Your Application," page 275.

After your PeopleCode program is running, you may want to either improve its performance or the user
experience. Techniques for doing this are discussed in Improving Your PeopleCode.

See Chapter 16, "Improving Your PeopleCode." page 305.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3






Chapter 2

Understanding the PeopleCode Language

This chapter discusses:

» PeopleCode language structure.
¢ Data types.

* Comments

» Statements.

» Functions.

» Expressions.

* Variables

e Operators.

PeopleCode Language Structure

This chapter assumes that you are familiar with a programming language, such as C, Visual Basic, or Java.

In its fundamentals, PeopleCode syntax resembles other programming languages. Some aspects of the
PeopleCode language, however, are specifically related to the PeopleTools environment. Definition name
references, for example, enable you to refer to PeopleTools definitions, such as record definitions or pages,
without using hard-coded string literals. Other language features, such as PeopleCode data types and
metastrings, reflect the close interaction of PeopleTools and SQL. Dot notation, classes, and methods in
PeopleCode are similar to other object-oriented languages, like Java.

Data Types

Conventional data types include number, date, string. Use them for basic computing. Object data types
instantiate objects from PeopleTools classes. The appropriate use of each data type is demonstrated where the
documentation discusses PeopleCode that uses that data type.

Declare variables before you use them.

This section discusses:

» Conventional data types.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5



Understanding the PeopleCode Language Chapter 2

e Object data types.

See Also

Chapter 2, "Understanding the PeopleCode Language," Variables, page 25

Conventional Data Types
PeopleCode includes these conventional data types:
« Any

When variables and function return values are declared as Any, the data type is indeterminate, enabling
PeopleTools to determine the appropriate type of value based on context. Undeclared local variables are

Any by default.
* Boolean
¢ Date

e DateTime
e Float

e Integer

Note. The Float and Integer data types should be used instead of Number only when a performance
analysis indicates that the increased speed is useful and an application analysis indicates that the different
representations will not affect the results of the computations.

*  Number
*  Object

e String

* Time

Considerations for Float, Integer, and Number Types

The Integer type is a number represented as a 32-bit signed twos complement number, so it has a range of -
2,147,483,648 to 2,147,483,647.

The Float type is a number represented using the machine floating binary point (double precision)
representation. This floating binary point representation is not appropriate for exact calculations involving
decimal fractions; in particular, calculations involving money. For example, because a tenth (1/10 or .1)
cannot be exactly represented in floating binary point, a floating binary point sum of .10 + .10 is not be equal
to .20.

The Number type has a size limit of 34 digits, not including the decimal point, with a maximum of 32 digits

to the right of the decimal point. Since the Number type is a floating decimal point representation, it is the
appropriate data type for calculations involving money.

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2

Understanding the PeopleCode Language

Operations (other than division) are done using integer arithmetic if the operands are both integers and the
destination is an integer, even if the variable is declared as the Number type. The destination is considered to
be an integer if one of the following is True:

The destination is an assignment to an integer variable or parameter.
The destination is an array subscript.
The destination is the right-hand operand of a comparison and the left-hand operand is an integer.

The destination is a when-expression part of an evaluate statement, and the expression evaluated at the
start of the evaluate statement is an integer.

The destination is a for-loop initial, limit, or step expression and the control variable of the for-loop is an
integer.

Division (the / operator) is never performed using integer arithmetic. It is always performed using the
floating-decimal-point arithmetic, even if the result variable is declared as an Integer type.

Follow these recommendations for assigning types to numbers:

Use Number for most application data values.
Use Integer when you are counting items, such as rows in a rowset.
Use Float only when you are tuning the code for performance (after it is already working).

In addition, you should only use the Float type when you are certain that the resulting loss of precision
will not affect the application and that the increase in the speed of the computation makes a difference to
the transaction. In general, few applications should use the Float type.

Object Data Types

For most classes in PeopleTools, you need a corresponding data type to instantiate objects from that class.

See Chapter 3, "Understanding Objects and Classes in PeopleCode." page 37.

PeopleCode includes these data buffer access types:

Field
Record
Row

Rowset

PeopleCode includes these display data types:

AnalyticGrid
Chart
Gantt

Grid

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7



Understanding the PeopleCode Language Chapter 2

*  GridColumn

*  OrgChart

e Page

» RatingBoxChart

PeopleCode includes these internet script data types:
» Cookie

* Request

¢ Response

PeopleCode includes numerous miscellaneous data types—for example, Array, Chart, Exception, File,
Message, XmlDoc, among many others.

API Object Types

Use this data type for any ApiObject, such as a session object, a tree object, a component interface, a portal
registry, and so on.

The following ApiObject data type objects can be declared as type Global:
* Session

» PSMessages collection

» PSMessages

» All tree classes (trees, tree structures, nodes, levels, and so on)

* All query classes

All other ApiObject data type objects (such as all the PortalRegistry classes) must be declared as Local.

Comments

Use comments to explain, preferably in language comprehensible to anyone reading your program, what your
code does. Comments also enable you to differentiate between PeopleCode delivered with the product and
PeopleCode that you add or change. This differentiation helps in your analysis for debugging and upgrades.

Note. Use comments to place a unique identifier marking any changes or enhancements that you have made
to a PeopleSoft application. This marker makes it possible for you to search for all the changes you have
made, which is particularly helpful when you are upgrading a database.

You insert comments into PeopleCode in these ways:

*  You can surround comments with /* at the beginning and */ at the end.

8 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2

Understanding the PeopleCode Language

e You can use a REM (remark) statement for commenting.

Put a semicolon at the end of a REM comment. If you do not, everything up to the end of the next
statement is treated as part of the comment.

e You can surround commented text with <* at the start and *> at the end.

Use this type of comment to enclose one set of comments within another set. You generally use this when
you are testing code and want to comment out a section that already contains comments.

Warning! In application classes, you will see the use of /+ +/ style comments. Do not use these in your
PeopleCode. These annotations are generated by the compiler. If you use them, they are removed by the
system the next time you validate, compile, or save your PeopleCode. They are used to provide signature
information on application class methods and properties, and they are regenerated each time the compiler
compiles your application class PeopleCode. Instead, use the standard commenting mechanisms listed above.

Note. Commented text cannot exceed a maximum of 16383 characters.

The following code sample shows comment formatting:

<* this programis no longer valid comenting out
entire thing

REM This is an exanpl e of comrenti ng Peopl eCode;
[* - Logi ¢ for Conpensation Change ----- */
/* Recal cul ate conpensati on change for next row.
Next row is based on prior value of EFFDT. */
cal c_next _conpchg(&0OLDDT, EFFSEQ 0);

/* Recal cul ate conpensati on change for current row and next row.
Next row i s based on new val ue of EFFDT. */

cal c_conp_change( EFFDT, EFFSEQ COWP_FREQUENCY, COVPRATE,
CHANGE_AMTI, CHANGE_PCT) ;

cal c_next _conpchg( EFFDT, EFFSEQ O0);

*>

Note. All text between the <* and *> comment markers is scanned. If you have mismatched quotation marks,
invalid assignments, and so on, you may receive an error when using this type of comment.

Statements

Copyright

A statement can be a declaration, an assignment, a program construct (such as a Break statement or a
conditional loop), or a subroutine call.

This section discusses:

e Separators.

* Assignment statements.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9



Understanding the PeopleCode Language Chapter 2

» Language constructs.
» Branching statements.

» Conditional loops.

Separators

PeopleCode statements are generally terminated with a semicolon. The PeopleCode language accepts
semicolons even if they are not required, such as after the last statement completed within an If statement.
This functionality enables you to consistently add semicolons after each statement.

Extra spaces are ignored. They are removed by the PeopleCode Editor when you save the code.

Assignment Statements

10

The assignment statement is the most basic type of statement in PeopleCode. It consists of an equal sign with
a variable name on the left and an expression on the right:

vari abl eNanme = expression;

The expression on the right is evaluated, and the result is placed in the variable named on the left. Depending
on the data types involved, the assignment is passed either by value or by reference.

Assignment by Value

In most types of assignments, the result of the right-hand expression is assigned to the variable as a newly
created value, in the variable's own allocated memory area. Subsequent changes to the value of that variable
have no effect on any other data.

Assignment by Reference

When both sides of an assignment statement are object variables, the result of the assignment is not to create a
copy of the object in a unique memory location and assign it to the variable. Instead, the variable points to the
object's memory location. Additional variables can point to the same object location.

For example, both &AN and &AN?2 are arrays of type Number. Assigning &AN2 to &AN does not assign a
copy of &AN?2 to &AN. Both array objects point to the same information in memory.

Local array of number &AN, &ANZ;
Local nunber &NUM

&AN = Creat eArray(100, 200, 300);
&AN2 = &AN;
&NUM = &AN 1];

In the code example, &AN2 and &AN point to the same object: an array of three numbers. If you were to
change the value of &AN]2] to 500 and then reference the value of &AN2[2], you would get 500, not 300.
On the other hand, assigning &NUM to the first element in &AN (100) is not an object assignment. It is an
assignment by value. If you changed &AN[1] to 500, then &NUM remains 200.

Note. In PeopleCode, the equal sign can function as either an assignment operator or a comparison operator,
depending on context.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

Language Constructs
PeopleCode language constructs include:

» Branching structures: If and Evaluate.

» Loops and conditional loops: For, Repeat, and While.

» Break, Continue, and Exit statements loop control and terminating programs.
* The Return statement for returning from functions.

» Variable and function declaration statements: Global, Local, and Component for variables, and Declare
Function for functions.

» The Function statement for defining functions.
» Class definition statements.

e Try, Catch, and Throw statements for error handling.

Functions as Subroutines

PeopleCode, like C, does not have subroutines as we generally refer to them. PeopleCode subroutines are the
subset of PeopleCode functions only that are defined to return no value or to return a value optionally. Calling
a subroutine is the same as calling a function with no return value:

function_nane([paramlist]);

See Also

Chapter 2, "Understanding the PeopleCode Language," Branching Statements, page 11

Chapter 2, "Understanding the PeopleCode Language," Functions, page 14

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Function
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare Function
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CreateException

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," try

Branching Statements

Branching statements control program flow based on evaluation of conditional expressions.

If, Then, and Else statements

The syntax of If, Then, and Else statements is:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11



Understanding the PeopleCode Language Chapter 2

If condition Then
[statement _|ist_1]
[El se
[statement _|ist_2]]
End-if;

This statement evaluates the Boolean expression condition. If condition is True, then the If statement executes
the statements in Statement_list_1. If condition is False, then the program executes the statements in the Else
clause; if there is no Else clause, the program continues to the next statement.

Evaluate Statement
Use the Evaluate statement to check multiple conditions. Its syntax is:

Eval uate left _term
VWen [relop_1] right_term1
[statement _|ist]

VWhen [relop_n] right_termn
[statenment |ist]
[ When- ot her
[statement |ist]]
End- eval uat e;

The Evaluate statement takes an expression, |eft_term, and compares it to compatible expressions
(right_term) using the relational operators (relop) in a sequence of When clauses. If relop is omitted, then the
equal sign is assumed. If the result of the comparison is True, the program executes the statements in the
When clause, and then moves on to evaluate the comparison in the following When clause. The program
executes the statements in all of the When clauses for which the comparison evaluates to True. If none of the
When comparisons evaluates to True, the program executes the statement in the When-other clause, if one is
provided. For example, the following Evaluate statement executes only the first When clause.
&USE_FREQUENCY in the following example can only have one of three string values:

eval uat e &USE_FREQUENCY

when = "never"
PROD USE FREQ = 0;
when = "soneti mes"

PROD USE FREQ = 1;
when = "frequently"

PROD_USE_FREQ = 2;
when- ot her

Error "Unexpected val ue assigned to &USE FREQUENCY."
end- eval uat e;

To end the Evaluate statement after the execution of a When clause, you can add a Break statement at the end
of the clause, as in the following example:

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

eval uat e &USE FREQUENCY
when = "never"
PROD USE FREQ = O0;
Br eak;
when = "soneti mes"
PROD USE FREQ = 1;
Br eak;
when = "frequently"
PROD USE FREQ = 2;
Br eak;
when- ot her
Error "Unexpected val ue assigned to &USE FREQUENCY. "
end- eval uat e;

In rare cases, you may want to make it possible for more than one When clause to execute, as shown in the
following example:

eval uat e &PURCHASE_AMI
when >= 100000
BASE DI SCOUNT = "Y";
when >= 250000
SPECI AL_SERVI CES = "Y";
when >= 1000000
MUST_GROVEL = "Y";
end- eval uat e;

For Statement

The For statement repeats a sequence of statements a specified number of times. Its syntax is:

For count = expressionl to expression2

[Step i];
statement |i st
End-for;

The For statement initializes the value of count to expressionl, and then increments count by i each time after
it executes the statements in statement_list. The program continues in this loop until count is equal to
expression2. If the Step clause is omitted, then i equals one. To count backwards from a higher value to a
lower value, use a negative value for i. You can exit a For loop using a Break statement.

The following example demonstrates the For statement:

&VAX = 10;
for &COUNT = 1 to &MAX;
W nMessage( " Executing statement list, count =" | &COUNT);
end-for;
See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," If
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Evaluate

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," For

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13



Understanding the PeopleCode Language Chapter 2

Conditional Loops

Conditional loops, Repeat and While, repeat a sequence of statements, evaluating a conditional expression
each time through the loop. The loop terminates when the condition evaluates to True. You can exit from a
conditional loop using a Break statement. If the Break statement is in a loop embedded in another loop, the
break applies only to the inside loop.

Repeat Statement

The syntax of the Repeat statement is:

Repeat
statenment |i st
Until | ogical _expression;

The Repeat statement executes the statements in statement_list once, and then evaluates logical _expression.
If logical_expression is False, the sequence of statements is repeated until logical_expression is True.
While Statement

The syntax of the While statement is:

Wi | e | ogi cal _expression
statement |i st
End- whi | e;

The While statement evaluates logical_expression before executing the statements in statement_list. Tt
continues to repeat the sequence of statements until logical_expression evaluates to False.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Repeat

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," While

Functions

14

This section discusses:

» Supported functions.

» Function definitions.

* Function declarations.
« Function calls.

» Function return values.

»  Function naming conflicts.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

See Also

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 37

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions"
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Function

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare Function

Supported Functions
PeopleCode supports the following types of functions:

» Built-in: The standard set of PeopleCode functions. These can be called without being declared.

» Internal: Functions that are defined (using the Function statement) within the PeopleCode program in
which they are called.

» External PeopleCode: PeopleCode functions defined outside the calling program. These are generally
contained in record definitions that serve as function libraries.

» External non-PeopleCode: Functions stored in external (C-callable) libraries.

Note. PeopleSoft Analytic Calculation Engine provides its own set of built-in functions.

See PeopleTools 8.52: Analytic Calculation Engine, "Using Built-in Functions in Analytic Models."

In addition, PeopleCode supports methods. The main differences between a built-in function and a method
are:

* A built-in function, in your code, is on a line by itself, and it does not (generally) have any dependencies.
You do not have to instantiate an object before you can use the function.
* A method can only be executed by an object (using dot notation).

You must instantiate the object first.

Function Definitions

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed at the
top of the program, along with any variable and external function declarations. The syntax for a PeopleCode
function definition is as follows:

Function name[ (param ist)] [Returns data_type]

[ statement s]
End-function

By convention, PeopleCode programs are stored in records whose names begin in FUNCLIB _, and they are
always attached to the FieldFormula event.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15



Understanding the PeopleCode Language Chapter 2

Note. Application classes can provide an alternative, and sometimes cleaner, mechanism for separating
functionality than the functions stored in function libraries.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Function

PeopleTools 8.52: PeopleCode API Reference, "Application Classes"

Function Declarations

If you call an external function from a PeopleCode program, you must declare the function at the top of the
program. The syntax of the function declaration varies, depending on whether the external function is written
in PeopleCode or compiled in a dynamic link library.

The following is an example of a function declaration of a function that is in another FUNCLIB record
definition:

Decl are Function Updat ePSLOCK Peopl eCode FUNCLI B_NODES. MSGNODENAME Fi el dFor nul a;
See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare Function

Function Calls

16

Functions are called with this syntax:
function_nane([paramlist])

The optional parameter list (param _list) is a list of expressions, separated by commas, that the function
expects you to supply. If a parameter is listed in the function definition, then it is required when the function
is called.

You can check the values of parameters that get passed to functions at runtime in the Parameter window of
the PeopleCode debugger.

If the return value is required, then the function must be called as an expression, for example:
&RESULT = Product ( &RAI SE_PERCENT, .01, EMPL_SALARY);

If the function has an optional return value, it can be called as a subroutine. If the function has no return
value, it must be called as a subroutine:

W nMessage(64, "I can't do that, " | &OPER N CKNAME | ".");

Parameters are always passed to internal and external PeopleCode functions by reference. If the function is
supposed to change the data the caller passes, you must also pass in a variable.

Built-in function parameters can be passed by reference or by value, depending on the function. External C
function parameters can be passed by value or by reference, depending on the declaration and type.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

See Also

Chapter 15, "Debugging Your Application," page 275
Chapter 2, "Understanding the PeopleCode Language," Variables and Functions, page 30

Function Return Values

Functions can return values of any supported data type; some functions do not return any value.

Optional return values occur only in built-in functions. You cannot define a function that optionally returns a
value. Optional return values are typical in functions that return a Boolean value indicating whether execution
was successful. For example, the following call to DeleteRow ignores the Boolean return value and deletes a
TOwW:

Del et eRow( RECORD. BUS_EXPENSE_PER, &L1 ROW RECORD. BUS _EXPENSE DTL, &L2_ROW;
The following example checks the return value and returns a message saying whether it succeeded:

i f Del et eRowm( RECORD. BUS_EXPENSE_PER, &L1_ROW RECORD. BUS_EXPENSE_DTL, &L2_ROW then
W nMessage(" Row del eted.");

el se
W nMessage("Sorry -- couldn't delete that row ");

end-if;

Function Naming Conflicts

If you define a function with the same name as a built-in function, the function that you defined takes
precedence over the built-in function.

Anytime you compile the PeopleCode in the PeopleCode Editor, a warning message appears in the Validate
tab, indicating that a user-defined function has the same name as an existing built-in function.

In addition, if you select Compile All PeopleCode, an error message is generated in the log file for every
user-defined function that has the same name as a built-in function.

The following is an example error message: User-defined function IsNumber is overriding the built-in
function of the same name. (2,98)

If you notice that you named a function the same as a built-in function, and that the built-in function does
what you're trying to achieve, replace your function with a reference to the built-in function. The built-in
function is probably more efficient. In addition, using the built-in function reduces confusion for people who
maintain your code, because if they miss the warning message in the Validate tab, they might assume the
built-in function is being called when it is not.

Expressions

This section discusses:

« Expression fundamentals.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17



Understanding the PeopleCode Language Chapter 2

e Constants.

» Functions as expressions.

» System variables.

*  Metastrings.

» Record field references.

» Definition name references.
» PeopleCode reserved words.

See Also

Chapter 2, "Understanding the PeopleCode Language," Variables, page 25

Expression Fundamentals

Expressions evaluate to values of PeopleCode data types. A simple PeopleCode expression can consist of a
constant, a temporary variable, a system variable, a record field reference, or a function call. Simple
expressions can be modified by unary operators (such as a negative sign or logical NOT), or combined into
compound expressions using binary operators (such a plus sign or logical AND).

Definition name references evaluate to strings equal to the name of a PeopleTools definition, such as a record
or page. They enable you to refer to definitions without using string literals, which are difficult to maintain.

Metastrings (also called meta-SQL) are special expressions used within SQL string literals. At runtime, the
metastrings expand into the appropriate SQL for the current database platform.

Constants

18

PeopleCode supports numeric, string, and Boolean constants, as well as user-defined constants. It also
supports the constant Null, which indicates an object reference that does not refer to a valid object.

Note. You can express Date, DateTime, and Time values by converting from String and Number constants
using the Date, Date3, DateTime6, DateTimeValue, DateValue, Time3, TimePart, and the TimeValue
functions. You can also format a DateTime value as text using FormatDateTime.

Numeric Constants

Numeric constants can be any decimal number. Some examples are:

. 7
. 0.8725
.« -172.0036

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

String Constants

String constants can be delimited by using either single (') or double (") quotation marks. If a quotation mark
occurs as part of a string, the string can be surrounded by the other delimiter type. As an alternative, you can
include the delimiter twice. Some examples are:

e "This is a string constant."

* 'Sois this.'

» 'She said, "This is a string constant."

» "She said, ""This is a string constant."""

Use the following code to include a literal quotation mark as part of your string:
&cDbl Quote = '""'; [* singlequote doubl equote singlequote */
The following also produces a string with two double quotation marks in it:

&Dbl Quote = """"; [* dquote dquote dquote dquote */

You can also directly embed the doubled double quotation mark in strings, such as:
&l mage = Char(10) | '<IMG SRC="% MAGE(' | &plnageNanme | ')"';

Strings must be contained on a single line. If you need to create a multi-line string, you must use
concatenation to connect the lines to be a single sting. For example, one method to do this is:

&string = "Line 1" | Char(10) | "Line 2" | Char(10);

Boolean Constants

Boolean constants represent a truth value. The two possible values are True and False.

Null Constant

Null constants represent an object reference value that does not refer to a valid object. This means that calling
a method on the object or trying to get or set a property of it fails. The Null constant is just the keyword Null.

User-Defined Constants

You can define constants at the start of a PeopleCode program. Then you can use the declared constant
anywhere that the corresponding value would be allowed. Constants can be defined as numbers, strings, or
Boolean values.

User-defined constants can only be declared as Local.

The following is an example of user-defined constant declarations:
Constant &Start_New | nstance = True;

Const ant &Di spl ay_Mode = 0;

Const ant &AddMbde = "A":

Local Field &Start_Date;

M/i:uhcti on(&Start_New | nstance, &Display_Mde, &Add_Mode);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19



Understanding the PeopleCode Language Chapter 2

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions"

Functions as Expressions

You can use any function that returns a value as an expression. The function can be used on the right side of
an assignment statement, passed as a parameter to another function, or combined with other expressions to
form a compound expression.

See Also

Chapter 2, "Understanding the PeopleCode Language." Functions, page 14

System Variables

System variables are preceded by a percent (%) symbol whenever they appear in a program. Use these
variables to get the current date and time, or to get information about the user, the current language, the
current record, page, or component, and more.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "System Variables"

Metastrings

20

Metastrings are special SQL expressions. The metastrings, also called meta-SQL, are preceded with a percent
(%) symbol, and can be included directly in string literals. They expand at runtime into an appropriate
substring for the current database platform. Metastrings are used in or with:

SQLExec.

« Scroll buffer functions (ScrollSelect and its relatives).

» PeopleSoft Application Designer to construct dynamic views.

» Some rowset object methods (Select, SelectNew, Fill, and so on).
*  SQL objects.

e Application Engine.

« Some record class methods (Insert, Update, and so on).

 COBOL.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," SQLExec
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," ScrollSelect

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements"

Record Field References

Use record field references to retrieve the value stored in a record field or to assign a value to a record field.

Record Field Reference Syntax

References to record fields have the following form:
[recordnane. ] fiel dnane

You must supply the recordname only if the record field and your PeopleCode program are in different
record definitions.

For example, suppose that in a database for veterinarians you have two records, PET OWNER and PET. A
program in the record definition PET_OWNER must refer to the PET BREED record field in the PET record
definition as PET.PET_BREED.

However, a program in the PET record definition can refer to this same record field more directly as
PET BREED.

If the program is in the PET BREED record field itself, it can refer to this record field using the caret (")
symbol.

The PeopleCode Editor replaces the caret symbol with the actual record field name.

You can also use object dot notation to refer to record fields, for example:
&FI ELD = Get Recor d( RECORD. PET_OWKER) . Get Fi el d( FI ELD. PET_BREED) ;

See Chapter 4. "Referencing Data in the Component Buffer," page 45.

Legal Record Field Names
A record field name consists of two parts, the record name and the field name, separated by a period.

The field names used in PeopleCode are consistent with the field names allowed in the field definition. Case
is ignored, although the PeopleCode Editor for the sake of convention, automatically formats field names in
uppercase. A field name can be 1 to 18 characters, consisting of alphanumeric characters determined by your
current language setting in Microsoft Windows, and characters #, @, $, and .

A record name can be 1 to 15 characters, consisting of alphanumeric letters determined by your current
language setting in Microsoft Windows, and characters #, @, $, and .

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21



Understanding the PeopleCode Language Chapter 2

Definition Name References

22

Definition name references are special expressions that reference the name of a PeopleTools definition, such
as a record, page, component, business interlink, and so on. Syntactically, a definition name reference
consists of a reserved word indicating the type of definition, followed by a period, then the name of the
PeopleTools definition. For example, the definition name reference RECORD.BUS_EXPENSE PER refers
to the definition name BUS EXPENSE PER.

Generally, definition name references are passed as parameters to functions. If you attempt to pass a string
literal instead of a definition name reference to such a function, you receive a syntax error.

You also use definition name references outside function parameter lists, for example, in comparisons:

I f (%age = PAGE. SOMEPAGE) Then
/* do stuff specific to SOVEPAGE */
End- | f;

In these cases, the definition name reference evaluates to a string literal. Using the definition name reference
instead of a string literal enables PeopleTools to maintain the code if the definition name changes.

If you use the definition name reference, and the name of the definition changes, the change automatically
ripples through the code, so you do not have to change it or maintain it.

In the PeopleCode Editor, if you place your cursor over any definition name reference and right-click, you
can select View Definition to open the definition.

In addition, for most definitions, if you specify a definition that was not created in PeopleSoft Application
Designer, you receive an error message when you try to save your program.
Legal and lllegal Definition Names

Legal definition names, as far as definition name references are concerned, consist of alphanumeric letters
determined by your current language setting in Microsoft Windows, and the characters #, @, $, and .

In some cases, however, the definition supports the use of other characters. You can, for example, have a
menu item named A&M stored in the menu definition even though & is an illegal character in the definition
name reference. The illegal character results in an error when you validate the syntax or attempt to save the
PeopleCode.

You can avoid this problem in two ways:

« Rename the definition so that it uses only legal characters.

» Enclose the name of the definition in quotation marks in the reference, for example:
ITEMNAME."A&M"

The second solution is a commonly used workaround in cases where the definition name contains illegal
characters. If you use this notation, the definition name reference is not treated as a string literal: PeopleTools
maintains the reference the same way as it does other definition name references.

Note. If your definition name begins with a number, you must enclose the name in quotation marks when you
use it in a definition name reference. For example, Complntfc."1 DISCPLIN ACTN".

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2

PeopleCode Reserved Words

Understanding the PeopleCode Language

The following table summarizes the reserved words used in definition name references:

Reserved Word

Common Usage

ANALYTICMODEL

BARNAME Used with transfers and modal transfers.

BUSACTIVITY Used with TriggerBusinessEvent.

BUSEVENT Used with TriggerBusinessEvent.

BUSPROCESS Used with TriggerBusinessEvent.

COMPINTFC Used with Component Interface Classes.

COMPONENT Used with transfers and modal transfers, as well as for
generating URLs.

FIELD Used with methods and functions to designate a field.

FILELAYOUT Used with the SetFileLayout File class method.

HTML Used with the GetHTMLText function.

IMAGE Used in with functions and methods to designate an
image.

INTERLINK Used with the GetInterlink function.

ITEMNAME Used with transfers and modal transfers.

MARKET Used with transfers and URL generation.

MENUNAME Used with transfers and modal transfers.

MESSAGE Used with Messaging functions and methods.

Copyright

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

23



Understanding the PeopleCode Language

24

Chapter 2

Reserved Word

Common Usage

MOBILEPAGE Used to identify a mobile page (used with transfers.)

NODE Used with transfers and modal transfers, as well as
generating URLs.

OPERATION Used with the CreateMessage function.

PAGE Used with transfers and modal transfers to pass the page
item name (instead of the page name), and with controls
and other functions to pass the page name.

PANEL Used with the deprecated TransferPanel function.
Note. Use the TransferPage function and the PAGE
reserved word instead.

PANELGROUP Used with the deprecated DoModalPanelGroup
function.

Note. Use the DoModalComponent function and the
COMPONENT reserved word instead.

PORTAL Used with transfers and modal transfers, as well as
generating URLs.

RECORD Used in functions and methods to designate a record.

ROWSET Used in functions and methods to designate a rowset.

ROWSETCACHE

SCROLL The name of the scroll area in the page. This name is
always equal to the primary record of the scroll.

SQL Used with SQL definitions.

STYLESHEET Used with style sheets.

URL Used with file attachment functions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.




Chapter 2 Understanding the PeopleCode Language

Variables

This section discusses.

« Supported variable types.

» User-defined variables.

» User-defined variable declaration and scope.
e Variable declaration.

o User-defined variable initialization.

» Restrictions on variable use.

» Scope of local variables.

* Duration of local variables.

* Variables and functions.

» Recursive functions.

» State of shared objects using PeopleSoft Pure Internet Architecture.

See Also

Chapter 2, "Understanding the PeopleCode Language." System Variables, page 20

Supported Variable Types

PeopleCode supports these types of variables:

User-defined variables These variable names are preceded by an & character wherever they appear
in a program. Variable names can be 1 to 1000 characters, consisting of
letters A through Z and a through z, digits 0 through 9, and characters #, @,
$,and .

System variables System variables provide access to system information. System variables
have a prefix of the % character rather than the & character. Use these
variables wherever you can use a constant, passing them as parameters to
functions or assigning their values to fields or to temporary variables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25



Understanding the PeopleCode Language

Chapter 2

User-Defined Variables

A user-defined variable can hold the contents of a record field for program code clarity. For example, you
may give a variable a more descriptive name than a record field, based on the context of the program. If the
record field is from another record, you may assign it to a temporary variable rather than always using the
record field reference. This makes it easier to enter the program, and can also make the program easier to
read.

Also, if you find yourself calling the same function repeatedly to get a value, you may be able to avoid some
processing by calling the function once and placing the result in a variable.

User-Defined Variable Declaration and Scope

26

The difference between the variable declarations concerns their life spans:

* Global

The variable is valid for the entire session.
e Component

The variable is valid while any page in the component in which the variable is defined stays active.
* Local

The variable is valid for the duration of the PeopleCode program or function in which the variable is
defined.

You can declare variables using the Global, Local, or Component statements, or you can use local variables
without declaring them. Here are some examples:

Local Nunber &AGE;

A obal String &OPER NI CKNAME;
Conmponent Rowset &MWY_ROWSET,;
Local Any &SOVE_FI ELD;

Local Api Qbj ect &WTREE;

Local Bool ean &Conpare = True;

Variable declarations are usually placed above the main body of a PeopleCode program (along with function
declarations and definitions). The exception is the Local declaration, which you can use within a function or
the main section of a program. You can declare variables as any of the PeopleCode data types. If a variable is
declared as an Any data type, or if a variable is not declared, PeopleTools uses an appropriate data type based
on context.

Note. Declare a variable as an explicit data type unless the variable will hold a value of an unknown data
type.

Global variables can be accessed from different components and applications, including an Application
Engine program. A global variable must be declared, however, in each PeopleCode program where it's used.
Use global variables rarely, because they are difficult to maintain.

Global variables are not available to a portal or applications on separate databases.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

Component variables remain defined and keep their values while any page in the component in which they
are defined remains active. Similar to a global variable, a component variable must be declared in each
PeopleCode program where it is used.

Component variables act the same as global variables when an Application Engine program is called from a
page (using CallAppEngine).

Component variables remain defined after a TransferPage, DoModal, or DoModalComponent function.
However, variables declared as Component do not remain defined after using the Transfer function, whether
you are transferring within the same component or not.

Local variables declared at the top of a PeopleCode program (or within the main, that is, non-function, part of
a program) remain in scope for the life of that PeopleCode program. Local variables declared within a
function are valid to the end of the function and not beyond.

You can check the values of Local, Global, and Component variables at runtime in the different variable
windows of the PeopleCode debugger. Local variables declared within a function appear in the Function
Parameters window.

Variable Declaration

Declare variables before you use them. If you do not declare a variable, it is automatically declared with the
scope Local and the data type Any. You receive a warning message in the Validation tab of the PeopleSoft
Application Designer output window for every variable that is not declared when you save the PeopleCode
program, as shown in the following example:

Wariable &MYFIELD auto-declared. [2,67]
“Wariable &l auto-declared. [2.67]

Wariable SFOUND auto-declared. [2,67)
Wariable &K auto-declared. [2,67]

Wariable SCOPYFRMRBOW auto-declared. [2,67)
Wariable SCOPYTROW auto-declared. [2.67]

A b Build A Upgrade 4 Resuttz # Validate /

Validation tab with auto-declared variables

If you declared all the variables, you can use these values to ensure you do not have misspellings. For
example, if you declared a variable as &END_DATE and then accidentally spell it as &EDN_DATE, the
"new variable" appears on the Validate tab when you save the program.

Another reason to declare variables is for the design-time checking. If you declare a variable of one data type
and then assign to it a value of a different type, the PeopleCode Editor catches that assignment as a design-
time error when you try to save the program. With an undeclared variable, the assignment error does not
appear until runtime.

The following example produces a design-time error when you try to save the program:
Local Field &DATE;

&DATE = Cet Recor d( RECORD. DERI VED_HR) ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27



Understanding the PeopleCode Language Chapter 2

In addition, if you declare variables, the Find Object Reference feature finds embedded definitions. For
example, suppose you wanted to find all occurrences of the field DEPT ID. If you have not declared
&MyRecord as a record, Find Object References does not find the following reference of the field DEPT ID:

&WRecord. DEPT_I D. Vi si bl e = Fal se;

User-Defined Variable Initialization

To declare and initialize variables in one step, use the following format:
Local String &WString = "New';

Local Date &WDate = %bate;

This method is available only for variables with the scope of Local.

Though you can declare more than one variable on a single line, you can only initialize one variable on a line.
The following code creates a syntax error when you try to save the program:

Local Nunber &N1, &N\2 = 5;

You cannot declare a variable, then initialize it in a second declaration statement. The following produces a
duplicate declaration error when you try to save the program:

d obal Number &N1;
Local String &\1 = "Str"; /* Duplicate definition. */

If you do not initialize variables, either when you declare them or before you use them, strings are initialized
as Null strings, dates and times as Null, and numbers as zero.

Restrictions on Variable Use

28

The following data types can only be declared as Local:

« JavaObject

o Interlink

Note. Interlink objects can be declared as type Global in an Application Engine program.

e TransformData

«  XmlNode

The following ApiObject data type objects can be declared as Global:
* Session

» PSMessages collection

* PSMessage

« All tree classes (trees, tree structures, nodes, levels, and so on)

*  Query classes

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

All other ApiObject data type objects (such as all the PortalRegistry classes) must be declared as Local.

Scope of Local Variables
The two types of local variables are: program-local and function-local.
« A program-local variable is declared as local in the main part of the program and is local to that program.
» A function-local variable is declared as local inside a function and is local only to that function.

See Chapter 2. "Understanding the PeopleCode Language," Recursive Functions, page 31.

A program-local variable can be affected by statements anywhere in the program. For example, suppose
RECORD A .FIELD A.FieldFormula has two functions, FUNC 1 and FUNC 2, and both modify a local
variable named & TEMP. They could affect each other, as they both use the same variable name in the same
PeopleCode program.

If, however, FUNC 3 is defined in RECORD B FIELD B.FieldFormula and makes reference to &TEMP, it
is not the same &TEMP as in RECORD_A.FIELD A.FieldFormula. This difference becomes important
when FUNC 1 calls FUNC 3. Technically, both functions exist at the same time, one inside the other, but
&TEMP is a different variable for each of them. However, if FUNC 1 calls FUNC_2, then &TEMP is the
same variable for both.

Duration of Local Variables

A local variable is valid for the duration of the PeopleCode program or function in which it is defined. A
PeopleCode program is defined as what the PeopleCode Editor in Application Designer presents in a single
window: a chunk of PeopleCode text associated with a single item (a record field event, a component record
event, and so on.)

When the system evaluates a PeopleCode program and calls a function in the same PeopleCode program, a
new program evaluation is not started.

However, when a function from a different PeopleCode program is called (that is, some PeopleCode text
associated with a different item), the current PeopleCode program is suspended, and the Component
Processor starts evaluating the new program. This means that any local variables in the calling program
(called A) are no longer available. Those in the called program (called B) are available.

Even if the local variables in the A program have the same name as those in the B program, they are different
variables and are stored separately.

If the called program (B) in turn calls a function in program A, a new set of program A's variables are
allocated, and the called function in A uses these new variables. Thus, this second use of program A gets
another lifetime, until execution returns to program B.

The following is an example of pseudocode to show how this might work. (This is non-compiled, non-
working code. To use this example, you'd have to enter a similar program without the external declaration of
the function in the other, not yet compiled, one.)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29



Understanding the PeopleCode Language Chapter 2

Program A (Rec. Fi el d. Fi el dChange) :

| ocal nunber &t enp;

decl are function Bl Peopl eCode Rec. Field Fiel dFormul a;

/* Uncoment this declaration and coment above to conpile this the first tine.
function Bl
end- functi on;

*/

function Al

W nMessage("Al: &enp is " | &enp);
&enp = &enp + 1;

A2();

B1();

A2(); .

end- f uncti on;

function A2

W nMessage("A2: &enp is " | & enp);
&enmp = &enmp + 1;

end-functi on;

AL();

Program B (Rec. Fi el d. Fi el dFormul a) :

| ocal nunber &tenp;

decl are functi on A2 Peopl eCode Rec. Field Fi el dChange;

functi on Bl

W nMessage("Bl: &enp is " | &enp);
&emp = &enmp + 1,
A2();

end- f uncti on;

When this is compiled and run, it produces the following output:

Al: &emp is O
A2: &empis 1
Bl: &enp is O
A2: &emp is O
A2: &empis 2

Variables and Functions

30

PeopleCode variables are always passed to functions by reference. This means, among other things, that a
function can change the value of a variable passed to it so that the variable has the new value on return to the
calling routine.

For example, the Amortize built-in function expects you to pass it variables into which it places the amount of
a loan payment applied towards interest (&PYMNT INTRST), the amount of the payment applied towards
principal (&PYMNT _PRIN), and the remaining balance (&BAL). It calculates these values based on
information that the calling routine supplies in other parameters:

& NTRST_RT=12;

&PRSNT_BAL=100;

&PYMNT_AMNT=50;

&PYMNT_NBR=1;

Anortize( & NTRST_RT, &PRSNT_BAL, &PYNMNT_AMNT, &PYMNT_NBR,
&PYMNT_| NTRST, &PYWNT_PRIN, &BAL);

&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" |
String(&PYMNT_PRIN) | " Bal=" | String(&BAL);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2

Understanding the PeopleCode Language

Recursive Functions

State

Copyright

PeopleCode supports True recursive functions. A function can call itself, and each possibly recursive call of
the function has its own independent copy of the parameters and function-local variables.

When writing recursive functions, be careful about passing variables as parameters, because PeopleCode
implements such calls by reference. This means that if you call a function such as:

Function Func(&n as Nunber)

&n = 3;

End- Functi on;
| ocal & = 5;
Func( &x);

After the call to Func(&x), &x has the value 3, not 5. If the call was Func(Value(&x)), after the call &x is still
5.

of Shared Objects Using PeopleSoft Pure Internet Architecture
Consider the following scenario:

* Alocal and a global variable refer to the same object.
» That object is used in a modal component.
» Instead of completing the modal component, the user clicks the browser Back button.

In general, the global state of the object is restored. If the object has not been destroyed from the global state,
the global state of the object is used for local references; otherwise, the local state is used for local references.

Here is an example:

A obal array of number &G obal _Array;
Local array of number &lLocal _Array:

&4 obal _Array = CreateArray(1, 2, 3);
&Local _Array = &G obal _Array

DoMbdal ( Page. PAGENAME, "", -1, -1, 1, Record. SHAREDREC, 1);
/* return to here */

&Local _Array[1] = -1;

&4 obal _Array[2] = -2;

W nMessage(&L.ocal _Array is " | &L.ocal Array.Join());

W nMessage(&d obal _Array is " | &4 obal _Array.Join());

The following program, program 2, is located on the modal page the user is transferred to:

d obal array of nunber &G obal Array;
&d obal _Array[3] = -3;

The following program, program 3, is also located on the modal page:

d obal array of nunber &G obal _Array;
&4 obal _Array = CreateArray(1l, 2, -3);

If program 2 is run, the output is the following:

&Local Array is -1, -2, -3

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31



Understanding the PeopleCode Language

&Global_Array is -1, -2, -3

Chapter 2

However, if program 3 is run, thereby destroying the original global state, the output is the following:

&Local Arrayis-1,2,3

&Global Arrayis 1, -2, -3

See Also

PeopleTools 8.52: PeopleCode Language Reference, "System Variables"

Chapter 15, "Debugging Your Application," page 275

Operators

PeopleCode expressions can be modified and combined using math, string, comparison, and Boolean
operators.

This section discusses:

* Math operators.

* Operations on dates and times.

» String concatenation.

@ operator.
Comparison operators.

Boolean operators.

Math Operators

32

PeopleCode uses standard mathematical operators:

J’_
Add

Subtract (or unary negative sign)

%
Multiply
/

Divide

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2

Understanding the PeopleCode Language

Exponential

Exponentiation occurs before multiplication and division; multiplication and division occur before addition
and subtraction. Otherwise, math expressions are evaluated from left to right. You can use parentheses to
force the order of operator precedence.

