
Oracle's PeopleTools PeopleBook

PeopleTools 8.52: PeopleCode Language
Reference

October 2011

PeopleTools 8.52: PeopleCode Language Reference
SKU pt8.52tpcl-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

Preface

PeopleCode Language Reference Preface .. xxiii

PeopleCode Language Reference ... xxiii
PeopleCode Typographical Conventions ... xxiii
PeopleBooks and the PeopleSoft Online Library ... xxiv

Chapter 1

PeopleCode Built-in Functions ... 1

Functions by Category ... 1
Analytic Calculation Engine ... 1
APIs ... 1
Application Classes ... 1
Application Engine .. 1
Application Logging ... 2
Arrays .. 2
Attachment .. 2
Bulk ... 2
Business Interlink .. 3
Character Processing ... 3
Charting ... 3
ChartField .. 3
Component Buffer ... 4
Component Interface ... 5
Conversion .. 6
Currency and Financial ... 6
Current Date and Time .. 6
Custom Display Formats ... 7
Database and Platform .. 7
Data Buffer Access .. 7
Date and Time ... 7
Debugging ... 9
Defaults, Setting .. 10
Documents ... 10
Effective Date and Effective Sequence ... 10
Email ... 11

Contents

iv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Environment .. 11
Exceptions ... 11
Executable Files, Running ... 11
Files ... 11
Financial .. 12
Grids .. 12
Images ... 12
Integration Broker ... 13
Internet .. 13
Java .. 15
Language Constructs ... 15
Language Preference and Locale .. 16
Logical (Tests for Blank Values) .. 16
Mail ... 16
Math .. 16
Menu Appearance ... 18
Message Catalog and Message Display .. 18
Messages ... 18
Modal Transfers .. 19
MultiChannel Framework ... 19
Object .. 19
Object-Oriented ... 20
Page ... 21
Page Control Appearance .. 21
Personalizations ... 22
Process Scheduler .. 22
Remote Call ... 22
RowsetCache ... 22
Saving and Canceling .. 23
Scroll Select ... 23
Search Dialog .. 23
Secondary Pages .. 23
SmartNavigation Charts .. 24
SQL ... 24
SQL Date and Time ... 25
SQL Shortcuts ... 26
String ... 26
Subrecords ... 28
Time Zone ... 28
Trace Control ... 28
Transfers .. 28
Type Checking .. 29
User Information ... 29
User Security ... 29
Validation .. 30

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Workflow .. 31
XML .. 31

PeopleCode Built-in Functions and Language Constructs .. 32
Abs ... 32
AccruableDays ... 33
AccrualFactor ... 34
Acos .. 35
ActiveRowCount ... 36
AddAttachment ... 38
AddEmailAddress .. 45
AddKeyListItem ... 46
AddSystemPauseTimes .. 47
AddToDate ... 49
AddToDateTime ... 51
AddToTime .. 52
All ... 53
AllOrNone .. 54
AllowEmplIdChg ... 55
Amortize ... 56
Asin .. 57
Atan .. 58
BlackScholesCall ... 59
BlackScholesPut ... 60
BootstrapYTMs .. 61
Break .. 62
BulkDeleteField ... 63
BulkInsertField ... 65
BulkModifyPageFieldOrder ... 68
BulkUpdateIndexes .. 71
CallAppEngine ... 73
CancelPubHeaderXmlDoc ... 76
CancelPubXmlDoc ... 77
CancelSubXmlDoc ... 78
ChangeEmailAddress ... 80
Char ... 81
CharType .. 82
ChDir .. 85
ChDrive .. 86
CheckMenuItem .. 86
ChunkText ... 86
Clean .. 87
CleanAttachments ... 88
ClearKeyList .. 92
ClearSearchDefault .. 92
ClearSearchEdit .. 93

Contents

vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Code ... 94
Codeb .. 95
CollectGarbage ... 95
CommitWork .. 96
CompareLikeFields .. 99
CompareStrings .. 100
CompareTextDiff ... 104
Component ... 106
ComponentChanged ... 107
ConnectorRequest ... 108
ConnectorRequestURL ... 109
ContainsCharType .. 110
ContainsOnlyCharType .. 113
Continue ... 115
ConvertChar ... 117
ConvertCurrency .. 122
ConvertDatetimeToBase .. 123
ConvertRate .. 125
ConvertTimeToBase .. 126
CopyAttachments .. 127
CopyFields ... 133
CopyFromJavaArray .. 134
CopyRow .. 136
CopyToJavaArray .. 137
Cos .. 138
Cot .. 139
CreateAnalyticInstance .. 140
CreateArray .. 141
CreateArrayAny ... 143
CreateArrayRept ... 144
CreateDirectory .. 145
CreateDocument .. 147
CreateDocumentKey ... 148
CreateException ... 149
CreateJavaArray ... 150
CreateJavaObject .. 151
CreateMCFIMInfo ... 152
CreateMessage ... 153
CreateObject ... 155
CreateObjectArray ... 157
CreateProcessRequest .. 159
CreateRecord .. 160
CreateRowset ... 161
CreateRowsetCache ... 164
CreateSOAPDoc ... 165

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

CreateSQL .. 165
CreateWSDLMessage ... 168
CreateXmlDoc .. 168
CubicSpline .. 169
CurrEffDt ... 172
CurrEffRowNum .. 173
CurrEffSeq ... 173
CurrentLevelNumber ... 174
CurrentRowNumber ... 175
Date .. 176
Date3 .. 177
DatePart .. 178
DateTime6 .. 178
DateTimeToHTTP ... 179
DateTimeToISO .. 181
DateTimeToLocalizedString .. 182
DateTimeToTimeZone ... 185
DateTimeValue .. 186
DateValue ... 188
Day ... 189
Days .. 190
Days360 .. 190
Days365 .. 191
DBCSTrim ... 192
DBPatternMatch ... 192
DeChunkText .. 193
Declare Function ... 195
Decrypt ... 199
Degrees ... 200
DeleteAttachment .. 200
DeleteEmailAddress ... 204
DeleteImage ... 205
DeleteRecord .. 206
DeleteRow .. 207
DeleteSQL .. 209
DeleteSystemPauseTimes .. 211
DeQueue ... 213
DetachAttachment ... 215
DisableMenuItem ... 220
DiscardRow .. 221
DoCancel .. 223
DoModal .. 223
DoModalComponent ... 226
DoModalPanelGroup .. 230
DoModalX ... 231

Contents

viii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

DoModalXComponent .. 234
DoSave ... 238
DoSaveNow ... 239
EnableMenuItem .. 241
EncodeURL .. 242
EncodeURLForQueryString ... 244
Encrypt .. 245
EncryptNodePswd .. 246
EndMessage ... 247
EndModal ... 248
EndModalComponent .. 249
EnQueue ... 250
Error ... 253
EscapeHTML ... 256
EscapeJavascriptString ... 257
EscapeWML ... 258
Evaluate .. 259
Exact ... 260
Exec ... 261
ExecuteRolePeopleCode .. 265
ExecuteRoleQuery ... 266
ExecuteRoleWorkflowQuery ... 267
Exit ... 268
Exp ... 269
ExpandBindVar .. 270
ExpandEnvVar ... 271
ExpandSqlBinds ... 271
Fact ... 273
FetchSQL ... 273
FetchValue ... 275
FieldChanged ... 276
FileExists .. 278
Find ... 280
Findb ... 281
FindCodeSetValues .. 281
FindFiles ... 283
FlushBulkInserts ... 284
For .. 286
FormatDateTime .. 286
Forward .. 288
Function .. 290
GenABNNodeURL ... 292
GenDynABNElement .. 293
GenerateActGuideContentUrl ... 297
GenerateActGuidePortalUrl ... 298

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix

GenerateActGuideRelativeUrl ... 300
GenerateComponentContentRelURL ... 301
GenerateComponentContentURL .. 303
GenerateComponentPortalRelURL .. 306
GenerateComponentPortalURL ... 308
GenerateComponentRelativeURL ... 310
GenerateExternalPortalURL .. 313
GenerateExternalRelativeURL ... 314
GenerateHomepagePortalURL ... 315
GenerateHomepageRelativeURL ... 316
GenerateMobileTree ... 317
GenerateQueryContentURL ... 321
GenerateQueryPortalURL .. 322
GenerateQueryRelativeURL .. 324
GenerateScriptContentRelURL .. 326
GenerateScriptContentURL ... 328
GenerateScriptPortalRelURL ... 329
GenerateScriptPortalURL .. 331
GenerateScriptRelativeURL ... 333
GenerateTree .. 335
GenerateWorklistPortalURL .. 336
GenerateWorklistRelativeURL .. 337
GenHTMLMenu .. 339
GenToken ... 342
GetABNChartRowSet ... 342
GetABNInitialNode .. 343
GetABNNode .. 344
GetABNRelActnRowSet ... 345
GetABNReqParameters .. 345
GetABNTreeEffdt ... 347
GetABNTreeName .. 348
GetABNTreeSetid ... 349
GetABNTreeUserKey ... 350
GetAESection ... 351
GetAnalyticGrid ... 352
GetAnalyticInstance ... 353
GetArchPubHeaderXmlDoc ... 354
GetArchPubXmlDoc .. 354
GetArchSubXmlDoc .. 355
GetAttachment .. 355
GetBiDoc .. 362
GetCalendarDate .. 363
GetChart ... 365
GetChartURL ... 366
GetCwd ... 367

Contents

x Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetEnv ... 368
GetField .. 369
GetFile .. 370
GetGanttChart ... 374
GetGrid ... 375
GetHTMLText ... 377
GetImageExtents .. 378
GetInterlink .. 379
GetJavaClass .. 381
GetLevel0 ... 382
GetMethodNames ... 384
GetMessage .. 385
GetMessageInstance ... 386
GetMessageXmlDoc .. 386
GetNextNumber ... 388
GetNextNumberWithGaps ... 390
GetNextNumberWithGapsCommit .. 392
GetNextProcessInstance .. 394
GetNRXmlDoc ... 395
GetOrgChart .. 396
GetPage .. 397
GetPageField .. 398
GetProgramFunctionInfo ... 400
GetPubContractInstance ... 406
GetPubHeaderXmlDoc ... 406
GetPubXmlDoc .. 407
GetRatingBoxChart ... 409
GetRecord ... 409
GetRelField .. 411
GetRow ... 412
GetRowset .. 413
GetRowsetCache .. 414
GetSelectedTreeNode .. 416
GetSession .. 416
GetSetId .. 417
GetSQL ... 418
GetStoredFormat .. 421
GetSubContractInstance ... 422
GetSubXmlDoc .. 422
GetSyncLogData .. 424
GetTempFile ... 425
GetTreeNodeParent ... 428
GetTreeNodeRecordName .. 429
GetTreeNodeValue .. 429
GetURL .. 430

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xi

GetUserOption ... 431
GetWLFieldValue .. 432
Global ... 433
Gray .. 433
GrayMenuItem .. 435
Hash .. 435
HermiteCubic ... 436
Hide .. 437
HideMenuItem ... 439
HideRow ... 440
HideScroll ... 441
HistVolatility .. 443
Hour .. 444
IBPurgeDomainStatus .. 444
IBPurgeNodesDown ... 445
Idiv ... 445
If ... 446
InboundPublishXmlDoc ... 447
InitChat ... 448
InsertImage ... 451
InsertRow .. 454
Int ... 455
Integer ... 456
IsAlpha ... 457
IsAlphaNumeric ... 458
IsDate ... 459
IsDateTime ... 460
IsDaylightSavings .. 461
IsDigits ... 462
IsHidden ... 463
ISOToDate .. 464
ISOToDateTime .. 465
IsMenuItemAuthorized .. 467
IsMessageActive .. 468
IsModal ... 469
IsModalComponent .. 470
IsModalPanelGroup .. 471
IsNumber .. 471
IsOperatorInClass .. 472
IsSearchDialog ... 473
IsTime ... 473
IsUserInPermissionList .. 474
IsUserInRole ... 475
IsUserNumber .. 476
Left ... 477

Contents

xii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Len .. 478
Lenb ... 478
LinearInterp .. 479
Ln ... 479
LoadABN .. 480
Local ... 482
LogObjectUse .. 483
Log10 ... 484
Lower ... 485
LTrim ... 486
MAddAttachment .. 486
MarkPrimaryEmailAddress .. 495
MarkWLItemWorked ... 496
Max ... 497
MCFBroadcast ... 498
MessageBox ... 499
Min ... 505
Minute .. 506
Mod .. 507
Month ... 507
MsgGet ... 508
MsgGetExplainText ... 509
MsgGetText .. 511
NextEffDt ... 511
NextRelEffDt ... 512
NodeDelete ... 513
NodeRename .. 514
NodeSaveAs ... 515
NodeTranDelete ... 516
None ... 517
NotifyQ ... 518
NumberToDisplayString .. 519
NumberToString ... 523
ObjectDoMethod .. 526
ObjectDoMethodArray ... 527
ObjectGetProperty .. 528
ObjectSetProperty .. 530
OnlyOne ... 531
OnlyOneOrNone .. 532
PanelGroupChanged .. 533
PingNode .. 533
PriorEffDt ... 534
PriorRelEffDt ... 536
PriorValue .. 536
Product ... 537

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xiii

Prompt .. 538
Proper ... 540
PublishXmlDoc .. 540
PutAttachment ... 541
Quote .. 549
Radians ... 550
Rand ... 551
RecordChanged .. 551
RecordDeleted .. 553
RecordNew ... 555
RefreshTree ... 557
RelNodeTranDelete .. 558
RemoteCall ... 559
RemoveDirectory ... 562
RenameDBField ... 564
RenamePage ... 566
RenameRecord ... 567
Repeat ... 568
Replace ... 569
Rept .. 570
ReSubmitPubHeaderXmlDoc .. 571
ReSubmitPubXmlDoc .. 572
ReSubmitSubXmlDoc .. 573
Return ... 575
ReturnToServer .. 575
ReValidateNRXmlDoc ... 577
RevalidatePassword ... 578
Right ... 580
Round ... 581
RoundCurrency .. 582
RowFlush ... 582
RowScrollSelect ... 584
RowScrollSelectNew ... 586
RTrim ... 588
ScheduleProcess .. 589
ScrollFlush ... 589
ScrollSelect ... 591
ScrollSelectNew ... 593
Second .. 595
SendMail .. 596
SetAuthenticationResult ... 598
SetChannelStatus .. 601
SetComponentChanged ... 602
SetControlValue ... 603
SetCursorPos .. 605

Contents

xiv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SetDBFieldAuxFlag ... 607
SetDBFieldCharDefn ... 608
SetDBFieldFormat ... 611
SetDBFieldFormatLength .. 613
SetDBFieldLabel .. 614
SetDBFieldLength .. 616
SetDBFieldNotUsed ... 617
SetDefault ... 619
SetDefaultAll .. 620
SetDefaultNext ... 621
SetDefaultNextRel ... 621
SetDefaultPrior ... 622
SetDefaultPriorRel ... 623
SetDisplayFormat ... 623
SetLabel .. 624
SetLanguage ... 626
SetMessageStatus .. 627
SetNextPanel ... 628
SetNextPage ... 628
SetPageFieldPageFieldName ... 629
SetPasswordExpired ... 631
SetPostReport ... 632
SetRecFieldEditTable ... 632
SetRecFieldKey .. 634
SetReEdit .. 635
SetSearchDefault .. 636
SetSearchDialogBehavior .. 637
SetSearchEdit ... 638
SetTempTableInstance ... 640
SetTracePC ... 641
SetTraceSQL .. 645
SetupScheduleDefnItem ... 647
SetUserOption .. 648
Sign ... 649
Sin ... 650
SinglePaymentPV ... 650
SortScroll .. 651
Split .. 653
SQLExec .. 654
Sqrt ... 660
StartWork ... 660
StopFetching ... 662
StoreSQL .. 664
String .. 666
StripOffHTMLTags ... 667

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xv

Substitute .. 667
Substring ... 668
Substringb .. 669
SwitchUser ... 670
SyncRequestXmlDoc ... 672
Tan .. 673
throw ... 674
Time ... 675
Time3 ... 676
TimePart ... 677
TimeToTimeZone .. 678
TimeValue .. 679
TimeZoneOffset ... 680
TotalRowCount .. 681
Transfer ... 683
TransferExact ... 687
TransferMobilePage ... 691
TransferModeless .. 693
TransferNode .. 696
TransferPanel .. 699
TransferPage ... 699
TransferPortal ... 701
Transform ... 704
TransformEx ... 705
TransformExCache .. 707
TreeDetailInNode ... 708
TriggerBusinessEvent .. 709
Truncate .. 710
try ... 711
UnCheckMenuItem ... 712
Unencode .. 713
Ungray .. 714
Unhide .. 716
UnhideRow ... 717
UnhideScroll ... 718
UniformSeriesPV ... 720
UpdateSysVersion .. 721
UpdateValue ... 721
UpdateXmlDoc ... 723
Upper .. 724
Value .. 725
ValueUser ... 725
ViewAttachment .. 726
ViewContentURL ... 732
ViewURL ... 733

Contents

xvi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Warning .. 734
Weekday ... 736
While .. 737
WinEscape ... 738
WinExec .. 738
WinMessage ... 738
WriteToLog .. 744
Year .. 745

Chapter 2

Meta-SQL Elements ... 747

Understanding Meta-SQL .. 747
Meta-SQL Use ... 747
Meta-SQL Element Types ... 748

Parameter Markers ... 748
Date Considerations .. 748

Basic Date Meta-SQL Guidelines ... 749
Date, DateTime, and Time Wrappers with Application Engine Programs ... 749
Date, DateTime, and Time Out Wrappers for SQL Views and Dynamic Views 749
{DateTimein-prefix} in SQR .. 749

Meta-SQL Placement Considerations ... 750
Meta-SQL Reference ... 756

%Abs .. 756
%BINARYSORT ... 756
%Cast .. 757
%COALESCE .. 758
%Concat ... 759
%CurrentDateIn ... 760
%CurrentDateOut ... 760
%CurrentDateTimeIn ... 760
%CurrentDateTimeOut .. 760
%CurrentTimeIn ... 761
%CurrentTimeOut .. 761
%DatabaseRelease ... 761
%DateAdd .. 762
%DateDiff .. 762
%DateIn .. 763
%DateNull .. 764
%DateOut ... 764
%DatePart ... 765
%DateTimeDiff .. 765
%DateTimeIn ... 766

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xvii

%DateTimeNull ... 767
%DateTimeOut ... 768
%DecDiv .. 768
%DecMult .. 769
%DTTM ... 770
%EffDtCheck ... 770
%FirstRows .. 772
%InsertSelect .. 773
%InsertSelectWithLongs .. 776
%InsertValues .. 778
%Join .. 779
%KeyEqual ... 781
%KeyEqualNoEffDt ... 782
%Like ... 783
%LikeExact .. 785
%Mod .. 787
%NoUppercase ... 788
%NumToChar .. 789
%OldKeyEqual ... 790
%OPRCLAUSE ... 790
%Round .. 791
%SQL ... 792
%Substring ... 794
%SUBREC ... 794
%Table ... 795
%Test .. 796
%TextIn .. 797
%TimeAdd ... 798
%TimeIn ... 799
%TimeNull ... 799
%TimeOut .. 800
%TimePart .. 800
%TrimSubstr .. 801
%Truncate .. 802
%TruncateTable ... 803
%UpdatePairs ... 804
%Upper ... 805
%UuidGen .. 806
%UuidGenBase64 .. 806

Meta-SQL Shortcuts ... 806
%Delete .. 807
%Insert ... 807
%SelectAll .. 807
%SelectDistinct .. 808
%SelectByKey ... 808

Contents

xviii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%SelectByKeyEffDt .. 809
%Update ... 809

Chapter 3

System Variables ... 811

Understanding System Variables ... 811
%AllowNotification ... 811
%AllowRecipientLookup ... 811
%ApplicationLogFence .. 812
%AsOfDate .. 813
%AuthenticationToken ... 813
%BPName .. 813
%ClientDate .. 813
%ClientTimeZone .. 814
%Component .. 814
%CompIntfcName .. 814
%ContentID .. 815
%ContentType .. 815
%Copyright .. 816
%Currency .. 816
%Date ... 817
%DateTime ... 817
%DbName .. 817
%DbServerName .. 817
%DbType ... 817
%DeviceType ... 818
%EmailAddress .. 818
%EmployeeId ... 818
%ExternalAuthInfo .. 819
%FilePath .. 819
%HPTabName .. 819
%Import .. 819
%IntBroker .. 820
%IsMultiLanguageEnabled .. 820
%Language ... 820
%Language_Base ... 821
%Language_Data ... 821
%Language_User ... 821
%LocalNode ... 822
%Market ... 822
%MaxMessageSize .. 823
%Menu ... 823

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xix

%MobilePage ... 823
%Mode ... 824
%NavigatorHomePermissionList ... 824
%Node .. 824
%OperatorClass .. 825
%OperatorId ... 825
%OperatorRowLevelSecurityClass .. 825
%OutDestFormat ... 826
%OutDestType .. 826
%Page ... 826
%Panel .. 827
%PanelGroup ... 827
%PasswordExpired ... 827
%PerfTime ... 828
%PermissionLists ... 829
%PID .. 830
%Portal ... 830
%PrimaryPermissionList .. 830
%ProcessProfilePermissionList ... 830
%PSAuthResult .. 831
%Request .. 831
%Response ... 831
%ResultDocument .. 831
%Roles ... 832
%RowSecurityPermissionList .. 832
%RunningInPortal .. 832
%ServerTimeZone ... 832
%Session .. 832
%SignonUserId .. 833
%SignOnUserPswd .. 833
%SMTPBlackberryReplyTo .. 833
%SMTPGuaranteed .. 834
%SMTPSender ... 834
%SQLRows .. 835
%SyncServer .. 835
%ThisMobileObject ... 835
%Time .. 836
%TransformData .. 836
%UserDescription .. 837
%UserId .. 837
%WLInstanceID ... 837
%WLName ... 837

Contents

xx Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Meta-HTML ... 839

Understanding Meta-HTML ... 839
Variables ... 840
Functions ... 840
Comments ... 840
Alphabetical List of Meta-HTML Elements .. 841

%Appserver .. 841
%AppsRel ... 841
%Browser ... 841
%BrowserPlatform ... 841
%BrowserVersion .. 842
%Cols ... 842
%Component .. 842
%Copyright .. 842
%DBName ... 843
%DBType ... 843
%Encode ... 843
%Formname ... 843
%HtmlContent ... 844
%Image ... 844
%JavaScript .. 845
%LabelTag ... 845
%LanguageISO .. 845
%Menu ... 846
%Message ... 846
%Page ... 847
%ServicePack ... 847
%SubmitScriptName .. 847
%ToolsRel .. 848
%URL ... 848
%UserId .. 849

Appendix A

Viewing Trees From Application Pages .. 851

Understanding View Trees .. 851
Invoking View Trees From Application Pages ... 854

View Trees From Application Example−Without Multi-Node Selection (Method A) 857
View Trees From Application Example−With Multi-Node Selection (Method B) 858

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xxi

Index .. 861

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xxiii

PeopleCode Language Reference Preface

This preface provides an overview of the PeopleCode language and discusses the uses of this book.

PeopleCode Language Reference

PeopleCode is the proprietary language used in the development of Oracle's PeopleSoft applications. This
PeopleBook covers the language elements of PeopleCode, such as the built-in functions, meta-SQL, system
variables, and so on. Its chapters contain reference material for the PeopleCode language.

There are two accompanying books, the PeopleCode API Reference and the PeopleCode Developer's Guide.
The PeopleCode API Reference contains information about the classes delivered with Oracle's
PeopleTools—for example, all the methods and properties of the rowset class, the field class, and so on. Its
chapters describe the syntax and fundamental elements of this part of the PeopleCode language. The
PeopleCode Developer's Guide contains conceptual information about the PeopleCode language, the
PeopleCode APIs, the component processor, and so on.

PeopleBooks and the Online PeopleSoft Library contains general product line information, such as related
documentation, common page elements, and typographical conventions.

PeopleCode Typographical Conventions

Throughout this book, we use typographical conventions to distinguish between different elements of the
PeopleCode language, such as bold to indicate function names, italics for arguments, and so on.

Please take a moment to review the following typographical cues:

Font Type Description

monospace font Indicates a PeopleCode program or other example

Keyword In PeopleCode syntax, items in keyword font indicate
function names, method names, language constructs,
and PeopleCode reserved words that must be included
literally in the function call.

Variable In PeopleCode syntax, items in variable font are
placeholders for arguments that your program must
supply.

... In PeopleCode syntax, ellipses indicate that the
preceding item or series can be repeated any number of
times.

Preface

xxiv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Font Type Description

{Option1|Option2} In PeopleCode syntax, when there is a choice between
two options, the options are enclosed in curly braces and
separated by a pipe.

[] In PeopleCode syntax optional items are enclosed in
square brackets.

&Parameter In PeopleCode syntax an ampersand before a parameter
indicates that the parameter is an already instantiated
object.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

• Understanding the PeopleSoft online library and related documentation.

• How to send PeopleSoft documentation comments and suggestions to Oracle.

• How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

• Understanding PeopleBook structure.

• Typographical conventions and visual cues used in PeopleBooks.

• ISO country codes and currency codes.

• PeopleBooks that are common across multiple applications.

• Common elements used in PeopleBooks.

• Navigating the PeopleBooks interface and searching the PeopleSoft online library.

• Displaying and printing screen shots and graphics in PeopleBooks.

• How to manage the locally installed PeopleSoft online library, including web site folders.

• Understanding documentation integration and how to integrate customized documentation into the library.

• Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Chapter 1

PeopleCode Built-in Functions

This chapter provides a reference to PeopleCode built-in functions and language constructs and discusses:

• Functions by category

• PeopleCode built-in functions and language constructs

Functions by Category

The following topics subdivide the PeopleCode built-in functions by functional category and provide links
from within each category to the reference entries.

Analytic Calculation Engine
Chapter 1, "PeopleCode Built-in Functions," CreateAnalyticInstance, page 140

Chapter 1, "PeopleCode Built-in Functions," GetAnalyticInstance, page 353

Chapter 1, "PeopleCode Built-in Functions," GetAnalyticGrid, page 352

APIs
Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155

Chapter 1, "PeopleCode Built-in Functions," GetSession, page 416

Chapter 3, "System Variables," %Session, page 832

Application Classes
Chapter 1, "PeopleCode Built-in Functions," CollectGarbage, page 95

Application Engine
Chapter 1, "PeopleCode Built-in Functions," CallAppEngine, page 73

Chapter 1, "PeopleCode Built-in Functions," CommitWork, page 96

PeopleCode Built-in Functions Chapter 1

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," GetAESection, page 351

Application Logging
Chapter 1, "PeopleCode Built-in Functions," WriteToLog, page 744

Chapter 3, "System Variables," %ApplicationLogFence, page 812

Arrays
Chapter 1, "PeopleCode Built-in Functions," CopyFromJavaArray, page 134

Chapter 1, "PeopleCode Built-in Functions," CopyToJavaArray, page 137

Chapter 1, "PeopleCode Built-in Functions," CreateArray, page 141

Chapter 1, "PeopleCode Built-in Functions," CreateArrayAny, page 143

Chapter 1, "PeopleCode Built-in Functions," CreateArrayRept, page 144

Chapter 1, "PeopleCode Built-in Functions," Split, page 653

Attachment
Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38

Chapter 1, "PeopleCode Built-in Functions," CleanAttachments, page 88

Chapter 1, "PeopleCode Built-in Functions," CopyAttachments, page 127

Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment, page 200

Chapter 1, "PeopleCode Built-in Functions," DetachAttachment, page 215

Chapter 1, "PeopleCode Built-in Functions," GetAttachment, page 355

Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541

Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

See Also

Chapter 1, "PeopleCode Built-in Functions," Files, page 11 and Chapter 1, "PeopleCode Built-in Functions,"
Images, page 12

Bulk
Chapter 1, "PeopleCode Built-in Functions," BulkDeleteField, page 63

Chapter 1, "PeopleCode Built-in Functions," BulkInsertField, page 65

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 1, "PeopleCode Built-in Functions," BulkModifyPageFieldOrder, page 68

Chapter 1, "PeopleCode Built-in Functions," BulkUpdateIndexes, page 71

Business Interlink
Chapter 1, "PeopleCode Built-in Functions," GetBiDoc, page 362

Chapter 1, "PeopleCode Built-in Functions," GetInterlink, page 379

Character Processing
Chapter 1, "PeopleCode Built-in Functions," CharType, page 82

Chapter 1, "PeopleCode Built-in Functions," ContainsCharType, page 110

Chapter 1, "PeopleCode Built-in Functions," ContainsOnlyCharType, page 113

Chapter 1, "PeopleCode Built-in Functions," ConvertChar, page 117

Chapter 1, "PeopleCode Built-in Functions," DBCSTrim, page 192

Charting
Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155

Chapter 1, "PeopleCode Built-in Functions," GetChart, page 365

Chapter 1, "PeopleCode Built-in Functions," GetChartURL, page 366

Chapter 1, "PeopleCode Built-in Functions," GetGanttChart, page 374

Chapter 1, "PeopleCode Built-in Functions," GetOrgChart, page 396

Chapter 1, "PeopleCode Built-in Functions," GetRatingBoxChart, page 409

ChartField
Chapter 1, "PeopleCode Built-in Functions," RenameDBField, page 564

Chapter 1, "PeopleCode Built-in Functions," RenamePage, page 566

Chapter 1, "PeopleCode Built-in Functions," RenameRecord, page 567

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldAuxFlag, page 607

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldCharDefn, page 608

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldFormat, page 611

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldFormatLength, page 613

PeopleCode Built-in Functions Chapter 1

4 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldLabel, page 614

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldLength, page 616

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldNotUsed, page 617

Chapter 1, "PeopleCode Built-in Functions," SetPageFieldPageFieldName, page 629

Chapter 1, "PeopleCode Built-in Functions," SetRecFieldEditTable, page 632

Chapter 1, "PeopleCode Built-in Functions," SetRecFieldKey, page 634

Component Buffer
Chapter 1, "PeopleCode Built-in Functions," ActiveRowCount, page 36

Chapter 1, "PeopleCode Built-in Functions," AddKeyListItem, page 46

Chapter 1, "PeopleCode Built-in Functions," ClearKeyList, page 92

Chapter 1, "PeopleCode Built-in Functions," CompareLikeFields, page 99

Chapter 1, "PeopleCode Built-in Functions," ComponentChanged, page 107

Chapter 1, "PeopleCode Built-in Functions," CopyFields, page 133

Chapter 1, "PeopleCode Built-in Functions," CopyRow, page 136

Chapter 1, "PeopleCode Built-in Functions," CurrentLevelNumber, page 174

Chapter 1, "PeopleCode Built-in Functions," CurrentRowNumber, page 175

Chapter 1, "PeopleCode Built-in Functions," DeleteRecord, page 206

Chapter 1, "PeopleCode Built-in Functions," DeleteRow, page 207

Chapter 1, "PeopleCode Built-in Functions," DiscardRow, page 221

Chapter 1, "PeopleCode Built-in Functions," ExpandBindVar, page 270

Chapter 1, "PeopleCode Built-in Functions," ExpandEnvVar, page 271

Chapter 1, "PeopleCode Built-in Functions," ExpandSqlBinds, page 271

Chapter 1, "PeopleCode Built-in Functions," FetchValue, page 275

Chapter 1, "PeopleCode Built-in Functions," FieldChanged, page 276

Chapter 1, "PeopleCode Built-in Functions," GetNextNumber, page 388

Chapter 1, "PeopleCode Built-in Functions," GetNextNumberWithGaps, page 390

Chapter 1, "PeopleCode Built-in Functions," GetNextNumberWithGapsCommit, page 392

Chapter 1, "PeopleCode Built-in Functions," GetRelField, page 411

Chapter 1, "PeopleCode Built-in Functions," GetSetId, page 417

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Chapter 1, "PeopleCode Built-in Functions," InsertRow, page 454

Chapter 1, "PeopleCode Built-in Functions," IsDate, page 459

Chapter 1, "PeopleCode Built-in Functions," PriorValue, page 536

Chapter 1, "PeopleCode Built-in Functions," RecordChanged, page 551

Chapter 1, "PeopleCode Built-in Functions," RecordDeleted, page 553

Chapter 1, "PeopleCode Built-in Functions," RecordNew, page 555

Chapter 1, "PeopleCode Built-in Functions," RowFlush, page 582

Chapter 1, "PeopleCode Built-in Functions," SetComponentChanged, page 602

Chapter 1, "PeopleCode Built-in Functions," SetDefault, page 619

Chapter 1, "PeopleCode Built-in Functions," SetDefaultAll, page 620

Chapter 1, "PeopleCode Built-in Functions," SetTempTableInstance, page 640

Chapter 1, "PeopleCode Built-in Functions," StopFetching, page 662

Chapter 1, "PeopleCode Built-in Functions," TotalRowCount, page 681

Chapter 1, "PeopleCode Built-in Functions," TreeDetailInNode, page 708

Chapter 1, "PeopleCode Built-in Functions," UpdateSysVersion, page 721

Chapter 1, "PeopleCode Built-in Functions," UpdateValue, page 721

Chapter 1, "PeopleCode Built-in Functions," ViewContentURL, page 732

Chapter 2, "Meta-SQL Elements," %BINARYSORT, page 756

Chapter 3, "System Variables," %Component, page 814

Chapter 3, "System Variables," %Menu, page 823

Chapter 3, "System Variables," %Mode, page 824

Chapter 3, "System Variables," %OperatorClass, page 825

Chapter 2, "Meta-SQL Elements," %Table, page 795

Chapter 2, "Meta-SQL Elements," %TruncateTable, page 803

See Also

Chapter 1, "PeopleCode Built-in Functions," Data Buffer Access, page 7

Component Interface
Chapter 1, "PeopleCode Built-in Functions," GetMethodNames, page 384

Chapter 1, "PeopleCode Built-in Functions," GetProgramFunctionInfo, page 400

PeopleCode Built-in Functions Chapter 1

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," GetSession, page 416

Chapter 1, "PeopleCode Built-in Functions," StartWork, page 660

Chapter 3, "System Variables," %CompIntfcName, page 814

Conversion
Chapter 1, "PeopleCode Built-in Functions," Char, page 81

Chapter 1, "PeopleCode Built-in Functions," Code, page 94

Chapter 1, "PeopleCode Built-in Functions," ConvertChar, page 117

Chapter 1, "PeopleCode Built-in Functions," NumberToString, page 523

Chapter 1, "PeopleCode Built-in Functions," String, page 666

Chapter 1, "PeopleCode Built-in Functions," Value, page 725

Currency and Financial
Chapter 1, "PeopleCode Built-in Functions," Amortize, page 56

Chapter 1, "PeopleCode Built-in Functions," BlackScholesPut, page 60

Chapter 1, "PeopleCode Built-in Functions," ConvertCurrency, page 122

Chapter 1, "PeopleCode Built-in Functions," RoundCurrency, page 582

Chapter 1, "PeopleCode Built-in Functions," SinglePaymentPV, page 650

Chapter 1, "PeopleCode Built-in Functions," UniformSeriesPV, page 720

Chapter 3, "System Variables," %Currency, page 816

Current Date and Time
Chapter 2, "Meta-SQL Elements," %CurrentDateIn, page 760

Chapter 2, "Meta-SQL Elements," %CurrentDateOut, page 760

Chapter 2, "Meta-SQL Elements," %CurrentDateTimeIn, page 760

Chapter 2, "Meta-SQL Elements," %CurrentDateTimeOut, page 760

Chapter 2, "Meta-SQL Elements," %CurrentTimeIn, page 761

Chapter 2, "Meta-SQL Elements," %CurrentTimeOut, page 761

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

See Also

Chapter 1, "PeopleCode Built-in Functions," Date and Time, page 7 and Chapter 1, "PeopleCode Built-in
Functions," SQL Date and Time, page 25

Custom Display Formats
Chapter 1, "PeopleCode Built-in Functions," GetStoredFormat, page 421

Chapter 1, "PeopleCode Built-in Functions," SetDisplayFormat, page 623

Database and Platform
Chapter 3, "System Variables," %DbName, page 817

Chapter 3, "System Variables," %DbServerName, page 817

Chapter 3, "System Variables," %DbType, page 817

Data Buffer Access
Chapter 1, "PeopleCode Built-in Functions," CreateRecord, page 160

Chapter 1, "PeopleCode Built-in Functions," CreateRowset, page 161

Chapter 1, "PeopleCode Built-in Functions," FlushBulkInserts, page 284

Chapter 1, "PeopleCode Built-in Functions," GetField, page 369

Chapter 1, "PeopleCode Built-in Functions," GetLevel0, page 382

Chapter 1, "PeopleCode Built-in Functions," GetRecord, page 409

Chapter 1, "PeopleCode Built-in Functions," GetRow, page 412

Chapter 1, "PeopleCode Built-in Functions," GetRowset, page 413

See Also

Chapter 1, "PeopleCode Built-in Functions," Component Buffer, page 4

Date and Time
Chapter 1, "PeopleCode Built-in Functions," AddToDate, page 49

Chapter 1, "PeopleCode Built-in Functions," AddToDateTime, page 51

Chapter 1, "PeopleCode Built-in Functions," AddToTime, page 52

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123

PeopleCode Built-in Functions Chapter 1

8 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," Date, page 176

Chapter 1, "PeopleCode Built-in Functions," Date3, page 177

Chapter 1, "PeopleCode Built-in Functions," DatePart, page 178

Chapter 1, "PeopleCode Built-in Functions," DateTime6, page 178

Chapter 1, "PeopleCode Built-in Functions," DateTimeToHTTP, page 179

Chapter 1, "PeopleCode Built-in Functions," DateTimeToISO, page 181

Chapter 1, "PeopleCode Built-in Functions," DateTimeToLocalizedString, page 182

Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185

Chapter 1, "PeopleCode Built-in Functions," DateTimeValue, page 186

Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188

Chapter 1, "PeopleCode Built-in Functions," Day, page 189

Chapter 1, "PeopleCode Built-in Functions," Days, page 190

Chapter 1, "PeopleCode Built-in Functions," Days360, page 190

Chapter 1, "PeopleCode Built-in Functions," Days365, page 191

Chapter 1, "PeopleCode Built-in Functions," FormatDateTime, page 286

Chapter 1, "PeopleCode Built-in Functions," GetCalendarDate, page 363

Chapter 1, "PeopleCode Built-in Functions," Hour, page 444

Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings, page 461

Chapter 1, "PeopleCode Built-in Functions," ISOToDate, page 464

Chapter 1, "PeopleCode Built-in Functions," ISOToDateTime, page 465

Chapter 1, "PeopleCode Built-in Functions," Minute, page 506

Chapter 1, "PeopleCode Built-in Functions," Month, page 507

Chapter 1, "PeopleCode Built-in Functions," Second, page 595

Chapter 1, "PeopleCode Built-in Functions," Time, page 675

Chapter 1, "PeopleCode Built-in Functions," Time3, page 676

Chapter 1, "PeopleCode Built-in Functions," TimePart, page 677

Chapter 1, "PeopleCode Built-in Functions," TimeToTimeZone, page 678

Chapter 1, "PeopleCode Built-in Functions," TimeValue, page 679

Chapter 1, "PeopleCode Built-in Functions," TimeZoneOffset, page 680

Chapter 1, "PeopleCode Built-in Functions," Weekday, page 736

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

Chapter 1, "PeopleCode Built-in Functions," IsDate, page 459

Chapter 1, "PeopleCode Built-in Functions," Year, page 745

Chapter 3, "System Variables," %AsOfDate, page 813

Chapter 3, "System Variables," %ClientDate, page 813

Chapter 3, "System Variables," %ClientTimeZone, page 814

Chapter 3, "System Variables," %Date, page 817

Chapter 2, "Meta-SQL Elements," %DateAdd, page 762

Chapter 2, "Meta-SQL Elements," %DateDiff, page 762

Chapter 3, "System Variables," %DateTime, page 817

Chapter 2, "Meta-SQL Elements," %DateTimeDiff, page 765

Chapter 2, "Meta-SQL Elements," %DateTimeIn, page 766

Chapter 2, "Meta-SQL Elements," %DateTimeOut, page 768

Chapter 2, "Meta-SQL Elements," %DTTM, page 770

Chapter 3, "System Variables," %PerfTime, page 828

Chapter 3, "System Variables," %PermissionLists, page 829

Chapter 3, "System Variables," %ServerTimeZone, page 832

Chapter 3, "System Variables," %Time, page 836

Chapter 2, "Meta-SQL Elements," %TextIn, page 797

See Also

Chapter 1, "PeopleCode Built-in Functions," Current Date and Time, page 6 and Chapter 1, "PeopleCode
Built-in Functions," SQL Date and Time, page 25

Debugging
Chapter 1, "PeopleCode Built-in Functions," CreateException, page 149

Chapter 1, "PeopleCode Built-in Functions," SetTracePC, page 641

Chapter 1, "PeopleCode Built-in Functions," SetTraceSQL, page 645

Chapter 1, "PeopleCode Built-in Functions," throw, page 674

Chapter 2, "Meta-SQL Elements," %Test, page 796

Chapter 1, "PeopleCode Built-in Functions," try, page 711

Chapter 1, "PeopleCode Built-in Functions," WinMessage, page 738

PeopleCode Built-in Functions Chapter 1

10 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," WriteToLog, page 744

Chapter 3, "System Variables," %ApplicationLogFence, page 812

Defaults, Setting
Chapter 1, "PeopleCode Built-in Functions," SetDefault, page 619

Chapter 1, "PeopleCode Built-in Functions," SetDefaultAll, page 620

Chapter 1, "PeopleCode Built-in Functions," SetDefaultNext, page 621

Chapter 1, "PeopleCode Built-in Functions," SetDefaultNextRel, page 621

Chapter 1, "PeopleCode Built-in Functions," SetDefaultPrior, page 622

Chapter 1, "PeopleCode Built-in Functions," SetDefaultPriorRel, page 623

Documents
Chapter 1, "PeopleCode Built-in Functions," CreateDocument, page 147

Chapter 1, "PeopleCode Built-in Functions," CreateDocumentKey, page 148

Effective Date and Effective Sequence
Chapter 1, "PeopleCode Built-in Functions," CurrEffDt, page 172

Chapter 1, "PeopleCode Built-in Functions," CurrEffRowNum, page 173

Chapter 1, "PeopleCode Built-in Functions," CurrEffSeq, page 173

Chapter 1, "PeopleCode Built-in Functions," NextEffDt, page 511

Chapter 1, "PeopleCode Built-in Functions," NextRelEffDt, page 512

Chapter 1, "PeopleCode Built-in Functions," PriorEffDt, page 534

Chapter 1, "PeopleCode Built-in Functions," PriorRelEffDt, page 536

Chapter 1, "PeopleCode Built-in Functions," SetDefaultNext, page 621

Chapter 1, "PeopleCode Built-in Functions," SetDefaultNextRel, page 621

Chapter 1, "PeopleCode Built-in Functions," SetDefaultPrior, page 622

Chapter 1, "PeopleCode Built-in Functions," SetDefaultPriorRel, page 623

Chapter 2, "Meta-SQL Elements," %EffDtCheck, page 770

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

Email
Chapter 1, "PeopleCode Built-in Functions," AddEmailAddress, page 45

Chapter 1, "PeopleCode Built-in Functions," ChangeEmailAddress, page 80

Chapter 1, "PeopleCode Built-in Functions," DeleteEmailAddress, page 204

Chapter 1, "PeopleCode Built-in Functions," MarkPrimaryEmailAddress, page 495

Environment
Chapter 1, "PeopleCode Built-in Functions," ExpandEnvVar, page 271

Chapter 1, "PeopleCode Built-in Functions," GetCwd, page 367

Chapter 1, "PeopleCode Built-in Functions," GetEnv, page 368

Chapter 3, "System Variables," %PID, page 830

Exceptions
Chapter 1, "PeopleCode Built-in Functions," CreateException, page 149

Chapter 1, "PeopleCode Built-in Functions," throw, page 674

Chapter 1, "PeopleCode Built-in Functions," try, page 711

Executable Files, Running
Chapter 1, "PeopleCode Built-in Functions," Exec, page 261

Chapter 1, "PeopleCode Built-in Functions," WinExec, page 738

See Also

Chapter 1, "PeopleCode Built-in Functions," Object, page 19

Files
Chapter 1, "PeopleCode Built-in Functions," CreateDirectory, page 145

Chapter 1, "PeopleCode Built-in Functions," FileExists, page 278

Chapter 1, "PeopleCode Built-in Functions," FindFiles, page 283

Chapter 1, "PeopleCode Built-in Functions," GetFile, page 370

Chapter 1, "PeopleCode Built-in Functions," GetTempFile, page 425

PeopleCode Built-in Functions Chapter 1

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," RemoveDirectory, page 562

Chapter 3, "System Variables," %FilePath, page 819

See Also

Chapter 1, "PeopleCode Built-in Functions," Attachment, page 2 and Chapter 1, "PeopleCode Built-in
Functions," Images, page 12

Financial
Chapter 1, "PeopleCode Built-in Functions," AccruableDays, page 33

Chapter 1, "PeopleCode Built-in Functions," AccrualFactor, page 34

Chapter 1, "PeopleCode Built-in Functions," BlackScholesCall, page 59

Chapter 1, "PeopleCode Built-in Functions," BlackScholesPut, page 60

Chapter 1, "PeopleCode Built-in Functions," BootstrapYTMs, page 61

Chapter 1, "PeopleCode Built-in Functions," ConvertRate, page 125

Chapter 1, "PeopleCode Built-in Functions," CubicSpline, page 169

Chapter 1, "PeopleCode Built-in Functions," HermiteCubic, page 436

Chapter 1, "PeopleCode Built-in Functions," HistVolatility, page 443

Chapter 1, "PeopleCode Built-in Functions," LinearInterp, page 479

Grids
Chapter 1, "PeopleCode Built-in Functions," GetGrid, page 375

Images
Chapter 1, "PeopleCode Built-in Functions," DeleteImage, page 205

Chapter 1, "PeopleCode Built-in Functions," GetImageExtents, page 378

Chapter 1, "PeopleCode Built-in Functions," InsertImage, page 451

See Also

Chapter 1, "PeopleCode Built-in Functions," Attachment, page 2 and Chapter 1, "PeopleCode Built-in
Functions," Files, page 11

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Integration Broker
Chapter 1, "PeopleCode Built-in Functions," IBPurgeDomainStatus, page 444

Chapter 1, "PeopleCode Built-in Functions," IBPurgeNodesDown, page 445

Chapter 1, "PeopleCode Built-in Functions," ConnectorRequest, page 108

Chapter 1, "PeopleCode Built-in Functions," ConnectorRequestURL, page 109

Chapter 1, "PeopleCode Built-in Functions," CreateWSDLMessage, page 168

Chapter 1, "PeopleCode Built-in Functions," EncryptNodePswd, page 246

Chapter 1, "PeopleCode Built-in Functions," FindCodeSetValues, page 281

Chapter 1, "PeopleCode Built-in Functions," NodeDelete, page 513

Chapter 1, "PeopleCode Built-in Functions," NodeRename, page 514

Chapter 1, "PeopleCode Built-in Functions," NodeSaveAs, page 515

Chapter 1, "PeopleCode Built-in Functions," NodeTranDelete, page 516

Chapter 1, "PeopleCode Built-in Functions," PingNode, page 533

Chapter 1, "PeopleCode Built-in Functions," RelNodeTranDelete, page 558

Chapter 1, "PeopleCode Built-in Functions," SetChannelStatus, page 601

Chapter 1, "PeopleCode Built-in Functions," SetMessageStatus, page 627

Chapter 1, "PeopleCode Built-in Functions," Transform, page 704

Chapter 1, "PeopleCode Built-in Functions," TransformEx, page 705

Chapter 1, "PeopleCode Built-in Functions," TransformExCache, page 707

Chapter 3, "System Variables," %IntBroker, page 820

Chapter 3, "System Variables," %TransformData, page 836

Internet
Chapter 1, "PeopleCode Built-in Functions," CreateSOAPDoc, page 165

Chapter 1, "PeopleCode Built-in Functions," EncodeURL, page 242

Chapter 1, "PeopleCode Built-in Functions," EncodeURLForQueryString, page 244

Chapter 1, "PeopleCode Built-in Functions," EscapeHTML, page 256

Chapter 1, "PeopleCode Built-in Functions," EscapeJavascriptString, page 257

Chapter 1, "PeopleCode Built-in Functions," EscapeWML, page 258

PeopleCode Built-in Functions Chapter 1

14 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuideContentUrl, page 297

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuidePortalUrl, page 298

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuideRelativeUrl, page 300

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentRelURL, page 301

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentURL, page 303

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentPortalRelURL, page 306

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentPortalURL, page 308

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentRelativeURL, page 310

Chapter 1, "PeopleCode Built-in Functions," GenerateExternalPortalURL, page 313

Chapter 1, "PeopleCode Built-in Functions," GenerateExternalRelativeURL, page 314

Chapter 1, "PeopleCode Built-in Functions," GenerateHomepagePortalURL, page 315

Chapter 1, "PeopleCode Built-in Functions," GenerateHomepageRelativeURL, page 316

Chapter 1, "PeopleCode Built-in Functions," GenerateQueryContentURL, page 321

Chapter 1, "PeopleCode Built-in Functions," GenerateQueryPortalURL, page 322

Chapter 1, "PeopleCode Built-in Functions," GenerateQueryRelativeURL, page 324

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentRelURL, page 326

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentURL, page 328

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptPortalRelURL, page 329

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptPortalURL, page 331

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptRelativeURL, page 333

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Chapter 1, "PeopleCode Built-in Functions," GenerateWorklistPortalURL, page 336

Chapter 1, "PeopleCode Built-in Functions," GenerateWorklistRelativeURL, page 337

Chapter 1, "PeopleCode Built-in Functions," GetChartURL, page 366

Chapter 1, "PeopleCode Built-in Functions," GetHTMLText, page 377

Chapter 1, "PeopleCode Built-in Functions," GetMethodNames, page 384

Chapter 1, "PeopleCode Built-in Functions," GetURL, page 430

Chapter 1, "PeopleCode Built-in Functions," Unencode, page 713

Chapter 1, "PeopleCode Built-in Functions," ViewContentURL, page 732

Chapter 1, "PeopleCode Built-in Functions," ViewURL, page 733

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Chapter 3, "System Variables," %ContentID, page 815

Chapter 3, "System Variables," %ContentType, page 815

Chapter 3, "System Variables," %EmailAddress, page 818

Chapter 3, "System Variables," %HPTabName, page 819

Chapter 3, "System Variables," %LocalNode, page 822

Chapter 3, "System Variables," %Node, page 824

Chapter 3, "System Variables," %Portal, page 830

Chapter 3, "System Variables," %Request, page 831

Chapter 3, "System Variables," %Response, page 831

Chapter 3, "System Variables," %RunningInPortal, page 832

Java
Chapter 1, "PeopleCode Built-in Functions," CopyFromJavaArray, page 134

Chapter 1, "PeopleCode Built-in Functions," CopyToJavaArray, page 137

Chapter 1, "PeopleCode Built-in Functions," CreateJavaArray, page 150

Chapter 1, "PeopleCode Built-in Functions," CreateJavaObject, page 151

Chapter 1, "PeopleCode Built-in Functions," GetJavaClass, page 381

Language Constructs
Chapter 1, "PeopleCode Built-in Functions," Break, page 62

Chapter 1, "PeopleCode Built-in Functions," Component, page 106

Chapter 1, "PeopleCode Built-in Functions," Continue, page 115

Chapter 1, "PeopleCode Built-in Functions," Declare Function, page 195

Chapter 1, "PeopleCode Built-in Functions," Evaluate, page 259

Chapter 1, "PeopleCode Built-in Functions," Exit, page 268

Chapter 1, "PeopleCode Built-in Functions," For, page 286

Chapter 1, "PeopleCode Built-in Functions," Function, page 290

Chapter 1, "PeopleCode Built-in Functions," Global, page 433

Chapter 1, "PeopleCode Built-in Functions," If, page 446

Chapter 1, "PeopleCode Built-in Functions," Local, page 482

PeopleCode Built-in Functions Chapter 1

16 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," Repeat, page 568

Chapter 1, "PeopleCode Built-in Functions," Return, page 575

Chapter 1, "PeopleCode Built-in Functions," throw, page 674

Chapter 1, "PeopleCode Built-in Functions," try, page 711

Chapter 1, "PeopleCode Built-in Functions," While, page 737

Language Preference and Locale
Chapter 1, "PeopleCode Built-in Functions," SetLanguage, page 626

Chapter 3, "System Variables," %IsMultiLanguageEnabled, page 820

Chapter 3, "System Variables," %Language, page 820

Chapter 3, "System Variables," %Language_Base, page 821

Chapter 3, "System Variables," %Language_Data, page 821

Chapter 3, "System Variables," %Language_User, page 821

Chapter 3, "System Variables," %Market, page 822

Logical (Tests for Blank Values)
Chapter 1, "PeopleCode Built-in Functions," All, page 53