The minus sign can also, of course, be used as a negation operator, as in the following expressions:
-10

- &NUM
- Product (&PERCENT_CUT, .01, SALARY)

Operations on Dates and Times

You can add or subtract two date values or two time values, which provides a Number result. In the case of
dates, the number represents the difference between the two dates in days. In the case of time, the number
represents the difference in seconds. You can also add and subtract numbers to or from a time or date, which
results in another date or time. Again, in the case of days, the number represents days, and in the case of time,
the number represents seconds.

The following table summarizes these operations:

Operation Result Type Result Represents
Time + number of seconds Time Resulting time

Date + number of days Date Resulting date

Date - date Number Difference in days

Time - time Number Difference in seconds
Date + time DateTime Date and time combined

String Concatenation

The string concatenation operator ( | ) is used to combine strings. For example, assuming
&OPER_NICKNAME is "Dave", the following statement sets &RETORT to "I can't do that, Dave."

&RETORT = "I can't do that, " | &PER NICKNAME | "."

The concatenation operator automatically converts its operands to strings. This conversion makes it easy to
write statements that display mixed data types. For example:

&DAYS LEFT = &CHRI STMAS - %bat €;
W nMessage("Today is " | Yate | ". Only " | &DAYS LEFT | " shopping days left!");

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33



Understanding the PeopleCode Language Chapter 2

@ Operator

The @ operator converts a string storing a definition reference into the definition. This is useful, for example,
if you want to store definition references in the database as strings and retrieve them for use in PeopleCode;
or if you want to obtain a definition reference in the form of a string from the operator using the Prompt
function.

To take a simple example, if the record field EMPLID is currently equal to 8001, the following expression
evaluates to 8001:

@ EMPLI D

The following example uses the @ operator to convert strings storing a record reference and a record field
reference:

&STR1 = "RECORD. BUS_EXPENSE_PER';

&STR2 = "BUS_EXPENSE_DTL. EMPLI D*;

&STR3 = FetchVal ue( @&STR1), Current RowNunber (1), @&STR2), 1);

W nMessage( &STR3, 64);

Note. String literals that reference definitions are not maintained by PeopleTools. If you store definition
references as strings, then convert them with the @ operator in the code, this creates maintenance problems
whenever definition names change.

The following function takes a rowset and a record, passed in from another program, and performs some
processing. The GetRecord method does not take a variable for the record, however, you can dereference the
record name using the @ symbol. Because the record name is never hard-coded as a string, if the record name
changes, this code does not have to change.

Functi on Get _My_Row( &PASSED ROWSET, &PASSED RECORD)
For &ROWSET_ROW = 1 To &PASSED_ ROWSET. RowCount
&UNDERLY!I NGREC = "RECORD. " | &PASSED ROWBET. DBRecor dNane;
&ROW RECORD = &PASSED ROWSET. Get Row( &ROWBET ROW . Get Recor d( @UNDERLYI NGREC) ;
/* Do other processing */

End- For ;

End- Functi on;

Comparison Operators

Comparison operators compare two expressions of the same data type. The result of the comparison is a
Boolean value. The following table summarizes these operators:

Operator Meaning

= Equal

1= Not equal

34 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 2 Understanding the PeopleCode Language

Operator Meaning

< Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

You can precede any of the comparison operators with the word Not, for example:

« Not=
¢ Not<
¢ Not>=

Expressions formed with comparison operators form logical terms that can be combined using Boolean
operators.

String comparisons are case-sensitive. You can use the Upper or Lower built-in functions to do a case-
insensitive comparison.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Lower

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Upper

Boolean Operators

The logical operators AND, OR, and NOT are used to combine Boolean expressions. The following table
shows the results of combining two Boolean expressions with AND and OR operators:

Expression 1 Operator Expression 2 Result
False AND False False
False AND True False
True AND True True

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35



Understanding the PeopleCode Language Chapter 2

36

Expression 1 Operator Expression 2 Result
False OR False False
False OR True True
True OR True True

The NOT operator negates Boolean expressions, changing a True value to False and a False value to True.

In complex logical expressions using the operations AND, OR, and NOT, NOT takes the highest precedence,
AND is next, and OR is lowest. Use parentheses to override precedence. (Generally, it is a good idea to use
parentheses in logical expressions anyway, because it makes them easier to decipher.) If used on the right side
of an assignment statement, Boolean expressions must be enclosed in parentheses.

The following are examples of statements containing Boolean expressions:

&FLAG = (Not (&FLAG)); /* toggles a Bool ean */
if ((&HAS_FLEAS or &HAS TI CKS) and
SOAP_QTY <= M N_SOAP_QTY) then
SOAP _QTY = SOAP QTY + Order Fl eaSoap( SOAP_ORDER QTY) ;
end-if;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 3

Understanding Objects and Classes in
PeopleCode

This chapter discusses:

» Classes and objects
e Creating and using objects.
» Assigning objects.

« Passing objects.

Classes and Objects

PeopleSoft delivers classes of objects that you can manipulate with PeopleCode. In addition, you can extend
the existing classes or create your own. The delivered classes may or may not have a graphic user interface
equivalent; some are representations of data structures that occur only at runtime. With PeopleCode, you can
manipulate data in the data buffer easily and consistently. These classes enable you to write code that's more
readable, more easily maintained, and more useful.

This section discusses:
e C(lasses.
* Objects.

* Object instantiation.

Classes

A classis the formal definition of an object and acts as a template from which an instance of an object is
created at runtime. The class defines the properties of the object and the methods used to control the object's
behavior.

PeopleSoft delivers predefined classes, such as Array, File, Field, SQL, and so on. You can create your own
classes using the Application class. You can also extend the functionality of the existing classes using the
Application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37



Understanding Objects and Classes in PeopleCode Chapter 3

See Also

PeopleTools 8.52: PeopleCode API Reference, "Application Classes"

Objects

An aobject represents a unique instance of a data structure defined by the template provided by its class. Each
object has its own values for the variables belonging to its class and responds to methods defined by that
class. This is the same for classes provided by PeopleSoft and for classes you create yourself.

After an object has been created (instantiated) from a class, you can change its properties. A property is an
attribute of an object. Properties define:

» Object characteristics, such as name or value.
» The state of an object, such as deleted or changed.

Some properties are read-only and cannot be set, such as Name or Author. Other properties can be set, such as
Value or Label.

Objects are different from other data structures. They include code (in the form of methods), not just static
data. A method is a procedure or routine, associated with one or more classes, that acts on an object.

An analogy to illustrate the difference between an object and its class is the difference between a car and the
blue Citroen with license plate number TS5800B. A class is a general category, while the object is a specific
instance of that class. Each car comes with standard characteristics, such as four wheels, an engine, or brakes,
that define the class and are the template from which the individual car is created. You can change the
properties of an individual car by personalizing it with bumper stickers or racing stripes, which is like
changing the Name or Visible property of an object. The model and date that the car is created are similar to
read-only properties because you cannot alter them. A tune-up acts on the individual car and changes its
behavior, much as a method acts on an object.

Object Instantiation

A class is the blueprint for something, like a bicycle, a car, or a data structure. An object is the actual thing
that is built using that class (or blueprint.) From the blueprint for a bicycle, you can build a specific mountain
bike with 23 gears and tight suspension. From the blueprint of a data structure class, you build a specific
instance of that class. Instantiation is the term for building that copy, or an instance, of a class.

Creating and Using Objects

This section discusses how to:

» Instantiate objects.
» Change object properties.

* Invoke methods.

38 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 3 Understanding Objects and Classes in PeopleCode

« Copy objects.

Instantiating Objects

Generally you instantiate objects (create them from their classes) using built-in functions or methods of other
objects. Some objects are instantiated from data already existing in the data buffer. Think about this kind of
object instantiation as taking a chunk of data from the buffer, encapsulating it in code (methods and
properties), manipulating it, then freeing the references. Some objects can be instantiated from a previously
created definition, such as a page or file layout definition, instead of from data.

The following example creates a field object:
Local field &WField
&WField = GetFiel d():;

Get functions, which include functions such as GetField, GetRecord, and so on, generally provide access to
data that already exists, whether in the data buffers or from an existing definition.

Create functions, which include functions such as CreateObject, CreateArray, CreateRecord, generally create

defined objects that do not yet exist in the data buffer. Create functions create only a buffer structure. They do
not populate it with data. For example, the following function returns a record object for a record that already
exists in the component buffer:

&REC = Get Record();

The following example creates a standalone record. However, there is no data in &REC2. The specified
record definition must be created previously, but the record does not have to exist in either the component or
data buffer:

&REC2 = CreateRecord( EMP_CHKLST_I TM ;

Objects with no built-in functions can only be instantiated from a session object (such as tree classes,
component interfaces, and so on). For most of these classes, when you use a Get function, all you get is an
identifier for the object. To fully instantiate the object, you must use an Open method.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Session Class"

Changing Properties

To set or get characteristics of an object, or to determine the state of an object, you must access its properties
through dot notation syntax. Follow the reference to the object with a period, followed by the property, and
assign it a value. The format is generally as follows:

oj ect. Property = Val ue
The following example hides the field &M YFIELD:
&MYFI ELD. Vi si bl e = Fal se

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39



Understanding Objects and Classes in PeopleCode Chapter 3

You can return information about an object by returning the value of one of its properties. In the following
example, &X is a variable that is assigned the value found in the field &MYFIELD:

&X = &WYFI ELD. Val ue
In the following example, a property is used as the test for a condition:

I f &ROWBET. Acti veRowCount <> & Then

Invoking Methods

40

You also use dot notation to execute methods. Follow the reference to the object with a period, then with the
method name and any parameters the method takes. The format is generally:

oj ect . net hod() ;

You can string methods and property values together into one statement. The following example strings
together the GetField method with the Name property:

| f &REC BASE. Get Fi el d(&R) . Nane = &REC_RELLANG. Get Fi el d( &J) . Nane Then

Some methods return a Boolean value: True if the method executes successfully; False if it does not. The
following method compares all like-named fields of the current record object with the specified record. This
method returns as True if all like-named fields have the same value:

| f &MWYRECORD. Conpar eFi el ds( &OTHERRECORD) Then

Other methods return a reference to an object. The GetCurrEffRow method returns a row object:
&MYROW = &MYROWBET. Get Cur r Ef f Row( ) ;

Some methods do not return anything. Each method's documentation indicates what it returns.

Many objects have default methods. Instead of entering the name of the method explicitly, you can use that
method's parameters. Objects with default methods are composite objects; that is, they contain additional
objects within them. The default method is generally the method used to get the lower-level object.

A good example of a composite object is a record object. Record definitions are composed of field
definitions. The default method for a record object is GetField.

The following lines of code are equivalent:

&Fl ELD
&Fl ELD

&RECORD. Get Fi el d( FI ELD. EMPLI D) ;
&RECORD. EMPLI D;

Note. If the field you're accessing has the same name as a record property (such as NAME) you cannot use
the shortcut method for accessing the field. You must use the GetField method.

Another example of default methods concerns rowsets and rows. Rowsets are made up of rows, so the default
method for a rowset is GetRow. The two specified lines of code are equivalent: They both get the fifth row of
the rowset:

&ROWBET = Get RowSet () ;
/*the next two lines of code are equival ent */

&ROW = &ROWSET. Get Row( 5) ;
&ROW = &ROWSET(5) :

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 3 Understanding Objects and Classes in PeopleCode

The following example illustrates the long way of enabling the Name field on a second-level scroll area (the
code is executing on the first-level scroll area):

Get Rowset ( SCROLL. EMPLOYEE_CHECKLI ST) . Get Row( 1) .
Get Recor d( EMPL_CHKLST | TM . Get Fi el d( FI ELD. NAMVE) . Enabl ed = True;

Using default methods enables you to shorten the previous code to the following:

Get Rowset ( SCROLL. EMPLOYEE_CHECKLI ST) (1) . EMPL_CHKLST | TM NAME.
Enabl ed = True;

Expressions of the form class.name.property or class.name.method(..) are converted to a corresponding
object. For example, the code & enp = RECORD. JOB. | sChanged; is evaluated as if it were & enp =
Get Recor d( RECORD. JOB) . | sChanged; .

Furthermore, the code JOB. EMPLI D. Vi si bl e = Fal se; is evaluated as if it were
CetFi el d(JOB. EMPLI D). Vi si bl e = Fal se;.

Copying Objects

Many of the classes delivered with PeopleTools have some sort of copy method, such as the rowset class
CopyTo, the tree class Copy, and so on. Unless specifically identified (such as the message class
CopyRowsetDelta) all copy methods use the current data of the object. This may be different than the original
data values if the object was retrieved from the database and the values in it have been changed either by an
end-user or a PeopleCode program.

Assigning Objects

When you assign one object to another, you do not create a copy of the object, but only make a copy of the
reference.

In the following example, &A1 and &A2 refer to the same object. The assignment of &A1 to &A2 does not
allocate any database memory or copy any part of the original object. It makes & A2 refer to the same object
to which &A1 refers.

Local Array of Number &Al, &A2;

&A1
&A2

CreateArray(2, 4, 6, 8, 10);
&A1,

The following diagram shows how both references point to the same object:

&A1

&A2

Representation of two arrays

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41



Understanding Objects and Classes in PeopleCode Chapter 3

If the next statement is &A2[ 5] = 12; , then &A1[5] also equals 12, as shown in the following diagram:

&A1[5] 1
2 4 6 8 12
&A2[5] *

Representation of two arrays with same content

The following example is not considered an object assignment:

Local nunber &NUM
Local Array of Number &A1;

&A1 = CreateArray(2, 4, 6, 8, 10);
&NUM = &A1[ 3];

&NUM is of data type Number, which is not an object type. If you later change the value of &NUM in the
program, you will nott change the element in the array.

Passing Objects

42

All PeopleCode objects can be passed as function parameters. You can pass complex data structures between
PeopleCode functions (as opposed to passing long lists of fields). If a function is passed an object, the
function works on the actual object, not on a copy of the object.

In the following simple example, a reference to the Visible property is passed, not the value of Visible. This
enables the MyPeopleCodeFunction either to get or set the value of the Visible property:

MyPeopl eCodeFuncti on( &y Fi el d. Vi si bl e) ;

In the following example, the function Process_Rowset loops through every row and record in the rowset
passed to it and executes an Update statement on each record in the rowset. This function can be called from
any PeopleCode program and can process any rowset that is passed to it.

Local Rowset &RS;
Local Record &REC;

Function Process_RowSet (&ROWNBET as Rowset);

For & = 1 To &ROWSET. Rowcount
For & = 1 To &ROWBET. Recor dcount
&REC = &ROWBET. Get Row( &l ) . Get Recor d( &J) ;
&REC. Updat e() ;
End- For ;
End- For ;
End- Functi on;

&RS = Get Level 0();

Process_RowSet ( &RS) ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 3 Understanding Objects and Classes in PeopleCode

The following function takes a rowset and a record passed in from another program. GetRecord does not take
a variable for the record; however, you can use the @ symbol to dereference the record name.

Function Get M/ _Row( &PASSED ROWSET, &PASSED RECORD)

For &ROANSET_ROW = 1 To &PASSED ROWSET. RowCount
&UNDERLYI NCREC = "RECORD. " | &PASSED ROWSET. DBRecor dNane;
&ROW RECCORD = &PASSED_ROWSET. Get Row( &ROWSET_ROW . Get Recor d( @UNDERLYI NGREC) ;

/* Do other processing */
End- For ;

End- Functi on;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43






Chapter 4

Referencing Data in the Component
Buffer

This chapter provides an overview of component buffer structure and contents and discusses how to:

» Specify data with contextual references.

» Specify data with references using scroll path syntax and dot notation.

Understanding Component Buffer Structure and Contents

This section discusses:

» Component buffer contents.

* Rowsets and scroll areas.

* Record fields in the component buffer.
See Also

Chapter 4, "Referencing Data in the Component Buffer." Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 54

Component Buffer Contents

PeopleCode frequently must refer to data in the component buffer, the area in memory that stores data for the
currently active component.

The two methods for specifying a piece of data in the component buffer from within PeopleCode are:

» Contextual references, which refer to data relative to the location of the currently executing PeopleCode
program.

» References using scroll path syntax, which provide a complete, or absolute, path through the component
buffer to the referenced component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45



Referencing Data in the Component Buffer Chapter 4

46

In addition to the built-in functions used to access the component buffer, PeopleCode provides enhanced
access to structured data buffers using the object syntax. Use the object-oriented PeopleCode to resolve
contextual ambiguities when you reference a nonprimary record field that appears on more than one scroll
level in a component. As with built-in functions, object syntax provides for both relative and absolute
references to component buffer data.

See Chapter 3, "Understanding Objects and Classes in PeopleCode." page 37.

The component buffer consists of rows of buffer fields that hold data for the records associated with page
controls, including primary scroll records, related display records, derived/work records, and Translate table
records. PeopleCode can reference buffer fields associated with page controls and other buffer fields from the
primary scroll record and related display records.

See Chapter 4, "Referencing Data in the Component Buffer." Record Fields and the Component Buffer, page
48.

Primary scroll records are the principal SQL tables or views associated with page scroll levels. A primary
scroll record uniquely identifies a scroll level in the context of its page: each scroll level can have only one
primary scroll record, and the same primary scroll record cannot occur on more than one scroll area at the
same level of the page. Parent-child relations between primary scroll records determine the dependency
structure of the scroll areas on the page. The primary record on a level one scroll area must be a child of the
primary record on level zero, the primary record on a level two scroll area must be a child of the primary
record on its enclosing level one scroll area, and the primary record on a level three scroll area must be a child
of the primary record on its enclosing level two scroll area.

Note. Level zero may have multiple records.

The hierarchical relations among scroll areas, controlled by hierarchical relations among primary scroll
records, enable the user and PeopleCode to drill down through the scroll hierarchy to access any buffer field,
including related display, derived/work, and Translate table buffer fields, which occupy space on the same
rows as the primary scroll record buffer fields with which they are associated.

For example, to access a page field on level two of a page, a user must:
1. Select a field on level one of the page.

2. Scroll to and select the field on level two of the page.

The following diagram illustrates this scroll path taken by the user:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4

Referencing Data in the Component Buffer

Level zero row

F1 F2 F3 F4

R1

Selected row on level one

Target row and buffer figld
on level two

FI F2 F3 F4

Rl == = = —= .
»>lR2 — — =
Ra

Scroll path to a buffer field

To access the same field in the component buffer, PeopleCode must:
1. Specify a scroll area and row on scroll level one: this selects a subset of dependent rows on level two.
2. Specify a scroll area and row on scroll level two.

3. Specify the recordname.fieldname on the level two row.

PeopleCode component buffer functions use a common scroll path syntax for locating scrolls, rows, and
fields in multiple-scroll pages.

Rowsets and Scroll Areas

Copyright

Rowsets enable more consistent, more convenient, and less ambiguous manipulation of buffer data than
previous built-in functions could achieve. It's a hierarchical data object that can represent an entire scroll area
and all of its subordinate scroll areas.

A rowset can contain the entire contents of a component buffer, or the contents of any lower-level scroll area
plus all of its subordinate buffer data. The hierarchical structure of component levels—scroll area, row,
record, field—is provided by the new object data types, Rowset, Row, Record, and Field.

You can access any rowset, row, record, or field within the buffer using the dot notation inherent in
PeopleTools 8 object-oriented programming. This enables you to reference fields within a record object,
records within a row object, and rows within a rowset object as properties of the parent objects.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47



Referencing Data in the Component Buffer

See Also

Chapter 5. "Accessing the Data Buffer," page 65

Chapter 4

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class"

Chapter 3, "Understanding Objects and Classes in PeopleCode." page 37

Record Fields and the Component Buffer

The record fields in the component buffer are a superset of those accessible to the user through page controls.
In most cases, PeopleCode can reference any record field in a scroll area's primary scroll record or in a related
display record, not just those fields that are associated with page controls. The following table lists record

types and locations:

Type and Location of Record

Presence in Component Buffer

Primary record on scroll levels greater than zero

On scroll levels greater than zero, all record fields from
the primary scroll record are in the component buffer.
PeopleCode can refer to any record field on the primary
scroll record, even if it is not associated with a page
control.

Primary record on scroll level zero

If scroll level zero of a page contains only controls
associated with primary scroll record fields that are
search keys or alternate search keys, then only the
search key and alternate search key fieldsave in the
component buffer, not the entire record. The values for
the fields come from the keylist, and the record cannot
run RowlInit PeopleCode. If level zero contains at least
one record field from the primary scroll record that is
not a search key or alternate search key, then all the
record fields from the primary scroll record are
available in the buffer. (For this reason, you may
sometimes need to add one such record field at level
zero of the page to make sure that all the record fields of
the level-zero primary record can be referenced from
PeopleCode.)

Related display record fields

The buffer contains the related display record field, plus
any record fields from the related display record that are
referenced by PeopleCode programs. You can reference
any record field in a related display record.

Derived/work record fields

Only derived/work record fields associated with page
controls are in the component buffer. Other record fields
from the derived/work record cannot be referenced from
PeopleCode.

48

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

Type and Location of Record Presence in Component Buffer

Translate table record fields Only Translate table fields associated with page controls
are available in the component buffer. Other fields from
the Translate table cannot be referenced from
PeopleCode.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed.

Specifying Data with Contextual References

In a contextual reference, PeopleCode refers to a row or buffer field determined by the context in which a
PeopleCode program is currently executing.

This section includes an overview of current context and discusses how to:
e Use contextual row references.

o Use contextual buffer field references.

Understanding Current Context

All PeopleCode programs, with the exception of programs associated with standard menu items, execute in a
current context. The current context determines which buffer fields can be contextually referenced from
PeopleCode, and which row of data is the current row on each scroll level at the time a PeopleCode program
is executing.

The current context comprises a subset of the buffer fields in the component buffer, determined by the row of
data where a PeopleCode program is executing. The current context includes:

e All buffer fields in the row of data where the PeopleCode program is executing.

« All buffer fields in rows that are hierarchically superior to the row where the PeopleCode program is
executing.

In the following diagram, all rows enclosed in dotted rectangles are part of the current context:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49



Referencing Data in the Component Buffer Chapter 4

50

Level zero row is
always in context

F1 F2 F3 F4
R1

Parent of row where execution
takes place is in context

Fi F2 F3 F4

Row where PeopleCade
executes is in context

Fi F2 F3 F4

v
8

All rows on lower scroll are
out of contaxt

FI F2 F3 F4
R1
R2
R3

Y

Context of PeopleCode executing on a level two scroll area

In the preceding diagram, a PeopleCode program is executing in a buffer field on row R3 on scroll level two.
The rows in scroll level two are dependent on row R2 on scroll level one. The rows in scroll level one are
dependent on the single row at scroll level zero. The current context consists of all the buffer fields at level
two row R3, level one row R2, and level zero row R1. The rows in the current context on levels one and two
are the current rows on their respective scroll areas. The single row on level zero is always current and is
included in any current context. All rows other than the current rows and the level zero row are outside the
current context. No current row can be determined on scroll areas below the one where the PeopleCode is
executing.

With PeopleTools 8, contextual references work within the structure of a rowset object, and can include
references to all field objects, record objects, row objects, and rowset objects in the current context.
Contextual Reference Processing Order

PeopleCode resolves contextual references at runtime by first checking the row where the PeopleCode
program is executing. If PeopleCode does not find an appropriate buffer field, it looks in progressively higher
rows in the current context. The following diagram indicates this processing order:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

Level zero row is
always in context

F1 F2 F3 F4

R1

@ Parent of row where execution
takes place is in context

F1 F2 F3 F4

Row where PeopleCode
exaculas is in context

F1 F2 F3 F4

R1
» R2
R3 I

.

All rows on lower scroll are
out of context

F1 F2 F3 F4

R
—» R2
R3

Processing order of a contextual reference

In typical pages, this processing order is not significant; however, if the same record occurs on more than one
level of a page, you should understand how the direct reference is resolved.

Using Contextual Row References

A contextual row reference refers to a row in the current context on level one or lower in the page. Because
each scroll area uses a unique primary record, the name of that record uniquely identifies whichever row is in
the current context for that scroll level. A contextual row reference uses a RECORD.recordname component
name reference to specify the scroll level of the intended row, resulting in a reference to the current row at the
specified scroll level.

For example, you can use contextual row references with the RecordDeleted, RecordNew, and
RecordChanged functions:

| f RecordDel et ed( RECORD. SOVE_REC) Then. ..

With PeopleTools 8 object-oriented programming, a row can be referenced by specifying parent rows or
rowsets of the current rowset:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51



Referencing Data in the Component Buffer Chapter 4

I f Get RowSet (). Par ent Rowset . Par ent Row. | sDel et ed Then. ..

In early versions of PeopleTools, you could make contextual row references using a recordname.fieldname
expression:

H deRow( SOVE_REC. ANY_FI ELD)
I f RecordDel et ed( SOVME_REC. ANY_FI ELD) Then. ..

This syntax is still supported.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 49

Using Contextual Buffer Field References

A contextual buffer field reference is a type of PeopleCode expression that refers to a buffer field by
specifying a record field. The row of the buffer field is determined by the current context of the PeopleCode
program where the reference is made. You can use a contextual buffer field reference to retrieve or update the
value in the buffer field, to pass the buffer field value to a function, or to reference an instance of a page
control associated with the buffer field. The following statements use contextual buffer field references:

/* Assigns value of variable to buffer field */

SOVE_RECORD. SOVE_FI ELD = &VAL;

/* Assigns value of buffer field to variable */

&VAL = SOVE_RECORD. SOVE_FI ELD;

/* Hides instance of control associated with buffer field */
Hi de( SOVE_RECORD. SOVE_FI ELD) ;

With PeopleTools 8 object-oriented programming, a field object incorporates information about both the
record field on which the buffer field is based and the page control with which the buffer field is associated.
By referring to the field object, you either make a contextual buffer field reference or you change an interface
attribute of the associated page control, depending on the object property you use. The following example has
the same effect as a contextual buffer field reference:

/* Assigns value of a variable to a buffer field */
&MWYFI ELD. Val ue = &SOVEVAL;

Contextual Buffer Field Reference Ambiguity

Nonprimary record fields may appear on more than one scroll level in a page. For example, a page may use a
derived/work field DERIVED JS.CALC 1 as a work field on level one and level two of the same page. This
creates distinct DERIVED JS.CALC 1 buffer fields for rows on both levels. Because of the order in which
PeopleCode resolves contextual buffer field references, if the contextual reference &VAL =

DERI VED_JS. CALC_1; executes in a PeopleCode program on a level-two row, the reference always
retrieves the buffer field value on the current row on level two. PeopleCode on level two is unable to retrieve
the value of the DERIVED JS.CALC 1 on level one using a contextual reference.

To explicitly reference the DERIVED JS.CALC 1 buffer field on level one, use a component buffer function
with a scroll path:

&AL = FetchVal ue( SCROLL. | evel 1_scrol | nane, Current RowNunber (1), DERIVED JS. CALC >
1);

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

The CurrentRowNumber function returns the current row on level one, or the parent row of the level two row
where the PeopleCode program is executing.

Ambiguous Contextual References to Buffer Fields on Level Zero

Level zero of a page contains only a single row of data, and the buffer fields in this row are always in the
current context. For this reason you can almost always refer to a level zero buffer field using a contextual
reference. However, referential ambiguity can make it impossible to reference a buffer field on level zero
contextually. For example, a page may use a derived/work field DERIVED JS.CALC 1 as a work field on
level zero and level one of the same page. This creates distinct DERIVED JS.CALC 1 buffer fields for rows
on both levels. Because of the order in which PeopleCode resolves contextual field references, if the &VAL =
DERI VED _JS. CALC 1; contextual reference executes in a PeopleCode program on a level-one row, it
always retrieves the buffer field value on the current row on level one.

To explicitly reference the DERIVED JS.CALC 1 buffer field on level zero, you must use a component
buffer function with this syntax:

Function([recordnane.]fiel dname, rownum

Here rownum, because it is on level zero, is always equal to one. In the previous example of the
DERIVED JS.CALC 1 field, you would use this statement:

&VAL = FetchVal ue(DERI VED_JS. CALC 1, 1);

Ambiguous References with Objects

With PeopleTools 8 object-oriented programming, even if two field objects that are in different rowsets
contain buffer data that's based on the same underlying record field, references to those objects are inherently
unique, because each is instantiated with respect to a specific point in the hierarchy of the buffer. Any
manipulation of a field object's interface properties affects only the page control with which it's associated.

The following example instantiates a field object using the long form, to emphasize the hierarchical form of
the data. It then hides the field's associated page control. Because this is a unique instance of the field, based
on its hierarchy, hiding this field does not affect the visibility of any other page control associated with the
same record field:

&MYFI ELD = Get Rowset ( SCROLL. EMPL_CHECKLI ST) . Get Row &l ) .

Get Recor d( RECORD. EMPL_CHECKLI ST) . Get Fi el d( EMPL_CHECKLI ST. EMPLI D) ;
&WFI ELD. Vi si bl e = Fal se;

/* the same code, using the "short" form?*/

&WFI ELD = Get Rowset ( SCROLL. EMPL_CHECKLI ST) . Get Row( &l ) .
EMPL_CHECKLI ST. EMPLI D;

Note. Any change in a field object's value affects both the underlying record field and the value of any other
field object oriented on the same record field. This behavior is the same as the behavior of contextual buffer
field references that alter the field value.

See Also

Chapter 4, "Referencing Data in the Component Buffer." Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 54

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53



Referencing Data in the Component Buffer Chapter 4

Specifying Data with References Using Scroll Path Syntax and Dot
Notation

This section provides an overview of scroll paths and discusses how to:
» Structure scroll path syntax in PeopleTools 7.5.

» Reference scroll levels, rows, and buffer fields.

See Also

Chapter 5., "Accessing the Data Buffer," page 65

Understanding Scroll Paths

A scroll path is a construction found in the parameter lists of many component buffer functions, which
specifies a scroll level in the currently active page. Additional parameters are required to locate a row or a
buffer field at the specified scroll level.

PeopleTools 7.5 scroll path syntax enables you to eliminate ambiguous references, which, although rare, do
sometimes occur in complex components.

See Chapter 4, "Referencing Data in the Component Buffer," Using Contextual Buffer Field References, page
52.

PeopleTools 8 adds the convenience of object-oriented dot notation and default methods, which produce
inherently non-ambiguous references, to PeopleCode programs. There are examples of dot notation in this
section and examples of the scroll path syntax available in PeopleTools 7.5, which is still valid in
PeopleTools 8.

Structuring Scroll Path Syntax in PeopleTools 7.5

PeopleTools 7.5 offers two constructions for scroll paths: a standard scroll path syntax and an alternative
syntax using a SCROL L .scrollname expression. The latter is more powerful in that it can process some rare
cases where a RECORD.recordname expression results in an ambiguous reference.

Scroll Path Syntax with RECORD.recordname

Here is the standard scroll path syntax:

[ RECORD. | evel 1 recnane, |levell row, [RECORD.|evel2 recnane, level2 row, ]] RECORD. >
target _recnane

If the target level (the level you want to reference) is one, you must supply only the RECORD.
target_recname parameter. If the target scroll level is greater than one, you must provide scroll name and row
level parameters for all hierarchically superior scroll levels, beginning at level one. The following table
indicates the scroll path syntax for the three possible target scroll levels:

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

Target Level Scroll Path Syntax
1 RECORD. t ar get _r ecnane
2 RECORD. | evel 1_recnane, |evel 1_row,

RECCRD. t ar get _r ecnane

3 RECORD. | evel 1_recnane, levell row, RECORD.|evel 2 =
recnane, |evel2_row, RECORD.target_recnane

If you are referring to a row or a buffer field, additional parameters are required after the scroll path.

The following table describes the standard scroll path syntax parameters:

Syntax Parameters Description

RECORD.levell_recname Specifies the name of a record associated with scroll level
one, normally the primary scroll record. This parameter is
required if the target scroll level is two or three.

levell row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or
three.

RECORD.level2_recname Specifies the name of a record associated with scroll level

two, normally the primary scroll record. This parameter is
required if the target row is on scroll level three.

level2_row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level
three.

RECORD.target_recname Specifies a record associated with the target scroll level,

generally the primary scroll record. The scroll can be on
level one, two, or three of the active page.

Scroll Path Syntax with SCROLL.scrollname

As an alternative to RECORD.recordname expressions in scroll path constructions, PeopleTools 7.5 permits
use of a SCROL L .scrollname expression. Scroll paths using SCROL L .scrollname are functionally identical
to those using RECORD.recordname, except that SCROL L .scrollname expressions are more strict: they can
refer only to a scroll level's primary record; whereas RECORD.recordname expressions can refer to any
record in the scroll level, which in some rare cases can result in ambiguous references. (This can occur, for
example, if the RECORD.recordname expression inadvertently references a related display record in another
page in the component.) Use of RECORD.recordname is still permitted, and there is no requirement to use
the SCROL L .scrollname alternative unless it is needed to avoid an ambiguous reference.

The scrollname is the same as the scroll level's primary record name.

The scroll name cannot be viewed or changed through the PeopleSoft Application Designer interface. Here is
the complete scroll path syntax using SCROL L .scrollname expressions:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55



Referencing Data in the Component Buffer Chapter 4

[ SCROLL. | evel 1_scroll nane, level1l row, [SCROLL.Ievel2_scrollnane, level2 row, ]],
SCROLL. target _scrol |l nane

The target scroll level in this construction is the scroll level that you want to specify. If the target level is one,
you need to supply only the SCROL L .target_scrollname parameter. If the target scroll level is greater than
one, you need to provide scroll name and row-level parameters for hierarchically superior scroll levels,
beginning at level one. The following table indicates the scroll path syntax for the three possible target scroll

levels:
Target Level Scroll Path Syntax
1 SCROLL. target _scrol | nane
2 SCROLL. | evel 1_scrol | name, level 1_row, SCROLL.target_=
scrol | nane
3 SCROLL. | evel 1_scrol | name, levell row, SCROLL.|level 2 >
scrol I name, level 2_row, SCROLL.target_scrollname

If the component you are referring to is a row or a buffer field, additional parameters are required after the
scroll path.

The following table describes the alternative scroll path syntax parameters:

Parameter Description

SCROLL .levell_scrollname Specifies the name of the page's level-one scroll area. This
is always the same as the name of the scroll level's
primary scroll record. This parameter is required if the
target scroll level is two or three.

levell row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or
three.

SCROLL .level2_scrollname Specifies the name of the page's level two scroll area. This

is always the same as the name of the scroll level's
primary scroll record. This parameter is required if the
target row is on scroll level three.

level2_row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level
three.

SCROLL .target_scrollname The scroll name of the target scroll level, which can be

level one, two, or three of the active page.

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

=>



Chapter 4

See Also

Chapter 4, "Referencing Data in the Component Buffer," Referencing Scroll Levels, Rows, and Buffer Fields,

Referencing Data in the Component Buffer

page 57

Referencing Scroll Levels, Rows, and Buffer Fields

You can reference a scroll level using the scrollpath construct only. Functions that reference rows for buffer

fields require additional parameters. The following table summarizes the three types of component buffer

references:

Target Component

Reference Syntax

Example Function

Scroll level

scrol | path

H deScrol | (scrol |l path);

Row

scrol | path, row_number

H deRow(scroll path, =
row_nunber);

Field

scrol | path, row_nunber,
[recordnane.]fi el dnane

Fet chVal ue(scrol |l path, =
row_nunber, fieldnane);

PeopleTools 8 provides an alternative to the scroll level, row, and field components in the form of the data

buffer classes Rowset, Row, Record, and Field, which you reference using dot notation with object methods
and properties. The following table demonstrates the syntax for instantiating and manipulating objects in the

current context from these classes:

Target Object Example Instantiation Example Operation
Rowset &MYROWSET = Get Rowset () ; &MYROWSET. Refresh();
Row &MYROW = Get Row() ; &MYROW Copy To( &SOVEROW ;
Record &MYRECORD = Cet Record(); &MYREC. Conpar eFi el ds( &REC) ;
Field &WFI ELD = Get Record(). &WEI ELD. Label = =

fiel dnane; "Last Nane";

The following sections provide examples of functions using scroll path syntax, which refer to an example
page from a fictitious veterinary clinic database. The page has three scroll levels, shown in the following

table:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.




Referencing Data in the Component Buffer Chapter 4

Level Scroll Name (Primary Scroll Record Name)
0 VET

1 OWNER

2 PET

3 VISIT

The examples given for PeopleTools 8 object-oriented syntax assumes that the following initializing code was
executed:

Local Rowset &VET_SCROLL, &OWNER SCROLL, &PET_SCROLL, &VI SIT_SCROLL;
&VET_SCROLL = GetLevel 0();

&OMER SCROLL = &VET_SCROLL. Get Row( 1) . Get RowSet ( SCROLL. OANER) ;

&PET_SCROLL = &OWNER SCROLL. Get Rowm 2) . Get RowSet ( SCROLL. PET) ;

&VI SIT_SCROLL = &PET_SCROLL. Get Row( 2) . Get RowSet ( SCROLL. VI SI T) ;

Referring to Scroll Levels

The HideScroll function provides an example of a reference to a scroll level. The syntax of the function is:
Hi deScrol | (scrol | pat h)

where scrollpath is

[ RECORD. | evel 1_recnane, |levell row, [RECORD.!|evel2 recnane, |level2 row,]] RECORD. =
target _recnane

To reference the level 1 scroll in the example, use this syntax:

H deScr ol | ( RECORD. OANNER) ;

This hides the OWNER, PET, and VISIT scroll areas on the example page.
In PeopleTools 8, the object-oriented version of this is:

&OANER SCROLL. Hi deAl | Rows() ;

To hide scroll levels two and below, supply the primary record and row in scroll level one, and then the
record identifying the target scroll area:

Hi deScr ol | (RECORD. OMNER, &L1ROW RECORD. PET);

The following diagram shows the scroll path of this statement, assuming that the value of &L1ROW is 2:

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

Level zero: Vet

F1 F2 F3 F4
R1

Level one: Owner

Level two: Pet

FI F2 F3 F4
R1
> R2
R3

Sample scroll path

Similarly, to hide the VISIT scroll area on level three, you specify rows on scroll levels one and two.
Hi deScrol | (RECORD. O\NER, &L1ROW RECORD. PET, &L2ROW RECORD. VI SIT);

To use the SCROL L .scrollname syntax, the previous example could be written as the following:

Hi deScrol | (SCROLL. O\NER, &L1ROW SCROLL. PET, &L2ROW SCROLL.VISIT);

In PeopleTools 8, the object-oriented version of this is:

&VI SI T_SCROLL. Hi deAl | Rows() ;

Referring to Rows

Referring to rows is the same as referring to scroll areas, except that you need to specify the row you want to
select on the target scroll area. As an example, examine the HideRow function, which hides a specific row in
the level three scroll area of the page. Here is the function syntax:

H deRow( scrol | path, target row)

To hide row number &ROW_NUM on level one:

Hi deRow( RECORD. OANER, &ROW NUM ;

To do the same using the SCROL L .scrollname syntax:

Hi deRow( SCROLL. OANER, &ROW NUM ;

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:
&OWNER_SCROLL( &ROW NUM . Vi si bl e = Fal se;

On level two:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 59



Referencing Data in the Component Buffer Chapter 4

Hi deRow( RECORD. OANER, &L1 ROW, RECORD. PET, &ROW NUM) ;
In PeopleTools 8, the object-oriented version of this for the PET rowset is:
&PET_SCROLL( &ROW NUM . Vi si bl e = Fal se;

The following diagram indicates the scroll path of this statement, assuming that the value of &L.1 ROW is 2
and that &ROW_NUM is equal to 2:

Level zero: Vet

Fi F2 F3 F4
R1

Level one: Owner

Level two: Pet

Scroll path statement

On level three:

H deRow( RECORD. O\NER, Current RowNunber (1), RECORD. PET,
Cur rent RowNunber (2), RECORD. VI SIT, &ROWN NUM ;

In PeopleTools 8, the object-oriented version of this for the VISIT rowset is:

&VI SI' T_SCROLL( &ROW NUM) . Vi si bl e = Fal se;

Referring to Buffer Fields

Buffer field references require a [recordname.Jfieldname parameter to specify a record field. The combination
of scroll level, row number, and record field name uniquely identifies the buffer field. Here is the syntax:

Fet chval ue(scrol |l path, target_row, [recordnane.]fi el dnane)

Assume, for example, that record definitions in the veterinary database have the following fields that you
want to reference:

Record Sample Field

OWNER OWNER NAME

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

Record Sample Field
PET PET BREED
VISIT VISIT REASON

You could use the following examples to retrieve values on levels one, two, or three from a PeopleCode
program executing on level zero.

To fetch a value of the OWNER NAME field on the current row of scroll area one:

&SOMENAME = Fet chVal ue( RECORD. OANER, &L1 ROW OWKNER OAKNER NANE) :

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&SOVENAME = &OWNER SCROLL(&L1_ROW . OANER. OANER NAME;

To fetch PET_BREED on level two:

&SOVEBREED = Fet chVal ue( RECORD. OANER, &L1_ROW RECORD. PET, &L2 ROW PET. PET_BREED);
In PeopleTools 8, the object-oriented version of this for the PET rowset is:

&SOVEBREED = &PET SCROLL(&L2_ROW . PET. PET BREED;

The following diagram indicates the scroll path to the target field, assuming that &LL1 ROW equals 2,
&L2 ROW equals 2, and field F3 is PET.PET_BREED:

Level zero: Vet

F1 F2 F3 F4
R1

Level one: Owner

Level two: Pet

F1 F2 F3 F4

Rl == = === .
>Rz — — e
R3

Scroll path to target field

To fetch VISIT_REASON on level three:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61



Referencing Data in the Component Buffer Chapter 4

62

&SOVEREASON = Fet chVal ue( RECORD. O\NER, &L1_ROW RECORD. PET,
&L2 RON RECORD. VISIT, &3 _ROW VI SIT.VISI T_REASON);

To do the same using the SCROL L .scrollname syntax:

&SOVEREASON = Fet chVal ue( SCROLL. O\NER, &L1_ROW SCROLL. PET,
&2 RON SCROLL.VISIT, &3 ROW SCROLL. VI SI T_REASON):

In PeopleTools 8, the object-oriented version of this is:

&SOVEREASON = &VI SI T_SCROLL(&L3_ROW . VI SI T. VI SI T_REASON,

Using CurrentRowNumber

The CurrentRowNumber function returns the current row, as determined by the current context, for a specific
scroll level in the active page. CurrentRowNumber is often used to determine a value for the levell_row and
level2_row parameters in scroll path constructions. Because current row numbers are determined by the
current context, CurrentRowNumber cannot determine a current row on a scroll level outside the current
context (a scroll level below the level where the PeopleCode program is currently executing).