Chapter 1, "PeopleCode Built-in Functions," AllOrNone, page 54

Chapter 1, "PeopleCode Built-in Functions," None, page 517

Chapter 1, "PeopleCode Built-in Functions," OnlyOne, page 531

Chapter 1, "PeopleCode Built-in Functions," OnlyOneOrNone, page 532

Mail
Chapter 1, "PeopleCode Built-in Functions," SendMail, page 596

Chapter 3, "System Variables," %EmailAddress, page 818

Math
Chapter 1, "PeopleCode Built-in Functions," Abs, page 32

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35

Chapter 1, "PeopleCode Built-in Functions," Asin, page 57

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17

Chapter 1, "PeopleCode Built-in Functions," Atan, page 58

Chapter 1, "PeopleCode Built-in Functions," Cos, page 138

Chapter 1, "PeopleCode Built-in Functions," Cot, page 139

Chapter 1, "PeopleCode Built-in Functions," Degrees, page 200

Chapter 1, "PeopleCode Built-in Functions," Exp, page 269

Chapter 1, "PeopleCode Built-in Functions," Fact, page 273

Chapter 1, "PeopleCode Built-in Functions," Idiv, page 445

Chapter 1, "PeopleCode Built-in Functions," Int, page 455

Chapter 1, "PeopleCode Built-in Functions," Integer, page 456

Chapter 1, "PeopleCode Built-in Functions," Ln, page 479

Chapter 1, "PeopleCode Built-in Functions," Log10, page 484

Chapter 1, "PeopleCode Built-in Functions," Max, page 497

Chapter 1, "PeopleCode Built-in Functions," Min, page 505

Chapter 1, "PeopleCode Built-in Functions," Mod, page 507

Chapter 1, "PeopleCode Built-in Functions," Product, page 537

Chapter 1, "PeopleCode Built-in Functions," Radians, page 550

Chapter 1, "PeopleCode Built-in Functions," Rand, page 551

Chapter 1, "PeopleCode Built-in Functions," Round, page 581

Chapter 1, "PeopleCode Built-in Functions," Sign, page 649

Chapter 1, "PeopleCode Built-in Functions," Sin, page 650

Chapter 1, "PeopleCode Built-in Functions," Sqrt, page 660

Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

Chapter 1, "PeopleCode Built-in Functions," Truncate, page 710

Chapter 2, "Meta-SQL Elements," %Abs, page 756

Chapter 2, "Meta-SQL Elements," %DecDiv, page 768

Chapter 2, "Meta-SQL Elements," %DecMult, page 769

Chapter 2, "Meta-SQL Elements," %Round, page 791

Chapter 2, "Meta-SQL Elements," %Truncate, page 802

PeopleCode Built-in Functions Chapter 1

18 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Menu Appearance
Chapter 1, "PeopleCode Built-in Functions," CheckMenuItem, page 86

Chapter 1, "PeopleCode Built-in Functions," DisableMenuItem, page 220

Chapter 1, "PeopleCode Built-in Functions," EnableMenuItem, page 241

Chapter 1, "PeopleCode Built-in Functions," HideMenuItem, page 439

Chapter 1, "PeopleCode Built-in Functions," UnCheckMenuItem, page 712

Message Catalog and Message Display
Chapter 1, "PeopleCode Built-in Functions," EndMessage, page 247

Chapter 1, "PeopleCode Built-in Functions," Error, page 253

Chapter 1, "PeopleCode Built-in Functions," MessageBox, page 499

Chapter 1, "PeopleCode Built-in Functions," MsgGet, page 508

Chapter 1, "PeopleCode Built-in Functions," MsgGetExplainText, page 509

Chapter 1, "PeopleCode Built-in Functions," MsgGetText, page 511

Chapter 1, "PeopleCode Built-in Functions," Quote, page 549

Chapter 1, "PeopleCode Built-in Functions," Warning, page 734

Chapter 1, "PeopleCode Built-in Functions," WinMessage, page 738

Messages
Chapter 1, "PeopleCode Built-in Functions," AddSystemPauseTimes, page 47

Chapter 1, "PeopleCode Built-in Functions," CreateMessage, page 153

Chapter 1, "PeopleCode Built-in Functions," CreateWSDLMessage, page 168

Chapter 1, "PeopleCode Built-in Functions," DeleteSystemPauseTimes, page 211

Chapter 1, "PeopleCode Built-in Functions," GetMessage, page 385

Chapter 1, "PeopleCode Built-in Functions," GetSyncLogData, page 424

Chapter 1, "PeopleCode Built-in Functions," IsMessageActive, page 468

Chapter 1, "PeopleCode Built-in Functions," PingNode, page 533

Chapter 1, "PeopleCode Built-in Functions," ReturnToServer, page 575

Chapter 1, "PeopleCode Built-in Functions," SetChannelStatus, page 601

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Chapter 1, "PeopleCode Built-in Functions," SetMessageStatus, page 627

Chapter 3, "System Variables," %MaxMessageSize, page 823

See Also

Chapter 1, "PeopleCode Built-in Functions," XML, page 31

Modal Transfers
Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226

Chapter 1, "PeopleCode Built-in Functions," DoModalX, page 231

Chapter 1, "PeopleCode Built-in Functions," EndModal, page 248

Chapter 1, "PeopleCode Built-in Functions," EndModalComponent, page 249

Chapter 1, "PeopleCode Built-in Functions," DoModalXComponent, page 234

Chapter 1, "PeopleCode Built-in Functions," IsModal, page 469

Chapter 1, "PeopleCode Built-in Functions," IsModalComponent, page 470

See Also

Chapter 1, "PeopleCode Built-in Functions," Secondary Pages, page 23 and Chapter 1, "PeopleCode Built-in
Functions," Transfers, page 28

MultiChannel Framework
Chapter 1, "PeopleCode Built-in Functions," CreateMCFIMInfo, page 152

Chapter 1, "PeopleCode Built-in Functions," DeQueue, page 213

Chapter 1, "PeopleCode Built-in Functions," EnQueue, page 250

Chapter 1, "PeopleCode Built-in Functions," Forward, page 288

Chapter 1, "PeopleCode Built-in Functions," InitChat, page 448

Chapter 1, "PeopleCode Built-in Functions," MCFBroadcast, page 498

Chapter 1, "PeopleCode Built-in Functions," NotifyQ, page 518

Object
Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155

Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157

PeopleCode Built-in Functions Chapter 1

20 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," ObjectDoMethod, page 526

Chapter 1, "PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

Chapter 1, "PeopleCode Built-in Functions," ObjectGetProperty, page 528

Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty, page 530

Object-Oriented
Chapter 1, "PeopleCode Built-in Functions," CreateArray, page 141

Chapter 1, "PeopleCode Built-in Functions," CreateArrayRept, page 144

Chapter 1, "PeopleCode Built-in Functions," CreateException, page 149

Chapter 1, "PeopleCode Built-in Functions," CreateJavaArray, page 150

Chapter 1, "PeopleCode Built-in Functions," CreateJavaObject, page 151

Chapter 1, "PeopleCode Built-in Functions," CreateMessage, page 153

Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155

Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157

Chapter 1, "PeopleCode Built-in Functions," CreateProcessRequest, page 159

Chapter 1, "PeopleCode Built-in Functions," CreateRecord, page 160

Chapter 1, "PeopleCode Built-in Functions," CreateRowset, page 161

Chapter 1, "PeopleCode Built-in Functions," CreateSOAPDoc, page 165

Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165

Chapter 1, "PeopleCode Built-in Functions," CreateXmlDoc, page 168

Chapter 1, "PeopleCode Built-in Functions," DeleteSQL, page 209

Chapter 1, "PeopleCode Built-in Functions," FetchSQL, page 273

Chapter 1, "PeopleCode Built-in Functions," GetAESection, page 351

Chapter 1, "PeopleCode Built-in Functions," GetChart, page 365

Chapter 1, "PeopleCode Built-in Functions," GetChartURL, page 366

Chapter 1, "PeopleCode Built-in Functions," GetCwd, page 367

Chapter 1, "PeopleCode Built-in Functions," GetField, page 369

Chapter 1, "PeopleCode Built-in Functions," GetFile, page 370

Chapter 1, "PeopleCode Built-in Functions," GetGrid, page 375

Chapter 1, "PeopleCode Built-in Functions," GetHTMLText, page 377

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

Chapter 1, "PeopleCode Built-in Functions," GetInterlink, page 379

Chapter 1, "PeopleCode Built-in Functions," GetLevel0, page 382

Chapter 1, "PeopleCode Built-in Functions," GetJavaClass, page 381

Chapter 1, "PeopleCode Built-in Functions," GetMessage, page 385

Chapter 1, "PeopleCode Built-in Functions," GetMessageXmlDoc, page 386

Chapter 1, "PeopleCode Built-in Functions," GetMessageInstance, page 386

Chapter 1, "PeopleCode Built-in Functions," GetPubContractInstance, page 406

Chapter 1, "PeopleCode Built-in Functions," GetRecord, page 409

Chapter 1, "PeopleCode Built-in Functions," GetRow, page 412

Chapter 1, "PeopleCode Built-in Functions," GetRowset, page 413

Chapter 1, "PeopleCode Built-in Functions," GetSession, page 416

Chapter 1, "PeopleCode Built-in Functions," GetSQL, page 418

Chapter 1, "PeopleCode Built-in Functions," GetSubContractInstance, page 422

Chapter 1, "PeopleCode Built-in Functions," LogObjectUse, page 483

Chapter 1, "PeopleCode Built-in Functions," ObjectDoMethod, page 526

Chapter 1, "PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

Chapter 1, "PeopleCode Built-in Functions," ObjectGetProperty, page 528

Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty, page 530

Chapter 1, "PeopleCode Built-in Functions," ReturnToServer, page 575

Chapter 1, "PeopleCode Built-in Functions," Split, page 653

Chapter 1, "PeopleCode Built-in Functions," StoreSQL, page 664

Page
Chapter 1, "PeopleCode Built-in Functions," GetPage, page 397

Page Control Appearance
Chapter 1, "PeopleCode Built-in Functions," GetImageExtents, page 378

Chapter 1, "PeopleCode Built-in Functions," Gray, page 433

Chapter 1, "PeopleCode Built-in Functions," Hide, page 437

Chapter 1, "PeopleCode Built-in Functions," HideRow, page 440

PeopleCode Built-in Functions Chapter 1

22 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," HideScroll, page 441

Chapter 1, "PeopleCode Built-in Functions," IsHidden, page 463

Chapter 1, "PeopleCode Built-in Functions," SetCursorPos, page 605

Chapter 1, "PeopleCode Built-in Functions," SetLabel, page 624

Chapter 1, "PeopleCode Built-in Functions," Ungray, page 714

Chapter 1, "PeopleCode Built-in Functions," Unhide, page 716

Chapter 1, "PeopleCode Built-in Functions," UnhideRow, page 717

Chapter 1, "PeopleCode Built-in Functions," UnhideScroll, page 718

Personalizations
Chapter 1, "PeopleCode Built-in Functions," GetUserOption, page 431

Chapter 1, "PeopleCode Built-in Functions," SetUserOption, page 648

Process Scheduler
Chapter 1, "PeopleCode Built-in Functions," CreateProcessRequest, page 159

Chapter 1, "PeopleCode Built-in Functions," GetNextProcessInstance, page 394

Chapter 1, "PeopleCode Built-in Functions," SetPostReport, page 632

Chapter 1, "PeopleCode Built-in Functions," SetupScheduleDefnItem, page 647

Chapter 3, "System Variables," %OutDestFormat, page 826

Chapter 3, "System Variables," %OutDestType, page 826

Remote Call
Chapter 1, "PeopleCode Built-in Functions," DoSaveNow, page 239

Chapter 1, "PeopleCode Built-in Functions," RemoteCall, page 559

RowsetCache
Chapter 1, "PeopleCode Built-in Functions," CreateRowsetCache, page 164

Chapter 1, "PeopleCode Built-in Functions," GetRowsetCache, page 414

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

Saving and Canceling
Chapter 1, "PeopleCode Built-in Functions," DoCancel, page 223

Chapter 1, "PeopleCode Built-in Functions," DoSave, page 238

Chapter 1, "PeopleCode Built-in Functions," DoSaveNow, page 239

Chapter 1, "PeopleCode Built-in Functions," WinEscape, page 738

Scroll Select
Chapter 1, "PeopleCode Built-in Functions," RowFlush, page 582

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelect, page 584

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelectNew, page 586

Chapter 1, "PeopleCode Built-in Functions," ScrollFlush, page 589

Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591

Chapter 1, "PeopleCode Built-in Functions," ScrollSelectNew, page 593

Chapter 1, "PeopleCode Built-in Functions," SortScroll, page 651

Search Dialog
Chapter 1, "PeopleCode Built-in Functions," ClearSearchDefault, page 92

Chapter 1, "PeopleCode Built-in Functions," ClearSearchEdit, page 93

Chapter 1, "PeopleCode Built-in Functions," IsSearchDialog, page 473

Chapter 1, "PeopleCode Built-in Functions," SetSearchDefault, page 636

Chapter 1, "PeopleCode Built-in Functions," SetSearchDialogBehavior, page 637

Chapter 1, "PeopleCode Built-in Functions," SetSearchEdit, page 638

Chapter 3, "System Variables," %Mode, page 824

Secondary Pages
Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223

Chapter 1, "PeopleCode Built-in Functions," DoModalX, page 231

Chapter 1, "PeopleCode Built-in Functions," EndModal, page 248

Chapter 1, "PeopleCode Built-in Functions," IsModal, page 469

PeopleCode Built-in Functions Chapter 1

24 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Modal Transfers, page 19 and Chapter 1, "PeopleCode Built-in
Functions," Transfers, page 28

SmartNavigation Charts
Chapter 1, "PeopleCode Built-in Functions," GenABNNodeURL, page 292

Chapter 1, "PeopleCode Built-in Functions," GenHTMLMenu, page 339

Chapter 1, "PeopleCode Built-in Functions," GetABNChartRowSet, page 342

Chapter 1, "PeopleCode Built-in Functions," GetABNInitialNode, page 343

Chapter 1, "PeopleCode Built-in Functions," GetABNNode, page 344

Chapter 1, "PeopleCode Built-in Functions," GetABNRelActnRowSet, page 345

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

Chapter 1, "PeopleCode Built-in Functions," GetABNTreeEffdt, page 347

Chapter 1, "PeopleCode Built-in Functions," GetABNTreeName, page 348

Chapter 1, "PeopleCode Built-in Functions," GetABNTreeSetid, page 349

Chapter 1, "PeopleCode Built-in Functions," GetABNTreeUserKey, page 350

Chapter 1, "PeopleCode Built-in Functions," LoadABN, page 480

SQL
Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165

Chapter 1, "PeopleCode Built-in Functions," DeleteSQL, page 209

Chapter 1, "PeopleCode Built-in Functions," ExpandBindVar, page 270

Chapter 1, "PeopleCode Built-in Functions," ExpandSqlBinds, page 271

Chapter 1, "PeopleCode Built-in Functions," FetchSQL, page 273

Chapter 1, "PeopleCode Built-in Functions," FlushBulkInserts, page 284

Chapter 1, "PeopleCode Built-in Functions," GetSQL, page 418

Chapter 1, "PeopleCode Built-in Functions," SQLExec, page 654

Chapter 1, "PeopleCode Built-in Functions," StoreSQL, page 664

Chapter 2, "Meta-SQL Elements," %FirstRows, page 772

Chapter 2, "Meta-SQL Elements," %InsertSelect, page 773

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25

Chapter 2, "Meta-SQL Elements," %InsertValues, page 778

Chapter 2, "Meta-SQL Elements," %Join, page 779

Chapter 2, "Meta-SQL Elements," %KeyEqual, page 781

Chapter 2, "Meta-SQL Elements," %KeyEqualNoEffDt, page 782

Chapter 2, "Meta-SQL Elements," %Like, page 783

Chapter 2, "Meta-SQL Elements," %LikeExact, page 785

Chapter 2, "Meta-SQL Elements," %NoUppercase, page 788

Chapter 2, "Meta-SQL Elements," %OldKeyEqual, page 790

Chapter 2, "Meta-SQL Elements," %SQL, page 792

Chapter 3, "System Variables," %SignonUserId, page 833

Chapter 2, "Meta-SQL Elements," %SQL, page 792

Chapter 3, "System Variables," %SQLRows, page 835

Chapter 2, "Meta-SQL Elements," %Table, page 795

Chapter 2, "Meta-SQL Elements," %UpdatePairs, page 804

See Also

Chapter 1, "PeopleCode Built-in Functions," Data Buffer Access, page 7 and Chapter 1, "PeopleCode Built-in
Functions," Scroll Select, page 23

SQL Date and Time
Chapter 2, "Meta-SQL Elements," %DateAdd, page 762

Chapter 2, "Meta-SQL Elements," %DateDiff, page 762

Chapter 2, "Meta-SQL Elements," %DatePart, page 765

Chapter 2, "Meta-SQL Elements," %DateNull, page 764

Chapter 2, "Meta-SQL Elements," %DateIn, page 763

Chapter 2, "Meta-SQL Elements," %DateTimeNull, page 767

Chapter 2, "Meta-SQL Elements," %DateOut, page 764

Chapter 2, "Meta-SQL Elements," %DateTimeDiff, page 765

Chapter 2, "Meta-SQL Elements," %DateTimeIn, page 766

Chapter 2, "Meta-SQL Elements," %DateTimeOut, page 768

Chapter 2, "Meta-SQL Elements," %DTTM, page 770

PeopleCode Built-in Functions Chapter 1

26 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2, "Meta-SQL Elements," %TimeAdd, page 798

Chapter 2, "Meta-SQL Elements," %TextIn, page 797

Chapter 2, "Meta-SQL Elements," %TimeIn, page 799

Chapter 2, "Meta-SQL Elements," %TimeNull, page 799

Chapter 2, "Meta-SQL Elements," %TimePart, page 800

Chapter 2, "Meta-SQL Elements," %TimeOut, page 800

See Also

Chapter 1, "PeopleCode Built-in Functions," Current Date and Time, page 6 and Chapter 1, "PeopleCode
Built-in Functions," Date and Time, page 7

SQL Shortcuts
Chapter 2, "Meta-SQL Elements," %Delete, page 807

Chapter 2, "Meta-SQL Elements," %Insert, page 807

Chapter 2, "Meta-SQL Elements," %SelectAll, page 807

Chapter 2, "Meta-SQL Elements," %SelectDistinct, page 808

Chapter 2, "Meta-SQL Elements," %SelectByKey, page 808

Chapter 2, "Meta-SQL Elements," %SelectByKeyEffDt, page 809

Chapter 2, "Meta-SQL Elements," %Update, page 809

String
Chapter 1, "PeopleCode Built-in Functions," Clean, page 87

Chapter 1, "PeopleCode Built-in Functions," ChunkText, page 86

Chapter 2, "Meta-SQL Elements," %COALESCE, page 758

Chapter 1, "PeopleCode Built-in Functions," Code, page 94

Chapter 1, "PeopleCode Built-in Functions," CompareStrings, page 100

Chapter 1, "PeopleCode Built-in Functions," CompareTextDiff, page 104

Chapter 2, "Meta-SQL Elements," %Concat, page 759

Chapter 1, "PeopleCode Built-in Functions," DBCSTrim, page 192

Chapter 1, "PeopleCode Built-in Functions," DBPatternMatch, page 192

Chapter 1, "PeopleCode Built-in Functions," DeChunkText, page 193

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

Chapter 1, "PeopleCode Built-in Functions," Exact, page 260

Chapter 1, "PeopleCode Built-in Functions," ExpandBindVar, page 270

Chapter 1, "PeopleCode Built-in Functions," ExpandEnvVar, page 271

Chapter 1, "PeopleCode Built-in Functions," Find, page 280

Chapter 1, "PeopleCode Built-in Functions," GetHTMLText, page 377

Chapter 1, "PeopleCode Built-in Functions," IsAlpha, page 457

Chapter 1, "PeopleCode Built-in Functions," IsAlphaNumeric, page 458

Chapter 1, "PeopleCode Built-in Functions," IsDigits, page 462

Chapter 1, "PeopleCode Built-in Functions," Left, page 477

Chapter 1, "PeopleCode Built-in Functions," Len, page 478

Chapter 1, "PeopleCode Built-in Functions," Lower, page 485

Chapter 1, "PeopleCode Built-in Functions," LTrim, page 486

Chapter 1, "PeopleCode Built-in Functions," NumberToDisplayString, page 519

Chapter 1, "PeopleCode Built-in Functions," NumberToString, page 523

Chapter 1, "PeopleCode Built-in Functions," Proper, page 540

Chapter 1, "PeopleCode Built-in Functions," Quote, page 549

Chapter 1, "PeopleCode Built-in Functions," Replace, page 569

Chapter 1, "PeopleCode Built-in Functions," Rept, page 570

Chapter 1, "PeopleCode Built-in Functions," Right, page 580

Chapter 1, "PeopleCode Built-in Functions," RTrim, page 588

Chapter 1, "PeopleCode Built-in Functions," String, page 666

Chapter 1, "PeopleCode Built-in Functions," Substitute, page 667

Chapter 1, "PeopleCode Built-in Functions," Substring, page 668

Chapter 1, "PeopleCode Built-in Functions," Upper, page 724

Chapter 2, "Meta-SQL Elements," %Abs, page 756

Chapter 2, "Meta-SQL Elements," %NumToChar, page 789

Chapter 2, "Meta-SQL Elements," %Substring, page 794

Chapter 2, "Meta-SQL Elements," %TrimSubstr, page 801

Chapter 2, "Meta-SQL Elements," %Upper, page 805

PeopleCode Built-in Functions Chapter 1

28 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Subrecords
Chapter 2, "Meta-SQL Elements," %SUBREC, page 794

Time Zone
Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123

Chapter 1, "PeopleCode Built-in Functions," ConvertTimeToBase, page 126

Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185

Chapter 1, "PeopleCode Built-in Functions," FormatDateTime, page 286

Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings, page 461

Chapter 1, "PeopleCode Built-in Functions," TimeToTimeZone, page 678

Chapter 1, "PeopleCode Built-in Functions," TimeZoneOffset, page 680

Chapter 3, "System Variables," %ClientTimeZone, page 814

Chapter 3, "System Variables," %ServerTimeZone, page 832

Trace Control
Chapter 1, "PeopleCode Built-in Functions," SetTracePC, page 641

Chapter 1, "PeopleCode Built-in Functions," SetTraceSQL, page 645

Transfers
Chapter 1, "PeopleCode Built-in Functions," AddKeyListItem, page 46

Chapter 1, "PeopleCode Built-in Functions," ClearKeyList, page 92

Chapter 1, "PeopleCode Built-in Functions," SetNextPage, page 628

Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683

Chapter 1, "PeopleCode Built-in Functions," TransferExact, page 687

Chapter 1, "PeopleCode Built-in Functions," TransferModeless, page 693

Chapter 1, "PeopleCode Built-in Functions," TransferNode, page 696

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

Chapter 1, "PeopleCode Built-in Functions," TransferPortal, page 701

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

See Also

Chapter 1, "PeopleCode Built-in Functions," Modal Transfers, page 19 and Chapter 1, "PeopleCode Built-in
Functions," Secondary Pages, page 23

Type Checking
Chapter 1, "PeopleCode Built-in Functions," IsUserNumber, page 476

Chapter 1, "PeopleCode Built-in Functions," ValueUser, page 725

Chapter 1, "PeopleCode Built-in Functions," IsAlpha, page 457

Chapter 1, "PeopleCode Built-in Functions," IsAlphaNumeric, page 458

Chapter 1, "PeopleCode Built-in Functions," IsDate, page 459

Chapter 1, "PeopleCode Built-in Functions," IsDateTime, page 460

Chapter 1, "PeopleCode Built-in Functions," IsDigits, page 462

Chapter 1, "PeopleCode Built-in Functions," IsNumber, page 471

Chapter 1, "PeopleCode Built-in Functions," IsTime, page 473

Chapter 1, "PeopleCode Built-in Functions," Max, page 497

Chapter 1, "PeopleCode Built-in Functions," Min, page 505

Chapter 1, "PeopleCode Built-in Functions," NumberToString, page 523

User Information
Chapter 3, "System Variables," %EmailAddress, page 818

Chapter 3, "System Variables," %EmployeeId, page 818

Chapter 3, "System Variables," %UserDescription, page 837

Chapter 3, "System Variables," %UserId, page 837

User Security
Chapter 1, "PeopleCode Built-in Functions," AllowEmplIdChg, page 55

Chapter 1, "PeopleCode Built-in Functions," Decrypt, page 199

Chapter 1, "PeopleCode Built-in Functions," Encrypt, page 245

Chapter 1, "PeopleCode Built-in Functions," ExecuteRolePeopleCode, page 265

Chapter 1, "PeopleCode Built-in Functions," ExecuteRoleQuery, page 266

PeopleCode Built-in Functions Chapter 1

30 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," ExecuteRoleWorkflowQuery, page 267

Chapter 1, "PeopleCode Built-in Functions," Hash, page 435

Chapter 1, "PeopleCode Built-in Functions," IsMenuItemAuthorized, page 467

Chapter 1, "PeopleCode Built-in Functions," IsUserInPermissionList, page 474

Chapter 1, "PeopleCode Built-in Functions," IsUserInRole, page 475

Chapter 1, "PeopleCode Built-in Functions," RevalidatePassword, page 578

Chapter 1, "PeopleCode Built-in Functions," SetAuthenticationResult, page 598

Chapter 1, "PeopleCode Built-in Functions," SetPasswordExpired, page 631

Chapter 1, "PeopleCode Built-in Functions," SwitchUser, page 670

Chapter 3, "System Variables," %AuthenticationToken, page 813

Chapter 3, "System Variables," %EmployeeId, page 818

Chapter 3, "System Variables," %ExternalAuthInfo, page 819

Chapter 3, "System Variables," %NavigatorHomePermissionList, page 824

Chapter 3, "System Variables," %PasswordExpired, page 827

Chapter 3, "System Variables," %PermissionLists, page 829

Chapter 3, "System Variables," %PrimaryPermissionList, page 830

Chapter 3, "System Variables," %ProcessProfilePermissionList, page 830

Chapter 3, "System Variables," %PSAuthResult, page 831

Chapter 3, "System Variables," %ResultDocument, page 831

Chapter 3, "System Variables," %Roles, page 832

Chapter 3, "System Variables," %RowSecurityPermissionList, page 832

Chapter 3, "System Variables," %SignonUserId, page 833

Chapter 3, "System Variables," %SignOnUserPswd, page 833

Chapter 3, "System Variables," %UserId, page 837

Validation
Chapter 1, "PeopleCode Built-in Functions," Error, page 253

Chapter 1, "PeopleCode Built-in Functions," IsMenuItemAuthorized, page 467

Chapter 1, "PeopleCode Built-in Functions," RevalidatePassword, page 578

Chapter 1, "PeopleCode Built-in Functions," SetCursorPos, page 605

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Chapter 1, "PeopleCode Built-in Functions," SetReEdit, page 635

Chapter 1, "PeopleCode Built-in Functions," Warning, page 734

Workflow
Chapter 1, "PeopleCode Built-in Functions," GenerateActGuideContentUrl, page 297

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuidePortalUrl, page 298

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuideRelativeUrl, page 300

Chapter 1, "PeopleCode Built-in Functions," GetWLFieldValue, page 432

Chapter 1, "PeopleCode Built-in Functions," MarkWLItemWorked, page 496

Chapter 1, "PeopleCode Built-in Functions," TriggerBusinessEvent, page 709

Chapter 3, "System Variables," %AllowNotification, page 811

Chapter 3, "System Variables," %AllowRecipientLookup, page 811

Chapter 3, "System Variables," %BPName, page 813

Chapter 3, "System Variables," %SMTPBlackberryReplyTo, page 833

Chapter 3, "System Variables," %SMTPGuaranteed, page 834

Chapter 3, "System Variables," %SMTPSender, page 834

Chapter 3, "System Variables," %WLInstanceID, page 837

Chapter 3, "System Variables," %WLName, page 837

XML
Chapter 1, "PeopleCode Built-in Functions," CancelPubHeaderXmlDoc, page 76

Chapter 1, "PeopleCode Built-in Functions," CancelPubXmlDoc, page 77

Chapter 1, "PeopleCode Built-in Functions," CancelSubXmlDoc, page 78

Chapter 1, "PeopleCode Built-in Functions," CreateSOAPDoc, page 165

Chapter 1, "PeopleCode Built-in Functions," CreateXmlDoc, page 168

Chapter 1, "PeopleCode Built-in Functions," GetArchPubHeaderXmlDoc, page 354

Chapter 1, "PeopleCode Built-in Functions," GetArchPubXmlDoc, page 354

Chapter 1, "PeopleCode Built-in Functions," GetArchSubXmlDoc, page 355

Chapter 1, "PeopleCode Built-in Functions," GetMessageXmlDoc, page 386

Chapter 1, "PeopleCode Built-in Functions," GetNRXmlDoc, page 395

PeopleCode Built-in Functions Chapter 1

32 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1, "PeopleCode Built-in Functions," GetPubHeaderXmlDoc, page 406

Chapter 1, "PeopleCode Built-in Functions," GetPubXmlDoc, page 407

Chapter 1, "PeopleCode Built-in Functions," GetSubXmlDoc, page 422

Chapter 1, "PeopleCode Built-in Functions," GetSyncLogData, page 424

Chapter 1, "PeopleCode Built-in Functions," InboundPublishXmlDoc, page 447

Chapter 1, "PeopleCode Built-in Functions," PublishXmlDoc, page 540

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubHeaderXmlDoc, page 571

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubXmlDoc, page 572

Chapter 1, "PeopleCode Built-in Functions," ReSubmitSubXmlDoc, page 573

Chapter 1, "PeopleCode Built-in Functions," ReValidateNRXmlDoc, page 577

Chapter 1, "PeopleCode Built-in Functions," SyncRequestXmlDoc, page 672

Chapter 1, "PeopleCode Built-in Functions," Transform, page 704

Chapter 1, "PeopleCode Built-in Functions," UpdateXmlDoc, page 723

PeopleCode Built-in Functions and Language Constructs

The following are the PeopleCode Built-In functions.

Abs

Syntax

Abs(x)

Description

 Use the Abs function to return a decimal value equal to the absolute value of a number x.

Parameters

Parameter Description

x Specify the number you want the decimal value for.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

Example

The example returns the absolute value of the difference between &NUM_1 and &NUM_2:

&RESULT = Abs(&NUM_1 - &NUM_2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Sign, page 649 and Chapter 2, "Meta-SQL Elements," %Abs,
page 756

AccruableDays

Syntax

AccruableDays(StartDate,EndDate,Accrual_Conv)

Description

Use the AccruableDays function to return the number of days during which interest can accrue in a given
range of time according to the Accrual_Conv parameter.

Parameters

Parameter Description

StartDate The beginning of the time period for determining the accrual. This parameter takes
a date value.

EndDate The end of the time period for determining the accrual. This parameter takes a date
value.

Accrual_Conv The accrual convention. This parameter takes either a number or a constant value.
Values for this parameter are:

Numeric Value Constant Value Description

0 %Accrual_30DPM 30/360: all months 30 days long
according to NASD rules for date
truncation

1 %Accrual_30DPME 30E/360: all months 30 days long
according to European rules for date
truncation

2 N/A 30N/360: all months but February are
30 days long according to SIA rules

PeopleCode Built-in Functions Chapter 1

34 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

3 %Accrual_Fixed360 Act/360: months have variable number
of days, but years have fixed 360 days

4 %Accrual_Fixed365 Act/365: months have variable number
of days, buy years have fixed 365 days

5 %Accrual_ActualDPY Act/Act: months and years have a
variable number of days

Returns

An integer representing a number of days.

See Also

Chapter 1, "PeopleCode Built-in Functions," AccrualFactor, page 34

AccrualFactor

Syntax

AccrualFactor(StartDate,EndDate,Accrual_Conv)

Description

Use the AccrualFactor function to compute a factor that's equal to the number of years of interest accrued
during a date range, according to Accrual_Conv parameter.

Parameters

Parameter Description

StartDate The beginning of the time period for determining the accrual. This parameter takes
a date value.

EndDate The end of the time period for determining the accrual. This parameter takes a date
value.

Accrual_Conv The accrual convention. This parameter takes either a number or constant value.
Values for this parameter are:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Numeric Value Constant Value Description

0 %Accrual_30DPM 30/360: all months 30 days long
according to NASD rules for date
truncation

1 %Accrual_30DPME 30E/360: all months 30 days long
according to European rules for date
truncation

2 N/A 30N/360: all months but February are
30 days long according to SIA rules

3 %Accrual_Fixed360 Act/360: months have variable number
of days, but years have fixed 360 days

4 %Accrual_Fixed365 Act/365: months have variable number
of days, buy years have fixed 365 days

5 %Accrual_ActualDPY Act/Act: months and years have a
variable number of days

Returns

A floating point number representing a number of years.

See Also

Chapter 1, "PeopleCode Built-in Functions," AccruableDays, page 33

Acos

Syntax

Acos(value)

Description

Use the Acos function to calculate the arccosine of the given value, that is, the size of the angle whose cosine
is that value.

PeopleCode Built-in Functions Chapter 1

36 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

value Any real number between -1.00 and 1.00 inclusive, the range of valid cosine
values. If the input value is outside this range, an error message appears at runtime
("Decimal arithmetic error occurred. (2,110)"). Adjust your code to provide a valid
input value.

Returns

A value in radians between 0 and pi.

Example

The following example returns the size in radians of the angle whose cosine is 0.5:

&MY_ANGLE = Acos(0.5);

See Also

Chapter 1, "PeopleCode Built-in Functions," Asin, page 57; Chapter 1, "PeopleCode Built-in Functions,"
Atan, page 58; Chapter 1, "PeopleCode Built-in Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in
Functions," Cot, page 139; Chapter 1, "PeopleCode Built-in Functions," Degrees, page 200; Chapter 1,
"PeopleCode Built-in Functions," Radians, page 550; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

ActiveRowCount

Syntax

ActiveRowCount(Scrollpath)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

 Use the ActiveRowCount function to return the number of active (non-deleted) rows for a specified scroll
area in the active page.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Note. This function remains for backward compatibility only. Use the ActiveRowCount Rowset class
property instead.

ActiveRowCount is often used to get a limiting value for a For statement. This enables you to loop through
the active rows of a scroll area, performing an operation on each active row. Rows that have been marked as
deleted are not affected in a For loop delimited by ActiveRowCount. If you want to loop through all the rows
of a scroll area, including deleted rows, use TotalRowCount.

Use ActiveRowCount with CurrentRowNumber to determine whether the user is on the last row of a record.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," ActiveRowCount

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

Returns

Returns a Number value equal to the total active (non-deleted) rows in the specified scroll area in the active
page.

Example

In this example ActiveRowCount is used to delimit a For loop through a level-one scroll:

&CURRENT_L1 = CurrentRowNumber(1);
&ACTIVE_L2 = ActiveRowCount(RECORD.ASSIGNMENT, &CURRENT_L1, RECORD.ASGN_HOME_HOST);
&HOME_HOST = FetchValue(RECORD.ASSIGNMENT, &CURRENT_L1,
ASGN_HOME_HOST.HOME_HOST, 1);
If All(&HOME_HOST) Then
 For &I = 1 To &ACTIVE_L2
 DeleteRow(RECORD.ASSIGNMENT, &CURRENT_L1, RECORD.ASGN_HOME_HOST, 1);
 End-For;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," CurrentRowNumber, page 175; Chapter 1, "PeopleCode Built-in
Functions," TotalRowCount, page 681 and Chapter 1, "PeopleCode Built-in Functions," For, page 286

PeopleCode Built-in Functions Chapter 1

38 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

AddAttachment

Syntax

AddAttachment(URLDestination,DirAndFilePrefix,FileType,UserFileName[, MaxSize [,
 PreserveCase[, UploadPageTitle[, AllowLargeChunks]]]])

Description

Use the AddAttachment function to upload one file from an end-user machine to a specified storage location.
To upload more than one file with a single function call, use the MAddAttachment function.

Important! It is the responsibility of the calling PeopleCode program to store the returned file name for
further use.

If a file exists at a particular place on a storage location and then another file with the same name is uploaded
to that same place on that same storage location, the original file will be silently overwritten by the new file.
If that is not the behavior you desire, it is recommended that you implement PeopleCode to guarantee the
ultimate uniqueness of either the name of the file at its place on the storage location or the name of its place
(the subdirectory) on the storage location.

You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If end users
experience problems in uploading files, ensure that they browse to the file they wish to upload rather than
attempting to manually enter the full path name of the file. This problem can manifest itself differently
depending on the browser used. For example, with some browser versions, the PeopleSoft page appears to be
in an infinite "Processing" state. Information is available on working with different browsers.

See My Oracle Support, "Troubleshooting Browser Limitations"

Additional information that is important to the use of AddAttachment can be found in the PeopleTools 8.52:
PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," File Name
Considerations.

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Attachments
with non-ASCII File Names.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

• The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Considerations
When Attaching Text Files.

• Because AddAttachment is interactive, it is known as a "think-time" function, and is restricted from use
in certain PeopleCode events.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restrictions
on Invoking Functions in Certain PeopleCode Events.

• Virus scanning can be performed on all files uploaded with the AddAttachment function only.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Setting Up
Virus Scanning.

Parameters

Parameter Description

URLDestination Specify the destination storage location for the file to be uploaded. This can be
either a URL identifier in the form URL.URL_ID, or a string. This is where the
file is transferred to.

Note. The URLDestination parameter requires forward slashes ("/"). Backward
slashes ("\") are not supported for this parameter.

Note. Oracle recommends that you do not use a URL of the form file://
file_name with the PeopleCode file processing functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndFilePrefix A directory and file name prefix. This is appended to the URLDestination to make
up the full URL when the file is transferred to an FTP server or, when the file
transferred to a database table, to make the file name unique.

Note. If the destination location is an FTP server, then it is very important whether
the value passed into a call of AddAttachment for the DirAndFilePrefix parameter
ends with a slash or not. If the value for the DirAndFilePrefix parameter ends with
a slash, then it will be appended to the value of the URLDestination and used to
indicate the relative (to the configured root directory of the FTP server) path name
of the directory in which the uploaded file will be stored. If the value for the
DirAndFilePrefix parameter does not end with a slash, then the portion of it prior
to its right-most slash will be appended to the value of the URLDestination and
used to indicate the relative (to the configured root directory of the FTP server)
path name of the directory in which the uploaded file will be stored, and the
portion after the right-most slash will be prepended to the name of the file that will
be created at the destination.

Note. Because the DirAndFilePrefix parameter is appended to the URL, it also
requires forward slashes ("/"). Backward slashes ("\") are not supported for this
parameter.

PeopleCode Built-in Functions Chapter 1

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

FileType The file extension as a string. Since this parameter is required, a value must be
specified; however, the value is currently ignored.

UserFileName Returns the name of the file on the source system.

Specify UserFileName as a string variable or a field reference in the form of [
recordname.]fieldname. You must supply the recordname only if the record field
and your PeopleCode program are in different record definitions.

AddAttachment returns the user-selected file name in this parameter, so its initial
value is ignored and it must not be specified as a string constant.

Note. The user-selected file name cannot be greater than 64 characters.

MaxSize Specify, in kilobytes, the maximum size of the attachment.

If you specify 0, it indicates "no limit," so any file size can be uploaded. The
default value of this parameter is 0.

Note. The system cannot check the size of the file selected by the end user until
that file has been uploaded to the web server.

PreserveCase Specify a Boolean value to indicate whether the case of the extension of the
specified file is preserved or not at the storage location; True, preserve the case,
False, convert the file name extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

Note. AddAttachment provides no indication of a conversion in the file name it
returns.

UploadPageTitle Specify a string value to be displayed on the File Upload page. This string is
embedded in the HTML above the file input box. The string can contain HTML
elements, and these are visible on the page. Only simple HTML elements should
be used, and they should only be incorporated to do basic formatting of the actual
data in the string.

Note. The parameter does not automatically handle localization issues. The string
passed into the function is the exact string embedded in the page. You and your
application are responsible for any translation issues.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

Parameter Description

AllowLargeChunks Specify a Boolean value to indicate whether to allow large chunks.

If the value specified in the Maximum Attachment Chunk Size field on the
PeopleTools Options page is larger than is allowed for retrieval, then the system
breaks the file upload into the largest sized chunks allowed. If AllowLargeChunks
is set to True, this behavior can be overridden so that it is possible for an end user
to upload a file in chunks that are too large for the system to retrieve. If
AllowLargeChunks is set to False, the system will use the largest size chunk that is
allowed for retrieval, or the configured chunk size, whichever is smaller.

Note. If the chunks are too big to be retrieved, then any file retrieval built-in
function, such as GetAttachment, will fail.

Note. The AllowLargeChunks parameter is only applicable when the storage
location is a database record. It has no impact when the storage location is an FTP
site or an HTTP repository, since attachments at those locations are never
chunked.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools
Utilities," PeopleTools Options.

This is an optional parameter.

The default value is False.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

PeopleCode Built-in Functions Chapter 1

42 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected or bad
reply from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

2 %Attachment_Cancelled File transfer didn't complete because
the operation was canceled by the end
user.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

6 %Attachment_FileExceedsMaxSize File exceeds maximum size, if
specified.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

PeopleCode Built-in Functions Chapter 1

44 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

11 %Attachment_NoFileName File transfer failed because no file
name was specified.

12 %Attachment_FileNameTooLong File transfer failed because name of
selected file is too long. Maximum is
64 characters.

13 %Attachment_ViolationFound File violation detected by virus scan
engine.

14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError Virus scan engine connection error.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45

Numeric Value Constant Value Description

21 %Attachment_Rejected File transfer failed because the file
extension is not allowed.

Example

&retcode = AddAttachment(URL.MYFTP, ATTACHSYSFILENAME, "", ATTACHUSERFILE, 0);

An example of the AddAttachment function is provided in the demonstration application delivered in the
FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the PeopleTools
Test Utilities page.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Using the
PeopleTools Test Utilities Page.

See Also

Chapter 1, "PeopleCode Built-in Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in
Functions," CopyAttachments, page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment,
page 200; Chapter 1, "PeopleCode Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode
Built-in Functions," GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions,"
MAddAttachment, page 486; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

AddEmailAddress

Syntax

AddEmailAddress(Type,Address [, Primary])

Description

Use the AddEmailAddress function to add an email address for the current user. You can only add one email
address of a specific type for a user. If you try to add an email address for a type that is already associated
with an email address, you receive an error.

Parameters

Parameter Description

Type Specify the type of email address being added. This parameter takes a string value.
The valid values are:

PeopleCode Built-in Functions Chapter 1

46 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Parameter Description

Address Specify the email address that you want to add as a string.

Primary Specify whether this email address is the primary address for the user. This
parameter takes a Boolean value: True, this email address is the primary email
address, False otherwise. If not specified, the default is False.

Returns

None.

See Also

Chapter 1, "PeopleCode Built-in Functions," ChangeEmailAddress, page 80; Chapter 1, "PeopleCode Built-
in Functions," DeleteEmailAddress, page 204 and Chapter 1, "PeopleCode Built-in Functions,"
MarkPrimaryEmailAddress, page 495

AddKeyListItem

Syntax

AddKeyListItem(field,value)

Description

 Use the AddKeyListItem to add a new key field and its value to the current list of keys. It enables
PeopleCode to help users navigate through related pages without being prompted for key values. A common
use of AddKeyListItem is to add a field to a key list and then transfer to a page which uses that field as a key.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Parameters

Parameter Description

field The field to add to the key list.

value The value of the added key field used in the search.

Returns

Returns a Boolean value indicating whether it completed successfully.

Example

The following example creates a key list using AddKeyListItem and transfers the user to a page named
VOUCHER_INQUIRY_FS.

AddKeyListItem(VNDR_INQ_VW_FS.BUSINESS_UNIT, ASSET_ACQ_DET.BUSINESS_UNIT_AP);
AddKeyListItem(VNDR_INQ_VW_FS.VOUCHER_ID, ASSET_ACQ_DET.VOUCHER_ID);
TransferPage("VOUCHER_INQUIRY_FS");

See Also

Chapter 1, "PeopleCode Built-in Functions," ClearKeyList, page 92; Chapter 1, "PeopleCode Built-in
Functions," TransferPage, page 699 and Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683

AddSystemPauseTimes

Syntax

AddSystemPauseTimes(StartDay,StartTime,EndDay,EndTime)

Description

Use the AddSystemPauseTimes function to set when pause times occur on your system by adding a row to
the system pause-times tables.

This function is used in the PeopleCode for the Message Monitor. Pause times are set up in the Message
Monitor.

PeopleCode Built-in Functions Chapter 1

48 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

StartDay Specify a number from 0-6. Values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Parameter Description

StartTime Specify a time, in seconds, since midnight.

EndDay Specify a number from 0-6. Values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Parameter Description

EndTime Specify a time, in seconds, since midnight.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

Returns

A Boolean value: True if the system pause time specified was added, False otherwise.

Example

Declare Function SetTime PeopleCode REFRESH_BTN FieldFormula;

Component Boolean &spt_changed;

Function GetSecond(&time) Returns number ;
 Return Hour(&time) * 3600 + Minute(&time) * 60 + Second(&time);
End-Function;

/* initialize; */

STARTDAY = "0";
AMM_STARTTIME = SetTime(0);
ENDDAY = "0";
AMM_ENDTIME = SetTime(0);

If DoModal(Panel.AMM_ADD_SPTIMES, MsgGetText(117, 13, ""), - 1, - 1) = 1 Then
 If AddSystemPauseTimes(Value(STARTDAY), GetSecond(AMM_STARTTIME), Value⇒
(ENDDAY), GetSecond(AMM_ENDTIME)) Then
 &spt_changed = True;
 DoSave();
 Else
 MessageBox(16, MsgGetText(117, 13, ""), 117, 14, "");
 End-If;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," DeleteSystemPauseTimes, page 211

PeopleTools 8.52: Integration Broker Service Operations Monitor, "Understanding the Integration Broker
Service Operations Monitor"

AddToDate

Syntax

AddToDate(date,num_years,num_months,num_days)

Description

Use the AddToDate function to add the specified number of years, months, and days to the date provided.

Suppose, for example, that you want to find a date six years from now. You could not just multiply 6 times
365 and add the result to today's date, because of leap years. And, depending on the current year, there may
be one or two leap years in the next six years. AddToDate takes care of this for you.

PeopleCode Built-in Functions Chapter 1

50 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

You can subtract from dates by passing the function negative numbers.

Considerations Using AddToDate

When you are adding one month to the date provided, and the date provided is the last day of a month, and
the next month is shorter, the returned result is the last day of the next month.

For example, in the following, &NewDate is 29/02/2004:

&NewDate = AddToDate("31/01/2004", 0, 1, 0);

When you are adding one month to the date provided, and the date provided is the last day of a month, and
the next month is longer, the returned result is not the last day of the next month.

For example, in the following, &NewDate is 29/03/2004.

&NewDate = AddToDate("29/02/2004", 0, 1, 0)

Parameters

Parameter Description

date The input date to be adjusted.

num_years The number of years by which to adjust the specified date.num_years can be a
negative number.

num_months The number of months by which to adjust the specified date. This parameter can
be a negative number.

num_days The number of days by which to adjust the specified date. This parameter can be a
negative number.

Returns

Returns a Date value equal to the original date plus the number of years, months, and days passed to the
function.

Example

The following example finds the date one year, three months, and 16 days after a field called BEGIN_DT:

AddToDate(BEGIN_DT, 1, 3, 16);

This example finds the date two months ago prior to BEGIN_DT:

AddToDate(BEGIN_DT, 0, -2, 0);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

See Also

Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode Built-in
Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days, page 190; Chapter 1,
"PeopleCode Built-in Functions," Days360, page 190; Chapter 1, "PeopleCode Built-in Functions," Days365,
page 191; Chapter 1, "PeopleCode Built-in Functions," Month, page 507 and Chapter 1, "PeopleCode Built-in
Functions," Weekday, page 736

AddToDateTime

Syntax

AddToDateTime(datetime,years, months, days,hours,minutes,seconds)

Description

Use the AddToDateTime function to add the specified number of years, months, days, hours, seconds, and
minutes to the datetime provided. You can subtract from datetimes by passing the function negative numbers.

Parameters

Parameter Description

datetime The initial Datetime value.

years An integer representing the number of years to add to datetime.

 months An integer representing the number of months to add to datetime.

days An integer representing the number of days to add to datetime.

hours An integer representing the number of hours to add to datetime.

minutes An integer representing the number of minutes to add to datetime.

seconds An integer representing the number of seconds to add to datetime.

Returns

A Datetime value equal to the original date plus the number of years, months, days, hours, minutes, and
seconds passed to the function.

Example

The following example postpones an interview scheduled in the INTRTime field by two days and two hours:

PeopleCode Built-in Functions Chapter 1

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

INTRTIME = AddToDateTime(INTRTIME, 0, 0, 2, 2, 0, 0);

See Also

Chapter 1, "PeopleCode Built-in Functions," AddToTime, page 52; Chapter 1, "PeopleCode Built-in
Functions," DateValue, page 188; Chapter 1, "PeopleCode Built-in Functions," DateTimeValue, page 186 and
Chapter 1, "PeopleCode Built-in Functions," TimeValue, page 679

AddToTime

Syntax

AddToTime(time,hours,minutes, seconds)

Description

 Use the AddToTime function to add hours,minutes, and seconds to time. This function returns the result as a
Time value. To subtract from time, use negative numbers for hours,minutes, and seconds. The resulting value
is always adjusted such that it represents an hour less than 24 (a valid time of day.)

Parameters

Parameter Description

time A time value that you want to subtract from or add to.

hours An integer representing the number of hours to add to time.

minutes An integer representing the number of minutes to add to time.

seconds An integer representing the number of seconds to add to time.

Returns

A Time value equal to time increased by the number of hours, minutes, and seconds passed to the function.

Example

Assume that a time, &BREAKTime, is 0:15:00. The following moves the time &BREAKTime back by one
hour, resulting in 23:15:00:

&BREAKTime = AddToTime(&BREAKTime, -1, 0, 0);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

See Also

Chapter 1, "PeopleCode Built-in Functions," AddToDateTime, page 51; Chapter 1, "PeopleCode Built-in
Functions," DateValue, page 188; Chapter 1, "PeopleCode Built-in Functions," DateTimeValue, page 186 and
Chapter 1, "PeopleCode Built-in Functions," TimeValue, page 679

All

Syntax

All(fieldlist)

Where fieldlist is an arbitrary-length list of field names in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

 Use the All function to verify if a field contains a value, or if all the fields in a list of fields contain values. If
any of the fields are Null, then All returns False.

A blank character field, or a zero (0) numeric value in a required numeric field is considered a null value.

Related Functions

 None Checks that a field or list of fields have no value.

 AllOrNone Checks if either all the field parameters have values, or none of them have
values. Use this in examples where if the user fills in one field, she must fill
in all the other related values.

 OnlyOne Checks if exactly one field in the set has a value. Use this when the user
must fill in only one of a set of mutually exclusive fields.

 OnlyOneOrNone Checks if no more than one field in the set has a value. Use this in examples
when a set of fields is both optional and mutually exclusive; that is, if the
user can put a value into one field in a set of fields, or leave them all empty.

Returns

Returns a Boolean value based on the values in fieldlist. The All function returns True if all of the specified
fields have a value; it returns False if any one of the fields does not contain a value.

PeopleCode Built-in Functions Chapter 1

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

 The All function is commonly used in SaveEdit PeopleCode to ensure that a group of related fields are all
entered. For example:

If All(RETURN_DT, BEGIN_DT) and
 8 * (RETURN_DT - BEGIN_DT) (DURATION_DAYS * 8 + DURATION_HOURS)
Then
 Warning MsgGet(1000, 1, "Duration of absence exceeds standard hours for number⇒
 of days absent.");
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," AllOrNone, page 54; Chapter 1, "PeopleCode Built-in
Functions," None, page 517; Chapter 1, "PeopleCode Built-in Functions," OnlyOne, page 531; Chapter 1,
"PeopleCode Built-in Functions," OnlyOneOrNone, page 532; Chapter 1, "PeopleCode Built-in Functions,"
SetDefault, page 619 and Chapter 1, "PeopleCode Built-in Functions," SetDefaultAll, page 620

AllOrNone

Syntax

AllOrNone(fieldlist)

Where fieldlist is an arbitrary-length list of field references in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

The AllOrNone function takes a list of fields and returns True if either of these conditions is true:

• All of the fields have values (that is, are not Null).

• None of the fields has a value.

For example, if field1 = 5, field2 = "Mary", and field3 = null, AllOrNone returns False.

This function is useful, for example, where you have a set of page fields, and if any one of the fields contains
a value, then all of the other fields are required also.

A blank character field, or a zero (0) numeric value in a required numeric field is considered a null value.

Related Functions

 All Checks to see if a field contains a value, or if all the fields in a list of fields
contain values. If any of the fields is Null, then All returns False.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

 None Checks that a field or list of fields have no value. None is the opposite of
All.

 OnlyOne Checks if exactly one field in the set has a value. Use this when the user
must fill in only one of a set of mutually exclusive fields.

 OnlyOneOrNone Checks if no more than one field in the set has a value. Use this in cases
when a set of fields is both optional and mutually exclusive; that is, if the
user can put a value into one field in a set of fields, or leave them all empty.

Returns

Returns a Boolean value: True if all of the fields in fieldlist or none of the fields in fieldlist has a value, False
otherwise.

Example

You could use AllOrNone as follows:

If Not AllOrNone(STREET1, CITY, STATE) Then
 WinMessage("Address should consist of at least Street (Line 1), City, State,⇒
 and Country.");
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," All, page 53; Chapter 1, "PeopleCode Built-in Functions," None,
page 517; Chapter 1, "PeopleCode Built-in Functions," OnlyOne, page 531 and Chapter 1, "PeopleCode Built-
in Functions," OnlyOneOrNone, page 532

AllowEmplIdChg

Syntax

AllowEmplIdChg(is_allowed)

Description

By default, the Component Processor does not allow an user to make any changes to a record if a record
contains an EMPLID key field, EMPLID is a required field, and its value matches the value of the user's
EMPLID. In some situations, though, such changes are warranted. For example, you would want employees
to be able to change information about themselves when entering time sheet data.

 The AllowEmplIdChg function enables the user to change records whose key matches the user's own
EMPLID, or prevents the user from changing these records. The function takes a single Boolean parameter
that when set to True allows the employee to update their own data. When the parameter is set to False, the
employee is prevented from updating this data.

PeopleCode Built-in Functions Chapter 1

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

After permission is granted, it stays through the life of the component, not the page. After a user switches to
another component, the default value (not being able to make changes) is reapplied.

Parameters

Parameter Description

is_allowed A Boolean value indicating whether the user is permitted to change the user's own
data.

Returns

Optionally returns a Boolean value: True if the function executed successfully, False otherwise.

Example

If Substring (%Page, 1, 9) = Substring(PAGE.TimeSHEET_PNL_A, 1, 9) Then
 AllowEmplIdChg(true);
End-if;

Amortize

Syntax

Amortize(intr,pb,pmt,pmtnbr,payintr,payprin,balance)

Description

 Use the Amortize function to compute the amount of a loan payment applied towards interest (payintr), the
amount of the payment applied towards principal (payprin), and the remaining balance balance, based on the
principal balance (pb) at the beginning of the loan term, the amount of one payment pmt, the interest rate
charged during one payment period (intr), and the payment number pmtnbr.

Parameters

Note that payintr, payprin, and balance are "outvars": you must pass variables in these parameters, which the
Amortize function then fills with values. The remaining parameters are "invars" containing data the function
needs to perform its calculation.

Parameter Description

intr Number indicating the percent of interest charged per payment period.

pb Principal balance at the beginning of the loan term (generally speaking, the
amount of the loan).

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Parameter Description

pmt The amount of one loan payment.

pmtnbr The number of the payment.

payintr The amount of the payment paid toward interest.

payprin The amount of the payment paid toward principal.

balance The remaining balance after the payment.

Returns

None.

Example

Suppose you want to calculate the principal, interest, and remaining balance after the 24th payment on a loan
of $15,000, at an interest rate of 1% per loan payment period, and a payment amount of $290.

&INTRST_RT=1;
&LOAN_AMT=15000;
&PYMNT_AMNT=290;
&PYMNT_NBR=24;
Amortize(&INTRST_RT, &LOAN_AMT, &PYMNT_AMNT, &PYMNT_NBR, &PYMNT_INTRST, &PYMNT_⇒
PRIN, &BAL);
&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" | String(&PYMNT_PRIN) | " ⇒
 Bal=" | String(&BAL);

This example sets &RESULT equal to "Int=114 Prin=176 Bal=11223.72".

Asin

Syntax

Asin(value)

Description

Use the Asin function to calculate the arcsine of the given value, that is, the size of the angle whose sine is
that value.

PeopleCode Built-in Functions Chapter 1

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

value Any real number between -1.00 and 1.00 inclusive, the range of valid sine values.
If the input value is outside this range, an error message appears at runtime
("Decimal arithmetic error occurred. (2,110)"). Adjust your code to provide a valid
input value.

Returns

A value in radians between -pi/2 and pi/2.

Example

The following example returns the size in radians of the angle whose sine is 0.5:

&MY_ANGLE = Asin(0.5);

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Atan, page 58; Chapter 1, "PeopleCode Built-in Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in
Functions," Cot, page 139; Chapter 1, "PeopleCode Built-in Functions," Degrees, page 200; Chapter 1,
"PeopleCode Built-in Functions," Radians, page 550; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

Atan

Syntax

Atan(value)

Description

Use the Atan function to calculate the arctangent of the given value, that is, the size of the angle whose
tangent is that value.

Parameters

Parameter Description

value Any real number.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 59

Returns

A value in radians between -pi/2 and pi/2.

Example

The following example returns the size in radians of the angle whose tangent is 0.5:

&MY_ANGLE = Atan(0.5);

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in
Functions," Cot, page 139; Chapter 1, "PeopleCode Built-in Functions," Degrees, page 200; Chapter 1,
"PeopleCode Built-in Functions," Radians, page 550; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

BlackScholesCall

Syntax

BlackScholesCall(Asset_Price,Strike_Price,Interest_Rate,Years,Volatility)

Description

Use the BlackScholesCall function to return the value of a call against an equity underlying according to the
Black-Scholes equations.

Parameters

Parameter Description

Asset_Price The asset price. This parameter takes a decimal value.

Strike_Price The strike price. This parameter takes a decimal value.

Interest_Rate The risk-free interest rate. This parameter takes a decimal value.

Years The number of years to option expiration. This parameter takes a number value
(decimal).

Volatility The volatility of underlying. This parameter takes a decimal value.

PeopleCode Built-in Functions Chapter 1

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A number representing the value of a call against an equity.

See Also

Chapter 1, "PeopleCode Built-in Functions," BlackScholesPut, page 60

BlackScholesPut

Syntax

BlackScholesPut(Asset_Price,Strike_Price,Interest_Rate,Years,Volatility)

Description

Use the BlackScholesPut function to return the value of a put against an equity underlying according to the
Black-Scholes equations.

Parameters

Parameter Description

Asset_Price The asset price. This parameter takes a decimal value.

Strike_Price The strike price. This parameter takes a decimal value.

Interest_Rate The risk-free interest rate. This parameter takes a decimal value.

Years The number of years to option expiration. This parameter takes a number
(decimal) value.

Volatility The volatility of underlying. This parameter takes a decimal value.

Returns

A number representing the value of a call against an equity.

See Also

Chapter 1, "PeopleCode Built-in Functions," BlackScholesCall, page 59

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

BootstrapYTMs

Syntax

BootstrapYTMs(Date,MktInst,Accrual_Conv)

Description

Use the BootstrapYTMs function to create a zero-arbitrage implied zero-coupon curve from a yield-to-
maturity curve using the integrated discount factor method, based on the Accrual_­Conv.

Parameters

Parameter Description

Date The trading date of the set of market issues. This parameter takes a date value.

MktInst The market instrument properties. This parameter takes an array of array of
number. The elements in the array specify the following:

Elements Description

1 tenor in days

2 yield in percent

3 price per 100 par

4 coupon rate (zero for spot instruments)

5 frequency of coupon payments

6 unit of measure for coupon frequency, 0 for days, 1 for
months, and 2 for years

7 coefficient a of a curve interpolating the dataset

8,9,10 coefficients b,c, and d of a curve interpolating the
dataset

PeopleCode Built-in Functions Chapter 1

62 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

An array of array of number. The elements in the array have the same type as the elements in the array for the
MktInst parameter.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

Break

Syntax
Break

Description

Use the Break statement to terminate execution of a loop or an Evaluate function. The program resumes
execution immediately after the end of the statement. If the loop or Evaluate is nested in another statement,
only the innermost statement is terminated.

Parameters

None.

Example

In the following example, Break is used to terminate the Evaluate statement, while staying within the
outermost If statement:

If CURRENCY_CD = PriorEffdt(CURRENCY_CD) Then
 Evaluate ACTION
 When = "PAY"
 If ANNUAL_RT = PriorEffdt(ANNUAL_RT) Then
 Warning MsgGet(1000, 27, "Pay Rate Change action is chosen and Pay⇒
 Rate has not been changed.");
 End-if;
 Break;
 When = "DEM"
 If ANNUAL_RT >= PriorEffdt(ANNUAL_RT) Then
 Warning MsgGet(1000, 29, "Demotion Action is chosen and Pay Rate has⇒
 not been decreased.");
 End-if;
 Break;
 When-other
 End-evaluate;
 WinMessage("This message appears after executing either of the BREAK⇒
 statements or after all WHEN statements are false");
End-if;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

See Also

Chapter 1, "PeopleCode Built-in Functions," Evaluate, page 259; Chapter 1, "PeopleCode Built-in Functions,"
Exit, page 268; Chapter 1, "PeopleCode Built-in Functions," For, page 286 and Chapter 1, "PeopleCode Built-
in Functions," While, page 737

BulkDeleteField

Syntax

BulkDeleteField(ProjectName,Field.FieldName [, ExclProj])

Description

Use the BulkDeleteField function to delete fields from records and pages, as well as the associated
PeopleCode programs and modify the SQL either on the record, or, if the record is a subrecord, on the parent
records.

Note. You must have the role Peoplesoft Administrator assigned to your UserId in order to use this function.

If you specify a project that contains objects such as fields which have an upgrade action of delete, those
objects are ignored.

The field is removed from the page regardless of where the field exists on the page, whether on a grid or not.

If the field is in the SELECT clause of the SQL, the removal is straightforward. However, if the field is also
used in a WHERE clause, or if the field is the only item in the SELECT clause, the record isn't modified and
is instead inserted into a project called BLK_FieldName. The record should be examined and any additional
changes made as necessary.

Deleting fields from records and pages does not remove the field definition itself and it does not remove the
field from other areas, such as Projects, Crystal Reports, or message definitions.

In addition, this function does not delete the references to the field in the PeopleCode. You must manually
remove the references to the deleted field. Use the Find In. . . tool to search for the field name you deleted.

Note. Because performing this operation changes records, you must subsequently rebuild the project (alter
tables).

Using the Log File

Information about this operation is stored in a log field. The directory where the log file is placed depends on
where the function is run from:

• If the function is run in two-tier, the log file is located at PS_CFG_HOME /BulkOps.txt. This is also the
default location if the system cannot find the other paths.

• If the function is run from an application server, the log file is located at:

PS_CFG_HOME /APPSERV/Domain_Name/LOGS/BulkOps.txt

PeopleCode Built-in Functions Chapter 1

64 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• If the function is run from an Application Engine program, the log file is written to the process' output log
directory, that is:

PS_CFG_HOME /APPSERV/prcs/Domain_Name/log_output/Process_Name_Instance/BulkOps.txt

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
a currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation is
recommended. These operations accommodate errors and continue processing, logging the overall progress of
the operation.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Considerations Using the Exclusion Project

If you specify ExclProj, the following items that are both in ProjectName and ExclProj are not changed, that
is, the field specified is not removed from these items:

• pages

• records

• associated SQL with records of type View

• any PeopleCode associated with those items.

Individual SQL or PeopleCode items are not ignored by themselves, only as associated with records or pages.

Parameters

Parameter Description

ProjectName The name of a project that is the source of records and pages to use.

Note. When passing the project name as a parameter, if the project contains
definitions with an upgrade action of delete, the system ignores those definitions.

FieldName The name of the field to be deleted. This name must be prefixed with the reserved
word Field.

ExclProj The name of a project that has pages that should be ignored by this function.

Returns

A constant value. The values are:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example

&pjm = "MYPROJ";
&ret = BulkDeleteField(&pjm, Field.OrgId, "EXCLPROJ");

If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "BulkDeleteField succeeded");
Else
MessageBox(0, "Metadata Fn Status", 0, 0, "BulkDeleteField failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," BulkInsertField, page 65 and Chapter 1, "PeopleCode Built-in
Functions," BulkModifyPageFieldOrder, page 68

PeopleTools 8.52: PeopleCode Developer's Guide, "Debugging Your Application," Using the Find In Feature

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Performing Bulk Operations"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Administering Data"

BulkInsertField

Syntax

BulkInsertField(ProjectName,Field.FieldName, ModelName,ClonePCode [, ExclProj])

Description

Use the BulkInsertField function to insert a source field into records and pages in a project if and only if the
model field specified by ModelName exists on those records and pages.

If you specify a project that contains objects such as fields which have an upgrade action of delete, those
objects are ignored.

Note. You must have the role Peoplesoft Administrator assigned to your UserId in order to use this function.

Using the Log File

Information about this operation is stored in a log field. The directory where the log file is placed depends on
where the function is run from:

PeopleCode Built-in Functions Chapter 1

66 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• If the function is run in two-tier, the log file is located at PS_HOME/BulkOps.txt. This is also the default
location if the system cannot find the other paths.

• If the function is run from an application server, the log file is located here:

PS_CFG_HOME /APPSERV/Domain_Name/LOGS/BulkOps.txt

• If the function is run from an Application Engine program, the log file is written to the process' output log
directory, that is:

PS_CFG_HOME /APPSERV/prcs/Domain_Name/log_output/Process_Name_Instance/BulkOps.txt

Considerations Inserting Fields into Records

In records, the source field is assigned the same record field properties as the model field on each record, and
is inserted directly after the model field.

If the model field has a prompt table, a prompt table is created for the source field using the name of the
source field with TBL appended to it.

If the record is either a SQL View or Dynamic View type, the associated SQL is modified by having the
SELECT clause expanded to include the new field.

If the record is a subrecord, the parent records of type SQL View or Dynamic View that contain this
subrecord are updated.

If the SQL contains the model field in the WHERE clause, or the SQL is complex, the associated record is
inserted into a project called BLK_FieldName. You should examine this record and make any necessary
changes.

If the model field has PeopleCode associated with it on the record or in a component, and ClonePCode has
been set to True, this PeopleCode is cloned to the new field, with all references to the model field changed to
refer to the new field.

Note. Because using this function changes records that are used to build application tables, you must rebuild
(alter) the specified project before these changes can be used.

Considerations Inserting Fields into Pages

If the model field is in a grid, the system inserts the new field into the grid next to the model field and assigns
it the same page field properties.

If the model field is not in a grid, the system inserts the new field onto the page to the right of the model field
(in the first open space) and assigns it the same page field properties. If the system detects a questionable field
position, it inserts the page into a project called BLK_FieldName. The page will work as-is, however, the
GUI layout may not be optimal, so you should examine these pages by hand.

The page field name property isn't cloned if it exists on the model field. Instead, the field name of the new
field is used, since the page field name should be a unique identifier for page elements.

Note. If the project you specified only contained pages and not records, you do not need to rebuild the project
after using this function. The changes take affect when the component containing the page is reloaded.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation is
recommended. These operations accommodate errors and continue processing, logging the overall progress of
the operation.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Considerations Using the Exclusion Project

If you specify ExclProj, the following items that are both in ProjectName and ExclProj are not changed, that
is, the field specified is not inserted to these items:

• pages

• records

• associated SQL with records of type View

• any PeopleCode associated with those items.

Individual SQL or PeopleCode items are not ignored by themselves, only as associated with records or pages.

Parameters

Parameter Description

ProjectName The name of a project that is the source of records and pages to use.

Note. When passing the project name as a parameter, if the project contains
definitions with an upgrade action of delete, the system ignores those definitions.

FieldName The name of the field to be inserted. This name must be prefixed with the reserved
word Field.

ModelName The name of a field on which to model the inserted field. Attributes are cloned
from it for records and pages, PeopleCode is modified, and SQL inserted.

ClonePCode Specify whether to clone the PeopleCode from the model to this field. This
parameter takes a Boolean value: True, clone the PeopleCode programs, False, do
not.

ExclProj The name of a project that has pages that should be ignored by this function.

PeopleCode Built-in Functions Chapter 1

68 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example

&pjm = "MYPROJ";

&ret = BulkInsertField(&pjm, Field.OrgId, Field.DeptId, True, "EXCLPROJ");

If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "BulkInsertField succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "BulkInsertField failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," BulkModifyPageFieldOrder, page 68 and Chapter 1,
"PeopleCode Built-in Functions," BulkDeleteField, page 63

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Performing Bulk Operations"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Administering Data"

BulkModifyPageFieldOrder

Syntax

BulkModifyPageFieldOrder({ProjectName | PageList}, ColNames,RequireAll, [
ColWidths])

Description

Use the BulkModifyPageFieldOrder function to reorder the grid columns as specified by ColNames. If
ColWidths is specified, the columns are also resized. This can also be used to modify a single columns width.

Note. You must have the role Peoplesoft Administrator assigned to your UserId in order to use this function.

If you specify a project name as a parameter, and if that project contains objects such as fields which have an
upgrade action of delete, those objects are ignored.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69

The reordering algorithm "bunches" these fields together at the first instance of any of these fields in a target
page grid, and forces the remaining fields into the order specified.

This function only reorders fields inside a grid.

If the fields occur twice or more in a grid, from two or more records, such as work records, the fields are
bunched together in record groupings before being sorted into the order specified. For example, the two
records ABS_HIST and PERSONAL_HISTORY both contain the fields DURATION_DAYS and
DURATION_HOURS. The following is an example of how the records are fields would be bunched together
first:

• ABS_HIST, DURATION_DAYS

• ABS_HIST, DURATION_HOURS

• PERSONAL_HISTORY, DURATION_DAYS

• PERSONAL_HISTORY, DURATION_HOURS

Note. These changes take affect after components are reloaded.

Using the Log File

Information about this operation is stored in a log field. The directory where the log file is placed depends on
where the function is run from:

• If the function is run in two-tier, the log file is located at PS_CFG_HOME /BulkOps.txt. This is also the
default location if the system cannot find the other paths.

• If the function is run from an application server, the log file is located here:

PS_CFG_HOME /APPSERV/Domain_Name/LOGS/BulkOps.txt

• If the function is run from an Application Engine program, the log file is written to the process' output log
directory, that is:

PS_CFG_HOME /APPSERV/prcs/Domain_Name/log_output/Process_Name_Instance/BulkOps.txt

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation is
recommended. These operations accommodate errors and continue processing, logging the overall progress of
the operation.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

PeopleCode Built-in Functions Chapter 1

70 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

ProjectName | PageList Specify either the name of a project that is the source of pages to use or an array of
page names.

Note. When passing the project name as a parameter, if the project contains
definitions with an upgrade action of delete, the system ignores those definitions.

ColNames Specify an array of string that indicate which fields and the desired order of those
fields.

RequireAll Specify whether all the fields in ColNames must be present before changes are
made or not. This parameter takes a Boolean value: True, all fields must be
present.

ColWidths Specify an array of number that gives the pixel widths of the grid columns. Use a -
1 to indicate that the width of a column shouldn't change.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example

Local Array of String &ColOrder;
Local Array of Number &ColWidth;
Local String &pjm, &ret;

&pjm = "MYPROJ";
&ColWidth = CreateArray(50, 100, -1);
&ColOrder = CreateArray("DEPTID", "ORGID", "PROJECT");

&ret = BulkModifyPageFieldOrder(&pjm, &ColOrder, True, &ColWidth);

If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "BulkModifyPageFieldOrder⇒
 succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "BulkModifyPageFieldOrder⇒
 failed");
End-If;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

See Also

Chapter 1, "PeopleCode Built-in Functions," BulkInsertField, page 65 and Chapter 1, "PeopleCode Built-in
Functions," BulkDeleteField, page 63

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Performing Bulk Operations"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Administering Data"

BulkUpdateIndexes

Syntax

BulkUpdateIndexes([StringFieldArray])

Description

Use BulkUpdateIndexes to update indexes (PSINDEXDEFN table) for records that contain a field whose
NotUsed setting has changed.

A field whose NotUsed flag has been set to True does not show up in indexes. The only way to modify a
field's NotUsed setting is through an API call such as in the following example:

SetDBFieldNotUsed(FIELD.OrgId, True);

The indexes of records that contain this field need to be updated to reflect the new settings.

Information about this operation can be logged by turning on PeopleCode tracing of internal functions (value
256.)

Considerations Using this Function

Do not invoke this function from runtime pages, as it modifies all records, including the records used to
support the page it is invoked from. This function should be invoked from a Application Engine program.

Note. If you do call this function from a page the operation completes successfully, but the page returns an
error message. Switching to a new component clears up this error, however, any changes not saved to the
database are lost.

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation is
recommended. These operations accommodate errors and continue processing, logging the overall progress of
the operation.

Calling this function without any parameter rebuilds the indexes for all records, an operation that may take
hours. By indicating a list of fields whose NotUsed flag has changed, only the affected records have their
indexes updated, reducing the time required to run this function.

PeopleCode Built-in Functions Chapter 1

72 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

StringFieldArray Specify an array of field names (as strings), such as DEPTID, representing the
fields whose NotUsed flag has been modified. Only the records containing these
fields are updated.

If you do not specify a value for this parameter, the indexes for all records are
rebuilt.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example

The following example uses the function without the optional array of field names:

&ret = BulkUpdateIndexes();
If (&ret = %MDA_Success) Then
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes succeeded");
Else
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes failed");
End-If;

The following example uses the function with an array of two field names passed to it:

&ret = BulkUpdateIndexes(CreateArray("DEPTID","PROJECT"));
If (&ret = %MDA_success) Then
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes succeeded");
Else
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," BulkDeleteField, page 63; Chapter 1, "PeopleCode Built-in
Functions," BulkInsertField, page 65 and Chapter 1, "PeopleCode Built-in Functions,"
BulkModifyPageFieldOrder, page 68

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 73

CallAppEngine

Syntax

CallAppEngine(applid [, statereclist,processinstance]);

Where statereclist is list of record objects in the form:

&staterecord1 [, &staterecord2] . . .

There can be only as many record objects in statereclist as there are state records for the Application Engine
program. Additional record objects are ignored.

Description

Use the CallAppEngine function to start the Application Engine program named applid. This is how to start
your Application Engine programs synchronously from a page. (Prior to PeopleTools 8, you could do only
this using the RemoteCall function.) Normally, you won't run Application Engine programs from PeopleCode
in this manner. Rather, the bulk of your Application Engine execution will be run using the Process
Scheduler, and the exception would be done using CallAppEngine.

The staterecord can be the hard-coded name of a record, but generally you use a record object to pass in
values to seed particular state fields. The record name must match the state record name exactly.

The processinstance allows you to specify the process instance used by the Application Engine runtime. In
your PeopleCode program this parameter must be declared of type integer since that is the only way the
runtime can tell whether the last parameter is to be interpreted as a process instance. For more details see the
Application Engine documentation.

Note. If you use this function, you shouldn't use the %TruncateTable or %Execute meta-SQL statement in
any of your Application Engine steps. This is because on some platforms an implicit commit occurs after
these statements, and all online processing should be done as a single logical unit of work.

After you use CallAppEngine, you may want to refresh your page. The Refresh method, on a rowset object,
reloads the rowset (scroll) using the current page keys. This causes the page to be redrawn.
GetLevel0().Refresh() refreshes the entire page. If you want only a particular scroll to be redrawn,
you can refresh just that part.

See PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode," Using PeopleCode in
Application Engine Programs.

Note. If you supply a non-zero process instance, all message logging is done under the process instance. You
must build your own PeopleSoft Pure Internet Architecture page to access or delete the messages, since there
is no Process Monitor entry for the process instance you used.

PeopleCode Event Considerations

You must include the CallAppEngine PeopleCode function within events that allow database updates because
generally, if you're calling Application Engine, you're intending to perform database updates. This includes
the following PeopleCode events:

PeopleCode Built-in Functions Chapter 1

74 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• SavePreChange (Page)

• SavePostChange (Page)

• Workflow

• FieldChange

If CallAppEngine results in a failure, all database updates is rolled back. All information the user entered into
the component is lost, as if the user pressed ESC.

Application Engine Considerations

You can use the CallAppEngine function in a Application Engine program, either directly (in a PeopleCode
action) or indirectly (using a Component Interface). This functionality must be used carefully, and you should
only do this once you have a clear understanding of the following rules and restrictions.

• Dedicated cursors are not supported inside a "nested application engine instance" (meaning an application
engine program invoked using CallAppEngine from within another application engine program). If a
nested application engine instance has any SQL actions with ReUse set to Yes or Bulk Insert, those
settings are ignored.

• As in any other type of PeopleCode event, no commits are performed within the called application engine
program. This is an important consideration. If a batch application engine program called another program
using CallAppEngine, and that child program updated many rows of data, the unit-of-work might become
too large, resulting in contention with other processes. A batch application engine program should invoke
such child programs using a Call Section action, not CallAppEngine.

• Temp tables are not shared between a batch application engine program and child program invoked using
CallAppEngine. Instead, the child program is assigned an "online" temporary table instance, which is
used for all temp tables in that program. In addition, if that child program invokes another program using
CallAppEngine, that grandchild shares the online temp instance with the caller. In other words, only one
online temp instance is allocated to a process at any one time, no matter how many nested
CallAppEngine's there might be.

• The lock on an online temp instance persists until the next commit. If the processing time of the called
program is significant (greater than a few seconds), this would be unacceptable. As a general rule,
application engine programs that make use of temp tables and have a significant processing time should
be called from other application engine programs using a Call Section action, not CallAppEngine.

Save Events Considerations

To execute the Application Engine program based on an end user Save, use the CallAppEngine function
within a Save event. When you use CallAppEngine, you should keep the following items in mind:

• No commits occur during the entire program run.

• During SavePreChange, any modified rows in the page have not been written to the database.

• During SavePostChange, the modified rows have been written to the database. The Page Process issues
one commit at the end of the Save cycle.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 75

FieldChange Considerations

If you don't want the CallAppEngine call to depend on a Save event, you can also initiate CallAppEngine
from a FieldChange event. When having a FieldChange event initiate CallAppEngine, keep the following
items in mind:

• No commits occur within the program called by CallAppEngine. The called program remains a
synchronous execution in the same unit of work.

• The Component Processor commits all updates done in a FieldChange at the end of the event, which frees
any locks that the Application Engine program might have acquired.

• Do not include a DoSave function in the same FieldChange event. Not only is this not allowed, but it also
indicates that you should be including the CallAppEngine within a Save event.

• You can use the DoSaveNow function in the same FieldChange event, but it must be called prior to the
first CallAppEngine function, but not afterward.

Parameters

Parameter Description

applid Specify the name of the Application Engine program you want to start.

statereclist Specify an optional record object that provides initial values for a state record.

processinstance Specify the process instance used by the Application Engine runtime.

Returns

None.

Example

The following calls the Application Engine program named MYAPPID, and passes initialization values.

&REC = CreateRecord(RECORD.INIT_VALUES);
&REC.FIELD1.Value = "XYZ";
 /* set the initial value for INIT_VALUES.FIELD1 */
CallAppEngine("MYAPPID", &REC);

PeopleCode Built-in Functions Chapter 1

76 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoSaveNow, page 239

PeopleTools 8.52: PeopleCode API Reference, "AESection Class"

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Refresh

PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode," Using PeopleCode in
Application Engine Programs

PeopleTools 8.52 : Application Engine, "Creating Application Engine Programs," Specifying Call Section
Actions

CancelPubHeaderXmlDoc

Syntax

CancelPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName)

Description

Use the CancelPubHeaderXmlDoc function to programmatically cancel the message header of a publication
contract, much the same as you can do in the message monitor.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Cancel method instead.

The message header, also known as the message instance, is the published message before the system
performs any transformations.

The function is only available when the message has one of the following statuses:

• Error

• New

• Retry

• Timeout

• Edited

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Cancel

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

Returns

A Boolean value: True if the function completed successfully, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubHeaderXmlDoc, page 571

CancelPubXmlDoc

Syntax

CancelPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode[,
 Segment])

Description

Use the CancelPubXmlDoc function to programmatically cancel a message publication contract, much the
same as you can do in the message monitor.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Cancel method instead.

This is the publication contract that exists after any transformations have been preformed.

The function is only available when the message has one of the following statuses:

• Error

• New

• Retry

• Timeout

PeopleCode Built-in Functions Chapter 1

78 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Edited

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Cancel

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

MessageName Specify the name of the message.

SubNode Specify the subnode of the message.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A Boolean value: True if the function completed successfully, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubXmlDoc, page 572

CancelSubXmlDoc

Syntax

CancelSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName,
SubscriptionName[, Segment])

Description

Use the CancelSubXmlDoc function to programmatically cancel a message subscription contract, much the
same as you can do in the message monitor.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Cancel method instead.

The function is only available when the message has one of the following statuses:

• Error

• New

• Retry

• Timeout

• Edited

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Cancel

Parameters

Parameter Description

PubID Specify the PubID as a string.

PubNode Specify the Pub Node name as a string.

ChannelName Specify the Channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the message name as a string.

SubscriptionName Specify the subscription name as a string.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitSubXmlDoc, page 573

PeopleCode Built-in Functions Chapter 1

80 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ChangeEmailAddress

Syntax

ChangeEmailAddress(Type,Address)

Description

Use the ChangeEmailAddress function to change the type of an email address that you've already added for
the current user. You can only have one email address of a specific type for a user. If you try to use a type that
already has an email address associated with it, you receive an error.

Parameters

Parameter Description

Type Specify the type that you want to change the email address to. This parameter
takes a string value. The valid values are:

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Parameter Description

Address Specify the email address that you want to add as a string.

Returns

None.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddEmailAddress, page 45; Chapter 1, "PeopleCode Built-in
Functions," DeleteEmailAddress, page 204 and Chapter 1, "PeopleCode Built-in Functions,"
MarkPrimaryEmailAddress, page 495

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

Char

Syntax

Char(n)

Description

 Use the Char function to convert a decimal numeric value n to the corresponding Unicode character.

Parameters

Parameter Description

n The numeric value to be expressed as a decimal Unicode value.

Returns

Returns a string representing the Unicode character corresponding to the number n.

Example

This example sets three strings:

&STRING1 = Char(80) | Char(83);
&STRING2 = Char(26085) | Char(26412);
&STRING3 = Char(55362) | Char(56697);

The following table shows the Unicode hexadecimal code points and the string equivalents for these calls to
the Char function:

Variable Char (Decimal) Unicode Code Points String

&STRING1 Char(80) | Char(83) U+0050, U+0053 PS

&STRING2 Char(26085) | Char(26412) U+65E5, U+672C 日本

&STRING3* Char(55362) | Char(56697) U+D842 U+DD79

* The single character in &STRING3 signifies a non-BMP, UTF-32 character (U+20979), which is
represented by the UTF-16 surrogate pair (U+D842 U+DD79). Unless your system is configured to display
supplementary characters and has a supporting font, &STRING3 will appear as an empty box in the String
column in the preceding table.

For reference, Unicode character charts are available from The Unicode Consortium.

PeopleCode Built-in Functions Chapter 1

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See http://www.unicode.org/charts/.

See Also

Chapter 1, "PeopleCode Built-in Functions," Code, page 94 and Chapter 1, "PeopleCode Built-in Functions,"
String, page 666

Chapter 2, "Meta-SQL Elements," %Substring, page 794

CharType

Syntax

CharType(source_str,char_code)

Description

 Use the CharType function to determine whether the first character in source_str is of type char_code . The
char_code parameter is a numeric value representing a character type (see the following Parameters section
for details). Most character types supported by this function equate to specific Unicode character blocks or
are based on Unicode character properties.

See Also

PeopleTools 8.52: Global Technology, "Selecting and Configuring Character Sets and Language Input and
Output"

Parameters

Parameter Description

source_str A String, the first character of which will be tested.

char_code A Number representing the character type to be tested for.

The following table shows valid values for char_code. You can specify either a Character Code or a
Constant:

Numeric Value Constant Character Set

0 %CharType_AlphaNumeric Basic Latin — Alphanumeric
(printable range of 7-bit US-
ASCII), Unicode characters in the
range U+0020 — U+007E

http://www.unicode.org/charts/

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

Numeric Value Constant Character Set

1 %CharType_ExtendedLatin1 Extended Latin-1 characters (ISO
8859-1 accents for Western
European languages), Unicode
characters in the range U+00BF —
U+07E

2 %CharType_HankakuKatakana Hankaku Katakana (half-width
Japanese Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (full-width
Japanese Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

5 %CharType_Kanji Chinese, Japanese and Korean
ideographic characters. Includes
Japanese Kanji, Chinese Hanzi and
Korean Hancha.

6 %CharType_DBAlphaNumeric Full-width Latin Alphanumeric
characters, primarily used for
Japanese. Excludes

7 None Korean Hangul syllables, excluding
Hangul Jamo.

8,9 None Reserved for future use.

10 %CharType_JapanesePunctuation Full- and half-width punctuation,
including space (U+0020) and
Fullwidth / Ideographic Space
(U+3000).

11 None Greek

12 None Cyrillic

13 None Armenian

14 None Hebrew

PeopleCode Built-in Functions Chapter 1

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Character Set

15 None Arabic

16 None Devanagari

17 None Bengali

18 None Gurmukhi

19 None Gujarati

20 None Oriya

21 None Tamil

22 None Telugu

23 None Kannada

24 None Malayalam

25 None Thai

26 None Lao

27 None Tibetan

28 None Georgian

29 None Bopomofo

Returns

 CharType returns one of the following Number values. You can check for the constant values instead of the
numeric values if you prefer:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

Numeric Value Constant Value Description

1 %CharType_Matched Character is of type char_code.

0 %CharType_NotMatched Character is not of type char_code.

-1 %CharType_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

Example

This example tests to see if a character is Hiragana:

&ISHIRAGANA = CharType(&STRTOTEST, %CharType_Hiragana);
If &ISHIRAGANA = 1 Then
 WinMessage("Character type is Hiragana");
Else
 If &ISHIRAGANA = 0 Then
 WinMessage("Character type is not Hiragana");
 Else
 WinMessage("Character type is UNKNOWN");
 End-If;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," ContainsCharType, page 110; Chapter 1, "PeopleCode Built-in
Functions," ContainsOnlyCharType, page 113 and Chapter 1, "PeopleCode Built-in Functions," ConvertChar,
page 117

PeopleTools 8.52: Global Technology, "Selecting and Configuring Character Sets and Language Input and
Output"

ChDir

Syntax

ChDir(path)

Description

 Use the ChDir function to change the current directory on a drive. This is similar to the DOS ChDir
command. The drive and the directory are both specified in a path string.

PeopleCode Built-in Functions Chapter 1

86 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. This function has been deprecated.

ChDrive

Syntax

ChDrive(str_dr)

Description

 Use the ChDrive function to change the current disk drive to the drive specified by str_dr, which is a string
consisting of a valid drive letter followed by a colon, for example "C:".

Note. This function has been deprecated.

CheckMenuItem

Syntax

CheckMenuItem(BARNAME.menubar_name,ITEMNAME.menuitem_name)

Description

Use the CheckMenuItem function to change the menu state by placing a check mark beside the menu item.

Note. This function has been deprecated.

ChunkText

Syntax

ChunkText(string,delimiter [, chunk_size])

Description

Use the ChunkText function to break a long text string into chunks that can be more readily managed by a
storage system, such as a database text field. You must specify a string delimiter; the chunk size is optional.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Parameters

Parameter Description

string Specify the text to be split into chunks as a string.

delimiter Specify a single character as a text delimiter.

chunk_size Specify the chunk size in characters as a number.

If you specify no value, 0, or a number greater than 14000, the default value of
14000 is used.

Returns

An array of string.

Example

Local array of string &chunkList;

&STRINGTOCHUNK = "NewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYork⇒
NewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYork";
&DELIM = "r";
&CHUNKSIZE = 8;

&chunkList = ChunkText(&STRINGTOCHUNK, &DELIM, &CHUNKSIZE);

The preceding example produces the following 16 chunks:

[NewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor]⇒
[kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYork]

See Also

Chapter 1, "PeopleCode Built-in Functions," DeChunkText, page 193

Clean

Syntax

Clean(string)

PeopleCode Built-in Functions Chapter 1

88 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

 Use the Clean function to remove all non-printable characters, such as control codes, end of line marks, and
unpaired Unicode combining marks, from a text string and returns the result as a String value. It is intended
for use on text imported from other applications that contains characters that may not be printable.
Frequently, low-level characters appear at the beginning and end of each line of imported data, and they
cannot be printed.

Parameters

Parameter Description

string Specifies the text to be cleaned as a string.

Returns

Returns a String value purged of non-printable characters.

Example

Because Char(7) (U+0007) is a non-printable character, the following Clean function returns a null string:

&CLEANSTR = Clean(Char(7));

See Also

Chapter 1, "PeopleCode Built-in Functions," Char, page 81 and Chapter 1, "PeopleCode Built-in Functions,"
String, page 666

Chapter 2, "Meta-SQL Elements," %Substring, page 794

CleanAttachments

Syntax

CleanAttachments(([PreserveCaseHint])

Description

Use the CleanAttachments function to delete all unreferenced files from database tables serving as file storage
locations.

Note. CleanAttachments operates only on database tables that have been used as file attachment storage
locations, and not on FTP sites or HTTP repositories.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

Warning! There is no way to roll back changes made by the CleanAttachments function. Oracle
recommends that you perform a database backup before invoking this function.

It is important that you understand how the system determines that a file is unreferenced, and how it
determines which tables contain file attachments.

CleanAttachments compiles two lists:

• List 1: A list of file references that is constructed by finding all the distinct values in the
ATTACHSYSFILENAME column in each table containing the FILE_ATTACH_SBR subrecord (at any
level). Any file not in this list is considered not referenced (orphaned).

• List 2: A list of actual stored files that is constructed by finding the distinct values in the
ATTACHSYSFILENAME column in each table containing the FILE_ATTDET_SBR subrecord at the
top level.

The system deletes any file that appears in the second list, but not in the first, after having determined the
effect of the optional PreserveCaseHint parameter.

Note. A table is only considered to contain file references if its associated record contains the
FILE_ATTACH_SBR subrecord (at any level). If an application has stored file references in tables that do
not contain the FILE_ATTACH_SBR subrecord, and you invoke the CleanAttachments function, then all the
files uploaded to the database through that application will be deleted because the files will not be found in
list 1 and the system therefore regards them as unreferenced (orphaned).

Similarly, the FILE_ATTDET_SBR subrecord must be at the top level of the table that contains the actual
attachments or the table will be ignored by CleanAttachments. In this case, CleanAttachments does not find
any files to delete and does nothing at all.

To schedule a regular job to clean up orphaned file attachments, you can use the CLEANATT84 Application
Engine program.

The Copy File Attachments page is provided as a way to launch a CopyAttachments operation (select
PeopleTools, Utilities, Administration, Copy File Attachments). The CleanAttachments function is also
available from this page.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," Deleting Orphan
Attachments.

Parameters

Parameter Description

PreserveCaseHint An optional integer parameter that provides the CleanAttachments function with a
hint about how the PreserveCase parameter was used when the files were
originally uploaded—that is, whether the PreserveCase parameter was True,
False, or a mix of the two.

For PreserveCaseHint, specify one of the following constant values:

PeopleCode Built-in Functions Chapter 1

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

1 %CleanAttach_PreserveCase Indicates that the comparison is to be
performed as if PreserveCase were
True when all the files were uploaded
to this database. Therefore, the
comparison between list 1 and list 2
requires an exact match of the file
name including its file extension. Any
files in list 2 (actual stored files) that
do not have an exact match in list 1
(names of referenced files) are deleted.

2 %CleanAttach_NoPreserveCase Indicates that the comparison is to be
performed as if PreserveCase were
False when all the files were uploaded
to this database. Therefore, the
comparison between list 1 and list 2
will be performed only after the file
extension of each file in list 1 is
lowercased. Any files in list 2 (actual
stored files) that do not have an exact
match in list 1 (names of referenced
files) after lowercasing the file
extension in list 1 are deleted.

0 %CleanAttach_Default Indicates that the comparison is to be
performed as if PreserveCase were
True when some of the files were
uploaded to this database and False for
others. Therefore, a file in list 2 (actual
stored files) is retained if it would have
been retained had PreserveCaseHint
been specified as either
%CleanAttach_PreserveCase or
%CleanAttach_NoPreserveCase.
Otherwise, the file is considered an
orphan and is deleted.

The following table summarizes the action of CleanAttachments on five different stored files depending on
the values found in the file reference table and depending on the value of the optional PreserveCaseHint
parameter:

List 1: File Names in
File Reference
Table(s)

List 2: File Names in
File Storage Table(s)

%CleanAttach_
PreserveCase

%CleanAttach_
NoPreserveCase

%CleanAttach_
Default

file1.txt file1.txt retain retain retain

file2.TXT file2.txt delete retain retain

file3.TXT file3.TXT retain delete retain

file4.TXT and file4.txt file4.TxT delete delete delete

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

List 1: File Names in
File Reference
Table(s)

List 2: File Names in
File Storage Table(s)

%CleanAttach_
PreserveCase

%CleanAttach_
NoPreserveCase

%CleanAttach_
Default

none found file5.txt delete delete delete

Returns

An integer value. You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success Files were deleted successfully.

1 %Attachment_Failed Files were not deleted successfully.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

Example

&retcode = CleanAttachments(%CleanAttach_PreserveCase);

PeopleCode Built-in Functions Chapter 1

92 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CopyAttachments, page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment,
page 200; Chapter 1, "PeopleCode Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode
Built-in Functions," GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions,"
MAddAttachment, page 486; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

ClearKeyList

Syntax

ClearKeyList()

Description

 Use the ClearKeyList function to clear the current key list. This function is useful for programmatically
setting up keys before transferring to another component.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Example

The following example sets up a key list and then transfers the user to a page named PAGE_2.

ClearKeyList();
AddKeyListItem(OPRID, OPRID);
AddKeyListItem(REQUEST_ID, REQUEST_ID);
SetNextPage("PAGE_2");
TransferPage();

See Also

Chapter 1, "PeopleCode Built-in Functions," AddKeyListItem, page 46

ClearSearchDefault

Syntax

ClearSearchDefault([recordname.]fieldname)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

Description

Use the ClearSearchDefault function to disable default processing for the specified field, reversing the effects
of a previous call to the SetSearchDefault function.

Note. This function remains for backward compatibility only. Use the SearchDefault Field class property
instead.

If search default processing is cleared for a record field, the default value specified in the record field
properties for that field will not be assigned when the field appears in a search dialog box. This function is
effective only when used in SearchInit PeopleCode.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," SearchDefault

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

[recordname.]fieldname The name of the target field, which is a search key or alternate search key that is
about to appear in a search dialog box. You must supply the recordname only if
the record field and your PeopleCode program are in different locations.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

See Also

Chapter 1, "PeopleCode Built-in Functions," ClearSearchEdit, page 93; Chapter 1, "PeopleCode Built-in
Functions," SetSearchDefault, page 636; Chapter 1, "PeopleCode Built-in Functions," SetSearchEdit, page 638
and Chapter 1, "PeopleCode Built-in Functions," SetSearchDialogBehavior, page 637

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Search
Processing in Update Modes

ClearSearchEdit

Syntax

ClearSearchEdit([recordname.]fieldname)

PeopleCode Built-in Functions Chapter 1

94 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

 Use the ClearSearchEdit function to reverse the effects of a previous call to the SetSearchEdit function. If
ClearSearchEdit is called for a specific field, the edits specified in the record field properties will not be
applied to the field when it occurs in a search dialog.

Note. This function remains for backward compatibility only. Use the SearchEdit Field class property instead.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," SearchEdit

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

[recordname.]fieldname The name of the target field, which is a search key or alternate search key about to
appear in a search dialog box. The recordname prefix is not required if the
program that calls ClearSearchEdit is on the recordname record definition.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetSearchEdit, page 638; Chapter 1, "PeopleCode Built-in
Functions," SetSearchDefault, page 636; Chapter 1, "PeopleCode Built-in Functions," ClearSearchDefault,
page 92 and Chapter 1, "PeopleCode Built-in Functions," SetSearchDialogBehavior, page 637

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Search
Processing in Update Modes

Code

Syntax

Code(str)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

Description

Use the Code function to return the numerical Unicode UTF-16 value for the first character in the string str.
(Normally you would pass this function a single character.) If the string starts with a non-BMP Unicode
character, the value returned will be that of the Unicode high surrogate of the character (the first value of the
surrogate pair).

Returns

Returns a Number value equal to the character code for the first character in str.

See Also

Chapter 1, "PeopleCode Built-in Functions," Char, page 81 and Chapter 1, "PeopleCode Built-in Functions,"
String, page 666

Chapter 2, "Meta-SQL Elements," %Substring, page 794

Codeb

Syntax

Codeb(str)

Description

Note. This function has been deprecated and is no longer supported.

See Also

Chapter 1, "PeopleCode Built-in Functions," Code, page 94

CollectGarbage

Syntax

CollectGarbage()

Description

Use the CollectGarbage function to remove any unreachable application objects created by the Application
Classes.

PeopleCode Built-in Functions Chapter 1

96 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Sometimes there may be unrecoverable application objects that are can no longer be referenced from
PeopleCode, but which have not been reclaimed and so are still taking up computer memory. Generally this
situation arises only if you have application objects that form into loops of references.

This function is automatically invoked by the application server as part of its end-of-service processing, so
generally you do not need to call it for online applications. However, in Application Engine (batch), it is
possible that a long-running batch job could grow in memory usage over time as these unreferencable
Application Objects accumulate. The solution to such a problem is to call CollectGarbage periodically to
reclaim these objects.

Parameters

None.

Returns

None.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Application Classes"

CommitWork

Syntax

CommitWork()

Description

Use the CommitWork function to commit pending changes (inserts, updates, and deletes) to the database.

Considerations for Using CommitWork

The following are the considerations for using CommitWork.

• This function is available in Application Engine PeopleCode, the FieldChange and SavePreChange
events. If you use it anywhere else, you'll receive a runtime error.

• When used with an Application Engine program, this function only applies to those Application Engine
programs that run in batch (not online). If the program is invoked using the CallAppEngine function, the
CommitWork call is ignored. The same is true for commit settings at the section or step level.

• This function can only be used in an Application Engine program that has restart disabled. If you try to
use this function in a program that doesn't have restart disabled, you'll receive a runtime error.

• Component interfaces that rely on CommitWork to save data cannot be used in the Excel to Component
Interface utility.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

• When CommitWork is called in the context of a component interface (such as, during a SavePreChange
PeopleCode program that's associated with the component), if the caller of the component interface
already has an open cursor (such as an active SQL object) the Commit does not take effect immediately,
but only when the last cursor is closed.

See Chapter 1, "PeopleCode Built-in Functions," CallAppEngine, page 73.

FieldChange and SavePreChange Considerations

The following are the FieldChange and SavePreChange considerations:

• All updates done in FieldChange (including those using CallAppEngine) should be considered a single
database transaction. This is a fundamental change: previously, a single transaction was represented by a
page or a component.

• A consequence of this is that a message requiring a reply, or any other think-time action, causes a fatal
error if located in FieldChange after a database update that has not been committed to the database using
the CommitWork function. So it is possible for an application to update the database in FieldChange, then
do a think-time action, by preceding the think-time action with a call to CommitWork.

• CommitWork commits the updates and closes the database transaction (that is, the unit of work). The
consequence of using CommitWork is that because it closes the database transaction, any subsequent
rollback calls will not rollback the committed updates.

• Just as any database updates in FieldChange required careful application design to ensure that the
transaction model is appropriate, so too does the use of CommitWork.

• When using CommitWork in the Component Processor environment (as opposed to using it in an
Application Engine program) CommitWork produces an error if there are any open cursors, such as any
open PeopleCode SQL objects.

See PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor,"
FieldChange Event.

Application Engine Considerations

The CommitWork function is useful only when you are doing row-at-a-time SQL processing in a single
PeopleCode program, and you must commit without exiting the program. In a typical Application Engine
program, SQL commands are split between multiple Application Engine actions that fetch, insert, update, or
delete application data. Therefore, you would use the section or step level commit settings to manage the
commits. This is the recommended approach.

However, with some types of Application Engine programs that are PeopleCode intensive, it can be difficult
to exit the PeopleCode in order to perform a commit. This is the only time when the CommitWork function
should be used.

See PeopleTools 8.52 : Application Engine, "Managing Application Engine Programs," Restarting
Application Engine Programs.

Restart Considerations

Disabling restart on a particular program means that the application itself is intrinsically self-restartable: it can
be re-run from the start after an abend, and it performs any initialization, cleanup, and filtering of input data
to ensure that everything gets processed once and only once, and that upon successful completion, the
database is in the same state it would have been if no abend occurred.

PeopleCode Built-in Functions Chapter 1

98 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Set-based applications should always use Application Engine's restart. Only row-by-row applications that
have restart built into them can benefit from disabling Application Engine's restart.

Consider the following points to managing restarts in a self-restarting program:

• Locking input transactions (optional).

If the input data can change, and if it's important not to pick up new data during a restart, there should be
logic to lock transactions at the start of the initial run (such as updating rows with current Process
Instance). The program should first check whether any rows have the current Process Instance (that is, is
the process being restarted from the top after an abend?). If no rows found, do the update.

In some cases it is acceptable for a restarted process to pick up new rows, so that locking is not necessary.
It depends on your application.

Also, if you do not lock transactions, you must provide some other way to manage concurrent processing
of the same program. You do not want two simultaneous runs of the same program to use the same data,
so you must have some strategy for dividing up the data such that there is no overlap.

• Filtering input transactions (required).

After an input transaction is processed, the row should be updated accordingly (that is, setting a
"processed" flag). The SELECT statement that drives the main processing loop should include a WHERE
condition to filter out rows that have already been processed.

Returns

A Boolean value, True if data was successfully committed, False otherwise.

Example

The following example fetches rows and processes them one at a time, committing every 100 iterations.
Because restart is disabled, you must have a marker indicating which rows have been processed, and use it in
a conditional clause that filters out those rows.

Local SQL &SQL;
Local Record &REC;
Local Number &COUNT;

&REC = CreateRecord(RECORD.TRANS_TBL);
&SQL = CreateSQL("%SelectAll(:1) WHERE PROCESSED <> 'Y'");
&COUNT = 0;

&SQL.Execute(&REC);
While &SQL.Fetch(&REC)
 If (&COUNT > 99) Then
 &COUNT = 0;
 CommitWork(); /* commit work once per 100 iterations */
 End-if;
 &COUNT = &COUNT + 1;
 /* do processing */
 ...

 /* update transaction as "processed" */
 &REC.PROCESSED.Value = 'Y';
 &REC.Update();
End-While;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

See Also

PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode," Using PeopleCode in
Application Engine Programs

CompareLikeFields

Syntax

CompareLikeFields(from,to)

where from and to are constructions that reference rows of data on specific source and target records in the
component buffer; each have the following syntax:

level,scrollpath, target_row

and where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the CompareLikeFields function to compare fields in a row on a specified source record to similarly
named fields on a specified target record.

Note. This function remains for backward compatibility only. Use the CompareFields record class method
instead.

If all of the like-named fields have the same data value, CompareLikeFields returns True; otherwise it returns
False.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class," CompareFields

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

PeopleCode Built-in Functions Chapter 1

100 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

from A placeholder for a construction (level,scrollpath,target_row) that references the
first row in the comparison.

to A placeholder for a construction (level, scrollpath, target_row) that references the
second row in the comparison.

level Specifies the scroll level for the target level scroll.

scrollpath A construction that specifies a scroll level in the component buffer.

target_row Specifies the row number of each target row on its scroll level.

Returns

Returns a Boolean value indicating whether all of the like-named fields in the two records have the same data
value.

Example

The following example compares the like-named fields in two rows on levels 1 (&L1_ROW) and 2
(&L2_ROW) and returns True if all of the like-named fields in the two rows have the same value.

&L1_ROW = 1;
&L2_ROW = 1;
if CompareLikeFields(1, RECORD.BUS_EXPENSE_PER, &L1_ROW, 2, RECORD.BUS_EXPENSE_⇒
PER, 1, RECORD.BUS_EXPENSE_DTL, &L2_ROW) then
 WinMessage("The fields match.");
end-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," CopyFields, page 133

CompareStrings

Syntax

CompareStrings(new_text,old_text [, content_type [, delimiter]])

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

Description

Use the CompareStrings function to compare the content of new_text with the content of old_text and return
an XML-formatted text string detailing the differences between the two strings.

The XML string indicates the type of change for each line or text segment, based on the delimiter, as shown
in the following table:

Notation Description

None Both lines are the same

Insert A line is present in new_text that is not in old_text.

Delete A line is absent in new_text that is present in old_text.

Change A change in a line shows as an Insert in new_text and a
Delete in old_text.

Parameters

Parameter Description

new_text Specifies the string that you want to compare with the old version of the string.

old_text Specifies the old version of the string for comparison.

content_type Specifies the content type as a literal: text or html. This parameter is optional.

 If content_type is html, HTML tags are stripped and are not included in the
comparison.

If content_type is not specified, it is set by default to text.

delimiter An array of string specifying the delimiters to be used to split the content for
comparison. This parameter is optional.

If content_type is text and delimiter is not specified, the delimiter is set by default
to char(13) (or \n, a carriage return).

If content_type is html and delimiter is not specified, the delimiter array is
populated by default with the following values:

["</p>", "</br>", "</h1>", "</h2>", "</h3>", "</h4>", ⇒
"</h5>", "</h6>", "</div>", "</address>", "</pre>", ⇒
"</br>", "</tr>", "</caption>", "</blockquote>"]

Returns

Returns a String in XML format showing the differences between the two input strings.

PeopleCode Built-in Functions Chapter 1

102 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

This example shows a comparison of two text strings.

The variable &NewText contains the following string:

Line 2.
Line 2.1.
Line 2.2.
Line 3.
Line 5.
Line 6.
Line 8.

The variable &OldText contains the following string:

Line 1.
Line 2.
Line 3.
Line 4.
Line 7.

The following PeopleCode statement compares the two ASCII-formatted text strings, &NewText and
&OldText.

&OutputXML = CompareStrings(&NewText, &OldText, "Text");

The string variable &OutputXML contains the following text:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<CompareReport ContentType="text" Delimitter="
">
 <FileContent Difference="Deleted">
 <Line Num="1">
 <LineContent>Line 1.</LineContent>
 </Line>
 </FileContent>
 <FileContent Difference="None">
 <Line Num="1" OldLineNum="2">
 <LineContent>Line 2.</LineContent>
 </Line>
 </FileContent>
 <FileContent Difference="Inserted">
 <Line Num="2">
 <LineContent>Line 2.1.</LineContent>
 </Line>
 <Line Num="3">
 <LineContent>Line 2.2.</LineContent>
 </Line>
 </FileContent>
 <FileContent Difference="None">
 <Line Num="4" OldLineNum="3">
 <LineContent>Line 3.</LineContent>
 </Line>
 </FileContent>
 <FileContent Difference="Changed">
 <OldLine Num="4">
 <LineContent>Line</LineContent>
 <LineContent Changed="Deleted">4.</LineContent>
 </OldLine>
 <Line Num="4">
 <LineContent>Line</LineContent>
 <LineContent Changed="Inserted">5.</LineContent>
 </Line>
 <OldLine Num="5">
 <LineContent>Line</LineContent>
 <LineContent Changed="Deleted">7.</LineContent>
 </OldLine>
 <Line Num="5">
 <LineContent>Line</LineContent>
 <LineContent Changed="Inserted">6.</LineContent>
 </Line>
 </FileContent>
 <FileContent Difference="Inserted">
 <Line Num="7">
 <LineContent>Line 8.</LineContent>
 </Line>
 </FileContent>
</CompareReport>

This example shows a comparison of two HTML strings.

The variable &NewHTML contains the following string:

<p><H1>peoplesoftfile difference utility
<I>Peopletools<I> Release <6 and >5 </H1></p>
<p> <BOLD>Hello world<ITALIC></p>

The variable &OldHTML contains the following string:

<p><H1>peoplesoftfiledifference utility
<I>Peopletools<I> Release <7 and >5 </H1></p>
<p> <BOLD>Hello world<ITALIC></p>

PeopleCode Built-in Functions Chapter 1

104 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The following PeopleCode statement compares the two HTML-formatted text strings, &NewHTML and
&OldHTML.