For example, you could use a statement like this to retrieve the value of a buffer field on level three of the
PET_VISITS page, in a PeopleCode program executing on level two:

&VAL = Fet chVal ue( RECORD. OANER, Current RowNunber (1),
RECORD. PET, Current RowNunber (2), RECORD. VI SIT, &TARGETROW
VI SI T_REASQON) ;

Because the PeopleCode program is executing on level two, CurrentRowNumber can return values for levels
one and two, but not three, because level three is outside of the current context and has no current row
number.

Looping Through Scroll Levels

Component buffer functions are often used in For loops to loop through the rows on scroll levels below the
level where the PeopleCode program is executing. The following loop, for example could be used in
PeopleCode executing on a level two record field to loop through rows of data on level three:

For & = 1 To Acti veRowCount ( RECORD. ONNER,

Cur rent RowNunber (1), RECORD. PET, Current RowNurber (2), RECORD. VI SIT)
&VAL = Fet chVal ue( RECORD. OANER, Cur r ent RowNumber (1),

RECORD. PET, Current RowNunber (2), RECORD.VISIT, &, VISIT_REASON);
If &AL = "Fl eas" Then

/* do sonething about fleas */

End- | f;

End- For ;

A similar construct may be used in accessing other level two or level one scroll areas, such as work scroll
areas.

In these constructions, the ActiveRowCount function is often used to determine the upper bounds of the loop.
When ActiveRowCount is used for this purpose, the loop goes through all of the active rows in the scroll
(rows that have not been specified as deleted). If you use TotalRowCount to determine the upper bounds of
the loop, the loop goes through all of the rows in the scroll area: first those that have not been specified as
deleted, then those that have been specified as deleted.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 4 Referencing Data in the Component Buffer

See Also

Chapter 4, "Referencing Data in the Component Buffer." Structuring Scroll Path Syntax in PeopleTools 7.5,
page 54

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 49

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CurrentRowNumber

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63






Chapter 5

Accessing the Data Buffer

This chapter provides overviews of data buffer access, data buffer class examples, and current context, and
discusses how to:

» Access secondary component buffer data.

» Instantiate rowsets using non-component buffer data.

Understanding Data Buffer Access

This section discusses:

« Data buffer access.
e Access classes.

« Data buffer model and data access objects.

Data Buffer Access

In addition to the built-in functions you use to access the component buffer, classes of objects are available
that provide access to structured data buffers using the PeopleCode object syntax.

The data buffers accessed by these classes are typically the component buffers that are loaded when you open
a component. However, these classes may also be used to access data from general data buffers, loaded by an
Application Engine program, a component interface, and so on.

The methods and properties of these classes provide functionality that is similar to what has been available
using built-in functions. However, they also provide improved consistency, flexibility, and new functionality.

Access Classes

The four data buffer classes are: Rowset, Row, Record, and Field. These four classes are the foundation for
accessing component buffer data through the new object syntax.

A field object, which is instantiated from the Field class, is a single instance of data within a record. It is
based on a field definition.

A record object, which is instantiated from the Record class, is a single instance of a data within a row. It is
based on a record definition. A record object consists of one to n fields.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65



Accessing the Data Buffer Chapter 5

Data

A row object, which is instantiated from the Row class, is a single row of data that consists of one to n
records of data. A single row in a component scroll area is a row. A row may have one to n child rowsets. For
example, a row in a level two scroll area may have n level three child rowsets.

A rowset object is a data structure used to describe hierarchical data. It is made up of a collection of rows. A
component scroll area is a rowset. You can also have a level zero rowset.

Buffer Model and Data Access Classes

The data model assumed by the data buffer classes is that of a PeopleTools component, where scroll bars or
grids are used to describe a hierarchical, multiple-occurrence data structure. You can access these classes
using dot notation.

The four data buffer classes relate to each other in a hierarchical manner. The main points to understand these
relationships are:

e A record contains one or more fields.
* A row contains one or more records and zero or more child rowsets.
e A rowset contains one or more rows.

For component buffers, think of a rowset as a scroll area on a page that contains all of the data in that scroll
area. A level zero rowset contains all the data for the entire component. You can use rowsets with application
messages, file layouts, business interlinks, and other definitions in addition to components. A level zero
rowset from a component buffer only contains one row: the keys that the user specifies to initiate that
component. A level zero rowset from data that is not a component, such as a message or a file layout, might
contain more than one level zero row.

The following is basic PeopleCode that traverses through a two-level component buffer using dot notation
syntax. Level zero is based on record QA INVEST HDR, and level one is based on record
QA_INVEST LN.

Local Rowset &HDR ROWSET, &LI NE ROWBET;
Local Record &HDR REC, &LI NE_REC,
&HDR_ROWBET = Get Level 0();

For & = 1 to &HDR ROWSET. RowCount
&HDR REC = &HDR ROWSET( &l ). QA | NVEST HDR;
&EMPLI D = &HDR REC. EMPLI D. Val ue;
&1 NE_ ROMSET = &HDR ROWBET( &l ) . Get Rowset (1) ;
For & = 1 to &LI NE_ROASET. RowCount
&LI NE_REC = &I NE_ RONBET(&J) . QA | NVEST_LN;
&LI NE_SUM = &LI NE_SUM + &LI NE_REC. AMOUNT. Val ue;
End- For ;
End- For ;

Each rowset is declared and instantiated. In general, your code is easier to read and maintain if you follow
this practice.

Understanding Data Buffer Classes Examples

66

This section discusses:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5

« Employee Checklist page structure.
» Object creation examples.

» Data buffer hierarchy examples.

* Rowset examples.

» Hidden work scroll area example.

Employee Checklist Page Structure

Most of the examples in this section use the Employee Checklist page.

Accessing the Data Buffer

Employee Checklist \L

Schumacher,Simon ID: 2001

*Checklist Date: IEIEH“IIEEIEIEI Checklist: IEIEIEIEIEIE ﬂ Fepatriation Checklist
Responsible ID: IEEDE ﬂ FeppenJacgues

Comment: | ]
*Chklst *Chklst ltm *Briefing Status *Status Date
Seq

|1EIEI |EIEIEIU15 Q| Briefing with Hurnan IInitiated "I IDEIHIEDDD

Resources

|200 [ooonzs @] Repatriation Discussion [initiated ¥] [oar 172000
|300 [o00028 @) careenPlacementdiscussion [Initiated <] [oar 172000
B Sa\.rejl 1 Return to Searchjl

Employee Checklist page

This page has the following record structure:

Scroll Level Associated Primary Record

Rowset and Variable Name

Level zero PERSONAL DATA

Level zero rowset: &RS0O

Level one scroll area EMPL CHECKLIST

Level one rowset: &RS1

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

67




Accessing the Data Buffer Chapter 5

Scroll Level Associated Primary Record Rowset and Variable Name
Level one hidden work scroll arca CHECKLIST ITEM Level one rowset: &RS1H
Level two scroll area EMPL CHKLST ITM Level two rowset: &RS2

Another way of looking at the structure of a component is to use the Structure view. All the scroll areas are
labeled, and the primary record is associated with each:

2§ EMPLOYEE_CHECKLIST.GEL [Component]

Definition ~ Structure l

EMPLOYEE_CHECELIST [Companent]
PERS_SRCH_GEL [View) - Search Record

SRR C ol - Level O

' FERSOMAL _DATA [T able]

Scroll - Level 1 Primary Record: CHECKLIST_ITEM

Scroll - Level 1 Primary Record; EMPL_CHECKLIST

=1 EMPL_CHECELIST [T able)

=

.= DERIVED_HR (Derived)

=

. E Scroll - Level 2 Primary Record: EMPL_CHELST_ITM

foen|

EMPLOYEE_CHECKLIST structure

In the example, the visible level one scroll area also has only one row. That row is made up of the following
records:

« EMPL CHECKLIST

+ DERIVED _HR

 CHECKLIST TBL

+ PERSONAL DATA

You can see which records are associated with a scroll area by looking at the Order view for a page:

68 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5

Accessing the Data Buffer

Page Designer  'Order l

i EMPLOYEE_CHECKLIST_EMG [Page]

IS [=] E3

Lv Label Type Field Record Dizplay Controll Related Field ~

3

2 0 |Frame Frame [ [

3 0 |Frame Frame [ [

4 0 |Employes Name |Edit Box M E PERSOMAL_DATA B B

5 0 |iD Edit Box EMPLID FERSOMNAL DATA [ [

B

v 1 |Checklist Sequen | Edit Box CHECKLIST_SEQ|CHECKLIST_ITEM - r

a

3 1 |Checklist Date  |Edit Box CHECKELIST_DT [EMPL_CHECKLIST [ [

10 1 |derived_hreffdt  |Edit Box EFFDT DERIMED_HR [ [

11 1 |Checklist Edit Box CHECKELIST_CD [EMPL_CHECKLIST v [

12 1 |Checklist Descripti Edit Box DESCR CHECKLIST_TEL [ v

13 1 |Responsible D |Edit Box RESPOMSIBLE | [EMPL_CHECKLIST v [

14 1 |Responsible Marn | Edit Box MNAME PERSOMAL_DATA [ v

15 1 |Comment Lorng Edit Box COMMEMTS EMPL_CHECKLIST [ [

16

17 2 |Chklst Seq Edit B CHECKLIST_SEQ|EMPL_CHKLST_ITM |7 [

18 2 |Chiklst [trn Edit B CHKLST_ITEM_CIEMPL_CHELST_ITM |V [

19 2 |Briefing Descriptio) Edit Box DESCR CHELST_ITEM_TEL [ v

20 2 |Brigfing Status  |Drop Down Ligt  |BRIEFING_STAT |[EMPL_CHKLST_ITM ([T [ - |

4 | 3
EMPLOYEE_CHECKLIST page Order view showing records
The level two rowset has three rows. Each row is made up of two records: the primary record,
EMPL_CHKLST ITM, and CHKLST ITM TBL, the record associated with the related display field
DESCR. The following example shows the rowset:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69



Accessing the Data Buffer Chapter 5

Jr Emploves Checklist ‘.I_

| Schurnacher Simaon I: g0

*Checklist Date:  [08(11/2000 Checklist: [000003 Q|  Repatriation Checkiist
Responsible1D:  [6602 Q) Peppen Jacques
Comment: | =
=
LEVEl? ROWSE! e ;:h“m sChklst tm *Briefing Status ‘Status Date
B
# [oooois Q) Briefing with Human [nitated =]  [08172000
et [00  [000025 Q]  Repatiation Discussion [inisted =] [oar 172000
Field 500 ] [000023 Q CareerPlacement discussion |inilated =] [o8i11/2000

B save) (CLReturn to Search )

EMPLOYEE_CHECKLIST rowsets and rows

Every record has fields associated with it, such as NAME, EMPLID and CHECKLIST SEQ. These fields are
associated with the record definitions; they are not the fields that appear on the page.

Object Creation Examples

70

When declaring variables, use the class with the same name as the data buffer access data type (rowset

objects should be declared as type Rowset, field objects as type Field, and so on). Data buffer variables can be
of type Local, Global, or Component.

The following declarations are assumed throughout the examples that follow:
Local Rowset &LEVELO, &ROWSET;
Local Row &ROW

Local Record &REC,
Local Field &Fl ELD;

Level Zero Access

The following code instantiates a rowset object, from the Rowset class, that references the level zero rowset,
containing all the page data. It stores the object in the &LEVELO variable.

&LEVELO = GetLevel 0();
The level zero rowset contains all the rows, rowsets, records, and fields underneath it.
If the level zero rowset is formed from component buffer data, then the level zero rowset has one row of data

and that row contains all the child rowsets, which in turn contain rows of data that contain other child
rowsets.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

If the level zero rowset is formed from buffer data, such as from an application message, then the level zero
rowset may contain more than one row of data. Each row of the level zero rowset contains all the child
rowsets associated with that row, which in turn contain rows of data that contain other child rowsets.

Use a level zero rowset when you want an absolute path to a lower-level object or to do some processing on
the entire data buffer. For example, suppose you load all new data into the component buffers and want to
redraw the page. You could use the following code:

/* Do processing to rel oad Conponent Buffers */
&LEVELO = Cet Level O();
&LEVELO. Refresh();

Rowset Object

The following code instantiates a rowset object that references the rowset that contains the currently running
PeopleCode program:

&RONBET = Get Rowset () ;

You might later use the &KROWSET variable and the ActiveRowCount property to iterate over all the rows of
the rowset, to access a specific row (using the GetRow method), or to hide a child rowset (by setting the
Visible property).

The level one rowset contains all the level two rowsets. However, the level two rowsets can only be accessed
using the different rows of the level one rowset. From the level zero or level one rowset, you can only access
a level two rowset by using the level one rowset and the appropriate row.

For example, suppose your program is running on some field of row five of a level two scroll area, which is
on row three of its level one scroll area. The resulting rowset contains all the rows of the level two scroll area
that are under the row three of the level one scroll area. The rowset does not contain any data that is under
any other level two scroll areas. The following diagram illustrates these results:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71



Accessing the Data Buffer Chapter 5

@ Level zero
Level two

————————————————— FI F2 F3 F4
—————————————————— R1

» R2
O .
Level one

~--F1__E2__E3__F4,

> R2 |

K3 '
o SC e e - Level two

F1 F2 F3 Fa4

R1
R2
R3
R4
RS

@ Leveal two

Fi F2 F3 F4

L J

Level 2 rowset

Y

Y
Bl
]

I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
-

Level two rowset from level one row

A further illustration uses an example from the Employee Checklist page.

Suppose that one employee was associated with three different checklists: Foreign Loan Departure, Foreign
Loan Arrival, and Foreign Loan Host. The checklist code field (CHECKLIST CD) on the first level of the
page drives the entries on the second level. Each row in the level one rowset produces a different level two
rowset.

The Foreign Loan Departure checklist (000001) produces a checklist that contains such items as Briefing with
Human Resources and Apply for Visas/Work permits, as shown in the following example:

72 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5

Accessing the Data Buffer

Ermployes Checklist ‘.I_

Resources

cormpany

Schumacher,Simon ID: 3001
*Checklist Date: IEIBH 1r2000 Checklist: IEIIZIEIEIEH ﬂ Foreign Loan Departure Cheklst
Responsible ID: IEE':'2 ﬂ PeppenJacgues
Comment: ;l
=Previous 10of3 EI Iext=
*Chklst *Chklst tm *Briefing Status *Status Date
Seq

[too | [oo0015 @] Briefing with Human [inisted =] [08r1172000
[200 [000030 @) appiyfor visastwork Permits  [Initiated =] [oai 112000
|3EIEI |IIIIIIIZIIIIIIIEI Q)  Reconfirm Relocation Packagelm M
[400 [000001 @] Select movingtstorage [initiated =] [oai 112000

=] Savej L Return to Searchjl

EMPLOYEE_CHECKLIST Foreign Loan Departure checklist

The Foreign Loan Arrival checklist (0000004) produces a checklist that contains items such as Register at

Consulate and Open New Foreign Bank Accounts, as shown in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

73



Accessing the Data Buffer

74

Chapter 5

Ermplayee Checklist ‘.I_
Schumacher Siman ID: 200
*Checklist Date: IUEHHEDDD Checklist: IDEIEIEIEI# ﬂ Foreign Loan Arrival Choklist
Responsible ID: ITT':'5 ﬂ Holt,Susan
Comment: ;I
SEreviog 20f3 El Mests
*Chklst *Chklst km *Briefing Status *Status Date
Seq
[100 [oooozz Q] Reaister at Consulate [Initiasted =] |o8i11s2000
|200 [oooooz Q) open new fareign bank [Initiated =} |08t 1s2000
accounts -
300 [o00018 Q| Register children in school [ Initisted =] [0sr1/2000
|4EIEI |EIEIEIEI19 Ql  Join Mewcomer's Club |Initiated =] |IIIEI11I2EIEID
E Savejl 2 Return to Search)

EMPLOYEE_CHECKLIST Foreign Load Arrival Checklist

Row Object

When you create a page, you put fields from different records onto the page. You can think of this as creating
a type of pseudo-SQL join. The row returned from this pseudo-join is a row object.

For example, the first level scroll area of the EMPLOYEE CHECKLIST page contains the following fields,

associated with these records:

Field

Record

CHECKLIST DT

EMPL CHECKLIST

CHECKLIST CD

EMPL CHECKLIST

COMMENTS EMPL CHECKLIST
DESCR CHECKLIST TBL
NAME PERSONAL DATA

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

Field Record

RESPONSIBLE ID EMPL CHECKLIST

The pseudo-SQL join might look like this:

JO N A CHECKLI ST_DT, A. CHECKLI ST_CD, A. COMMENTS, B.DESCR, C.NAME, A. RESPONSI BLE | D
FROM PS_EMPL_CHECKLI ST A, PS_CHECKLI ST_TBL B, PS_PERSONAL_DATA C, WHERE.

What goes into the Where clause is determined by the level zero of the page. For our example, the value is
VWHERE EMPLI D=8001.

When the component is opened, data is loaded into the component buffers. Any row returned by the pseudo-
SQL statement is a level one row object. The following table shows a returned row:

CHECKLIST_DT | CHECKLIST_CD COMMENTS DESCR NAME RESPONSIBLE_ID
12/03/98 000001 Foreign Loan Peppen, Jacques | 6602

Department

Checklist

Record Object

A record definition is a definition of what your underlying SQL database tables look like and how they
process data. After you create record definitions, you build the underlying SQL tables that contain the
application data that your users enter online in your production environment.

When you create a record object using the CreateRecord function, you are creating an area in the data buffers
that has the same structure as the record definition, but no data.

When you instantiate a record object from the Record class using some variation of GetRecord, that record
object references a single row of data in the SQL table.

Note. The data in the record that you retrieve is based on the row, which is analogous to setting keys to return
a unique record.

The following code instantiates a record object for referencing the EMPL CHECKLIST record of the
specified row:

&REC = &ROW Get Recor d( RECORD. EMPL_CHECKLI ST) ;
Using the short method, the following line of code is identical to the previous line:

&REC = &ROW EMPL_CHECKLI ST,

You might later use the & REC variable and the CopyFieldsTo property to copy all like-named fields from
one record to another. In the following example, two row objects are created, the copy from row
(COPYFRMROW) and the copy to row (COPYTROW). Using these rows, like-named fields are copied from
CHECKLIST ITEM to EMPL._CHKLST ITM.

For & = 1 To &ROWNBET1. Act i veRowCount

&COPYFRMROW = &ROWSET1. Get Row( &l ) ;

&COPYTROW = &RS2. Get Row &l ) ;

&COPYFRMROW CHECKLI ST_| TEM CopyFi el dsTo( &COPYTROW EMPL_CHKLST | TM) ;
End- For ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 75



Accessing the Data Buffer Chapter 5

A row may contain more than one record: in addition to the primary database record, you may have a related
display record or a derived record. You can access these records as well. The level one rowset, &KROWSET1,
is made up of many records. The following accesses two of them: EMPL_CHECKLIST and DERIVED HR.

&REC1 = &ROW ENMPL_CHECKLI ST;
&REC2 = &ROW DERI VED_HR;
Field Object

The following instantiates a field object, from the Field class, that is used to access a specific field in the
record:

&Fl ELD = &REC. Get Fi el d( FI ELD. CHECKLI ST_CD) ;
You might later use the & FIELD variable as a condition:
| f ALL(&FIELD) Then

Here is another example:

I f &FI ELD. Val ue = "N' Then

Note. The data in the field that you retrieve is based on the record, which is in turn based on the row.

You can also set the value of a field. Using the GetField function does not create a copy of the data from the
component buffer. Setting the value or a property of the field object sets the actual component buffer field or

property.
See Chapter 3, "Understanding Objects and Classes in PeopleCode." Assigning Objects, page 41.

In the following example, the type of field is verified, and the value is replaced with the tangent of that value
if it is a number
| f &FIELD. Type <> "NUMBER' Then
/* do error recording */
El se

&Fl ELD. Val ue = Tan( &FI ELD. Val ue) ;
End- | f;

Data Buffer Hierarchy Examples

Suppose you want to access the BRIEFING STATUS field at level two of the following page:

76 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

Employee Checklist ‘.I_

Schumacher,Simon ID: 2001

*Checklist Date: IDEH*IIEEIEIEI Checklist: IIIIEIEIEIEIB ﬂ Fepatriation Checklist
Responsible ID: IEEDE ﬂ Feppen,Jacgues

Comment: | =
“Chkist  *Chklst ttm *Briefing Status *Status Date

Seq

[100 [oooo1s @] Briefing with Hurnan [initiated 7] [oar 172000

Resources

|2E|E| |E|E|E|E|25 Q|  Repatriation Discussion ||ﬂiTiETEd "I IDEIHIEDDD
300 [000028 Q] careenPlacement discussion |Inifiated <] [oa 172000

=] Save) 1 Return to Search)

EMPLOYEE_CHECKLIST repatriation checklist

First, determine where your code is running. For this example, the code is starting at a field on a record at
level zero. However, you do not always have to start at level zero.

If you start with level zero, you must traverse the data hierarchy, through the level one rowset to the level two
rowset, before you can access the record that contains the field.

Obtaining the Rowset

You first obtain the level zero rowset, which is the PERSONAL DATA rowset. You do not need to know the
name of the level zero rowset to access it:

&LEVELO = CetlLevel 0();

Obtaining Rows

The next object to get is a row. As the following code is working with data that is loaded from a page, only
one row is at level zero. However, if you have rowsets that are populated with data that is not based on
component buffers (for example, an application message), you may have more than one row at level zero.

&LEVELO_ROW = &LEVELO(1);

Obtaining Child Rowsets

To obtain the level two rowset, traverse through the level one rowset first. Therefore, the next object to get is
the level one rowset, as shown in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77



Accessing the Data Buffer Chapter 5

78

&L EVEL1 = &LEVELO_ROW Get Rowset ( SCROLL. EMPL_CHECKLI ST) ;

Obtaining Subsequent Rows

If you are traversing a page, obtain the appropriate row after you get a rowset. To process all the rows of the
rowset, set this functionality up in a loop, as shown in the following example:

For & = 1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);

Endl F'orE

Obtaining Subsequent Rowsets and Rows

Traverse another level in the page structure to access the second level rowset, and then use a loop to access
the rows in the level two rowset.

Because we are processing all the rows at level one, we are just adding code to the previous For loop. As we
process through all the rows at level two, we are adding a second For loop. The new code is in bold in the
following example:

For & = 1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset ( SCROLL.
EMPL_CHKLST I TM;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);

End- For ;
End- For ;

Obtaining Records

A row always contains a record, and it may contain only a child rowset, depending on how your page is set
up. GetRecord is the default method for a row, so all you have to specify is the record name.

Because we are processing all the rows at level two, we just add code to the For loops of the previous
example. The new code is in bold:

For & =1 to &L.EVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset ( SCROLL. EMPL_CHKLST | TM ;
For & =1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);
&RECORD = &L EVEL2 ROW EMPL_CHKLST | TM

End- For ;
End- For ;
Obtaining Fields

Records are made up of fields. GetField is the default method for a record, so all you have to specify is the
field name.

Because we are processing all the rows at the level one, we are just adding code to the For loops of the
previous example. The new code is in bold:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

For & =1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset (SCROLL. EMPL_CHKLST | TM;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);
&RECORD = &LEVEL2 ROW EMPL_CHKLST | TM
&Fl ELD = &RECORD. BRI EFI NG_STATUS;
/* Do processing */
End- For ;
End- For ;

Using Shortcuts

The previous code is the long way of accessing this field. The following example uses shortcuts to access the
field in one line of code. The following code assumes all rows are level one:

Rowset Row Rowset goy R“‘r’si‘-‘ Row  Record Field
| | | | | | |

AFIELD=Get Leveld(){1).EMPL_CHECKLIST(1).EMPL_CHKLST ITM{1).EMPL_CHKLST ITM.BRIEFING STATUS:

Rowset example

Here's another method of expressing the code:

Object Type Code

Rows et &LEVELO = Get Level 0();

Row &LEVELO _ROW = &LEVELO(1);

Rowset &LEVEL1 = & EVELO_ROW Get Rowset ( SCROLL. EMPL_CHECKLI ST) ;

For & =1 to &LEVEL1. Acti veRowCount

Row &LEVEL1 ROW = &LEVEL1(&);

Rowset &LEVEL2 = &LEVEL1_ROW Get Rowset ( SCROLL. EMPL_CHKLST_I TM) ;

For & = 1 to &LEVEL2. Acti veRowCount

Row &LEVEL2_ ROW = &LEVEL2(&J);

Record &RECORD = &LEVEL2_ROW EMPL_CHKLST_I TM

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79



Accessing the Data Buffer

Rowset Examples

80

Chapter 5

Object Type

Code

Field

&FI ELD = &RECORD. BRI EFI NG_STATUS;

/* Do processing */

End- For ;

End- For ;

The following code example traverses up to four levels of rowsets and could easily be modified to do more.
This example only processes the first record in every rowset. To process every record, set up another For loop
(For &R =1 to &LEVELX.RECORDCOUNT, and so on). Notice the use of the ChildCount function (to
process all children rowsets within a rowset), ActiveRowCount, IsChanged, and dot notation.

In the following example, ellipses indicate where application-specific code should go.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

&L evel 0_ROABET = GetLevel 0();
For &0 = 1 To &Level 0 _ROWSET. Act i veRowCount

/***************************/

/* Process Level 1 Records */

I f &Level O_ROABET( &A0) . Chil dCount > 0 Then

For &1 = 1 To &Level 0_RONBET( &A0) . Chi | dCount
&LEVEL1 _ROMNSET = &lLevel 0_ROASET( &A0D) . Get Rowset (&B1) ;
For &A1 = 1 To &LEVEL1_ROWBET. Act i veRowCount
I f &LEVEL1 ROWASET( &A1) . Get Record(1).1|sChanged Then

/***************************/

/* Process Level 2 Records */

I f &LEVEL1_ROWSET( &Al). Chi | dCount > 0 Then

For &B2 = 1 To &LEVEL1_ROWBET( &Al). Chi | dCount
&LEVEL2 _ROWSET = &LEVEL1_ROWBET( &Al) . Get Rowset ( &B2) ;
For &A2 = 1 To &LEVEL2_ ROWSET. Acti veRowCount
I f &LEVEL2_ROASET( &A2). Get Record(1).1sChanged Then

/***************************/

/* Process Level 3 Records */

I f &LEVEL2_ROWSET( &A2) . Chi | dCount > 0 Then

For &B3 = 1 To &LEVEL1_ROWSET( &A2) . Chi | dCount
&L EVEL3_ROWSET = &LEVEL2_ ROWBET( &A2) . Get Rowset ( &B3) ;
For &A3 = 1 To &LEVEL3 ROWSET. Act i veRowCount
I f &LEVEL3_ROASET( &A3). Get Record(1).1sChanged Then

End-1f; /* A3 - I|sChanged */
End- For; /* A3 - Loop */

End- For; /* B3 - Loop */

End-1f; /* A2 - ChildCount > 0 */

/* End of Process Level 3 Records */

/**********************************/

End-1f; /* A2 - |sChanged */

End- For; /* A2 - Loop */

End-For; /* B2 - Loop */

End-1f; /* Al - ChildCount > 0 */

/* End of Process Level 2 Records */
/**********************************/

End-1f; /* Al - I|sChanged */
End-For; /* Al - Loop */

End- For; /* Bl - Loop */

End-1f; /* AO - ChildCount > 0 */

| * o e e e e e e e * [
/* End of Process Level 1 Records */

/**********************************/

End- For; /* AO - Loop */

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81



Accessing the Data Buffer Chapter 5

Hidden Work Scroll Example

82

In the FieldChange event for the CHECKLIST CD field on the EMPL CHECKLIST record, a PeopleCode
program does the following:

1. Flushes the rowset and hidden work scroll area.

2. Performs a Select statement on the hidden work scroll area based on the value of the CHECKLIST CD
field and the effective date.

3. Clears the level two scroll area.

4. Copies like-named fields from the hidden work scroll area to the level two scroll area.

The following example shows how to do this using built-in functions.
&CURRENT_ROW L1 = Current RowNunber (1);

&ACTI VE_ROW L2 = Acti veRowCount ( RECORD, EMPL_CHECKLI ST,
&CURRENT _ROW L1, RECORD. EMPL_CHKLST | TM:

If Al (CHECKLI ST_CD) Then

Scrol | Fl ush( RECORD. CHECKLI ST_I TEM ;

Scrol | Sel ect (1, RECORD. CHECKLI ST_I TEM RECORD. CHECKLI ST_| TEM
"Where Checklist _Cd = :1 and EffDt = (Select Max(EffDt) From
PS _Checklist_Item Were Checklist_Cd = :2)",

CHECKLI ST_CD, CHECKLI ST_CD);

&FOUNDDOC = Fet chVal ue( CHECKLI ST_I TEM CHKLST_I TEM CD, 1);
&SELECT_ROW = Act i veRowCount ( RECORD. CHECKLI ST_I TEM) ;

For & = 1 To &ACTI VE_ROW L2
Del et eRow( RECORD. EMPL_CHECKLI ST, &CURRENT ROW L1, RECORD. EMPL_CHKLST |ITM 1);
End- For ;

If Al (&OUNDDOC) Then
For & =1 To &SELECT ROW
CopyFi el ds(1, RECORD. CHECKLI ST_ITEM &, 2,
RECORD. EMPL_CHECKLI ST, &CURRENT_ROW L1, RECORD. EMPL_CHKLST ITM &l);
If & <> &SELECT_ROW Then
| nser t Row( RECORD. EMPL_CHECKLI ST, &CURRENT_ROW L1,
RECORD. EMPL_CHKLST I TM &l);
End- | f;
End- For ;
End- I f;
End- I f;

The following example performs the same function as the previous code, only it uses the data buffer classes:
1. Flushes the rowset and hidden work scroll area (&RS1H).

2. Performs a Select statement on &RS1H based on the value of the CHECKLIST CD field and the
effective date.

3. Clears the level two rowset (&RS2).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

4. Copies like-named fields from &RS1H to &RSI.
Local Rowset &RSO, &RS1, &RS2, &RS1H;

&RSO = Get Level 0();
&RS1 = Get Rowset () ;
&RS2 = Get Rowset (SCROLL. EMPL_CHKLST | TM ;

&RS1H = &RS0. Get Row( 1) . Get Rowset ( SCROLL. CHECKLI ST_| TEM ;
&MWYFI ELD = CHECKLI ST_CD;

If Al (&WFIELD) Then

&RS1H. Fl ush();

&RS1H. Sel ect (RECORD. CHECKLI ST_I TEM "where Checklist_CD = :1
and EffDt = (Select Max(EffDt) from PS_CHECKLI ST | TEM
Where CheckList CD = :2)", CHECKLI ST _CD, CHECKLI ST _CD);

For & = 1 To &RS2. Acti veRowCount
&RS2. Del et eRow( 1) ;
End- For ;

&FOUND = &RS1H. Get Curr Ef f Row() . CHECKLI ST_| TEM CHKLST | TEM CD. Val ue;

If Al (&OUND) Then
For & = 1 To &RS1H. Acti veRowCount
&COPYFRMROW = &RS1H. get row &l ) ;
&COPYTROW = &RS2. getrow &l ) ;
&COPYFRMROW CHECKLI ST _| TEM CopyFi el dsTo( &COPYTROW EMPL_CHKLST | TM ;
If & <> &RS1H. Acti veRowCount Then
&RS2. I nsert Row &l ) ;
End- | f;
End- For ;
End- I f;
End- | f;

Understanding Current Context

Most PeopleCode programs run in a current context. The current context determines which buffer fields can
be contextually referenced from PeopleCode, and which row of data is the current row on each scroll level at
the time a PeopleCode program is running.

The current context for the data buffer access classes is similar to the current context for accessing the
component buffer, as shown in the following diagram:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83



Accessing the Data Buffer Chapter 5

Level zero row is
always in context
Level two

. F1 F2 F3 F4 F1 _F2 F3 Fa
R1
> R2
Row where PeopleCode R3
executes is in context

F1 F2 F3 F4

R} — — — — 3
Level two

F1 F2 F3 F4
R1
.| R2
"I R3
Rowset accessible by second R4
row in level 1 rowset is in » | RS
context

@ Leveal two

F1 F2 F3 F4

R
R2
—» R3
R4
R5
RE

Current context for rowsets

In this example, a PeopleCode program is running in a buffer field on the second row of the level one rowset.

The following code returns a row object for the second row of the level one rowset, because that is the row
that is the current context.

Local Row &ROW

&ROW = Get Rowm() ;

The following code returns the B2 level two rowset because of the current context:
Local Rowset &ROWBET2

&RONBET2 = &ROW Get Rowset ( SCROLL. EMPL_CHKLST | TM) ;

This code does not return either the C2 or the A2 rowsets. It returns only the rowset associated with the
second row of the level one rowset.

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 5 Accessing the Data Buffer

Creating Records or Rowsets and Current Context

When you instantiate a record object using the CreateRecord function, you are only creating an area in the
data buffers that has the same structure as the record definition. It does not contain any data. This record
object does not have a parent rowset and is not associated with a row. It is a freestanding record object and,
therefore, is not considered part of the current context.

The same concept applies when you instantiate a rowset object using the CreateRowset function. You are
only creating an area in the data buffers that has the same structure as the records or rowset that the new
rowset is based on. The rowset does not contain any data. This type of rowset does not have a parent rowset
Or TOW.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with Contextual References, page
49

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CreateRecord

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CreateRowset

Accessing Secondary Component Buffer Data

When a secondary page is run, the data for its buffers is copied from the parent component to a buffer
structure for the secondary page. That is, two copies of this data are made. The data buffer classes give access
to both of these copies of the data. Direct field references (recname.fieldname) always use the current context
to determine which value to access. So, in general, when using a secondary page, make sure that references
are based on the secondary page.

Instantiating Rowsets Using Non-Component Buffer Data

Both the application message and the file layout technologies represent hierarchical data, and both use the
rowset, row, record, and field hierarchy. Though you use different methods to instantiate a rowset object for
this data, you still use the same rowset, row, record, and field methods and properties to manipulate the data.
(Any exceptions are marked in the documentation.)

To instantiate a rowset for a message:

&VBG = Cr eat eMessage( OPERATI ON. EMPLOYEE_DATA) ;
&MWRONSET = &MSG Get Rowset () ;

To instantiate a rowset for a file layout:
&MYFI LE = Cet Fi | e( &SOVENAME, "R');
I f &MWYFILE. | sOpen Then
&MWYFI LE. Set Fi | eLayout ( FI LELAYOUT. SOVELAYQUT) ;

&MWYRONSET = &MYFI LE. ReadRowset () ;
End-if;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85



Accessing the Data Buffer Chapter 5

86

In an Application Engine program, the default state record is considered the primary record and the main
record in context. You can access the default state record using the following:

&STATERECORD = Get Record();

If you have more than one state record associated with an Application Engine program, you can access them
the same way you would access other, nonprimary data records, by specifying the record name. For example:

&ALTSTATE = Cet Recor d( RECORD. AE_STATE_ALT) ;

See Also

Chapter 8. "Using Methods and Built-In Functions," Using Standalone Rowsets, page 172

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

PeopleCode and the Component
Processor

This chapter provides an overview of the Component Processor and discusses:

» Events outside the Component Processor flow.

e PeopleCode program triggers.

« Component Processor behavior.

» Processing sequences.

» PeopleSoft Pure Internet Architecture processing considerations.
» Deferred processing mode.

« PeopleCode events.

» PeopleCode execution in pages with multiple scroll areas.

Understanding the Component Processor

The Component Processor is the PeopleTools runtime engine that controls processing of an application from
the time that a user requests a component from an application menu until the database is updated and
processing of the component is complete.

Events Outside the Component Processor Flow

An Application Engine program can have a PeopleCode program as an action. Though the right-hand drop-
down list box on the PeopleCode Editor window displays the text OnExecute, the PeopleCode program really
is not an event. Any PeopleCode contained in an Application Engine action is executed only when the action
is executed.

A component interface can have user-defined methods associated with it. These methods are not part of any
processor flow; they are called as needed by the program executing the component interface.

Security has a signon event during signon. This is actually PeopleCode programs on a record field that you
have specified in setting up security.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87



PeopleCode and the Component Processor Chapter 6

Though application packages have a right-hand drop-down list box on the PeopleCode Editor window that
displays the text OnExecute, this is not an event. Any PeopleCode contained in the application class is only
executed when called explicitly in a PeopleCode program.

See Also
PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes"
PeopleTools 8.52: PeopleCode API Reference, "Application Classes"

PeopleTools 8.52 : Application Engine, "Creating Application Engine Programs," Specifying PeopleCode
Actions

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

PeopleCode Program Triggers

This section provides an overview of PeopleCode program triggers and discusses how to:

» Access PeopleCode programs.

» Associate execution order of events and PeopleCode.

Understanding PeopleCode Program Triggers

88

PeopleCode can be associated with a PeopleCode record field, a component record, and many other items.
PeopleCode events are initiated at particular times, in particular sequences, during the course of the
Component Processor's flow of execution. When an event is initiated, it triggers PeopleCode programs on
specific objects.

The following items have events that are part of the Component Processor flow:

Items Event Triggers
Menu items Programs associated with the menu item
Component record fields Programs on specific rows of data
Component records Programs on specific rows of data
Components Programs associated with the component
Pages Programs associated with the page

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Items Event Triggers

Record fields Programs on specific rows of data

Suppose a user changes the data in a page field, and then presses Tab to move out of the field. This user
action initiates the FieldEdit PeopleCode event. The FieldEdit event affects only the field and row where the
change took place. If a FieldEdit PeopleCode program is associated with that record field, the program is
executed once.

If you have two FieldEdit PeopleCode programs, one associated with the record field and a second associated
with the component record field, both programs execute, but only on the specific field and row of data. The
FieldEdit PeopleCode program associated with the first record field is initiated first, and then the FieldEdit
PeopleCode program associated with the first component record field is initiated.

By contrast, suppose a user has opened a component for updating. As part of building the component, the
Component Processor initiates the RowlInit event. This event triggers RowInit PeopleCode programs on every
record field on every row of data in the component. In a scroll area with multiple rows of data, every RowlInit
PeopleCode program is executed once for each row.

In addition, if you have RowlInit PeopleCode associated with both the record field and the component record,
both programs are executed against every record field on every row of data in the component. The RowlInit
PeopleCode program associated with the first record field is initiated first, and then the RowInit PeopleCode
program associated with the first component record is initiated. If you set the value of a field with the record
field RowInit PeopleCode, and then reset the field with the component record RowlInit PeopleCode, the
second value appears to the user.

When you develop with PeopleCode, you must consider when and where your programs are triggered during
execution of the Component Processor flow.

This section discusses how to:

» Access PeopleCode programs.

« Understand the execution order of events and PeopleCode.
See Also

Chapter 6, "PeopleCode and the Component Processor." Associating Execution Order of Events and
PeopleCode, page 91

Accessing PeopleCode Programs

Every PeopleCode program is associated with a PeopleCode event and is often referred to by that name, such
as RowlInit PeopleCode or FieldChange PeopleCode. These programs are accessible from, and associated
with, different items. The following table lists items and associated events.

Note.

During search processing in update modes or add mode, the Searchlnit and SearchSave events (in the
Component Record column of the table) are available only for the search record associated with a component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89



PeopleCode and the Component Processor

Chapter 6

Record Field Component Component Component Page Events Menu Events
Events Record Field Record Events Events
Events
FieldChange FieldChange RowDelete PostBuild Activate ItemSelected
FieldDefault FieldDefault RowlInit PreBuild
FieldEdit FieldEdit Rowlnsert SavePostChg
FieldFormula PrePopup RowSelect SavePreChg
PrePopup SaveEdit Workflow
RowDelete SavePostChg
RowlInit SavePreChg
Rowlnsert Seachlnit
RowSelect SearchSave
SaveEdit
SavePostChg
SavePreChg
Searchlnit
SearchSave
Workflow

The following table lists types of PeopleCode programs and where to access them in PeopleSoft Application

Designer.

PeopleCode Programs

Location in PeopleSoft Application Designer

Record field

Record definitions and page definitions

Component record field, component record, and

Component definitions

component
Menu item Menu definitions
Page field Page definitions

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.




Chapter 6 PeopleCode and the Component Processor

Associating Execution Order of Events and PeopleCode

In PeopleSoft, the component is the representation of a transaction. Therefore, any PeopleCode that is
associated with a transaction should be in events associated with some level of the component. Code that
should be executed every time a field is edited should be at the record field level. If you associate code with
the correct transaction, you do not have to check for the component that is issuing it (such as surrounding
your code with dozens of | f % Conponent = statements). Records are more reusable, and code is more
maintainable.