&OutputXML = CompareStrings(&NewHTML, &OldHTML, "HTML");

The string variable &OutputXML contains the following text:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<CompareReport Delimitter="</p>,</H1>" ContentType ="html">
 <FileContent Difference="Changed">
 <OldLine Num="1">
 <LineContent Changed="Deleted">peoplesoftfile difference</LineContent>
 <LineContent>utility Peopletools Release</LineContent>
 <LineContent Changed="Deleted "><6</LineContent>
 <LineContent>and >5 </LineContent>
 </OldLine>
 <Line Num="1">
 <LineContent Changed="Inserted">peoplesoftfiledifference</LineContent>
 <LineContent>utility Peopletools Release</LineContent>
 <LineContent Changed="Inserted "><7</LineContent>
 <LineContent>and >5 </LineContent>
 </Line>
 </FileContent>
 <FileContent Difference="None">
 <Line Num="2" OldLineNum="2">
 <LineContent>&lt;BOLD&gt;Hello world</LineContent>
 </Line>
 <Line Num="3" OldLineNum="3">
 <LineContent></LineContent>
 </Line>
 </FileContent>
</CompareReport>

See Also

Chapter 1, "PeopleCode Built-in Functions," CompareTextDiff, page 104

CompareTextDiff

Syntax

CompareTextDiff(new_text,old_text [, content_type [, delimiter]])

Description

Use the CompareTextDiff function to compare the content of new_text with the content of old_text and return
an array of array of any detailing the differences between the two strings. The elements of the returned
subarray are as follows:

Element Data Type Description

index number The sequential index number in the comparison array.

line number The line number for the line of text being compared.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

Element Data Type Description

subline number The subline is the counter of added lines that exist in
the new_text.

Note. For DELETE, CHANGED and COMMON
operations, 0 is always reported for the subline.

type string The type of difference:

• COMMON – Both lines are the same

• ADD – A line is present in new_text that is not in
old_text.

• DELETE – A line is absent in new_text that is
present in old_text.

• CHANGED – A change in a line shows as an Add
in new_text and a Delete in old_text.

text string The actual text being compared.

Parameters

Parameter Description

new_text Specifies the string that you want to compare with the old version of the string.

old_text Specifies the old version of the string for comparison.

content_type Specifies the content type as a literal: text or html. This parameter is optional.

 If content_type is html, HTML tags are stripped and are not included in the
comparison.

If content_type is not specified, it is set by default to text.

delimiter An array of string specifying the delimiters to be used to split the content for
comparison. This parameter is optional.

If content_type is text and delimiter is not specified, the delimiter is set by default
to char(13) (or \n, a carriage return).

If content_type is html and delimiter is not specified, the delimiter array is
populated by default with the following values:

["</p>", "</br>", "</h1>", "</h2>", "</h3>", "</h4>", ⇒
"</h5>", "</h6>", "</div>", "</address>", "</pre>", ⇒
"</br>", "</tr>", "</caption>", "</blockquote>"]

Returns

An array of array of any.

PeopleCode Built-in Functions Chapter 1

106 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

This example shows a comparison of two text strings. The variable &NewText contains the following string:

Line 2.
Line 2.1.
Line 2.2.
Line 3.
Line 5.
Line 6.
Line 8.

The variable &OldText contains the following string:

Line 1.
Line 2.
Line 3.
Line 4.
Line 7.

The following PeopleCode statement compares the two ASCII-formatted text strings, &NewText and
&OldText:

&Output = CompareTextDiff(&NewText, &OldText, "text");

The string variable &Output contains the following array:

0, 1, 0, DELETED, Line 1.
1, 2, 0, COMMON, Line 2.
2, 2, 1, ADD, Line 2.1.
3, 2, 2, ADD, Line 2.2.
4, 3, 0, COMMON, Line 3.
5, 4, 0, CHANGED, Line 5.
6, 5, 0, CHANGED, Line 6.
7, 5, 1, ADD, Line 8.

See Also

Chapter 1, "PeopleCode Built-in Functions," CompareStrings, page 100

Component

Syntax

Component data_type &var_name

Description

Use the Component statement to declare PeopleCode component variables. A component variable, after being
declared in any PeopleCode program, remains in scope throughout the life of the component.

The variable must be declared with the Component statement in every PeopleCode program in which it is
used.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Declarations appear at the beginning of the program, intermixed with function declarations.

Note. Because a function can be called from anywhere, you cannot declare any variables within a function.
You receive a design time error if you try.

The system automatically initializes temporary variables. Declared variables always have values appropriate
to their declared type. Undeclared variables are initialized as null strings.

Not all PeopleCode data types can be declared as Component.

Parameters

Parameter Description

data_type Specify a PeopleCode data type.

&var_name A legal variable name.

Example

Component string &PG_FIRST;

See Also

Chapter 1, "PeopleCode Built-in Functions," Local, page 482 and Chapter 1, "PeopleCode Built-in
Functions," Global, page 433

PeopleTools 8.52: PeopleCode Developer's Guide, "Understanding the PeopleCode Language," Data Types

ComponentChanged

Syntax

ComponentChanged()

Description

 Use the ComponentChanged function to determine whether a component has changed since the last save,
whether by the user or by PeopleCode.

Returns

Returns a Boolean value: True if the component has changed.

PeopleCode Built-in Functions Chapter 1

108 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

If ComponentChanged() Then
 /* do some stuff */
End-if;

ConnectorRequest

Syntax

ConnectorRequest(&Message)

Description

Use the ConnectorRequest function to send data to the connector using a message, when the connector
properties are assigned in the message.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class ConnectorRequest method instead.

In general, you would build a message, add the specific connector properties, then use ConnectorRequest.

You do not need to set up any transaction or relationship when you use this function. It is a direct call to the
gateway.

The response to the message is returned as a nonrowset-based message. Use the GetXmlDoc message class
method to retrieve the content data. The data is wrapped in the CDATA tag.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," ConnectorRequest

Parameters

Parameter Description

&Message Specify an already instantiated message.

Returns

A nonrowset-based message object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

See Also

Chapter 1, "PeopleCode Built-in Functions," ConnectorRequestURL, page 109

ConnectorRequestURL

Syntax

ConnectorRequestURL(ConnectorStringURL)

Description

Use the ConnectorRequestURL function to go directly to the gateway for accessing information.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class ConnectorRequestURL method instead.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," ConnectorRequestUrl

Parameters

Parameter Description

ConnectorStringURL Specify the URL of the gateway as a string. This is a fully formed URL.

Returns

A string containing the URL information returned from the message.

Example

The following is the type of URL that could be returned if you were trying to get a PSFT stock quote:

 http://finance.yahoo.com/d/quotes.txt/?symbols=PSFT&format=l1c1d1t1

See Also

Chapter 1, "PeopleCode Built-in Functions," ConnectorRequest, page 108

PeopleCode Built-in Functions Chapter 1

110 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ContainsCharType

Syntax

ContainsCharType(source_str,char_code)

Description

 Use the ContainsCharType function to determine if any of the characters in source_str are of type char_code.
The char_code is a numerical value representing a character type (see the following Parameters section for
details). Most character types supported by this function equate to specific Unicode character blocks or are
based on Unicode character properties.

Parameters

Parameter Description

source_str String to be examined.

char_code A number value representing the character type to be tested for. The following
table shows valid values. You can specify either a character code numeric value or
a constant:

Numeric Value Constant Character Set

0 %CharType_AlphaNumeric Basic Latin — Alphanumeric
(printable range of 7-bit US-
ASCII), Unicode characters in the
range U+0020 — U+007E

1 %CharType_ExtendedLatin1 Extended Latin-1 characters (ISO
8859-1 accents for Western
European languages), Unicode
characters in the range U+00BF —
U+07E

2 %CharType_HankakuKatakana Hankaku Katakana (half-width
Japanese Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (full-width
Japanese Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

Numeric Value Constant Character Set

5 %CharType_Kanji Chinese, Japanese and Korean
ideographic characters. Includes
Japanese Kanji, Chinese Hanzi and
Korean Hancha.

6 %CharType_DBAlphaNumeric Full-width Latin Alphanumeric
characters, primarily used for
Japanese. Excludes

7 None Korean Hangul syllables, excluding
Hangul Jamo.

8,9 None Reserved for future use.

10 %CharType_JapanesePunctuation Full- and half-width punctuation,
including space (U+0020) and
Fullwidth / Ideographic Space
(U+3000).

11 None Greek

12 None Cyrillic

13 None Armenian

14 None Hebrew

15 None Arabic

16 None Devanagari

17 None Bengali

18 None Gurmukhi

19 None Gujarati

20 None Oriya

21 None Tamil

PeopleCode Built-in Functions Chapter 1

112 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Character Set

22 None Telugu

23 None Kannada

24 None Malayalam

25 None Thai

26 None Lao

27 None Tibetan

28 None Georgian

29 None Bopomofo

Returns

 ContainsCharType returns one of the following Number values. You can check for the constant instead of the
numeric value if you prefer:

Numeric Value Constant Value Description

1 %CharType_Matched String contains at least one character of
set char_code.

0 %CharType_NotMatched String contains no characters of set
char_code.

-1 %CharType_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

Example

This example tests to see if the string contains any Hiragana:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

&ANYHIRAGANA = ContainsCharType(&STRTOTEST, 4);
If &ANYHIRAGANA = 1 Then
 WinMessage("There are Hiragana characters");
Else
 If &ANYHIRAGANA = 0 Then
 WinMessage("There are no Hiragana characters");
 Else
 WinMessage("UNKNOWN");
 End-If;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," ContainsCharType, page 110; Chapter 1, "PeopleCode Built-in
Functions," ContainsOnlyCharType, page 113 and Chapter 1, "PeopleCode Built-in Functions," ConvertChar,
page 117

PeopleTools 8.52: Global Technology, "Selecting and Configuring Character Sets and Language Input and
Output"

ContainsOnlyCharType

Syntax

ContainsOnlyCharType(source_str,char_code_list)

Where char_code_list is a list of character set codes in the form:

char_code_1 [, char_code_2]. . .

Description

Use the ContainsOnlyCharType function to determine whether every character in source_str belongs to one
or more of the character types in char_code_list. See the following Parameters section for a list of valid
character code values. Most character types supported by this function equate to specific Unicode character
blocks or are based on Unicode character properties.

Parameters

Parameter Description

Source_str String to be examined.

char_code_list A comma-separated list of character set codes.

char_code_n Either a Number value identifying a character set, or a constant. The following
table shows valid values. You can specify either a character code numeric value or
a constant:

PeopleCode Built-in Functions Chapter 1

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Character Set

0 %CharType_AlphaNumeric Alphanumeric (7-bit ASCII codes;
A-Z, a-z, 1-9, punctuation)

1 %CharType_ExtendedLatin1 Extended Latin-1 characters
(ISO8859-1 accents for Spanish,
French, etc.)

2 %CharType_HankakuKatakana Hankaku Katakana (single-byte
Japanese Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (double-byte
Japanese Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

5 %CharType_Kanji Kanji (Japanese)

6 %CharType_DBAlphaNumeric Double-byte Alphanumeric
(Japanese)

7,8,9 Reserved for future use

10 %CharType_JapanesePunctuation Japanese punctuation

Returns

 ContainsOnlyCharType returns one of the following Number values. You can check for the constant instead
of the numeric value, if you prefer:

Numeric Value Constant Value Description

1 %CharType_Matched String contains only characters
belonging to the sets listed in
char_code_list.

0 %CharType_NotMatched String contains one or more characters
that do not belong to sets listed in
char_code_list.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Numeric Value Constant Value Description

-1 %CharType_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

Note. If any character in the string is determined to be UNKNOWN, the return value is UNKNOWN.

Example

This example tests to see is the string is only Hiragana or Punctuation:

&ONLYHIRAGANA = ContainsOnlyCharType(&STRTOTEST, 4, 10);
If &ONLYHIRAGANA = 1 Then
 WinMessage("There are only Hiragana and Punctuation characters");
Else
 If &ONLYHIRAGANA = 0 Then
 WinMessage("Mixed characters");
 Else
 WinMessage("UNKNOWN");
 End-If
End-If

See Also

Chapter 1, "PeopleCode Built-in Functions," CharType, page 82; Chapter 1, "PeopleCode Built-in
Functions," ContainsCharType, page 110 and Chapter 1, "PeopleCode Built-in Functions," ConvertChar,
page 117

PeopleTools 8.52: Global Technology, "Selecting and Configuring Character Sets and Language Input and
Output"

Continue

Syntax
Continue

Description

Use the Continue statement to continue execution in a loop. How the statement performs depends on the type
of loop:

• In For loops, this statement continues to do the next step of the iteration

PeopleCode Built-in Functions Chapter 1

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• In While loops, this statement continues to the top of the loop and the test of the condition

• In Repeat-Until loops, this statement continues to the Until check at the bottom of the loop.

Parameters

None.

Example

The following are tests of the continue statement in various types of loops:

SetTracePC(%TracePC_List);
/* tests of continue statement */
&N = 0;
For &I = 1 To 10;

 If &I > 5 Then
 Continue;
 End-If;
 &J = &I + 1;
 &K = 0;
 /* now a while loop in here */
 While &J <= 10;
 &J = &J + 1;
 If &J = 7 Then
 Continue;
 End-If;
 For &A = 0 To 5;
 &K = &K + 2;
 End-For; /* no continue statement */
 &Barf = 2;
 Repeat
 &Barf = &Barf;
 If &Barf = 1 Then
 Continue;
 End-If;
 Until &Barf = &Barf;
 &K = &K + 1;
 End-While;
 MessageBox(0, "", 0, 0, "K=" | &K);
 If &I < 2 Then
 Continue;
 End-If;
 &N = &N + 1;
End-For;
MessageBox(0, "", 0, 0, "N=" | &N);

See Also

Chapter 1, "PeopleCode Built-in Functions," Break, page 62 and Chapter 1, "PeopleCode Built-in Functions,"
Exit, page 268

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

ConvertChar

Syntax

ConvertChar(source_str,source_str_category,output_str,target_char_code)

Description

 Use the ConvertChar function to convert every character in source_str to type target_char_code, if possible,
and place the converted string in output_str. ConvertChar supports the following conversions:

• Conversion among Japanese Hankaku (half-width) Katakana, Zenkaku (full-width) Katakana, and
Hiragana .

• Conversion of Japanese Hankaku (half-width) Katakana, Zenkaku (full-width) Katakana, and Hiragana to
Hepburn Romaji (Latin representation).

• Conversion of full-width alphanumeric characters to their half-width equivalents.

• Conversion of full-width punctuation characters to their half-width equivalents.

Other source_str and target_char_code combinations are either passed through without conversion, or not
supported. Character types 0 and 1 (alphanumeric and extended Latin-1) are always passed through to
output_str without conversion. See the Supported Conventions section later in this reference entry for details.

If ConvertChar is unable to determine whether the characters in source_str belong to the specified character
set, the function returns a value of UNKNOWN (-1). If source_str can be partially converted, ConvertChar
will partially convert string, echo the remaining characters to the output string as-is, and return a value of -2
(Completed with Issues).

Parameters

Parameter Description

Source_str String to be converted.

Source_str_category Language category of input string. You can specify either a number or a constant.

Numeric Value Constant Value Description

0 %ConvertChar_AlphaNumeric Half-width AlphaNumeric

1 %ConvertChar_ExtendedLatin1 Extended Latin-1 Characters
(ISO8859-1 accents, Spanish, French
etc.)

2 %ConvertChar_Japanese Japanese (any)

PeopleCode Built-in Functions Chapter 1

118 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Output_str A String variable to receive the converted string.

Target_char_code Either a Number or a constant representing the conversion target character type.
You can specify either a character code numeric value or a constant:

Numeric Value Constant Value Description

0 %CharType_AlphaNumeric Half-width AlphaNumeric — results in
a Hepburn Romaji conversion when
the input string contains Hiragana or
Katakana

2 %CharType_HankakuKatakana Hankaku Katakana (half—width
Japanese Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (full-width
Japanese Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

6 %CharType_DBAlphaNumeric Full-width AlphaNumeric (Japanese)

The following target values are not supported; if the source string is of the same type as any of these values,
then the string is passed through without conversion.

Numeric Value Constant Value Description

1 %CharType_ExtendedLatin1 Extended Latin-1 characters
(ISO8859-1 accents for Spanish,
French, etc.)

5 %CharType_Kanji Chinese, Japanese and Korean
ideographic characters.

10 %CharType_JapanesePunctuation Full- and half-width punctuation,
including space (U+0020) and
Fullwidth / Ideographic Space
(U+3000).

Supported Conversions

The following table shows which conversions are supported, which are passed through without conversion,
and which are not supported:

Source Target Conversion

0 (Alphanumeric US-ASCII) 0-6 (All supported character types) Pass through without conversion

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Source Target Conversion

1 (Extended Latin-1 characters) 0-6 (All supported character sets) Pass through without conversion

2 (Hankaku Katakana) 0 (Alphanumeric — Hepburn
romaji)

Conversion supported

1 (Extended Latin) Not supported

2 (Hankaku Katakana) Pass through without conversion

3 (Zenkaku Katakana) Conversion supported

4 (Hiragana) Conversion supported

5 (Kanji) Not supported

6 (Full-width alphanumeric) Not supported

3 (Zenkaku Katakana) 0 (Alphanumeric) Conversion supported

1 (Extended Latin) Not supported

2 (Hankaku Katakana) Conversion supported

3 (Zenkaku Katakana) Pass through without conversion

4 (Hiragana) Conversion supported

5 (Kanji) Not supported

6 (Full-width alphanumeric) Not supported

4 (Hiragana) 0 (Alphanumeric- Hepburn Romaji) Conversion supported

1 (Extended Latin) Not supported

2 (Hankaku Katakana) Conversion supported

PeopleCode Built-in Functions Chapter 1

120 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Source Target Conversion

3 (Zenkaku Katakana) Conversion supported

4 (Hiragana) Pass through without conversion

5 (Kanji) Not supported

6 (Full-width alphanumeric) Not supported

5 (Kanji) 0-4, 6 Not supported

5 (Kanji) Pass through without conversion

6 (Full-width alphanumeric) 0 (Alphanumeric) Conversion supported

1-5 Not supported

6 (Full-width alphanumeric) Pass through without conversion

10 (Japanese punctuation) 0 (Alphanumeric) Conversion supported

1 (Extended Latin) Not supported

3-6, 10 Pass through without conversion

Returns

Returns either a Number or a constant with one of the following values, depending on what you're checking
for:

Numeric Value Constant Value Description

1 %ConvertChar_Success String successfully converted.

0 %ConvertChar_NotConverted String not converted.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

Numeric Value Constant Value Description

-1 %ConvertChar_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

-2 %ConvertChar_Issues Completed with issues. Conversion
executed but there were one or more
characters encountered that were either
not recognized, or whose conversion is
not supported.

Note. If any character cannot be translated, it is echoed as-is to output_str.output_str could therefore be a
mixture of converted and non-converted characters.

Example

This example attempts to convert a string to Hiragana:

&RETVALUE = ConvertChar(&INSTR, 2, &OUTSTR, 4);
If &RETVALUE = 1 Then
 WinMessage("Conversion to Hiragana successful");
Else
 If &RETVALUE = 0 Then
 WinMessage("Conversion to Hiragana failed");
 Else
 If &RETVALUE = - 1 Then
 WinMessage("Input string is UNKNOWN character type.");
 Else
 WinMessage("Some characters could not be converted.");
 End-If
 End-If
End-If

See Also

Chapter 1, "PeopleCode Built-in Functions," CharType, page 82; Chapter 1, "PeopleCode Built-in
Functions," ContainsCharType, page 110 and Chapter 1, "PeopleCode Built-in Functions,"
ContainsOnlyCharType, page 113

PeopleTools 8.52: Global Technology, "Selecting and Configuring Character Sets and Language Input and
Output"

PeopleCode Built-in Functions Chapter 1

122 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ConvertCurrency

Syntax

ConvertCurrency(amt,currency_cd,exchng_to_currency, exchng_rt_type,effdt,
converted_amt [, error_process [, round] [, rt_index]])

Description

Use the ConvertCurrency function to convert between currencies. The result of the conversion is placed in a
variable passed in converted_amt.

See Also

PeopleTools 8.52: Global Technology, "Controlling Currency Display Format"

Parameters

Parameter Description

Amt The currency amount to be converted.

Currency_cd The currency in which the amt is currently expressed.

Exchng_to_currency The currency to which the amt should be converted.

Exchng_rt_type The currency exchange rate to be used. This is the value of the RT_TYPE field in
the RT_RATE table of RT_DFLT_VW.

Effdt The effective date of the conversion to be used.

Converted_amt The resulting converted amount. You must supply a variable for this parameter. If
a conversion rate cannot be found, converted_amt is set equal to amt.

Error_process An optional string that, if specified, contains one of the following values:

• "F" - Produce a fatal error if a matching conversion rate is not found.

• "W" - Produce a warning message box if a matching conversion rate is not
found.

• "I" - Or other−return without producing a message box

If error_process is not specified, it defaults to Fatal ("F").

Round Optional Boolean value indicating whether to round converted_amt to the smallest
currency unit. If omitted, round defaults to False.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

Parameter Description

rt_index An optional string to indicate which exchange rate index should be used to retrieve
the exchange rate. If omitted, the Default Exchange Rate index (as specified on the
Market Rate index definition) is used.

Note. If the currency exchange rate is changed in a PeopleSoft table, this change will not be reflected in an
already open page until the user closes the page, then opens it again.

Returns

ConvertCurrency returns a Boolean value where True means a conversion rate was found and converted_amt
calculated, and False means a conversion rate was not found and a value of one (1) was used.

Example

rem **---**;
rem * Convert the cost & accum_depr fields if books *;
rem * use different currencies. *;
rem **---**;
rem;
 If &FROM_CUR <> &PROFILE_CUR_CD Then
 &CON_COST_FROM = &COST_COST;
 &CON_ACC_DEPR_FROM = &COST_ACCUM;
 ConvertCurrency(&CON_COST_FROM, &FROM_CUR, &PROFILE_CUR_CD, RT_TYPE,TRANS_⇒
DT, &CON_COST_TO, "F");
 UpdateValue(COST_NON_CAP.COST, &COST_ROW_CUR, &CON_COST_TO);
 Else
 UpdateValue(COST_NON_CAP.COST, &COST_ROW_CUR, &COST_COST);
 End-If;
 UpdateValue(COST_NON_CAP.FROM_CUR, &COST_ROW_CUR, &PROFILE_CUR_CD);
UpdateValue(COST_NON_CAP.OPRID, &COST_ROW_CUR, %UserIdId);

ConvertDatetimeToBase

Syntax

ConvertDatetimeToBase(textdatetime, {timezone | "Local" | "Base"});

Description

Use the ConvertDatetimeToBase function to convert the text value textdatetime to a DateTime value. The
ConvertDatetimeToBase function then further converts it from the specified time zone to the base time zone.
This function automatically calculates whether daylight saving time is in effect for the given textdatetime and
time zone.

The system's base time zone is specified in the PSOPTIONS table.

PeopleCode Built-in Functions Chapter 1

124 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the PeopleSoft internal format: yyyy-mm-
ddhh:mm:ss[.S] (for example, "2011-01-01 18:10:52.000000").

In which:

• yyyy is a four-digit year.

• mm is a two-digit month (01 through 12).

• dd is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

timezone | Local | Base Specify a value for converting textdatetime. Values are:

• timezone - a time zone abbreviation or a field reference to be used for
converting textdatetime

• Local - use the local time zone for converting textdatetime.

• Base - use the base time zone for converting textdatetime.

Returns

Returns a DateTime value in the base time zone.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DATETIMEVAL
would have a DateTime value of "1999-01-01 07:00:00.000000":

&DATETIMEVAL= ConvertDateTimeToBase("1999-01-01 10:00:00.000000", "EST");

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertTimeToBase, page 126; Chapter 1, "PeopleCode Built-in
Functions," FormatDateTime, page 286; Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings,
page 461; Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185; Chapter 1,
"PeopleCode Built-in Functions," TimeToTimeZone, page 678 and Chapter 1, "PeopleCode Built-in
Functions," TimeZoneOffset, page 680

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

ConvertRate

Syntax

ConvertRate(Rate,In_Frequency, Out_Frequency)

Description

Use the ConvertRate function to convert a rate between various compounding frequencies.

Parameters

Parameter Description

Rate The rate to be converted. This parameter takes a number value.

In_Frequency The frequency of the rate to be converted from. This parameter takes an array of
number, with two elements. The first element is periodicity, (for example, if you
chose daily compounding, 1 would represent daily while 7 would represent
weekly.) The second element is the unit of measure of frequency. The values for
the second element are:

Value Description

0 continuous compounding

1 daily compounding

2 monthly compounding

3 yearly compounding

Parameter Description

Out_Frequency The frequency of the rate to be converted to. This parameter takes an array of
number, with two elements. The first element is periodicity, (for example, if you
chose daily compounding, 1 would represent daily while 7 would represent
weekly.) The second element is the unit of measure of frequency. The values for
the second element are:

Value Description

0 continuous compounding

1 daily compounding

PeopleCode Built-in Functions Chapter 1

126 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Description

2 monthly compounding

3 yearly compounding

Returns

A number representing the converted rate.

Example

The following example converts the specified values from days to years.

Local array of number &In, &Out;
Local number &rate, &NewRate;

&rate = 0.01891;
&In = CreateArray(0, 0);
&In[1] = 1; /* daily */
&In[2] = 1; /* compound_days */
&Out = CreateArray(0, 0);
&Out[1] = 1; /* one year */
&Out[2] = 3; /* compound_years */

&NewRate = ConvertRate(&rate, &In, &Out);

See Also

Chapter 1, "PeopleCode Built-in Functions," RoundCurrency, page 582

ConvertTimeToBase

Syntax

ConvertTimeToBase(texttime,{timezone | "Local" | "Base"});

Description

Use the ConvertTimeToBase function to convert the text value texttime to a Time value and converts it to the
base time. This function automatically calculates whether daylight saving time is in effect for the given
texttime.

This function is useful for users to convert constant times in specific time zones into database time. For
example, there is a deadline for completing Federal Funds transfers by 3:00 PM Eastern Time.
ConvertTimeToBase does this conversion, taking into account daylight saving time. The date used to
calculate whether daylight saving time is in effect is the current date.

The system's base time zone is specified on the PSOPTIONS table.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

Parameters

Parameter Description

texttime Specify a time value represented as text (e.g., "3:00 PM")

timezone | Local | Base Specify a value for converting texttime. Values are:

• timezone - a time zone abbreviation or a field reference to be used for
converting texttime

• Local - use the local time zone for converting texttime.

• Base - use the base time zone for converting texttime.

Returns

Returns a time value in the base time zone.

Example

In the following example, &TIMEVAL would have a time value of "07:00:00.000000", assuming the Base
time (as defined in PSOPTIONS) was PST.

&TEXTTIME = ConvertTimeToBase("01/01/99 10:00:00AM", "EST");

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," FormatDateTime, page 286; Chapter 1, "PeopleCode Built-in Functions,"
IsDaylightSavings, page 461; Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185;
Chapter 1, "PeopleCode Built-in Functions," TimeToTimeZone, page 678 and Chapter 1, "PeopleCode Built-
in Functions," TimeZoneOffset, page 680

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities"

CopyAttachments

Syntax

CopyAttachments(URLSource,URLDestination [, FileRefRecords [, PreserveCase[,
AllowLargeChunks]]])

PeopleCode Built-in Functions Chapter 1

128 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the CopyAttachments function to copy all files from one storage location to another. The files to be
copied can be limited to those referenced in specific file reference tables.

The Copy File Attachments page is provided as a way to launch a CopyAttachments operation (select
PeopleTools, Utilities, Administration, Copy File Attachments). (The CleanAttachments function is also
available from this page.)

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," Copy File
Attachments.

CopyAttachments looks for the field ATTACHSYSFILENAME in the table that stores the file references.
Oracle recommends that you include the FILE_ATTACH_SBR subrecord, which includes the
ATTACHSYSFILENAME and ATTACHUSERFILE fields, in your record definition, not just the fields
themselves.

CopyAttachments generates a list of all file attachments references, and then performs two operations on each
file attachment. First, CopyAttachments calls GetAttachment to retrieve the file from your source location.
Then, it calls PutAttachment to copy the attachment to your destination.

Note. If the specified subdirectories do not exist this function tries to create them.

PeopleTools supports multiple types of storage locations. Additional information on using CopyAttachments
with storage locations can be found in the PeopleTools 8.52: PeopleCode Developer's Guide PeopleBook.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

Considerations on Using PreserveCase with CopyAttachments

If the files to be copied were originally uploaded with the value of the PreserveCase optional parameter
unspecified or explicitly specified as False, then CopyAttachments should be similarly invoked (with the
value of PreserveCase unspecified or explicitly specified as False). On the other hand, if the files to be
copied were originally uploaded with the value of the PreserveCase explicitly specified as True, then
CopyAttachments should be similarly invoked (with the value of PreserveCase explicitly specified as True).
If the files to be copied fall into both categories, then CopyAttachment will need to be run twice , once with
the value of PreserveCase unspecified or explicitly specified as False, and then again with the value of
PreserveCase explicitly specified as True.

Parameters

Parameter Description

URLSource Specify the source storage location of the files to be copied. This parameter can
either be a URL identifier in the form URL.URL_ID, or a string.

The URLSource parameter requires forward slashes ("/"). Backward slashes ("\")
are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 129

Parameter Description

URLDestination Specify the destination storage location for the files to be copied. This parameter
can either be a URL identifier in the form URL.URL_ID, or a string.

The URLDestination parameter requires forward slashes ("/"). Backward slashes
("\") are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

FileRefRecords Specify an array of record names each of which is associated with a table
containing valid file references. By using this parameter, it is possible to explicitly
specify which groups of file references will be considered during a call to
CopyAttachments and, in this way, further restrict the scope of that call. If you do
not specify this parameter, all the records that contain the FILE_ATTACH_SBR
subrecord will be considered to have been implicitly specified (that is, every file at
the specified source storage location that has some valid corresponding file
reference will be copied).

PreserveCase Specify a Boolean value to indicate whether, when searching the source storage
locations for the file specified by each file reference and when naming that file at
the destination, its file name extension will be preserved or not; True, preserve the
case of the file name extension, False, convert the file name extension to all lower
case letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

AllowLargeChunks Specify a Boolean value to indicate whether to allow large chunks.

If the value specified in the Maximum Attachment Chunk Size field on the
PeopleTools Options page is larger than is allowed for retrieval, then the system
breaks the file upload into the largest sized chunks allowed. If AllowLargeChunks
is set to True, this behavior can be overridden so that it is possible for an end user
to upload a file in chunks that are too large for the system to retrieve. If
AllowLargeChunks is set to False, the system will use the largest size chunk that is
allowed for retrieval, or the configured chunk size, whichever is smaller.

Note. If the chunks are too big to be retrieved, then any file retrieval built-in
function, such as GetAttachment, will fail.

Note. The AllowLargeChunks parameter is only applicable when the storage
location is a database record. It has no impact when the storage location is an FTP
site or an HTTP repository, since attachments at those locations are never
chunked.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools
Utilities," PeopleTools Options.

This is an optional parameter.

The default value is False.

PeopleCode Built-in Functions Chapter 1

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

You can check for either an integer or a constant value:

Note. Since file attachment references might not always point to real files in your source location (they might
point to files in other locations, for example), file not found errors from the GetAttachment operation are
ignored and not included in the CopyAttachments return code.

Note. Because CopyAttachments is designed to work with multiple files, to track errors when using
CopyAttachments set your PeopleCode trace to 2112 and your SQL trace to 15 so that errors will be written
to the appropriate trace files.

Numeric Value Constant Value Description

0 %Attachment_Success Files were copied successfully.

1 %Attachment_Failed File copy failed due to an unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File copy failed due to an unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

4 %Attachment_NoDiskSpaceAppServ No disk space on the application
server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

PeopleCode Built-in Functions Chapter 1

132 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

Example

&retcode = CopyAttachments(URL.UrlID, ftp://user:passwd@ftpaddress/");

Here is another example.

&aRecs = CreateArray("HRATTS", "MFGATTS", "CRMATTS");

&ret = CopyAttachments("ftp://user:pass@system/HR/", "record://HRARCHIVE",
&aRecs);

If (&ret = %Attachment_Success) Then
 MessageBox(0, "Copy Archive Status", 0, 0, "Copy attachment archive⇒
 succeeded");
Else
 MessageBox(0, "Copy Archive Status", 0, 0, "Copy attachment archive failed");
End-If;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment,
page 200; Chapter 1, "PeopleCode Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode
Built-in Functions," GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions,"
MAddAttachment, page 486; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

CopyFields

Syntax

CopyFields(from,to)

where from and to are constructions that reference rows of data on specific source and target records in the
component buffer; each have the following syntax:

level,scrollpath, target_row

and where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

 Use the CopyFields function to copy like-named fields from a row on the specific source record to a row on
the specific target record.

Note. This function remains for backward compatibility only. Use the CopyFieldsTo or
CopyChangedFieldsTo record class methods instead.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class," CopyFieldsTo; PeopleTools 8.52:
PeopleCode API Reference, "Record Class," CopyChangedFieldsTo and PeopleTools 8.52: PeopleCode API
Reference, "Rowset Class," CopyTo

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

PeopleCode Built-in Functions Chapter 1

134 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

from A placeholder for a construction (level,scrollpath,target_row) that references the
first row in the comparison.

to A placeholder for a construction (level, scrollpath, target_row) that references the
second row in the comparison.

level Specifies the scroll level for the target level scroll.

scrollpath A construction that specifies a scroll level in the component buffer.

target_row Specifies the row number of each target row on its scroll level.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Example

The following example copies fields from PO_RECEIVED_INV (level 1 scroll) from row &ROW to
PO_RECV_INV_VW (level 1 scroll), row &LOC_ROW:

CopyFields(1, RECORD.PO_RECEIVED_INV, &ROW, 1, RECORD.PO_RECV_INV_VW, &LOC_ROW);

See Also

Chapter 1, "PeopleCode Built-in Functions," CompareLikeFields, page 99

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

CopyFromJavaArray

Syntax

CopyFromJavaArray(JavaArray,&PeopleCodeArray [, &RestrictionArray])

Description

Use the CopyFromJavaArray function to copy the array specified by JavaArray into one-dimensional
PeopleCode array &PeopleCodeArray.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 135

Note. The Java array must be at least the same size as the PeopleCode array.

The optional &RestrictionArray parameter is a PeopleCode array that contains the index elements of the
elements to copy. For example if &RestrictionArray contains the indexes 3, 5 and 7, only elements 3, 5 and 7
in the PeopleCode array are copied to the Java array, and they are copied to the elements 3, 5 and 7. This
allows you to minimize the copying when you have arrays that don't require a full element by element copy.
If &RestrictionArray is not specified, a complete array copy is done.

The array types between the PeopleCode array and the Java array must match the standard type mapping
between Java and PeopleCode types. For example, trying to copy a PeopleCode array of Any into a Java array
of int will fail because the Any PeopleCode type doesn't map onto the Java int type.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

PeopleTools 8.52: PeopleCode API Reference, "Java Class," PeopleCode and Java Data Types Mapping

Parameters

Parameter Description

JavaArray Specify the name of the Java array that you want to copy data from.

&PeopleCodeArray Specify the name of an already instantiated PeopleCode array that you want to
copy the data into.

&RestrictionArray Specify an already instantiated and populated PeopleCode array that contains the
set of elements the copy is restricted to. This array should be of type number.

Returns

None.

Example

Local array of any &x = CreateArrayAny();

&x.Push("First bit");
&x.Push(1);
&x.Push(%Datetime);
&x.Push(%Date);
&x.Push("Final bit");
Local array of number &selection = CreateArray(1, 3, 5);
Local JavaObject &Jarray = CreateJavaArray("java.lang.Object[]", &x.Len);
/* Full copy to a Java array */
CopyToJavaArray(&x, &Jarray);
/* Full copy from Java array to PeopleCode array */
Local array of any &y = CreateArrayAny();
&y [5] = Null; /* make sure it's the right length */
CopyFromJavaArray(&Jarray, &y);

PeopleCode Built-in Functions Chapter 1

136 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," CopyToJavaArray, page 137 and Chapter 1, "PeopleCode Built-
in Functions," CreateJavaArray, page 150

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

CopyRow

Syntax

CopyRow(destination_row,source_row)

Description

Use the CopyRow function to copy data from one row to another row.

Note. This function remains for backward compatibility only. Use the CopyTo row class method instead.

destination_row is the row number to which you want the source _row data values copied. The two rows, and
the PeopleCode function call, must all be located on the same scroll level.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Row Class," CopyTo; PeopleTools 8.52: PeopleCode API
Reference, "Record Class," CopyFieldsTo and PeopleTools 8.52: PeopleCode API Reference, "Record
Class," CopyChangedFieldsTo

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

destination_row Row number of row to which to copy data.

source_row Row number of row from which to read data.

Example

This example uses CopyRow to give an inserted row the same values as the previous row:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

/* Get the row number of the inserted row and the previous row */
&NEW_ROW_NUM = CurrentRowNumber();
&LAST_ROW_NUM = &NEW_ROW_NUM - 1;
/* Copy the data from the previous row into the inserted row */
CopyRow(&NEW_ROW_NUM, &LAST_ROW_NUM);

CopyToJavaArray

Syntax

CopyToJavaArray(&PeopleCodeArray,JavaArray [, &RestrictionArray])

Description

Use the CopyToJavaArray function to copy the one-dimensional array specified by &PeopleCodeArray into
the Java array JavaArray. The Java array must be at least as large as the PeopleCode array.

The optional &RestrictionArray parameter is a PeopleCode array that contains the index elements of the
elements to copy. For example if &RestrictionArray contains the indexes 3, 5 and 7, only elements 3, 5 and 7
in the PeopleCode array are copied to the Java array, and they are copied to the elements 3, 5 and 7. This
allows you to minimize the copying when you have arrays that don't require a full element by element copy.
If &RestrictionArray is not specified, a complete array copy is done.

The array types between the PeopleCode array and the Java array must match the standard type mapping
between Java and PeopleCode types. For example, trying to copy a PeopleCode array of Any into a Java array
of int will fail because the Any PeopleCode type doesn't map onto the Java int type.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

PeopleTools 8.52: PeopleCode API Reference, "Java Class," PeopleCode and Java Data Types Mapping

Parameters

Parameter Description

&PeopleCodeArray Specify an already instantiated and populated one-dimentional PeopleCode array
that contains the information you want to copy to a Java array.

JavaArray Specify the Java array that you want to copy information into.

&RestrictionArray Specify an already instantiated and populated PeopleCode array that contains the
set of elements the copy is restricted to. This array should be of type number.

Returns

None.

PeopleCode Built-in Functions Chapter 1

138 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following example creates an array, then shows both copying the full array, as well as only copying
elements of it.

Local array of any &x = CreateArrayAny();

&x.Push("First bit");
&x.Push(1);
&x.Push(%Datetime);
&x.Push(%Date);
&x.Push("Final bit");

Local array of number &selection = CreateArray(1, 3, 5);

Local JavaObject &Jarray = CreateJavaArray("java.lang.Object[]", &x.Len);

/* Full copy to a Java array */
CopyToJavaArray(&x, &Jarray);

/* Only copy elements 1, 3 and 5 */
CopyToJavaArray(&x, &Jarray, &selection);

See Also

Chapter 1, "PeopleCode Built-in Functions," CopyFromJavaArray, page 134 and Chapter 1, "PeopleCode
Built-in Functions," CreateJavaArray, page 150

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

Cos

Syntax

Cos(angle)

Description

Use the Cos function to calculate the cosine of the given angle (adjacent / hypotenuse).

Parameters

Parameter Description

angle A value in radians.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

Returns

A real number between -1.00 and 1.00.

Example

The following example returns the cosine of an angle measuring 1.2 radians:

&MY_RESULT = Cos(1.2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Atan, page 58; Chapter 1, "PeopleCode Built-in
Functions," Cot, page 139; Chapter 1, "PeopleCode Built-in Functions," Degrees, page 200; Chapter 1,
"PeopleCode Built-in Functions," Radians, page 550; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

Cot

Syntax

Cot(angle)

Description

Use the Cot function to calculate the cotangent of the given angle (adjacent / opposite, that is, the reciprocal
of the tangent).

Parameters

Parameter Description

angle A value in radians, excluding 0. If the input value is 0, you receive an error
message at runtime ("Decimal arithmetic error occurred. (2,110)"). Adjust your
code to provide a valid input value.

Note. In theory, all values of angle such that mod(angle,
pi) equals 0 are not valid for this function, because inputs approaching such values produce results that
tend toward infinity. In practice, however, no computer system can represent such values exactly. Thus, for
example, the statement Cot(Radians(180)) produces a number close to the largest value PeopleCode
can represent, rather than an error.

PeopleCode Built-in Functions Chapter 1

140 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A real number.

Example

The following example returns the cotangent of an angle measuring 1.2 radians:

&MY_RESULT = Cot(1.2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Atan, page 58; Chapter 1, "PeopleCode Built-in
Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in Functions," Degrees, page 200; Chapter 1,
"PeopleCode Built-in Functions," Radians, page 550; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

CreateAnalyticInstance

Syntax

CreateAnalyticInstance(AnalyticType,ID,Descr,&RecordRef,ForceDelete)

Description

Use the CreateAnalyticInstance function to create an analytic instance as identified by the analytic ID. If ID is
an empty string, the system automatically generates a unique ID.

This function only creates the metadata for the ID. It doesn't load the instance into an analytic server.

If this analytic instance already exists in the system, and you specify ForceDelete as false, the analytic
instance is not created. If you specify ForceDelete as true, the existing analytic instance is deleted and the
new one is created.

Every analytic type definition is defined with an application package that contains three methods: Create,
Delete, and Copy. The values in &RecordRef are passed to the Create method.

Parameters

Parameter Description

AnalyticType Specify the name of the analytic type definition to be used.

ID Specify the analytic instance identifier as a string. This parameter must be 20
characters or less.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

Parameter Description

Descr Specify a description for this analytic instance as a string.

&RecordRef Specify an already instantiated record object to pass values to the application
package Create method that's associated with the analytic type definition. If you do
not want to specify a record, you can specify NULL.

ForceDelete Specify the behavior if the specified analytic ID already exists. This parameter
takes a boolean value. If ForceDelete is set to false and the specified ID exists, this
function terminates without creating a new analytic instance. If ForceDelete is set
to true and the specified ID exists, the analytic instance is deleted and then
recreated.

Returns

An AnalyticInstance object if successful, null otherwise.

Example

Local AnalyticInstance π

/* Create a brand new analytic instance */
&pi = CreateAnalyticInstance("BusinessPlanning", "Test", "PopulateTables",⇒
 &argrec, True);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetAnalyticInstance, page 353

PeopleTools 8.52: PeopleCode API Reference, "Analytic Calculation Engine Classes," Understanding the
Analytic Calculation Engine Classes

PeopleTools 8.52: PeopleCode API Reference, "Application Classes"

PeopleTools 8.52: PeopleSoft Optimization Framework, "Designing Analytic Type Definitions," Creating
Analytic Type Definitions

CreateArray

Syntax

CreateArray(paramlist)

Where paramlist is an arbitrary-length list of values in the form:

param1 [, param2] ...

PeopleCode Built-in Functions Chapter 1

142 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

 Use the CreateArray function to construct an array and returns a reference to it.

The type of the first parameter determines the type of array that is built. That is, if the first parameter is of
type NUMBER, an array of number is built. If there is no first parameter an empty array of ANY is built.

The CreateArray function uses flattening and promotion as required to convert subsequent values into suitable
elements of the array.

Parameters

Parameter Description

paramlist Specify a list of values to be used as the elements of the array.

Returns

Returns a reference to the array.

Example

Local Array of Array of Number &AAN;
Local Array of Number &AN;

&AAN = CreateArray(CreateArray(1, 2), CreateArray(3, 4), 5);
&AN = CreateArray(6, &AAN[1]);

&AAN is a two dimensional array with three elements:

• A one-dimensional array with 1 and 2 as elements.

• A one-dimensional array with 3 and 4.

• A one-dimensional array with only the element 5.

The last parameter to Array was promoted to a one-dimensional array. &AN is a one-dimensional array with
3 elements: 6, 1, and 2. The last parameter to Array in the last line was flattened into its two elements.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateArrayRept, page 144 and Chapter 1, "PeopleCode Built-in
Functions," Split, page 653

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode API Reference, "Array Class," Using Flattening and Promotion

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

CreateArrayAny

Syntax

CreateArrayAny([paramlist])

Where paramlist is an arbitrary-length list of values in the form:

param1 [, param2] ...

Description

Use the CreateArrayAny function to construct an array whose elements are of data type ANY and returns a
reference to it.

The CreateArrayAny function uses flattening and promotion as required to convert subsequent values into
suitable elements of the array.

If you do not specify any parameters with CreateArrayAny, it's the same as using the CreateArray function
without any parameters.

If you do not know how many values are needed in a SQL statement until runtime, you can use an array of
any to supply the values.

Parameters

Parameter Description

paramlist Specify a list of values to be used as the elements of the array.

Returns

Returns a reference to an array of ANY.

Example

local Array of Any &ArrayAny = CreateArrayAny(1, 2, "hi", "there");

local Array of Array of Any &AAAny = CreateArray(CreateArrayAny(1, 2), CreateArray⇒
Any("hi"), "there");

&ArrayAny is a two dimensional array with four elements: 1, 2, "hi" and "there". All the elements have the
data type Any.

&AAAny is a two-dimensional array with three elements: a one-dimensional array with 1 and 2 as elements,
a one-dimensional array with "hi" as its element, and a one-dimensional array with only the element "there".
The last parameter to the array was promoted to a one-dimensional array.

PeopleCode Built-in Functions Chapter 1

144 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateArrayRept, page 144; Chapter 1, "PeopleCode Built-in
Functions," CreateArray, page 141 and Chapter 1, "PeopleCode Built-in Functions," Split, page 653

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode API Reference, "Array Class," Using Flattening and Promotion

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

CreateArrayRept

Syntax

CreateArrayRept(val, count)

Description

 Use the CreateArrayRept function to create an array that contains count copies of val. If val is itself an array,
the created array has one higher dimension, and each element (sub-array) is the array reference val.

The type of the first parameter (val) determines the type of array that is built. That is, if the first parameter is
of type NUMBER, an array of number is built. If count is zero, CreateArrayRept creates an empty array,
using the val parameter for the type.

If you are making an array that is multi-dimensional, val will be the subarray used as the elements.

To make the subarrays distinct, use the Clone method. For example:

&A = CreateArrayRept(&AN, 4).Clone();

Parameters

Parameter Description

val A value of any type.

count The number of copies of val contained in the array.

Returns

Returns a reference to the array.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

Example

The following code sets &A to a new empty array of string:

&A = CreateArrayRept("", 0);

The following code sets &A to a new array of ten zeroes:

&A = CreateArrayRept(0, 10);

The following code sets &AAS to a new array of array of strings, with two subarrays:

&AAS = CreateArrayRept(CreateArray("one", "two"), 2);

Note that in this case, both elements (rows) of &AAS contain the same subarray, and changing the value of
an element in one of them changes it in both of them. To get distinct subarrays, use the Clone method:

&AAS = CreateArrayRept(CreateArray("one", "two"), 2).Clone();

The following example shows how to create a two-dimension array using CreateArrayRept and Push. In
addition, it shows how to randomly assigns values to the cells in a two-dimension array.

Local array of array of string &ValueArray;

&Dim1 = 10;
&Dim2 = 5;
&ValueArray = CreateArrayRept(CreateArrayRept("", 0), 0);
For &I = 1 To &Dim1
 &ValueArray.Push(CreateArrayRept("", &Dim2));
End-For;
&ValueArray[1][1] = "V11";
&ValueArray[2][1] = "V21";

WinMessage("&ValueArray[1][1] = " | &ValueArray[1][1] | " " | "&ValueArray[2][1] =⇒
 " | &ValueArray[2][1], 0);

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateArray, page 141 and Chapter 1, "PeopleCode Built-in
Functions," Split, page 653

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode API Reference, "Array Class," Clone

CreateDirectory

Syntax

CreateDirectory(path, [, pathtype])

PeopleCode Built-in Functions Chapter 1

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the CreateDirectory function to create the directory specified by path and any non-existent directories
specified in path.

On UNIX systems, the directory has the mode 755, that is, read-write-execute permission for the owner,
while group and other have only read and execute permission.

drwxr-xr-x

Parameters

Parameter Description

path Specify the path to be created.

pathtype If you have prepended a path to the file name, use this parameter to specify
whether the path is an absolute or relative path. The valid values for this parameter
are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don't specify pathtype the default is %FilePath_Relative.

If you specify a relative path, that path is appended to the path constructed from a
system-chosen environment variable. A complete discussion of relative paths and
environment variables is provided in documentation on the File class.

See PeopleTools 8.52: PeopleCode API Reference, "File Class," Working With
Relative Paths.

If the path is an absolute path, whatever path you specify is used verbatim. You
must specify a drive letter and the complete path. You can't use any wildcards
when specifying a path.

The Component Processor automatically converts platform-specific separator
characters to the appropriate form for where your PeopleCode program is
executing. On a Windows system, UNIX "/" separators are converted to "\", and
on a UNIX system, Windows "\" separators are converted to "/".

Note. The syntax of the file path does not depend on the file system of the
platform where the file is actually stored; it depends only on the platform where
your PeopleCode is executing.

Returns

None.

Example

CreateDirectory("D:\Resumes\New_Hires", %FilePath_Absolute);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147

See Also

Chapter 1, "PeopleCode Built-in Functions," FileExists, page 278; Chapter 1, "PeopleCode Built-in
Functions," FindFiles, page 283; Chapter 1, "PeopleCode Built-in Functions," GetFile, page 370; Chapter 1,
"PeopleCode Built-in Functions," GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions,"
PutAttachment, page 541 and Chapter 1, "PeopleCode Built-in Functions," RemoveDirectory, page 562

PeopleTools 8.52: PeopleCode API Reference, "File Class"

CreateDocument

Syntax

CreateDocument(DocumentKey | Package,DocumentName,Version)

Description

Use this method to instantiate a new Document object.

Parameters

Parameter Description

DocumentKey Specifies a DocumentKey object that defines the document's package, document
name, and version.

Package Specifies a document package as a string.

DocumentName Specifies the name of the document as a string.

Note. The document name also becomes the root element name for the document.

Version Specifies the document version as a string.

Returns

A Document object.

Example

The following provides two examples of instantiating a Document object. Both result in the same object.

Example 1:

PeopleCode Built-in Functions Chapter 1

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local Document &Doc;

/* Instatiate the Document object */
&Doc = CreateDocument("Purchasing", "PurchaseOrder", "v1");

Example 2:

Local Document &Doc;
Local DocumentKey &DocKey;

/* Instatiate the Document object */
&DocKey = CreateDocumentKey("Purchasing", "PurchaseOrder", "v1");
&Doc = CreateDocument(&DocKey);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Document Classes," Document Class

PeopleTools 8.52: PeopleCode API Reference, "Document Classes," DocumentKey Class

CreateDocumentKey

Syntax

CreateDocumentKey(Package,DocumentName,Version)

Description

Use this method to instantiate a new DocumentKey object.

Parameters

Parameter Description

Package Specifies a document package as a string.

DocumentName Specifies the name of the document as a string.

Note. The document name also becomes the root element name for the document.

Version Specifies the document version as a string.

Returns

A DocumentKey object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149

Example

The following provides an example of instantiating a Document object from a document key:

Local Document &Doc;
Local DocumentKey &DocKey;

/* Populating Document Object */
&DocKey = CreateDocumentKey("Purchasing", "PurchaseOrder", "v1");
&Doc = CreateDocument(&DocKey);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Document Classes," DocumentKey Class

CreateException

Syntax

CreateException(message_set,message_num,default_txt [,subslist])

where subslist is an arbitrary-length list of substitutions of undetermined (Any) data type to be substituted in
the resulting text string, in the form:

substitution1 [, substitution2]. . .

Description

Use the CreateException function to create an exception object with the given properties. You can use this in
your exception handling. Use this function either in conjunction with the throw statement, or on its own to
get more information of a message.

Parameters

Parameter Description

message_set Specify the message set number of the message you want associated with this
exception.

message_num Specify the message number of the message you want associated with this
exception.

default_txt Specify the text you want associated with the exception if the message specified
by message_set and message_num isn't found.

PeopleCode Built-in Functions Chapter 1

150 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

subslist A comma-separated list of substitutions; the number of substitutions in the list is
arbitrary. The substitutions are referenced in the message text using the %
character followed by an integer corresponding to the position of the substitution
in the subslist. The number of substitutions specified with this parameter are what
get counted with the exception class SubsitutionCount property.

Returns

A reference to an exception object if successful, Null otherwise.

Example

Function t2
 throw CreateException(2, 160, "'%1' doesn't support property or method '%2'",⇒
 "SomeClass", "SomeMethod");
End-Function;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Exception Class"

CreateJavaArray

Syntax

CreateJavaArray(ElementClassName[], NumberOfElements)

Description

Use the CreateJavaArray function to create a Java array without knowing the number or value of the
elements.

When you create an array in Java, you already know the number of elements in the array. If you do not know
the number of elements in the array, but you want to use a Java array, use the CreateJavaArray function in
PeopleCode. This creates a Java object that is a Java array, and you can pass in the number of elements that
are to be in the array.

The first index in a Java array is 0. PeopleCode arrays start at 1.

Do the following to specify this type of array in Java:

new ElementClassName[NumberOfElements];

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 151

Parameters

Parameter Description

ElementClassName[] Specify the array class name. This parameter takes a string value.

NumberOfElements Specify the number of elements in the array. This parameter takes a number value.

Returns

A Java object

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateJavaObject, page 151 and Chapter 1, "PeopleCode Built-in
Functions," GetJavaClass, page 381

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

CreateJavaObject

Syntax

CreateJavaObject(ClassName [ConstructorParams])

Where ConstructorParams has the form

argument1 [, argument2] . . .

Description

Use the CreateJavaObject function to create a Java object that can be manipulated in PeopleCode.