For example, if you have start and end dates for a course, you would always want to make sure that the end
date was after the start date. Your program to check the dates would go on the SaveEdit at the record field
level.

All similarly named component events are initiated after the like-named record event. The PeopleCode
program associated with the record field event is initiated first, and then the PeopleCode program associated
with the like-named component event is initiated. If you set the value of a field with the record field
PeopleCode, and then reset the field with like-named component PeopleCode, the second value is displayed
to the user.

Events After Field Changes

The following events occur after a user changes a field:
Record.recordA. fielda. FieldEdit -> Conponent.recordA fielda.FieldEdit ->
Record.recordB. fieldb. Fiel dEdit -> Conponent.recordB.fieldb.FieldEdit ->

Record. recordA. fi el da. Fi el dChange -> Conponent.recordA. fiel da. Fi el dChange ->
Record. recordB. fi el db. Fi el dChange -> Conponent.recordB. fiel db. Fi el dChange ->

The following diagram shows the event flow:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91



PeopleCode and the Component Processor

92

FieldEdit Event

s

FieldEdit Event

Record A
Field A
PeopleCode

.

Record A
Field A
PeapleCode

Record B
Field B
PeopleCode

Record B
Field B
PeopleCode

Flow of events and PeopleCode programs after a user changes a field

Events After User Saves

The following events occur after a user saves:

Chapter 6

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

Record.recordA. fi el da. SaveEdit ->
Record. recordA. fiel db. SaveEdit ->
Record.recordA. fiel dc. SaveEdit ->
Conponent . r ecor dA. SaveEdi t

Record.recordB. fi el da. SaveEdit ->
Record.recordB. fi el db. SaveEdit ->
Record.recordB. fi el dc. SaveEdit ->
Conponent . r ecor dB. SaveEdi t

Record. recordA. fi el da. SavePr eChange
Record. recor dA. fi el db. SavePr eChange
Record. recordA. fi el dc. SavePr eChange
Conponent . r ecor dA. SavePr eChange

Record. recordB. fi el da. SavePr eChange
Record. recordB. fi el db. SavePr eChange
Record. recordB. fi el dc. SavePr eChange
Conponent . r ecor dB. SavePr eChange

Record. recordA. fi el dA. Wor kFl ow - >
Record. recordB. fi el dB. Wr kFl ow - >
Record. reocrdC. fi el dC. Wor kFl ow
Conponent . or kf | ow

Record. recor dA. fi el da. SavePost Change
Record. recor dA. fi el db. SavePost Change
Record. recor dA. fi el dc. SavePost Change
Conponent . r ecor dA. SavePost Change

Record. recor dB. fi el da. SavePost Change
Conponent . r ecor dB. SavePost Change
Conponent . SavePost Change

The following diagram shows the event flow:

->
->
->

->

->

->
->
->

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode and the Component Processor

93



PeopleCode and the Component Processor

SavePostChange

:

Record A
Field A
PeopleCode

.

Record A
Field B
PeopleCode

.

Recard A
Field C
PeopleCode

Component
Recaord A
FeopleCode

Record B
Field B
PeopleCode

Component
Recaord B
FeopleCode

Component
FeopleCode

Chapter 6

Flow of PeopleCode programs after SavePostChange event

Note. SaveEdit does not fire for deleted rows, but SavePreChange, Workflow, and SavePostChange do.

Component Processor Behavior

94

This section discusses:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

« Component Processor behavior from page start to page display.

» Component Processor behavior following user actions in the component.

Note. Components behave differently when run in deferred mode .

See Also

Chapter 6. "PeopleCode and the Component Processor," Deferred Processing Mode, page 125

Chapter 6. "PeopleCode and the Component Processor," Processing Sequences, page 98

Component Processor Behavior from Page Start to Page Display

Before a user selects a component, the system is in reset state, in which no component is displayed. The
Component Processor flow of execution begins when a user selects a component from a PeopleSoft menu.
The Component Processor then:

1. Performs search processing, in which it obtains and saves search key values for the component.
2. Retrieves from the database server any data needed to build the component.

3. Builds the component, creating buffers for the component data.

4. Performs any additional processing for the component or the page.

5. Displays the component and waits for user action.

The following flowchart shows the flow of execution at a high level:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95



PeopleCode and the Component Processor

Default Processing

Y

PaostBuild

-

Activate

YA YaY>

O

l

Display page,
Wait for user action

Processing up to Page Display

Chapter 6

Component Behavior Following User Actions in the Component

After a component is built and displayed, the Component Processor can respond to a number of possible user
actions. The following table lists the user actions and briefly describes the resulting processing:

See Chapter 6. "PeopleCode and the Component Processor," Processing Sequences, page 98.

User Action

Description

Row Insert Processing

When a user requests a row insert, the Component
Processor adds a row of data in the active scroll area,
then displays the page again and waits for another
action.

See Chapter 6. "PeopleCode and the Component
Processor," Row Insert Processing, page 117.

Row Delete Processing

When a user requests a row delete, the Component
Processor flags the current row as deleted, then displays
the page again and waits for another action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Delete Processing, page 119.

96

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

PeopleCode and the Component Processor

User Action

Description

Field Modification

If a user edits a page field, then leaves the field, the
Component Processor performs standard edits (such as
checking the data type and checking for values out of
range). If the contents of the field do not pass the
standard system edits, the Component Processor
redisplays the page with an error or warning message
and changes the field's color to the system color for field
edit errors, usually red. Until the user corrects the error,
the Component Processor does not let the user save
changes or navigate to another field. If the contents of
the field pass the standard system edits, the system
redisplays the page and waits for further action.

See Chapter 6, "PeopleCode and the Component
Processor," Field Modification, page 113.

Prompts

If a user clicks the prompt icon next to a field, a list of
values for the prompt field appears. If the Allow Search
Events for Prompt Dialogs checkbox is selected in the
record field properties for the search key, the Searchlnit
event will trigger before the prompt dialog appears. If
the user clicks the Look Up button the SearchSave event
will trigger.

If the end-user clicks the detail button next to a date
field, a calendar appears.

If the user clicks Return To Search, or presses Alt+2, a
search page appears, enabling the user to enter an
alternate search key or partial value.

See Chapter 6, "PeopleCode and the Component
Processor.," Prompts, page 121 and Chapter 6,
"PeopleCode and the Component Processor," Search
Processing in Update Modes, page 102.

Pop-up Menu Display

If a user clicks the pop-up icon next to a field, a pop-up
menu appears. This can be a default pop-up menu or one
that has been defined by the developer. If the user clicks
the pop-up icon at the bottom of the page, the pop-up
menu for the page appears.

See Chapter 6, "PeopleCode and the Component
Processor," Pop-Up Menu Display, page 122.

ItemSelected Processing

A user can select an item from a pop-up menu to
execute a command.

See Chapter 6, "PeopleCode and the Component
Processor," Selected Item Processing, page 122.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

97



PeopleCode and the Component Processor

Chapter 6

User Action

Description

Push Button

A user can click a button to execute a command.

See Chapter 6, "PeopleCode and the Component
Processor," Buttons, page 121.

Save Processing

A user can direct the system to save a component by
clicking Save or by pressing Alt+1. If any component
data has been modified, the system also prompts the
user to save a component when the Next or List button
is clicked, or when a new action or component is
selected.

The Component Processor first validates the data in the
component, and then updates the database with the
changed component data. After the update, a SQL
Commit command finalizes the changes.

See Chapter 6, "PeopleCode and the Component
Processor," Save Processing, page 123.

Processing Sequences

98

This section presents an overview of flow charts and discusses:

Default processing.

Search processing in update mode.

Search processing in add mode.
Component build processing in update mode.
Row select processing.

Component build processing in add mode.
Field modification.

Row insert processing.

Row delete processing.

Buttons.

Prompts.

Pop-up menu display.

Selected item processing.

Save processing.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Flow Charts

Actions and PeopleCode events can occur in various sequences within the Component Processor's flow of
execution. Flow charts represent each sequence. In a flow chart, different shapes and colors represent
different concepts.

Blue rectangles represent actions taken by the system.
System Action

Dark rhomboids represent branches (decision points) in the logic.

Decision Point

Dark ellipses represent PeopleCode events.
PeopleCode Event

Light ellipses are subprocesses.
Subsequence

Most processing sequences correspond to high-level component processor behaviors. However, two
important subsequences occur only in the context of a larger sequence. These subsequences are:

»  Default processing, which occurs in a number of different contexts.

« Row select processing, which most commonly occurs as a part of component build in any of the update
action modes.

Row select processing also occurs when a ScrollSelect or related function is executed to load data into a
scroll area.

See Chapter 6, "PeopleCode and the Component Processor," Component Processor Behavior, page 94;
Chapter 6. "PeopleCode and the Component Processor," Default Processing, page 100 and Chapter 6,
"PeopleCode and the Component Processor," Row Select Processing. page 110.

Note. Variations may occur in processing sequences, particularly when a PeopleCode function within a
processing sequence initiates another processing sequence. For example, if a row of data is inserted or deleted
programmatically during the component build sequence, a row insert or row delete sequence is initiated. Also
note that components that run in deferred mode behave differently.

See Chapter 6. "PeopleCode and the Component Processor," Deferred Processing Mode, page 125.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99



PeopleCode and the Component Processor Chapter 6

Default Processing

100

In default processing, any blank fields in the component are set to their default values. You can specify the
default value either in the record field properties or in FieldDefault PeopleCode. If no default value is
specified, the field is left blank.

Note. In PeopleSoft Pure Internet Architecture, if a user changes a field, but there is nothing to cause a trip to
the server on that field, default processing and FieldFormula PeopleCode do not run. They only run when
another event causes a trip to the server.

Default processing is relatively complex. The following two sections describe how default processing works
on the level of the individual field, and how default processing works in the broader context of the
component.

Field-Level Default Processing

During default processing, the Component Processor examines all fields in all rows of the component. On
each field, it performs the following:

1. Ifthe field is set to NULL (blank) for a character field, or set to 0 for a numeric field, the Component
Processor sets the field to any default value specified in the record field properties for that field.

2. If no default value for the field is defined in the record field properties, then the Component Processor
initiates the FieldDefault event, which triggers any FieldDefault PeopleCode associated with the record
field or the component record field.

3. Ifan error or warning executes in any FieldDefault PeopleCode, a runtime error occurs.

Important! Avoid using error and warning statements in FieldDefault PeopleCode.

The following flowchart shows this logic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Field Blank

Yes

¥

Record field property
defaults

) Mo
Field Blank

Yes

¥

( FigldDefault )

Errar/Warning Result

Unrecoverable ermor;
cancel page

T

Continue processing

Field-level default sequence flow

Default Processing on Component Level

Under normal circumstances, default processing in a component is relatively simple: each field on each row
of data undergoes field-level default processing. For typical development tasks, this is all you need to be
concerned with. However, the complete context of default processing is somewhat more complex.

See Chapter 6. "PeopleCode and the Component Processor." Default Processing, page 100.

During component-level default processing, the Component Processor performs these tasks:
1. Field-level default processing is performed on all fields on all rows of data in the component.

2. If any field is still blank and any other field in the component has changed, field-level default processing
may be repeated, in case a condition changed that causes default processing to now assign a value to
something that was previously left blank.

3. The FieldFormula Event is initiated on all fields on all rows of data in the component.

This PeopleCode event is often used for FUNCLIB _ (function library) record definitions to store shared
functions, so normally no PeopleCode programs execute.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101



PeopleCode and the Component Processor

Chapter 6

4. If the FieldFormula Event changed anything, field-level default processing is performed again, in case
FieldFormula PeopleCode changed a field value to blank, or changed something that causes default
processing to now assign a value to a field that was previously left blank.

Because there should not be any FieldFormula PeopleCode, this is unlikely to affect the development

process or performance.

5. If any field is still blank and any other field in the component has changed, field-level default processing

is repeated.

The following flowchart shows this logic:

( Field-level Default \\J

Processing j} -

Result I

Else

z
( FieldFormula )

v
( Field-level Default ) _

Processing _/""

Result |

Else

v

Continue processing

Any field blank and
anather field changed

Any field blank and
another field changed

Default processing on component level

Search Processing in Update Modes

If a user selects any of the update action modes (Update, Update/Display All, or Correction), the Component
Processor begins update mode search processing, which includes the following steps:

102

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

L.

PeopleCode and the Component Processor

The Searchlnit PeopleCode event is initiated, which triggers any Searchlnit PeopleCode associated with
the record field or the component search record, on the keys or alternate search keys in the component
search record.

This enables you to control the search page field values or the search page appearance programmatically,
or to perform other processing prior to the appearance of the search page.

Note. Set the search record for the component in the component properties.

For example, the following program in Searchlnit PeopleCode on the component search key record field
EMPLID sets the search key page field to the user's employee ID, makes the page field unavailable for
entry, and enables the user to modify the user's own data in the component:

EMPLI D = %Enpl oyeel d;
&Fi el d CGet Fi el d(EMPLI D) . Enabl ed = Fal se;
Al | onEnpl | dChg( True);

Note. Generally, the system search processing displays the search page. You can use the Searchlnit event,
and the SetSearchDialogBehavior function, to set the behavior of the search page before it is displayed. If
SetSearchDialogBehavior is set to Force display, the dialog box is displayed even if all required keys
have been provided. You can also set SetSearchDialogBehavior to skip if possible. In addition, you can
force search processing to always occur by selecting Force Search Processing in the component definition
properties in PeopleSoft Application Designer.

The search page and prompt list appear, in which the user can enter search keys or select an advanced
search to enter alternate search keys.

Note. Normally, the values in the search page are not set to default values. However, if the SearchDefault
function was executed in SearchInit PeopleCode for any of the search key or alternate search fields, those
fields in the dialog box are set to their system default values. No other default processing occurs (that is,
the FieldDefault event is not initiated).

3. The user enters a value or partial value in the search page, and then clicks Search.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103



PeopleCode and the Component Processor Chapter 6

104

4. The SearchSave PeopleCode event is initiated, which triggers any SearchSave PeopleCode associated

with the record field or the component search record, on the search keys or alternate search keys in the
search record.

This enables you to validate the user entry in the search page by testing the value in the search record field
in PeopleCode and, if necessary, issuing an error or warning. If an error is executed in SearchSave, the
user is sent back to the search page. If a warning is executed, the user can click OK to continue or click
Cancel to return to the search page and enter new values.

If partial values are entered, such that the Component Processor can select multiple rows, then the prompt
list dialog box is filled, and the user can select a value. If key values from the search page are blank, or if
the system cannot select any data based on the user entry in the search page, the system displays a
message and redisplays the search page. If the values entered produce a unique value, the prompt list is
not filled. Instead, the user is taken directly to the page.

Note. Normally, no system edits are applied when the user changes a field in the search page. However, if
the SearchEdit property is executed for specific search page fields in Searchlnit PeopleCode, the system
edits are applied to those fields after the user changes a field and either leaves the field or clicks Search.
In addition, the SearchEdit property can also be set in metadata for the record field definition.

If the user entry in the field fails the system edits, the system displays a message, highlights the field in
question, and returns the user to the dialog box. The FieldEdit and SaveEdit PeopleCode events are not
initiated. The SearchSave event is not initiated after values are selected from the search list. To validate
data entered in the search page, use the Component PreBuild event.

The Component Processor buffers the search key values.

If the user then opens another component while this component is active, the Component Processor uses
the same search key values and bypasses the search page.

The following flowchart shows this logic. (It does not show the effects of executing the SearchDefault and
SearchEdit Field class properties.)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

Searchinit

.

»| Search Dialog Display

User Action

Search button

SearchSave

Mo values or

rows found Search and Fill list

——

FPartial key value returned

¥

Build Prompt List

Buffer search key values

Unigue

returned

valug ——p

Select

Search processing logic in update mode

PeopleCode and the Component Processor

Note. You can use the IsSearchDialog built-in function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %Mode system variable. This
could be useful in code that is part of a library function and that is invoked in places other than from the
search page. It could also be used in PeopleCode associated with a record field that appears in pages and in

the search page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

105



PeopleCode and the Component Processor Chapter 6

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
SetSearchDialogBehavior

PeopleTools 8.52: PeopleCode API Reference, "Field Class," SearchDefault

PeopleTools 8.52: PeopleCode Language Reference, "System Variables," %Mode

Search Processing in Add Modes

When a user opens a component in add or data-entry modes, the following actions occur:

L.

106

The Component Processor runs default processing on the high-level keys that appear in the Add or Data
Entry dialog box.

The Component Processor initiates the RowInit event, which triggers any RowlInit PeopleCode associated
with the record field or the component record, on the Add or Data Entry dialog box fields.

The Component Processor initiates the Searchlnit event on dialog fields, which triggers any Searchlnit
PeopleCode associated with the record field or the component search record.

This enables you to execute PeopleCode programs before the dialog box appears.

The Component Processor displays the Add or Data Entry dialog box.

If the user changes a dialog box field, and then leaves the field or clicks OK, the following actions occur:
» In add mode only, a field modification processing sequence occurs.

See Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 113.

» Default processing is run on the Add or Data Entry dialog box fields.
Normally this does not have any effect, because the fields have a value.

When the user clicks OK in the dialog box, the SaveEdit event is initiated, which triggers any PeopleCode
associated with the record field or the component record.

The Component Processor initiates the SearchSave event, which triggers any SearchSave PeopleCode
associated with the record field or the component search record.

This enables you to validate user entry in the dialog box. If an error is executed in SearchSave, the user is
sent back to the Add or Data Entry dialog box. If a warning is executed, the user can click OK to continue
or click Cancel to return to the dialog box and enter new values.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

8. The Component Processor buffers the search key values and continues processing.

Note. If you compare the following diagram with search processing in update modes, notice that the add
modes are considerably more complex and involve more PeopleCode events. However, in practice,
PeopleCode development is similar in both cases. PeopleCode that runs before the dialog box appears (for
example, to control dialog box appearance or set values in the dialog box fields) generally is placed in the
Searchlnit event; PeopleCode that validates user entry in the dialog box is placed in the SearchSave event.

See Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page
102.

The following flowchart shows this logic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107



PeopleCode and the Component Processor

108

ErrorWarning
Cancel

)

v

( Searchlnit )

v

Fail

Add/Data Entry Dialog [«

Yas

Add Mode Only

(o -

\

C SearchSave )

System Edits

Pass

¥

( FieldEdit )

Accept Warning
¥

( FieldChange )

Buffer search key values

Error

Search processing logic in add and data-entry modes

Chapter 6

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Note. You can use the IsSearchDialog function to create PeopleCode that runs only during search processing.
To create processes that run only in a specific action mode, use the %6Mode system variable. This could be
useful in code that is part of a library function and that is invoked in places other than from the search page. It
could also be used in PeopleCode associated with a record field that appears in pages and in the search page.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," IsSearchDialog

PeopleTools 8.52: PeopleCode Language Reference, "System Variables," %Mode

Component Build Processing in Update Modes

After the Component Processor has saved the search keys values for the component, it uses the search key
values to select rows of data from the database server using a SQL Select statement. After the rows are
retrieved, the Component Processor performs these actions:

1. Performs row select processing, in which rows of data that have already been selected from the database
server can be filtered before they are added to the component buffer.

See Chapter 6. "PeopleCode and the Component Processor," Row Select Processing, page 110.

2. Initiates the PreBuild event, which triggers any PreBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

The PreBuild event is also used to validate data entered in the search page, after a prompt list is displayed.

Note. If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search
page. If there is no search page, that is, the search record has no keys, a blank component page appears.

3. Performs default processing on all the rows and fields in the component.

See Chapter 6. "PeopleCode and the Component Processor," Default Processing, page 100.

4. Initiates the RowlInit event, which triggers any RowlInit PeopleCode associated with the record field or the
component record.

The Rowlnit event enables you to programmatically initialize the values of non-blank fields in the
component.

5. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

6. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmatically control the display of that page.

7. Displays the component and waits for end-user action.

The following flowchart shows this logic.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109



PeopleCode and the Component Processor

(Rnwﬁelect Processing

.

PreBuild

.

Default Processing

.

Rowlnit

.

PostBuild

.

Activate

.

Display Page, and wait
for user action

A

(D D ) )
WA A YA

Component build processing in update modes

Row Select Processing

110

Chapter 6

Row select processing enables PeopleCode to filter out rows of data after they have been retrieved from the
database server and before they are copied to the component buffers. Row select processing uses a SQL

Select statement .

Row select processing is a subprocess of component build processing in add modes. It also occurs after a

ScrollSelect or related function is executed.

See Chapter 6. "PeopleCode and the Component Processor," Component Build Processing in Add Modes,

page 112.

Note. Instead of using row select processing, it is more efficient to filter out the rows using a search view, an
effective-dated record, the Select method, or ScrollSelect or a related function, before the rows are sent to the

browser.

In row select processing, the following actions occur:

1. The Component Processor checks for more rows to add to the component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

2. The Component Processor initiates the RowSelect event, which triggers any RowSelect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions. StopFetching
causes the system to add the current row to the component, and then to stop adding rows to the
component. DiscardRow filters out a current row, and then continues the row select process.

3. Ifneither the StopFetching nor DiscardRow function is called, the Component Processor adds the rows to
the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both StopFetching
and DiscardRow are called, the current row is not added to the page, and no more rows are added to the

page.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed, because the buffers are in the process of being populated. This means that the data might not
be present.

The following flowchart shows this logic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111



PeopleCode and the Component Processor

Chapter 6

More rows to read?

Yes

v

Selected Rows

( RowSelect )

StopFetching anly

k J

Result

Meither
function
called

v

DiscardRow
only

Add current row to page

Add current row to page

Add current row to page  —

T

StopFetching and

DiscardRow

RowSelect processing logic

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," StopFetching

Component Build Processing in Add Modes

112

After search processing in add or data-entry modes, the Component Processor:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

1. Initiates the PreBuild event.
2. Runs default processing on all page fields.
This enables you to set default fields programmatically using FieldDefault PeopleCode.

3. Initiates the RowInit event on all fields in the component, which triggers any RowInit PeopleCode
associated with the record field or component record.

This enables you to initialize the state of page controls, using RowlInit PeopleCode, before the controls are
displayed. (RowlInit enables you to set the values of non-blank fields programmatically, whereas default
processing is used to set blank fields to their default values.)

4. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

5. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmatically control the display of that page.

6. Displays a new component, using the search keys obtained from the Add or Data Entry dialog box, with
other fields set to their default values.

The following flowchart shows the logic:

( Detaul Tmﬁm )
C m:.nu )
)
( mzm )

Display Page, and wait
for user action

Logic of component build processing in add modes

Field Modification

The field modification processing sequence occurs after a user does any of the following:

« Changes the contents of a field, and then leaves the field.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113



PeopleCode and the Component Processor Chapter 6

» Changes the state of a radio button or check box.
» Clicks a command button.

In this sequence, the following actions occur:

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

L.

PeopleCode and the Component Processor

The Component Processor performs standard system edits.

To reduce trips to the server, some processing must be done locally on the machine where the browser is

located, while some is performed on the server.

Standard system edits can be done either in the browser, utilizing local JavaScript code, or on the
application server. The following table outlines where these system edits are done.

System Edits

Location of Execution

Checking data type

Browser

Formatting

Application server or browser

Updating current or history record

Application server

Effective date

Application server

Effective date or sequence

Application server

New effective date in range

Application server

Duplicate key

Application server

Current level is not effective-dated but one of its child
scroll areas is

Application server

Required field Browser
Date range Browser
Prompt table Application server

Translate table

Browser

Yes/no table

Depends on the field type. Browser if the field is a
check box. Application server if the field is an edit
box and the values are Y or N.

Note. Default processing for the field can be done in the browser only if the default value is specified as a
constant in the record field properties. If the field contains a default, these defaults occur only upon
component initialization. Then, if a user replaces a default value with a blank, the field is not initialized
again. The required fields check is not performed on derived work fields when you press Tab to move out

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

115



PeopleCode and the Component Processor Chapter 6

116

of a field.

If the data fails the system edits, the Component Processor displays an error message and highlights the
field in the system color for errors (usually red).

If the field passes the system edits, Component Processor initiates the FieldEdit PeopleCode event, which
triggers any FieldEdit PeopleCode associated with the record field or the component record field.

This enables you to perform additional data validation in PeopleCode. If an Error statement is called in
any FieldEdit PeopleCode, the Component Processor treats the error as it does a system edit failure; a
message is displayed, and the field is highlighted. If a Warning statement is executed in any FieldEdit
PeopleCode, a warning message appears, alerting the user to a possible problem, but the system accepts
the change to the field.

If the field change is accepted, the Component Processor writes the change to the component buffer, then
initiates the FieldChange event, which triggers any FieldChange PeopleCode associated with the record
field or the component record field.

This event enables you to add processes other than validation initiated by the changed field value, such as
changes to page appearance or recalculation of values in other page fields. An Error or Warning statement
in any FieldChange PeopleCode causes a runtime error.

Important! Do not use Error or Warning statements in FieldChange PeopleCode. All data validation
should be performed in FieldEdit PeopleCode.

After FieldChange processing, Component Processor runs default processing on all page fields, then
redisplays the page. If the user has changed the field value to a blank, or if SetDefault or a related function
is executed, and the changed field has a default value specified in the record field definition or any
FieldDefault PeopleCode, the field is initialized again to the default value.

The following flowchart shows this logic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

System Edits

Result Failed >
Fass
\ 4
FieldEdit
Result Error: »

AcceptWaming

( FieldChange )

Error/\Warning Result Display Error Messages

Else

¥

( Default Processing )

Y ¢ v

Unrecoverable error: Display page, and wait Highlight field,
cancel page for user action redisplay page

Logic of field modification processing

Row Insert Processing
Row insert processing occurs when:

» A user requests a row insert in a scroll area by pressing Alt+7, by clicking the Insert Row button, or by
clicking the New button.

» A PeopleCode RowlInsert function or a InsertRow method requests a row insert.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117



PeopleCode and the Component Processor Chapter 6

118

In either case, the Component Processor performs these actions:

1.

Inserts a new row of data into the active scroll area.

If the scroll area has a dependent scroll area, the system inserts a single new row into the blank scroll area,
and the system continues until it reaches the lowest-level scroll area.

Initiates the RowInsert PeopleCode event, which triggers any RowlInsert PeopleCode associated with the
record field or the component record.

This event processes fields only on the inserted row and any dependent rows that were inserted on lower-
level scroll areas.

Runs default processing on all component fields.

Normally this affects only the inserted row fields and fields on dependent rows, because other rows
already have undergone default processing.

Initiates the RowInit PeopleCode event, which triggers any RowInit PeopleCode associated with the
record field or the component record.

This event affects fields only on the inserted row and any dependent rows that were inserted.

Redisplays the page and waits for user action.

Important! Do not use Error or Warning statements in RowlInsert PeopleCode. All data validation should
be performed in FieldEdit or SaveEdit PeopleCode.

The following flowchart shows this logic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Insert Mew Row

:

Rowlnsert

Errar AcceptWarning

Unrecoverable errar:
cancel page

Default Processing

h J

C
C

h J

Post Build

h J

Display page,
waiting for user action

Logic of row insert processing

Note. If none of the data fields in the new row are changed after the row has been inserted (either
programmatically or by the user), the new row is not inserted into the database when the page is saved.

Row Delete Processing
Row delete processing occurs when:

» A user requests a row delete in a scroll area by pressing Alt+8, by clicking the Delete Row button, or by
clicking the Delete button.

* A PeopleCode RowDelete function or a DeleteRow method requests a row delete.

In either case, these actions occur:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119



PeopleCode and the Component Processor Chapter 6

120

The Component Processor initiates the RowDelete PeopleCode event, which triggers RowDelete
PeopleCode associated with the record field or the component record.

This event processes fields on the deleted row and any dependent child scroll areas. RowDelete
PeopleCode enables you to check for conditions and control whether a user can delete the row. An Error
statement displays a message and prevents the user from deleting the row. A Warning statement displays
a message alerting the user about possible consequences of the deletion, but permits deletion of the row.

If the deletion is rejected, the page is redisplayed after the error message.

If the deletion is accepted, the row, and any child scroll areas dependent on the row, are flagged as
deleted.

The row no longer appears in the page, but it is not physically deleted from the buffer and can be accessed
by PeopleCode all the way through the SavePostChange event (note, however, that SaveEdit PeopleCode
is not run on deleted rows).

The Component Processor runs default processing on all component fields.

The Component Processor redisplays the page and waits for a user action

Note. PeopleCode programs are triggered on rows flagged as deleted in SavePreChange and
SavePostChange PeopleCode. Use the IsDeleted row class property to test whether a row has been
flagged as deleted. You can also access rows flagged as deleted by looping through the rows of a scroll
area using a For loop delimited by the value returned by the RowCount rowset property.

The following flowchart shows this logic:

C RowDelete )

Error Accept/Waming

l l

Unrecoverable error:
cancel page Row flagged as deleted

¥
(Dﬂfault Processing )

Display page,
waiting for user action

Logic of row delete processing

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

PeopleCode and the Component Processor

See Also
PeopleTools 8.52: PeopleCode API Reference, "Row Class," IsDeleted
PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," RowCount

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," For

Buttons

Prom

Copyright

When a user presses a button, this initiates the same processing as changing a field. Typically, PeopleCode
programs started by button are placed in the FieldChange event.

See Also

Chapter 6, "PeopleCode and the Component Processor." Field Modification, page 113

pts

If the Allow Search Events for Prompt Dialogs checkbox is selected for the Record Field properties for a
search key on a prompt table record, the search processing events are enabled for that field. When the user
selects the prompt icon, the Searchlnit event for that field executes before the search dialog displays. When
the user selects the Look Up button on a prompt dialog the SearchSave event for the field executes.

Search event processing on prompt dialogs can affect performance. Oracle recommends that you limit the use
of search events in prompt dialogs to simple tasks such as showing and hiding fields or character
manipulation. Do not use the search events on prompt dialogs for complex functions such as
AddKeyListltem, ClearKeyList, ClearSearchDefault, ClearSearchEdit, IsSearchDialog, SetSearchDefault,
SetSearchDialogBehavior, or SetSearchEdit, and so on.

By default, Allow Search Events for Prompt Dialogs is off, in which case no PeopleCode event is initiated as
a result of prompts.

No PeopleCode events are initiated as a result of the user returning to the search page or displaying a
calendar. This process is controlled automatically by the system.

Note. When the value of a field is changed using a prompt, the standard field modification processing occurs.

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Record Definitions,"
Setting Record Field Use Properties

Chapter 6. "PeopleCode and the Component Processor." Field Modification, page 113

Chapter 6, "PeopleCode and the Component Processor." Search Processing in Update Modes, page 102

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121



PeopleCode and the Component Processor Chapter 6

Pop-Up Menu Display

To display a pop-up menu, a user can click the pop-up button, either next to a field or at the bottom of a page
(if the page has a pop-up menu associated with it.) The user can open a standard pop-up menu on a page field
if no pop-up menu has been defined by an application developer for that page field.

The PrePopup PeopleCode event initiates only if the user opens a pop-up menu defined by an application
developer on a page field. It does not initiate for a pop-up menu attached to the page background.

The PrePopup PeopleCode event enables you to disable, check, or hide menu items in the pop-up menu.

PrePopup PeopleCode menu item operations (such as HideMenultem, EnableMenultem, and so on) work
with pop-up menus attached to a grid, not a field in a grid, only if the PrePopup PeopleCode meant to operate
on that pop-up menu resides in the record field that is attached to the first column in the grid. It does not
matter if the first field is visible or hidden.

The following flowchart shows this logic:

User request
poOpUp Menu

4

( PrePopup )

i

Display Popup menu

Logic of PrePopup even processing

Selected Item Processing

122

Selected item processing occurs when a user selects a menu item from a pop-up menu. This initiates the
ItemSelected PeopleCode event, which is a menu PeopleCode event.

The following flowchart shows this logic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

User request
poOpUp Menu

!

( PrePopup )

i

Display Popup menu

Logic of selected item processing

Save Processing
A user can direct the system to save a component by clicking Save or by pressing Alt+1.

An application can prompt the user to save a component when the Next or List button is clicked, or when a
new action or component is selected. If the user clicks Save after being prompted, save processing begins.

The following actions occur in save processing:

1. The Component Processor initiates the SaveEdit PeopleCode event, which triggers any SaveEdit
PeopleCode associated with a record field or a component record.

This enables you to cross-validate page fields before saving, checking consistency among the page field
values. An Error statement in SaveEdit PeopleCode displays a message and then redisplays the page,
stopping the save. A Warning statement enables the user to cancel save processing by clicking Cancel, or
to continue with save processing by clicking OK.

2. The Component Processor initiates the SavePreChange event, which triggers any SavePreChange
PeopleCode associated with a record field, a component record, or a component.

SavePreChange PeopleCode enables you to process data after validation and before the database is
updated.

3. The Component Processor initiates the Workflow event, which triggers any Workflow PeopleCode
associated with a record field or a component.

Workflow PeopleCode should be used only for workflow-related processing (TriggerBusinessEvent and
related functions).

4. The Component Processor updates the database with the changed component data, performing any
necessary SQL Insert, Update, and Delete statements.

5. The Component Processor initiates the SavePostChange PeopleCode event, which triggers any
SavePostChange PeopleCode associated with a record field, a component record, or a component.

You can use SavePostChange PeopleCode for processing that must occur after the database update, such
as updates to other database tables not in the component buffer.

6. The Component Processor issues a SQL Commit statement to the database server.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123



PeopleCode and the Component Processor

124

7. The Component Processor redisplays the component.

Chapter 6

Important! Never use an Error or Warning statement in any save processing event other than SaveEdit.
Perform all component data validation in SaveEdit.

The following flow chart shows the logic of this sequence:

SaveEdit

Result

Acc:ept."Waming

( SavePreChange )

WorkFlow

SQOL, Insert,
Update, Delete

.

SavePostChange )

New

()

ErrorfWarning
Cancel

e requested

Yes

¥

Start New Page

Mo

k

Display page, and
wait for user action

Logic of save processing

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

PeopleCode and the Component Processor

PeopleSoft Pure Internet Architecture Processing Considerations

Keep the following points in mind concerning the PeopleSoft Pure Internet Architecture:

« Ifauser changes a field that field has nothing to cause a trip to the server, then default processing and
FieldFormula PeopleCode do not run.

These processes only run when another event causes a trip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

» In applications that run on the PeopleSoft portal, external, dynamic link information must be placed in
RowlInit PeopleCode.

If it is placed in FieldChange PeopleCode, it will not work.

Defe

Copyright

rred Processing Mode

When a component runs in deferred processing mode, trips to the server are reduced. When deploying some
pages in the browser, you may want the user to be able to input data with minimal interruption or trips to the
server. Each trip to the server can slow down your application. By specifying a component as deferred
processing mode, you can achieve better performance.

PeopleSoft applications use Asynchronous JavaScript and XML (AJAX) technology to limit server trips and
perform partial page refreshes. With a partial page refresh, the browser refreshes the entire page only when
the user navigates to a new page. Any server trips triggered by PeopleCode functions such as FieldChange
and FieldEdit for related display fields do not redraw the entire page; the refresh updates only the changed
fields. Because of AJAX technology, much of the communication with the server happens in the background.
You continue to work uninterrupted during the process.

Even with AJAX and partial page refresh, Oracle recommends that you leverage deferred processing mode to
limit network traffic. Although server trips are reduced, if you selectively disable deferred processing you
will incur not only additional network traffic to process the request, you will also add additional processing
on the webserver and appserver to deal with this request.

See PeopleTools 8.52: PeopleSoft Applications User's Guide, "Using PeopleSoft Application Pages."

If you specified deferred processing mode for a component, you can then specify whether a page within a
component, or a field on a page, also performs processing in deferred mode. The default is for all pages and
components to allow deferred processing. By default, fields do not allow deferred processing.

If you specify that a field or page allows deferred processing but do not set the component to deferred
processing mode, then the deferred processing mode is not initiated. You must set the component first.

The characteristics of this mode are:

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125



PeopleCode and the Component Processor Chapter 6

126

Field modification processing is deferred.

No field modification processing is done in the browser. FieldEdit and FieldChange PeopleCode, as well
as other edits, such as required field checks, formats, and so on, do not run until a specific user action
occurs. Several actions cause field modification processing to execute, for example, clicking a button or
link, navigating to another page in the component, and saving the page. The following actions do not
cause field processing:

» Clicking an external link.
e Clicking a list (performing a search).
» Clicking a process button.

Deferred processing mode affects the appearance of pages in significant ways. For example, related
processing is not done when the user presses Tab to move out of a field. Avoid related fields for
components that use this mode.

Drop-down list box values are static while the page appears in the browser.

Drop-down list box values are generated on the application server when generating the HTML for the
page.

If translate values are used to populate the drop-down list box, and the current record contains an effective
date, that date is static while the page is displayed. This means the drop-down list box values may become
out of date.

If prompt table values are used to populate the drop-down list box, the high-order key field values for the
prompt table are static while the page is displayed. This means the drop-down list box values may become
out of date.

Avoid interdependencies in drop-down lists used on pages executed in deferred mode, because the lists
may quickly become out of date.

. No field modification processing is done during prompt button processing.

When the user clicks a prompt button, a trip is made to the application server (if values were not already
downloaded) to select the search results from the database and to generate the HTML for the prompt
dialog box. During this trip to the application server, field modification processing for the field being
prompted is not performed, because this may cause an error message for another field on the page, and
this error may confuse the user. When deferred changes are made to other fields, field modification
processing for these fields is done before prompting. The field modification for the prompted field is done
after returning from the prompt page. While the system displays the page, the high-order key field values
for the prompt table should be static or not require field modification processing. Display-only drop-down
list box, radio button, and check box fields do not require field modification processing. Field values that
do not require field modification processing are temporarily written to the component buffer, without any
field modification processing being performed on them, including FieldEdit and FieldChange
PeopleCode. The system restores the original state of the page processor before returning to the browser.

Field modification processing executes in field layout order.

The entire field modification processing sequence executes in field layout order for each field. If a field
passes the system edits and FieldEdit PeopleCode, the field value is written to the component buffer. If an
error occurs, field modification processing stops, and the system generates new HTML for the page, with
the field in error highlighted and sent to the browser.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode and the Component Processor

5. PeopleCode dependencies between fields on the page do not work as expected.

Avoid PeopleCode dependencies between fields on pages displayed in deferred processing mode. Also,
avoid FieldChange PeopleCode that changes the display.

The following are examples of PeopleCode dependencies between fields on the page and the application
server's action. In the following examples, field A comes before field B, which comes before field C.

» Field A has FieldChange PeopleCode that hides field B or it makes unavailable for entry.
The value in field B of the page that was submitted from the browser is discarded.
» Field B has FieldChange PeopleCode that hides field A or makes it unavailable for entry.
The change made by the user for field A, if any, remains in the component buffer.
« Field A has FieldChange PeopleCode that changes the value in the component buffer for field B.

If the value in field B of the page that was submitted from the browser passes the system edits and
FieldEdit PeopleCode, it is written to the component buffer, overriding the change made by field A's
FieldChange PeopleCode.

« Field B has FieldChange PeopleCode that changes the value in the component buffer for field A.

The change made by field B's FieldChange PeopleCode overrides the change made by the user to field
A, if any.

» Field A has FieldChange PeopleCode that unhides field B or makes it available for entry.

Field B has the value that was already in the component buffer. If the user requests a different page or
finishes, the user may not have the opportunity to enter a value into field B, and therefore the value
may not be correct.

» Field B has FieldChange PeopleCode that changes the value in the component buffer for field A, but
field C has FieldChange PeopleCode that hides field B or makes it unavailable for entry.

The change made by field B's FieldChange PeopleCode, a field that is now hidden or unavailable for
entry, overrides the change made by the user to field A, if any.

Avoid such dependencies by moving FieldChange PeopleCode logic from individual fields to save
processing for the component or FieldChange PeopleCode on a PeopleCode command button.

. Not all buttons cause field modification processing to execute.

External links, list (search), and process buttons do not cause field modification processing to execute.

. You can use a PeopleCode command button to cause field modification processing to execute.

An application can include a button for the sole purpose of causing field modification processing to
execute. The result is a new page showing any display changes that resulted from field modification
processing.

In addition, if the user clicks the Refresh button, or presses Alt + 0, deferred processing is executed.

Note. The Refresh button does not refresh the page from the database. It simply causes a server trip so
any deferred PeopleCode changes get processed. If the page has no deferred changes or the deferred
changes do not cause any errors or other changes on the page, it may appear to the user as if nothing
happened.

127



PeopleCode and the Component Processor

Chapter 6

8. A scroll button (link) causes field modification processing to execute.

PeopleCode Events

128

This section discusses:

Activate event.
FieldChange event.
FieldDefault event.

FieldEdit event.

FieldFormula event.

ItemSelected event.
PostBuild event.
PreBuild event.
PrePopup event.
RowDelete event.
RowlInit event.
RowInsert event.
RowSelect event.

SaveEdit event.

SavePostChange event.

SavePreChange event.

Searchlnit event.
SearchSave event.

Workflow event.

Note. The term PeopleCode type s still frequently used, but it does not fit into the PeopleTools object-based,
event-driven metaphor. The term PeopleCode event should now be used instead. However, it's often
convenient to qualify a class of PeopleCode programs triggered by a specific event with the event name; for

example, PeopleCode programs associated with the RowInit events are collectively referred to as Rowlnit
PeopleCode.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Activate Event

The Activate event is initiated each time that a page is activated, including when a page is first displayed by a
user, or if a user presses Tab between different pages in a component. Each page has its own Activate event.

Activate PeopleCode associated with a popup page execut after the page activate event for the main page.
When fields on the main page change and trigger updates on the popup page the page activate event for the
popup page is executed.

The Activate event segregates PeopleCode that is related to a specific page from the rest of the application's
PeopleCode. Place PeopleCode related to page display or page processing, such as enabling a field or hiding a
scroll area, in this event. Also, you can use this event for security validation: if an user does not have
clearance to view a page in a component, you would put the code for hiding the page in this event.

Note. PeopleSoft builds a page grid one row at a time. Because the Grid class applies to a complete grid, you
cannot attach PeopleCode that uses the Grid class to events that occur before the grid is built; the earliest
event you can use is the Activate event. The Activate event is not associated with a specific row and record at
the point of execution. This means you cannot use functions such as GetRecord, GetRow, and so on, which
rely on context, without specifying more context.

Activate PeopleCode can only be associated with pages.

This event is valid only for pages that are defined as standard or secondary. This event is not supported for
subpages.

Note. If your application uses the MessageBox built-in function in the Activate event with a message from
the message catalog that's defined as type Error, Warning or Cancel, all component processing stops with an
error message to that effect. If the message has a type of Message, processing does not stop.

See Also

Chapter 6. "PeopleCode and the Component Processor,”" Component Build Processing in Update Modes, page
109

Chapter 6. "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
112

FieldChange Event

Use FieldChange PeopleCode to recalculate page field values, change the appearance of page controls, or
perform other processing that results from a field change other than data validation. To validate the contents
of the field, use the FieldEdit event.

See Chapter 6. "PeopleCode and the Component Processor," FieldEdit Event, page 130.

The FieldChange event applies to the field and row that just changed.

FieldChange PeopleCode is often paired with RowInit PeopleCode. In these RowInit/FieldChange pairs, the
RowlInit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 129



PeopleCode and the Component Processor Chapter 6

To take a simple example, suppose you have a derived/work field called PRODUCT, the value of which is
always the product of page field A and page field B. When the component is initialized, you would use
RowlInit PeopleCode to initialize PRODUCT equal to A x B when the component starts up or when a new
row is inserted. You could then attach FieldChange PeopleCode programs to both A and B which also set
PRODUCT equal to A x B. Whenever a user changes the value of either A or B, PRODUCT is recalculated.

FieldChange PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6. "PeopleCode and the Component Processor." Field Modification, page 113

FieldDefault Event

The FieldDefault PeopleCode event enables you to programmatically set fields to default values when they
are initially displayed. This event is initiated on all page fields as part of many different processes; however,
it triggers PeopleCode programs only when the following conditions are all True:

« The page field is still blank after applying any default value specified in the record field properties.

This is True if there is no default specified, if a null value is specified, or if a 0 is specified for a numeric
field.

» The field has a FieldDefault PeopleCode program.

In practice, FieldDefault PeopleCode normally sets fields by default when new data is being added to the
component; that is, in Add mode and when a new row is inserted into a scroll area.

If a field value is changed, whether through PeopleCode or by a user, the IsChanged property for the row is
set to True. The exception to this is when a change is done in the FieldDefault or FieldFormula events. If a
value is set in FieldDefault or FieldFormula, the row is not marked as changed.

At save time, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

You must attach FieldDefault PeopleCode to the field where the default value is being populated.

Note. An error or warning issued from FieldDefault PeopleCode causes a runtime error.

FieldDefault PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6. "PeopleCode and the Component Processor," Default Processing, page 100

FieldEdit Event

Use FieldEdit PeopleCode to validate the contents of a field, supplementing standard system edits. If the data
does not pass the validation, the PeopleCode program should display a message using the Error statement,
which redisplays the page, displaying an error message and turning the field red.

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

To permit the field edit but alert the user to a possible problem, use a Warning statement instead of an Error
statement. A Warning statement displays a warning dialog box with OK and Explain buttons. It permits field
contents to be changed and continues processing as usual after the user clicks OK.

If the validation must check for consistency across page fields, then use SaveEdit PeopleCode instead of
FieldEdit.

The FieldEdit event applies to the field and row that just changed.
FieldEdit PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6. "PeopleCode and the Component Processor," Field Modification, page 113

FieldFormula Event

The FieldFormula event is not currently used. Because FieldFormula PeopleCode initiates in many different
contexts and triggers PeopleCode on every field on every row in the component buffer, it can seriously
degrade application performance. Use RowlInit and FieldChange events rather than FieldFormula.

If a field value is changed, whether through PeopleCode or by a user, the IsChanged property for the row is
usually set to True. However, if a value is set in FieldDefault or FieldFormula, the row is not marked as
changed.

At save time, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Note. In PeopleSoft Pure Internet Architecture, if a user changes a field but that field has nothing to cause a
trip to the server, then default processing and FieldFormula PeopleCode do not run. They only run when
another event causes a trip to the server.

As a matter of convention, FieldFormula is now often used in FUNCLIB__ (function library) record
definitions to store shared functions. However, you can store shared functions in any PeopleCode event.

FieldFormula PeopleCode is only associated with record fields.

ItemSelected Event

The ItemSelected event is initiated whenever a user selects a menu item from a pop-up menu. In pop-up
menus, [temSelected PeopleCode executes in the context of the page field from where the pop-up menu is
attached, which means that you can freely reference and change page fields, just as you could from a button.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

ItemSelected PeopleCode is only associated with pop-up menu items.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131



PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6. "PeopleCode and the Component Processor," Selected Item Processing, page 122

PostBuild Event

The PostBuild event is initiated after all the other component build events have been initiated. This event is
often used to hide or unhide pages. It is also used to set component variables.

PostBuild PeopleCode is only associated with components.

PreBuild Event

The PreBuild event is initiated before the rest of the component build events. This event is often used to hide
or unhide pages. It is also used to set component variables.

Note. If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search page. If
the search record has no keys, a blank component page appears.

Also use the PreBuild event to validate data entered in a search page after a prompt list is displayed. For
example, after a user selects key values on a search, the PreBuild PeopleCode program runs, catches the error
condition, and issues an error message. The user receives and acknowledges the error message. The
component is canceled (because of the error), and the user is returned to the search page. PreBuild
PeopleCode is only associated with components.

PrePopup Event
The PrePopup event is initiated just before the display of a pop-up menu.

You can use PrePopup PeopleCode to control the appearance of the pop-up menu.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

PrePopup PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6. "PeopleCode and the Component Processor," Pop-Up Menu Display, page 122

132 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

RowDelete Event

The RowDelete event is initiated whenever a user attempts to delete a row of data from a page scroll area.
Use RowDelete PeopleCode to prevent the deletion of a row (using an Error or Warning statement) or to
perform any other processing contingent on row deletion. For example, you could have a page field called
Total on scroll area level zero whose value is the sum of all the Extension page fields on scroll area level one.
If the user deleted a row on scroll area level one, you could use RowDelete PeopleCode to recalculate the
value of the Total field.

The RowDelete event triggers PeopleCode on any field on the row of data that is being flagged as deleted.

Note. RowDelete does not trigger programs on derived/work records.

RowDelete PeopleCode can be associated with record fields and component records.

Deleting All Rows from a Scroll Area

When the last row of a scroll area is deleted, a new, dummy row is automatically added. As part of the
RowlInsert event, RowlInit PeopleCode is run on this dummy row. If a field is changed by RowInit (even if it's
left blank), the row is no longer new, and therefore is not reused by any of the ScrollSelect functions or the
Select method. In this case, you may want to move your initialization code from the RowlInit event to
FieldDefault.

See Also

Chapter 6. "PeopleCode and the Component Processor," Row Delete Processing, page 119

Chapter 8, "Using Methods and Built-In Functions," Using Errors and Warnings in RowDelete Events, page
180

Rowlnit Event

The Rowlnit event is initiated the first time that the Component Processor encounters a row of data. Use it to
set the initial state of component controls during component build processing and row insert processing. The
RowlInit event also occurs after a Select or SelectAll Rowset method, or a ScrollSelect or related function, is
executed.

Note. Generally, if none of the fields in the new row are changed after the row is inserted (either by a user
pressing Alt+7 or programmatically) when the page is saved, the new row is not inserted into the database.
However, if the ChangeOnlnit rowset class property is set to False, you can set values for fields a new row in
RowInsert or RowInit PeopleCode, and the row will not be saved.

Rowlnit is not field-specific. It triggers PeopleCode on all fields and on all rows in the component buffer.
Do not use Error or Warning statements in RowInit PeopleCode. They cause a runtime error.

RowInit PeopleCode is often paired with FieldChange PeopleCode. In these RowInit/FieldChange pairs, the
RowlInit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133



PeopleCode and the Component Processor Chapter 6

For a simple example, suppose you have a derived/work field called PRODUCT, the value of which is always
the product of page field A and page field B. When the component is initialized, use RowInit PeopleCode to
initialize PRODUCT equal to A x B when the component starts up or when a new row is inserted. You could
then attach FieldChange PeopleCode programs to both A and B, which also sets PRODUCT equal to A x B.
Whenever a user changes the value of either A or B, PRODUCT is recalculated.

RowlInit PeopleCode can be associated with record fields and component records.

RowlInit Exceptions

In certain rare circumstances, the Component Processor does not run RowlInit PeopleCode for some record
fields. The Component Processor runs RowlInit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

For Rowlnit to not run, the following must all be True:

» The record is at level zero.
« Every record field that is present in the data buffers is also present in the keys for the component.

The Component Processor determines if the field is required by the component. In practice, this usually
means that the field is associated with a page field, possibly hidden, for some page of the component. It
could also mean that the field is referenced by some PeopleCode program that is attached to an event on
some other field of the component.

» Every record field that is present in the data buffers is display-only.

RowInit not running is not considered to be an error. The purpose of RowlInit PeopleCode is to complete
initialization of data on the row after it has been read from the database. Because the data in this special
circumstance is coming from the keylist, it was already initialized correctly by whatever processing produced
the keylist. More general initialization of the component should be done in PostBuild PeopleCode, not
Rowlnit.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
112

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," ChangeOnlnit

Rowlinsert Event

134

When a user adds a row of data, the Component Processor generates a RowlInsert event. You should use
RowlInsert PeopleCode for processing specific to the insertion of new rows. Do not put PeopleCode in
RowInsert that already exists in RowlInit, because a RowlInit event always initiates after the RowInsert event,
which will cause your code to be run twice.

Note. Generally, if none of the fields in the new row are changed after the row has been inserted (either by a
user pressing Alt+7 or programmatically), when the page is saved, the new row is not inserted into the
database. However, if the ChangeOnlnit rowset class property is set to False, you can set values for fields a
new row in Rowlnsert or RowlInit PeopleCode, and the row won't be saved.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6

PeopleCode and the Component Processor

The RowlInsert event triggers PeopleCode on any field on the inserted row of data.

Do not use a warning or error in RowlInsert.

You can prevent a user from inserting rows into a scroll area by selecting the No Row Insert check box in the
scroll bar's page field properties, as shown in the following illustration. However, you cannot prevent row

insertion conditionally.

Label Use |General|

Page Field Properties E |

— Scroll Attributes

Cecurs Level: |1

DOocurs Count; |1

— Field U=e Options
[ Invisible

[T Mo Ao Select
VN

¥ Default Width
[T Modute Update
[T Mo Row Delete

— Scroll Action Buttans
[T Pievious Page
™| Eowilieert

[ Top

[T Show Fow Counter

[T Mext Page
[ Fiow Delete
[ Eottom

— Popup Menu

~

— Field Help Context Murmber:

I < Auto Aazigh |

¥ Allow Deferred Processing

o |

Cancel

Setting row insert properties in page field properties for a scroll bar

Note. RowlInsert does not trigger PeopleCode on derived/work fields.

RowlInsert PeopleCode can be associated with record fields and component records.

See Also

Chapter 6. "PeopleCode and the Component Processor," Row Insert Processing, page 117

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," ChangeOnlInit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

135



PeopleCode and the Component Processor Chapter 6

RowSelect Event

The RowSelect event is initiated at the beginning of the component build process in any of the update action
modes (Update, Update/Display All, Correction). RowSelect PeopleCode is used to filter out rows of data as
they are being read into the component buffer. This event also occurs after a ScrollSelect or related function
is executed.

A DiscardRow function in RowSelect PeopleCode causes the Component Processor to skip the current row of
data and continue to process other rows. A StopFetching statement causes the Component Processor to accept
the current row of data, and then stop reading additional rows. If both statements are executed, the program
skips the current row of data, and then stops reading additional rows.

PeopleSoft applications rarely use RowSelect, because it's inefficient to filter out rows of data after they've
already been selected. Instead, screen out rows of data using search record views and effective-dated tables,
which filter out the rows before they're selected. You could also use a ScrollSelect or related function to
programmatically select rows of data into the component buffer.

In previous versions of PeopleTools, the Warning and Error statements were used instead of DiscardRow and
StopFetching. Warning and Error statements still work as before in RowSelect, but their use is discouraged.

Note. In RowSelect PeopleCode, you can refer to record fields only on the record that is currently being
processed. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

RowSelect PeopleCode can be associated with record fields and component records.
See Also

Chapter 6. "PeopleCode and the Component Processor," Row Select Processing, page 110

SaveEdit Event

136

The SaveEdit event is initiated whenever a user attempts to save the component. You can use SaveEdit
PeopleCode to validate the consistency of data in component fields. Whenever a validation involves more
than one component field, you should use SaveEdit PeopleCode. If a validation involves only one page field,
use FieldEdit PeopleCode.

SaveEdit is not field-specific. It triggers associated PeopleCode on every row of data in the component
buffers except rows flagged as deleted.

An Error statement in SaveEdit PeopleCode displays a message and redisplays the component without saving
data. A Warning statement enables the user to click OK and save the data, or to click Cancel and return to the
component without saving.

Use the SetCursorPos function to set the cursor position to a specific page field following a warning or error
in SaveEdit, to show the user the field (or at least one of the fields) that is causing the problem. Make sure to
call SetCursorPos before the error or warning, because these may terminate the PeopleCode program.

SaveEdit PeopleCode can be associated with record fields and components.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

See Also

Chapter 6, "PeopleCode and the Component Processor.," Save Processing, page 123

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," SetCursorPos

SavePostChange Event

After the Component Processor updates the database, it initiates the SavePostChange event. You can use
SavePostChange PeopleCode to update tables not in your component using the SQLExec built-in function.

An error or warning in SavePostChange PeopleCode causes a runtime error. Avoid errors and warnings in
this event.

The system issues a SQL Commit statement after SavePostChange PeopleCode completes successfully.

If you are executing Workflow PeopleCode, keep in mind that if the Workflow PeopleCode fails,
SavePostChange PeopleCode is not executed. If your component has both Workflow and SavePostChange
PeopleCode, consider moving the SavePostChange PeopleCode to SavePreChange or Workflow.

If you are doing messaging, your Publish PeopleCode should go into this event.

SavePostChange does not execute if there is an error during the save. For example, if there is a data conflict
error because another user updated the same data at the same time, SavePostChange does not execute.

Important! Never issue a SQL Commit or Rollback statement manually from within a SQLExec function.
Let the Component Processor issue these SQL commands.

SavePostChange PeopleCode can be associated with record fields, components, and component records.
See Also

Chapter 6, "PeopleCode and the Component Processor.," Save Processing, page 123

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," SQLExec

SavePreChange Event

The SavePreChange event is initiated after SaveEdit completes without errors. SavePreChange PeopleCode
provides one final opportunity to manipulate data before the system updates the database; for instance, you
could use SavePreChange PeopleCode to set sequential high-level keys. If SavePreChange runs successfully,
a Workflow event is generated, and then the Component Processor issues appropriate Insert, Update, or
Delete SQL statements.

SavePreChange PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of data
in the component buffer.

SavePreChange PeopleCode can be associated with record fields, components, and component records.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137



PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor.”" Save Processing, page 123

Searchlnit Event

138

The Searchlnit event is generated just before a search, add, or data-entry dialog box is displayed. Searchlnit
triggers associated PeopleCode in the search key fields of the search record. This enables you to control
processing before a user enters values for search keys in the dialog box. In some cases, you may want to set
the value of the search dialog fields programmatically. For example, the following program in SearchlInit
PeopleCode on the component search key record field EMPLID sets the search key page field to the user's
employee ID, makes the page field unavailable for entry, and enables the user to modify the user's own data
in the component:

EMPLI D = %Enpl oyeel d;
Gray (EWMPLID);
Al | onEnpl | dChg( True);

You can activate system defaults and system edits in the search page by calling SetSeachDefault and
SetSearchEdit in Searchlnit PeopleCode. You can also control the behavior of the search page, either forcing
it to appear even if all the required keys have been provided, or by skipping it if possible, with the
SetSeachDialogBehavior function. You can also force search processing to always occur by selecting the
Force Search Processing check box in the component properties in PeopleSoft Application Designer.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

Searchlnit PeopleCode can be associated with record fields on search records and prompt table records and on
component search records and component prompt table records.

Searchlnit with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the Searchlnit and SearchSave events on the
search keys of prompt table records. Searchlnit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox was selected for the search key's record field properties in Application
Designer. By default Allow Search Events for Prompt Dialogs is off.

Note. Search processing with prompt dialogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

Searchlnit PeopleCode Function Restrictions

You cannot use the following functions in Searchlnit PeopleCode:
» DoModal

+ DoModalComponent

e Transfer

* TransferExact

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

» TransferNode
» TransferPage
» TransferPortal
See Also

Chapter 6, "PeopleCode and the Component Processor," Prompts, page 121

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," SetSearchDefault

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 102

Chapter 6. "PeopleCode and the Component Processor.," Search Processing in Add Modes. page 106

SearchSave Event

SearchSave PeopleCode is executed for all search key fields on a search, add, or data-entry dialog box after a
user clicks Search. This enables you to control processing after search key values are entered, but before the
search based on these keys is executed. A typical use of this feature is to provide cross-field edits for selecting
a minimum set of key information. This event is also used to force a user to enter a value in at least one field,
even if it's a partial value, to help narrow a search for tables with many rows.

Note. SearchSave is not initiated when values are selected from the search list. To validate data entered in the
search page, use the Component PreBuild event.

You can use Error and Warning statements in SearchSave PeopleCode to send the user back to the search
page if the user entry does not pass validations implemented in the PeopleCode.

Note. This event, and all its associated PeopleCode, is not initiated if run from a component interface.

SearchSave PeopleCode can be associated with record fields and component search records.

Note. Do not use the %Menu system variable in this event. You may get unexpected results.

SearchSave with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the Searchlnit and SearchSave events on the
search keys of prompt table records. Searchlnit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox is selected for the search key's record field properties in Application
Designer. By default Allow Search Events for Prompt Dialogs is off.

Note. Search processing with prompt dialogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139



PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6. "PeopleCode and the Component Processor," Prompts, page 121

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 102

Chapter 6. "PeopleCode and the Component Processor.," Search Processing in Add Modes, page 106

Workflow Event

Workflow PeopleCode executes immediately after the SavePreChange event and before the database update
that precedes the SavePostChange event. The Workflow event segregates PeopleCode related to workflow
from the rest of the application's PeopleCode. Only PeopleCode related to workflow (such as
TriggerBusinessEvent) should be in workflow programs. Your program should deal with the Workflow event
only after any SavePreChange processing is complete.

Workflow PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of data in the
component buffer.

WorkFlow PeopleCode can be associated with record fields and components.
See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 123

PeopleTools 8.52: Workflow Technology, "Defining Event Triggers," Writing Workflow PeopleCode

PeopleCode Execution in Pages with Multiple Scroll Areas

Components with multiple levels can have multiple rows of data from multiple primary record definitions.
You must know the order in which the system processes buffers for this data, because it applies PeopleCode
in the same order.

The Component Processor uses a depth-first algorithm to process rows in multiple-scroll-area pages, starting
with a row at level zero, drilling down to dependent rows on lower levels, and then working up the hierarchy
until the system has processed all the dependent rows of the last row on the highest level.

Scroll Level One

When pages have only one scroll bar, the Component Processor processes record definitions at scroll level
zero, and then all rows of data at scroll level one.

Data is retrieved for all rows with a single Select statement, and then it is merged with buffer structures.

140 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 6 PeopleCode and the Component Processor

Scroll Level Two

With scroll bars at multiple scroll levels, the system processes a single row of data at scroll level one, and
then it processes all subordinate rows of data at scroll level two. After processing all subordinate data at scroll
level two, it processes the next row for scroll level one, and all the subordinate data for that row. The system
continues in this fashion until all data is processed.

Scroll Level Three

The Component Processor uses the same method for processing subordinate data at scroll level three. Data is
retrieved for all rows with a single Select statement, and then merged with buffer structures. The Component
Processor processes a single row of data at scroll level two, and it processes all subordinate data at scroll level
three. After processing all subordinate data at scroll level three, it processes the next row for scroll level two
and all the suboridinates data for that row. The system continues in this fashion until all data is processed..

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Component Buffer Structure and
Contents, page 45

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141






Chapter 7

PeopleCode and PeopleSoft Pure Internet
Architecture

The chapter discusses how to:

Using PeopleCode in PeopleSoft Pure Internet Architecture.
Using PeopleCode with PeopleSoft Pure Internet Architecture
Call dynamic link library (DLL) functions on the application server.

Update the Installation and PSOPTIONS tables.

Considerations Using PeopleCode in PeopleSoft Pure Internet
Architecture

Consider the following points when writing PeopleCode programs for PeopleSoft Pure Internet Architecture:

To help your application run efficiently, avoid using field-level PeopleCode events (FieldEdit and
FieldChange).

Each field-level PeopleCode program requires a trip to the application server.

The majority of PeopleCode programs run on the application server as part of the component build and
save process. Do not hesitate to use PeopleCode for building and saving components.

If a user changes a field but nothing on that field will cause a trip to the server, then default processing
and FieldFormula PeopleCode do not run.

This processing occurs only when another event causes a trip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

In applications that run on the PeopleSoft portal, external dynamic link information must be placed in
RowlInit PeopleCode.

If external dynamic link information is placed in FieldChange PeopleCode, it will not work.
Trips to the server are reduced when a component runs in deferred processing mode.

Each trip to the server results in the page being completely refreshed on the browser, which may cause the
display to flicker. It can also slow down your application. Deferred processing mode results in better
performance.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143



PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

See Also

Chapter 6. "PeopleCode and the Component Processor," Deferred Processing Mode, page 125

Using PeopleCode with PeopleSoft Pure Internet Architecture

This section discusses how to:

» Use internet scripts.

» Use the field object Style property.

» Use the HTML area.

» Use HTML definitions and the GetHTMLText function.

» Use HTML definitions and the GetJavaScriptURL method.

» Use PeopleCode to populate key fields in search dialog boxes

Using Internet Scripts

An internet script is a specialized PeopleCode function that generates dynamic web content. Internet scripts
interact with web clients (browsers) using a request-response paradigm based on HTTP.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

Using the Field Object Style Property

In PeopleSoft Application Designer, on the Use tab of the page definition properties, you can associate a page
with a style sheet component.

The style sheet has several classes of styles defined for it. You can edit each style class to change the font, the
color, the background, and so on. Then, you can dynamically change the style of a field using the Style field
class property. The style sheet does not change, only the style class associated with that field changes.

The following example changes the style class of a field depending on a value entered by the user. This code
is in the FieldChange event.

144 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 7

PeopleCode and PeopleSoft Pure Internet Architecture

Local Field &field;
&ield = GetField();
I f TESTFI ELD1

&field. Styl
End- I f;

1 Then;
" PSHYPERL| NK" ;

D
1

I f TESTFI ELD1
& ield. Style
End- I f;

1
N

Then;
" PSI MAGE";

The following examples show the fields with different styles:

TESTFIELDT i

Field with PSHYPERLINK style

TESTFELD 1 [l

Field with PSIMAGE style

See Also
PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Style Sheet Definitions"
PeopleTools 8.52: PeopleCode API Reference, "Field Class"

Using the HTML Area

Copyright

Two methods are used to populate an HTML area control. Both require accessing the HTML area in the
PeopleSoft Application Designer. One method is to select Constant on the HTML tab of the HTML page field
properties dialog and enter HTML directly into the page field dialog.

The other method is to select Value on the HTML tab of the HTML page field properties dialog and associate
the control with a record field. At runtime, populate that field with the text that you want to appear in the
HTML area.

If you are using an HTML area to add form controls to a page, you can use GetParameter request class
method in PeopleCode to get the user input from those controls.

Note. When you associate an HTML area control with a field, make sure the field is long enough to contain
the data you want to pass to it. For example, if you associate an HTML area control with a field that is only
10 characters long, only the first 10 characters of your text will appear.

The following code populates an HTML area with a simple bulleted list. This code is in the RowInit event of
the record field associated with the HTML control.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145



PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

Local Field &HTM.Fi el d;

&HTMLFi el d = GetFiel d();
&HTM_Fi el d. Val ue = "<ul><li>ltemone</li><li>temtwo</li></ul>";

The following code is in the FieldChange event of a button. It populates an HTML area (associated with the
record field CHART DATA.HTMLAREA) with a simple list.

Local Field &HTM.Fi el d;

&HTM_Fi el d = Get Recor d( Recor d. CHART _DATA) . HTMLAREA;
&HTM_Fi el d. Val ue = "<ul><li>ltemone</li><li>temtwo</li></ul>";

The following code populates an HTML area (associated with the record DERIVED HTML and the field
HTMLAREA) with the output of the GenerateTree function:

DERI VED_HTM.. HTMLAREA = Gener at eTr ee( &TREECTL) ;
The following tags are unsupported by the HTML area control:
*  Body

e Frame

¢ Frameset

¢« Form

» Head

e HTML
¢  Meta

» Title
See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function," Using the GenerateTree Function, page 185

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating HTML Definitions"

Using HTML Definitions and the GetHTMLText Function

If you are using the same HTML text in more than one place or if it is a large, unwieldy string, you can create
an HTML definition in PeopleSoft Application Designer, and then use the GetHTMLText function to
populate an HTML area control.

The following is the HTML string to create a simple table:

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

<p>
<TABLE>

<TR bgCol or =#008000>
<TD>
<P><FONT col or =#f 5f 5dc face="Arial, Helvetica, sans-serif"
si ze=2>nmessage 1 </ FONT></ P></ TD></ TR>
<TR bgCol or =#0000cd>
<TD>
<P><FONT col or=#00ffff face="Arial, Helvetica, sans-serif"
si ze=2>message 2</ FONT></ P></ TD></ TR>
</ TABLE></ P>

This HTML is saved to an HTML definition called TABLE HTML.

This code is in the RowlInit event of the record field associated with the HTML area control:
Local Field &HTMFi el d;

&HTMLField = GetField();

&string = Get HTM.Text (HTM.. TABLE HTM.) ;

&HTMLFi el d. Val ue = &stri ng;

This code produces the following:

HTML definition example

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," GetHTMLText

Using HTML Definitions and the GetJavaScriptURL Method

HTML definitions can contain JavaScript programs in addition to HTML. If you have an HTML definition
that contains JavaScript, use the GetJavaScriptURL Response method to access and execute the script.

This example assumes the existence in the database of a HTML definition called HelloWorld JS that contains
some JavaScript:

Function | Script_TestJavaScript ()

%Response. WitelLine("<script src=" |
%Response. Cet JavaScri pt URL(HTM.. Hel | oWor1 d_JS) | "></script>");

End- Functi on;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147



PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

See Also

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)," GetJavaScriptURL

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating HTML Definitions"

Using PeopleCode to Populate Key Fields in Search Dialog Boxes

In a PeopleSoft Pure Internet Architecture application, you typically want users to directly access their own
data. To facilitate this, you may want to use Searchlnit PeopleCode to populate standard key fields in search
page fields and then make the fields unavailable for entry. You might assign the search key field a default
value based on the user ID or alias the user entered when signing in.

You must also call the AllowEmplIdChg function, which enables users to change their own data. This
function takes a single Boolean parameter in which you pass True to allow employees to change their own
data.

Here is a simple example of such a Searchlnit program, using %Employeeld to identify the user:
EMPLI D = %Enpl oyeel d;

Gray (EMPLID);

Al | onEnpl | dChg( True);

Calling DLL Functions on the Application Server

To support processes running on an application server, you can declare and call functions compiled in
Microsoft Windows DLLs and in UNIX shared libraries (or shared objects, depending on the specific UNIX
platform). You can do this either with a special PeopleCode declaration, or using the business interlink
framework.

When you call out to a DLL using PeopleCode, on Microsoft Windows NT application servers, the DLL file
has to be on the path. On UNIX application servers, the shared library file must be on the library path (as
defined for the specific UNIX platform).

The PeopleCode declaration and function call syntax remains unchanged. For example, the following
PeopleCode could be used to declare and call a function LogMsg in an external library Testdll.dll on a
Microsoft Windows client or a Windows application server, or a libtestdll.so on an UNIX application server.
The UNIX shared library's extension varies by the specific UNIX platform.

Decl are Function LogMsg Library "testdl " (string, string)
Ret urns i nteger;

& es = LogMsg("\tenmp\test.log", "This is a test");

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Sample Cross-Platform External Test Function

The following section describes and includes the C source code for a sample cross-platform test fucntion:
LogMsg. It is a basic function that opens a log file and appends a line to it. If you compile the code using a
C++ compiler, the functions must be declared using external C to ensure C-language linkage.

The sample program also contains an interface function (LogMsg_intf). Prior to PeopleTools 8.52, this
interface function was required for all non-Microsoft Windows environments. The interface function
references a provided header file, pcmext.h. The interface function is passed type codes that can be optionally
used for parameter checking.

Starting with PeopleTools 8.52, the interface function is required for the following environments only:
e HP-UX Itanium

* Solaris x86_64

e z/Linux

For all the other PeopleTools-supported UNIX platforms, the functions from the UNIX shared libraries can be
used directly. To maintain backward compatibility, the interface functions are also supported on these UNIX
platforms.

In the following sample test program, the interface function is compiled only when compiling for the
specified non-Windows environments.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149



PeopleCode and PeopleSoft Pure Internet Architecture

150

Sinple test function for calling from Peopl eCode.

This is passed two strings, a file name and a nessage.
It creates the specified file and wites the nessage
*toit.

*/

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

E o S

#i f def _W NDOWS

#def i ne DLLEXPORT __decl spec(dl | export)
#defi ne LI NKAGE _ stdcal

#el se

#def i ne DLLEXPORT

#def i ne LI NKAGE

#endi f

DLLEXPORT int LINKAGE LogMsg(char * fnane, char * nsQ);

EZE R I I R I R I I O S I I O I R I I R I R I I R I R I R

/

* Peopl eCode External call test function

*

* Parameters are two strings (fil ename and nmessage)
* Result is Oif error, 1if X

*

*

* To call this function, the follow ng Peopl eCode is
* used

*

* Declare Function LogMsg Library "testdll"

* (string, string)

* Returns i nteger;

*
*
*
*

& es = LogMsg("\tenp\test.log", "This is a test");

TS % 3 3k X X F 3k 3k X X X Sk F X

khhkkkhhkhkhdkhkhkdhhdrhdhhkdhdrhdhkhkdhrhdhrhkddrhdhrrkddrrdrrkddxrdxxdx

DLLEXPORT int LINKAGE LogMsg(char * fnane, char * nsQ)

{
FI LE *fp;

fp = fopen(fnane, "a"); /* append */
if (fp == NULL) return O;

fprintf(fp, "%\n", nsqg);

fcl ose(fp);
return 1,

#i f ndef _W NDOW6

/********************************************************

* |Interface function. *
* *
* This is not needed for Wndows.... *
* *

********************************************************/

#i nclude "pcnext.h"
#i ncl ude "assert.h"

/* This interface function is required only for the follow ng platforns:

Chapter 7

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 7

*/

voi d LogMsg_intf(int
{

}

- HP-UX Itani um
- Solaris x86_64
- z/ Li nux

i nt rc;

/* Sonme error checking */

assert (nParam == 2);

assert (pDesc[ 0] . eExt Type == EXTTYPE_STRI NG
&& pDesc[ 1] . eExt Type == EXTTYPE_STRI NG
&& pDesc[ 2] . eExt Type == EXTTYPE_I NT);

rc = LogMsg((char *)ppParans[0],
(char *)ppParans[1]);
*(int *)ppParans[2] = rc;

#endi f

PeopleCode and PeopleSoft Pure Internet Architecture

nParam void ** ppParans, EXTPARAMDESC * pDesc)

Updating the Installation and PSOPTIONS Tables

When an application updates either the PSOPTIONS or the Installation table it must call UpdateSysVersion
from the SavePreChange PeopleCode event. This way, updates take effect at the next page load. Otherwise,
the change does not take effect at the client workstation until the user signs out and signs back in.

Important! Only a database administrator or the equivalent should change these tables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

151






Chapter 8

Using Methods and Built-In Functions

This chapter provides an overview of restrictions on method and function use and discusses how to:

Implement modal transfers.

Implement the multi-row insert feature.

Use the ImageReference field.

Insert rows using PeopleCode.

Use object linking and embedding (OLE) functions.
Use the Select and SelectNew methods.

Use standalone rowsets.

Use errors and warnings.

Use the RemoteCall feature.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions"

Understanding Restrictions on Method and Function Use

This section discusses:

Think-time functions.

WinMessage and MessageBox functions.

Program execution with fields not in the data buffer.
Errors and warnings.

DoSave function.

Record class database methods.

SQL class methods and functions.

Component interface restricted functions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

153



Using Methods and Built-In Functions Chapter 8

Searchlnit PeopleCode function restrictions.
CallAppEngine function.

ReturnToServer function.

GetPage function.

GetGrid function.

Publish method.

SyncRequest method.

Think-Time Functions

154

Think-time functions suspend processing either until the user has taken some action (such as clicking a button
in a message box) or until an external process has run to completion (for example, a remote process).

Avoid think-time functions in the following PeopleCode events:

SavePreChange.
Workflow.
RowSelect.
SavePostChange.

Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect, or
RowScrollSelectNew function call.

Any PeopleCode event that executes as a result of a Rowset class Select or SelectNew method.

Violation of this rule can result in application failure.

The following are think-time functions:

Calls to an external DLL.

DoCancel.

DoModal and DoModalComponent.

Exec (this is think-time only when synchronous).

File attachment functions AddAttachment, DetachAttachment, MAddAttachment, and ViewAttachment.
InsertImage.

Object functions, such as CreateObject, ObjectDoMethod, ObjectSetProperty, and ObjectGetProperty
(these are think-time only when the object requires user action).

Prompt.

RemoteCall.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

« RevalidatePassword.
»  WinExec (think-time only when synchronous).

*  WinMessage and MessageBox (depending on the style parameter).

WinMessage and MessageBox Functions

The WinMessage and MessageBox functions sometimes behave as think-time functions, depending on the
value passed in the function's style parameter, which controls, among other things, the number of buttons
displayed in the message dialog box.

Note. The style parameter is ignored if the message has any severity other than Message.

Here is the syntax of both functions:
MessageBox(style, title, nessage_set, nessage num default txt [, paranmlist])

W nMessage(nessage [, style] [, title])

Note. The WinMessage function is supported for compatibility with previous releases of PeopleTools. New
applications should use MessageBox instead.

If the style parameter specifies more than one button, the function behaves as a think-time function and is
subject to the same restrictions as other think-time functions (that is, it should never be used from
SavePreChange through SavePostChange PeopleCode, or in RowSelect).

If the style parameter specifies a single button (that is, the OK button), then the function can be called in any
PeopleCode event.

Note. In the Microsoft Windows client, MessageBox dialog boxes include an Explain button to display more
detailed information stored in the message catalog. The presence of the Explain button has no bearing on
whether a message box behaves as a think-time function.

The style parameter is optional in WinMessage. If style is omitted, WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid this situation, always pass an
appropriate value in the WinMessage style parameter.

The following table shows the values that can be passed in the style parameter. To calculate the value to pass,
make one selection from each category in the table, then add the selections.

Category Value Constant Meaning

Buttons 0 %MsgStyle OK The message box
contains one button: OK.

Buttons 1 %MsgStyle OKCancel The message box
contains two buttons: OK
and Cancel.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 155



Using Methods and Built-In Functions

Chapter 8

Category

Value

Constant

Meaning

Buttons

%MsgStyle AbortRetryl
gnore

The message box
contains three buttons:
Abort, Retry, and Ignore.

Buttons

%MsgStyle YesNoCance
1

The message box
contains three buttons:
Yes, No, and Cancel.

Buttons

%MsgStyle YesNo

The message box
contains two buttons: Yes
and No.

Buttons

%MsgStyle RetryCancel

The message box
contains two buttons:
Retry and Cancel.

Note. The following values for style can only be used in

in PeopleSoft Pure Internet Architecture.

the Microsoft Windows client. They have no affect

Category Value Constant Meaning

Default Button 0 %MsgDefault First The first button is the
default.

Default Button 256 %MsgDefault Second The second button is the
default.

Default Button 512 %MsgDefault Third The third button is the
default.

Icon 0 %Msglcon None None

Icon 16 %Msglcon_Error A stop-sign icon appears
in the message box.

Icon 32 %Msglcon Query A question-mark icon
appears in the message
box.

Icon 48 %Msglcon Warning An exclamation-point
icon appears in the
message box.

156

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Category Value Constant Meaning

Icon 64 %Msglcon_Info An icon consisting of a
lowercase letter i in a
circle appears in the
message box.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," MessageBox

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," WinMessage

Program Execution with Fields Not in the Data Buffer

Under certain conditions, when you access a field that is not in the data buffer, a portion of your PeopleCode
program is skipped. The skip occurs when:

» The reference is in the Import Manager.
e The reference is from the FieldDefault or FieldFormula events.

After the call to the invalid field, execution skips to the next top-level statement. Top-level statements are not
nested inside other statements. The start of a PeopleCode program is a top-level statement. Nesting begins
with the first conditional statement (such as While or If) or the first function call.

For example, if your code is executing in a function and inside an If ... then ... end-if statement, and it runs

into the skip conditions, the next statement executed is the one after the End-if statement, still inside the
function.

Errors and Warnings
Errors and warnings should not be used in FieldDefault, FieldFormula, RowInit, FieldChange, RowlInsert,
SavePreChange, WorkFlow, and SavePostChange PeopleCode events. An error or warning in these events
causes a runtime error that forces cancellation of the component.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Warning

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Error

DoSave Function

DoSave can be used in the following PeopleCode events only: FieldEdit, FieldChange, or ItemSelected (for
menu items in popup menus only).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 157



Using Methods and Built-In Functions

See Also

Chapter 8

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," DoSave

Record Class Database Methods

SQL Class Methods and Functions

158

You use the following record class methods to update the database:

Delete
Insert
Save

Update

Only use these methods in the following events (events that allow database updates):

SavePreChange
WorkFlow
SavePostChange
FieldChange

Application Engine PeopleCode action

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class"

Use the SQL class to update the database. Use these functions and methods only in the following events
(events that allow database updates):

SavePreChange
WorkFlow
SavePostChange
FieldChange

Application Engine PeopleCode action

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Component Interface Restricted Functions

PeopleCode events and functions that relate exclusively to the page interface (the GUI) and online processing
can't be used by Component Interfaces. These include:

e Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the DisableMenultem,
EnableMenultem, and HideMenultem functions aren't supported.

» Transfers between components, including modal transfers.

The DoModal, EndModal, IsModal, Transfer, TransferPage, DoModalComponent, TransferNode,
TransferPortal, and IsModalComponent functions cannot be used.

»  Cursor position.
SetControlValue cannot be used.

*  WinMessage cannot be used.

« Save in the middle of a transaction.
DoSave cannot be used.

» The page Activate event cannot be used.

When executed using a component interface, these functions do nothing and return a default value. In
addition, using the Transfer function terminates the current PeopleCode program.

For the unsupported functions, you should put a condition around them, testing whether there's an existing
Component Interface.

I f % Conponent Name Then
/* process is being called froma Conponent Interface */
/* do Cl specific processing */

El se
/* do regul ar processing */

End-if;

See Also

PeopleTools 8.52: PeopleSoft Component Interfaces, "Programming Component Interfaces Using
PeopleCode"

Searchlinit PeopleCode Function Restrictions

You cannot use the following functions in Searchlnit PeopleCode:

» DoModal and DoModalComponent.

» Transfer and TransferPage.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 159



Using Methods and Built-In Functions Chapter 8

CallAppEngine Function
Use the CallAppEngine function only in events that allow database updates, because, generally, if you are
calling Application Engine, you intend to perform database updates. This category of events includes the
following PeopleCode events:
» SavePreChange (Page)
« SavePostChange (Page)
*  Workflow
» FieldChange

CallAppEngine cannot be used in a Application Engine PeopleCode action. If you need to access one
Application Engine program from another Application Engine program, use the CallSection action.

See Also

PeopleTools 8.52 : Application Engine, "Creating Application Engine Programs"

ReturnToServer Function
The ReturnToServer function returns a value from a PeopleCode application messaging program to the
publication or subscription server. You would use this in either your publication or subscription routing code,
not in one of the standard Component Processor events.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

GetPage Function

The GetPage function cannot be used until after the Component Processor has loaded the page. You should
not use this function in an event prior to the PostBuild event.

See Also

Chapter 6. "PeopleCode and the Component Processor," page 87

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," GetPage

160 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

GetGrid and GetAnalyticGrid Functions

PeopleSoft builds a grid one row at a time. Because the grid and AnalyticGrid classes apply to a complete
grid, you cannot use either the GetGrid or GetAnalyticGrid functions in an event prior to the Activate event.

See Also

Chapter 6. "PeopleCode and the Component Processor," page 87

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," GetGrid
PeopleTools 8.52: PeopleCode API Reference, "Analytic Grid Classes"

Publish Method

If you are using PeopleSoft Integration Broker, your sending PeopleCode should go in the SavePostChange
event, for either the record or the component.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

SyncRequest Method

If you are using PeopleSoft Integration Broker, your SyncRequest PeopleCode should go in the
SavePostChange event, for either the record or the component.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

Implementing Modal Transfers

This section provides an overview of modal transfers and discusses how to implement modal transfers.