Note. If you create a class that you want to call using GetJavaClass, it can be located in a directory specified
in the PS_CLASSPATH environment variable or in other specified locations. The PeopleCode API Reference
provides details on where you can place custom and third-party Java classes.

See PeopleTools 8.52: PeopleCode API Reference, "Java Class," System Setup for Java Classes.

Use the CreateJavaObject function to create a Java array when you know how many values it should contain.
If ClassName is the name of an array class (ending with []), ConstructorParams are used to initialize the
array.

In Java, do the following to initialize an array:

intArray = new int[]{1, 2, 3, 5, 8, 13};

PeopleCode Built-in Functions Chapter 1

152 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Do the following to initialize such a Java array from PeopleCode:

&IntArray = CreateJavaObject("int[]", 1, 2, 3, 5, 8, 13);

To initialize a Java array without knowing the number of parameters until runtime, use the CreateJavaArray
function.

Parameters

Parameter Description

ClassName Specify the name of an already existing class.

ConstructorParams Specify any construction parameters required for the class. Constructors are
matched by construction parameter type and placement.

Returns

A Java object.

Example

The following is an example of using dot notation and CreateJavaObject.

&CHARACTER.Value = CreateJavaObject(&java_path).GetField(&java_newchar).Value;

&NUMBER.Value = CreateJavaObject(&java_path).GetField(&java_newnum).Value;

&DATE.Value = CreateJavaObject(&java_path).GetField(&java_newdate).Value;

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateJavaArray, page 150 and Chapter 1, "PeopleCode Built-in
Functions," GetJavaClass, page 381

PeopleTools 8.52: PeopleCode API Reference, "Java Class," System Setup for Java Classes

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

CreateMCFIMInfo

Syntax

CreateMCFIMInfo(UserID,Network)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 153

Description

Use the CreateMCFIMInfo function to create an instance of the MCFIMInfo class. This is used to initiate the
instant messaging session.

Parameters

Parameter Description

UserID Specify the PeopleSoft user as a string. This is the source user, or the user issuing
the presence requests.

NetworkID Specify which network to use for instant messaging. The values are:

• AOL

• Yahoo

Returns

An MCFIMInfo object if successful, a null value otherwise.

See Also

PeopleTools 8.52: PeopleCode API Reference, "MCF IM Classes"

CreateMessage

Syntax

CreateMessage(OPERATION.messagename [, message_type])

Description

Use the CreateMessage function to instantiate a message object that refers to a message definition associated
with a service operation. The CreateMessage function sets the following properties for the resulting message
object, based on the values set for the message definition:

• Name

• QueueName

• Active

Other properties are set when the message is published or subscribed to (TransactionID and so on,) or are
dynamically generated at other times (Size, EditError, and so on.)

PeopleCode Built-in Functions Chapter 1

154 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For rowset-based messages, CreateMessage also sets the LANGUAGE_CD field in the level 0 PSCAMA
record for a message based on the USERID default language group. If the message is being published from a
component, the language code is set to the USERID language code for the component. If CreateMessage is
called from a PeopleSoft Application Engine program, the language code of the user who started the batch
process is used.

Parameters

Parameter Description

OPERATION.messagename Specify the name of the message definition you want to create a message object
for.

message_type Specify the type of message that you want to create. Valid values are:

Value Description

%IntBroker_Request A request message. This is the default.

%IntBroker_Response A response message.

%IntBroker_Fault A fault message.

Returns

Returns a reference to a message object.

Example

The following example creates a request message &MSG assocaited with the service operation
PURCHASE_ORDER.

Local message &MSG;

&MSG = CreateMessage(OPERATION.PURCHASE_ORDER);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetMessage, page 385; Chapter 1, "PeopleCode Built-in
Functions," GetPubContractInstance, page 406 and Chapter 1, "PeopleCode Built-in Functions,"
GetSubContractInstance, page 422

PeopleTools 8.52: PeopleCode API Reference, "Message Classes"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 155

CreateObject

Syntax

CreateObject(str_class_name, create_par, . . .)

Where str_class_name either:

—identifies a class by class name

—identifies a class of OLE Automation object in the form:

app_name.object_name

Description

Use the CreateObject function to return an instance of a class. You can use this function to access an
Application Class, a PeopleCode built-in object (like a chart), or an OLE Automation object.

If the class you are creating requires values to be passed, use the create_par parameters to supply them, or
use the CreateObjectArray function.

Considerations Using Application Classes

You can use the CreateObject function to access an Application Class. You would want to do this when you
were programming at a high-level, when you might not know the name of the class you wanted to access until
runtime. You must specify a fully-qualified class name. In addition, the class name is case-sensitive.

The returned object has the type of class you specified.

Considerations Using PeopleCode Built-in Objects

For example, to generate a PeopleSoft chart object without using a chart control (that is, without using the
GetChart function) you could use:

&MyChart = CreateObject("Chart");

The returned object has the type of class you specified.

Note. The only way to instantiate a crypt object is using the CreateObject function.

Considerations Using OLE Automation Objects

CreateObject returns an instance of an OLE Automation object as a variable of type Object.

The str_class_name argument uses the syntax app_name.object_type, which consists of: app_name (the name
of the application providing the object) and object_type (the class or type of the object to create), separated by
a period (dot).

PeopleCode Built-in Functions Chapter 1

156 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Any application that supports OLE Automation exposes at least one type of object. For example, a
spreadsheet application may provide an application object, a worksheet object, and a toolbar object.

To create an OLE Automation object, you assign the object returned by CreateObject to a variable of type
Object:

local object &WORKSHEET;

&WORKSHEET = CreateObject("Excel.Sheet");

After an object is created, you can reference it using the object variable. In the previous example, you access
properties and methods of the new object using the ObjectGetProperty, ObjectSetProperty, and
ObjectDoMethod functions.

Note. If an object has registered itself as a single-instance object, only one instance of the object can be
created, even if CreateObject is executed more than once. Note also that an object assigned to a global
variable is not valid across processes: that is, the scope and lifetime of the global is the same as the scope and
lifetime of the instance of PeopleTools in which the object was created.

Parameters

Parameter Description

str_class_name Specify the name of the class that you want to instantiate an object from.

create_par Specify the parameters required by the class for instantiating the object.

Example

This example instantiates an Excel worksheet object, makes it visible, names it, saves it, and displays its
name. Note the use of ObjectGetProperty in the example to return the Excel.Sheet.Application object.

&WORKAPP = CreateObject("COM", "Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the⇒
 INVOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

This following example illustrates the creation of an application class object. This code assumes that
MyBaseClass is the superclass of both MySubclass1 and MySubclass2 classes.

local MyBaseClass &mbobj;
local String &ClassName = "MySubclass1";
if &test then
&ClassName = "MySubclass2";
end-if;
&mbobj = CreateObject(&ClassName);

The following example creates a chart in an iScript, using the CreateObject function to generate a reference to
a chart object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 157

Function IScript_GetChartURL()

 Local Chart &oChart;
 Local Rowset &oRowset;
 Local string &sMap;
 Local string &sURL;

 &oChart = CreateObject("Chart");

 &oRowset = CreateRowset(Record.QE_CHART_RECORD);
 &oRowset.Fill("where QE_CHART_REGION= :1", "MIDWEST");
 &oChart.SetData(&oRowset);

 &oChart.Width = 400;
 &oChart.Height = 300;

 &oChart.SetDataYAxis(QE_CHART_RECORD.QE_CHART_SALES);
 &oChart.SetDataXAxis(QE_CHART_RECORD.QE_CHART_PRODUCT);
 &oChart.SetDataSeries(QE_CHART_RECORD.QE_CHART_REGION);

 &oChart.HasLegend = True;
 &oChart.LegendPosition = %ChartLegend_Right;

 &sURL = %Response.GetChartURL(&oChart);
 &sMap = &oChart.ImageMap;

 %Response.Write("<HTML><IMG SRC=");
 %Response.Write(&sURL);
 %Response.Write(" USEMAP=#THEMAP><MAP NAME=THEMAP>");
 %Response.Write(&sMap);
 %Response.Write("</MAP></HTML>");

End-Function;

See Also

Chapter 1, "PeopleCode Built-in Functions," ObjectDoMethod, page 526; Chapter 1, "PeopleCode Built-in
Functions," ObjectGetProperty, page 528; Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty,
page 530; Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157 and Chapter 1,
"PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes"

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using OLE
Functions

CreateObjectArray

Syntax

CreateObjectArray(Class_Name,Array_of_Args)

PeopleCode Built-in Functions Chapter 1

158 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the CreateObjectArray function to return an instance of a class.

Use this function when you must pass in parameters to create the object and you don't know when you write
the code how many parameters are required. If you can create the object without passing in additional values,
or if you know how many parameters are required, use the CreateObject function instead.

The array of parameters is an array of Any. It must be a one-dimensional array, that is, you cannot pass in an
array of array of Any. You cannot pass in field references, that is, you cannot pass in references of the form:

RECORD.FIELDNAME

If you do not want to supply any parameters, you can use an empty array, or a reference to a Null array.

Parameters

Parameter Description

Class_Name Specify the name of the class you want to create an instance of, as a string.

Array_Of_Args Specify an Array of Any containing all parameters for creating an instance of the
class.

Returns

A reference to newly created object.

Example

The following is an example of the creation of an Application Class object where the number of parameters
used to create the object varies, depending on data in the database.

local String &ClassName, &RecName;
local Record &Rec;

/* Read class name and parameter record name from the database. */
SQLExec("SELECT CLASSNAME, RECNAME FROM %TABLE(RECORD.CLASSDATA)", &ClassName,⇒
 &RecName);

local Record &Rec = CreateRecord(@ ("RECORD." | &RecName));

/* Read the parameters from the database. */
local Array of Any &Params = CreateArrayAny();

SQLExec("%SelectAll(:1)", &Rec, &Params);

/* Create the object. */
local MyPackage:BaseClass &Obj = CreateObjectArray(&ClassName, &Params);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 159

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155; Chapter 1, "PeopleCode Built-in
Functions," ObjectDoMethod, page 526; Chapter 1, "PeopleCode Built-in Functions," ObjectGetProperty,
page 528; Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty, page 530 and Chapter 1,
"PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using OLE
Functions

CreateProcessRequest

Syntax

CreateProcessRequest([ProcessType,ProcessName])

Description

Use the CreateProcessRequest function to create a ProcessRequest object. After you've created this object,
you can assign values to its properties then use the Schedule method to submit the process request for
scheduling.

If you specify PSJob for the process type, the ProcessRequest object contains all the items of the job.

Parameters

Parameter Description

ProcessType Specify the process type as a string. Values depend on the process types defined
for your system.

ProcessName Specify the name of the process as a string.

Returns

A reference to a ProcessRequest object.

Example

Local ProcessRequest &MYRQST;

&MYRQST = CreateProcessRequest("PSJOB", &MyJobName);

PeopleCode Built-in Functions Chapter 1

160 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Process Request Classes"

PeopleTools 8.52: PeopleCode API Reference, "Process Request Classes," Schedule

CreateRecord

Syntax

CreateRecord(RECORD.recname)

Description

Use the CreateRecord function to create a standalone record definition and its component set of field objects.
The specified record must have been defined previously, that is, it must have a record definition. However, if
you are calling this function from PeopleCode associated with a page, the record does not have to be included
on the current page.

The record and field objects created by this function are accessible only within PeopleCode. They can be used
with any of the record and field object methods and properties. The record and field objects are automatically
deleted when there are no remaining references to them stored in any variables.

The fields created by this function are initialized to null values. Default processing is not performed. No data
associated with the record definition's SQL table is brought in: only the record definition.

You can select into a record object created this way using the SelectByKey record class method. You can also
select into it using the SQLExec function.

Parameters

Parameter Description

RECORD.recname Specify a record definition that already exists.

Returns

This function returns a record object that references a new record buffer and set of fields.

Example

Local Record &REC2;

&REC2 = CreateRecord(RECORD.OPC_METH);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 161

In the following example, a free-standing record is created (&PSBATREPREQRES). Values are assigned to
the fields associated with the record. Then a second record is created (&PUBHDR), and the values from the
first record are used to populate the second record.

&PSBATREPREQRES = CreateRecord(RECORD.PSBATREPREQRES);
 &PSBATREPREQRES.BATREPID.Value = &BATREPID;
 &PSBATREPREQRES.PUBID.Value = &MSG.Pubid;
 &PSBATREPREQRES.CHNLNAME.Value = &MSG.ChannelName;
 &PSBATREPREQRES.PUBNODE.Value = &MSG.PubNodeName;
 &PSBATREPREQRES.MSGNAME.Value = &MSG.Name;

 &PUBHDR = CreateRecord(RECORD.PSAPMSGPUBHDR);
 &PSBATREPREQRES.CopyFieldsTo(&PUBHDR);

To create a PeopleCode record object for a record whose name is unknown when the PeopleCode is written,
do the following.

Suppose a record name is in the PeopleCode variable &RECNAME. Use the @ operator to convert the string
to a component name. The following code creates a corresponding record object:

&RECNAME = "RECORD." | Upper(&RECNAME);
&REC = CreateRecord(@ &RECNAME);

The following example uses SQLExec to select into a record object, based on the effective date.

Local Record &DST;

&DST = CreateRecord(RECORD.DST_CODE_TBL);
&DST.SETID.Value = GetSetId(FIELD.BUSINESS_UNIT, DRAFT_BU, RECORD.DST_CODE_TYPE,⇒
 "");
&DST.DST_ID.Value = DST_ID_AR;
SQLExec("%SelectByKeyEffDt(:1,:2)", &DST, %Date, &DST);
/* do further processing using record methods and properties */

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRecord, page 409 and Chapter 1, "PeopleCode Built-in
Functions," GetField, page 369

PeopleTools 8.52: PeopleCode API Reference, "Record Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

CreateRowset

Syntax

CreateRowset({RECORD.recname | &Rowset} [, {FIELD.fieldname,RECORD.recname |
&Rowset}] . . .)

Description

Use the CreateRowset function to create an unpopulated, standalone rowset.

PeopleCode Built-in Functions Chapter 1

162 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

A standalone rowset is a rowset that has the specified structure, but is not tied to any data (that is, to the
component buffer or to a message.) In addition, a standalone rowset isn't tied to the Component Processor.
When you fill it with data, no PeopleCode runs (like RowInsert, FieldDefault, and so on.)

The first parameter determines the structure of the rowset to be created.

If you specify a record as the first parameter, it's used as the primary level 0 record. If you don't specify any
other parameters, you create a rowset containing one row, with one unpopulated record. To populate this type
of rowset with data, you should only use:

• the Fill or FillAppend rowset class methods

• a record method (SelectByKey)

• the SQLExec function

If you specify a rowset object, you are creating a new rowset based on the structure of the specified rowset
object, including any child rowsets. It will not contain any data. If you want to populate this type of rowset
with data, use the CopyTo method or a SQL statement.

Note. You should not use the rowset Select or SelectNew methods for populating rowsets created using
CreateRowset. Use Fill or FillAppend instead.

Restrictions on Using CreateRowset

The following methods and properties don't work with a rowset created using CreateRowset:

• Select

• SelectNew

• Any GUI methods (like HideAllRows)

• Any effective date methods or properties (like EffDt, EffSeq, or GetCurrEffRow)

In addition, rowsets created using CreateRowset are not automatically tied to the database. This means if you
insert or delete rows, the rows will not be inserted or deleted in the database when you save the page.

Parameters

Parameter Description

RECORD.recname | &Rowset Specify either a record name or an existing rowset object.

FIELD.fieldname,RECORD.
recname | &Rowset

Use FIELD.fieldname,RECORD.recname to specify a related display record.
FIELD.fieldname refers to the controlling field, (not the related display field)
while RECORD.recname refers to the related display record.

If you specify &rowset, you are adding a child rowset object to the newly created
rowset. This must be an existing rowset object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 163

Returns

An unpopulated, standalone rowset object.

Example

The following creates a simple rowset of just a single record per row:

&RS = CreateRowset(RECORD.QA_MYRECORD);

The following creates a rowset with the same structure as the specified rowset:

&RS2 = CreateRowset(&RS);

The following code creates a rowset structure composed of four records in an hierarchical structure, that is,

QA_INVEST_HDR
 QA_INVEST_LN
 QA_INVEST_TRANS
 QA_INVEST_DTL

Note that you have to start at the bottom of the hierarchy, and add the upper levels, not the other way around.

Local Rowset &RS, &RS2, &RS_FINAL;

&RS2 = CreateRowset(RECORD.QA_INVEST_DTL);
&RS = CreateRowset(RECORD.QA_INVEST_TRANS, &RS2);
&RS2 = CreateRowset(RECORD.QA_INVEST_LN, &RS);
&RS_FINAL = CreateRowset(RECORD.QA_INVEST_HDR, &RS2);

The following example reads all of the QA_MYRECORD records into a rowset, and returns the number of
rows read:

&RS = CreateRowset(RECORD.QA_MYRECORD);
&NUM_READ = &RS.Fill();

To make a clone of an existing rowset, that is, to make two distinct copies, you can do the following:

&RS2 = CreateRowset(&RS);
&RS.CopyTo(&RS2);

The following code example is used for creating multiple children in a standalone rowset:

Local Rowset &rsBOCMRole, &rsBOCMRel, &rsBOCMUse;

 &rsBOCMRole = CreateRowset(Record.BO_CM_ROLE);
 &rsBOCMRel = CreateRowset(Record.BO_CM_REL);
 &rsBOCMUse = CreateRowset(Record.BO_CM_USE);
 &rsBOCM = CreateRowset(Record.BO_CM, &rsBOCMUse, &rsBOCMRole, &rsBOCMRel);

PeopleCode Built-in Functions Chapter 1

164 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRowset, page 413; Chapter 1, "PeopleCode Built-in
Functions," GetLevel0, page 382; Chapter 1, "PeopleCode Built-in Functions," GetRecord, page 409 and
Chapter 1, "PeopleCode Built-in Functions," GetField, page 369

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using
Standalone Rowsets

CreateRowsetCache

Syntax

CreateRowsetCache(&Rowset, [Rowset.]Name,Description)

Description

Use the CreateRowsetCache function to create a new RowsetCache object with the given name if it doesn't
already exist.

Parameters

Parameter Description

&Rowset Specify an already instantiated and populated rowset that you want to use for
creating a RowsetCache object. The RowsetCache object will have the same
format and data as &Rowset.

Record.Name Specify the name of the created RowsetCache object. If you just specify name, you
must enclose the name in quotation marks.

Description Specify a description of the RowsetCache as a string.

Returns

A reference to the new RowsetCache object if there is not already a RowsetCache object of the given name.

Example

Local RowsetCache &Cache;
Local Rowset &RS;

&RS = CreateRowset(Record.PSLANGUAGES);
&NUM_READ = &RS.Fill();

&Cache = CreateRowsetCache(&RS, "AAROWSET1", "ROWSET_AAROWSET1");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 165

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRowsetCache, page 414

PeopleTools 8.52: PeopleCode API Reference, "RowsetCache Class"

CreateSOAPDoc

Syntax

CreateSOAPDoc()

Description

Use the CreateSOAPDoc function to create an empty SOAPDoc object. Then use the SOAPDoc class
methods and properties, as well as the XmlDoc class methods and properties to populate the SOAPDoc
object.

Parameters

None.

Returns

A reference to a SOAPDoc object.

Example

Local SOAPDoc &MyDoc;

&MyDoc = CreateSOAPDoc();

See Also

PeopleTools 8.52: PeopleCode API Reference, "SOAPDoc Class"

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

CreateSQL

Syntax

CreateSQL([{sqlstring | SQL.SqlName}[, paramlist]])

PeopleCode Built-in Functions Chapter 1

166 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Where paramlist is an arbitrary-length list of values in the form:

inval1 [, inval2] ...

Description

Use the CreateSQL function to instantiate a SQL object from the SQL class and opens it on the given
sqlstring and input values. sqlstring is a PeopleCode string value giving the SQL statement.

Any errors in the SQL processing cause the PeopleCode program to be terminated with an error message.

You can use CreateSQL with no parameters to create an empty SQL object that can be used to assign
properties before being populated and executed.

Opening and Processing sqlstring

If sqlstring is a SELECT statement, it is immediately bound with the inval input values and executed. The
SQL object should subsequently be the subject of a series of Fetch method calls to retrieve the selected rows.
If you want to fetch only a single row, use the SQLExec function instead. If you want to fetch a single row
into a PeopleCode record object, use the record Select method.

If sqlstring is not a SELECT statement, and either there are some inval parameters, or there are no bind
placeholders in the SQL statement, the statement is immediately bound and executed. This means that there is
nothing further to be done with the SQL statement and the IsOpen property of the returned SQL object will be
False. In this case, using the SQLExec function would generally be better. If you want to delete, insert or
update a record object, use the record Delete, Insert, or Update methods.

If sqlstring is not a SELECT statement, there are no inval parameters, and there are bind placeholders in the
SQL statement, the statement is neither bound nor executed. The resulting SQL object should subsequently be
the subject of a series of Execute method calls to affect the desired rows.

Using Arrays with paramlist

You can use a parameter of type "Array of Any" in place of a list of bind values or in place of a list of fetch
result variables. This is particularly useful when fetching an unknown number of results.

&Sql1 = CreateSql("Select * from " | &TableName);
&AAny = CreateArrayAny();

While &Sql1.Fetch(&AAny)
 /* Process the row in &AAny. */
 ...
End-While;

Because the Array of Any promotes to absorb any remaining select columns, it must be the last parameter for
the SQL object Fetch method or (for results) SQLExec. For binding, it must be the only bind parameter, as it
is expected to supply all the bind values needed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 167

Parameters

Parameter Description

sqlstring| SQL.SqlName Specify either a SQL string containing the SQL command to be created or a
reference to an existing SQL definition. This string can include bind variables,
inline bind variables, and meta-SQL.

paramlist Specify input values for the SQL string.

Returns

None.

Example

This SQL object should be used in a series of Fetch method calls:

Local SQL &SQL;

&SQL = CreateSQL("%SelectAll(:1) where EMPLID = :2", RECORD.ABSENCE_HIST, &EMPLID);

This SQL object has been opened, bound, and is already closed again:

&SQL = CreateSQL("Delete from %Table(:1) where EMPLID = :2", RECORD.ABSENCE_HIST,⇒
 &EMPLID);

This SQL object should be used in a series of Execute method calls:

&SQL = CreateSQL("Delete from %Table(:1) where EMPLID = :2");

This SQL object is created as an empty object in order to set properties before being executed:

&Sql = CreateSQL();
&Sql.Tracename = "SQL1";
&Sql.ReuseCursor = True;
&Sql.Open(......); /* do the deed */

See Also

Chapter 1, "PeopleCode Built-in Functions," DeleteSQL, page 209; Chapter 1, "PeopleCode Built-in
Functions," FetchSQL, page 273; Chapter 1, "PeopleCode Built-in Functions," GetSQL, page 418; Chapter 1,
"PeopleCode Built-in Functions," SQLExec, page 654 and Chapter 1, "PeopleCode Built-in Functions,"
StoreSQL, page 664

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

PeopleTools 8.52: PeopleCode API Reference, "SQL Class," Open

PeopleCode Built-in Functions Chapter 1

168 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

CreateWSDLMessage

Syntax

CreateWSDLMessage(MessageName,ChannelName)

Description

Use the CreateWSDLMessage function to create an unstructured message. This function creates both the
message as well as the channel.

This function has been deprecated. It is no longer supported.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Consuming Services"

CreateXmlDoc

Syntax

CreateXmlDoc(XmlString,DTDValidation)

Description

Use the CreateXmlDoc function to create an XmlDoc object. If you specify a Null string for XmlString (""),
you create an empty XmlDoc object.

Considerations Using CreateXmlDoc

The following coding is either ignored or removed from the XmlDoc object that is created with this function:

• encoding attributes

PeopleSoft only supports UTF-8 encoding. Any specified encoding statement is removed, as all XmlDoc
objects are considered UTF-8.

• version attributes

Regardless of what version is specified in XmlString, the version attribute in the generated XmlDoc object
is 1.0.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 169

Parameters

Parameter Description

XmlString Specify an XML string that you want to convert into an XmlDoc object that you
can then manipulate using PeopleCode. You can also specify a Null string ("") to
generate an empty XmlDoc object.

DTDValidation Specify whether a DTD should be validated. This parameter takes a boolean value.
If you specify true, the DTD validation occurs if a DTD is provided. If you specify
false, and if a DTD is provided, it is ignored and the XML isn't validated against
the DTD. False is the default value.

In the case of application messaging, if a DTD is provided, it's always ignored and
the XML isn't validated against the DTD. If the XML cannot be validated against a
DTD, an error is thrown saying that there was an XML parse error.

Returns

A reference to the newly created XmlDoc object.

Example

The following creates an empty XmlDoc object.

Local XmlDoc &MyDoc;

&MyDoc = CreateXmlDoc("");

See Also

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

CubicSpline

Syntax

CubicSpline(DataPoints,Control_Option,Left_Constraint,Right_Constraint)

Description

Use the CubicSpline function to compute a cubic spline interpolation through a set of at least four datapoints.

PeopleCode Built-in Functions Chapter 1

170 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

DataPoints This parameter takes an array of array of number. The array's contents are an array
of six numbers. The first two of these six numbers are the x and y points to be fit.
The last four are the four coefficients to be returned from the function: a,b,c and d.
a is the coefficient of the x0 term, b is the coefficient of the x1 term, c is the
coefficient of the x2 term, and d is the coefficient of the x3 term.

Control_Option Specifies the control option. This parameter takes either a number or constant
value. The values are:

Numeric Value Constant Value Description

0 %SplineOpt_SlEstEst Generate an internal estimate of the
beginning and ending slope of the
cubic piecewise equations

1 %SplineOpt_SlSetEst Use the user-specified value for the
slope of the leftmost point, and
generate an estimate for the rightmost
point

2 %SplineOpt_SlEstSet Use the user-specified value for the
slope of the rightmost point, and
generate an estimate for the leftmost
point

3 %SplineOpt_SlSetSet Use the user-specified values for the
slopes of the leftmost and rightmost
points

4 %SplineOpt_CvEstEst Generate an internal estimate of the
beginning and ending curvature of the
cubic piecewise equations

5 %SplineOpt_CvSetEst Use the user-specified value for the
curvature of the leftmost point, and
generate an estimate for the rightmost
point

6 %SplineOpt_CvEstSet Use the user-specified value for the
curvature of the rightmost point, and
generate an estimate for the leftmost
point

7 %SplineOpt_CvSetSet Use the user-specified values for the
curvatures of the leftmost and
rightmost points

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 171

Numeric Value Constant Value Description

8 %SplineOpt_ClEstEst Generate an internal estimate of the
beginning and ending curl of the cubic
piecewise equations

9 %SplineOpt_ClSetEst Use the user-specified value for the
curl of the leftmost point, and generate
an estimate for the rightmost point

10 %SplineOpt_ClEstSet Use the user-specified value for the
curl of the rightmost point, and
generate an estimate for the leftmost
point

11 %SplineOpt_ClSetSet Use the user-specified values for the
curls of the leftmost and rightmost
points

12 %SplineOpt_Natural Generate a "natural" spline

13 %SplineOpt_ContCurl Generate a spline wherein the equation
for the first segment is the exact same
equation for the second segment, and
where the equation for the penultimate
segment is the same as the equation for
the last segment.

Parameter Description

Left_Constraint A single number for the constraint for the left point. Specify a zero if this
parameter isn't needed.

Right_Constraint A single number for the constraint for the right point. Specify a zero if this
parameter isn't needed.

Returns

A modified array of array of numbers. The elements in the array correspond to the elements in the array used
for DataPoints.

See Also

Chapter 1, "PeopleCode Built-in Functions," HermiteCubic, page 436 and Chapter 1, "PeopleCode Built-in
Functions," LinearInterp, page 479

PeopleCode Built-in Functions Chapter 1

172 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

CurrEffDt

Syntax

CurrEffDt([level_num])

Description

 Use the CurrEffDt function to return the effective date of the specified scroll level as a Date value.

Note. This function remains for backward compatibility only. Use the EffDt rowset class property instead.

If no level is specified, CurrEffDt returns the effective date of the current scroll level.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," EffDt; PeopleTools 8.52: PeopleCode API
Reference, "Rowset Class," GetCurrEffRow and PeopleTools 8.52: PeopleCode API Reference, "Rowset
Class," EffSeq

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Returns

Returns a Date value equal to the current effective date of the specified scroll level.

Example

If INSTALLATION.POSITION_MGMT = "P" Then
 If All(POSITION_NBR) Then
 If (EFFDT = CurrEffDt(1) and
 EFFSEQ >= CurrEffSeq(1)) or
 (EFFDT > CurrEffDt(1) and
 EFFDT = %Date) Then
 Gray_employment();
 End-if;
 End-if;
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," CurrEffRowNum, page 173; Chapter 1, "PeopleCode Built-in
Functions," CurrEffSeq, page 173 and Chapter 1, "PeopleCode Built-in Functions," CurrentLevelNumber,
page 174

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 173

CurrEffRowNum

Syntax

CurrEffRowNum([level_num])

Description

Use the CurrEffRowNum function to return the effective row number of the selected scroll level.

Note. This function remains for backward compatibility only. Use the RowNumber row class property, in
combination with the GetCurrEffRow rowset method, instead.

If no level is specified, it returns the effective row number of the current level.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Row Class," RowNumber and PeopleTools 8.52:
PeopleCode API Reference, "Rowset Class," GetCurrEffRow

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Example

&ROW = CurrEffRowNum(1);

See Also

Chapter 1, "PeopleCode Built-in Functions," CurrEffSeq, page 173; Chapter 1, "PeopleCode Built-in
Functions," CurrentLevelNumber, page 174 and Chapter 1, "PeopleCode Built-in Functions,"
CurrEffRowNum, page 173

CurrEffSeq

Syntax

CurrEffSeq([level_num])

Description

Use the CurrEffSeq function to determine the effective sequence of a specific scroll area.

Note. This function remains for backward compatibility only. Use the EffSeq rowset class property instead.

PeopleCode Built-in Functions Chapter 1

174 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

If no level is specified, CurrEffSeq returns the effective sequence of the current scroll level.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," EffSeq; PeopleTools 8.52: PeopleCode API
Reference, "Rowset Class," GetCurrEffRow and PeopleTools 8.52: PeopleCode API Reference, "Rowset
Class," DeleteEnabled

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Returns

Returns a Number representing the effective sequence of the specified scroll level.

Example

If INSTALLATION.POSITION_MGMT = "P" Then
 If All(POSITION_NBR) Then
 If (EFFDT = CurrEffDt(1) and
 EFFSEQ >= CurrEffSeq(1)) or
 (EFFDT > CurrEffDt(1) and
 EFFDT = %Date) Then
 Gray_employment();
 End-if;
 End-if;
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," CurrEffDt, page 172; Chapter 1, "PeopleCode Built-in
Functions," CurrentLevelNumber, page 174 and Chapter 1, "PeopleCode Built-in Functions,"
CurrEffRowNum, page 173

CurrentLevelNumber

Syntax

CurrentLevelNumber()

Description

Use the CurrentLevelNumber function to return the scroll level where the function call is located.

Returns

Returns a Number value equal to the scroll level where the function is being called. The function returns 0 if
the field where the function is called is not in a scroll area.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 175

Example

&LEVEL = CurrentLevelNumber();

See Also

Chapter 1, "PeopleCode Built-in Functions," CurrentRowNumber, page 175 and Chapter 1, "PeopleCode
Built-in Functions," FetchValue, page 275

CurrentRowNumber

Syntax

CurrentRowNumber([level])

Description

Use the CurrentRowNumber function to determine the row number of the row currently displayed in a
specific scroll area.

Note. This function remains for backward compatibility only. Use the RowNumber row class property
instead.

This function can determine the current row number on the level where the function call resides, or on a
higher scroll level. It won't work on a scroll level below the one where the PeopleCode program resides.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRow, page 412 and PeopleTools 8.52: PeopleCode API
Reference, "Row Class," RowNumber

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

level A Number specifying the scroll level from which the function returns the current
row number. If the level parameter is omitted, it defaults to the scroll level where
the function call resides.

PeopleCode Built-in Functions Chapter 1

176 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

Returns a Number value equal to the current row number on the specified scroll level. The current number is
the row where the PeopleCode program is being processed, or, if level specifies a higher level scroll,
CurrentRowNumber returns the row number of the parent or grandparent row.

Example

CurrentRowNumber is typically used in component buffer functions to return the current row of the parent
scroll of the target:

&VAL = FetchValue(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(), BUS_EXPENSE_⇒
DTL.CHARGE_DT, &COUNT);

The following example checks if the current row number is equal to the active row count (that is, whether the
active row is the last record on the scroll):

If CurrentRowNumber() = ActiveRowCount(EMPLID) Then
 det_employment_dt();
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," ActiveRowCount, page 36; Chapter 1, "PeopleCode Built-in
Functions," CurrentLevelNumber, page 174 and Chapter 1, "PeopleCode Built-in Functions," FetchValue,
page 275

Date

Syntax

Date(date_num)

Description

The Date function takes a number in the form YYYYMMDD and returns a corresponding Date value. If the
date is invalid, Date displays an error message.

Warning! Make sure that you pass a four-digit year in the year parameter of this function. Two-digit values
are interpreted literally: 93, for example, represents the year 93 AD.

Returns

Returns a date equal to the date specified in date_num.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 177

Example

Set the temporary variable &HIREDate to a date field containing the date July 1, 1997:

&HIREDate = Date(19970701);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date3, page 177; Chapter 1, "PeopleCode Built-in Functions,"
DateValue, page 188; Chapter 1, "PeopleCode Built-in Functions," Day, page 189; Chapter 1, "PeopleCode
Built-in Functions," Days360, page 190; Chapter 1, "PeopleCode Built-in Functions," Days365, page 191;
Chapter 1, "PeopleCode Built-in Functions," Month, page 507; Chapter 1, "PeopleCode Built-in Functions,"
Weekday, page 736 and Chapter 1, "PeopleCode Built-in Functions," Year, page 745

Date3

Syntax

Date3(year,month,day)

Description

The Date3 function accepts a date expressed as three integers: year,month, and day. It returns a corresponding
Date value. If the date is invalid, the Date3 displays an error message.

Warning! Make sure that you pass a four-digit year in the year parameter of this function. Two-digit values
will be interpreted literally: 93, for example, represents the year 93 AD.

Parameters

Parameter Description

year An integer for the year in the form YYYY.

month An integer from 1 to 12 designating the month.

day An integer from 1 to 31 designating the day of the month.

Returns

Returns a Date value equal to the date specified in the function parameters.

PeopleCode Built-in Functions Chapter 1

178 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following PeopleCode Date3 function returns the first day of the year in which the employee was hired:

Date3(HIRE_YEAR, 1, 1);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
DateValue, page 188; Chapter 1, "PeopleCode Built-in Functions," Day, page 189; Chapter 1, "PeopleCode
Built-in Functions," Days360, page 190 and Chapter 1, "PeopleCode Built-in Functions," Days365, page 191

DatePart

Syntax

DatePart(datetime_value)

Description

Use the DatePart function to determine a date based on a provided DateTime value.

Returns

Returns a Date value equal to the date part of a specified DateTime value.

Example

The following statement sets &D2 to a Date value for 11/12/1997:

&D1 = DateTimeValue("11/12/1997 10:23:15 AM");
&D2 = DatePart(&D1);

DateTime6

Syntax

DateTime6(year,month,day, hour,minute,second)

Description

 The DateTime6 function returns a DateTime value based on integer values for the year,month,day,hour,
minute, and second. If the result of this function is not an actual date, there is a runtime error.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 179

Warning! Make sure that you pass a four-digit year in the year parameter of this function. Two-digit values
will be interpreted literally: 93, for example, represents the year 93 AD.

Parameters

Parameter Description

year A four-digit number representing the year.

month A number between 1 and 12 representing the month.

day A number representing the day of the month.

hour A number from 0 to 23 representing the hour of the day.

minute A number from 0 to 59 representing the minute of the hour.

second A number from 0 to 59.999999 representing seconds.

Returns

Returns a DateTime value based on the integers provided.

Example

The following example sets &DTTM to a DateTime value equal to 10:09:20 on March 15, 1997:

&DTTM = DateTime6(1997, 3, 15, 10, 9, 20);

DateTimeToHTTP

Syntax

DateTimeToHTTP(datetime)

Description

Use the DateTimeToHTTP function to convert any DateTime value to a date/time string in the format
specified by HTTP 1.0 and 1.1 standards.

Note. Because the HTTP protocol is used to interchange information between diverse computing systems, the
value returned from this function is always the "US English" form of weekdays and months. If you want the
value to use the localized form, use the DateTimeToLocalizeString function instead.

The standard HTTP date/time has the following fixed length format:

PeopleCode Built-in Functions Chapter 1

180 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

<dow><,><sp><dd><sp><mon><sp><year><sp><hh><:><mm><:><ss><sp><GMT>

where:

Value Description

<dow> a 3-character day of week name, one of Sun, Mon, Tue, Wed, Thu, Fri, Sat.

<,> a literal comma character

<sp> a literal space character

<dd> a 2-digit day of month, such as 02 or 22.

<mon> is a 3-character month name, one of Jan, Feb, Mar, and so on.

<year> a 4-digit year number

<hh> a 24-hour hour number, such as 00 or 13

<mm> a 2-digit minute number, such as 01 or 56

<ss> a 2-digit second number, such as 03 or 59

<GMT> a literal 3-character GMT.

As indicated by the trailing GMT, this date/time format is always expressed in GMT (or UTC, which is
declared to be the same for the purposes of HTTP).

Parameters

Parameter Description

datetime Specify the DateTime value you want converted to HTTP format. This DateTime
is assumed to be in the base time zone of the installation.

Returns

A string containing the converted HTTP date/time.

Example

&gmtdate = DateTimeToHTTP(AddToDateTime(%DateTime, 0,0,0,0,600,0));

%Response.setHeader("Last-Modified", &gmtdate);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 181

See Also

Chapter 1, "PeopleCode Built-in Functions," AddToDateTime, page 51; Chapter 1, "PeopleCode Built-in
Functions," DateTimeToLocalizedString, page 182 and Chapter 1, "PeopleCode Built-in Functions,"
FormatDateTime, page 286

DateTimeToISO

Syntax

DateTimeToISO(textdatetime)

Description

Use the DatetimeToISO function to convert the text value textdatetime (as a base time zone time) to a
DateTime value in ISO 8601 format. This function automatically calculates whether daylight saving time is in
effect for the given textdatetime.

The system's base time zone is specified in the PSOPTIONS table.

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the ISO 8601 format: YYYY-MM-DDThh
:mm:ss[.S]TZD (for example, 1999-01-01T19:20:30.000000+0800)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z,+/-hh:mm or +/-hhmm).

Returns

Returns a DateTime value in ISO 8601 format.

PeopleCode Built-in Functions Chapter 1

182 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DATETIME would
have a DateTime value of "1999-01-01T01:00:00.000000-08:00":

&DATETIME= DateTimeToISO("1999-01-01 01:00:00.000000");

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," DateTimeValue, page 186; Chapter 1, "PeopleCode Built-in Functions," ISOToDate,
page 464 and Chapter 1, "PeopleCode Built-in Functions," ISOToDateTime, page 465

DateTimeToLocalizedString

Syntax

DateTimeToLocalizedString({datetime | date}, [Pattern])

Description

Use the DateTimeToLocalizedString function to convert either datetime or date to a localized string. You can
also specify a particular pattern to convert datetime or date to.

The Pattern is optional. Only specify Pattern if necessary.

If you need to change the pattern for each language, change the first message in Message Catalog set number
138. This is a format for each language.

Parameters

Parameter Description

datetime | date Specify either the DateTime or Date value that you want to convert.

Pattern Specify the pattern you want to the localized DateTime or Date value to be
converted to.

Using the Pattern Parameter

Pattern takes a string value, and indicates how you want the DateTime or Date value converted.

The valid values for Pattern are as follows.

Note. The values for pattern are case-sensitive. For example, if you specify a lowercase m, you get minutes,
while an uppercase M displays the month.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 183

Symbol Definition Type Example

G Era designator Text AD

y Year Number 1996

M Month in year Text&Number July&07

d Day in month Number 10

h Hour in am/pm Number (1-12) 12

H Hour in day Number (0-23) 0

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

E Day in week Text Tuesday

a am/pm marker Text PM

k Hour in day Number (1-24) 24

K Hour in am/pm Number (0-11) 0

' Escape for text Delimiter

'' Single quote Literal '

The number of pattern letters determine the format.

Type Pattern Format

Text If 4 or more pattern letters are used, the full form is
used. If less than 4 pattern letters are used, the short or
abbreviated form is used if one exists.

PeopleCode Built-in Functions Chapter 1

184 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Type Pattern Format

Number Use the minimum number of digits. Shorter numbers are
zero-padded to this amount.

The year is handled specially; that is, if the count of 'y'
is 2, the year is truncated to 2 digits.

Text&Number If 3 or more pattern letters are used, text is used,
otherwise, a number is used.

Any characters in Pattern are not in the ranges of ['a'..'z'] and ['A'..'Z'] are treated as quoted text. For instance,
characters like ':', '.', ' ', '#' and '@' appear in the resulting string even they're not within single quotes.

A pattern containing any invalid pattern letter results in a runtime error.

Examples using a United States locale:

Pattern Result

"yyyy.MM.dd G 'at' hh:mm:ss" 1996.07.10 AD at 15:08:56

"EEE, MMM d, ''yy" Wed, July 10, '96

"h:mm a" 12:08 PM

"hh 'o''clock' a" 12 o'clock PM

"K:mm a" 0:00 PM

"yyyyy.MMMMM.dd GGG hh:mm aaa" 1996.July.10 AD 12:08 PM

Returns

A string.

Example

REM**;
Function ConvertDateToDTTM(&Date As date) Returns DateTime ;
REM ***;
 &String = DateTimeToLocalizedString(&Date, "M/d/y");
 &String = &String | " 00:00:00.000000";
 &DateTime = DateTimeValue(&String);
 Return &DateTime;
End-Function;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 185

See Also

Chapter 1, "PeopleCode Built-in Functions," FormatDateTime, page 286 and Chapter 1, "PeopleCode Built-in
Functions," DateTimeToHTTP, page 179

DateTimeToTimeZone

Syntax

DateTimeToTimeZone(OldDateTime, SourceTimeZone, DestinationTimeZone)

Description

Use the DateTimeToTimeZone function to convert DateTime values from the DateTime specified by
SourceTimeZone to the DateTime specified by DestinationTimeZone.

Considerations Using this Function

Typically, this function is used in PeopleCode, not for displaying time. If you take a DateTime value, convert
it from base time to client time, then try to display this time, depending on the user settings, when the time is
displayed the system might try to do a second conversion on an already converted DateTime. This function
could be used as follows: suppose a user wanted to check to make sure a time was in a range of times on a
certain day, in a certain timezone. If the times were between 12 AM and 12 PM in EST, these resolve to 9 PM
and 9 AM PST, respectively. The start value is after the end value, which makes it difficult to make a
comparison. This function could be used to do the conversion for the comparison, in temporary fields, and not
displayed at all.

Parameters

Parameter Description

OldDateTime Specify the DateTime value to be converted.

SourceTimeZone Specify the time zone that OldDateTime is in. Valid values are:

• timezone - a time zone abbreviation or a field reference to be used for
converting OldDateTime.

• Local - use the local time zone for converting OldDateTime.

• Base - use the base time zone for converting OldDateTime.

PeopleCode Built-in Functions Chapter 1

186 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

DestinationTimeZone Specify the time zone that you want to convert OldDateTime to. Valid values are:

• timezone - a time zone abbreviation or a field reference to be used for
converting OldDateTime.

• Local - use the local time zone for converting OldDateTime.

• Base - use the base time zone for converting OldDateTime.

Returns

A converted DateTime value.

Example

The following example. TESTDTTM, is a DateTime field with a value 01/01/99 10:00:00. This example
converts TESTDTTM from Pacific standard time (PST) to eastern standard time (EST).

&NEWDATETIME = DateTimeToTimeZone(TESTDTTM, "PST", "EST");

&NEWDATETIME will have the value 01/01/99 13:00:00 because EST is three hours ahead of PST on
01/01/99, so three hours are added to the DateTime value.

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," ConvertTimeToBase, page 126; Chapter 1, "PeopleCode Built-in Functions,"
FormatDateTime, page 286; Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings, page 461;
Chapter 1, "PeopleCode Built-in Functions," TimeToTimeZone, page 678 and Chapter 1, "PeopleCode Built-
in Functions," TimeZoneOffset, page 680

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities"

DateTimeValue

Syntax

DateTimeValue(textdatetime)

Description

Use the DateTimeValue function to derive a DateTime value from a string representing a date and time.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 187

Using this Function in Fields Without a Default Century Setting

This function may derive the wrong century setting if passed a two-character year and DateTimeValue is
executing in a PeopleCode event not associated with a field that has a default century setting.

For example, assume that TEST_DATE is a date field with a default century setting of 10. TEST_FIELD is a
field with no default century setting. If the following PeopleCode program is executing in TEST_FIELD, the
date will be calculated incorrectly:

TEST_DATE = DateTimeValue("10/13/11 15:34:25");

Although TEST_DATE has a century setting, it isn't used because the PeopleCode fired in TEST_FIELD.
Instead, DateTimeValue uses the 50/50 rule and calculates the year to be 2011 (instead of 1911).

Parameters

Parameter Description

textdatetime Specify a date/time value represented as text in one of three formats:

• MM/DD/YY[YY] hh:mm:ss.ssssss [{AM|PM}]

• MM.DD.YY[YY] hh:mm:ss.ssssss [{AM|PM}]

• YYYY-MM-DDThh:mm:ss[.S]TZD (that is, ISO 8601 format—for example,
1999-01-01T19:20:30.000000+0800)

In which:

• YY[YY] is a two- or four-digit year.

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• ssssss is six digits of milliseconds.

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z,+/-hh:mm or +/-hhmm).

Returns

Returns a DateTime value.

PeopleCode Built-in Functions Chapter 1

188 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

Both of the following examples set &Date_TIME to a DateTime value equal to October 13, 1997 10:34:25
PM.:

&Date_TIME = DateTimeValue("10/13/97 10:34:25 PM");
&Date_TIME = DateTimeValue("10/13/97 22:34:25");

Assuming the base time (as defined in PSOPTIONS) is PST, the following three examples set &Date_TIME
to a DateTime value equal to 2009-12-31-22.30.40.120000 UTC:

&Date_Time = DateTimeValue("2010-01-01 06:30:40.12Z");
&Date_Time = DateTimeValue("2010-01-01 00:30:40.12-0600");
&Date_Time = DateTimeValue("2010-01-01 10:30:40.12+04:00");

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days360, page 190; Chapter
1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in Functions," Month,
page 507; Chapter 1, "PeopleCode Built-in Functions," Weekday, page 736 and Chapter 1, "PeopleCode Built-
in Functions," Year, page 745

DateValue

Syntax

DateValue(date_str)

Description

 Use the DateValue function to convert a date string and returns the result as a Date type. date_str must be a
string in the active date format user's current personalization date format.

If the user's Date Format personalization setting is set to DDMMYY (or it is defaulted to this from their
browser locale or the system-wide personalization defaults) then the following code returns a Date value
equal to September 10, 1997.

&DTM = DateValue("10/09/97");

If the user's Date Format personalization setting is set to MMDDYY (or it is defaulted to this from their
browser locale or the system-wide personalization defaults) then the same function call returns a value equal
to October 9, 1997.

Using this Function in Fields Without a Default Century Setting

This function may derive the wrong century setting if passed a 2-character year and DateValue is executing in
a PeopleCode event not associated with a field that has a default century setting.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 189

For example, assume that TEST_DATE is a date field with a default century setting of 10. TEST_FIELD is a
field with no default century setting. If the following PeopleCode program is executing in TEST_FIELD, the
date will be calculated incorrectly:

TEST_DATE = DateValue("10/13/11");

Though TEST_DATE has a century setting, it isn't used because the PeopleCode fired in TEST_FIELD.
Instead, DateValue uses the 50/50 rule and calculates the year to be 2011 (instead of 1911).

Returns

Returns a Date value.

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateTimeValue, page 186; Chapter 1,
"PeopleCode Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days360, page
190; Chapter 1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in
Functions," Month, page 507; Chapter 1, "PeopleCode Built-in Functions," Weekday, page 736 and Chapter 1,
"PeopleCode Built-in Functions," Year, page 745

Day

Syntax

Day(dt_val)

Description

Use the Day function to determine an integer representing the day of the month based on a Date or DateTime
value.

Returns

Returns a Number value equal to the day of the month for dt_val. The return value is an integer from 1 to 31.

Example

If HIRE_DATE is November, 1, 1997, the following Day function returns the integer 1:

&FIRST_DAY = Day(HIRE_DATE);

PeopleCode Built-in Functions Chapter 1

190 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Days, page 190; Chapter 1, "PeopleCode Built-in Functions," Days360, page 190; Chapter
1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in Functions," Month,
page 507; Chapter 1, "PeopleCode Built-in Functions," Weekday, page 736 and Chapter 1, "PeopleCode Built-
in Functions," Year, page 745

Days

Syntax

Days(dt_val)

Description

Use the Days function to returns the Julian date for the dt_val specified. This function accepts a Date,
DateTime, or Time value parameter.

Returns

Returns a Number value equal to the Julian date for dt_val.

Example

To find the number of days between two dates, use the Days function on both dates, and subtract one from the
other:

&NUM_DAYS = Abs(Days(HIRE_Date) - Days(RELEASE_Date));

See Also

Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode Built-in
Functions," Days360, page 190; Chapter 1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1,
"PeopleCode Built-in Functions," Month, page 507; Chapter 1, "PeopleCode Built-in Functions," Weekday,
page 736 and Chapter 1, "PeopleCode Built-in Functions," Year, page 745

Days360

Syntax

Days360(date_val1,date_val2)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 191

Description

Use the Days360 function to return the number of days between the Date values date_val1 and date_val2
using a 360-day year (twelve 30-day months). Use this function to help compute payments if your accounting
system is based on twelve 30-day months.

If date_val2 occurs before date_val1, Days360 returns a negative number.

Example

The following example sets &NUMDAYS to the number of days between TERM_START_DT and PMT_DT
based on a 360-day calendar:

&NUMDAYS = Days360(TERM_START_DT, PMT_DT);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days, page 190; Chapter 1,
"PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in Functions," Month,
page 507; Chapter 1, "PeopleCode Built-in Functions," Weekday, page 736 and Chapter 1, "PeopleCode Built-
in Functions," Year, page 745

Days365

Syntax

Days365(date_val1,date_val2)

Description

Use the Days365 function to return the number of days between the Date values date_val1 and date_val2
using a 365-day year. Use this function to help compute payments if your accounting system is based on a
365-day year.

If date_val2 occurs before date_val1, Days365 returns a negative number.

Returns

Returns a Number value equal to the number of days between the two dates in a 365-day calendar.

Example

The following example sets &NUMDAYS to the number of days between and TERM_START_DT and
PMT_DT, based on a 365-day calendar:

PeopleCode Built-in Functions Chapter 1

192 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&NUMDAYS = Days360(TERM_START_DT, PMT_DT);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days360, page 190; Chapter
1, "PeopleCode Built-in Functions," Month, page 507; Chapter 1, "PeopleCode Built-in Functions," Weekday,
page 736 and Chapter 1, "PeopleCode Built-in Functions," Year, page 745

DBCSTrim

Syntax

DBCSTrim(source_str)

Description

Note. This function has been deprecated.

Use the DBCSTrim function to remove a trailing DBCS lead byte at the end of the string.

DBPatternMatch

Syntax

DBPatternMatch(Value,Pattern,CaseSensitive)

Description

Use the DBPatternMatch function to match the string in Value to the given pattern.

You can use wildcard characters % and _ when searching. % means find all characters, while _ means find a
single character. For example, if you wanted to find if the string in Value started with the letter M, you'd use
"M%" for Pattern. If you wanted to find either DATE or DATA, use "DAT_" for Pattern.

These characters can be escaped (that is, ignored) using a \. For example, if you want to search for a value
that contains the character %, use \% in Pattern.

If Pattern is an empty string, this function retrieves the value just based on the specified case-sensitivity (that
is, specifying "" for Pattern is the same as specifying "%").

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 193

Parameters

Parameter Description

Value Specify the string to be searched.

Pattern Specify the pattern to be used when searching.

CaseSensitive Specify whether the search is case-sensitive. This parameter takes a Boolean
value: True, the search is case-sensitive, False, it is not.

Returns

Returns a Boolean value. True if the string matches the pattern, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," Find, page 280 and Chapter 1, "PeopleCode Built-in Functions,"
Findb, page 281

DeChunkText

Syntax

DeChunkText(table_name,seq_field,data_field, &array_of_keys,
&array_of_key_datatypes,&array_of_key_values)

Description

Use the DeChunkText function to read the chunks created by the ChunkText function from a database table
and assemble them back into a long text string.

Parameters

Parameter Description

table_name Specify the name of the database table as a string. This table stores the chunks
created by ChunkText.

seq_field Specify the name of the field that stores the sequence number for each chunk as a
string.

data_field Specify the name of the field that stores the data chunks as a string.

&array_of_keys Specify key field names as an array of string.

PeopleCode Built-in Functions Chapter 1

194 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

&array_of_key_datatypes Specify the types for the key fields as an array of string. See below.

&array_of_key_values Specify the key field values as an array of string.