Understanding Modal Transfers

When you use modal transfers to transfer from one component (the originating component) to another
component (the modal component), the user must click the OK or Cancel buttons on the modal component
before returning to the originating component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 161



Using Methods and Built-In Functions Chapter 8

Modal transfers provide some control over the order in which the user fills in pages, which is useful where
data in the originating component can be derived from data entered by the user into the modal component.

Limit use of this feature, as it forces users to complete interaction with the modal page before returning to the
main component.

Note. Modal transfers cannot be initiated from Searchlnit PeopleCode.

A modal component resembles a Microsoft Windows modal dialog box. It displays three buttons: OK,
Cancel, and Apply. No toolbars or windows are available while the modal component has the focus. The OK
button saves changes to the modal component and returns the user to the originating component. The Apply
button saves changes to the modal component without returning to the originating component. The Cancel
button returns the user to the originating component without saving changes to the modal component.

Modal components are generally smaller than the page from which they are invoked. Remember that OK and
Cancel buttons are added at runtime, thus increasing the size of the pages.

The originating component and the modal component share record fields in a derived/work record called a
shared work record. The derived/work fields of this record provide the two components with an area in
memory where they can share data. Edit boxes in both components are associated with the same derived/work
field, so that changes made to this field in the originating component are reflected in the modal component,
and vice versa. The following diagram illustrates this shared memory:

Derived/\Work
Record Field

v v

Edit Box on Model Edit Box on Originating
Component Component

Edit boxes on the originating and modal components share the same data
Edit boxes associated with the same derived/work fields must be placed at level zero in both the originating
component and the modal component.
You can use the shared fields to:
» Pass values assigned to the search keys in the modal component search record.
If these fields are missing or invalid, the search page appears, enabling the user to enter search keys.
» Pass other values from the originating component to the modal component.

» Pass values back from the modal component to the originating component.

162 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8

Using Methods and Built-In Functi

Implementing Modal Transfers

Any component accessible through an application menu system can be accessed using a modal transfer.
However, to implement a modal transfer, you must modify pages in both the originating component and the
modal component. After these modifications are complete, you can implement the modal transfer using the
DoModalComponent function from a page in the originating component.

Before beginning this process, you should answer the following questions:

Should the originating component provide search key values for the modal component?
If so, what are the search keys? (Check the modal component's search record.)

Does the originating component need to pass any data to the modal component?

If so, what record fields are needed to store this data?

Does the modal component need to pass any data back to the originating component?

If so, what record fields are needed to store this data?

To implement a modal transfer:

L.

Create derived/work record fields for sharing data between the originating and modal components.

ons

Create a new derived/work record or open an existing derived/work record. If suitable record fields exist,

you can use them; otherwise create new record fields for any data that needs to be shared between the

components. These can be search keys for the modal component, data to pass to the modal component, or

data to pass back to the originating component.
Add derived work fields to the level-zero area of the originating component.

Add one edit box for each of the derived/work fields that you need to share between the originating and
modal components to the level-zero area of the page from which the transfer will take place. You
probably want to make the edit boxes invisible.

Add the same derived work fields to the level-zero area of the modal component.

Add one edit box for each of the edit boxes that you added in the previous step to the level-zero area of
the page to which you are transferring. You probably want to make the edit boxes invisible.

Add PeopleCode to pass values into the derived/work fields in the originating component.

To provide search key values or pass data to the modal page, write PeopleCode that assigns appropriate
values to the derived/work fields before DoModalComponent is called.

For example, if the modal component search key is PERSONAL DATA.EMPLID, you could place the
following assignment statement in the derived/work field's RowInit event:

EMPLI D = PERSONAL_DATA. EMPLI D

You also might assign these values in the same program where DoModalComponent is called.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

163



Using Methods and Built-In Functions Chapter 8

5. Add PeopleCode to access and change the derived/work fields in the modal component.

No PeopleCode is required to pass search key values during the search. However, if other data has been
passed to the modal component, you may need PeopleCode to access and use the data. You may also need
to assign new values to the shared fields so that they can be used by the originating component.

It is possible that the component was accessed through the menu system and not through a modal transfer.
To write PeopleCode that runs only in the component when it is running modally, use the
IsModalComponent function:

I f | sMddal Conponent () Then

/* Peopl eCode for nodal execution only. */
End- | f

6. Add PeopleCode to access changed derived/work fields in the originating component.

If the modal component has altered the data in the shared work fields, you can write PeopleCode to access
and use the data after DoModalComponent has executed.

Note. You can use the EndModalComponent function as a programmatic implementation of the OK and
Cancel buttons.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," DoModalComponent
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," IsModal

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," EndModalComponent

Implementing the Multi-Row Insert Feature

164

Enabling the multi-row insert feature in grids or scroll areas can reduce response times for transactions that
usually require entering many rows of data. With the multi-row feature, users specify the number of rows to
add to a grid or scroll area, and empty rows appear for data entry.

This feature cannot be used with effective-dated grids or scroll areas. In addition, the feature may not apply if
the entire row is populated using PeopleCode, especially if the data is copied from prior rows. If the feature
does apply in this case, the default value of the ChangeOnlnit property can be used (the default value is True,
which means any PeopleCode updates done in the RowInit or RowlInsert events set the IsChanged and IsNew
properties to True).

To use the multi-row insert feature:
1. Specify deferred mode processing.

The multi-row feature reduces transaction times by eliminating excess server trips. To take full advantage
of this feature, the transaction should be set to execute in deferred mode. Deferred mode should be set for
the component, all pages in the component, and all fields on those pages.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8

2.

Using Methods and Built-In Functions

Enable the multi-row feature.

For each grid or scroll area where appropriate, select the Allow Multi-row Insert check box under the Use
tab in the grid or scroll area property sheet.

Add ChangeOnlnit PeopleCode.

Setting the ChangeOnlnit property for a rowset to False enables PeopleCode to modify data in the rowset
during RowInit and RowlInsert events without flagging the rows as changed. This ensures that only user
changes cause the affected row to be saved.

Note. Each rowset that is referenced by a grid or scroll area with the multi-row feature enabled should
have the ChangeOnlInit property for the rowset set to False. This includes lower-level rowsets. In addition,
this property must be set prior to any RowInsert or RowInit PeopleCode for the affected row.

Empty rows at save.

After a transaction is saved, any empty rows are discarded before the page is redisplayed to the user. An
empty row means that the user did not access the data because PeopleCode or record defaults may have
been used to initialize the row for the initial display.

Note. PeopleCode save processing (SaveEdit and SavePreChange) PeopleCode executes for all rows in
the buffer (including the empty ones). Therefore, SaveEdit and SavePreChange PeopleCode should be
coded so that it is executed only if the field contains data, or if the row properties IsNew and IsChanged
are both True. An alternative method is adding PeopleCode in the first save program in the component, to
explicitly delete any row based on the IsNew and IsChanged properties. If you choose this method, then
rows should be deleted from the bottom of the data buffer to the top (last row first).

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 125

PeopleTools 8.52: PeopleCode APl Reference, "Rowset Class," ChangeOnlInit

Using the ImageReference Field

To associate an image definition with a field at runtime, the field has to be of type ImageReference. An
example of this is referencing a red, yellow, or green light on a page, depending on the context.

To change the image value of an ImageReference field:

1.
2.

Create a field of type ImageReference.

Create the images you want to use.

These images must be saved in PeopleSoft Application Designer as image definitions.
Add the field to a record that will be accessed by the page.

Add an image control to the page and associate the image control with the ImageReference field.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 165



Using Methods and Built-In Functions

5. Assign the field value.

Use the keyword | mage to assign a value to the field. For example:

Local Record &WRec;
A obal Nunber &WResult;

&WRec = GetRecord();
I f &WResult Then

&WRec. Myl nageFi el d. Val ue
El se

&WRec. Myl nageFi el d. Val ue
End- I f;

| mage. THUVBSUP;

| mage. THUVBSDOWN;

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Field Definitions"

Chapter 8

Inserting Rows Using PeopleCode

166

When inserting rows using PeopleCode, you can either use the Insert method with a record object or create a
SQL Insert statement using the SQL object. If you do a single insert, use the Record Insert method. If you are
in a loop and,therefore, calling the insert more than once, use the SQL object. The SQL object uses dedicated

cursors and, if the database you are working with supports it, bulk insert.

A dedicated cursor means that the SQL gets compiled only once on the database, so PeopleTools looks for

the meta-SQL only once. This can increase performance.

For bulk insert, inserted rows are buffered and sent to the database server only when the buffer is full or a
commit occurs. This reduces the number of round-trips to the database. Again, this can increase performance.

The following is an example of using the Record Insert method:

&REC = Creat eRecord(Record. GREG) ;
&REC. DESCR. Val ue = "Y" | &l;
&REC. EMPLI D. Val ue = &l ;

&REC. | nsert();

The following is an example using a SQL object to insert rows:

&SQ = CreateSQ. ("% NSERT(:1)");
&REC = Creat eRecord(Record. GREG) ;
&SQL. Bul kMbde = True;
For & =1 to 10
&REC. DESCR. Val ue = "Y" | &l;
&REC. EMPLI D. Val ue = &l ;
&SQL. Execut e( &REQC) ;
End- For ;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class," Insert
PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Using OLE Functions

This section provides an overview of OLE functions and discusses how to:

« Use the Object data type.
» Share a single object instance.

o Use the Exec and WinExec functions.

Understanding OLE Functions

OLE automation is a Microsoft Windows protocol that enables one application to control another's operation.
The applications communicate by means of an OLE object. One of the applications (called the automation
server) makes available an OLE object that the second application (the client application) can use to send
commands to the server application. The OLE object has methods associated with it, each of which
corresponds to an action that the server application can perform. The client runs the methods, which cause the
server application to perform the specified actions.

PeopleCode includes a set of functions that enable your PeopleCode program to be an OLE client. You can
connect to any application that's registered as an OLE automation server and invoke its methods.

Note. Differences in Microsoft Windows applications from one release to the next (that is, properties
becoming methods or vice versa) can cause problems with the ObjectGetProperty, ObjectSetProperty and
ObjectDoMethod functions.

See the documentation for the OLE-automated application.
See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions"

Using the Object Data Type

To support OLE, PeopleCode has a special data type, Object, which it uses for OLE objects. The purpose of
the Object data type is to hold OLE objects during the course of a session so that you can run its methods.
You cannot store Object data for any extended period of time.

Important! Object is a valid data type for variables, but not for record fields. Because OLE objects are by
nature temporary, you cannot store Object data in a record field, including work record fields.

Some OLE object methods return data to the client. You can use such methods to get data from the
automation server, if the method returns the data in a PeopleCode-supported data type. If the method returns
data in an spreadsheet, for example, you cannot accept the data, because PeopleCode does not support
spreadsheets.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 167



Using Methods and Built-In Functions Chapter 8

Sharing a Single Object Instance

When you need the services of an OLE automation server, you create an instance of its OLE object, using the
CreateObject function. After you have the object, you can run its methods as often as you like. You do not
need to create a new instance of the object each time.

In a typical scenario, you have a PeopleSoft component that needs to access Microsoft Excel or Word, or
some other automation server, perhaps one you have created yourself. Various PeopleCode programs
associated with the component must run OLE object methods.

Rather than create a new instance of the OLE object in each PeopleCode program, you should create one
instance of the OLE object in a PeopleCode program that runs when the component starts (such as RowlInit)
and assign it to a global variable. Then, any PeopleCode program can reference the object and invoke its
methods.

Using the Exec and WinExec Functions

The WinExec and Exec built-in functions provide another way to start another application from PeopleCode.
Unlike the OLE functions, however, Exec and WinExec do not enable you to control what actions the
application takes after you start it. You can start the application, and if you use the synchronous option you
can find out when it closes, but you cannot affect its course or receive any data in return.

WinExec is appropriate in two situations:

*  When you want to start an application and continue processing.
*  When you have a short, unvarying process that you want to run, such as copying a file.

The Exec function, unlike WinExec and the OLE functions, is not Microsoft Windows-specific. You can run
it on an application server to call an executable on the application server platform, which in PeopleTools
release 7 and later can be either Windows NT or UNIX.

Important! If you use the WinExec function with its synchronous option, the PeopleCode program (and the
PeopleSoft application) remain paused until the called program is complete. If you start a program that waits
for user input, such as Notepad, the application appears to hang until the user closes the called program. The
synchronous option also imposes limits on the PeopleCode.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Exec

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," WinExec

Using the Select and SelectNew Methods

This section provides an overview of the Select method and discusses how to use the Select method.

168 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Understanding the Select and SelectNew Methods

The Select and SelectNew methods, like the ScrollSelect functions, enable you to control the process of
selecting data into a page scroll area. The Select method selects rows from a table or view and adds the rows
to either a rowset or a row. Let's call the record definition of the table or view that it selected from the select
record. Let's call the primary database record of the top-level rowset object executing the method the default
scroll record.

The select record can be the same as the default scroll record, or it can be a different record definition that has
the same key fields as the default scroll record. If you define a select record that differs from the default scroll
record, you can restrict the number of fields loaded into the buffers by including only the fields you actually
need.

You can use these methods only with a rowset. A rowset can be thought of as a page scroll area.

A level zero rowset starts at the top level of the page, level zero, and contains all the data in the component
buffers. A child rowset is contained by an upper-level rowset, also called the parent rowset. For example, a
level one rowset could be considered the child rowset of a level zero, or parent, rowset. Or a level two rowset
could be the child rowset of a level one rowset. The data contained in a child rowset depends on the row of
the parent rowset.

When a rowset is selected into, any autoselected child rowsets are also read. The child rowsets are read using
a Where clause that filters the rows according to the Where clause used for the parent rowset, using a
Subselect.

The Select method automatically places child rowsets in the rowset object executing the method under the
correct parent row. If it cannot match a child rowset to a parent row, an error occurs.

The Select method also accepts an optional SQL string that can contain a Where clause restricting the number
of rows selected into the scroll area. The SQL string can also contain an Order By clause, enabling you to sort
the rows.

The Select and SelectNew methods generate an SQL Select statement at runtime, based on the fields in the
select record and the Where clause passed to them in the function call. This gives Select and SelectNew a
significant advantage over the SQLExec function: they enable you to change the structure of the select record
without affecting the PeopleCode program, unless the field affected is referred to in the Where clause string.
This can make the application easier to maintain.

Also, if you use one of the meta-SQL constructs or shortcuts in the Where clause, such as %KeyEqual or
%List, even if a field has changed, you do not have to change your code.

Unlike the ScrollSelect functions, neither Select or SelectNew allow you to operate in turbo mode.

Note. In addition to these methods, the SelectByKey record class method enables you to select into a record
object. If you're only interested in selecting a single row of data, consider this method instead.

See Also

Chapter 5. "Accessing the Data Buffer," page 65

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 169



Using Methods and Built-In Functions Chapter 8

Using the Select Method

The syntax of the Select method is:

Select([parmist], RECORD.selrecord [, wherestr, bindvars]);
Where paramlist is a list of child rowsets, given in the following form:

SCROLL. scrol I nanel [ SCROLL., scroll nanme2]

The first scrollname must be a child rowset of the rowset object executing the method, the second scrollname
must be a child of the first child, and so on.

This syntax does the following:

» Specifies an optional child rowset into which to read the selected rows.
» Specifies the select record from which to select rows.

» Passes a string containing a SQL Where clause to restrict the selection of rows or an Order By clause to
sort the rows, or both.

Specifying Child Rowsets

The first part of the Select syntax specifies a child rowset into which rows are selected. This parameter is
optional.

If you do not specify any child rowsets in paramlist, Select selects from a SQL table or view specified by
selrecord into the rowset object executing the method. For example, suppose you've instantiated a level one
rowset &BUS _EXPENSES PER. The following would select into this rowset:

Local Rowset &BUS EXPENSES PER;

&BUS_EXPENSES_PER = Get Rowset ( SCROLL. BUS_EXPSNESE_PER) ;
&BUS_EXPENSES_PER. Sel ect ( RECORD. BUS_EXPENSE_\WW
"WHERE SETID = :1 and CUST_ID = :2", SETID, CUST ID);

If the rowset executing the method is a level zero rowset, and you specify the Select method without
specifying any child rowsets with paramlist,, the method reads only a single row, because only one row is
allowed at level zero.

Note. For developers familiar with previous releases of PeopleCode: In this situation, the Select method is
acting like the RowScrollSelect function.

If you specify a child rowset in paramlist, the Select method selects from a SQL table or view specified by
selrecord into the child rowset specified in paramlist, under the appropriate row of the rowset executing the
method.

In the following example, rows are selected into a child rowset BUS EXPENSE DTL, matching level-one
keys, and with the charge amount equal to or exceeding 200, sorting by that amount:

170 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Local Record &REC EXP;
Local Rowset &BUS EXPENSE PER;

&REC EXP = Get Recor d( RECORD. BUSI NESS_EXPENSE_PER:
&BUS_EXPENSE_PER = Get Rowset ( SCROLL. BUS_EXPSNESE_PER) :
&BUS_EXPENSE_PER. Sel ect ( SCROLL. BUS_EXPENSE_DTL,

RECORD. BUS_EXPENSE_DTL, "WHERE %KeyEqual (: 1) AND EXPENSE_AMI
>= 200 ORDER BY EXPENSE_AMI", &REC EXP):

Specifying the Select Record

The record definition of the table or view being selected from is called the select record, and identified with
RECORD.selrecord.. The select record can be the same as the primary database record associated with the
rowset executing the method, or it can be a different record definition that has compatible fields.

The select record must be defined in PeopleSoft Application Designer and be a built SQL table or view (using
Build, Project), unless the select record is the same record as the primary database record associated with the
rowset.

The select record can contain fewer fields than the primary record associated with the rowset, although it
must contain any key fields to maintain dependencies with other records.

If you define a select record that differs from the primary database record for the rowset, you can restrict the
number of fields that are loaded into the buffers on the client work station by including only the fields you
actually need.

The Where Clause

The Select method accepts a SQL string that can contain a Where clause restricting the number of rows
selected into the object. The SQL string can also contain an Order By clause to sort the rows.

Select and SelectNew generate a SQL Select statement at runtime, based on the fields in the select record and
the Where clause passed to them in the method parameters.

To avoid errors, the Where clause should explicitly select matching key fields on parent and child rows. You
do this using the %KeyEqual meta-SQL.
Select Like RowScrollSelect

If the rowset executing the method is a level zero rowset, and you specify Select without specifying any child
rowsets with paramlist, the method reads only a single row, because only one row is allowed at level zero.

Note. For developers familiar with previous releases of PeopleCode: In this situation, the Select method is
acting like the RowScrollSelect function.

If you qualify the lower-level rowset so that it only returns one row, it acts like the RowScrollSelect method.

&RSLVL1 Get Rowset ( SCROLL. PHYSI CAL_I NV) ;
&RSLVL2 = &RSLVL1( &PHYSI CAL_ROW . Get Rowset ( SCROLL. PO_RECEI VED_I NV) ;
&REC2 = &RSLVL2. PO _RECEI VED_I NV,
If &PO ROW = 0 Then
&RSLVL2. Sel ect (PO_RECEI VED_| NV, "WHERE %KeyEqual (: 1)
and qty_available > 0", &REC2);
End-if;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 171



Using Methods and Built-In Functions Chapter 8

See Also

PeopleTools 8.52: PeopleCode Language Reference, "Meta-SQL Elements," %KeyEqual

Using Standalone Rowsets

This section provides an overview of standalone rowsets and discusses how to:
» Use the Fill rowset method.

e Use the CopyTo rowset method.

e Add child rowsets.

» Use standalone rowsets to write a file.

« Use standalone rowsets to read a file.

Understanding Standalone Rowsets

Standalone rowsets are not associated with a component or page. Use them to work on data that is not
associated with a component or page buffer.In earlier releases, this was done using derived work records. You
still must build work pages.

Note. Standalone rowsets are not connected to the Component Processor, so there are no database updates
when they are manipulated. Delete and insert actions on these types of rowsets are not automatically applied
at save time.

As with any PeopleTools object, the scope of standalone rowsets can be Local, Global, or Component.
Consider the following code:

Local Rowset &MYRS;

&WRS = Creat eRowset ( RECORD. SOVEREC) ;

This code creates a rowset with SOMEREC as the level zero record. The rowset is unpopulated. Functionally,
it is the same as an array of rows.

Using the Fill Method

The Fill method fills the rowset by reading records from the database, by first flushing out all the contents of
the rowset. A Where clause must be provided to get all the relevant rows.

172 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Local Rowset &WRS;
Local String &EMPLID;

&WRS = Creat eRowset ( RECORD. SOVEREC) ;
&EMPLID = ' 8001';

&MWYRS. Fil | ("where EMPLID = : 1", &EMPLID);

Use the Fill method with standalone rowsets, created using the CreateRowset function. Do not use Fill with
component buffer rowsets.

Using the CopyTo Method

The CopyTo method copies like-named fields from a source rowset to a destination rowset. To perform the
copy, it uses like-named records for matching, unless specified. It works on any rowset except the
Application Engine state records. The following is an example:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLI D;

&WYRS1
&MYRS2

Cr eat eRowset ( RECORD. SOVEREC) ;
Cr eat eRowset ( RECORD. SOVEREC) ;

&EMPLID = ' 8001';

&WRSL. Fi | | ("where EMPLID = : 1", &EMPLID);
&MYRSL. CopyTo( &MYRS2) ;

After running the previous code segment, &MYRS2 contains that same data as &MYRS1. Both &MYRSI
and &MYRS2 were built using like-named records.

To use the CopyTo method where there are no like-named records, you must specify the source and
destination records. The following code copies only like-named fields:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLID;

&WYRS1
&MYRS2

Cr eat eRowset ( RECORD. SOVEREC1) ;
Cr eat eRowset ( RECORD. SOVEREC?) ;

&EMPLID = ' 8001";

&WRSL. Fil | ("where EMPLID = : 1", &EMPLID);
&MYRS1. CopyTo( &MYRS2, RECORD. SOVEREC1, RECORD. SOVEREC2) ;

Adding Child Rowsets

The first parameter of the CreateRowset method determines the top-level structure. If you pass the name of
the record as the first parameter, the rowset is based on a record. You can also base the structure on a
different rowset. In the following example, &MYRS?2 inherits the structure of &MYRS1:

Local Rowset &WRS1, MYRS2;

&WYRS1
&WYRS2

Cr eat eRowset ( RECORD. SOVEREC]) ;
Cr eat eRowset ( &WYRS1) ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 173



Using Methods and Built-In Functions Chapter 8

To add a child rowset, suppose the following records describe a relationship. The structure is made up of
three records:

+ PERSONAL DATA

« BUS EXPENSE PER

« BUS EXPENSE DTL

To build rowsets with child rowsets, use code like the following:
Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
&r sBusExpDt | Cr eat eRowset ( Recor d. BUS_EXPENSE_DTL) ;

&r sBusExpPer Cr eat eRowset ( Recor d. BUS_EXPENSE PER, &r sBusExpDtl);
& sBusExp = Creat eRowset (Recor d. PERSONAL_DATA, &r sBusExpPer);

Another variation is
& sBusExp = Creat eRowset ( Recor d. PERSONAL _DATA,

Cr eat eRowset ( Recor d. BUS_EXPENSE PER,
Cr eat eRowset ( Record. BUS EXPENSE DTL)));

Using Standalone Rowsets to Write a File

The following is an example of using standalone rowsets along with a file layout to write a file:

F-{Z) PERSONAL_DATA
¢ EMPLID
..... & MAME
(=) BUS_EXPENSE_PER
----- @ EMPLID
----- @ EXPENSE_PERIOD_DT
----- @ SUBMIT_FLG
----- @ INTL_FLG
----- @ APPR_STATUS
----- @ APPR_INSTANCE

----- ¢ COMMEMTS

=+E) BUS_EXPEMSE_DTL

----- ¢ EMPLID

----- ¢ ExPEMSE_PERIOD_DT
----- ¢ CHARGE_DT

----- ¢ ExPEMSE_CD

----- ¢ ExPEMSE_AMT

----- ¢ CURREMCY_CD

----- ¢ BUSINESS_PURPOSE
----- ¢ DEPFTID

File layout example

The following example writes a file using a file layout that contains parent-child records:

174 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Local File &MWFILE;

Local Rowset &rsBusExp, & sBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQ. &SQ.1, &SQ.2, &SQ3;

& BusExp = Creat eRecor d(Recor d. PERSONAL_DATA) ;
&r BusExpPer Creat eRecor d( Recor d. BUS_EXPENSE_PER) ;
&r BusExpDt | Creat eRecor d( Record. BUS_EXPENSE _DTL) ;

& sBusExp = Creat eRowset (Recor d. PERSONAL DATA,
Cr eat eRowset ( Recor d. BUS_EXPENSE_PER,

Cr eat eRowset ( Recor d. BUS_EXPENSE_DTL)) ) ;

& sBusExpPer = &r sBusExp. Get Row( 1) . Get Rowset (1) ;

&WFILE = GetFile("c:\tenp\BUS EXP.out", "W, 9%-ilePath_Absol ute);
&WYFI LE. Set Fi | eLayout (Fi | eLayout . BUS_EXP_OUT) ;

&EMPLI D = "8001";

&sqL1
&SQL2

CreateSQ.("%sel ectal | (: 1) where EMPLID
D

: 2", & BusExp, &EMPLID);
CreateSQ.("%sel ectal | (: 1) where EMPLI : 2",

& BusExpPer, &EMPLID);

VWil e &SQL1. Fet ch( & BusExp)
&r BusExp. CopyFi el dsTo( & sBusExp. Get Row( 1) . PERSONAL_DATA) ;
&l = 1;
Wi | e &SQL2. Fet ch( & BusExpPer)
& BusExpPer . CopyFi el dsTo( & sBusExpPer (& ). BUS_EXPENSE_PER) ;
&) = 1,
&SQAL3 = CreateSQ ("% el ectall(:1) where EMPLID = :2
and EXPENSE_PERI OD DT = :3", & BusExpDtl, &EMPLID,
& sBusExpPer (& ) . BUS_EXPENSE_PER. EXPENSE_PERI OD_DT. Val ue) ;
& sBusExpDt| = & sBusExpPer. Get Rowm &l ). Get Rowset (1) ;
Wi | e &SQL3. Fet ch( & BusExpDt 1)
& BusExpDt | . CopyFi el dsTo( & sBusExpDt| (&J) . BUS_EXPENSE_DTL) ;
& sBusExpDt| . I nsert Row( &J);
&) = &3 + 1;
End- Wi | e;

& sBusExpPer . | nsert Row &l ) ;
& =&l + 1;
End- Wi | e;
&WYFI LE. Wit eRowset ( & sBusExp) ;
End- Wi | e;
&WYFI LE. d ose();

The previous code generates the following output file.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 175



Using Methods and Built-In Functions

AA8001 Schumacher, Si non

BB8001 06/ 11/ 1989YNAO Cust oner CGo-Live Cel ebration

CC8001 06/ 11/ 1989

06/ 01/ 198908226. 83 USDEntertain Clients =

10100

BB8001 08/ 31/ 1989YNAO Cust omer Focus G oup Meeting

CC8001 08/ 31/ 198908/ 11/ 1989012401. 58 USDCust oner Vi si t
10100

CC8001 08/ 31/ 198908/ 12/ 198904250. 48 USDCust onrer Vi si t
10100

CCs8001 08/ 31/ 198908/ 12/ 198902498. 34 USDCust oner Vi sit
10100

BB8001 03/ 01/ 1998YYPO Attend Asi a/ Paci fic Conference

CC8001 03/ 01/ 199802/ 15/ 1998011200 USDConf er ence

00001

CC8001 03/ 01/ 199802/ 16/ 19980220000 JPYConf er ence

00001

BB8001 05/ 29/ 1998NNPO Annual Subscription

CC8001 05/ 29/ 199805/ 29/ 199814125. 93 USDSof t war e, | nc.
10100

BB8001 08/ 22/ 1998NNPO Regi onal Users G oup Meeting

CC8001 08/ 22/ 199808/ 22/ 19981045. 69 USDDri ve to Meeting
10100

CC8001 08/ 22/ 199808/ 22/ 19980912. 44 USDCity Parking
10100

BB8001 12/ 12/ 1998NNPO Custoner Visit: Nevco

CC8001 12/ 12/ 199812/ 02/ 199801945. 67 USDCust orrer Feedback
00001

CCs8001 12/ 12/ 199812/ 02/ 19981010. 54 USDTo Airport
00001

CC8001 12/ 12/ 199812/ 03/ 19980610 USDAI r port Tax
00001

CC8001 12/ 12/ 199812/ 03/ 199804149. 58 USDCust orrer Feedback
00001

CCs8001 12/ 12/ 199812/ 04/ 1998055. 65 USDCheck Voi cemai
00001

CC8001 12/ 12/ 199812/ 04/ 19980988 USDAI r port Parki ng
00001

CC8001 12/ 12/ 199812/ 04/ 199802246. 95 USDCust orrer Feedback
00001

CC8001 12/ 12/ 199812/ 04/ 199803135. 69 USDCust orer Feedback
See Also

Chapter 8

00001

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Constructing File Layouts and

Performing Data Interchanges"

Using Standalone Rowsets to Read a File

The following code shows an example of reading in a file and inserting the rows into the database:

176 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

Local File &MWFILE;

Local Rowset &rsBusExp, & sBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1;

& BusExp = Creat eRecor d(Recor d. PERSONAL_DATA) ;
&r BusExpPer Creat eRecor d( Recor d. BUS_EXPENSE_PER) ;
&r BusExpDt | Creat eRecor d( Record. BUS_EXPENSE _DTL) ;

& sBusExp = Creat eRowset (Recor d. PERSONAL DATA,
Cr eat eRowset ( Recor d. BUS_EXPENSE_PER,
Cr eat eRowset ( Recor d. BUS_EXPENSE_DTL)) ) ;

&WFILE = GetFile("c:\tenp\BUS EXP.out", "R', 9%-il ePath_Absol ute);
&WYFI LE. Set Fi | eLayout (Fi | eLayout . BUS EXP_QOUT) ;

&SQL1 = CreateSQL("%nsert(:1)");

& sBusExp = &WYFI LE. ReadRowset () ;
Wil e & sBusExp <> Nul | ;
& sBusExp. Get Row 1) . PERSONAL_DATA. CopyFi el dsTo( & BusExp) ;
& sBusExpPer = &rsBusExp. Get Row( 1) . Get Rowset (1) ;
For & = 1 To & sBusExpPer. Acti veRowCount
&r sBusExpPer (&) . BUS_EXPENSE_PER. CopyFi el dsTo( & BusExpPer) ;
& BusExpPer . Execut eEdi t s(%&di t _Requi r ed) ;
| f & BusExpPer.|sEditError Then
For & = 1 To & BusExpPer. Fi el dCount
&MYFI ELD = &r BusExpPer . Get Fi el d( &K) ;
I f &MWYFI ELD. Edi t Error Then

&VBGNUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MWYFI ELD. MessageSet Nunrber ;
End- | f;
End- For ;

El se
&SQL1. Execut e( & BusExpPer) ;
& sBusExpDt| = & sBusExpPer. Get Rowm &l ). Get Rowset (1) ;
For & = 1 To & sBusExpDtl|. Acti veRowCount
& sBusExpDt | (&J) . BUS_EXPENSE DTL. CopyFi el dsTo( & BusExpDtl);
& BusExpDt | . Execut eEdi t s(%&di t _Requi red) ;
| f & BusExpDtl.|sEditError Then
For & = 1 To & BusExpDtl. Fi el dCount
&WFI ELD = &r BusExpDt! . Get Fi el d( &K) ;
| f &WFIELD. Edi t Error Then
&VBANUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MYFI ELD. MessageSet Nunber ;
End- I f;
End- For ;
El se
&SQL1. Execut e( & BusExpDt 1) ;
End- | f;
End- For ;
End- I f;
End- For ;
& sBusExp = &WYFI LE. ReadRowset () ;
End- Wi | e;
&WYFI LE. d ose();

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 177



Using Methods and Built-In Functions Chapter 8

Using Errors and Warnings

For the most part, errors and warnings display messages to users informing them about invalid data. For this
reason, they are almost always placed in FieldEdit or SaveEdit PeopleCode, or in SearchSave PeopleCode for
validation during search processing. In conjunction with edits, errors stop processing, while warnings allow
processing to continue. When errors and warnings appear in places other than FieldEdit or SaveEdit, their
effects vary.

This section discusses how to:

» Use errors and warning syntax.

» Use errors and warnings in edit events.

» Use errors and warnings in RowSelect events.
« Use errors and warnings in RowDelete events.

» Use errors and warnings in other events.

Using Error and Warning Syntax

Errors and warnings require only a message that the Component Processor displays to users. You can code
the message into the error or warning statement, or you can use the message catalog. Use the message catalog
with the MsgGet, MsgGetExplainText, and similar functions.

Errors and warnings use the same syntax. For example:

Error MsgGet (11100, 180, "Message not found.");
Warni ng MsgGet (11100, 180, "Message not found.");

Using Errors and Warnings in Edit Events

178

You can use the following PeopleCode events for validation edits: FieldEdit and SaveEdit. The Component
Processor applies FieldEdit when the user changes a field, and SaveEdit when the user saves a component.
Errors and warnings in these events display a message. Most errors and warnings appear in these event types,
although you can use errors and warnings elsewhere.

FieldEdit Event Errors

You can use either the record field or component record field event. The record field event for each record
runs before the component record field event for that record.

An error in FieldEdit prevents the system from accepting the new value of a field. The Component Processor
highlights the problem field. The user must either change the field back to its original value or to something
else which does not trigger the error. A warning enables the Component Processor to accept the new data.
The Component Processor does not highlight a field that has warnings.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

SaveEdit Event Errors

You can use the record field or the component record event. All record field events for a record run before the
component record events.

An error in SaveEdit prevents the system from saving any row of data. The Component Processor does not
update the database for any field if one field has an error. Although the Component Processor displays an
error message, it does not turn any field red. Unlike FieldEdit errors, SaveEdit errors can happen anywhere on
a page or component, for any row of data. The data causing the error may appear on a different page within
the same group, or a row of data not currently displayed. If this is the case, the field in error is brought into
view by the system.

A warning in SaveEdit also is applied to all data in the page or component, but the Component Processor will
accept the data, if told to by the user. In a FieldEdit warning, the Component Processor displays a message
box with the text and two buttons: OK and the standard Explain (the Explain button returns an explanation for
the last message retrieved with the MsgGet function). In a SaveEdit warning, the message box contains an
additional button, Cancel. OK accepts the data, overriding the warning and continuing the save process.
Cancel ends the save process.

Because errors and warnings apply to all rows of data and all pages in a group, you must provide the user
explicit information about what caused the error. Typically, you use the message catalog function to store
messages and substitute variables into them. However, you can also facilitate this by concatenating in a field
value. For example, if you have a stack of historical data on the page, you could use the following error
statement:

Error ("The value exceeds the maxi mumon "|effdt|".");

Using Errors and Warnings in RowSelect Events

RowsSelect PeopleCode filters out rows of data after the system applies search record criteria. It also can stop
the Component Processor from reading additional rows of data.

Note. Errors and warnings should no longer be used in RowSelect processing; instead, use DiscardRow and
StopFetching. The behavior of errors and warnings in RowSelect PeopleCode is retained for compatibility
with previous releases of PeopleTools.

A warning causes the Component Processor to reject the current row, but the Component Processor continues
reading more data. An error prevents more data coming into the page or component. The Component
Processor accepts the row that causes the error, but does not read any more data. To reject the current row and
stop loading additional rows, issue a warning and an error.

You must specify text for an error or warning, but the Component Processor does not display messages from
RowSelect. You can still use the message text as a way of documenting the program.

See Also

Chapter 11, "Accessing PeopleCode and Events," page 229

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," DiscardRow

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," StopFetching

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 179



Using Methods and Built-In Functions Chapter 8

Using Errors and Warnings in RowDelete Events

When you delete a row of data, the system prompts you to confirm. If you confirm, any record field
RowDelete PeopleCode runs, and any component record RowDelete PeopleCode also runs. Errors and
warnings in RowDelete display a message box.

A warning from RowDelete presents two choices: accept the RowDelete (the OK button), or cancel the
RowDelete (the Cancel button). An error from RowDelete PeopleCode prevents the Component Processor
from removing that row of data from the page.

Using Errors and Warnings in Other Events

Do not put errors or warning in PeopleCode attached to the FieldDefault, FieldFormula, RowlInit,
FieldChange, RowInsert, SavePreChange, WorkFlow, and SavePostChange events. These event types
activate processing that a user has no direct control over. However, the Component Processor may issue its
own errors and warnings when it runs PeopleCode and encounters an unrecoverable error. The Component
Processor cancels the transaction to avoid unpredictable results.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Warning

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," Error

Using the RemoteCall Feature

This section provides an overview of RemoteCall components and discusses how to:
» Decide between RemoteCall and PeopleSoft Process Scheduler.

« Modify PeopleSoft Process Scheduler programs to run with RemoteCall.

See Also

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 154

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CallAppEngine

Understanding RemoteCall Components

180

RemoteCall is a PeopleTools feature that enables executing a COBOL program remotely from within a
PeopleSoft application. Remote calls are made using the RemoteCall PeopleCode function.

Because all PeopleCode runs on the application server, the RemoteCall PeopleCode function has more
limited utility. However, RemoteCall can enable you to take advantage of existing COBOL processes.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

In the application server configuration file, you can specify where the COBOL executables are located.

See PeopleTools 8.52; System and Server Administration, "Setting Application Server Domain Parameters,"
Remote Call Options.

The RemoteCall function is a synchronous call. The PeopleSoft system passes parameters to the remote
program, and then waits while the program runs. When the remote program is done, it returns any results or
status information to the client, which then resumes execution. This means that RemoteCall is a think-time
function. RemoteCall is designed for fast response time, and has an application programming interface (API)
that provides programs with the response time needed for transaction processing. However, RemoteCall has
no scheduling or multistep job capabilities. Each execution of RemoteCall is independent.

Note. For PeopleTools 8, you can no longer use RemoteCall to execute an Application Engine program. Use
the CallAppEngine function instead.

The RemoteCall PeopleTools feature consists of the following components:

» PeopleCode program.

This interface consists of the RemoteCall PeopleCode function. It is used from PeopleCode to start a
remote program and process results. The PeopleCode program does not include any special code to
specify where the remote program is executed. You can configure Oracle Tuxedo to locally execute the
program for testing.

* Remote program API.
This is used by the remote COBOL program to receive or pass parameters and return status information.
« PeopleSoft RemoteCall service.

The PeopleSoft application server, PSAPPSRV, advertises the RemoteCall service. The service receives
requests from clients and starts the requested program. When the program is completed, it passes the
parameters and status code back to the client.

e Oracle Tuxedo.

Oracle Tuxedo is a message-based transaction monitor for distributed applications. No direct Oracle
Tuxedo calls need to be implemented in PeopleCode or remote programs.

PeopleCode Program

You can execute the RemoteCall function from PeopleCode associated with any Component Processor event
except SavePostChange, SavePreChange, Workflow, RowSelect, or in any PeopleCode event resulting from a
ScrollSelect or related function call. However, remote programs that change data should not be run as part of
a SaveEdit process, because the remote program may complete successfully even though an error occurs later
in the save process.

To call a remote program that changes data, use FieldChange PeopleCode in a record field associated with a
command button, or from a pop-up menu item.

Do not use RemoteCall if you expect the remote program to return a large amount of data to the client,
because data is passed back only through the parameters of the PeopleCode API.

Authorization to run a remote program is like authorization to run a PeopleCode program. Because a remote
program is started from PeopleCode, the user has authorization to use the page that executes the PeopleCode.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 181



Using Methods and Built-In Functions Chapter 8

182

The remote program runs in a different unit of work from the page. A commit is issued by PeopleTools if
needed on the client before RemoteCall is called. This means that, by default, the remote program does not
know about any database changes unless the page is saved before the program is called. After the remote
program starts, it runs to completion and commits or ends before returning to the page. In this way, the
remote program and the page do not have locking contention. To ensure that the save has actually been done,
use the DoSaveNow built-in function.

When using RemoteCall to execute a COBOL program, two types of errors can occur:

» PeopleTools errors.

An error could occur in PeopleTools or Oracle Tuxedo, or the service might not be found. These are
treated as hard errors by PeopleCode. An error message box appears, and that piece of PeopleCode is
terminated. In the case of a PeopleTools error, the remote program always either returns a code of zero or
terminates with a message due to a system error.

* Application-specific errors.

Any error information specific to the remote application must be passed back in regular data variables,
and the application can process these in an application-specific way. If you have a status code on which
the application depends, you should initialize it to an invalid value to be sure the COBOL program does
return the status code.

Because the remote program is executed synchronously, users receive an hourglass icon and cannot do
anything in the current window until the remote application completes. They could move to another window
and do processing there, or they could open another PeopleSoft window. They cannot cancel the remote
program after it starts. If the program does not terminate in a timely fashion (as determined by the
RemoteCall timeout set with PeopleSoft Configuration Manager), RemoteCall attempts to terminate the
process and returns an error indicating that the program was terminated.

Remote Program API

The remote program API provides the functions to get and put data between the network and the COBOL
program. These functions are implemented in C, but are callable from COBOL through the PTPNETRT
program. For an example, see the PTPNTEST.CBL program.

Note. If these APIs are called when the program is not running as a remote program, ACTION-GET and
ACTION-PUT return an error. All other actions return without doing anything.

If an unexpected error is found, call PTPNETRT with ACTION-RESET, then with ACTION-PUT to send
back any error status variables, then with ACTION-DONE to send the buffer.

PeopleSoft RemoteCall Service

The RemoteCall service serves as a bridge between the PeopleCode API and remote COBOL programs.
RemoteCall is one of many services advertised from the PSAPPSRV Oracle Tuxedo server, and can be
configured as part of the standard domain setup and administration.

The client sends the RemoteCall service request, consisting of the connect information and the program
name, as well as any other parameters for the program, to the application server. The RemoteCall service then
executes the program and passes it the connect string.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 8 Using Methods and Built-In Functions

RemoteCall Programming Guidelines

Keep the following points in mind when using RemoteCall:

» Do not use RemoteCall for long-running batch jobs.

As a general rule, if you think execution will take more than 15 seconds, you should not be using
RemoteCall, but should instead use PeopleSoft Process Scheduler.

» RemoteCall is meant for running jobs on the server.

It should not be used to invoke client-only programs. Support for local calling with RemoteCall is
provided solely as a debugging and development aid. For client-only programs, use Declare Function,
then call the external function from a library.

» Ifyou do not want to modify an existing program, then pass only the program name and run control, and
do not return any parameters.

This way, the program requires few changes to run as a remote function.

Deciding Between RemoteCall and PeopleSoft Process Scheduler

COBOL application programs initiated by the RemoteCall service use the same COBOL application
architecture used by PeopleSoft Process Scheduler. After being initiated by the dispatcher, COBOL
application programs call the COBOL SQL API program, PTPSQLRT, to connect to the relational database
management system to compile and execute SQL statements. You can design and implement COBOL
programs to be understood by both PeopleSoft Process Scheduler and RemoteCall.

Follow these guidelines to select the optimal method for running a particular COBOL program:

» Use PeopleSoft Process Scheduler for asynchronous processes, or processes that can be scheduled, are
multistep, or that require printed output.

« Use RemoteCall for synchronous processes that are quick (transaction processing types of processes).

Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

To enable an existing program that runs under PeopleSoft Process Scheduler to run under RemoteCall as
well, make the following changes:

e Include the PTCNETRT copy member.
» Include the PTCNCHEK member before the connection call to PTPSQLRT.

* Add the call to PTPNETRT ACTION-DONE just before the program terminates (after the call to
disconnect from the database).

This should be conditional on whether you are RUNNING-REMOTE-CALL.
» Ifyou are running as a RemoteCall, ensure that PROCESS-INSTANCE OF PRUNSTATUS is not set.

Otherwise your calls to PTCPSTAT try to update the PSPRCSRQST table. This does not cause an error,
but it is unnecessary processing.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 183



Using Methods and Built-In Functions Chapter 8

This program can now run from PeopleSoft Process Scheduler or from RemoteCall. If a program has to pass
parameters, it must have RemoteCall-specific ACTION-GET and ACTION-PUT calls.

184 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9

Using HTML Trees and the GenerateTree
Function

This chapter discusses the GenerateTree function.

Using the GenerateTree Function

This section provides an overview of HTML trees and discusses how to:
* Build HTML tree pages.

» Use HTML tree rowset records.

« Use tree actions (events).

* Initialize HTML trees.

» Process events passed from a tree to an application.

* Add mouse-over ability to HTML trees.

* Add visual selection node indicators.

« Specify override images.

Understanding HTML Trees

Use the GenerateTree function to display data in a tree format. The result of the GenerateTree function is an
HTML string, which can appear in an HTML area control. The tree generated by GenerateTree is called an
HTML tree.

The GenerateTree function displays data from a rowset. You can populate this rowset using existing record
data. You can also use the tree classes to display data from trees created using PeopleSoft Tree Manager.

To use this function, you must set up a page for displaying the data and populate a standalone rowset with the
data to be displayed.

The following example shows an HTML tree:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 185



Using HTML Trees and the GenerateTree Function Chapter 9

‘.'“ Tree Control Test ‘.I_
SetiD: Set Control Value:

Tree Name: DEFT_SECURITY Effective Date: 01/01/1996

| | Mext | Last | |

(= p0001 - Corporate Headguarters

FIM - Financial Serices

HLC - Health Care Senices

(= MFG - Manufacturing
M-AMERICAS - Morth and South America
M-ASIAFPALC - Asia Pacific
M-EUR-ALL - Europe-Africa-Middle East

LOC - Local Counties

UMY - Higher Education

(£ UTIL - Liilities

(= 1000

Q Return to Search

HTML tree example

The positional links at the top of the page (First,Previous,Next, Last,Left,Right) enable the user to navigate
around the tree. These links are automatically generated as part of the execution of GenerateTree.

When a node is collapsed, a plus sign appears on the node icon, and the node's children are hidden. When a
node is expanded, all child nodes appear, and the icon displays a minus sign. Icons without a plus or minus
sign are terminal nodes, which have no children and cannot be expanded or collapsed.

Building HTML Tree Pages

186

The page you use to display the HTML tree must contain:

* An HTML area used to display the HTML tree.

» A character field that has a page field name, is at least 46 characters long, and is invisible.

Note. The edit box should be invisible, but not display-only. An invisible edit box cannot be seen by the user,
but it still has a buffer that can be written to. Page fields that have been specified as invisible do not need to
be marked as Modifiable from HTML unless they are located on a page that is not active when GenerateTree
is called. For example, if your application calls GenerateTree from one page and then saves the result in a
field that is displayed by an HTML area on another page in the component, the associated event field must be
marked both Invisible and Modifiable from HTML.

Events are sent to the application from the HTML tree using the invisible field. The events are processed by
FieldChange PeopleCode that is attached to the invisible field.

This is an example page for an HTML tree:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9 Using HTML Trees and the GenerateTree Function

Page Dezigner 10rder ;

B o el e b b g bl i i

Example of PeopleSoft Application Designer HTML tree page
The large area that is selected in the example is the HTML area that displays the HTML tree. The HTML area
is attached to the DERIVED HTML.HTMLAREA field for this example.

The white edit box is the invisible field used to pass events from the HTML tree to the application. It is
attached to the DERIVED HTML.TREECTLEVENT field for this example.

The edit box must have a page field name. In this example, the page field name is TREECTLEVENT.

Using HTML Tree Rowset Records

The GenerateTree function takes a prebuilt and populated rowset as a parameter. This rowset must have a

certain structure and contain certain fields. In the following examples, the rowset is standalone, that is, the
rowset is created using the CreateRowset function. The fields necessary for the rowset are contained in the
following record definitions:

» The header record TREECTL_HRD, containing the subrecord TREECTL _HDR SBR.
* The node record TREECTL_ NDE, containing the subrecord TREECTL_NDE SBR.

The header record is the level zero record of the HTML tree rowset. It contains options for the HTML tree,
such as the name of the collapsed node image, the height of the images, the number of pixels to indent each
node, and so on.

The node record is the level one record of the HTML tree rowset. It contains the tree data and information
about the data, such as the dynamic range leaf, the level, and so on.

The level one scroll area contains a row for each node or leaf in the tree data.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 187




Using HTML Trees and the GenerateTree Function

188

Chapter 9

To store additional application data with each node in the tree, you can incorporate the
TREECTL _NDE SBR into a record of your definition and use your record to define the HTML tree rowset.

For example, you might want to store application key values with each node record, so that when a user
selects a node, you have the data you need to perform the action that you want.

This table describes the relevant fields in TREECTL_HDR SBR:

Field

Description

PAGE NAME

Name of the page that contains the HTML area and the
invisible field used to process the HTML tree events.

PAGE_FIELD NAME

Page field name of the invisible field used to process the
HTML tree events.

PAGE SIZE

Number of nodes or leaves to send to the browser at a
time. Set to 0 to send all visible nodes or leaves to the
browser. The default value is 0.

DISPLAY LEVELS

Number of levels to display on the browser at a time. The
default value is 8.

COLLAPSED IMAGE

Collapsed node image name. The default value is
PT_TREE_COLLAPSED.

EXPANDED IMAGE

Expanded node image name. The default value is
PT TREE EXPANDED.

END NODE IMAGE

End node image name. The default value is
PT TREE END NODE.

LEAF IMAGE

Leaf image name. The default value is PT_ TREE LEAF.

IMAGE WIDTH

Image width in pixels. All four images need to be the
same width. The default value is 15 pixels.

IMAGE HEIGHT

Image height in pixels. All four images need to be the
same height. The default value is 12 pixels.

INDENT_ PIXELS

Number of pixels to indent each level. The default value is
20 pixels.

TREECTL VERSION

Version of the HTML tree. The default value is 812. Used
with the DESCR_IMAGE field in the
TREECTL _HDR_SBR record.

This table describes the relevant fields in TREECTL _NDE SBR:

Field

Description

LEAF FLAG

If this is a leaf, set to Y. The default value is N.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Using HTML Trees and the GenerateTree Function

Field Description
TREE NODE Node name.
DESCR (Optional) Node description.

RANGE FROM

The range from value of the leaf.

RANGE_TO

The range to value of the leaf.

DYNAMIC FLAG

If this leaf has a dynamic range, set to Y. The default
value is N.

ACTIVE FLAG

Set to N for the node or leaf not to be a link. The default
valueis Y.

DISPLAY OPTION

Set to N to display the name only. Set to D to display the
description only. Set to B to display both the name and the
description. Used for nodes only. The default value is B.

STYLECLASSNAME

Use to control the style of the link associated with the
node or leaf. The default value is PSHYPERLINK.

PARENT FLAG

If this node is a parent and its direct children are loaded
now, set to Y. If this node is a parent and its direct
children are loaded on demand, set to X. If this node is not
a parent, set to N. The default value is N.

TREE_LEVEL NUM

Set to the level of the node. The default value is 1.

LEVEL OFFSET

If a child node is to appear more than one level to the right
of its parent, specify the number of additional levels. The
default value is 0.

DESCR_IMAGE

Use to display an image after the node or leaf image and
before the name or description. The two images are
separated by a space. The new image is not scaled. This
field takes a string value, the name of an image definition
created in PeopleSoft Application Designer.

This field is only recognized if the TREECTL VERSION
field is greater than or equal to 812.

EXPANDED FLAG

When the EXPANDED FLAG of a node is set to Y, the
GenerateTree function expects the immediate children of
the node to be loaded into the &TREECTL rowset (such
as in PostBuild), and GenerateTree generates HTML such
that the node is expanded and its immediate children
appear.

See Also

PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CreateRowset

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

189



Using HTML Trees and the GenerateTree Function Chapter 9

Using HTML Tree Actions (Events)

The GenerateTree function works with an HTML area control and an invisible field. When a user selects a
node, expands a node, collapses a node, or uses one of the navigation links, that event (user action) is passed
to the invisible field, and the FieldChange PeopleCode for the invisible field is executed.

The FieldChange PeopleCode example program (below) checks for expanding (or collapsing) a node and
selecting a node by checking the first character in the invisible field. The following example checks for
whether a node is selected:

I f Left( TREECTLEVENT, 1) = "S" Then

In your application, you can check for the following user actions:

Event Description

Tn Expand or collapse the node, whichever is the opposite
of the previous state. N is the row number of the node in
the TREECTL_NODE rowset.

Xn Expand the node, but load the children first. The
children are loaded in PeopleCode, and then the event is
passed to GenerateTree so that the HTML can be
generated with the node expanded. N is the row number
of the node in the TREECTL_NODE rowset.

F Display the first page.

P Display the previous page.

N Display the next page.

L Display the last page.

Q Move the display left one level.

R Move the display to the right one level.

Sn Select the node or leaf. N is the row number of the node

or leaf in the TREECTL NODE rowset.

Note. Drag-and-drop functionality is not supported in an HTML tree.

190 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9

Using HTML Trees and the GenerateTree Function

Initializing HTML Trees

For this example, the PeopleCode for initializing the HTML tree was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

The PostBuild PeopleCode Example program is an example of how to initialize the HTML tree using the
Tree classes and load only the root node into the HTML tree rowset.

The first time a user expands a node, the direct children of the node are loaded into the HTML tree rowset by
the FieldChange PeopleCode Example program, shown in the following section. This chunking functionality
enables the HTML tree to support trees of any size with good performance.

You cannot simply copy either the PostBuild or FieldChange PeopleCode example programs into your
application. You must modify them to make them work with your data. You must make these changes to the
PostBuild PeopleCode to initialize HTML trees:

L.

Set the PAGE NAME and PAGE_FIELD NAME fields.

The PAGE NAME field contains the name of the page that contains the HTML area and the invisible
field that processes HTML tree events. The PAGE _FIELD NAME field is the page field name of the
invisible field that is used to process the HTML tree events.

Note. The PAGE _FIELD NAME field is the page field name of the invisible field, not the invisible field
name.

Set tree-specific variables.

The & SET_ID,& USERKEYVALUE,& TREE_NAME, & TREE_DT, and & BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, these varaibles are set as follows:

&SET_| D = PSTREEDEFN_VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NANME,
&TREE_DT = PSTREEDEFN_ VW EFFDT;
&BRANCH _NAME = "";

Set the PAGE_SIZE field.

If you do not want the page to expand vertically to display the tree, set the PAGE _SIZE to a number of
rows that will fit inside the HTML area. If some vertical expansion is okay, but you do not want the page
to get too large, set the PAGE_SIZE to whatever value you like. Set the PAGE_SIZE to 0 if you do not
care how big the page gets.

Set the DISPLAY LEVELS field to the number of levels that will fit inside the HTML area.

If this field is set too large, wrapping may occur. Positional links at the top of the HTML area enable the
user to navigate as the tree expands.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 191



Using HTML Trees and the GenerateTree Function Chapter 9

5. (Optional) Set the DISPLAY OPTION field.

The default for the DISPLAY OPTION field is to display both the node name and the description. You
can display just the node name or just the description. The values for this field are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

6. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want to use,
change this field value to the style you want.

7. Change the last line to assign the output of GenerateTree to the field attached to the HTML area that will
display the tree.

In the example that follows, the HTML area control is the DERIVED HTML.HTMLAREA. You must
specify the record and field name associated with the HTML area control on your page.

PostBuild PeopleCode Example

The PeopleCode for initializing the HTML tree for this example was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

This example shows how to initialize the HTML tree using the tree classes and load only the root node into
the HTML tree rowset:

192 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9 Using HTML Trees and the GenerateTree Function

Conponent Rowset &TREECTL;

&NODE_ROWSET = Cr eat eRowset ( Recor d. TREECTL_NODE) ;
&TREECTL = Creat eRowset (Record. TREECTL_HDR, &NODE ROWSET) ;

&TREECTL. | nsert Row 1) ;
&REC = &TREECTL. Get Row( 2) . Get Record(1);

/* Set the HDR options:

1) PAGE_NAME - Name of the page that contains the HTM. Area

and the invisible field that will be used to process the HIM.
tree events.

2) PAGE _FIELD NAME - Page field nanme of the invisible field that
will be used to process the HTM. tree events.

3) PAGE_SIZE - Nunber of nodes or |leaves to send to the browser at

a tine.

Set to 0 to send all of the visible nodes or | eaves to the browser.

Default value: 0

4) DI SPLAY _LEVELS - Nunber of levels to display on the browser at

atime. Default value: 8

5) COLLAPSED | MAGE - Col | apsed node i mage nane.

Def aul t val ue: PT_TREE _COLLAPSED

6) EXPANDED | MAGE - Expanded node i mage name.

Def aul t val ue: PT_TREE_EXPANDED

7) END_NODE | MAGE - End node inage nane.

Def aul t val ue: PT_TREE_END_ NODE

8) LEAF_| MAGE - Leaf inmge name. Default value: PT_TREE _LEAF
9) IMAGE_ WDTH - | nage wi dth.

Al four images need to be the sane size. Default value: 15
10) | MAGE HEI GHT - I mage height. Default value: 12

11) | NDENT_PI XELS - Nunber of pixels to indent each |evel.

Def aul t val ue: 20

*/

&REC. Get Fi el d( Fi el d. PAGE_NAME) . Val ue = "TREECTL_TEST";

&REC. CGet Fi el d(Fi el d. PAGE_FI ELD_NAME) . Val ue = "TREECTLEVENT";
&REC. CGet Fi el d(Fi el d. PAGE_SI ZE) . Val ue = 15;

&REC. CGet Fi el d( Fi el d. DI SPLAY_LEVELS) . Val ue = 8;

&REC. Get Fi el d(Fi el d. COLLAPSED | MAGE) . Val ue = "PT_TREE_COLLAPSED';
&REC. Get Fi el d( Fi el d. EXPANDED | MAGE) . Val ue = "PT_TREE_EXPANDED";
&REC. Get Fi el d(Fi el d. END_NODE_| MAGE) . Val ue = "PT_TREE_END_NODE";
&REC. Get Fi el d(Fi el d. LEAF_I MAGE) . Val ue = "PT_TREE_LEAF";

&REC. CGet Fi el d(Fi el d. | MAGE_W DTH) . Val ue = 15;

&REC. CGet Fi el d( Fi el d. | MAGE_HEI GHT) . Val ue = 12;

&REC. Cet Fi el d(Fi el d. | NDENT_PI XELS) . Val ue = 20;

&SET_| D = PSTREEDEFN_VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NAME,
&TREE_DT = PSTREEDEFN_VW EFFDT;
&BRANCH NAME = "";

&MYSESS|I ON = %Bessi on;

&SRC TREE = &MWYSESSI ON. Get Tree() ;

&RES = &SRC TREE. OPEN( &SET | D, &USERKEYVALUE, &TREE NAME,
&TREE DT, &BRANCH NAME, Fal se);

/* Just insert the root node into the &TREECTL Rowset.

If the root node has children, set the &ARENT FLAGto ' X,
so that its children will be | oaded on demand. */
&ROOT_NODE = &SRC TREE. Fi ndRoot () ;

| f &ROOT_NODE. HasChi | dren Then

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

193



Using HTML Trees and the GenerateTree Function Chapter 9

&PARENT FLAG = "X";
El se

&PARENT_FLAG = "N';
End- I f;

&NODE_ROWBET = &TREECTL. Get Row( 2) . Get Rowset (1) ;
&NODE_ROWSET. | nsert Row( 1) ;
&REC = &NODE ROWBET. Get Row( 2) . Get Record(1);

/* Set the NODE val ues:

1) LEAF_FLAG - If this is a leaf set to "Y'. Default value: N

2) TREE_NODE - Node nane.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from val ue.

5) RANGE TO - Leaf's range to val ue.

6) DYNAM C FLAG - If this |leaf has a dynanic range, set to "Y".

Default value: N

7) ACTIVE FLAG - Set to "N' for the node or leaf not to be a link.
Default value: Y

8) DI SPLAY OPTION - Set to "N' to display the nane only.

Set to "D' to display the description only.

Set to "B" to display both the nanme and the description.

Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link

associated with the node or leaf. Default value: PSHYPERLI NK

10) PARENT_FLAG - If this node is a parent and its direct

children will be |oaded now, set to "Y'. |If this node is a
parent and its direct children are to be | oaded on demand,
set to "X'. Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed nore than
one level to the right of its parent, specify the nunber of
additional levels. Default value: 0O

*/

&REC. Get Fi el d(Fi el d. LEAF_FLAG) . Val ue "N';

&REC. Get Fi el d(Fi el d. TREE_NCDE) . Val ue = &ROCOT_NODE. NAME;

&REC. Cet Fi el d( Fi el d. DESCR) . Val ue = &ROOT_NODE. DESCRI PTI ON,;

&REC. Cet Fi el d( Fi el d. RANGE_FROM) . Val ue = "";

&REC. Get Fi el d(Fi el d. RANGE_TO . Value = "";

&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N*;

&REC. Get Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y";

&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Val ue = "B";

&REC. Get Fi el d(Fi el d. STYLECLASSNAME) . Val ue = "PSHYPERLI NK";

&REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = &PARENT_FLAG,

&REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM . Val ue = 1;

&REC. Get Fi el d(Fi el d. LEVEL_CFFSET) . Val ue = 0;

&SRC TREE. d ose();
DERI VED_HTM.. HTMLAREA = Gener at eTr ee( &TREECTL) ;

Processing Events Passed from a Tree to an Application

194

To modify the FieldChange PeopleCode to load the direct children of the node into the HTML trees, use the
following FieldChange PeopleCode to process the events passed from an HTML tree to an application. The
code that processes the load children event loads the direct children of a node the first time the node is
expanded by the user. Changes that you must make to the FieldChange PeopleCode are as follows.

1. Globally change TREECTLEVENT to the name of the invisible field used to process the events.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9

Using HTML Trees and the GenerateTree Function

Set the tree-specific variables.

The & SET_ID,& USERKEYVALUE,& TREE_NAME,& TREE_DT, and & BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, they are set like this:

&SET | D = PSTREEDEFN VW SETI D
&USERKEYVALUE = "";

&TREE_NAMVE = PSTREEDEFN VW TREE_NAME;
&TREE_DT = PSTREEDEFN VW EFFDT;
&BRANCH NAME = "";

(Optional) Set the DISPLAY_ OPTION field.

The default for the DISPLAY_ OPTION field is to display both the node name and the description. You
can display just the node name or just the description. The values for this field are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

(Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want to use,
change this field value to the style you want.

Change the assignment of the output of every GenerateTree call to the field attached to the HTML area
that will display the tree.

In this example, the HTML area control is the DERIVED HTML.HTMLAREA. You must specify the
record and field name associated with the HTML area control on your page.

Change the code that processes the select event to perform the action you want when the user selects a
node or leaf.

This section is marked as Process Select Event in the following code sample.

FieldChange PeopleCode Example

The following is the PostBuild PeopleCode example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 195



Using HTML Trees and the GenerateTree Function Chapter 9

Conponent Rowset &TREECTL;

/* process load children event */

I f Left(TREECTLEVENT, 1) = "X' Then
&ROW = Val ue( Ri ght (TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
&NODE_ROWSET = &TREECTL. Get Row( 2) . Get Rowset (1) ;
&PARENT_REC = &NODE_ROWSET. Get Rowm( &ROW . Get Recor d( 1) ;
&PARENT_LEVEL = &PARENT_REC. Get Fi el d( Fi el d. TREE_LEVEL_NUM . Val ue;
&ROW = &ROW + 1;

&SET_I D = PSTREEDEFN VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NAME,
&TREE_DT = PSTREEDEFN_VW EFFDT;
&BRANCH NAME = "";

&MYSESS|I ON = %Bessi on;

&SRC TREE = &MYSESSI ON. Get Tree() ;

&RES = &SRC TREE. OPEN( &SET | D, &USERKEYVALUE, &TREE NAME,
&TREE DT, &BRANCH NAME, Fal se);

/* Find the parent node and expand the tree one |evel bel ow
the parent. |Insert just the direct children of the parent node
into the &TREECTL Rowset. |If any of the child nodes have
children, set their PARENT FLAGto 'X , so that their children
are | oaded on demand. */

&PARENT_NODE = &SRC TREE. Fi ndNode( &PARENT_REC.
Get Fi el d(Fi el d. TREE_NCDE) . Val ue, "");
I f &PARENT_NODE. HasChi | dren Then
&PARENT _NODE. Expand( 2) ;

| f &PARENT_NODE. HasChi | dLeaves Then
/* Load the child | eaves into the &TREECTL Rowset. */
&FI RST = True;
&CHI LD LEAF = &PARENT_NOCDE. Fi r st Chi | dLeaf;
Whi |l e &1 RST Or
&CHI LD_LEAF. HasNext Si b
I f &FI RST Then
&FI RST = Fal se;
El se
&CHI LD LEAF = &CHI LD LEAF. Next Si b
End- I f;
I f &CHI LD LEAF. Dynanic = True Then
&RANGE_FROM = "";
&RANGE TO = "";
&DYNAM C RANGE = "Y"
El se
&RANGE_FROM = &CHI LD _LEAF. RangeFr om
&RANGE_TO = &CHI LD_LEAF. RangeTo;
&DYNAM C RANGE = "N
End- I f;

&NODE_ROWSET. | nser t Row( &ROW - 1) ;
&REC = &NODE_ROWSET. Get Row( &ROW . Get Recor d( 1) ;

/* Set the NODE val ues:

1) LEAF_FLAG - If this is a leaf set to "Y'. Default value: N
2) TREE_NODE - Node nane.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from val ue.

5) RANGE TO - Leaf's range to val ue.

6) DYNAM C FLAG - If this leaf has a dynanmic range, set to "Y".

196 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9 Using HTML Trees and the GenerateTree Function

Default value: N

7) ACTIVE FLAG - Set to "N' for the node or leaf not to be a link
Default value: Y

8) DI SPLAY OPTION - Set to "N' to display the nane only.

Set to "D'" to display the description only.

Set to "B" to display both the nane and the description

Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link

associated with the node or leaf. Default value: PSHYPERLI NK

10) PARENT_FLAG - If this node is a parent and its direct

children will be | oaded now, set to "Y'. |If this node is a
parent and its direct children are to be | oaded on demand,
set to "X'. Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1
12) LEVEL_COFFSET - If a child node is to be displayed nore than
one level to the right of its parent, specify the nunber of
additional levels. Default value: 0
*/
&REC. CGet Fi el d( Fi el d. LEAF_FLAG) . Val ue "y
&REC. Cet Fi el d( Fi el d. TREE_NODE) . Val ue s
&REC. CGet Fi el d( Fi el d. DESCR) . Val ue = "";
&REC. Get Fi el d( Fi el d. RANGE_FROM) . Val ue = &RANGE FROM
&REC. Get Fi el d(Fi el d. RANGE_TO) . Val ue = &RANGE_TQO
&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue =
&DYNAM C_RANGE
&REC. Cet Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y";
&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Val ue = "B";
&REC. Get Fi el d( Fi el d. STYLECLASSNAME) . Val ue =
" PSHYPERLI NK";
/* Leaves never have children. */
&REC. CGet Fi el d(Fi el d. PARENT_FLAG) . Val ue = "N
&REC. CGet Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue =
&PARENT_LEVEL + 1;
&REC. Get Fi el d(Fi el d. LEVEL_OFFSET) . Val ue = 0;

&ROW = &ROW + 1;
End- Wi | e;
End- I f;

| f &PARENT_NODE. HasChi | dNodes Then
/* Load the child nodes into the &TREECTL Rowset. */
&FI RST = True;
&CHI LD _NODE = &PARENT_NOCDE. Fi r st Chi | dNode;
Whi |l e &I RST Or
&CHI LD _NODE. HasNext Si b
I f &FI RST Then
&Fl RST = Fal se;
El se
&CHI LD_NODE = &CHI LD _NODE. Next Si b
End- I f;
| f &CHI LD_NODE. HasChi | dren Then
&PARENT FLAG = "X";
El se
&PARENT FLAG = "N';
End- I f;

/* If the tree uses strict levels, set the
&LEVEL_OFFSET to the nunmber of levels that the child node is to
the right of its parent minus 1. */

| f &SRC TREE. Level Use = "S" Then

&LEVEL_OFFSET = &CHI LD_NODE. Level Nunber -
&PARENT _NODE. Level Nunber - 1
El se
&LEVEL_OFFSET = 0;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 197



Using HTML Trees and the GenerateTree Function

End- I f;

&NODE_ROWBET. | nsert Row( &ROW - 1) ;
&REC = &NCDE_ROWSET. Get Row( &ROW . Get Recor d( 1) ;
&REC. Get Fi el d(Fi el d. LEAF_FLAG) . Val ue = "N'

&REC. Cet Fi el d(Fi el d. TREE_NODE) . Val ue = &CHI LD_NCDE. Nane;

&REC. Get Fi el d( Fi el d. DESCR) . Val ue =
&CHI LD_NODE. Descri pti on

&REC. CGet Fi el d( Fi el d. RANGE_FROM) . Val ue = "";
&REC. Get Fi el d(Fi el d. RANGE_TO) . Val ue —'”H
&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N';
&REC. Get Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y‘
&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Value = "
&REC. CGet Fi el d( Fi el d. STYLECLASSNAME) . Val ue =
" PSHYPERLI NK" ;
&REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = &PARENT_ FLAG
&REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue =
&PARENT _LEVEL + 1;
&REC. GEtFieId(FieId.LEVEL_CFFSET).VaIue = &LEVEL_OFFSET

&ROW = &ROW + 1;
End- Wi | e;
End- | f;

/* change the parent's PARENT _FLAG from'X to 'Y */
&PARENT_REC. Get Fi el d( Fi el d. PARENT_FLAG) . Val ue = "Y"

HTMLAREA = Gener at eTr ee( &TREECTL, TREECTLEVENT);
End- I f;

&SRC TREE. d ose();
El se

/* Process select event. */

/* As an exanple, just display the selected node nanme or
| eaf range as a MessageBox. */

I f Left(TREECTLEVENT, 1) = "S" Then
&ROW = Val ue( Ri ght ( TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
&NCDE_ROWBET = &TREECTL. Get Row( 2) . Get Rowset (1) ;
&REC = &NCDE_ROWSET. Get Row &ROW . GEtRecord(l)
| f &REC. Get Fi el d(Fi el d. LEAF_FLAG) . Value = "N' Then
MessageBox(0, "", 0, 0, "The selected node is %A.
&REC. Get Fi el d( Fi el d. TREE_NCDE) . Val ue) ;
El se
| f &REC. Cet Fi el d(Fi el d. DYNAM C_FLAG . Val ue = "N' Then
I f &REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue =
&REC. CGet Fi el d( Fi el d. RANGE_TO) . Val ue Then
&TEMP = "[" | &REC. CGet Fi el d(Fi el d. RANGE_FRQOM) .

Value | "1";
El se
&TEMP = "[" | &REC. GetFi el d(Fi el d. RANGE_FROW)
Value | " - " | &REC GetField(Field. RANGE TO.Value | "1";
End- | f;
El se
&TEMP = "[ 1";
End- | f;
MessageBox(0, "", 0, 0, "The selected leaf is %d.", &TEMP);
End- I f;
El se

/* process all other events */
HTMLAREA = Gener at eTr ee( &TREECTL, TREECTLEVENT);
End- | f;

Chapter 9

198 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 9 Using HTML Trees and the GenerateTree Function

End- I f;

/* done processing the event, so clear it */
TREECTLEVENT = "";

See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function," Using HTML Tree Actions (Events), page
190

Adding Mouse-Over Ability to HTML Trees

To add mouse-over ability to HTML tree elements, you must add fields to the TREECTL HDR SBR record
and PeopleCode to the program to set the values and the images.

1. Add the following fields to thr TREECTL HDR SBR (tree control header subrecord) record.

« COLLAPSED MSGNUM

« COLLAPSED MSGSET

« END NODE MSGNUM

« END NODE MSGSET

« EXPANDED MSGNUM

« EXPANDED MSGSET

« LEAF NODE MSGNUM

« LEAF NODE MSGSET

2. Add the following PeopleCode to set the message set and number for the mouse-over text:

&REC. Get Fi el d( Fi el d. EXPANDED MSGSET) . Val ue = 2;
&REC. CGet Fi el d( Fi el d. EXPANDED_MSGNUM) . Val ue = 903;
&REC. CGet Fi el d(Fi el d. COLLAPSED_MSGSET) . Val ue = 2;
&REC. Cet Fi el d( Fi el d. COLLAPSED_NMSGNUM . Val ue = 904;
&REC. Cet Fi el d( Fi el d. END_NODE_MSGSET) . Val ue = 2;
&REC. Cet Fi el d(Fi el d. END_NODE_MSGNUM) . Val ue = 905;

2.

&REC. Cet Fi el d( Fi el d. LEAF_MSGSET) . Val ue ;
906,

&REC. Get Fi el d( Fi el d. LEAF_MBGNUM) . Val ue

3. Add the following fields fields to the TREECTL NDE SBR record:
+ DESCR _MSGNUM
 DESCR MSGSET
4. Add PeopleCode to set the DESCR_ MSGNUM and DESCR_MSGSET fields.

These two fields should be set to the correct message number and message set values that contain the text
to be used as the mouse-over text.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 199



Using HTML Trees and the GenerateTree Function Chapter 9

Adding Visual Selection Node Indicators

Sometimes, users need a visual indicator, such as a different color or style, to indicate which node is selected.
This example shows a selected node style:

[= 00001 - Corporate Headguarters
FIM - Financial Services
HLC - Health Care Services
MFG - Manpiacturing
LOC - Lo& JCounties
UMY - Higher Education
B UTIL - Utilities
(1000

Example of selected node style

To add selected node highlighting:

1. Add the field NODESELECTEDSTYLE to the TREECTL HDR _SBR record.

2. Add PeopleCode to set the NODESELECTEDSTYLE field to provide the highlighting effect.
The NODESELECTEDSTYLE field takes the name of a style class.

The following example uses the PSTREENODESELECTED style:
&REC. Cet Fi el d( Fi el d. NODESELECTEDSTYLE) . Val ue = " PSTREENODESELECTED";

You can set the style of the selected node when processing the select event.

Note. You also must reset the style of the previous selected node when processing the select event. To
find the previous selected node, you can search the node rowset looking for a node with a
STYLECLASSNAME equal to the style you set for selected nodes. Alternatively, you can keep a global
variable with the index of the node in the rowset. If you keep an index variable, however, you may have
to update the index when processing the load children event.

Specifying Override Images
You specify different images to represent the nodes in a tree by using the TREECTL_NODE record.
To specify override images:
1. Add the following fields to the tree control node record:
 OVERRIDE IMAGE
« OVERRIDE_MSGSET
¢  OVERRIDE MSGNUM

2. Add PeopleCode to use the override values when writing tree control node records.

200 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10

Working With File Attachments

This chapter provides an overview of the file attachment functions and discusses:

» Developing applications that use file attachment functions.
« Application development considerations.
» Application deployment and system configuration considerations.

» Debugging file attachment problems.

Understanding the File Attachment Functions

This section provides an overview of:

» PeopleCode built-in file attachment functions.
+ File attachment architecture.
 File attachment storage locations.

» Storage location URLs.

PeopleCode Built-in File Attachment Functions

All file attachments are performed using PeopleCode built-in functions, such as AddAttachment,
ViewAttachment, GetAttachment, and so on. These functions operate on and transfer files to and from
supported storage locations: database tables, FTP sites, and HTTP repositories.

PeopleCode provides eight built-in file attachment functions that are organized into three categories:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 201



Working With File Attachments Chapter 10

* End user upload/download:

* AddAttachment

Use the AddAttachment function to upload one file from an end user machine to a specified storage
location.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
AddAttachment.

 AddAttachment

Use the MAddAttachment function to upload one or more files from an end-user machine to a
specified storage location.

See PeopleTools 8.52; PeopleCode Language Reference, "PeopleCode Built-in Functions,"
MAddAttachment.

e DetachAttachment

Use the DetachAttachment function to download a file from its source storage location and save it
locally on the end user machine. The file is sent to the browser with appropriate HTTP headers to
cause the browser to display a save as dialog box to the user.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
DetachAttachment.

e ViewAttachment

Use the ViewAttachment function to download a file from its source storage location and open it
locally on the end user machine.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
ViewAttachment.

e Application server upload/download:
» PutAttachment

Use the PutAttachment function to upload a file from the file system of the application server to the
specified storage location.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
PutAttachment.

* GetAttachment

Use the GetAttachment function to download a file from its source storage location to the file system
of the application server.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
GetAttachment.

202 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10

Working With File Attachments

« Storage location maintenance:

CleanAttachments

Use the CleanAttachments function to remove orphan files (files with no corresponding file reference)
from specified tables used as storage locations in the current database.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CleanAttachments.

CopyAttachments

Use the CopyAttachments function to copy all files with file references from one storage location to
another. The files to be copied can be limited to those referenced in specific file reference tables.

See PeopleTools 8.52; PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CopyAttachments.

DeleteAttachment
Use the DeleteAttachment function to delete a file from the specified storage location.

See PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
DeleteAttachment.

The following diagram illustrates the operation of these PeopleCode file attachment functions:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 203



Working With File Attachments Chapter 10

204

End User
e s
1 @ Z
L ﬁ
F o
=
A A
AddAttachment/ .
MAddAttachment ViewAttachment
l DetachAttachment
|
. CleanAttachfnents
-« GetAttachmeant
8 PeopleSoft database
PutAttachment >

Application - -
server _|r"' 'II

FTF site HTTF repository

/- Storage Locations
Co wﬂﬂachr@ |
DeleteAttachment

o

PeopleCode file attachment functions

Because these functions abstract the storage of the attachments, you can use any defined storage location. The
location to be used is determined by the URL passed as the first parameter to the invoked attachment
function.

See Also

Chapter 10, "Working With File Attachments." Understanding File Attachment Storage Locations, page 208

Chapter 10, "Working With File Attachments," Understanding URL Strings Versus URL Objects, page 210

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

Understanding the File Attachment Architecture

File attachments are supported by using PeopleCode built-in functions that implement the transfer of a file to
or from a storage location. Using the PeopleCode functions, files can be transferred back and forth from the
end user machine to the storage location (by way of the web server and application server) or transferred back
and forth from the application server file system to the storage location.

The following steps depict the process of transferring a file with the AddAttachment function:

1. The file is streamed from the browser to the servlet on the web server using a standard HTML form
construct.

Optionally, if virus scan is enabled, the stream in the HTTP servlet request is scanned by the virus scan
engine.

See Chapter 10, "Working With File Attachments," Setting Up Virus Scanning, page 220.

Note. This transfer can be performed securely in an encrypted fashion if the web server uses Secure
Sockets Layer (SSL) to communicate to the browser.

Note. When the user selects a file for uploading, file size is not checked until after the file is transferred to
the web server. Once the file gets to the web server the file size is compared to the value of the
AddAttachment function's MaxSize parameter. The transfer is terminated if the file size exceeds this
parameter.

2. After the file is received at the web server, the file is streamed from the web server to the application
server in one-megabyte chunks.

Note. The one-megabyte transfer chunk size between web server and application server cannot be
customized.

Note. The web server-to-application server transfer is performed by using Oracle Jolt, which is securely
encrypted. Because this transfer is done using the standard Oracle Jolt mechanism, no additional settings
to the firewall are required (you do not need to open additional ports).

3. The file chunks from the web server are transferred by the application server to a temporary table in the
database. The chunk size for this temporary storage depends on the ultimate storage location.

For database tables, the chunk size is governed by the value of the Maximum Attachment Chunk Size
field on the PeopleTools Options page. The chunk size in temporary storage can vary, but it never exceeds
this maximum attachment chunk size limit. For all other storage locations, the chunk size in the temporary
storage table is 16 KB.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 205



Working With File Attachments Chapter 10

206

4. Then, the application server transfers the file in chunks from the temporary database table to its ultimate
storage location.

Once the entire file is transferred, the application server deletes the temporary copy from the PeopleTools
table in the database.

Note. If the storage location is a database table, then the chunk size is exactly as specified by the value of
the Maximum Attachment Chunk Size field (except for the last chunk written, which can be smaller than
the maximum).

See Chapter 10, "Working With File Attachments." File Attachment Chunk Size, page 223.

Note. If the storage location is an FTP site or an HTTP repository, the file is reassembled into a whole file
at the destination.

Note. The file transfer process for MAddAttachment is, in general, similar to the process for AddAttachment.
With a call to MAddAttachment, the files are streamed from the browser to the web server in bulk but from
the web server through to the storage location one file at a time. Moreover, virus scanning cannot currently be
performed on files uploaded with MAddAttachment.

The following diagram depicts this process of transferring a file with the AddAttachment function:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

(ﬁ" (.4 End-user system

1. Stream from browser to web server.

HTML form
HTTP/HTTFPS

__________ Wirus
Web server = >

2. Stream from web server to
application server in 1-MB chunks.

Dracle Jolt

3. Transfer chunked file to database for
temporary storage.

'{ Database (temp storage
l in chunks)

4, Transfer the file to the storage location.

Application
server

<
- € HTTPF/ > "‘E PeopleSoft database (storage
1 HTTPS ; as Maximum Attachment
ETRIFTPS/ . Chunk Size chunks)
HTTP repository SFTP

:l" FTP site

AddAttachment file transfer process

The file attachment architecture is designed for use in the frame template or the iframe template only. It is not
supported in a pagelet or an HTML template. When content is rendered in a pagelet or HTML template, the
user interaction is managed through the PeopleSoft portal servlet. For the file attachment architecture to work,
the browser must communicate directly with the PeopleSoft content servlet, which requires the use of the
frame or iframe template.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 207



Working With File Attachments Chapter 10

See Also

PeopleTools 8.52: PeopleTools Portal Technologies, "Working with Portal Templates," Understanding Portal
Templates

PeopleTools 8.52: PeopleTools Portal Technologies, "Working with Portal Templates," Understanding
Template Types

Understanding File Attachment Storage Locations

208

PeopleTools supports three types of storage locations: database tables, FTP sites, and HTTP repositories.
Except for the CleanAttachments function, all PeopleCode file attachment functions support all three storage
locations. The CleanAttachments function operates only on database tables as storage locations.

This section provides an overview of the following:
» Database storage considerations
» FTP site considerations

e HTTP repository considerations

Database Storage Considerations

To store file attachments in the database, you must create a target table to store the attachments themselves.
The record definition associated with this target table must include the FILE ATTDET SBR subrecord and
no other fields.

This chapter contains additional information on how to create the target table.

See Chapter 10, "Working With File Attachments," Application Development Process Overview, page 211.

When the storage location is a database table, the URL parameter of the invoked file attachment function can
be specified in one of two ways:

e A URL string in the form of:
record: // MYRECORD
In this case, MYRECORD is the record definition associated with the target table.

e A URL identifier in the form of:
URL. URL_ID

In this case, the URL identifier refers to the URL object named URL_ID.