The values for &array_of_key_datatypes can be as follows:

Value Description

STR String value

CHAR Single character

LONGTEXT Long text value

DATE Date value

TIME Time value

DATETIME Date/time value

INT Integer value

SHORT Short integer value

LONG Long integer value

DOUBLE Double-sized integer value

Returns

A string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 195

Example

Local array of string &key_names;
Local array of string &keyfdatatypes;
Local array of string &key_vals;
Local string &text;

&tablename = "PSPCMTXT";
&seq_fld = "SEQNUM";
&data_fld = "PEOPLECODE";

&key_names = CreateArray("OBJECTID1", "OBJECTVALUE1", "OBJECTID2", "OBJECTVALUE2",⇒
 "OBJECTID3", "OBJECTVALUE3");
&keyfdatatypes = CreateArray("INT", "STR", "INT", "STR", "INT", "STR");
&key_vals = CreateArray("1", "PSTRANSFRM_WRK", "2", "IB_TRANSFORM_PB", "12",⇒
 "FieldChange");

&text = DeChunkText(&tablename, &seq_fld, &data_fld, &key_names, &keyfdatatypes,⇒
 &key_vals);

See Also

Chapter 1, "PeopleCode Built-in Functions," ChunkText, page 86

Declare Function

Syntax

PeopleCode Function Syntax

Declare Functionfunction_namePeopleCoderecord_name.field_nameevent_type

External Library Function Syntax

Declare Functionfunction_nameLibrarylib_name
 [Aliasmodule_name]
 [paramlist]
 [Returnsext_return_type [Aspc_type]]

In which paramlist is:

([ext_param1 [, ext_param2] . . .)

And in which ext_param1,ext_param2, and so on is:

ext_datatype [{Ref|Value}] [Aspc_return_type]

Description

PeopleCode can call PeopleCode functions defined in any field on any record definition. You can create
special record definitions whose sole purpose is to serve as function libraries. By convention, PeopleCode
functions are stored in FieldFormula PeopleCode, in record definitions with names beginning in FUNCLIB_.

PeopleCode Built-in Functions Chapter 1

196 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode can also call external programs that reside in dynamic link libraries. You must declare either of
these types of functions at the top of the calling program using the Declare Function statement.

To support processes running on an application server, you can declare and call functions compiled in
dynamic link libraries on windows (*.DLL files) and shared libraries on UNIX (lib*.so files.) The
PeopleCode declaration and function call syntax is the same regardless of platform, but UNIX libraries must
be compiled with an interface function.

See PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and PeopleSoft Pure Internet
Architecture," Calling DLL Functions on the Application Server.

PeopleCode Functions

You can call a PeopleCode function defined on any record definition, provided you declare it at the top of the
calling program. The declaration identifies the function name, as well as the record, field, and event type
where the function definition resides. The function parameters and return type are not declared; they are
determined from the function definition.

Note. You can define functions only in record field PeopleCode. You can't define functions in component
PeopleCode, component record Field PeopleCode, and so on.

External Library Functions

Function declarations define routines in an external (C-callable) library. The function declaration provides the
name of the library, an optional alias module_name, a list of parameters to pass to the function, an optional
Returns clause specifying the type of any value returned by the external function, and the PeopleCode data
type into which to convert the returned value. The library must be a DLL accessible by Windows or a shared
library accessible by UNIX.

After you have declared an external library function, you can call it the same way as an external PeopleCode
function. Like PeopleCode functions, you must pass the number of parameters the library function expects.
Calls to external functions suspend processing: this means that you should exercise caution to avoid "think-
time" errors when calling the function in the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Parameters

The following are the parameters for the PeopleCode function syntax:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 197

Parameter Description

function_name Name of the function.

PeopleCode Reserved word that identifies the function as a PeopleCode function.

recordname.fieldname Specifies the record and field where the function is located.

event_type Component Processor event with which the function is associated.

Note. event_type can be used to specify record field events only. You can't specify a component record field
event, a component record event, and so on.

The following are the parameters for the external library function syntax:

Parameter Description

function_name Name of the function.

Library Reserved word that identifies the function as an external library function.

lib_name A string representing the name of the external library. The external routine must
be located in a DLL named lib_name accessible by Windows, or an equivalent
shared library in a UNIX system.

Alias  module_name Optionally specifies the name of the function's entry point within the shared
library. This is needed only if the C function name differs from function_name in
the PeopleCode external function declaration. The external module is invoked
using the __stdcall calling convention on Windows.

paramlist List of parameters expected by the function, each in the form:

ext_datatype [{Ref | Value}] [As pc_type]

ext_datatype The data type of the parameter expected by the function. To specify the type you
can use any of the following:

• BOOLEAN

• INTEGER

• LONG

• UINTEGER

• ULONG

• STRING

• STRING

• FLOAT

• DOUBLE

PeopleCode Built-in Functions Chapter 1

198 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Ref | Value Optionally use one of these two reserved words to specify whether the parameter
is passed by reference or by value. If Ref is specified, it is passed by pushing a
reference (pointer) on the stack. If Value is specified the value is pushed on the
stack (for integers, and so on.) If neither is specified, Ref is assumed.

As pc_type Specifies PeopleCode data type of the value passed to the function. You can
choose between PeopleCode data types String, Number, Integer, Float, Date,
Boolean, and Any.

Returns ext_return_type Specifies the data type of any value returned by the function. The Returns clause is
omitted if the function is void (returns no value.) To specify the return type you
can use any of the following:

• BOOLEAN

• INTEGER

• LONG

• UINTEGER

• ULONG

• FLOAT

• DOUBLE

The types String and LString are not allowed for the result type of a function.

As pc_return_type Specifies the PeopleCode data type of the variable or field into which to read the
returned value. You can choose between PeopleCode data types String, Number,
Integer, Float, Date, Boolean, and Any. If the As clause is omitted, PeopleTools
selects an appropriate type based on the type of value returned by the external
function (for example, all integer and floating point types are converted to
Number).

Example

Assume you have defined a PeopleCode function called VerifyZip. The function definition is located in the
record definition FUNCLIB_MYUTILS, in the record field ZIP_EDITS, attached to the FieldFormula event.
You would declare the function using the following statement:

Declare Function verifyzip PeopleCode FUNCLIB_MYUTILS.ZIP_EDITS FieldFormula;

Now assume you want to declare a function called PCTest in PSUSER.DLL. It takes an integer and returns
an integer. You would write this declare statement:

Declare Function pctest Library "psuser.dll"
 (integer Value As number) Returns integer As number;

See Also

Chapter 1, "PeopleCode Built-in Functions," Function, page 290

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 199

Decrypt

Syntax

Decrypt(KeyString,EncryptedString)

Description

Use the Decrypt function to decrypt a string previously encrypted with the Encrypt function. This function is
generally used with merchant passwords. For this function to decrypt a string successfully, you must use the
same KeyString value used to encrypt the string.

Parameters

Parameter Description

KeyString Specify the key used for encrypting the string. You can specify a NULL value for
this parameter, that is, two quotation marks with no blank space between them
("").

EncryptedString Specify the string you want decrypted.

Returns

A clear text string.

Example

Encrypt and Decrypt support only strings.

&AUTHPARMS.WRKTOKEN.Value = Decrypt("", RTrim(LTrim(&MERCHANTID_⇒
REC.CMPAUTHNTCTNTOKEN.Value)));

See Also

Chapter 1, "PeopleCode Built-in Functions," Encrypt, page 245 and Chapter 1, "PeopleCode Built-in
Functions," Hash, page 435

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

PeopleCode Built-in Functions Chapter 1

200 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Degrees

Syntax

Degrees(angle)

Description

Use the Degrees function to convert the given angle from radian measurement to degree measurement.

Parameters

Parameter Description

angle The size of an angle in radians.

Returns

The size of the given angle in degrees.

Example

The following example returns the equivalent size in degrees of an angle measuring 1.2 radians:

&DEGREE_SIZE = Degrees(1.2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Atan, page 58; Chapter 1, "PeopleCode Built-in
Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in Functions," Cot, page 139; Chapter 1,
"PeopleCode Built-in Functions," Radians, page 550; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

DeleteAttachment

Syntax

DeleteAttachment(URLSource,DirAndSysFileName[, PreserveCase])

Description

Use the DeleteAttachment function to delete a file from the specified storage location.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 201

DeleteAttachment does not generate any type of "Are you sure?" message. If you want the end user to verify
the deletion before it is performed, you must write your own checking code in your application.

Additional information that is important to the use of DeleteAttachment can be found in the PeopleTools
8.52: PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," File Name
Considerations.

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Attachments
with non-ASCII File Names.

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier in the form URL.
URL_ID, or a string. This, along with the DirAndSysFileName parameter,
indicates the file's location.

Note. The URLSource parameter requires forward slashes (/). Backward slashes (\)
are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndSysFileName The relative path and system file name of the file on the file server. This is
appended to URLSource to make up the full URL where the file is deleted from.
This parameter takes a string value.

Note. The URLSource requires "/" slashes. Because DirAndSysFileName is
appended to the URL, it also requires only "/" slashes. "\" are NOT supported in
any way for either the URLSource or the DirAndSysFileName parameter.

PreserveCase Specify a Boolean value to indicate whether when searching for the file specified
by the DirAndSysFileName parameter, its file name extension is preserved or not;
True, preserve the case of the file name extension, False, convert the file name
extension to all lower case letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

PeopleCode Built-in Functions Chapter 1

202 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was deleted successfully.

1 %Attachment_Failed File deletion failed due to an
unspecified error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

3 %Attachment_FileTransferFailed File deletion failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned: No response from
server.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 203

Numeric Value Constant Value Description

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

This error code applies to the
following storage locations: database
records only. The following are some
possible situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

PeopleCode Built-in Functions Chapter 1

204 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

10 %Attachment_DeleteFailed Cannot delete file.

This error code applies to the
following storage locations: FTP sites
and HTTP repositories. The following
are some possible situations where
%Attachment_DeleteFailed could be
returned:

• Remote file not found.

• Failed to read remote file.

Example

&retcode = DeleteAttachment(URL.BKFTP, ATTACHSYSFILENAME);

An example of the DeleteAttachment function is provided in the demonstration application delivered in the
FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the PeopleTools
Test Utilities page.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Using the
PeopleTools Test Utilities Page.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," CopyAttachments,
page 127; Chapter 1, "PeopleCode Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode
Built-in Functions," GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions,"
MAddAttachment, page 486; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

DeleteEmailAddress

Syntax

DeleteEmailAddress(Type)

Description

Use the DeleteEmailAddress function to delete the email address associated with the specified type for the
current user. You can only have one email address of a specific type for a user.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 205

Note. You can only delete the Primary Email Address if it's the only address. If the email address you want to
delete is marked as the primary email address, and it is not the only email address, you must mark another
email address as primary before you can delete the email address you want to delete. Use the
MarkPrimaryEmailAddress function to set the primary email address.

Parameters

Parameter Description

Type Specify the type that you want to change the email address to. This parameter
takes a string value. The valid values are:

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Returns

None.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddEmailAddress, page 45; Chapter 1, "PeopleCode Built-in
Functions," ChangeEmailAddress, page 80 and Chapter 1, "PeopleCode Built-in Functions,"
MarkPrimaryEmailAddress, page 495

DeleteImage

Syntax

DeleteImage(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[SCROLL.level1_recname,level1_row, [SCROLL.level2_recname,level2_row,]] SCROLL.
target_recname

PeopleCode Built-in Functions Chapter 1

206 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the DeleteImage function to remove an image associated with a record field.

Note. To update an image field using this function, be sure that PSIMAGEVER field is also on the same
record as the image field being updated.

Parameters

Parameter Description

scrollpath A construction that specifies a scroll area in the component buffer.

target_row The row number of the target row.

 [recordname.]fieldname The name of the field asThe recordname prefix is not required if the program that
calls DeleteImage is on the recordname record definition.

Returns

Returns a Boolean value: True if image was successfully deleted, False otherwise.

Example

&Rslt = DeleteImage(EMPL_PHOTO.EMPLOYEE_PHOTO);

See Also

Chapter 1, "PeopleCode Built-in Functions," InsertImage, page 451

DeleteRecord

Syntax

DeleteRecord(level_zero_recfield)

Description

Use the DeleteRecord function to remove a high-level row of data and all dependent rows in other tables from
the database.

Note. This function remains for backward compatibility only. Use the Delete record class method instead.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 207

 DeleteRecord deletes the component's level-zero row from the database, deletes any dependent rows in other
tables from the database, and exits the component.

This function, like DeleteRow, initially marks the record or row as needing to be deleted. At save time the
row is actually deleted from the database and cleared from the buffer.

This function works only if the PeopleCode is on a level-zero field. It cannot be used from SavePostChange
or WorkFlow PeopleCode.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class," Delete and PeopleTools 8.52: PeopleCode
Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

level_zero_recfield A recordname.fieldname reference identifying any field on the level-zero area of
the page.

Returns

Optionally returns a Boolean value indicating whether the deletion was completed successfully.

Example

The following example, which is in SavePreChange PeopleCode on a level-zero field, deletes the high-level
row and all dependent rows in other tables if the current page is EMPLOYEE_ID_DELETE.

if %Page = PAGE.EMPLOYEE_ID_DELETE then
 &success = DeleteRecord(EMPLID);
end-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," DeleteRow, page 207

DeleteRow

Syntax

DeleteRow(scrollpath, target_row)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

PeopleCode Built-in Functions Chapter 1

208 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

Use the DeleteRow function to delete rows programmatically.

Note. This function remains for backward compatibility only. Use the DeleteRow rowset class method
instead.

See PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," DeleteRow.

A call to this function causes the RowDelete event sequence to fire, as if an user had manually deleted a row.

 DeleteRow cannot be executed from the same scroll level where the deletion will take place, or from a lower
scroll level. Place the PeopleCode in a higher scroll level record.

When DeleteRow is used in a loop, you have to process rows from high to low to achieve the correct results,
that is, you must delete from the bottom up rather than from the top down. This is necessary because the rows
are renumbered after they are deleted (if you delete row one, row two becomes row one).

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," DeleteRow; PeopleTools 8.52: PeopleCode
Developer's Guide, "Accessing the Data Buffer" and PeopleTools 8.52: PeopleCode Developer's Guide,
"Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path Syntax and
Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number of the row to delete.

Returns

Boolean (optional). DeleteRow returns a Boolean value indicating whether the deletion was completed
successfully.

Example

In the following example DeleteRow is used in a For loop. The example checks values in each row, then
conditionally deletes the row. Note the syntax of the For loop, including the use of the -1 in the Step clause to
loop from the highest to lowest values. This ensures that the renumbering of the rows will not affect the loop.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 209

For &L1 = &X1 To 1 Step - 1
 &SECTION = FetchValue(AE_STMT_TBL.AE_SECTION, &L1);
 &STEP = FetchValue(AE_STMT_TBL.AE_STEP, &L1);
 If None(&SECTION, &STEP) Then
 DeleteRow(RECORD.AE_STMT_TBL, &L1);
 End-If;
 End-For;

See Also

Chapter 1, "PeopleCode Built-in Functions," InsertRow, page 454 and PeopleTools 8.52: PeopleCode
Developer's Guide, "Referencing Data in the Component Buffer," Specifying Data with References Using
Scroll Path Syntax and Dot Notation

DeleteSQL

Syntax

DeleteSQL([SQL.]sqlname[, dbtype[, effdt]])

Description

Use the DeleteSQL function to programmatically delete a SQL definition. The SQL definition must have
already been created and saved, either using the CreateSQL and StoreSQL functions, or by using Application
Designer.

When you create a SQL definition, you must create a base statement before you can create other types of
statements, that is, one that has a dbtype as GENERIC and effdt as the null date (or Date(19000101)). If you
specify a base (generic) statement to be deleted, all statements as well as the generic statement are deleted.

If you specify a non-generic statement that ends up matching the generic statement, DeleteSQL does not
delete anything, and returns False.

You must commit all database changes prior to using this function. This is to avoid locking critical Tools
tables and hence freezing all other users. You receive a runtime error message if you try to use this function
when there are pending database updates, and your PeopleCode program terminates. You need to commit any
database updates prior to using this function. The CommitWork PeopleCode function has been enhanced to
allow this.

Parameters

Parameter Description

sqlname Specify the name of a SQL definition. This is either in the form SQL.sqlname or a
string value giving the sqlname.

PeopleCode Built-in Functions Chapter 1

210 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

dbtype Specify the database type associated with the SQL definition. This parameter takes
a string value. If dbtype isn't specified or is null (""), it set by default to the current
database type (the value returned from the %DbName system variable.)

Valid values for dbtype are as follows. These values are not case sensitive:

• APPSRV

• DB2ODBC

• DB2UNIX

• INFORMIX

• MICROSFT

• ORACLE

• SYBASE

Note. Database platforms are subject to change.

effdt Specify the effective date associated with the SQL definition. If effdt isn't
specified, it is set by default to the current as of date, that is, the value returned
from the %AsOfDate system variable.

Returns

A Boolean value: True if the delete was successful, False if the specified SQL statement wasn't found, and
terminates with an error message if there was another problem (that is, date in incorrect format, and so on.)

Example

The following code deletes the ABCD_XY SQL definition for the current DBType and as of date:

&RSLT = DeleteSQL(SQL.ABC_XY);

If NOT(&RSLT) Then
 /* SQL not found − do error processing */
End-if;

The following code deletes the ABCD_XY SQL Definition for the current DBType and November 3, 1998:

&RSLT = DeleteSQL(SQL.ABCD_XY, "",Date(19981103));

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 211

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165; Chapter 1, "PeopleCode Built-in
Functions," FetchSQL, page 273; Chapter 1, "PeopleCode Built-in Functions," GetSQL, page 418; Chapter 1,
"PeopleCode Built-in Functions," StoreSQL, page 664 and Chapter 1, "PeopleCode Built-in Functions,"
CommitWork, page 96

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

Chapter 3, "System Variables," %DbName, page 817

Chapter 3, "System Variables," %AsOfDate, page 813

DeleteSystemPauseTimes

Syntax

DeleteSystemPauseTimes(StartDay,StartTime,EndDay,EndTime)

Description

Use the DeleteSystemPauseTimes function to delete pause times that occur on your system by adding a row
to the system pause times table.

This function is used in the PeopleCode for the Message Monitor. Pause times are set up in the Message
Monitor.

Parameters

Parameter Description

StartDay Specify a number from 0-6. The values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

PeopleCode Built-in Functions Chapter 1

212 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Description

6 Saturday

Parameter Description

StartTime Specify a time, in seconds, since midnight.

EndDay Specify a number from 0-6. The values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Parameter Description

EndTime Specify a time, in seconds, since midnight.

Returns

A Boolean value: True if the system pause time specified was deleted, False otherwise.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 213

Example

Component Boolean &spt_changed;

/* deleting a system pause time interval; */

If Not DeleteSystemPauseTimes(PSSPTIMES.STARTINGDAY, PSSPTIMES.STARTINGSECOND,⇒
 PSSPTIMES.ENDINGDAY, PSSPTIMES.ENDINGSECOND) Then
 Error MsgGetText(117, 15, "");
Else
 &spt_changed = True;

/* to force a save; */

 PSSPTIMES.MSGSPTNAME = " ";

 DoSave();
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," AddSystemPauseTimes, page 47

PeopleTools 8.52: Integration Broker Service Operations Monitor, "Understanding the Integration Broker
Service Operations Monitor"

DeQueue

Syntax

DeQueue(physical queue ID,task type,task number,agent ID)

Description

Once a task that has been placed in a queue by the EnQueue function and has been completed by the agent,
use the DeQueue function to notify the queue server. The queue server removes the task from the queue and
subtracts the cost of that task from the agent's workload.

Note. The queue server does not allow a task to be dequeued if the agent who owns that task is not logged on
to that particular queue server. PeopleSoft recommends that you only use the DeQueue function in application
pages that the MultiChannel Framework Console launches when agents accept or activate assigned tasks.

PeopleCode Built-in Functions Chapter 1

214 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

physical queue ID The physical queue is the internal representation of the logical queue that the agent
signs onto and to which the task currently belongs. This is a string value, such as
"sales3" or "marketing2." You retrieve the current physical queue from the query
string in the URL of the page launched by the MultiChannel Framework console,
using the GetParameter request class method with the value ps_qid.

task type Specifies the type of task that an agent completed. It is a string value. The valid
values are:

• email

• generic

Note. This parameter is valid only for persistent tasks (email and generic). It is not
valid for chat or voice tasks.

You can retrieve the value from the query string in the URL of the application
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_tasktype.

task number Uniquely identifies a particular task. This is the task number returned by the
Enqueue function when the system first inserted the task into a queue. This is a
string value.

You can retrieve the value from the query string in the URL of the application
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_tasknum.

agent ID Identifies the agent who processed the task. This is a string value.

You can retrieve the value from the query string in the URL of the application
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_agentid.

Returns

Returns 0 for success. Otherwise, it returns a message number. The message set ID for MultiChannel
Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 215

Example

PSMCFFUNCLIB.MCF_QUEUE.Value = %Request.GetParameter("ps_qid");
PSMCFFUNCLIB.MCF_TASKTYPE.Value = %Request.GetParameter("ps_tasktype");
PSMCFFUNCLIB.MCF_TASKNUM.Value = %Request.GetParameter("ps_tasknum");
PSMCFFUNCLIB.MCF_AGENTID.Value = %Request.GetParameter("ps_agentid");

&nret = DeQueue(PSMCFFUNCLIB.MCF_QUEUE, PSMCFFUNCLIB.MCF_TASKTYPE,⇒
 PSMCFFUNCLIB.MCF_TASKNUM, PSMCFFUNCLIB.MCF_AGENTID);

If &nret = 0 Then
 MessageBox(0, "", 0, 0, "Successfully dequeued.");
 End-If

See Also

Chapter 1, "PeopleCode Built-in Functions," EnQueue, page 250

DetachAttachment

Syntax

DetachAttachment(URLSource,DirAndSysFileName,UserFileName [,PreserveCase])

Description

Use the DetachAttachment function to download a file from its source storage location and save it locally on
the end-user machine. The file is sent to the browser with appropriate HTTP headers to cause the browser to
display a save dialog box to the user.

The end user can specify any file name to save the file.

Additional information that is important to the use of DetachAttachment can be found in the PeopleTools
8.52: PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Considerations
When Attaching Text Files.

• Because DetachAttachment is interactive, it is known as a "think-time" function, and is restricted from
use in certain PeopleCode events.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restrictions
on Invoking Functions in Certain PeopleCode Events.

PeopleCode Built-in Functions Chapter 1

216 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restricting the
File Types That Can Be Uploaded or Downloaded.

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier the form URL.URL_ID,
or a string.

The URLSource parameter requires forward slashes ("/"). Backward slashes ("\")
are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndSysFileName The relative path and file name of the file on the file server. This is appended to
URLSource to make up the full URL where the file is transferred from. This
parameter takes a string value.

Note. The URLSource requires "/" slashes. Because DirAndSysFileName is
appended to the URL, it also requires only "/" slashes. "\" are not supported in any
way for either the URLSource or the DirAndSysFileName parameter.

UserFileName The default file name provided by the Detach dialog.

PreserveCase Specify a Boolean value to indicate whether when searching for the file specified
by the DirAndSysFileName parameter, its file name extension is preserved or not;
True, preserve the case of the file name extension, False, convert the file name
extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 217

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to no-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

2 %Attachment_Cancelled File transfer didn't complete because
the operation was canceled by the end
user.

PeopleCode Built-in Functions Chapter 1

218 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded.

• No response from server.

• Failed to overwrite the file on
remote server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 219

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

Example

&retcode = DetachAttachment(URL.MYFTP, ATTACHSYSFILENAME, ATTACHUSERFILE);

An example of the DetachAttachment function is provided in the demonstration application delivered in the
FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the PeopleTools
Test Utilities page.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Using the
PeopleTools Test Utilities Page.

PeopleCode Built-in Functions Chapter 1

220 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," CopyAttachments,
page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment, page 200; Chapter 1, "PeopleCode
Built-in Functions," GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions,"
MAddAttachment, page 486; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

DisableMenuItem

Syntax

DisableMenuItem(BARNAME.menubar_name,ITEMNAME.menuitem_name)

Description

Use the DisableMenuItem function to disable (make unavailable) the specified menu item. To apply this
function to a pop-up menu, use the PrePopup Event of the field with which the pop-up menu is associated.

If you're using this function with a pop-up menu associated with a page (not a field), the earliest event you
can use is the PrePopup event for the first "real" field on the page (that is, the first field listed in the Order
view of the page in Application Designer.)

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Parameters

Parameter Description

menubar_name Name of the menu bar that owns the menu item, or, in the case of pop-up menus,
the name of the pop-up menu that owns the menu item.

menuitem_name Name of the menu item.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 221

Example

DisableMenuItem(BARNAME.MYPOPUP1, ITEMNAME.DO_JOB_TRANSFER);

See Also

Chapter 1, "PeopleCode Built-in Functions," EnableMenuItem, page 241 and Chapter 1, "PeopleCode Built-in
Functions," HideMenuItem, page 439

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," PrePopup
Event

DiscardRow

Syntax

DiscardRow()

Description

Use the DiscardRow function to prevent a row from being added to a page scroll during Row Select
processing. This function is valid only in RowSelect PeopleCode. When DiscardRow is called during
RowSelect processing, the current row is skipped (not added to the scroll). Processing then continues on the
next row, unless the StopFetching function has also been called, in which case no more rows are added to the
page.

If you try to discard a row and it's the only row in the scroll, the row is not discarded. You will still have one
blank row in your scroll.

DiscardRow has the same functionality as the Warning function in the RowSelect event. The anomalous
behavior of Warning is supported for compatibility with previous releases of PeopleTools.

Note. RowSelect processing is used infrequently, because it is more efficient to filter out rows of data using a
search view or an effective-dated record before the rows are selected into the component buffer from the
database server.

PeopleCode Built-in Functions Chapter 1

222 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RowSelect Processing Logic

Parameters

None.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 223

See Also

Chapter 1, "PeopleCode Built-in Functions," StopFetching, page 662 and Chapter 1, "PeopleCode Built-in
Functions," Warning, page 734

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Row Select
Processing

DoCancel

Syntax

DoCancel()

Description

Use the DoCancel function to cancel the current page.

• In the page, the DoCancel function terminates the current component and returns the user to the search
dialog box.

• In the menu, the DoCancel function terminates the current component and returns the user to the current
menu with no component active.

DoCancel terminates any PeopleCode programs executing prior to a save action. It does not stop processing
of PeopleCode in SaveEdit, SavePreChange, and SavePostChange events.

Returns

None.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoSave, page 238; Chapter 1, "PeopleCode Built-in Functions,"
DoSaveNow, page 239; Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223; Chapter 1,
"PeopleCode Built-in Functions," EndModal, page 248 and Chapter 1, "PeopleCode Built-in Functions,"
WinEscape, page 738

DoModal

Syntax

DoModal(PAGE.pagename, title, xpos, ypos, [level, scrollpath, target_row])

In which scrollpath is:

PeopleCode Built-in Functions Chapter 1

224 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, in which scrollname is the same as
the scroll level's primary record name.

Description

Use the DoModal function to display a secondary page in a modal, secondary window, which means that the
user must dismiss the secondary window before continuing work in the page from which the secondary page
was called.

Alternatively, you can specify a secondary page in a command push button definition without using
PeopleCode. This may be preferable for performance reasons, especially with PeopleSoft Pure Internet
Architecture.

DoModal can display a single page modally. To display an entire component modally, use
DoModalComponent.

Any variable declared as a component variable will still be defined after calling the DoModal function.

If you call DoModal without specifying a level number or any record parameters, the function uses the
current context as the parent.

See PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Using Page Controls," Using
Secondary Pages.

Restrictions on Use in PeopleCode Events

Control does not return to the line after DoModal until after the user has dismissed the secondary page. This
interruption of processing makes DoModal a "think-time" function, which means that it shouldn't be used in
any of the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect, or
RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Rowset classs Select method or SelectNew method.

• You should not use DoModal or any other think-time function in FieldChange when the field is associated
with an edit box, long edit box, or drop-down list box. Use FieldEdit instead.

However, DoModal can be used in FieldChange when the field is associated with a push button, radio
button, checkbox, or hyperlink.

In addition, you can't use DoModal in the SearchInit event.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 225

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
component interface.

Considerations for the DoModal Function and Catching Exceptions

Using the DoModal function inside a try-catch block does not catch PeopleCode exceptions thrown in the
new component. Starting a new component starts a brand new PeopleCode evaluation context. Exceptions are
only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to the
DoModal, but not any exceptions that are thrown within the new component:

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

Parameters

Parameter Description

pagename The name of the secondary page.

title The text that displays in the caption of the secondary page.

xpos
The pixel coordinates of the top left corner of the secondary page, offset from the
top left corner of the parent page (the default of -1, -1 means centered).

ypos The pixel coordinates of the top right corner of the secondary page, offset from the
top right corner of the parent page (the default of -1, -1 means centered).

level Specifies the level of the scroll level on the parent page that contains the row
corresponding to level 0 on the secondary page.

scrollpath A construction that specifies a scroll level in the component buffer.

PeopleCode Built-in Functions Chapter 1

226 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

target_row The row number of the row in the parent page corresponding to the level 0 row in
the secondary page.

Returns

Returns a number that indicates how the secondary page was terminated. A secondary page can be terminated
by the user clicking a built-in OK or Cancel button, or by a call to the EndModal function in a PeopleCode
program. In either case, the return value of DoModal is one of the following:

• 1 if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• 0 if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call that
terminated the secondary page.

Example

DoModal(PAGE.EDUCATION_DTL, MsgGetText(1000, 167, "Education Details - %1",⇒
 EDUCATN.DEGREE), - 1, - 1, 1, RECORD.EDUCATN, CurrentRowNumber());

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226; Chapter 1, "PeopleCode Built-
in Functions," DoModalX, page 231; Chapter 1, "PeopleCode Built-in Functions," EndModal, page 248 and
Chapter 1, "PeopleCode Built-in Functions," IsModal, page 469

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

DoModalComponent

Syntax

DoModalComponent(MENUNAME.menuname,BARNAME.barname,ITEMNAME.menuitem_name,PAGE.
component_item_name,action,RECORD.shared_record_name [, keylist])

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 227

Description

Use the DoModalComponent function to display a secondary component in a modal, secondary window,
which means that the user must dismiss the secondary window before continuing work in the page from
which the secondary window was called. The secondary component launches modally from within an
originating component. After the secondary component displays, the user can't proceed with changes to the
originating component until either accepting or canceling the secondary component.

Secondary components can be displayed in any of the following action modes: Add, Update/Display,
Update/Display All, Correction. A secondary component can be launched from any component, including
another secondary component. You can also use DoModalComponent from a secondary page.

The originating component and the secondary component share data, including search keys, using a Shared
Work Record or the values in the fieldlist parameter. If valid search keys are provided in the shared work
record and populated with valid values before launching the secondary component, the search is conducted
using the provided search key values. If the fieldlist parameter isn't used and no search keys are provided, or
if search key fields contain invalid values, the user accesses the secondary component using a search dialog
box.

Note. The user may see a different title for a search page if they enter the search page using this function
versus from the regular navigation.

In the component_item_name parameter, make sure to pass the component item name for the page, not the
page name. The component item name is specified in the Component Definition, in the Item Name column on
the row corresponding to the specific page, as shown here:

Component Item Name parameter

Shared Work Records

The originating component and the secondary component share fields in a Derived/Work record called a
shared work record. Shared fields from this record must be placed at level zero of both the originating
component and the secondary component.

You can use the shared fields to:

• Pass values that are assigned to the search keys in the secondary component search record. If these fields
are missing or not valid, the search dialog box appears, enabling the user to enter search keys.

• Optionally pass other values from the originating component to the secondary component.

• Pass values back from the secondary component to the originating component for processing.

To do this, you have to write PeopleCode that:

PeopleCode Built-in Functions Chapter 1

228 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Assigns values to fields in the shared work record in the originating page at some point before the modal
transfer takes place.

• Accesses and changes the values, if necessary, in the secondary component.

• Accesses the values from the shared work record from the originating component after the secondary
component is dismissed.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
component interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Considerations for the DoModalComponent Function and Catching Exceptions

Using the DoModalComponent function inside a try-catch block does not catch PeopleCode exceptions
thrown in the new component. Starting a new component starts a brand new PeopleCode evaluation context.
Exceptions are only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to the
DoModal, but not any exceptions that are thrown within the new component:

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

Parameters

Parameter Description

menuname Name of the menu through which the secondary component is accessed.

barname Name of the menu bar through which the secondary component is accessed.

menuitem_name Name of the menu item through which the secondary component is accessed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 229

Parameter Description

component_item_name The component item name of the page to be displayed on top of the secondary
component when it displays. The component item name is specified in the
component definition.

action String representing the action mode in which to start up the component. You can
use either a character value (passed in as a string) or a constant. See below.

If only one action mode is allowed for the component, that action mode is used. If
more than one action mode is allowed, the user can select which mode to come up
in.

shared_record_name The record name of the shared work record (preceded by the reserved word
Record). This record must include:

• Fields that are search keys in the secondary component search record; if search
key fields are not provided, or if they are invalid, the user accesses the
secondary component using the search dialog box.

• Other fields to pass to the secondary component.

• Fields to get back from the secondary component after it has finished
processing.

keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object. If a record object is
specified, any field of that record object that is also a field of the search record for
the destination component is added to keylist. The keys in fieldlist must uniquely
identify a row in the "to" page search record. If a unique row is not identified, the
search dialog box appears.

If the keylist parameter is not supplied then the destination components' search key
must be found as part of the source component's level 0 record buffer.

The values for action can be as follows:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

C %Action_Correction Correction

E %Action_DataEntry Data Entry

P %Action_Prompt Prompt

PeopleCode Built-in Functions Chapter 1

230 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

Returns a Boolean that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModalComponent
function in a PeopleCode program. In either case, the return value of DoModalComponent is one of the
following:

• True if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• False if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call
that terminated the secondary page.

Example

The following example shows how to structure a DoModalComponent function call:

DoModalComponent(MENUNAME.MAINTAIN_ITEMS_FOR_INVENTORY, BARNAME.USE_A,⇒
 ITEMNAME.ITEM_DEFINITION, COMPONENT.ESTABLISH_AN_ITEM, "C", RECORD.NEW7_WRK);

Supporting PeopleCode is required if you must assign values to fields in the shared work record or access
those values, either from the originating component, or from the secondary component.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223; Chapter 1, "PeopleCode Built-in
Functions," DoModalXComponent, page 234; Chapter 1, "PeopleCode Built-in Functions,"
EndModalComponent, page 249; Chapter 1, "PeopleCode Built-in Functions," IsModalComponent, page 470;
Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683 and Chapter 1, "PeopleCode Built-in
Functions," TransferPage, page 699

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Implementing
Modal Transfers

DoModalPanelGroup

Syntax

DoModalPanelGroup(MENUNAME.menuname,BARNAME.barname,ITEMNAME.menuitem_name,
PANEL.panel_group_item_name, action,RECORD.shared_record_name)

Description

 Use the DoModalPanelGroup function to launch a secondary component.

Note. The DoModalPanelGroup function is supported for compatibility with previous releases of
PeopleTools. Future applications should use DoModalComponent instead.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 231

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226

DoModalX

Syntax

DoModalX(showInModal,cancelButtonName,PAGE.pagename, title, xpos, ypos, [level,
scrollpath, target_row])

In which scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, in which scrollname is the same as
the scroll level's primary record name.

Description

Use the DoModalX function to display a secondary page modally when you do not want it to display in a
modal, secondary window. Instead, the page to be displayed completely replaces the current page. Similar to
DoModal, the user must complete work on the secondary page before continuing work in the page from
which the secondary page was called.

Important! To have the page completely replace the current page, set the showInModal parameter to False.

DoModalX can display a single page modally. To display an entire component modally, use
DoModalXComponent.

Any variable declared as a component variable will still be defined after calling the DoModalX function.

If you call DoModalX without specifying a level number or any record parameters, the function uses the
current context as the parent.

See PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Using Page Controls," Using
Secondary Pages.

Restrictions on Use in PeopleCode Events

Control does not return to the line after DoModalX until after the user has dismissed the secondary page. This
interruption of processing makes DoModalX a "think-time" function, which means that it shouldn't be used in
any of the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

PeopleCode Built-in Functions Chapter 1

232 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• RowSelect.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect, or
RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Rowset classs Select method or SelectNew method.

• You should not use DoModalX or any other think-time function in FieldChange when the field is
associated with an edit box, long edit box, or drop-down list box. Use FieldEdit instead.

However, DoModalX can be used in FieldChange when the field is associated with a push button, radio
button, checkbox, or hyperlink.

In addition, you can't use DoModalX in the SearchInit event.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
component interface.

Considerations for the DoModalX Function and Catching Exceptions

Using the DoModalX function inside a try-catch block does not catch PeopleCode exceptions thrown in the
new component. Starting a new component starts a brand new PeopleCode evaluation context. Exceptions are
only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to the
DoModal, but not any exceptions that are thrown within the new component:

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 233

Parameters

Parameter Description

showInModal Specify a Boolean value to indicate whether to display the secondary page in a
modal, secondary window:

• True display the page in a secondary, modal window.

• False do not display the page in a secondary window; instead, completely
replace the current page.

cancelButtonName Currently, this parameter is not used and should be specified as an empty string:
"".

pagename The name of the secondary page.

title The text that displays in the caption of the secondary page.

xpos The pixel coordinates of the top left corner of the secondary page, offset from the
top left corner of the parent page (the default of -1, -1 means centered).

ypos The pixel coordinates of the top right corner of the secondary page, offset from the
top right corner of the parent page (the default of -1, -1 means centered).

level Specifies the level of the scroll level on the parent page that contains the row
corresponding to level 0 on the secondary page.

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number of the row in the parent page corresponding to the level 0 row in
the secondary page.

Returns

Returns a number that indicates how the secondary page was terminated. A secondary page can be terminated
by the user clicking a built-in OK or Cancel button, or by a call to the EndModal function in a PeopleCode
program. In either case, the return value of DoModalX is one of the following:

• 1 if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• 0 if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call that
terminated the secondary page.

Example

DoModalX(False, "", PAGE.EDUCATION_DTL, MsgGetText(1000, 167, "Education Details ⇒
- %1", EDUCATN.DEGREE), - 1, - 1, 1, RECORD.EDUCATN, CurrentRowNumber());

PeopleCode Built-in Functions Chapter 1

234 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223; Chapter 1, "PeopleCode Built-in
Functions," DoModalXComponent, page 234; Chapter 1, "PeopleCode Built-in Functions," EndModal, page
248 and Chapter 1, "PeopleCode Built-in Functions," IsModal, page 469

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

DoModalXComponent

Syntax

DoModalXComponent(showInModal,cancelButtonName,
MENUNAME.menuname,BARNAME.barname,ITEMNAME.menuitem_name,PAGE.
component_item_name,action,RECORD.shared_record_name [, keylist])

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Description

Use the DoModalXComponent function to display a secondary component modally when you do not want it
to display in a modal, secondary window. The secondary component launches modally from within an
originating component, which means that the user must dismiss the secondary component before continuing
work in the page from which the secondary component was called. After the secondary component displays,
the user can't proceed with changes to the originating component until either accepting or canceling the
secondary component.

Important! To have the new component completely replace the current page, set the showInModal parameter
to False.

Secondary components can be displayed in any of the following action modes: Add, Update/Display,
Update/Display All, Correction. A secondary component can be launched from any component, including
another secondary component. You can also use DoModalXComponent from a secondary page.

The originating component and the secondary component share data, including search keys, using a Shared
Work Record or the values in the fieldlist parameter. If valid search keys are provided in the shared work
record and populated with valid values before launching the secondary component, the search is conducted
using the provided search key values. If the fieldlist parameter isn't used and no search keys are provided, or
if search key fields contain invalid values, the user accesses the secondary component using a search dialog
box.

Note. The user may see a different title for a search page if they enter the search page using this function
versus from the regular navigation.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 235

In the component_item_name parameter, make sure to pass the component item name for the page, not the
page name. The component item name is specified in the Component Definition, in the Item Name column on
the row corresponding to the specific page, as shown here:

Component Item Name parameter

Shared Work Records

The originating component and the secondary component share fields in a Derived/Work record called a
shared work record. Shared fields from this record must be placed at level zero of both the originating
component and the secondary component.

You can use the shared fields to:

• Pass values that are assigned to the search keys in the secondary component search record. If these fields
are missing or not valid, the search dialog box appears, enabling the user to enter search keys.

• Optionally pass other values from the originating component to the secondary component.

• Pass values back from the secondary component to the originating component for processing.

To do this, you have to write PeopleCode that:

• Assigns values to fields in the shared work record in the originating page at some point before the modal
transfer takes place.

• Accesses and changes the values, if necessary, in the secondary component.

• Accesses the values from the shared work record from the originating component after the secondary
component is dismissed.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
component interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

PeopleCode Built-in Functions Chapter 1

236 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Considerations for the DoModalXComponent Function and Catching Exceptions

Using the DoModalXComponent function inside a try-catch block does not catch PeopleCode exceptions
thrown in the new component. Starting a new component starts a brand new PeopleCode evaluation context.
Exceptions are only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to the
DoModal, but not any exceptions that are thrown within the new component:

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

Parameters

Parameter Description

showInModal Specify a Boolean value to indicate whether to display the secondary component
in a modal, secondary window:

• True display the component in a secondary, modal window.

• False do not display the component in a secondary window; instead,
completely replace the current page.

cancelButtonName Currently, this parameter is not used and should be specified as an empty string:
"".

menuname Name of the menu through which the secondary component is accessed.

barname Name of the menu bar through which the secondary component is accessed.

menuitem_name Name of the menu item through which the secondary component is accessed.

component_item_name The component item name of the page to be displayed on top of the secondary
component when it displays. The component item name is specified in the
component definition.

action String representing the action mode in which to start up the component. You can
use either a character value (passed in as a string) or a constant. See below.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 237

Parameter Description

If only one action mode is allowed for the component, that action mode is used. If
more than one action mode is allowed, the user can select which mode to come up
in.

shared_record_name The record name of the shared work record (preceded by the reserved word
Record). This record must include:

• Fields that are search keys in the secondary component search record; if search
key fields are not provided, or if they are invalid, the user accesses the
secondary component using the search dialog box.

• Other fields to pass to the secondary component.

• Fields to get back from the secondary component after it has finished
processing.

keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object. If a record object is
specified, any field of that record object that is also a field of the search record for
the destination component is added to keylist. The keys in fieldlist must uniquely
identify a row in the "to" page search record. If a unique row is not identified, the
search dialog box appears.

If the keylist parameter is not supplied then the destination components' search key
must be found as part of the source component's level 0 record buffer.

The values for action can be as follows:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

C %Action_Correction Correction

E %Action_DataEntry Data Entry

P %Action_Prompt Prompt

Returns

Returns a Boolean that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModalComponent
function in a PeopleCode program. In either case, the return value of DoModalXComponent is one of the
following:

PeopleCode Built-in Functions Chapter 1

238 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• True if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• False if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call
that terminated the secondary page.

Example

The following example shows how to structure a DoModalXComponent function call:

DoModalXComponent(False, "", MENUNAME.MAINTAIN_ITEMS_FOR_INVENTORY, ⇒
BARNAME.USE_A, ITEMNAME.ITEM_DEFINITION, COMPONENT.ESTABLISH_AN_ITEM, "C", ⇒
RECORD.NEW7_WRK);

Supporting PeopleCode is required if you must assign values to fields in the shared work record or access
those values, either from the originating component, or from the secondary component.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226; Chapter 1, "PeopleCode Built-
in Functions," DoModalX, page 231; Chapter 1, "PeopleCode Built-in Functions," EndModalComponent,
page 249; Chapter 1, "PeopleCode Built-in Functions," IsModalComponent, page 470; Chapter 1,
"PeopleCode Built-in Functions," Transfer, page 683 and Chapter 1, "PeopleCode Built-in Functions,"
TransferPage, page 699

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Implementing
Modal Transfers

DoSave

Syntax

DoSave()

Description

Use the DoSave function to save the current page. DoSave defers processing to the end of the current
PeopleCode program event, as distinct from DoSaveNow, which causes save processing (including SaveEdit,
SavePreChange, SavePostChange, and Workflow PeopleCode) to be executed immediately.

DoSave can be used in the following PeopleCode events only: FieldEdit, FieldChange, or ItemSelected (for
menu items in popup menus only).

Parameters

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 239

Returns

None.

Example

The following example sets up a key list with AddKeyListItem, saves the current page, and then transfers the
user to a page named PAGE_2.

ClearKeyListItem();
AddKeyListItem(OPRID, OPRID);
AddKeyListItem(REQUEST_ID, REQUEST_ID);
SetNextPage("PAGE_2");
DoSave();
TransferPage();

See Also

Chapter 1, "PeopleCode Built-in Functions," DoCancel, page 223; Chapter 1, "PeopleCode Built-in
Functions," DoSaveNow, page 239; Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699 and
Chapter 1, "PeopleCode Built-in Functions," AddKeyListItem, page 46

DoSaveNow

Syntax

DoSaveNow()

Description

The DoSaveNow function is designed primarily for use with remote calls. It enables a PeopleCode program
to save page data to the database before running a remote process (most frequently a COBOL process) that
will access the database directly. It is generally necessary to call DoSaveNow before calling the RemoteCall
function.

DoSaveNow causes the current page to be saved immediately. Save processing (including SaveEdit,
SavePreChange, SavePostChange, and Workflow PeopleCode) is executed before continuing execution of the
program where DoSaveNow is called. DoSaveNow differs from the DoSave function in that DoSave defers
saving the component until after any running PeopleCode is completed.

DoSaveNow can only be called from a FieldEdit or FieldChange event.

If you call DoSaveNow and there are no changes to save, save processing is skipped entirely. You can call
SetComponentChanged right before you call DoSaveNow. The SetComponentChanged function makes the
Component Processor think there are changes and so will force full save processing.

See Chapter 1, "PeopleCode Built-in Functions," RemoteCall, page 559 and Chapter 1, "PeopleCode Built-in
Functions," DoSave, page 238.

PeopleCode Built-in Functions Chapter 1

240 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Errors in DoSaveNow Save Processing

DoSaveNow initiates save processing. It handles errors that occur during save processing as follows:

• If save processing encounters a SaveEdit error, it displays the appropriate message box. DoSaveNow
immediately exits from the originating FieldChange or FieldEdit program. The user can correct the error
and continue.

• If save processing encounters a fatal error, it displays the appropriate fatal error. DoSaveNow handles the
error by immediately exiting from the originating FieldChange or FieldEdit program. The user must then
cancel the page.

• If save processing completes with no errors, PeopleCode execution continues on the line after the
DoSaveNow call in FieldChange or FieldEdit.

Restrictions on Use of DoSaveNow

The following restrictions apply:

• DoSaveNow can be executed only from a FieldEdit or FieldChange event.

• DoSaveNow is only allowed prior to the first CallAppEngine function in a FieldChange event, but not
afterward.

• Deferred operations should not be called before the DoSaveNow. Deferred operations include the
DoSave, TransferPage, SetCursorPos, and EndModal functions.

• Components that use DoSaveNow must not use the DoCancel, Transfer, TransferPage, or WinEscape
functions in PeopleCode attached to save action events (SaveEdit, SavePreChange, and SavePostChange),
because these functions terminate the component, which would cause the program from which
DoSaveNow was called to terminate prematurely.

Note. You should be aware that DoSaveNow may result in unpredictable behavior if PeopleCode in save
events deletes rows or inserts rows into scrolls. PeopleCode that runs after DoSaveNow must be designed
around the possibility that rows were deleted or inserted (which causes row number assignments to change).
Modifying data on a deleted row may cause it to become "undeleted."

Parameters

None.

Returns

None.

Example

The following example calls DoSaveNow to save the component prior to running a remote process in the
remote_depletion declared function:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 241

Declare Function remote_depletion PeopleCode FUNCLIB_ININTFC.RUN_DEPLETION Field⇒
Formula;

/*
Express Issue Page - run Depletion job through RemoteCall()
*/
If %Component = COMPONENT.EXPRESS_ISSUE_INV Then
 DoSaveNow();
 &BUSINESS_UNIT = FetchValue(SHIP_HDR_INV.BUSINESS_UNIT, 1);
 &SHIP_OPTION = "S";
 &SHIP_ID = FetchValue(SHIP_HDR_INV.SHIP_ID, 1);
 remote_depletion(&BUSINESS_UNIT, &SHIP_OPTION, &SHIP_ID, &PROGRAM_STATUS);
End-If

EnableMenuItem

Syntax

EnableMenuItem(BARNAME.menubar_name,ITEMNAME.menuitem_name)

Description

Use the EnableMenuItem function to enable (make available for selection) the specified menu item. To apply
this function to a pop-up menu, use the PrePopup Event of the field with which the pop-up menu is
associated.

If you're using this function with a pop-up menu associated with a page (not a field), the earliest event you
can use is the PrePopup event for the first "real" field on the page (that is, the first field listed in the Order
view of the page in Application Designer.)

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Parameters

Parameter Description

menubar_name Name of the menu bar that owns the menu item, or, in the case of pop-up menus,
the name of the pop-up menu that owns the menu item.

menuitem_name Name of the menu item.

Returns

None.

PeopleCode Built-in Functions Chapter 1

242 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

EnableMenuItem(BARNAME.MYPOPUP1, ITEMNAME.DO_JOB_TRANSFER);

See Also

Chapter 1, "PeopleCode Built-in Functions," DisableMenuItem, page 220 and Chapter 1, "PeopleCode Built-
in Functions," HideMenuItem, page 439

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," PrePopup
Event

EncodeURL

Syntax

EncodeURL(URLString)

Description

Use the EncodeURL function to apply URL encoding rules, including escape characters, to the string
specified by URLString. The method used to encode the URLString is the standard defined by W3C. This
function returns a string that contains the encoded URL. All characters outside the Unicode Basic Latin block
(U+0020 — U+007F) are encoded, with the exception of the characters in the table below which are not
encoded as they may represent valid components of URL or protocol syntax. If you need to encode such
characters, use the EncodeURLForQueryString function.

The following table lists the punctuation characters in the Unicode Basic Latin block that are not encoded by
the URLEncode function.

Punctuation Character Description

Glyph Unicode Character Name

! Exclamation mark

Number sign

$ Dollar sign

& Ampersand

(Left parenthesis

) Right parenthesis

* Asterisk

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 243

Punctuation Character Description

+ Plus sign

, Coma

- Hyphen, minus

. Full stop, period

/ Solidus, slash

: Colon

; Semi-colon

= Equals sign

? Question mark

_ Underscore

Parameters

Parameter Description

URLString Specify the string you want encoded. This parameter takes a string value.

Returns

An encoded string.

Example

The example below returns the following encoded URL:

http://corp.office.com/human%20resources/benefits/401kchange_home.htm?FirstName=⇒
Gunter&LastName=D%c3%9crst

&MYSTRING = EncodeURL("http://corp.office.com/hr/benefits/401k/401k_home.htm");

See Also

Chapter 1, "PeopleCode Built-in Functions," EncodeURLForQueryString, page 244 and Chapter 1,
"PeopleCode Built-in Functions," Unencode, page 713

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleCode Built-in Functions Chapter 1

244 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

EncodeURLForQueryString

Syntax

EncodeURLForQueryString(URLString)

Description

Use the EncodeURLForQueryString function to encode URLString for use in a query string parameter in an
URL. All characters outside the Unicode Basic Latin block (U+0020 — U+007F) are encoded, with the
exception of the characters in the table below which are not encoded as they are typically valid in a query
string.

If the link is constructed in a page, and the value is a link field, you should not call EncodeURL to encode the
entire URL, as the PeopleSoft Pure Internet Architecture does this for you. You still need to unencode the
parameter value when you retrieve it, however.

Always encode each field value being added directly to query strings using EncodeURLForQueryString.

The following table lists punctuation characters in the Unicode Basic Latin block that are not encoded by the
URLEncodeForQueryString function.

Punctuation Character Description

(Left parenthesis

) Right parenthesis

* Asterisk

- Hyphen, minus

. Full stop, period

_ Underscore, low line

Parameters

Parameter Description

URLString Specify the string you want encoded. This parameter takes a string value.

Returns

An encoded URL string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 245

Example

In an Internet Script, to construct an anchor with a URL in a query string parameter, do the following:

&url = "http://host/psp/ps/EMPLOYEE/HRMS/s/EMPL_INFO.FieldFormula.IScript_EMPL_⇒
INFO?emplid=1111&mkt=usa"

&href = %Request.RequestURI | "?" | %Request.QueryString | "&myurl=" | Encode⇒
URLForQueryString(&url);

%Response.WriteLine("My Link");

The following uses a generic method to find, then encode, the URL, for the external link:

&StartPos = Find("?", &URL, 1);
&CPColl = &Portal.ContentProviders;
&strHREF = EncodeURLForQueryString(Substring(&URL, &StartPos + 1, Len(&URL) -⇒
&StartPos));
&LINK = &Portal.GetQualifiedURL("PortalServlet", "PortalOriginalURL=" |⇒
 &CPColl.ItembyName(&CP_NAME).URI | "?" | &strHREF);

See Also

Chapter 1, "PeopleCode Built-in Functions," EncodeURL, page 242; Chapter 1, "PeopleCode Built-in
Functions," Unencode, page 713; Chapter 1, "PeopleCode Built-in Functions," EscapeHTML, page 256;
Chapter 1, "PeopleCode Built-in Functions," EscapeJavascriptString, page 257 and Chapter 1, "PeopleCode
Built-in Functions," EscapeWML, page 258

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

Encrypt

Syntax

Encrypt(KeyString,ClearTextString)

Description

Use the Encrypt function to encrypt a string. This function is generally used with merchant passwords.

The value you use for KeyString must be the same for Decrypt and Encrypt.

Size Considerations for Encrypt

The Encrypt function uses 56-bit DES (Data Encryption Standard). The size of the output string is increased
to the nearest multiple of 8 bytes. The string is encrypted (which doesn't modify the size), then encoded,
which increases the resulting size to the next multiple of 3. Then, the system multiplies the result by 4/3 to get
the final encrypted size.

PeopleCode Built-in Functions Chapter 1

246 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For example, a 16-character, Unicode field is 32 bytes long, which is already an even multiple of 8. After it is
encrypted, it is encoded, which increases the size of the string to 33 bytes (the next multiple of 3). Then, the
system multiplies this by 4/3 to get the final encrypted string size of 44 bytes.

Parameters

Parameter Description

KeyString Specify the key used for encrypting the string. You can specify a Null value for
this parameter, that is, two quotation marks with no blank space between them
("").

ClearTextString Specify the string you want encrypted.