FTP Site Considerations

When the storage location is an FTP site, the URL can be defined in one of two ways:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

e A URL string in the form of:

ftp://FTP_user: FTP_pwd@TP_site/ path

Important! FTPS and SFTP require that a URL object be used and do not support URL strings. This
form of URL string is for use with the FTP protocol only.

e A URL identifier in the form of:
URL. URL_ID

In this case, the URL identifier refers to the URL object named URL_ID.

When specifying a URL for an FTP site, specify the FTP server's name or its [P address. Specify a path on the
FTP server relative to the directory specified as the FTP server's home directory. The default FTP port is 21.
If you want to use a different port, you must specify it in the URL, as part of the FTP server address. For
example:

ftp://ftpserver. peopl esoft.com 6000/

Note. If the specified subdirectories do not exist the PeopleCode function tries to create them.

The following limitations apply to FTP URLs:

e The FTP user name to is limited to 30 characters.

» The FTP password to is limited to 16 characters.

HTTP Repository Considerations

When the storage location is an HTTP repository, the URL parameter of the invoked file attachment function
must be specified as a URL identifier in the form of:

URL. URL_ID

In this case, the URL identifier refers to the URL object named URL_ID.

An HTTP repository can reside on a PeopleSoft web server, or on a different web server environment. If the
HTTP repository resides on a PeopleSoft web server, then the psfiletransfer servlet has been provided to
manage the file transfers to and from the storage location. If the HTTP repository resides on a non-PeopleSoft
web server, then you need to ensure that the web server can handle file transfer security and requests.

Additional configuration is required to set up a PeopleSoft web server as an HTTP repository. See the
"Working with HTTP/HTTPS" section in the PeopleTools 8.52: System and Server Administration
PeopleBook.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 209



Working With File Attachments Chapter 10

Understanding URL Strings Versus URL Objects

The URL parameter of the invoked file attachment function includes both the protocol to be used and the
address for a storage location. These URLs can be specified as ad hoc strings at run time in certain limited
cases. Alternatively, they can be defined and maintained as URL objects, which include an identifier, the URL
itself, and additional URL properties. Oracle recommends that you always use URL objects since that
approach gives you the flexibility of later changing the storage location of your files without having to
modify your PeopleCode or the contents of any file reference tables used. Moreover, the FILE EXT LIST
property of a URL object allows you to specify a file extension list, which is the most straightforward way to
restrict the file types that can be uploaded to or downloaded from your PeopleSoft system. File extension lists
cannot be applied to ad hoc URL strings.

See Chapter 10, "Working With File Attachments," Restricting the File Types That Can Be Uploaded or
Downloaded, page 220.

URL objects are created and maintained using the URL Maintenance page (PeopleTools, Administration,
Utilities, URLs). The length of the full URL is limited to 254 characters. Certain protocols—specifically,
FTPS, SFTP, HTTP, and HTTPS—require the use of URL objects because other information in addition to

the URL itself are required. This additional information is defined as URL properties on the associated URL
Properties page.

Note. For database tables and the FTP protocol only, the storage location can be specified as an ad hoc string
at run time because these file transfer methods do not require additional URL properties.

The PeopleTools 8.52: System and Server Administration PeopleBook contains detailed information on
creating and maintaining URL objects.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance.

The following are examples of some valid storage location URLs:

record:// MYAPP_ATT_CNTNT

ftp://user0l: password@t pserver. peopl esoft. conl nyfil es
ftps://ftp_user:usr_pwd@t ps. oracl e.com 6000/ i nages
sftp://usrl0: pwd@t p. myconmpany. conf attachment s

htt p: / / ww. peopl esoft. com 8080/ psfil etransfer/ps/docs
htt ps://ww. peopl esoft. com 8090/ psfil etransfer/enpl/docs

Developing Applications that Use File Attachment Functions

This section provides an overview of the application development process and discusses:

* Delivered record definitions.
» Managing entries in file reference tables.

» Using the PeopleTools Test Utilities page.

210 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10

Working With File Attachments

Application Development Process Overview

Follow these steps to develop an application that uses file attachments:

1.

Create an application-specific, default storage location.

Oracle recommends that you use a database table as the default storage location so that it is available to
you during application development, and to customers as a default when the application is installed. You
must include the FILE ATTDET SBR subrecord in the record definition associated with this target table;
the record definition must have no other fields.

Create a storage location that is unique to your application. (Specifically, to avoid potential file name
conflicts and unintended file overwrites, do not share storage locations among applications.) For example,
create a record definition named MYAPP_ATT CNTNT and build the associated database table. If you
need to store other information, store it as part of the file reference, as described in the step 3, or create
another record and use it in the component.

Create a URL object that corresponds to your default storage location.

See Chapter 10, "Working With File Attachments." Understanding URL Strings Versus URL Objects
page 210.

Create an application-specific record definition to define the table that will store file reference information
and any additional information about the file attachments. You must include the FILE ATTACH_SBR
subrecord in this new record definition.

For example, create a new record called MYAPP_ATT REF. Add fields for any other information related
to the transaction you want to store. Your application must populate the fields in this file reference table
with the system file name, user file name, and any information about the file that will be needed for later
use.

Note. Create a file reference record that is specific to your application. In addition, you should consider
whether to create a separate file reference record for each storage location. Doing so can prevent file name
conflicts, eliminates the need to store the URL string or URL identifier with each file reference, and can
case the use of the CopyAttachments function.

See Chapter 10, "Working With File Attachments." Considerations When Using CopyAttachments, page
218.

Clone the FILE_ ATTACH_WRK record to create an application-specific derived/work record with a
unique name. Save the PeopleCode with the new record.

For example, create a record named MYAPP_ATT WRK by cloning FILE ATTACH_WRK. You can
use this copy of the sample PeopleCode as the basis for your own application.

Important! The FILE ATTACH_WRK record is delivered as a sample only. It is not intended for direct
use as part of an application running in production. Instead an application-specific clone of it must be
used. Oracle can change the delivered sample PeopleCode in future releases. Any application that directly
uses the FILE_ ATTACH_WRK record might fail. Using application-specific PeopleCode makes it easier
to manage during upgrades and your PeopleCode can be reused in other components that use file
attachment functionality.

You must also implement the PeopleCode to manage the data in your file reference table (or tables).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 211



Working With File Attachments

Delivered Record Definitions

212

Chapter 10

5. Use the records you created in the previous steps to create the file attachment component and page.

The derived/work record has fields with FieldChange PeopleCode that you can use for Add, Delete,
Detach, and View buttons.

Add PeopleCode—probably at the component record field level—to invoke the underlying functions in
the application-specific derived/work record when the user clicks on one of the buttons.

The following table summarizes the delivered record definitions for use in a file attachment application:

Record

Example

Description

FILE ATTDET SBR

MYAPP_ATT CNTNT | Insert this subrecord in any record definition for target tables

that will store attached files. Do not add other fields to this
record.

FILE_ATTACH_SBR

MYAPP_ATT REF Insert this subrecord in any application-specific record for

tables that will store references to attached files. The fields in
this subrecord store the system file name and the user file
name.

FILE ATTACH WRK

MYAPP ATT WRK Clone this derived/work record to create your own

application-specific derived/work record. In your application-
specific derived/work record, you can modify your copy of the
delivered sample code to meet your file attachment
requirements and manage your file reference table (or tables).

FILE_ATTDET_SBR Subrecord

To use a database table as a storage location, you must create an application-specific record definition
associated with the target table that will receive the attachments. You must include the FILE ATTDET SBR
subrecord in your application-specific record, and it can contain no additional fields.

The FILE_ATTDET_ SBR subrecord has the following fields:

Field Description

ATTACHSYSFILENAME The system file name, which must be unique to the storage location in
order to avoid unintended file overwrites. Furthermore, if the file reference
table to be used will contain references to file stored at more than one
storage location, then the system file name must also be unique to that
table.
The value of the ATTACHSYSFILENAME field in the corresponding row
of the file reference table must be identical to this value.

FILE SEQ The file sequence number (to support file chunking).

VERSION Version number.

FILE SIZE The physical size of the file chunk.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

Field Description

LASTUPDDTTM Last update date and time.

LASTUPDOPRID The user ID of the last user to update the attachment.
FILE DATA The data of the file chunk.

PeopleTools maintains the values in this table. Therefore, do not reuse the fields in this table to store
incomplete or nonstandard versions of the file name or other data.

FILE_ATTACH_SBR Subrecord

You must insert the FILE_ ATTACH_SBR subrecord in the application-specific record definition to be
associated with the table that will store references to the attached files. The fields in this subrecord store the
system file name and the user file name.

The FILE_ ATTACH_SBR subrecord contains the following fields:

Field Description
ATTACHSYSFILENAME The system file name (the name of the file as it exists at the storage
location).

Among other things, this means that if the file is stored in a database table,
then the value in this field must be identical to the value of the
ATTACHSYSFILENAME field in the rows that correspond to the file
chunks in the database table.

ATTACHUSERFILE The user file name (the name that the end user associates with the file).

Your application must populate these fields with the system file name, user file name, and any information
about the file that will be needed for later use.

See Chapter 10, "Working With File Attachments," Managing Entries in File Reference Tables, page 214.

FILE_ATTACH_WRK Derived/Work Record

The FILE ATTACH_WRK derived/work record provides sample PeopleCode programs that demonstrate
how to use the file attachment PeopleCode built-in functions. Clone this derived/work record so that you can
customize the programs to suit your application's needs.

The FILE_ ATTACH_WRK derived/work record contains the following fields:

Field Description

ATTACHADD Contains a PeopleCode program used for uploading an attachment from an
end-user machine to the specified storage location (via the AddAttachment
built-in function).

ATTACHDET Contains a PeopleCode program used for downloading an attachment from
the specified storage location to be saved on the end-user machine (via the
DetachAttachment built-in function).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 213



Working With File Attachments Chapter 10

Field Description

ATTACHDELETE Contains a PeopleCode program used for deleting an attachment from the
specified storage location (via the DeleteAttachment built-in function).

ATTACHUTIL Contains a user-defined PeopleCode function that can be called to
determine (by file name extension) whether the attachment operation will
be permitted on a file. In this function, an array of file name extensions
identifies which types of files will be regarded as impermissible.

Note. The sample PeopleCode programs included in the
FILE ATTACH_WRK derived/work record invoke this user-defined
PeopleCode function.

ATTACHVIEW Contains a PeopleCode program used for downloading an attachment from
the specified storage location to be viewed on the end-user machine (via
the ViewAttachment built-in function).

The PeopleTools Test Utilities page demonstrates a sample application that makes use of the PeopleCode
programs in the FILE ATTACH_WRK derived/work record.

See Chapter 10, "Working With File Attachments," Using the PeopleTools Test Utilities Page, page 215.

Managing Entries in File Reference Tables

When you create a file attachment application, you create an application-specific record to be associated with
the table that will store file reference information and any additional information about the file attachments.
You must include the FILE ATTACH_SBR subrecord in this new record. For example, you might create a
new record called MYAPP_ATT_ REF. Then, you would add fields for any other information related to the
transaction you want to store.

Your application must populate these fields with the system file name, user file name, and any information
about the file that will be needed for later use. Your application should use the fields in file reference tables as
follows:

*  When your application is uploading files (for example, with AddAttachment):

« ATTACHSYSFILENAME — Save the system file name in the ATTACHSYSFILENAME field. This
is the name of the file as it exists at the storage location and is also a key field of your file reference
table.

» ATTACHUSERFILE — Save the user file name, which is the value returned by AddAttachment in its
UserFile parameter. This is essentially the base name of file selected by the end user for uploading and
would be used to allow end users to identify the file in other file attachment operations (such as
viewing, downloading, or deleting).

214 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

«  When your application is downloading or deleting files (for example, with ViewAttachment,
DetachAttachment, or DeleteAttachment):

« ATTACHUSERFILE — Use the ATTACHUSERFILE field to present a list of available files for end
user selection. This field is also passed as a parameter to some of the built-in PeopleCode functions.

e ATTACHSYSFILENAME — Use the ATTACHSYSFILENAME field (along with the
ATTACHUSEREFILE field, for some of the built-in PeopleCode functions) to construct the parameters
to be passed to the built-in PeopleCode functions.

See Also

Chapter 10, "Working With File Attachments," FILE ATTACH_SBR Subrecord, page 213

Using the PeopleTools Test Utilities Page
Access the PeopleTools Test Utilities page (PeopleTools, Utilities, Debug, PeopleTools Test Utilities).

The PeopleTools Test Utilities page contains a sample file attachment application that allows you to upload
(Attach button), save (Detach button), delete (Delete button), and open (View button) a file attachment. The
page allows you to specify a storage location as a URL identifier or as an ad hoc string. After clicking the
Attach button, you are prompted to select a file to upload to the storage location. Once the selected file has
been successfully uploaded, buttons appear that allow you to open, save, or delete that file from its storage
location.

Note. This demonstration application permits the user to enter a URL of up to 120 characters only.

The actual page definition involved, PSTESTUTIL, contains buttons that execute FieldChange PeopleCode
programs in the FILE _ ATTACH_WRK derived/work record definition. These programs are provided as
working examples of how to use the following file attachment functions: AddAttachment, Delete Attachment,
DetachAttachment, and ViewAttachment. If you are developing a file attachment application, you can clone
the FILE_ ATTACH_WRK derived/work record definition and modify the copied programs to fit your
application's file processing requirements.

Important! Do not modify the delivered FILE_ ATTACH_WRK record definition or the PeopleCode
programs it contains. In addition, do not directly call these PeopleCode programs from any PeopleCode
programs you implement. Oracle might modify these sample programs in a future release of PeopleTools.

See Chapter 10, "Working With File Attachments," FILE ATTACH WRK Derived/Work Record, page 213.

The FILE ATTACH_WRK derived/work record definition also demonstrates a programmatic methodology
for restricting file types. The IsLegal AttachmentType function compares a given file to an internally defined
array of illegal file extensions. This programmatic methodology can be contrasted with restricting file types
through the use of file extension lists. File extension lists can be provide an easier, more flexible, and more
manageable approach to restricting file types than a programmatic method.

Important! Do not combine these two methodologies in the same application.

See Chapter 10, "Working With File Attachments," Restricting the File Types That Can Be Uploaded or
Downloaded, page 220.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 215



Working With File Attachments

Chapter 10

Application Development Considerations

This section discusses:

File name considerations.

Restrictions on invoking functions in certain PeopleCode events.

Converting file names for files uploaded by PutAttachment.

Considerations when using CopyAttachments.

File Name Considerations

216

If the source file name specified using one of the file attachment. contains any of the following characters, the
invoking function will be stopped and an error (%oAttachment Failed) is returned. The actual error message
can be found in the logs.

* (asterisk)

: (colon)

" (quotation mark)

< (less than symbol)

> (greater than symbol)

? (question mark)

When the file is uploaded to or downloaded from a storage location, the following characters are replaced
with an underscore:

(space)

@ (at sign)

; (semicolon)

+ (plus sign)

% (percent sign)

& (ampersand)

' (apostrophe)

! (exclamation point)
# (pound sign)

$ (dollar sign)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

Note. In general, you should exercise caution when using an @or : character in the name of a file selected
for uploading. In FTP URLs, the : character must to be used as a delimiter between the FTP user ID and the
FTP password or just before the FTP port number (if one is specified). In addition, in FTP URLSs, the @
character must be used as a delimiter between the FTP password and the FTP server address.

Restrictions on Invoking Functions in Certain PeopleCode Events

Because AddAttachment, DetachAttachment, MAddAttachment, and ViewAttachment are interactive, they
are known as "think-time" functions. This means that these functions should not be used in any of the
following PeopleCode events:

» SavePreChange
» SavePostChange
*  Workflow

» RowSelect

* Any PeopleCode event that initiates as a result of a Select or SelectNew method, or any of the
ScrollSelect functions.

If you want to transfer files in a non-interactive mode with functions that aren't think-time functions, see
GetAttachment and PutAttachment.

See Also
PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Select

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," SelectNew

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 154

Converting File Names for Files Uploaded by PutAttachment

Generally, a PeopleCode program that calls PutAttachment will also need to save (for later use) the name of
each uploaded file as it ended up actually being named at the specified storage location. However, the
destination file name (which may have been converted as described in "File Name Considerations") is not
passed back to the PutAttachment function. So, the only way for your PeopleCode program to ensure that it is
saving the correct name is to either avoid using special characters in the destination file name or to simulate
the conversion process in something like the following example:

&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE

Subst i t ut e( &ATTACHUSERFI LE, ",
Subst i t ut e( &ATTACHUSERFI LE, ";",
Substi t ut e( SATTACHUSERFI LE, " +",
Substi t ut e( &ATTACHUSERFI LE, "%,
Substi t ut e( &ATTACHUSERFI LE, "&",
Subst it ut e( &ATTACHUSERFI LE, "' ",
Subst i t ut e( &ATTACHUSERFI LE, "!",
Subst i t ut e( &ATTACHUSERFI LE, " @,

e e e e e e e e e

Substit ut e( GATTACHUSERFI LE, "#
Subst it ut e( &QATTACHUSERFI LE, " $"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 217



Working With File Attachments Chapter 10

Note. Unlike the PutAttachment function, the AddAttachment function automatically returns the converted
file name for reference and later use. For example, the file name My Resume.doc is returned through the
AddAttachment function as My Resume.doc, with the space converted to an underscore.

See Also

Chapter 10, "Working With File Attachments," File Name Considerations, page 216

Considerations When Using CopyAttachments

CopyAttachments does not modify the contents of any of the associated file reference tables. You must
design your application in such a way that using CopyAttachments does not, by itself, require any subsequent
changes to the contents of any of the associated file reference tables.

Application Deployment and System Configuration Considerations

This section discusses:

« File attachment functions in an environment with multiple application server domains.
» Configuring the web server to support additional MIME types.

» Restricting the file types that can be uploaded or downloaded.

» Setting up virus scanning.

» Considerations when attaching text files.

« File attachment chunk size.

« Using the Copy File Attachments page.

The topics in this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

File Attachment Functions in an Environment with Multiple Application Server
Domains

218

In an environment involving multiple application server domains, a call to one of the PeopleCode file
attachment functions must not be passed a parameter designating a file that is located on the file system of a
particular application server domain. The problem is that at the time of the call, the application server domain
currently in use (as a consequence of load-balancing) might not be the application server domain that has the
file in question. In this case, a file-not-found error would result. For example, this may be an issue for a call
to PutAttachment, or this might cause a call to GetAttachment to result in the file being downloaded to an
unexpected location (the file system of the wrong application server domain) or to fail entirely if the specified
destination directory does not exist on the application server domain currently in use. Therefore, the path to
the local file must be specified with this in mind by creating directories that can be comparably accessed
regardless of which application server domain actually services the request at runtime.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

Configuring the Web Server to Support Additional MIME Types

When a browser attempts to open a file attachment, the browser invokes a viewer based on the MIME
(Multipurpose Internet Mail Extensions) type sent in the response header from the web server. For example, if
the user tried to view an MP?3 file, the response header sent to the browser by the web server would indicate
the audio/MPEG content type:

HTTP/ 1.1 200 K

Server: Mcrosoft-11S/5.0

Date: Mn, 01 Cct 2001 21:25:51 GVIr
Cont ent - Type: audi o/ npeg

Accept - Ranges: bytes

Last-Modified: Mn, 01 Cct 2001 21:00:26 GV
ETag: "78e21918bc4acll: cc8"

Content-Lengt h: 60

Notice that the content-type is audio/mpeg. The browser uses this MIME type to determine that the viewer for
audio/MPEG is the appropriate application to open this attachment. If the web server did not send this
content-type header, the browser would not be able to determine the nature of the file being transmitted, and it
would be unable to invoke the correct viewer application. The browser would try to display the file as
text/plain, which is often the wrong behavior.

The web server maps file extensions to MIME types through entries in a web.xml configuration file. A copy
of web.xml is deployed to each web server instance when it is installed. After a web server instance is
created, edit its deployed copy to add any additional MIME types.

The location of the deployment copies varies depending on the web server:

Web Server Location of Deployment Copy

WebLogic PS HOME/webserv/web_server/applications/peoplesoft/PORTAL.war/WEB-INF/web.xml

WebSphere PS HOME/webserv/profile_name/installedApps/app_nameNodeCell/app_name
.ear/PORTAL.war/WEB-INF/web.xml

See your web server documentation for the name and location of the master copy of this configuration file.
This file contains definitions similar to the following:

<m ne- mappi ng>
<ext ensi on>
doc
</ ext ensi on>
<m nme-type>
appl i cati on/ nswor d
</ m ne-type>
</ m me- mappi ng>
<mi nme- mappi ng>
<ext ensi on>
xl's
</ ext ensi on>
<m me-type>
appl i cation/vnd. nms- excel
</ m ne-type>
</ m me- mappi ng>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 219



Working With File Attachments Chapter 10

Let's say you want to add a mapping that causes .log files to be interpreted as regular text files. To determine
the correct MIME type, check RFC (Request for Comments) documents 2045, 2046, 2047, 2048, and 2077,
which discuss internet media types and the internet media type registry.

After checking the RFCs, you determine that the correct MIME type is text/plain. The following is an
example of code you would add to the previous section of the configuration file:

<m me- mappi ng>
<ext ensi on>
| og
</ ext ensi on>
<m nme-type>
text/plain
</ m ne-type>
</ m me- mappi ng>

Once you save the file, the .log extension is associated with the content type of text/plain.

Note. You must restart your web server before these changes are recognized.

Note. When trying to view the objects, the extension must exactly match what is set up in the web.xml file.
This value is case-sensitive. Therefore, if the PreserveCase parameter has been used when uploading files, it
will be necessary to add a MIME type entry for each case-permutation of the file extension in question. If the
object view appears garbled, chances are that either the extension is not set up in the web.xml file or there is a
case mismatch.

See Also

Documentation for your web server

Restricting the File Types That Can Be Uploaded or Downloaded

You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system. The file
type restrictions apply to the AddAttachment, DetachAttachment, MAddAttachment, and ViewAttachment

functions. Allowable or disallowed file extensions are managed through a file extension list and through the
FILE _EXT _ LIST property of the URL object.

Note. File extension lists cannot be applied to ad hoc URL strings.

The PeopleTools 8.52: System and Server Administration PeopleBook contains detailed information on
creating and maintaining file extension lists.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," File Extension List.

Setting Up Virus Scanning
This section discusses:

« Enabling virus scanning.

» Configuring VirusScan.xml.

220 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10

« Logging virus scans.

e Virus scan errors and return codes.

Working With File Attachments

Virus scanning can be performed on all files uploaded with the AddAttachment function only.

Warning! Virus scanning cannot currently be performed on files uploaded with the MAddAttachment

function.

Enabling Virus Scanning

To enable virus scanning, open the file VirusScan.xml and set the value of disableAll to "False". By default,

disableAll is "True".

<Provi ders di sabl eAl | =" Fal se"

| ogFi | e="./servers/ Pl Al ogs/ Vi rusScan%. | og" >

The location of VirusScan.xml on your system depends on which web server you use.

Oracle WebLogic Server:

PS HOVE/ webser v/ web_server/ appl i cations/ peopl esof t / PORTAL. war / \EB- | NF/ cl asses/ =
psft/pt8/virusscan

IBM WebSphere:

PS_HOVE/ webser v/ profil e_nane/instal | edApps/ app_naneNodeCel | / >
app_nane. ear/ PORTAL. war / WEB- | NF/ cl asses/ psft/ pt8/virusscan

Configuring VirusScan.xml

These tags are mandatory in VirusScan.xml:

Tag Description Example Value for Scan Engine
<class> Provider class of the scan engine psft. pt8.virusscan. provi der.
. . Generi cVi rusScanProvi der | npl
Default provider class is:
psft.pt8.virusscan. provi der.
CGeneri cVi rusScanProvi der | npl
<icapversion> ICAP version ICAP/1.0

<service-name>

Service name for the scan engine host.

/SYMCScanResp-AV

<policycommand> Policy command used by the Scan Engine. ?action=SCAN
Only SCAN is supported.
<address> IP address of Scan Engine host. IP address of the machine where the scan
engine is running
<port> IP port of Scan Engine host. Port where the scan engine is running

See PeopleTools 8.52: MultiChannel Framework PeopleBook for complete details on configuring

VirusScan.xml.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

221




Working With File Attachments Chapter 10

222

See PeopleTools 8.52 : MultiChannel Framework, "Configuring the Email Channel," Enabling Virus
Scanning.

Logging Virus Scans

Detailed logging is configured in the logging.properties file on the web server.

Oracle WebLogic:

PS HOVE/ webser v/ web_server/ applications/ peopl esoft/| oggi ng. properties

IBM WebSphere:

PS_HOVE/ webser v/ profil e_nane/instal | edApps/ app_naneNodeCel | / app_nane. ear/ >
| oggi ng. properties

Set the location of the log file in VirusScan.xml.
<Provi ders disabl eAl | ="Fal se" |ogFile="./servers/ Pl Al'l ogs/ VirusScan%. | og" >

The following results are logged with the date and the file name that was scanned:

« CLEAN, INFECTED, and SCANERROR
The results for these statuses is logged in this form:
filename = result
For example:
finance. xl s = | NFECTED

+  CONNECTERROR and CONFIGERROR

The results for these statuses is logged in this form:

Unabl e to connect to the Scan engi ne: REASON = result
For example:
Unabl e to connect to the Scan engi ne: REASON = CONFI GERROR

Virus Scan Errors and Return Codes

If the file is uploaded successfully and no problems are found in the virus scan, AddAttachment returns
%Attachment_Succeeded.

If a problem is found, AddAttachment returns one the following return codes:

Numeric Value Constant Value Description

13 %Attachment ViolationFound File violation detected by virus scan engine.
14 %Attachment VirusScanError Virus scan engine error.

15 %Attachment VirusConfigError Virus scan engine configuration error.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

Numeric Value Constant Value Description

16 %Attachment VirusConnectError | Virus scan engine connection error.

Considerations When Attaching Text Files

The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed. In fact, when any file is uploaded, it is always copied to the specified destination byte-for-byte.

Warning! You may encounter problems when a text file is uploaded from one operating system or
environment and then later viewed on another. For instance, suppose a text file on a DB2 system is encoded
in EBCDIC. A user viewing that file in a Windows environment might see garbled content because the text
file viewer is expecting ANSI encoding.

Similar issues can occur when two file systems have different character sets, such as Japanese JIS and
Unicode, or different line endings.

It is the developer's responsibility to manage this issue in their environments. A number of text file
conversion utilities are available for various platforms.

Some steps you can take to avoid conversion problems include:

« Educate your users.

« Standardize on file formats and encodings.

»  Make sure that the user's environment supports the files being transferred.

» Restrict attachments to file types that are known to be compatible across user platforms.

File Attachment Chunk Size

When using a database table as the storage location, the file is automatically "chunked," or stored, in multiple
rows of the database table. The size of each chunk is determined by the Maximum Attachment Chunk Size
field on the PeopleTools Options page.

Because each file is chunked, you cannot pull whole files directly from the database. You must use the
PeopleCode file attachment functions, which automatically put the data back together into one file for you.
Because the chunk size is stored with the file, if you change the system chunk size, you can still retrieve files
with different chunk sizes.

See Also

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," PeopleTools Options

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 223



Working With File Attachments Chapter 10

Using the Copy File Attachments Page

The Copy File Attachments page is provided as a way to launch a CopyAttachments operation (select
PeopleTools, Utilities, Administration, Copy File Attachments). The CleanAttachments function is also
available from this page.

Note. The copying functionality available on this page does not fully exploit the capabilities of the
CopyAttachments built-in PeopleCode function. In particular, the page does not permit the end user to specify
values for CopyAttachments' optional parameters. If you want to enable the use of these optional parameters,
you must clone and then modify the existing PeopleCode or implement your own PeopleCode to do this.

See Also
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CopyAttachments
PeopleTools 8.52: PeopleCode Language Reference, "PeopleCode Built-in Functions," CleanAttachments

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," Copy File Attachments

Debugging File Attachment Problems

This debugging section discusses the following:

» Enabling tracing on the web server or application server.
» Problems with transfers to and from FTP sites.

» Attachments with non-ASCII file names.

» Problems uploading files.

» Passing error messages to the end user.

The topics in this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

Enabling Tracing on the Web Server or Application Server

224

This section discusses how to:

» Enable tracing on the web server.

« Enable PeopleCode tracing on the application server.

Enabling Tracing on the Web Server

To enable web server tracing of file attachment processes:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

1. Select PeopleTools, Web Profile, Web Profile Configuration, and open the current web profile.
2. Select the Custom Properties page.

3. Add a new row, and enter these values:

Column Value

Property Name IDDA

Validation Type Number

Property Value 32 (File processing)

4. Set the .level property of the logging.properties file to ALL.

5. Restart the web server.

The log files are written to a directory that depends on the java.util.logging.FileHandler.pattern property of
the logging.properties file.

More information on IDDA logging is available in the PeopleTools PeopleBooks.

See PeopleTools 8.52: System and Server Administration, "Tracing, Logging, and Debugging," Enabling
IDDA Logging.

Enabling PeopleCode Tracing on the Application Server

For tracing file attachment issues, set the PeopleCode trace level to 2048 (Statement Tracing, which shows
each statement as it's executed). In addition, higher PeopleCode trace settings are recommended whenever
CopyAttachments is run. You can enable PeopleCode tracing on the application server in several ways:

» For all client sessions by setting TracePC in Configuration Manager.

» For a specific client session through the Trace PeopleCode page (select PeopleTools, Utilities, Debug,
Trace PeopleCode.

Because PeopleCode tracing can generate a lot of output, setting tracing for a specific client session only is
recommended.

Application server log files can be found in the PS CFG_HOME/appserv/domain/LOGS directory.

» The application server log files have names in the form APPSRV_MMDD.LOG (in which MMDD
represents the month and date).

» The file transfer log file has a name in the form of FILETRANSFERpid.LOG.
« The PeopleCode trace file has a name of the form, *.tracesq]l.

See PeopleTools 8.52: System and Server Administration, "Using PeopleSoft Configuration Manager,"
Specifying Trace Settings.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 225



Working With File Attachments Chapter 10

Problems with Transfers to and from FTP Sites

A common reason that a transfer fails is that the FTP server is not accessible from the application server. This
error could be due to:

e An incorrect password.

* An incorrect account name.

* An inability of the application server to resolve the FTP server's host name.
» The FTP server is down.

Try to ping the FTP server machine from the application server system, and then try to manually transfer a
file to the FTP server machine from the application server.

If the FTP site is on Microsoft Windows, the host name for the system might not be associated with a fixed IP
address and might not be resolvable using DNS (Domain Name System). If the application server is on a
UNIX machine, the application server can resolve the host name using DNS only—or perhaps using NIS
(Network Information System) or an /etc/hosts file. However, the application server will be unable to use
Windows mechanisms such as WinBeui or WINS. Therefore, the application server will not be able to
convert the host name indicated for the Microsoft Windows file server into an IP address and route to it.

If the file transfer fails, you must resolve the problem by either specifying the numeric IP address in the FTP
URL or by putting the host name for the FTP site into DNS, NIS, or the hosts file on your application server
so that the name can be resolved.

Typically, the URL used for file attachments has the following format:
ftp://user: pwd@yst em nane/ di r 1/ subdir

However, if the domain name cannot be resolved with DNS, then use the numeric IP address. The following
example assumes System_name has the IP address of 123.123.123.123:

ftp://user: pwd@23.123. 123. 123/ di r1/ subdir

Note. Use numeric IP addresses only when absolutely necessary.

Attachments with non-ASCII File Names

226

To successfully upload an attachment with a file name containing non-ASCII characters (such as Japanese),
Oracle recommends running the application server with the locale that supports those specific non-ASCII

characters—for example, ja_JP.utf-8.

If the storage location for the attachment is an FTP site or an HTTP repository, Oracle recommends that the
storage location also be running in an environment that supports the same language or locale as the file names
used. The web server (which serves as an intermediary in the transfer of the file from the browser to the
application server and then on to the storage location) can be running either an English environment or a non-
ASCII character language environment.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 10 Working With File Attachments

See Also

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance

Problems Uploading Files

You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If users
experiences problems in uploading files, ensure that they browse to the file they wish to upload rather than
attempting to manually enter the full path name of the file.

This problem can manifest itself differently depending on the browser used. For example, with some browser
versions, the PeopleSoft page appears to be in an infinite "Processing" state.

See Also

My Oracle Support, "Troubleshooting Browser Limitations"

Passing Error Messages to the End User

When working with the attachment functions, if you want the end user to be able to view error messages
(such as that the file is too large, that the file was not found, that there is no disk space at the storage location,
and so on), then you need to write or clone PeopleCode to interpret function return codes and pass error
messages back to the user.

As an example, each of the programs in the FILE_ ATTACH_WRK derived/work record includes a parameter
that sets the message level, but does not translate these into user terminology. The message levels that can be
set are:

* 0 — Suppress all messages including errors.

» 1 —Display all messages.

» 2 — Suppress success messages only, but display error messages.

By default, the message level is 0 for each of these programs. The programs are demonstrated on the
PeopleTools Test Utilities page.

See Also

Chapter 10, "Working With File Attachments." FILE ATTACH_WRK Derived/Work Record, page 213

Chapter 10, "Working With File Attachments," Using the PeopleTools Test Utilities Page, page 215

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 227






Chapter 11

Accessing PeopleCode and Events

This chapter provides overviews of PeopleCode programs and events and PeopleCode automatic backup, and
discusses how to:

* Access PeopleCode in Application Designer.
» Access record field PeopleCode.

* Access component record field PeopleCode.
» Access component record PeopleCode.

* Access component PeopleCode.

» Access page PeopleCode.

* Access menu item PeopleCode.

» Copy PeopleCode with a parent definition.

« Upgrade PeopleCode programs.

Understanding PeopleCode Programs and Events

Every PeopleCode program is associated with an aspect of a Application Designer definition and an event.
Events are predefined points either in the Component Processor flow or in the program flow. As each event is
encountered, it fires on each component, triggering any PeopleCode program associated with that component
and that event. Each definition in Application Designer can have an event set, that is, a group of events
appropriate to that definition. A definition can have zero or one PeopleCode programs for each event in its
event set.

Some definitions have events that fall outside the Component Processor flow. These definitions include
Application Engine programs, component interfaces, and application packages. In addition, security has a
signon event,. which is described in the documentation for the definition or topic.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 229



Accessing PeopleCode and Events Chapter 11

See Also

PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes"

PeopleTools 8.52: PeopleCode API Reference, "Application Classes"

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages," Adding Message Definitions

PeopleTools 8.52 : Application Engine, "Creating Application Engine Programs," Specifying PeopleCode
Actions

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

Understanding Automatic Backup of PeopleCode

A PeopleCode program is automatically saved to a file while you are working on it. This checkpoint occurs at
the following times:

* Every 10 keystrokes.

» On a save command, just before the save is executed (in case the save does not actually execute because
the code is invalid).

*  When another PeopleCode program is selected to be edited (if you have two PeopleCode editor windows
open at the same time and you move from one to the other).

The file is saved to your temp directory, as specified in your environment, in a file with the following name:
PPCMVDDYY_HHMVESS. t xt

, where MMDDY'Y represents the month, date, and year of the checkpoint, respectively, and HHMMSS
represents the hour, minute, and second of the checkpoint, respectively.

The top of the checkpoint file contains the following information:
[ Peopl eCode Checkpoint Fil e]
[ RECORD. r ecor dnaneFl ELD. fi el dnameMETHOD. event nane]

If your PeopleCode program saves successfully, checkpoint files associated with that program are
automatically deleted.

Accessing PeopleCode in Application Designer

230

You can access PeopleCode associated with Application Designer definitions in several ways.

For record fields and pop-up menu items, the Project view displays PeopleCode programs within the project
hierarchy using a lightning bolt icon. The programs are children of the fields and pop-up menu items with
which they are associated, and they are named according to their associated events, such as ItemSelected,
Rowlnit, or SaveEdit, as shown in the following example.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 11 Accessing PeopleCode and Events

[ oemo &

{:| Application Engine Programs
#-{_] Business Interlink
-] Component Interface
#-{_] Components
{27 Fields
[#-{_ File Layout Definitions
-2 HTML
-] Images
253 Menus
B CORE_PERS_DATA_POPUP
=B« JOBCODE_POPUP
- MEMUITEMI
=g ADD_J0E
. L4F ltemSelected
E JOECODE_TRAMSFER
F-{] Meszage Definitions
#-{Z7 Pages
=<3 Records
=624 DIMENSION

=l-4e DIMENSION_ID

H{;} DIMEMSION_TYFE
L £F SaveEdit

¢ DESCR
i 5% FieldDefaul

.. #% Fisld hanne d
1| | »
% Development |7 Uporade I

Example of PeopleCode programs in the Project view hierarchy

Double-click a record field or pop-up menu item program in the Project view to start the PeopleCode Editor
and load that program for editing. When you load a program in the PeopleCode Editor, the status bar at the
bottom of the Application Designer window displays the date, time, and the ID of the user who last updated
the program as shown in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 231



Accessing PeopleCode and Events Chapter 11

] Application Designer - PPLTOOLS - [PTFP_FPORT_WRK.PTFP_DTYPE_DELETE FieldFormula (Record PeopleCode)] 1ol =]
[1Fle Edt Wiew Insert Build Debug Tools Go ‘Window Help == x|
DislEe & sl=e 58IE | SN B Bl oo ol
T @ P ot e = | PTFP_DTYPE_DELETE (field) leleIanlmula -
G- ¢ PTFP_DTYPE_SEARCH Function Deletelatatype («dTypeld &s string) Returns boolean =]
- PTFP_CATEGORY_ID
- ¢ PTFP_FEED_ID A*Deletes entries from pre 8.52 datatype tables®/s
- ¢ SELECT_FLAG
- PTFP_CATG_DELETE Local Rowset &dTypeRsirc, sdTypelB30RsSrc, «dTypedttrRsfrc:
=~ ¢ PTFP_DTYPE_DELETE Local Rowset sdTypelangRsSre, sdTypedttrlangRsSre:
- £F [ Local mumber ci;
£ FieldChanigs Local hoolean shResult = True:

= FTFP_DEFM_DELETE
g g PTFP7CF\TG7FPORT &dTypeRsirc = CreateRowset (Record. PTFP_DATATYERE) ;
P - - &dTypelBS0Ra%rc = CreateRowset(Record. FTFP_DTYPE_IE30) ;
[#l- & PTFP_DEFN_FPORT sdTypeAttrRsdrc = CreateRowset(Record.PTFP DTTPE ATTR);
[#- 4 PTFP_DTYPE_FPORT sdTypelangRs3rc = CreateRowset (Record. PTFF_DTYPE_LANG) ;
-4 PTFP_CONY_RSLT sdTypedttrlangRsirc = CreateRowset(Record. PTFP_DATTR_LANG) ;
123 PTRR_FSRCH_L v
& @ PTFP_FSRCH_PYW = A*Fill the rowset®/
[#l-k=d PTFR_FTYPE_WRE sdTypeRsfre. Fill ("vhere PTFP_DATATYPE ID=:1", sdTypeld);
[#l-k=d PTFR_GFEED LW sdTypelES0RsSec. Fill ("where PTFP_DATATYPE ID=:17, sdTypeld):
[#]-k=d PTFR_GFEED_W sdTypesttrRasre. Fill ("where PTFE_DATATYFE TD=:17, sdTypeld):
[+ g PTFP_GFEED_WRE sdTypelangRsSrc. Fill ("where PTFP_DATATYPE_TD=:1", &dTypeld):
1 £73 nTEn TERURn UL LI sdTypedttrLangRsirc. Fill("where PTFP_DATATYPE_ID=:1", &dTypeld):
S Development |78 Upgrade . e el
1 i 3
14 RC Service Definition definitions] in project ;I
& Search Attibute definition(s] in project.
1 Search Definition definition(z) in project.
1 Search Category definition(s] in project.
B7165 total definition(s] in project. j
-
AT Buld }, Uparade }i Results § validate [
Ready [ Last updated by: PPLSOFT, 03/30/11 11:01:014M | i, colt v

Status bar displaying the last update information for a PeopleCode program

You can associate PeopleCode with other types of definitions, such as:

* Components
e Pages
« Component interfaces

Such PeopleCode programs do not appear in the Project view. Instead, you right-click the name of the
definition and select View PeopleCode. You can also access these programs from their associated definitions.

PeopleCode can also be associated with:

» Component records (specific records included in components).

» Component record fields (specific record fields included in components).
* Application packages.

Because component record fields and component records do not appear in the Project view, you must access
their associated programs through their parent definitions.

See Also

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 233

Chapter 11, "Accessing PeopleCode and Events," Accessing Component PeopleCode, page 238

232 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.



Chapter 11 Accessing PeopleCode and Events

Accessing Record Field PeopleCode

This section provides an overview of the record field event set and discusses how to:

* Access record field PeopleCode from a record definition.

» Access record field PeopleCode from a page definition.

Understanding Record Field PeopleCode

A record is a table-level definition. Record definitions are of different types, such as SQL table, dynamic
view, derived/work, and so on.

Record fields are child definitions of records. Record field PeopleCode programs are child definitions of
record fields. A record field can have zero or one PeopleCode programs for each event in the record field
event set.

The following events are associated with a record field:

» FieldChange Event

» FieldDefault Event

» FieldEdit Event

* FieldFormula Event

* Rowlnit Event

*  RowSelect Event

* RowDelete Event

*  PrePopup Event

» SaveEdit Event

e SavePreChange Event
*  Workflow Event

» SavePostChange Event
» Searchlnit Even