Returns

An encrypted string.

Example

The following encrypts a field if it contains a value. It also removes any blanks either preceding or trailing the
value.

If All(PSCNFMRCHTOKEN.WRKTOKEN) Then
 CMPAUTHTOKEN = Encrypt("", RTrim(LTrim(PSCNFMRCHTOKEN.WRKTOKEN)));
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," Decrypt, page 199 and Chapter 1, "PeopleCode Built-in
Functions," Hash, page 435

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

EncryptNodePswd

Syntax

EncryptNodePswd(Password)

Description

Use the EncryptNodePswd function to encrypt an Integration Broker node password.

Note. This function is generally used with Integration Broker node password encryption. This function should
not be used casually, as once you encrypt your node password, there is no decrypt PeopleCode method.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 247

Parameters

Parameter Description

Password Specify the Integration Broker node password that you want encrypted, as a string.

Returns

An encrypted password as a string.

Example

In the following example, the password is stored in the database in an encrypted form instead of as plain text:

PSMSGNODEDEFN.IBPASSWORD = EncryptNodePswd(RTrim(LTrim(PSNODE_WRK.WRKPASSWORD)));

See Also

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

EndMessage

Syntax

EndMessage(message,messagebox_title)

Description

Note. The EndMessage function is obsolete and is supported only for backward compatibility. The
MessageBox function, which can now be used to display informational messages in any PeopleCode event,
should be used instead.

Use the EndMessage function to display a message at the end of a transaction, at the time of the database
COMMIT. This function can be used only in SavePostChange PeopleCode.

When an EndMessage function executes, PeopleTools:

• Verifies that the function is in SavePostChange; if it is not, an error occurs and the function terminates.

• Displays the message.

• Terminates the SavePostChange PeopleCode program.

PeopleCode Built-in Functions Chapter 1

248 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Because it terminates the SavePostChange program, EndMessage is always be the last statement executed in
the program on the specific field and row where the EndMessage is called. For this reason, you must write the
SavePostChange program so that all necessary processing takes place before the EndMessage statement.
PeopleCode programs on other fields and rows execute as usual.

Parameters

Parameter Description

message A string that must be enclosed in quotes containing the message text you want
displayed.

messagebox_title A string that must be enclosed in quotes containing the title of the message. It
appears in the message box title bar.

Returns

None.

Example

The following example is from SavePostChange event PeopleCode. It checks to see whether a condition is
true, and if so, it displays a message and terminates the SavePostChange program. If the condition is false,
then processing continues in the Else clause:

If BUSINESS_UNIT = BUS_UNIT_WRK.DEFAULT_SETID Then
 EndMessage(MsgGet(20000, 12, "Message not found in Message Catalog")," ");
 Else
/* any other SavePostChange processing in Else clause */

See Also

Chapter 1, "PeopleCode Built-in Functions," MessageBox, page 499 and Chapter 1, "PeopleCode Built-in
Functions," WinMessage, page 738

EndModal

Syntax

EndModal(returnvalue)

Description

Use the EndModal function to close a currently open secondary page. It is required only for secondary pages
that do not have OK and Cancel buttons. If the secondary page has OK and Cancel buttons, then the function
for exiting the page is built in and no PeopleCode is required.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 249

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Parameters

Parameter Description

returnvalue A Number value that determines whether the secondary page data is copied back
to the parent page. A positive value runs SaveEdit PeopleCode and copies the data
(this is the same as clicking the OK button). A value of zero skips SaveEdit and
discards buffer changes made in the secondary page (this is the same as clicking
the Cancel button). This value becomes the return value of the DoModal function
that started the secondary page, and it can be tested after the secondary page is
closed.

Returns

None.

Example

The following statement acts as an OK button:

EndModal(1);

The following statement acts as a Cancel button:

EndModal(0);

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223; Chapter 1, "PeopleCode Built-in
Functions," DoModalX, page 231 and Chapter 1, "PeopleCode Built-in Functions," IsModal, page 469

EndModalComponent

Syntax

EndModalComponent(ReturnValue)

Description

Use the EndModalComponent function to close a currently open secondary component. You could use this
for creating your own links to exit a secondary component.

PeopleCode Built-in Functions Chapter 1

250 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Restrictions on Use With a Component Interface

This function can't be used by a PeopleCode program that's been called by a Component Interface, and is
ignored.

Parameters

Parameter Description

ReturnValue A Number value that determines whether the secondary component data is saved
and copied back to the parent page. A positive value saves the data in the
component to the database, including all save processing and PeopleCode (this is
the same as pressing the OK button). It also copies the data in the shared work
record, if any, back to the primary component. A value of zero skips save
processing discards buffer changes made in the secondary component (this is the
same as pressing the Cancel button).

Returns

A Boolean value: True if a non-zero value was used, False if zero was used.

Example

EndModalComponent(0); /* cancels the component without saving */

EndModalComponent(1); /* saves and closes the component */

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226; Chapter 1, "PeopleCode Built-
in Functions," DoModalXComponent, page 234; Chapter 1, "PeopleCode Built-in Functions," EndModal,
page 248 and Chapter 1, "PeopleCode Built-in Functions," IsModal, page 469

EnQueue

Syntax

EnQueue(logical queue,task type,Relative URL, Language_Code [,subject][, agent
ID][, overflow timeout][, escalation timeout][, cost][, priority][, skill level
])

Description

Use the EnQueue function to assign a task to one of the active, physical queues belonging to the specified
logical queue. The physical queue to which the system assigns the task is chosen randomly to balance load
across the queues.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 251

Note. PeopleSoft recommends that you always follow the EnQueue function with the NotifyQ function.

See Chapter 1, "PeopleCode Built-in Functions," NotifyQ, page 518.

Parameters

Parameter Description

logical queue ID Specifies the logical queue in which the task should be queued. It is a string value.

The logical queue ID is a case-sensitive value. The case used in the EnQueue
function must exactly match the case used when creating the logical queue ID with
the MultiChannel Framework administration pages.

task type Specifies the type of task to be inserted. It is a string value. The valid values are:

• email

• generic

Note. This parameter does not apply to voice or chat. Chat tasks are enqueued
using the InitChat function. Voice queueing is managed by PeopleSoft CTI.

Relative URL The system uses this relative URL to generate the URL of the appropriate
application page for the MultiChannel Framework console to launch when an
agent accepts this task. The application page should contain the logic to enable the
agent to resolve the task and either forward the task using the Forward function or
dequeue the task using the DeQueue function.

Language_Code This is the language code associated with the task to be enqueued. It is a string
value that must exist in the PeopleSoft language table.

The queue server only assigns this task to an agent whose list of languages
contains this value. For example if an email to be enqueued is written in English,
the language code would be "ENG", and this email would only be assigned to
agents whose language list contains English.

subject This is an optional parameter. It is a string value describing the purpose of the
request. This value appears on the agent's console when the system assigns the
task.

agent ID Specifies the assigned agent. This is an optional, string parameter.

If specified, the system holds the task until the specified agent is available to take
this task. If this parameter is left blank, the queue server assigns it to the first
available agent.

Note. For better performance, PeopleSoft recommends not specifying the target
agent as this has a processing overhead for the queue servers and does not allow
the system to balance workload across all available agents.

PeopleCode Built-in Functions Chapter 1

252 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

overflow timeout This is an optional parameter. It is an integer value expressing the overflow
timeout in minutes.

The overflow timeout is the time period within which a queue server has to find an
agent who accepts the task (clicks on the flashing icon on the MultiChannel
console). If the task is not accepted within this time, the task is removed from the
queue and placed in the MultiChannel overflow table.

 If you do not specify a value, the system uses the default value specified for that
task type in the Task Configuration page.

escalation timeout This is an optional parameter. It is an integer value expressing the escalation
timeout in minutes.

The escalation timeout is the time period within which a task must be completed
by the agent and closed with DeQueue. If the task is not closed within this time,
the task is removed from the queue and from the agent's accepted task list, which
means the task becomes unassigned. Then the task is placed in the MultiChannel
Framework escalation table.

If no value is specified, the system uses the default specified for that task type in
the Task Configuration pages.

cost This is an optional parameter. It is an integer value measuring the workload each
task places on an agent. The cost of a task is an estimate of the tasks's expected
complexity and of the time required to resolve the task. The minimum value is 0,
and there is no maximum value.

The cost of a task is added to an agent's workload after accepting a task on the
MultiChannel Framework console. A task can't be assigned to an agent if the
difference between the current workload and the maximum workload defined for
that agent on the Agent configuration page is less than the cost of this task.

If you do not specify a value, the system uses the default value specified for that
task in the Task Configuration pages.

Note. If the required skill level or cost submitted exceeds the highest skill level or
maximum workload of any of the agents on that queue, the task cannot be
assigned.

priority This is an optional parameter. It is an integer value expressing the priority level of
the request. The minimum value is 0 and there is no maximum value.

A higher value means a higher priority. Tasks are ordered on a physical queue
based on their assigned priority. That is, the system assigns a task of a higher
priority before it assigns a task of a lower priority.

 If no value is specified, the system uses the default value specified for that task
type in the Task Configuration page.

When tasks have the same priority, the system orders the tasks according to the
time they were created. For example, suppose the following tasks exist: Priority 2
created at 11:15 AM and Priority 2 created at 11:16 AM. In this case, the system
assigns the task created at 11:15 AM before the task created at 11:16 AM.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 253

Parameter Description

skill level This is an optional parameter. It is an integer value expressing the minimum skill
level required of the agent to whom the system routes the request. You set an
agent's skill level in the Agent configuration page.

The queue server assigns this task type to an available agent on that queue whose
lowest skill level is greater than or equal to the skill level required by the task.

If no value is specified, the system uses the default value specified for that task
type in the Task Configuration page.

Note. If the required skill level or cost submitted exceeds the highest skill level or
maximum workload of any of the agents on that queue, the task cannot be
assigned.

Returns

If the insert was successful, the function returns a task number in the form of a string.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example

&PortalValue = Portal.EMPLOYEE;
 &NodeValue = Node.QE_LOCAL; /*If running in Application Engine, this code
assumes CONTENT URI has been set in node defn admin page*/

 &MyCompURL = GenerateComponentContentRelURL(&PortalValue, &NodeValue,
MenuName.PT_MCF, "GBL", Component.MCFEM_DEMOERMS_CMP, Page.MCFEM_ERMSMN, "");
 &MyCompURL = &MyCompURL | "&ps_emailid=" | &emailid; /*Query string
dependent on component. Our demo comonent just needs email id*/

rem The URL to be passed will look something like;
rem "/psc/ps/EMPLOYEE/QE_LOCAL/c/PT_MCF.MCF_DEMOERMS_CMP.GBL?Page=MCFEM_ERMSMN";

&strtasknum = EnQueue(&queueID, "email", &MyCompURL, &langcode,
&subject, "QEDMO", 15, 60, &cost, &priority, &minskill);

See Also

Chapter 1, "PeopleCode Built-in Functions," DeQueue, page 213

Error

Syntax

Error str

PeopleCode Built-in Functions Chapter 1

254 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

 Use the Error function in FieldEdit or SaveEdit PeopleCode to stop processing and display an error message.
It is distinct from Warning, which displays a warning message, but does not stop processing. Error is also
used in RowDelete and RowSelect PeopleCode events.

Warning! The behavior of the Error function in the RowSelect event is very different from its normal
behavior.

See the Error in RowSelect section for more details.

The text of the error message (the str parameter), should always be stored in the Message Catalog and
retrieved using the MsgGet or MsgGetText functions. This makes it much easier for the text to be translated,
and it also enables you to include more detailed Explain text about the error.

Note. If you pass a string to the Error function instead of using a Message Catalog function, the explanation
text from the last call to the Message Catalog may be appended to the message. This can cause unexpected
results.

See Chapter 1, "PeopleCode Built-in Functions," WinMessage, page 738.

When Error executes in a PeopleCode program, the program terminates immediately and no statements after
the Error are executed. In other respects behavior of Error differs, depending on which PeopleCode event the
function occurs in.

Errors in FieldEdit and SaveEdit

The primary use of Error is in FieldEdit and SaveEdit PeopleCode:

• In FieldEdit, Error stops processing, displays a message, and highlights the relevant field.

• In SaveEdit, Error stops all save processing and displays a message, but does not highlight any field. You
can move the cursor to a specific field using the SetCursorPos function, but be sure to call SetCursorPos
before calling Error, otherwise Error stops processing before SetCursorPos is called. Note that an Error on
any field in SaveEdit stops all save processing, and no page data is saved to the database.

Errors in RowDelete

When the user attempts to delete a row of data, the system first prompts for confirmation. If the user
confirms, the RowDelete event fires. An Error in the RowDelete event displays a message and prevents the
row from being deleted.

Error in RowSelect

The behavior of Error in RowSelect is totally anomalous, and is supported only for backward compatibility. It
is used to filter rows that are being added to a page scroll after the rows have been selected and brought into
the component buffer. No message is displayed. Error causes the Component Processor to add the current row
(the one where the PeopleCode is executing) to the page scroll, then stops adding any additional rows to the
page scroll.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 255

The behavior of Error in the RowSelect event enables you to filter out rows that are above or below some
limiting value. In practice this technique is rarely used, because it is more efficient to filter out rows of data
before they are brought into the component buffer. This can be accomplished with search views or effective
date processing.

Errors in Other Events

Do not use the Error function in any of the remaining events, which include:

• FieldDefault

• FieldFormula

• RowInit

• FieldChange

• Prepopup

• RowInsert

• SavePreChange

• SavePostChange

Parameters

Parameter Description

Str A string containing the text of the error message. This string should always be
stored in the Message Catalog and retrieved using the MsgGet or MsgGetText
function. This makes translation much easier and also enables you to provide
detailed Explain text about the error.

Returns

None.

Example

The following example, from SaveEdit PeopleCode, displays an error message, stops all save processing, and
places the cursor in the QTY_ADJUSTED field. Note that SetCursorPos must be called before Error.

If PAGES2_INV_WRK.PHYS_CYC_INV_FLG = "Y" Then
 SetCursorPos(%Page, PHYSICAL_INV.INV_LOT_ID, CurrentRowNumber(1), QTY_⇒
ADJUSTED, CurrentRowNumber());
 Error MsgGet(11100, 180, "Message not found.");
 End-If;

PeopleCode Built-in Functions Chapter 1

256 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," MsgGet, page 508; Chapter 1, "PeopleCode Built-in Functions,"
MsgGetText, page 511; Chapter 1, "PeopleCode Built-in Functions," SetCursorPos, page 605; Chapter 1,
"PeopleCode Built-in Functions," Warning, page 734 and Chapter 1, "PeopleCode Built-in Functions,"
WinMessage, page 738

EscapeHTML

Syntax

EscapeHTML(TextString)

Description

Use the EscapeHTML function to replace all characters in TextString that would otherwise be interpreted as
markup sequences.

The characters that are replaced are ones that would cause the browser to interpret them as HTML tags or
other markup if they aren't encoded, and therefore pre-formatted HTML should not be passed to this function
unless the output desired is a rendering of the HTML code itself as opposed to it's interpretation. This
function is intended to make the text "browser safe".

This function is for use with strings that display in an HTML area.

Either HTML character entities (eg. <) or Numeric Character Representations (e.g. ') are output by
the EscapeHTML function, depending on the character passed. The table below shows the escaping that is
performed by EscapeHTML.

In addition to escaping characters that could be misinterpreted as HTML tags or other elements,
EscapeHTML escapes the percentage sign (%) as this could interfere with meta HTML processing. As all
PeopleTools HTML is generated in Unicode, it is not necessary to escape other Unicode characters — their
value may be passed directly to the browser instead of a character entity or in Numeric Character
Representation.

The following table lists the Unicode characters that are escaped by the EscapeHTML function.

For example, the less-than symbol (<) is replaced with <., a single quotation mark (') is replaced with
'., and so on.

Unicode Character Name Glyph Escape Sequence

Quotation mark " "

Ampersand & &

Less than sign < <

Apostrophe, single quote ' '

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 257

Unicode Character Name Glyph Escape Sequence

Percentage sign % %

New line Not applicable

Parameters

Parameter Description

TextString Specify a string of HTML that contains characters that must be replaced with
HTML escape sequences.

Returns

A string containing the original text plus HTML escape sequences.

See Also

Chapter 1, "PeopleCode Built-in Functions," EscapeJavascriptString, page 257 and Chapter 1, "PeopleCode
Built-in Functions," EscapeWML, page 258

EscapeJavascriptString

Syntax

EscapeJavascriptString(String)

Description

Use the EscapeJavascriptString function to replace the characters in String that have special meaning in a
JavaScript string as escape sequences.

For example, a single quotation mark` (') is replaced by \', a new line character is replaced by \n, and so on.

This function is for use with text that becomes part of a JavaScript program.

The characters that are replaced are ones that cause the browser to misinterpret the JavaScript if they aren't
encoded. This function is intended to make the text "browser safe." The table below shows the strings that are
replaced by this function, and their replacement character sequence.

Character Name Glyph Description

Apostrophe, single quote ' \'

Quotation mark " \"

PeopleCode Built-in Functions Chapter 1

258 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Character Name Glyph Description

New line Not applicable \n

Carriage return Not applicable Deleted

Double backslash \\ \\\\

Parameters

Parameter Description

String Specify a string that contains character that need to be replaced with JavaScript
escape sequences.

Returns

A string containing the original text plus JavaScript escape sequences.

See Also

Chapter 1, "PeopleCode Built-in Functions," EscapeHTML, page 256 and Chapter 1, "PeopleCode Built-in
Functions," EscapeWML, page 258

EscapeWML

Syntax

EscapeWML(String)

Description

Use the EscapeWML function to escape special characters that are significant to WML. This includes <, >, $
(escaped as $$), &, ' and ".

This function is for use with strings that display on an WML browser.

Parameters

Parameter Description

String Specify a string that contains characters that need to be replaced with WML
escape sequences.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 259

Returns

A string containing the original plus text plus WML escape sequences.

See Also

Chapter 1, "PeopleCode Built-in Functions," EscapeHTML, page 256 and Chapter 1, "PeopleCode Built-in
Functions," EscapeJavascriptString, page 257

Evaluate

Syntax

Evaluateleft_termWhen [relop_1] right_term_1
 [statement_list]
 .
 .
 .

 [When [relop_n] right_term_n
 [statement_list]][When-other
 [statement_list]]
End-evaluate

Description

Use the Evaluate statement to check multiple conditions. It takes an expression, left_term, and compares it to
compatible expressions (right_term) using the relational operators (relop) in a sequence of When clauses. If
relop is omitted, then = is assumed. If the result of the comparison is True, it executes the statements in the
When clause, then moves on to evaluate the comparison in the following When clause. It executes the
statements in all of the When clauses for which the comparison evaluates to True. If and only if none of the
When comparisons evaluates to True, it executes the statement in the When-other clause (if one is provided).

To end the Evaluate after the execution of a When clause, you can add a Break statement at the end of the
clause.

Considerations Using When Clause

Generally, you use the When clause without a semicolon at the end of the statement. However, in certain
circumstances, this can cause an error. For example, the following PeopleCode produces an error because the
PeopleCode compiler cannot separate the end of the Where clause with the beginning of the next statement:

When = COMPONENT.GARBAGE

 (create BO_SEARCH:Runtime:BusinessContact_Contact(&fBusObjDescr, Null, &f⇒
DerivedBOID, &fDerivedBORole, &fBusObjDescr1, Null, &fContactBOID, &fContactRole⇒
ID, &fCustBOID, &fCustRoleID, "")).SearchItemSelected();

End-Evaluate;

PeopleCode Built-in Functions Chapter 1

260 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

If you place a semicolon after the When clause, the two expressions are read separately by the compiler. For
example:

 When = COMPONENT.GARBAGE;

Example

The following is an example of a When statement taken evaluates ACTION and performs various statements
based on its value:

&PRIOR_STATUS = PriorEffdt(EMPL_STATUS);
Evaluate ACTION
When "HIR"
 If %Mode = "A" Then
 Warning MsgGet(1000, 13, "You are hiring an employee and Action
 is not set
 to Hire.");
 End-if;
 Break;
When = "REH"
 If All(&PRIOR_STATUS) and
 not (&PRIOR_STATUS = "T" or
 &PRIOR_STATUS = "R") Then
 Error MsgGet(1000, 14, "Hire or Rehire action is valid
 only if employee status is Terminated or Retired.");
 End-if;
 Break;
When-Other
/* default code */
End-evaluate;

Exact

Syntax

Exact(string1,string2)

Description

Use the Exact function to compare two text strings and returns True if they are the same, False otherwise.
Exact is case-sensitive because it uses the internal character codes.

Returns

Returns a Boolean value: True if the two strings match in a case-sensitive comparison.

Example

The examples set &MATCH to True, then False:

&MATCH = Exact("PeopleSoft", "PeopleSoft");
&MATCH = Exact("PeopleSoft", "Peoplesoft");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 261

See Also

Chapter 1, "PeopleCode Built-in Functions," Len, page 478 and Chapter 1, "PeopleCode Built-in Functions,"
String, page 666

Chapter 2, "Meta-SQL Elements," %Substring, page 794

Exec

Syntax

Exec(command_str [, parameter])

where parameter has one of the following formats:

Boolean constant

Exec_Constant + Path_Constant

Description

 Exec is a cross-platform function that executes an external program on either UNIX or Windows.

This function has two parameter conventions in order to maintain upward compatibility with existing
programs.

Note. All PeopleCode is executed on the application server. So if you're calling an interactive application,
you receive an error. There shouldn't be any application interaction on the application server console.

The function can make either a synchronous or asynchronous call. Synchronous execution acts as a "modal"
function, suspending the PeopleSoft application until the called executable completes. This is appropriate if
you want to force the user (or the PeopleCode program) to wait for the function to complete its work before
continuing processing. Asynchronous processing, which is the default, launches the executable and
immediately returns control to the calling PeopleSoft application.

If Exec is unable to execute the external program, the PeopleCode program terminates with a fatal error. You
may want to try to catch these exceptions by enclosing such statements in a try-catch statement (from the
Exception Class).

Command Formatting

The function automatically converts the first token on command_str platform-specific separator characters to
the appropriate form for where your PeopleCode program is executing, regardless of the path_constant. On a
Windows system, a UNIX "/" separator is converted to "\", and on a UNIX system, a Windows "\" separator
is converted to "/".

This is only done for the first token on command_str assuming it to be some sort of file specification. This
allows you to put file or program names in canonical form (such as, UNIX style) as the first token on the exec
command.

PeopleCode Built-in Functions Chapter 1

262 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using an Absolute Path

If you do not specify anything for the second parameter, or if you specify a Boolean value, the path to
PS_HOME is prefixed to the command_str.

If you specify constant values for the second parameter, PS_HOME may or may not be prefixed, depending
on the values you select.

You can use the GetEnv function to determine the value of PS_HOME.

Creating a File in UNIX

If you try to create a file on a UNIX machine using the Exec function the file might not be created due to
permission issues. If you encounter this problem, create a script file that includes the file creation commands
and run the script using the Exec function. The script file must have correct privileges.

If you pass an absolute path in the Exec argument you must use the %FilePath_Absolute flag

Restrictions on Use in PeopleCode Events

When Exec is used to execute a program synchronously (that is, if its synch_exec parameter is set to True) it
behaves as a think-time function, which means that it can't be used in any of the following PeopleCode
events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 263

Parameters

Parameter Description

command_str The command_str parameter consists of a series of tokens that together make up
the name of the executable to run and the parameters to be passed to it. Tokens are
separated by unquoted space characters. Single or double quote characters can be
used for quoting. Both types of quotes are treated equivalently, but the starting and
ending quotes for a quoted portion of a token must match. A quoted string may not
contain quotes of the same type but a single quoted string can contain double
quote characters and vice versa. A single token may consist of multiple adjacent
quoted characters (There must be no spaces between the quoted fragments).
Unterminated quoted fragments will result in an error.

Note. PeopleCode strings will require two double quote characters within a string
to embed a double quote character.

Boolean | Constants If you specify a Boolean value, it indicates whether to execute the external
program synchronously or asynchronously. Values are:

• True - Synchronous

• False - Asynchronous (default)

If you do not specify a value, the program executes asynchronously.

If you use this style, PS_HOME is always prefixed to command_str.

If you specify constant values, you're specifying a numeric value composed of an
exec_constant and a path_constant. The exec_constant specifies whether to
execute the external program synchronously or not. The path_constant specifies
how the path name is to be treated. The value specified is made up of the addition
of these predefined constants.

Values are:

Exec Constant Description

%Exec_Asynchronous Program executes asynchronously (the default)

%Exec_Synchronous Program executes synchronously.

Path Constant Description

%FilePath_Relative PS_HOME is prefixed to command_str.

%FilePath_Absolute Nothing is prefixed to command_str.

PeopleCode Built-in Functions Chapter 1

264 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

What is returned depends on what you specified for the second parameter.

If you specified a Boolean, a Number value equal to the process ID of the called process is returned.

If you specify constant values, the returned value contains the value of the exit code of the program executed
using this function, unless you have executed the program asynchronously.

Example

&ExitCode = Exec("sh -c " | &scriptFile, %Exec_Synchronous + %FilePath_Absolute);

The following example demonstrates executing a program where the path to the executable contains spaces
and a single parameter containing space characters is passed. Suppose the location of the executable is
C:\Program
Files\App\program.exe and the value of the first parameter is 1 2 3.

Exec("'c:\Program Files\App\program.exe' '1 2 3'", %FilePath_Absolute)

or

Exec("""c:\Program Files\App\program.exe"" ""1 2 3""", %FilePath_Absolute)

This is an example of executing a program with a parameter that contains space and single quote characters.
The second parameter is enclosed in double quotes so that the single quote and space characters are passed
correctly. Suppose your executable is program.exe. The first parameter is -p and the second parameter is
customer's update.

Exec("program.exe -p ""customer's update""")

This is an example of executing a program with a parameter that contains space, single quote, and double
quote characters. The second parameter consists of several adjacent quoted fragments. The first fragment is
enclosed in double quotes so that the single quote and space characters are passed correctly and the second
fragment is enclosed in single quotes so that the double quote and space characters are passed correctly. Note
that there are no spaces between the quoted fragments. Suppose your executable is program.exe. The first
parameter is -p and the second parameter is John's comment: "Hello There".

Exec("program.exe -p ""John's comment: ""'""Hello There""'")

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 265

See Also

Chapter 1, "PeopleCode Built-in Functions," Declare Function, page 195; Chapter 1, "PeopleCode Built-in
Functions," RemoteCall, page 559; Chapter 1, "PeopleCode Built-in Functions," WinExec, page 738; Chapter
1, "PeopleCode Built-in Functions," ScrollSelect, page 591; Chapter 1, "PeopleCode Built-in Functions,"
ScrollSelectNew, page 593; Chapter 1, "PeopleCode Built-in Functions," RowScrollSelect, page 584; Chapter
1, "PeopleCode Built-in Functions," RowScrollSelectNew, page 586 and Chapter 1, "PeopleCode Built-in
Functions," GetEnv, page 368

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Select

PeopleTools 8.52: PeopleCode API Reference, "Exception Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions

ExecuteRolePeopleCode

Syntax

ExecuteRolePeopleCode(RoleName)

Description

Use the ExecuteRolePeopleCode function to execute the PeopleCode Rule for the Role RoleName. This
function returns an array of string containing dynamic members (UserIds).

Typically, this function is used by an Application Engine process that runs periodically and executes the role
rules for different roles. It could then write the results of the rules (a list of users) into the security tables,
effectively placing users in certain roles based on the rule.

Parameters

Parameter Description

RoleName Specify the name of an existing role.

Returns

An array of string containing the appropriate UserIds.

Example

The following saves valid users to a temporary table:

PeopleCode Built-in Functions Chapter 1

266 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local array of string &pcode_array_users;

SQLExec("delete from ps_dynrole_tmp where ROLENAME=:1", &ROLENAME);
 If &pcode_rule_status = "Y" Then
 SQLExec("select RECNAME, FIELDNAME, PC_EVENT_TYPE, PC_FUNCTION_NAME from
 PSROLEDEFN where ROLENAME= :1", &ROLENAME, &rec, &fld, &pce, &pcf);
 If (&rec <> "" And
 &fld <> "" And
 &pce <> "" And
 &pcf <> "") Then
 &pcode_array_users = ExecuteRolePeopleCode(&ROLENAME);
 &pcode_results = True;
 Else
 &pcode_results = False;
 End-If;
 &comb_array_users = &pcode_array_users;
 End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," ExecuteRoleQuery, page 266; Chapter 1, "PeopleCode Built-in
Functions," ExecuteRoleWorkflowQuery, page 267; Chapter 1, "PeopleCode Built-in Functions,"
IsUserInPermissionList, page 474 and Chapter 1, "PeopleCode Built-in Functions," IsUserInRole, page 475

Chapter 3, "System Variables," %Roles, page 832

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

ExecuteRoleQuery

Syntax

ExecuteRoleQuery(RoleName,BindVars)

where BindVars is an arbitrary-length list of bind variables that are stings in the form:

bindvar1 [, bindvar2]. . .

Description

Use the ExecuteRoleQuery function to execute the Query rule for the role rolename, passing in BindVars as
the bind variables. This function returns an array object containing the appropriate user members (UserIds).

Parameters

Parameter Description

RoleName Specify the name of an existing role.

BindVars A list of bind variables to be substituted in the query. These bind variables must be
strings. You can't use numbers, dates, and so on.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 267

Returns

An array object containing the appropriate UserIds.

See Also

Chapter 1, "PeopleCode Built-in Functions," ExecuteRolePeopleCode, page 265; Chapter 1, "PeopleCode
Built-in Functions," ExecuteRoleWorkflowQuery, page 267; Chapter 1, "PeopleCode Built-in Functions,"
IsUserInPermissionList, page 474 and Chapter 1, "PeopleCode Built-in Functions," IsUserInRole, page 475

Chapter 3, "System Variables," %Roles, page 832

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

ExecuteRoleWorkflowQuery

Syntax

ExecuteRoleWorkflowQuery(RoleName,BindVars)

where BindVars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

Description

Use the ExecuteRoleWorkflowQuery function to execute the Workflow Query rule for the role rolename,
passing in BindVars as the bind variables. This function returns an array object containing the appropriate
user members (UserIds).

Parameters

Parameter Description

RoleName Specify the name of an existing role.

BindVars A list of bind variables to be substituted in the query.

Returns

An array object containing the appropriate UserIds.

PeopleCode Built-in Functions Chapter 1

268 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," ExecuteRolePeopleCode, page 265; Chapter 1, "PeopleCode
Built-in Functions," ExecuteRoleQuery, page 266; Chapter 1, "PeopleCode Built-in Functions,"
IsUserInPermissionList, page 474 and Chapter 1, "PeopleCode Built-in Functions," IsUserInRole, page 475

Chapter 3, "System Variables," %Roles, page 832

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

Exit

Syntax

Exit([1])

Description

 Use the Exit statement to immediately terminate a PeopleCode program. If the Exit statement is executed
within a PeopleCode function, the main program terminates.

Note.

Exit(1) does not rollback iScript transactions. To rollback in an iScript, you can use the SqlExec built-in
function with the parameter of ROLLBACK (SQLEXEC("ROLLBACK")) or the MessageBox built-in
function with a message error severity of error. You can also use the built-in function Error, but only if you
are not sending HTML or XML in the error text itself.

Parameters

Parameter Description

1 Use this parameter to rollback database changes.

Generally, this parameter is used in PeopleCode programs that affect messages.
When used with a message, all database changes are rolled back, errors for the
subscription contract are written to the subscription contract error table, and the
status of the message is marked to Error. All errors that have occurred for this
message are viewable in the message monitor: even those errors detected by the
ExecuteEdits method.

Note. This function takes only numeric values. It fails if you use a Boolean value, True or False.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 269

Example

The following example terminates the main program from a For loop:

 For &I = 1 To ActiveRowCount(RECORD.SP_BUIN_NONVW)
 &ITEM_SELECTED = FetchValue(ITEM_SELECTED, &I);
 If &ITEM_SELECTED = "Y" Then
 &FOUND = "Y";
 Exit;
 End-If;
 End-For;

See Also

Chapter 1, "PeopleCode Built-in Functions," Break, page 62 and Chapter 1, "PeopleCode Built-in Functions,"
Return, page 575

Exp

Syntax

Exp(n)

Description

 Exp returns the constant e raised to the power of n where n is a number. The constant e equals
2.71828182845904, the base of natural logarithms. The number n is the exponent applied to the base e.

 Exp is the inverse of the Ln function, which is the natural logarithm of x.

Returns

Returns a Number value equal to the constant e raised to the power of n.

Example

The examples set &NUM to 2.71828182845904, then 7.389056099(e2):

&NUM = Exp(1);
&NUM = Exp(2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Ln, page 479 and Chapter 1, "PeopleCode Built-in Functions,"
Log10, page 484

PeopleCode Built-in Functions Chapter 1

270 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ExpandBindVar

Syntax

ExpandBindVar(str)

Description

Inline bind variables can be included in any PeopleCode string. An inline bind variable is a field reference (in
the form recordname.fieldname), preceded by a colon. The inline bind variable references the value in the
field.

 Use the ExpandBindVar function to expand any inline bind variables that it finds in str into strings
(converting the data type of non-character fields) and returns the resulting string. This works with inline bind
variables representing fields containing any data type except Object. It also expands bind variables specified
using additional parameters.

See Chapter 1, "PeopleCode Built-in Functions," SQLExec, page 654.

Parameters

Parameter Description

str A string containing one or more inline bind variables.

Returns

Returns a String value equal to the input string with all bind variables expanded.

Example

A bind variable is included in the string &TESTSTR, which is then expanded into a new string containing the
current value of BUS_EXPENSE_PER.EMPLID in place of the bind variable. If this program runs on the
row for EMPLID 8001, the message displayed reads "This is a test using EmplID 8001".

&TESTSTR = "This is a test using EmplID :bus_expense_per.emplid";
&RESULT = ExpandBindVar(&TESTSTR);
WinMessage(&RESULT);

See Also

Chapter 1, "PeopleCode Built-in Functions," MessageBox, page 499 and Chapter 1, "PeopleCode Built-in
Functions," SQLExec, page 654

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 271

ExpandEnvVar

Syntax

ExpandEnvVar(string)

Description

 Use the ExpandEnvVar function to convert any environment variables that it finds within string into String
values and returns the entire resulting string.

Parameters

Parameter Description

string A string containing an environment variable.

Returns

Returns a string equal to string with any enclosed environment variables expanded to their values.

Example

Assume that the environment variable %NETDRIVE% is equal to "N:". The following PeopleCode sets
&newstring equal to "The network drive is equal to N:":

&newstring = ExpandEnvVar("The network drive is equal to %netdrive%.");

See Also

Chapter 1, "PeopleCode Built-in Functions," ExpandBindVar, page 270; Chapter 1, "PeopleCode Built-in
Functions," GetEnv, page 368 and Chapter 1, "PeopleCode Built-in Functions," GetCwd, page 367

ExpandSqlBinds

Syntax

ExpandSqlBinds(string)

PeopleCode Built-in Functions Chapter 1

272 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Prior to PeopleTools 8.0, the PeopleCode replaced runtime parameter markers in SQL strings with the
associated literal values. For databases that offer SQL statement caching, a match was never found in the
cache so the SQL had to be re-parsed and re-assigned a query path.

To process skipped parameter markers, each parameter marker is assigned a unique number. This doesn't
change the values associated with the parameter markers.

However, some SQL statements can't contain parameter markers because of database compatibility.

To process these exceptions, use the ExpandSqlBinds function. This function does the bind variable reference
expansion, and can be used within a SQLExec statement or on its own.

You should use ExpandSQLBinds only for those parts of the string that you want to put literal values into.
The following code shows how to use ExpandSQLBinds with %Table:

SQLExec(ExpandSqlBinds("Insert.... Select A.Field, :1, :2 from ", "01", "02") |
 "%table(:1)", Record.MASTER_ITEM_TBL);

Parameters

Parameter Description

string Specify the string you want to do the bind variable reference expansion on.

Returns

A string.

Example

The following example shows both the original string and what it expands to.

&NUM = 1;
&STRING = "My String";
&STR2 = ExpandSqlBinds("This :2 is an expanded string(:1)", &STRING, &NUM);

The previous code produces the following value for &STR2:

This 1 is an expanded string(My String)

If you're having problems with an old SQL statement binds, you can use ExpandSqlBinds with it. For
example, if your SQLExec is this:

SQLExec("String with concatenated bindrefs 'M':2, 'M':1", &VAR1, &VAR2),
 &FETCHRESULT1, &FETCHRESULT2);

you can make it work by expanding it as follows:

SQLExec(ExpandSqlBinds("String with concatenated bindrefs 'M':2, 'M':1", &VAR1,
 &VAR2), &FETCHRESULT1, &FETCHRESULT2);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 273

See Also

Chapter 1, "PeopleCode Built-in Functions," SQLExec, page 654

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

Fact

Syntax

Fact(x)

Description

 Use the Fact function to return the factorial of a positive integer x. The factorial of a number x is equal to
1*2*3*...*x. If x is not an integer, it is truncated to an integer.

Returns

Returns a Number equal to the factorial of x.

Example

The example sets &X to 1, 1, 2, then 24. Fact(2) is equal to 1*2; Fact(4) is equal to 1*2*3*4:

&X = Fact(0);
&X = Fact(1);
&X = Fact(2);
&X = Fact(4);

See Also

Chapter 1, "PeopleCode Built-in Functions," Product, page 537

FetchSQL

Syntax

FetchSQL([SQL.]sqlname[, dbtype[, effdt]])

Description

Use the FetchSQL function to return the SQL definition with the given sqlname as SQL.sqlname or a string
value, matching the dbtype and effdt. If sqlname is a literal name, it must be in quotes.

PeopleCode Built-in Functions Chapter 1

274 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

sqlname Specify the name of a SQL definition. This is either in the form SQL.sqlname or a
string value giving the sqlname.

dbtype Specify the database type associated with the SQL definition. This parameter takes
a string value. If dbtype isn't specified or is null (""), it is set by default to the
current database type (the value returned from the %DbType system variable.)

Values for dbtype are as follows. These values are not case-sensitive:

• APPSRV

• DB2ODBC

• DB2UNIX

• INFORMIX

• MICROSFT

• ORACLE

• SYBASE

Note. Database platforms are subject to change.

effdt Specify the effective date associated with the SQL definition. If effdt isn't
specified, it is set by default to the current as of date, that is, the value returned
from the %AsOfDate system variable.

Returns

The SQL statement associated with sqlname as a string.

Example

The following code gets the text associated with the ABCD_XY SQL Definition for the current DBType and
as of date:

&SQLSTR = FetchSQL(SQL.ABC_XY);

The following code gets the text associated with the ABCD_XY SQL Definition for the current DBType and
November 3, 1998:

&SQLSTR = FetchSQL(SQL.ABCD_XY, "", Date(19981103));

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 275

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165; Chapter 1, "PeopleCode Built-in
Functions," DeleteSQL, page 209; Chapter 1, "PeopleCode Built-in Functions," SQLExec, page 654; Chapter
1, "PeopleCode Built-in Functions," GetSQL, page 418 and Chapter 1, "PeopleCode Built-in Functions,"
StoreSQL, page 664

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

Chapter 3, "System Variables," %AsOfDate, page 813 and Chapter 3, "System Variables," %DbName, page
817

FetchValue

Syntax

FetchValue(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

 Use the FetchValue function to return the value of a buffer field in a specific row of a scroll level.

Note. This function remains for backward compatibility only. Use the Value field class property instead.

This function is generally used to retrieve the values of buffer fields outside the current context; if a buffer
field is in the current context, you can reference it directly using a [recordname.]fieldname expression.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Value

PeopleTools 8.52: PeopleCode API Reference, "Field Class," LongTranslateValue

PeopleTools 8.52: PeopleCode API Reference, "Field Class," ShortTranslateValue

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

PeopleCode Built-in Functions Chapter 1

276 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying the row on the target scroll level where the referenced buffer
field is located.

[recordname.]fieldname The name of the field where the value to fetch is located. The field can be on scroll
level one, two, or three of the active page. The recordname prefix is required if the
call to FetchValue is not on the record definition recordname.

Returns

Returns the field value as an Any data type.

Example

The following example retrieves the value from field DEPEND_ID in record DEPEND on row &ROW_CNT
from scroll level one:

&VAL = FetchValue(SCROLL.DEPEND, &ROW_CNT, DEPEND.DEPEND_ID);

See Also

Chapter 1, "PeopleCode Built-in Functions," ActiveRowCount, page 36; Chapter 1, "PeopleCode Built-in
Functions," CopyRow, page 136; Chapter 1, "PeopleCode Built-in Functions," CurrentRowNumber, page 175
; Chapter 1, "PeopleCode Built-in Functions," PriorValue, page 536 and Chapter 1, "PeopleCode Built-in
Functions," UpdateValue, page 721

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer"

FieldChanged

Syntax

The syntax of the FieldChanged function varies depending on whether you want to use a scroll path reference
or a contextual reference to specify the field.

If you want to use a scroll path reference, the syntax is:

FieldChanged(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 277

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

If you want to use a contextual reference, the syntax is:

FieldChanged([recordname.]fieldname)

In this construction the scroll level and row number are determined based on the current context.

Description

 The FieldChanged function returns True if the referenced buffer field has been modified since being
retrieved from the database either by a user or by a PeopleCode program.

Note. This function remains for backward compatibility only. Use the IsChanged field class property instead.

This is useful during SavePreChange or SavePostChange processing for checking whether to make related
updates based on a change to a field.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," IsChanged

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

[recordname.]fieldname The name of the field where the value to check is located. The field can be on
scroll level one, two, or three of the active page. The recordname prefix is
required if the call to FieldChanged is not on the record definition recordname.

target_row The row number of the target row. If this parameter is omitted, the function
assumes the row on which the PeopleCode program is executing.

Related Functions

Save PeopleCode programs (SaveEdit, SavePreChange, SavePostChange) normally process each row of data
in the component. The following four functions enable you to control more precisely when the Component
Processor should perform save PeopleCode:

• FieldChanged

• RecordChanged

PeopleCode Built-in Functions Chapter 1

278 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• RecordDeleted

• RecordNew

These functions enable you to restrict save program processing to specific rows.

Example

The following example checks three fields and sets a flag if any of them has changed:

/* Set the net change flag to 'Yes' if the scheduled date, scheduled */
/* time or quantity requested is changed */
If FieldChanged(QTY_REQUESTED) Or
 FieldChanged(SCHED_DATE) Or
 FieldChanged(SCHED_TIME) Then
 NET_CHANGE_FLG = "Y";
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," RecordChanged, page 551; Chapter 1, "PeopleCode Built-in
Functions," RecordDeleted, page 553 and Chapter 1, "PeopleCode Built-in Functions," RecordNew, page 555

FileExists

Syntax

FileExists(filename [, pathtype])

Description

Use the FileExists function to determine whether a particular external file is present on your system, so you
can decide which mode to use when you open the file for writing.

Note. If you want to open a file for reading, you should use the "E" mode with the GetFile function or the File
class Open method, which prevents another process from deleting or renaming the file between the time you
tested for the file and when you open it.

Parameters

Parameter Description

filespec Specify the name, and optionally, the path, of the file you want to test.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 279

Parameter Description

pathtype If you have prepended a path to the file name, use this parameter to specify
whether the path is an absolute or relative path. The valid values for this parameter
are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don't specify pathtype the default is %FilePath_Relative.

If you specify a relative path, that path is appended to the path constructed from a
system-chosen environment variable. A complete discussion of relative paths and
environment variables is provided in documentation on the File class.

See PeopleTools 8.52: PeopleCode API Reference, "File Class," Working With
Relative Paths.

If the path is an absolute path, whatever path you specify is used verbatim. You
must specify a drive letter and the complete path. You can't use any wildcards
when specifying a path.

The Component Processor automatically converts platform-specific separator
characters to the appropriate form for where your PeopleCode program is
executing. On a Windows system, UNIX "/" separators are converted to "\", and
on a UNIX system, Windows "\" separators are converted to "/".

Note. The syntax of the file path does not depend on the file system of the
platform where the file is actually stored; it depends only on the platform where
your PeopleCode is executing.

Returns

A Boolean value: True if the file exists, False if it doesn't.

Example

The following example opens a file for appending if it exists in the system:

If FileExists("c:\work\item.txt", %FilePath_Absolute) Then
 &MYFILE = GetFile("c:\work\item.txt", "A");
 /* Process the file */
 &MYFILE.Close();
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," FindFiles, page 283 and Chapter 1, "PeopleCode Built-in
Functions," GetFile, page 370

PeopleTools 8.52: PeopleCode API Reference, "File Class"

PeopleTools 8.52: PeopleCode API Reference, "File Class," Open

PeopleCode Built-in Functions Chapter 1

280 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Find

Syntax

Find(string,within_string [, number])

Description

Use the Find function to locate one string of text within another string of text and returns the character
position of the string as an integer. Find is case-sensitive and does not allow wildcards.

If you need to do either case-sensitive search or pattern matching, just to find if a string matches a pattern, use
the DBPatternMatch function.

If you need to find a quotation mark, you need to double it in a string.

&find = Find("""", PSOPRDEFN_SRCH.OPRID);

Parameters

Parameter Description

string The text you are searching for.

A tilde character (~) used in the string parameter stands for an arbitrary number of
white spaces.

within_string The text string you are searching within.

number The position of within_string at which you want to start your search. If you omit
number, Find starts at the first character of within_string.

Returns

Returns a Number value indicating the starting position of string in within_string.

Find returns with 0 if string does not appear in within_string, if number is less than or equal to zero, or if
number is greater than the length of within_string.

Example

In the following example, the first statement returns 1; the second statement returns 6.

&POS = Find("P", "PeopleSoft")
&POS = Find("e", "PeopleSoft", 4)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 281

See Also

Chapter 1, "PeopleCode Built-in Functions," Exact, page 260; Chapter 1, "PeopleCode Built-in Functions,"
Len, page 478 and Chapter 1, "PeopleCode Built-in Functions," DBPatternMatch, page 192

Findb

Syntax

Findb(string,within_string [, number])

Description

Note. This function has been deprecated and is no longer supported.

FindCodeSetValues

Syntax

FindCodeSetValues(CodesetName,&NameValuePairs, SourceNodeName,TargetNodeName)

Description

Use the FindCodeSetValues function to find a list of code set name-value pairs. Code sets are primarily used
with data value translations as part of a transformation.

Parameters

Parameter Description

CodeSetName Specify the name of the code set you want to find, as a string.

&NameValuePairs Specify a 2 dimensional array containing the name value pairs in the specified
code set that you want to use.

SourceNodeName Specify the name of the source (initial) node used in the data transformation.

TargetNodeName Specify the name of the target (result) node used in the data transformation.

Returns

A two-dimensional array of any.

PeopleCode Built-in Functions Chapter 1

282 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

This example checks the specified CodeSet values, with the name value pairs of "locale/en_us" and
"uom/box". It takes the returned array and adds XML nodes to the document. The XML nodes names are the
unique names of the CodeSet value, and the XML node value is the corresponding return value.

/* Get the data from the AE Runtime */
Local TransformData &incomingData = %TransformData;

/* Set a temp object to contain the incoming document */
Local XmlDoc &tempDoc = &incomingData.XmlDoc;

/* Declare the node */
Local XmlNode &tempNode;

/* Create an array to hold the name value pairs */
 Local array of array of string &inNameValuePairsAry;

/* Clear out the doc and put in a root node */
If (&tempDoc.ParseXmlString("<?xml version=""1.0""?><xml/>")) Then

 /* Load the array with some values */
 &inNameValuePairsAry = CreateArray(CreateArray("locale", "en_us"),
 CreateArray("uom", "box"));

 /* Find the codeset values */
 &outAry = FindCodeSetValues("PS_SAP_PO_01", &inNameValuePairsAry,
 "SAP_SRC", "PSFT_TGT");

/* Local XmlNode &tempNode; */

 /* Make sure something was returned */
 If &outAry.Len > 0 Then

 /* Loop through the quantities and make sure they are all above 5 */
 For &i = 1 To &outAry.Len

 /* Add the current system date to the working storage*/
 &tempNode = &tempDoc.DocumentElement.AddElement(&outAry [&i][1]);
 &tempNode.NodeValue = &outAry [&i][2];

 End-For;
 End-If;
End-If;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 283

FindFiles

Syntax

FindFiles(filespec_pattern [, pathtype])

Description

Use the FindFiles function to return a list of the external file names that match the file name pattern you
provide, in the location you specify.

Parameters

Parameter Description

filespec_pattern Specify the path and file name pattern for the files you want to find. The path can
be any string expression that represents a single relative or absolute directory
location. The file name pattern, but not the path, can include two wildcards:

* (Asterisk): matches zero or more characters at its position.

? (Question mark): matches exactly one character at its position.

pathtype If you have prepended a path to the file name, use this parameter to specify
whether the path is an absolute or relative path. The valid values for this parameter
are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don't specify pathtype the default is %FilePath_Relative.

If you specify a relative path, that path is appended to the path constructed from a
system-chosen environment variable. A complete discussion of relative paths and
environment variables is provided in documentation on the File class.

See PeopleTools 8.52: PeopleCode API Reference, "File Class," Working With
Relative Paths.

If the path is an absolute path, whatever path you specify is used verbatim. You
must specify a drive letter and the complete path. You can't use any wildcards
when specifying a path.

The Component Processor automatically converts platform-specific separator
characters to the appropriate form for where your PeopleCode program is
executing. On a Windows system, UNIX "/" separators are converted to "\", and
on a UNIX system, Windows "\" separators are converted to "/".

Note. The syntax of the file path does not depend on the file system of the
platform where the file is actually stored; it depends only on the platform where
your PeopleCode is executing.

PeopleCode Built-in Functions Chapter 1

284 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A string array whose elements are file names qualified with the same relative or absolute path you specified
in the input parameter to the function.

Example

The following example finds all files in the system's TEMP location whose names end with ".txt", then opens
and processes each one in turn:

Local array of string &FNAMES;
Local file &MYFILE;

&FNAMES = FindFiles("*.txt");
while &FNAMES.Len > 0
 &MYFILE = GetFile(&FNAMES.Shift(), "R"); /* Open each file */
 /* Process the file contents */
 &MYFILE.Close();
end-while;

See Also

Chapter 1, "PeopleCode Built-in Functions," FileExists, page 278 and Chapter 1, "PeopleCode Built-in
Functions," GetFile, page 370

PeopleTools 8.52: PeopleCode API Reference, "File Class"

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

FlushBulkInserts

Syntax

FlushBulkInserts()

Description

Use the FlushBulkInserts function to move the bulk inserted rows from the bulk insert buffers of the
PeopleSoft process to the physical tables on the database. This flushes all open SQL objects that have pending
bulk inserts, but performs no COMMITs. If the flush fails, the PeopleCode program terminates.

When executing a SQL insert using a SQL object with the BulkMode property set to True, the rows being
inserted cannot be selected by this database connection until the bulk insert is flushed. For another connection
to the database to be able to select those rows, both a flush and a COMMIT are required. To have your
process see the bulk inserted rows without committing and without closing the SQL object or its cursor (that
is, maintaining reuse for the SQL object), use FlushBulkInserts.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 285

An example of using this function would be in preparation for a database commit where you do not want to
close the SQL insert statement, but need to ensure that all the rows you have inserted up to this point are in
fact in the database and not in the buffer.

Another example would be when another SQL statement in the same PeopleSoft process needs to select rows
that have been inserted using bulk insert and you do not want to close the SQL insert statement. The SELECT
cannot read rows in the bulk insert buffer, so you need to flush them to the table from which the SELECT is
reading.

Parameters

None.

Returns

None. If the flush fails, the PeopleCode program terminates.

Example

&CM_DEPLETION_REC = CreateRecord(Record.CM_DEPFIFO_VW);
&CM_DEPLETE_REC = CreateRecord(Record.CM_DEPLETE);
&DEPLETE_FIFO_SEL = GetSQL(SQL.CM_DEPLETE_FIFO_SEL);
&ONHAND_FIFO_SEL = GetSQL(SQL.CM_ONHAND_FIFO_SEL);
DEPLETE_INS = GetSQL(SQL.CM_DEPLETE_INS);
&DEPLETE_INS.BulkMode = True;

&DEPLETE_FIFO_SEL.Execute(&CM_DEPLETION_REC, CM_COSTING_AET.BUSINESS_UNIT,
CM_COSTING_AET.CM_BOOK);
While &DEPLETE_FIFO_SEL.Fetch(&CM_DEPLETION_REC);
 /* Call functions that populate &CM_DEPLETE_REC.values */
 . . .
 &DEPLETE_INS.Execute(&CM_DEPLETE_REC);
 . . .
 If &CM_DEPLETION_REC.CM_COST_PROC_GROUP.Value = "BINTOBIN" Then
 /* Bin to Bin transfers are both a deplete and receipt, call functions to
 create the receipt */
 . . .
 /* Flush Bulk Insert to be able to see the current on hand quantities in
 CM_ONHAND_VW */
 FlushBulkInserts();
 End-if;
End-While;
. . .

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation"

PeopleCode Built-in Functions Chapter 1

286 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For

Syntax

Forcount=expression1Toexpression2
 [Stepi];
 statement_listEnd-for

Description

Use the For loop to cause the statements of the statement_list to be repeated until count is equal to
expression2. Step specifies the value by which count will be incremented each iteration of the loop. If you do
not include Step, count is incremented by 1 (or -1 if the start value is greater than the end value.) Any
statement types are allowed in the loop, including other loops.

A Break statement inside the loop causes execution to continue with whatever follows the loop. If the Break
occurs in a nested loop, the Break does not apply to the outside loop.

Example

The following example loops through all of the rows for the FIELDNAME scroll area:

&FIELD_CNT = ActiveRowCount(DBFIELD_VW.FIELDNAME);
For &I = 1 to &FIELD_CNT;
 WinMessage(MsgGetText(21000, 1, "Present Row Number is: %1", &I));
End-for;

FormatDateTime

Syntax

FormatDateTime(datetime, {timezone | "Local" | "Base"}, displayTZ)

Description

Use the FormatDateTime function to take a datetime value and convert it to text. If a specific time zone
abbreviation, or a field reference, is passed in timezone, FormatDateTime adjusts the DateTime to the user's
local time zone instead of the specified time zone. The system's base time zone is specified on the
PSOPTIONS table. The value datetime is assumed to be in base time.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities."

If Local is specified for time zone, FormatDateTime adjusts the DateTime to the user's local time zone
instead of a specific time zone.

If True is specified for displayTZ, FormatDateTime appends the time zone abbreviation to the returned string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 287

Parameters

Parameter Description

datetime Specify the DateTime value to be formatted.

timezone | Local | Base Specify a value for converting datetime. The values are:

• timezone - a time zone abbreviation or a field reference to be used for
converting datetime.

• Local - use the local time zone for converting datetime.

• Base - use the base time zone for converting datetime.

displayTZ Specify whether the time zone abbreviation should be appended to the returned
string. This parameter takes a Boolean: True if the abbreviation should be
appended, False, otherwise.

Returns

A formatted string value.

Example

The following example populates the &DISPDATE variable with a string containing the DateTime value in
the ORDER_DATE field adjusted to the user's local time zone, and with the time zone abbreviation.

&DISPDATE=FormatDateTime(ORDER_DATE, "Local", True);

The following example populates the &DISPDATE variable with a string containing the DateTime value in
the SHIP_DATE field adjusted to the time zone stored in the SHIP_TZ field, and does not include the time
zone abbreviation in the output.

&DISPDATE=FormatDateTime(SHIP_DATE, SHIP_TZ, False);

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," ConvertTimeToBase, page 126; Chapter 1, "PeopleCode Built-in Functions,"
DateTimeToLocalizedString, page 182; Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings, page
461; Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185; Chapter 1, "PeopleCode
Built-in Functions," TimeToTimeZone, page 678; Chapter 1, "PeopleCode Built-in Functions,"
TimeZoneOffset, page 680 and Chapter 1, "PeopleCode Built-in Functions," DateTimeToHTTP, page 179

PeopleCode Built-in Functions Chapter 1

288 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Forward

Syntax

Forward(from physical queue ID,from agent ID,task number,task type,to logical
queue ID[, to agent ID])

Description

Use the Forward function to transfer a task from one agent to another agent or from one agent's logical queue
to another logical queue. This enables agents to reroute tasks that are not appropriate for their skill level or
functional expertise.

Keep the following in mind when using Forward:

• The queue server subtracts the task's cost from the transferring agent's workload.

• The system cannot forward tasks to logical queues that do not have active physical queues on the same
MultiChannel Framework cluster as the physical queue to which the task currently belongs. That is, you
can't forward tasks across MultiChannel Framework clusters.

• A queue server does not allow a task to be transferred if the agent who owns that task is not logged on to
that queue server. PeopleSoft recommends that you only use Forward for application pages that the
MultiChannel Framework console launches when agents accept or activate assigned tasks.

• Forward only applies to email and generic task types.

Parameters

Parameter Description

from physical queue ID The physical queue is the internal representation of the logical queue that the agent
signs onto and to which the task currently belongs. This is a string value, such as
"sales3" or "marketing2."

You retrieve the current physical queue from the query string in the URL of the
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_qid

from agent ID Specifies the current agent, as in the agent that "accepted" the task. This is a string
value.

You retrieve the current physical queue from the query string in the URL of the
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_agentid.

task number Identifies the task to be forwarded. The EnQueue function returns this value. This
is a string value.

You retrieve the current physical queue from the query string in the URL of the
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_tasknum.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 289

Parameter Description

task type Identifies the task type. This value is provided by the queue. This is a string value.
Valid values are:

• email

• generic

You retrieve the current physical queue from the query string in the URL of the
page launched by the MultiChannel Framework console. Use the GetParameter
request class method with the value ps_tasktype.

to logical queue ID Specifies the logical queue to which the system forwards the task. This is a string
value.

The queue ID is case sensitive and must match the case used when you created the
queue using the Queues page.

to agent ID This is an optional parameter. It is a string value specifying a particular agent ID
to receive the forwarded task.

If this value is specified, the system holds the task until the specified agent is
available on the new queue to take this task. This means that the specified agent
must be able to log in to one of the physical queues belonging to the destination
logical queue. The system determines which physical queue the specified agent
has access to and assigns the task to that queue for that agent. If the agent ID is not
specified, the physical queue is chosen at random from the active physical queues.

Note. For better performance, PeopleSoft recommends not specifying the target
agent as this has a processing overhead for the queue servers and does not allow
the system to balance workload across all available agents.

Returns

Returns 0 on success.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example

Forward("SALES5", "TSAWYER", "email_2145", "email", "MARKETING", "GSALMON");

The following example shows how to retrieve parameters from the application page using the GetParameter
request class method.

PeopleCode Built-in Functions Chapter 1

290 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PSMCFFUNCLIB.MCF_QUEUE.Value = %Request.GetParameter("ps_qid");
PSMCFFUNCLIB.MCF_TASKTYPE.Value = %Request.GetParameter("ps_tasktype");
PSMCFFUNCLIB.MCF_TASKNUM.Value = %Request.GetParameter("ps_tasknum");
PSMCFFUNCLIB.MCF_AGENTID.Value = %Request.GetParameter("ps_agentid");

&nret = Forward(PSMCFFUNCLIB.MCF_QUEUE, PSMCFFUNCLIB.MCF_AGENTID,
PSMCFFUNCLIB.MCF_TASKNUM, PSMCFFUNCLIB.MCF_TASKTYPE, &ToQueue);

If &nret = 0 Then
 MessageBox(0, "", 0, 0, "Successfully forwarded.");
 End-If

Function

Syntax

Functionname[(paramlist)] [Returnsdata_type]
 [statements]
End-function

Where paramlist is:

¶m1 [As data_type] [, ¶m2 [As data_type]]...

Where data_type is any valid data type, including Number, String, Date, Rowset, SQL, Record, and so on.

Where statements is a list of PeopleCode statements.

Description

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed at the
top of the program, along with any variable and external function declarations.

Functions can be called from the program in which they are defined, in which case they don't need to be
declared, and they can be called from another program, in which case they need to be declared at the top of
the program where they are called.

Any variables declared within a function are valid for the scope of the function.

By convention, external PeopleCode functions are stored in records whose names begin in FUNCLIB_, and
they are always placed in the FieldFormula event (which is convenient because this event should no longer be
used for anything else).

Note. Functions can be stored in the FieldFormula event only for record fields, not for component record
fields.

A function definition consists of:

• The keyword Function followed by the name of the function and an optional list of parameters. The name
of the function can be up to 100 characters in length.

• An optional Returns clause specifying the data type of the value returned by the function.

• The statements to be executed when the function is called.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 291

• The End-function keyword.

The parameter list, which must be enclosed in parentheses, is a comma-separated list of variable names, each
prefixed with the & character. Each parameter is optionally followed by the keyword As and the name for one
of the conventional PeopleCode data types (Number, String, Date, and so on) or any of the object data types
(such as Rowset, SQL, and so on.) If you specify data types for parameters, then function calls are checked to
ensure that values passed to the function are of the appropriate type. If data types are not specified, then the
parameters, like other temporary variables in PeopleCode, take on the type of the value that is passed to them.

Note. If a parameter is listed in the function definition, then it is required when the function is called.

PeopleCode parameters are always passed by reference. This means that if you pass the function a variable
from the calling routine and change the value of the variable within the function, the value of the variable is
changed when the flow of execution returns to the calling routine.

If the function is to return a result to the caller, the optional Returns part must be included to specify the data
type of the returned value. You have seven choices of value types: Number, String, Date, Time, DateTime,
Boolean, or Any.

PeopleCode internal subroutines are part of the enclosing program and can access the same set of variables as
the other statement-lists of the program, in addition to local variables created by the parameters and local
variable declarations within the function.

Returning a Value

You can optionally return a value from a PeopleCode function. To do so, you must include a Returns
statement in the function definition, as described in the preceding section. For example, the following
function returns a Number value:

Function calc_something(&parm1 as number, &parm2 as number) Returns number

In the code section of your function, use the Return statement to return the value to the calling routine. When
the Return statement executes, the function ends and the flow of execution goes back to the calling routine.

Example

This example returns a Boolean value based on the return value of a SQLExec:

Function run_status_upd(&PROCESS_INSTANCE, &RUN_STATUS) Returns boolean;
 &UPDATEOK = SQLExec("update PS_PRCS_RQST set run_status = :1 ⇒
 where process_instance = :2", &RUN_STATUS, &PROCESS_INSTANCE);
 If &UPDATEOK Then
 Return True;
 Else
 Return False;
 End-If;
End-Function;

See Also

Chapter 1, "PeopleCode Built-in Functions," Declare Function, page 195 and Chapter 1, "PeopleCode Built-
in Functions," Return, page 575

PeopleCode Built-in Functions Chapter 1

292 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GenABNNodeURL

Syntax

GenABNNodeURL(node,initial_node,display_parent)

Description

Use the GenABNNodeURL function to generate a URL for a specific node within a SmartNavigation chart.

Important! This function must be called during a user action that displays the SmartNavigation chart—for
example, when the user clicks on a folder icon from the menu or when the user clicks on the first description
link of a SmartNavigation chart node. Otherwise, the function returns an empty string.

Parameters

Parameter Description

node Specify the ID of the node to be displayed as a string.

initial_node Specify the ID of the initial node of the SmartNavigation chart as a string.

display_parent A Boolean value indicating whether the node to be displayed requires that its
parent node also be displayed in the chart.

Returns

A string representing the URL to navigate to the specified node.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 293

Example

&Mode = %Request.GetParameter("mode");
If None(&Mode) Then
 rem only valid during a click event since this code sets a panel buffer field;
 &NodeID = "10400";

 &Node = &MyTree.FindNode(&NodeID, "");

 &rootNode = &MyTree.FindRoot();
 If &rootNode.Name = &Node.Name Then
 &bDisplParent = False;
 Else
 &bDisplParent = True;
 End-If;

 &Field = GetLevel0()(1).GetRowset(Scroll.PT_ABNCHARTNODE)(1).PT_ABN_CHART_ND.⇒
PT_ABN_CHART_DFLD6;
 &Field.Value = GenABNNodeURL(&NodeID, GetABNInitialNode(&reqParams), ⇒
&bDisplParent);
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNInitialNode, page 343

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," Node Class

GenDynABNElement

Syntax

GenDynABNElement(&str_param1[,&str_param2], ...)

Description

Use the GenDynABNElement function to generate elements for the specified data source to be used as a
dynamically generated SmartNavigation subfolder. This built-in function is required when the root
SmartNavigation folder is designated as a "dynamic hierarchy" folder on the Folder Administration page.

See PeopleTools 8.52: PeopleTools Portal Technologies, "Administering Portals," Defining SmartNavigation
Folders.

The elements generated by this function can be provided as the input to the GenHTMLMenu function.
Alternatively, the output of one invocation of GenDynABNElement can be concatenated to subsequent
invocations prior to calling the GenHTMLMenu function.

PeopleCode Built-in Functions Chapter 1

294 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

&str_param1, &str_param2, ... Specifies the first and additional input parameters to the function as string
variables.

Note. Each string parameter can be specified as a string literal or a string variable.

While this function can accept an unlimited number of string parameters, in practical terms, the function
expects a specific number of string parameters in a specific order depending on whether the data source for
the dynamically generated SmartNavigation subfolder is a tree or a rowset.

When the data source for the SmartNavigation subfolder is a tree, 11 string parameters are required in the
following order with the following specifications:

• Data source type – For a tree, this parameter must be "t".

• Display as CREF – Indicates that the SmartNavigation folder is to be displayed as a CREF, which
immediately displays the SmartNavigation chart, instead of as a folder with submenus. Specify as false =
"f"; true = "t".

• Folder ID – Specifies a programmatically generated folder ID. For example: "PRS_DATA_001".

• Folder label – Specifies the label to display for this subfolder in the SmartNavigation menu drop-downs,
fly-outs, and breadcrumbs. For example: "Personnel Data".

• Chart component – Specifies the page used to render the SmartNavigation chart in the following format:
COMPONENT.PAGE.MKT.

• PeopleCode ID – Specifies the PeopleCode program to run to generate the SmartNavigation elements for
the specified data source. The PeopleCode ID must be in the following format: APP_PKG.Class.Method.

• Tree name – Specifies the name for the tree. For example: "PERS_DATA".

• Tree setID – Specifies the setID for the tree. For example: "SHARE".

• Tree user key – Specifies the user key value for the tree (also known as the set control value). An actual
value is optional but must be specified as the null string: "".

• Tree effective date – Specifies the effective date for the tree. An actual value is optional but must be
specified as the null string: "".

• Tree branch – Specifies the tree branch. An actual value is optional but must be specified as the null
string: "".

SmartNavigation passes the values of several tree-specific fields to the application via URL. Certain
characters are inappropriate for use in a URL and must be avoided. When using a tree as a SmartNavigation
data source, do not use any of the following characters in the tree name, setID, user key value, and tree branch
values:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 295

pound (#) percent (%) dollar ($)

ampersand (&) plus (+) comma (,)

forward slash/virgule (/) colon (:) semi-colon (;)

equals (=) question mark (?) at symbol (@)

space () quotation marks(") less than symbol (<)

greater than symbol (>) left curly brace ({) right curly brace (})

vertical bar/pipe (|) backslash (\) caret (^)

tilde (~) left square bracket ([) right square bracket (])

grave accent (`)

For example:

rem Create SmartNavigation dynamic folder from a tree;
&fldr = GenDynABNElement(&ds_t, &cref_t, &fldr_id, &label_t, &chart_t, &pcode_t, ⇒
&tree_name, &tree_setid, &tree_userkey, &tree_effdt, &tree_branch);

When the data source for the SmartNavigation subfolder is a rowset, 6 string parameters are required in the
following order with the following specifications:

• Data source type – For a rowset, this parameter must be "r".

• Display as CREF – Indicates that the SmartNavigation folder is to be displayed as a CREF, which
immediately displays the SmartNavigation chart, instead of as a folder with submenus. Specify as false =
"f"; true = "t".

• Folder ID – Specifies a programmatically generated folder ID. For example: "PRS_DATA_001".

• Folder label – Specifies the label to display for this subfolder in the SmartNavigation menu drop-downs,
fly-outs, and breadcrumbs. For example: "Personnel Data".

• Chart component – Specifies the page used to render the SmartNavigation chart in the following format:
COMPONENT.PAGE.MKT.

• PeopleCode ID – Specifies the PeopleCode program to run to generate the SmartNavigation elements for
the specified data source. The PeopleCode ID must be in the following format: APP_PKG.Class.Method.

For example:

rem Create SmartNavigation dynamic folder from a rowset;
&fldr = GenDynABNElement(&ds_r, &cref_r, &fldr_id, &label_r, &chart_r, &pcode_r);

Returns

A string representing the elements for the data source.

PeopleCode Built-in Functions Chapter 1

296 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following example demonstrates how the GenDynABNElement function could be implemented in a
method. This method would be specified in the application package parameters on the Folder Administration
page for a folder that is configured as a "dynamic hierarchy" folder. In this example, the output of the second
invocation of GenDynABNElement is concatenated to the output of the first invocation resulting in two
dynamically generated SmartNavigation subfolders being displayed beneath the root "dynamic hierarchy"
folder.

method QE_ABN_DYN_HIERARCHY_MIXED

 Local string &fldrList;

 rem variables for abn tree;
 Local string &ds_t, &cref_t, &fldr_id, &id_t, &label_t, &portal, &node, ⇒
&chart_t, &pcode_t, &tree_name, &tree_setid, &tree_userkey, &tree_effdt, ⇒
&tree_branch;

 rem variables for abn rowset;
 Local string &ds_r, &cref_r, &id_r, &label_r, &chart_r, &pcode_r;

 rem abn tree sample;
 &ds_t = "t";
 &cref_t = "f";
 &fldr_id = "QE_ABN_DH_44";
 rem &id_t="";
 &label_t = "Dynamic ABN Tree";
 rem &portal="";
 rem &node = "";
 &chart_t = "PT_ABN_ORGCHART.PT_ABN_ORGCHART.GBL";
 &pcode_t = "QE_ABNTREE.qe_abntree.QE_ABN_TREE_AP";
 &tree_name = "QE_PERS_DATA";
 &tree_setid = "QEDM1";
 &tree_userkey = "";
 &tree_effdt = "1997/05/05";
 &tree_branch = "";

 rem create abn tree folder here;
 &fldrList = GenDynABNElement(&ds_t, &cref_t, &fldr_id, &label_t, &chart_t, ⇒
&pcode_t, &tree_name, &tree_setid, &tree_userkey, &tree_effdt, &tree_branch);

 rem abn rowset sample;
 &ds_r = "r";
 &cref_r = "f";
 rem &id_r="";
 &label_r = "Dynamic ABN Rowset";
 &chart_r = "QE_PIA_TEST_PAGES.QE_ABN_ORGCHART.GBL";
 &pcode_r = "QE_ABN_RS_APKG.QE_ABN_RS_1:QE_ABNRS_C1.QE_ABNRS_M";

 rem append abn rowset folder after the abn tree;
 &fldrList = &fldrList | GenDynABNElement(&ds_r, &cref_r, &fldr_id, &label_r, ⇒
&chart_r, &pcode_r);

 rem generate menu item in nav;
 GenHTMLMenu(&fldrList);

end-method;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 297

See Also

Chapter 1, "PeopleCode Built-in Functions," GenHTMLMenu, page 339

GenerateActGuideContentUrl

Syntax

GenerateActGuideContentlUrl(PORTAL.portalname,NODE.nodename, MENUNAME.menuname,
Marketname,COMPONENT.componentname,ActivityGuide)

Description

Use the GenerateActGuideContentUrl function to create a URL string that represents an absolute reference to
the specified activity guide (life event) for the content servlet. The ContentURI of the node that hosts the
specified portal is used in the generated URL. The URL contains a reference to the content service (psc)
servlet.

If you want to generate a URL for the portal service (psp) servlet, use the GenerateActGuidePortalURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the activity guide, prefixed with the
reserved word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the activity guide, prefixed with the
reserved word MENUNAME. You can also use a string, such as %Menu, for this
value.

Marketname Specify the name of the market of the component. You can also use a string, such
as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

ActivityGuide Specify the name of the Activity Guide, as a string.

Returns

A string with the following format:

PeopleCode Built-in Functions Chapter 1

298 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

http://Content URI of node/portal/node/l/ActivityGuide.component.market

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&AGURL = GenerateActGuideContentUrl(%Portal, %Node, MENUNAME.MAINTAIN_SECURITY,⇒
 "GBL", COMPONENT.CHANGE_PASSWORD, "QE_ACTIVITY_GUIDE_DEMO");

might produce the following URL string:

http://boynten8700/psc/ps/EMPLOYEE/QE_LOCAL/l/QE_ACTIVITY_GUIDE_DEMO.MAINTAIN_
SECURITY.CHANGE_PASSWORD.GBL

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuidePortalUrl, page 298 and Chapter 1,
"PeopleCode Built-in Functions," GenerateActGuideRelativeUrl, page 300

PeopleTools 8.52: Workflow Technology, "Designing Activity Guides"

GenerateActGuidePortalUrl

Syntax

GenerateActGuidePortalUrl(PORTAL.portalname, NODE.nodename,MENUNAME.menuname,M
arketname,COMPONENT.componentname, ActivityGuide)

Description

Use the GenerateActGuidePortalUrl function to create a URL string that represents an absolute reference to
the specified activity guide (life event) for the portal servlet. The PortalURI of the node that hosts the
specified portal is used in the generated URL. The URL contains a reference to the portal service (psp)
servlet.

If you want to generate a URL for the portal content (psc) servlet, use the GenerateActGuideContentURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 299

Parameter Description

nodename Specify the name of the node that contains the activity guide, prefixed with the
reserved word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the activity guide, prefixed with the
reserved word MENUNAME. You can also use a string, such as %Menu, for this
value.

Marketname Specify the name of the market of the component. You can also use a string, such
as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

ActivityGuide Specify the name of the Activity Guide, as a string.

Returns

A string with the following format:

http://Portal URI of node/portal/node/l/ActivityGuide.component.market

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&AGURL = GenerateActGuidePortalUrl(%Portal, %Node, MENUNAME.MAINTAIN_SECURITY,
 "GBL", COMPONENT.CHANGE_PASSWORD, "QE_ACTIVITY_GUIDE_DEMO");

might create the following URL string:

http://boynte700/psp/ps/EMPLOYEE/QE_LOCAL/l/QE_ACTIVITY_GUIDE_DEMO.MAINTAIN_
SECURITY.CHANGE_PASSWORD.GBL

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuideContentUrl, page 297 and Chapter 1,
"PeopleCode Built-in Functions," GenerateActGuideRelativeUrl, page 300

PeopleTools 8.52: Workflow Technology, "Designing Activity Guides"

PeopleCode Built-in Functions Chapter 1

300 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GenerateActGuideRelativeUrl

Syntax

GenerateActGuideRelativeUrl(PORTAL.portalname, NODE.nodename,MENUNAME.menuname,
Marketname,COMPONENT.componentname,ActivityGuide)

Description

Use the GenerateActGuideContentUrl function to create a URL string that represents an relative reference to
the specified activity guide (life event). The relative reference is suitable for use on any page that itself has
the simple URL format.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the activity guide, prefixed with the
reserved word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the activity guide, prefixed with the
reserved word MENUNAME. You can also use a string, such as %Menu, for this
value.

Marketname Specify the name of the market of the component. You can also use a string, such
as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

ActivityGuide Specify the name of the Activity Guide, as a string.

Returns

A string with the following format:

../../../Portal/node/l/ActivityGuide.menu.component.market

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 301

&AGURL = GenerateActGuideRelativeUrl(%Portal, %Node, MENUNAME.MAINTAIN_SECURITY,
 "GBL", COMPONENT.CHANGE_PASSWORD, "QE_ACTIVITY_GUIDE_DEMO");

might produce the following URL string:

../../../EMPLOYEE/QE_LOCAL/l/QE_ACTIVITY_GUIDE_DEMO.MAINTAIN_SECURITY.CHANGE_
PASSWORD.GBL

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateActGuideContentUrl, page 297 and Chapter 1,
"PeopleCode Built-in Functions," GenerateActGuidePortalUrl, page 298

PeopleTools 8.52: Workflow Technology, "Designing Activity Guides"

GenerateComponentContentRelURL

Syntax

GenerateComponentContentRelURL(PORTAL.portalname,
NODE.nodename,MENUNAME.menuname,MARKET.marketname,
COMPONENT.componentname,PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateComponentContentRelURL function to create a URL string that represents a relative
reference to the specified component for the content servlet. The relative reference is suitable for use on any
page that itself has the simple URL format.

If you want to generate an absolute URL for a component, use the GenerateComponentContentURL function.

Note. PeopleSoft recommends using the Transfer function for opening new windows, not this function, as
there may be problems maintaining state and window count.

Parameters

Parameter Description

PortalName Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value. This
parameter is ignored by the content service, but is a required part of the psc URL
format.

PeopleCode Built-in Functions Chapter 1

302 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

NodeName Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

MenuName Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

Pagename Specify the name of the page that contains the content. If you specify a page name,
it must be prefixed with the keyword PAGE. You can also specify an empty string
("") for this value.

Action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify an empty string ("") for this value.

Keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../Portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Panel&Menu=menu&Market=market
&PanelGroupName=component?parameters

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 303

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentContentRelURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, Page.CUST_DATA1, "U", EMPLID);

Might create the following URL:

../../../psc/PS84/EMPLOYEEPORTAL/CRM/c/SFA.CUSTOMERINFO.GBL?page=
CUST_DATA1&&Action=U&emplid=00001

Because this function terminates if the portal or node name is invalid, it's enclosed in a try-catch section so if
an exception gets raised, it can be handled.

try
 &MyURL = GenerateComponentContentRelURL(%Portal, "HRMS", Menuname.ADMIN_
WORKFORCE, "GBL", Component.ABSENCE_HISTORY, Page. ABSENCE_HISTORY, "U", EMPLID)

 catch ExceptionPortal &Ex1
 /* error handling portal name not valid */
 catch ExceptionNode &Ex2
 /* error handling Node name not valid */

end-try;

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentURL, page 303; Chapter 1,
"PeopleCode Built-in Functions," GenerateComponentPortalRelURL, page 306; Chapter 1, "PeopleCode
Built-in Functions," GenerateComponentPortalURL, page 308 and Chapter 1, "PeopleCode Built-in
Functions," GenerateComponentRelativeURL, page 310

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateComponentContentURL

Syntax

GenerateComponentContentURL(PORTAL.portalname, NODE.nodename,MENUNAME.menuname,
MARKET.marketname,COMPONENT.componentname,PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

PeopleCode Built-in Functions Chapter 1

304 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the GenerateComponentContentURL function to create a URL string that represents an absolute
reference to the specified component for the content servlet.

The ContentURI of the specified node is used in the generated URL. The URL contains a reference to the
portal content (psc) servlet. If you want to generate a URL for the portal service (psp), use the
GenerateComponentPortalURL function.

Parameters

Parameter Description

PortalName Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value. This
parameter is ignored by the content service, but is a required part of the psc URL
format.

NodeName Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

MenuName Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

Pagename Specify the name of the page that contains the content. If you specify a page name,
it must be prefixed with the keyword PAGE. You can also specify an empty string
("") for this value.

Action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify an empty string ("") for this value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 305

Parameter Description

Keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Content URI of host node/Portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Content URI of host node/portal/node/?ICType=Panel&Menu=menu&Market=market
&PanelGroupName=component?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentContentURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, Page.CUST_DATA1, "U", EMPLID);

Might create the following URL:

http://serverx/servlets/psc/PS84/EMPLOYEEPORTAL/CRM/c/SFA.CUSTOMERINFO.GBL?page=
CUST_DATA1&&Action=U&emplid=00001

Because this function terminates if the portal or node name is invalid, it's enclosed in a try-catch section so if
an exception gets raised, it can be handled.

try
 &MyURL = GenerateComponentContentURL(%Portal, "HRMS", Menuname.ADMIN_WORKFORCE,
 "GBL", Component.ABSENCE_HISTORY, Page. ABSENCE_HISTORY, "U", EMPLID)

 catch ExceptionPortal &Ex1
 /* error handling portal name not valid */
 catch ExceptionNode &Ex2
 /* error handling Node name not valid */

end-try;

PeopleCode Built-in Functions Chapter 1

306 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentRelURL, page 301; Chapter 1,
"PeopleCode Built-in Functions," GenerateComponentPortalRelURL, page 306; Chapter 1, "PeopleCode
Built-in Functions," GenerateComponentPortalURL, page 308 and Chapter 1, "PeopleCode Built-in
Functions," GenerateComponentRelativeURL, page 310

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateComponentPortalRelURL

Syntax

GenerateComponentPortalRelURL(PORTAL.portalname, NODE.nodename,MENUNAME.
menuname,MARKET.marketname,COMPONENT.componentname,PAGE.pagename, action, [,
keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateComponentPortalRelURL function to create a URL string URL string that represents a
relative reference the specified content (component). The relative reference is suitable for use on any page
that itself has the simple URL format.

If you want to generate an absolute URL for a component, use the GenerateComponentPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 307

Parameter Description

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

pagename Specify the name of the page that contains the content. If you specify a page name,
it must be prefixed with the keyword PAGE. You can also specify a Null string
("") for this value.

action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a Null string ("") for this value.

keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Panel&Menu=menu&Market=
market&PanelGroupName=component?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

PeopleCode Built-in Functions Chapter 1

308 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&MyCompURL = GenerateComponentPortalRelURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, , "", "");

Might create the following URL:

../../../EMPLOYEEPORTAL/CRM/c/sfa.customerinfo.gbl

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentRelURL, page 301; Chapter 1,
"PeopleCode Built-in Functions," GenerateComponentContentURL, page 303; Chapter 1, "PeopleCode Built-
in Functions," GenerateComponentPortalURL, page 308; Chapter 1, "PeopleCode Built-in Functions,"
GenerateComponentRelativeURL, page 310 and PeopleTools 8.52: PeopleCode API Reference, "Internet
Script Classes (iScript)"

GenerateComponentPortalURL

Syntax

GenerateComponentPortalURL(PORTAL.portalname, NODE.nodename,MENUNAME.menuname,
MARKET.marketname,COMPONENT.componentname,PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateComponentPortalURL function to create a URL string that represents an absolute reference
to the specified component for the portal servlet. The PortalURI of the node that hosts the specified portal is
used in the generated URL. The URL contains a reference to the portal service (psp) servlet.

If you want to generate a URL for the portal content (psc) servlet, use the GenerateComponentContentURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 309

Parameter Description

menuname Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

pagename Specify the name of the page that contains the content. If you specify a page name,
it must be prefixed with the keyword PAGE. You can also specify a Null string
("") for this value.

action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a Null string ("") for this value.

keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Portal URI of host node/portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Portal URI of host node/portal/node/?ICType=Panel&Menu=
menu&Market=market&PanelGroupName=
component?parameters

Note. If the host node is local, then Portal URI of host node will always be the one you're currently logged in
as.

PeopleCode Built-in Functions Chapter 1

310 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentPortalURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, , "", "");

Might create the following URL:

http://mike.com/servlets/psp/testsite/EMPLOYEEPORTAL/CRM/c/sfa.customerinfo.gbl

The following example uses a de-referenced name for the component.

&sComponent = "Component." | &sComponent;
&sPage = "Page.EM_VCHR_PYMNT_CLN";

&rwCurrent = GetRow();
/*- The Search Record keys -*/
&sQueryString = &sQueryString | "&BUSINESS_UNIT=" | &rwCurrent.EM_VCHR_INQ_VW.EM_
BUSINESS_UNIT.Value;
&sQueryString = &sQueryString | "&VOUCHER_ID=" |
&rwCurrent.EM_VCHR_INQ_VW.VOUCHER_ID.Value;

&sQueryString = GenerateComponentPortalURL(%Portal, %Node,
MenuName.EM_BILL_PRESENTMENT, %Market, @&sComponent, @&sPage, "U") |
&sQueryString;

%Response.RedirectURL(&sURL);

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentRelURL, page 301; Chapter 1,
"PeopleCode Built-in Functions," GenerateComponentContentURL, page 303; Chapter 1, "PeopleCode Built-
in Functions," GenerateComponentPortalRelURL, page 306 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateComponentRelativeURL, page 310

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateComponentRelativeURL

Syntax

GenerateComponentRelativeURL(PORTAL.portalname, NODE.nodename,MENUNAME.menuname,
MARKET.marketname,COMPONENT.componentname,PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 311

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateComponentRelativeURL function to create a URL string that represents a relative reference
the specified content (component). The relative reference is suitable for use on any page that itself has the
simple URL format.

If you want to generate an absolute URL for a component, use either the GenerateComponentContentURL or
GenerateComponentPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved word
COMPONENT. You can also use a string, such as %Component, for this value.

Pagename Specify the name of the page that contains the content. If you specify a page name,
it must be prefixed with the keyword PAGE. You can also specify a Null string
("") for this value.

Action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a Null string ("") for this value.

PeopleCode Built-in Functions Chapter 1

312 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Panel&Menu=menu&Market=
market&PanelGroupName=component?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&MyCompURL = GenerateComponentRelativeURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, "", "");

Might yield the following:

../../../EMPLOYEEPORTAL/CRM/c/sfa.customerinfo.gbl

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateComponentContentRelURL, page 301; Chapter 1,
"PeopleCode Built-in Functions," GenerateComponentContentURL, page 303; Chapter 1, "PeopleCode Built-
in Functions," GenerateComponentPortalRelURL, page 306 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateComponentPortalURL, page 308

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 313

GenerateExternalPortalURL

Syntax

GenerateExternalPortalURL(PORTAL.portalname, NODE.nodename, URL)

Description

Use the GenerateExternalPortalURL function to create a URL string that represents an absolute reference the
specified external content (URL) on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated URL
contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateExternalRelativeURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

NodeName Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

URL Specify the URL to be used for this content.

Returns

A string of the following format is returned:

http://Portal URI of host node/Portal/node/e/encodedURL

When the portal servlet evaluates an external URL, the Node is ignored, so %Node can always be passed in
for the Node parameter.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&url = GenerateExternalPortalURL("EMPLOYEEPORTAL", "CRM", "http://www.excite.com");

Might create the following URL:

http://myserver/psp/ps/EMPLOYEEPORTAL/CRM/e/http%3a%2f%2fwww.excite.com

PeopleCode Built-in Functions Chapter 1

314 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateExternalRelativeURL, page 314

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateExternalRelativeURL

Syntax

GenerateExternalRelativeURL(PORTAL.portalname, NODE.nodename, EncodedURL)

Description

Use the GenerateExternalRelativeURL function to create a URL string that represents a relative reference the
specified external content (URL). The relative reference is suitable for use on any page that itself has the
simple URL format and which is served by the portal servlet (psp).

If you want to generate an absolute URL, use the GenerateExternalPortalURL function.

Parameters

Parameter Description

PortalName Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

NodeName Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

EncodedURL Specify the URL to be used for this content.

Returns

A string of the following format is returned:

../../../Portal/node/e/encodedURL

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&url = GenerateExternalRelativeURL("EMPLOYEEPORTAL", "CRM", "http:
//www.excite.com");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 315

Might create the following URL:

../../../EMPLOYEEPORTAL/CRM/e/http%3a%2f%2fwww.excite.com

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateExternalRelativeURL, page 314

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateHomepagePortalURL

Syntax

GenerateHomepagePortalURL(PORTAL.portalname, NODE.nodename,Tabname)

Description

Use the GenerateHomepagePortalURL function to create a URL string that represents an absolute reference
the specified homepage tab on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated URL
contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateHomepageRelativeURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

Note. The value specified for this parameter is ignored. The node name that is
used is automatically calculated. However, you must still specify a value for this
parameter.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value. This
should be the node that hosts the specified portal.

Tabname Specify the name of the tab on the homepage that you want to generate a URL for.
If you specify a null string (""), the default tab is used.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

PeopleCode Built-in Functions Chapter 1

316 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

http://Portal URI of host node/Portal/node/h/?tab=tabname

This function returns a Null string if you specify an invalid portal or node.

Example

Specifying the following code:

&HomePage = GenerateHomepagePortalURL(%Portal, NODE.North_Asia, "");

Might generate the following string:

http://bejing/psp/psoft/crm/North_Asia/h/?tab=DEFAULT

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateHomepageRelativeURL, page 316

PeopleTools 8.52: PeopleCode API Reference, "Portal Registry Classes"

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateHomepageRelativeURL

Syntax

GenerateHomepageRelativeURL(PORTAL.portalname, NODE.nodename,Tabname)

Description

Use the GenerateHomepageRelativeURL function to create a URL string that represents a relative reference
the specified homepage on the portal servlet. The relative reference is suitable for use on any page that itself
has the simple URL format.

If you want to generate an absolute URL, use the GenerateHomepagePortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value. . This
should be the node that hosts the specified portal.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 317

Parameter Description

Tabname Specify the name of the tab on the homepage that you want to generate a URL for.
If you specify a null string (""), the default tab is used.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../Portal/node/h/?tab=tabname

If the node has a Node Type of ICType, a string of the following format is returned:

./?cmd=start

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&HomePage = GenerateHomepageRelativeURL(%Portal, NODE.North_Asia, "");

Might generate the following string:

../../../crm/North_Asia/h/?tab=DEFAULT

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateHomepagePortalURL, page 315

PeopleTools 8.52: PeopleCode API Reference, "Portal Registry Classes"

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateMobileTree

Syntax

GenerateMobileTree(&CIObject [,CIObject_property])

Description

Note. PeopleSoft Mobile Agent is a deprecated product. This mobile function currently exists for backward
compatibility only.

Use the GenerateMobileTree function to display data in a tree format, with nodes and leaves. The result of the
GenerateMobileTree function is an HTML string, which can be displayed in an HTML area control.

PeopleCode Built-in Functions Chapter 1

318 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Use this function in the OnInit event to display the mobile tree, and on the OnChange event for programs
related to expanding, collapsing or selecting nodes.

Mobile HTML Tree

The positional links at the top of the page (First, Previous, Next, Last, Left, Right) enable the user to navigate
around the tree. These links are automatically generated as part of the execution of GenerateTree.

The icon next to a node can have a + sign or a - sign in it, depending on whether the node is collapsed or
expanded. When a node is collapsed, none of the nodes that report to the collapsed node are displayed, and
the icon has a + sign. When a node is expanded, all the nodes that report to it are displayed, and the icon has a
- sign. You can collapse and expand a node by clicking in the icon. This enables you to view the tree at
different levels of detail. When the icon for a node has no + or − sign in it, it is a terminal node, and cannot be
expanded or collapsed.

Using the GenerateMobileTree Function

The GenerateMobileTree function is similar to the GenerateTree function, however, there are several
important differences.

• The GenerateMobileTree function does not take a standalone rowset for data. Mobile does not support
standalone rowsets, so you must populate your tree data one item at a time.

• You cannot use the Tree Classes with the GenerateMobileTree function.

To use the GenerateMobileTree function:

1. Define the Component Interface.

You must use a Component Interface that is created from a component that contains the TREECTL_HDR
and TREECTL_NODE records. When the Component Interface is synched to the device, these records do
not have to contain any data, they can be populated using PeopleCode.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using HTML Trees and the GenerateTree
Function," Using HTML Tree Rowset Records.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 319

2. Add an HTML area to the mobile page.

This involves adding a long text field to the Component Interface, specifying how it displays on the
mobile page, and so on. The value of the Component Interface long text field is what is displayed in the
HTML area.

3. Determine what property on the Component Interface is going to contain the OnChange PeopleCode used
to evaluate the end-user action and call the appropriate PeopleCode programs.

The action an end user takes (selecting a row, or expanding or collapsing a node) is accessible to this
property.

This property must be a character field that is at least 46 characters long. The field can be made invisible.

4. Specify this property as the value for the PAGE_FIELD_NAME field on the TREECTRL_HDR_SBR
record.

5. Populate the tree, specify values for the nodes, leaves, images, and so on.

Parameters

Parameter Description

&CIObject This is the mobile object that is to be viewed in a hierarchy tree view. This object
is from a peer reference.

CIObject_property This is a property on the mobile object that is to be viewed in a hierarchy tree
view.

Returns

None.

Example

In the OnInit event, generate the mobile tree.

PeopleCode Built-in Functions Chapter 1

320 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local ApiObject &ob;

&ob = %ThisMobileObject;

&MyCI = %Session.GetCompIntfc(ComIntfc.RDM_RELTREE);
&MyCI.Key_01 = "2";
&MyCI.Create();

&MyCI.PAGE_FIELD_NAME = "TREELEVELNT";

&MyCI.RDM.RELTREE_NDE.InsertItem(1);
&MyCI.RDM.RELTREE_NDE.Item(1).TREE_NODE = "NAME 1";
&MyCI.RDM.RELTREE_NDE.Item(1).DESCR = "Descr 1";
&MyCI.RDM.RELTREE_NDE.Item(1).PARENT_FLAG = "Y";
&MyCI.RDM.RELTREE_NDE.Item(1).TREE_LEVEL_NUM = 1;
&MyCI.RDM.RELTREE_NDE.Item(1).LEAF_FLAG = "N";

&MyCI.RDM.RELTREE_NDE.InsertItem(2);
&MyCI.RDM.RELTREE_NDE.Item(2).TREE_NODE = "NAME 3";
&MyCI.RDM.RELTREE_NDE.Item(2).DESCR = "Descr 2";
&MyCI.RDM.RELTREE_NDE.Item(2).PARENT_FLAG = "Y";
&MyCI.RDM.RELTREE_NDE.Item(2).TREE_LEVEL_NUM = 2;
&MyCI.RDM.RELTREE_NDE.Item(2).LEAF_FLAG = "N";

&MyCI.RDM.RELTREE_NDE.InsertItem(3);
&MyCI.RDM.RELTREE_NDE.Item(3).TREE_NODE = "NAME 1";
&MyCI.RDM.RELTREE_NDE.Item(3).DESCR = "Descr 3";
&MyCI.RDM.RELTREE_NDE.Item(3).PARENT_FLAG = "Y";
&MyCI.RDM.RELTREE_NDE.Item(3).TREE_LEVEL_NUM = 1;
&MyCI.RDM.RELTREE_NDE.Item(3).LEAF_FLAG = "N";

&OB.QE_COMMENTS = GenerateMobileTree(&MyCI);

The following PeopleCode is used in the OnChange event (used for when a user selects a node, expands a
node or closes a node):

Local ApiObject &ob;

&ob = %ThisMobileObject;

&MyCI = %Session.GetCompIntfc(ComIntfc.RDM_RELTREE);
&MyCI.Key_01 = "2";
&MyCI.Get();

&MyCI.PAGE_FIELD_NAME = "TREECTLEVENT"

If Left(%ThisMobileObject.TREELEVENT, 1) = "S" Then
 Warning ("This node has been selected");
End-If;

&ob.QE_COMMENTS = GenerateMobileTree(&MyCI, %ThisMobileObject.TREELEVENT);

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 321

GenerateQueryContentURL

Syntax

GenerateQueryContentURL(PORTAL.portalname,NODE.nodename,QueryName,IsPublic [,
IsNewWindow])

Description

Use the GenerateQueryContentURL function to create a URL string that represents an absolute reference the
specified query (URL) on the content servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated URL
contains a reference to the portal content (psc) servlet.

If you want to generate a relative URL, use the GenerateQueryRelativeURL function.

If you want to generate a URL for the portal service (psp) servlet, use the GenerateQueryPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the query, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

Queryname Specify the name of the query you want to generate a URL for. This parameter
takes a string value.

IsPublic Specify whether the query is public or private. This parameter takes a Boolean
value: True, the query is public, False otherwise.

IsNewWindow Specify whether the URL is for a new browser instance. This parameter takes a
Boolean value: True, the URL is for a new browser instance, False otherwise. The
default is False.

If the value is True this function generates a new state block for use in a separate
browser instance. This does not automatically open a new browser instance. It just
supports it.

Note. When Query is being run on a PeopleTools version prior to 8.16, the query URL does not include the
ability to specify if a query is public or private. On PeopleTools versions 8.16 and higher, the generated URL
contains either the keyword PUBLIC or PRIVATE prepended to the query name. If you are building a URL
for a portal node that is on a PeopleTools release prior to 8.16, you must remove the public or private
keyword before trying to use the URL.

PeopleCode Built-in Functions Chapter 1

322 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

If IsPublic is specified as True, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PUBLIC.QueryName

If IsPublic is specified as False, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PRIVATE.QueryName

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&url = GenerateQueryContentURL(%Portal, "RMTNODE", "QUERYNAME", True);

might produce a string as follows:

http://bsto091200/psc/ps/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=PUBLIC.QUERYNAME

The following code example uses the optional parameter to produce a URL that supports a new browser
instance:

&url = GenerateQueryContentURL(%Portal, "RMTNODE", "QUERYNAME", True, True);

might produce a string as follows:

http://bsto091200/psc/ps_newwin/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=
PUBLIC.QUERYNAME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateQueryPortalURL, page 322 and Chapter 1,
"PeopleCode Built-in Functions," GenerateQueryRelativeURL, page 324

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: PeopleCode API Reference, "Query Classes"

PeopleTools 8.52: PeopleSoft Query, "Getting Started with PeopleSoft Query"

GenerateQueryPortalURL

Syntax

GenerateQueryPortalURL(PORTAL.portalname,NODE.nodename,QueryName,IsPublic [,
IsNewWindow])

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 323

Description

Use the GenerateQueryPortalURL function to create a URL string that represents an absolute reference the
specified query (URL) on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated URL
contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateQueryRelativeURL function.

If you want to generate a URL for the portal content (psc) servlet, use the GenerateQueryContentURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the query, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

Queryname Specify the name of the query you want to generate a URL for. This parameter
takes a string value.

IsPublic Specify whether the query is public or private. This parameter takes a Boolean
value: True, the query is public, False otherwise.

IsNewWindow Specify whether the URL is for a new browser instance. This parameter takes a
Boolean value: True, the URL is for a new browser instance, False otherwise. The
default is False.

If the value is True this function generates a new state block for use in a separate
browser instance. This does not automatically open a new browser instance. It just
supports it.

Note. When Query is being run on a PeopleTools version prior to 8.16, the query URL does not include the
ability to specify if a query is public or private. On PeopleTools versions 8.16 and higher, the generated URL
contains either the keyword PUBLIC or PRIVATE prepended to the query name. If you are building a URL
for a portal node that is on a PeopleTools release prior to 8.16, you must remove the public or private
keyword before trying to use the URL.

Returns

If IsPublic is specified as True, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PUBLIC.QueryName

PeopleCode Built-in Functions Chapter 1

324 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

If IsPublic is specified as False, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PRIVATE.QueryName

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&url = GenerateQueryPortalURL(%Portal, "RMTNODE", "QUERYNAME", True);

might produce a string as follows:

http://bsto091200/psp/ps/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=PUBLIC.QUERYNAME

The following code example uses the optional parameter to produce a URL that supports a new browser
instance:

&url = GenerateQueryPortalURL(%Portal, "RMTNODE", "QUERYNAME", True, True);

might produce a string as follows:

http://bsto091200/psp/ps_newwin/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=
PUBLIC.QUERYNAME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateQueryContentURL, page 321 and Chapter 1,
"PeopleCode Built-in Functions," GenerateQueryRelativeURL, page 324

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: PeopleCode API Reference, "Query Classes"

PeopleTools 8.52: PeopleSoft Query, "Getting Started with PeopleSoft Query"

GenerateQueryRelativeURL

Syntax

GenerateQueryRelativeURL(PORTAL.portalname,NODE.nodename,QueryName,IsPublic [,
IsNewWindow])

Description

Use the GenerateQueryRelativeURL function to creates a URL string that represents a relative reference to
the specified query on the portal servlet. The relative reference is suitable for use on any page that itself has
the simple URL format.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 325

If you want to generate an absolute URL, use either the GenerateQueryPortalURL or
GenerateQueryContentURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the query, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

Queryname Specify the name of the query you want to generate a URL for. This parameter
takes a string value.

IsPublic Specify whether the query is public or private. This parameter takes a Boolean
value: True, the query is public, False otherwise.

IsNewWindow Specify whether the URL is for a new browser instance. This parameter takes a
Boolean value: True, the URL is for a new browser instance, False otherwise. The
default is False.

If the value is True this function generates a new state block for use in a separate
browser instance. This does not automatically open a new browser instance. It just
supports it.

Note. When Query is being run on a PeopleTools version prior to 8.16, the query URL does not include the
ability to specify if a query is public or private. On PeopleTools versions 8.16 and higher, the generated URL
contains either the keyword PUBLIC or PRIVATE prepended to the query name. If you are building a URL
for a portal node that is on a PeopleTools release prior to 8.16, you must remove the public or private
keyword before trying to use the URL.

Returns

If IsPublic is specified as True, and the node has a Node Type of PIA, a string of the following format is
returned:

../../../portal/node/q/?ICAction=ICQryNameURL=PUBLIC.QueryName

If IsPublic is specified as False, and the node has a Node Type of PIA, a string of the following format is
returned:

../../../portal/node/q/q/?ICAction=ICQryNameURL=PRIVATE.QueryName

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&url = GenerateQueryRelativeURL(%Portal, "RMTNODE", "QUERYNAME", True);

PeopleCode Built-in Functions Chapter 1

326 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

might produce a string as follows:

../../../EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=PUBLIC.QUERYNAME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateQueryContentURL, page 321 and Chapter 1,
"PeopleCode Built-in Functions," GenerateQueryPortalURL, page 322

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: PeopleCode API Reference, "Query Classes"

PeopleTools 8.52: PeopleSoft Query, "Getting Started with PeopleSoft Query"

GenerateScriptContentRelURL

Syntax

GenerateScriptContentRelURL(PORTAL.portalname, NODE.nodename,RECORD.recordname,
FIELD.fieldname,event_name,function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateScriptContentRelURL function to create a URL string that represents a relative reference to
the specified iScript. The generated URL contains a reference to the portal content (psc) servlet.

If you want to generate an absolute URL for an iScript for the portal content servlet, use the
GenerateScriptContentURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed with the reserved
word RECORD.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 327

Parameter Description

fieldname Specify the name of the field containing the iScript, prefixed with the reserved
word FIELD.

event_name Specify the name of the event containing the iScript. This is generally the
FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can also be an already
instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

/psc/s/recname.fieldname.event_name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

/portal/node/?ICType=Script&ICScriptProgramName=
recname.fieldname.event_name.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptContentRelURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "Iscript_SFAHOME ");

Might yield the following URL:

/psc/s/WEBLIB_CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentURL, page 328; Chapter 1, "PeopleCode
Built-in Functions," GenerateScriptPortalRelURL, page 329; Chapter 1, "PeopleCode Built-in Functions,"
GenerateScriptPortalURL, page 331 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateScriptRelativeURL, page 333

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleCode Built-in Functions Chapter 1

328 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GenerateScriptContentURL

Syntax

GenerateScriptContentURL(PORTAL.portalname, NODE.nodename,RECORD.recordname,
FIELD.fieldname,event_name,function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateScriptContentURL function to create a URL string that represents an absolute reference to
the specified iScript for the content servlet.

The ContentURI of the specified node is used in the generated URL. The URL contains a reference to the
portal content (psc) servlet.

If you want to generate a URL for an iScript for the portal servlet, use the GenerateScriptPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed with the reserved
word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed with the reserved
word FIELD.

event_name Specify the name of the event containing the iScript. This is generally the
FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can also be an already
instantiated record object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 329

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Content URI of host node/portal/node/s/recname.fieldname.event_
name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Content URI of host node/portal/node/?ICType=Script&ICScriptProgramName=
recname.fieldname.event_name.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptContentURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "Iscript_SFAHOME ");

Might yield the following URL:

http://mike.com/servlets/psc/testsite/EMPLOYEEPORTAL/CRM/s/WEBLIB_
CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentRelURL, page 326; Chapter 1,
"PeopleCode Built-in Functions," GenerateScriptPortalRelURL, page 329; Chapter 1, "PeopleCode Built-in
Functions," GenerateScriptPortalURL, page 331 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateScriptRelativeURL, page 333

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateScriptPortalRelURL

Syntax

GenerateScriptPortalRelURL(PORTAL.portalname, NODE.nodename,RECORD.recordname,
FIELD.fieldname,event_name,function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

PeopleCode Built-in Functions Chapter 1

330 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the GenerateScriptPortalRelURL function to create a URL string that represents a relative reference to
the specified iScript. The generated URL contains a reference to the portal service (psp) servlet.

If you want to generate an absolute URL for an iScript for the portal service servlet, use the
GenerateScriptPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed with the reserved
word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed with the reserved
word FIELD.

event_name Specify the name of the event containing the iScript. This is generally the
FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can also be an already
instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

/psp/s/recname.fieldname.event_name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

/portal/node/?ICType=Script&ICScriptProgramName=
recname.fieldname.event_name.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 331

Example

The following code:

&MyScriptURL = GenerateScriptPortalRelURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "IScript_SFAHOME");

Might yield the following:

/psp/s/WEBLIB_CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentRelURL, page 326; Chapter 1,
"PeopleCode Built-in Functions," GenerateScriptContentURL, page 328; Chapter 1, "PeopleCode Built-in
Functions," GenerateScriptPortalURL, page 331 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateScriptRelativeURL, page 333

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateScriptPortalURL

Syntax

GenerateScriptPortalURL(PORTAL.portalname, NODE.nodename,RECORD.recordname,
FIELD.fieldname,event_name,function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateScriptPortalURL function to create a URL string that represents an absolute reference to the
specified iScript for the portal servlet. The PortalURI of the node that hosts the specified portal is used in the
generated URL. The URL contains a reference to the portal service (psp) servlet.

If you want to generate a URL for an iScript for the portal content (psc) servlet, use the
GenerateScriptContentURL function.

PeopleCode Built-in Functions Chapter 1

332 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed with the reserved
word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed with the reserved
word FIELD.

event_name Specify the name of the event containing the iScript. This is generally the
FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can also be an already
instantiated record object.

Returns

If a node has a Node Type of PIA, a string of the following format is returned:

http://Portal URI of host portal/portal/node/s/recname.fieldname.event_
name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Portal URI of host node/portal/node/?ICType=Script&ICScriptProgramName=
recname.fieldname.event_name.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptPortalURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_CRM,
 Field.SFASCRIPTS, "FieldFormula", "IScript_SFAHOME");

Might yield the following:

http://mike.com/servlets/psp/testsite/EMPLOYEEPORTAL/CRM/s/WEBLIB_
CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 333

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentRelURL, page 326; Chapter 1,
"PeopleCode Built-in Functions," GenerateScriptContentURL, page 328; Chapter 1, "PeopleCode Built-in
Functions," GenerateScriptPortalRelURL, page 329 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateScriptRelativeURL, page 333

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

GenerateScriptRelativeURL

Syntax

GenerateScriptRelativeURL(PORTAL.portalname, NODE.nodename,RECORD.recordname,
FIELD.fieldname,event_name,function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the GenerateScriptRelativeURL function to create a relative URL string that represents a relative
reference to the specified iScript. The relative reference is suitable for use on any page that has the simple
URL format.

If you want to generate an absolute URL for an iScript, use either the GenerateScriptContentURL or
GenerateScriptPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed with the reserved
word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed with the reserved
word FIELD.

PeopleCode Built-in Functions Chapter 1

334 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

event_name Specify the name of the event containing the iScript. This is generally the
FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can also be an already
instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

portal/node/s/recname.fieldname.event_name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

portal/node/?ICType=Script&ICScriptProgramName=recname.fieldname.event_
name.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptRelativeURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "IScript_SFAHOME");

Might yield the following:

../../../EMPLOYEEPORTAL/CRM//s/WEBLIB_CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentRelURL, page 326; Chapter 1,
"PeopleCode Built-in Functions," GenerateScriptContentURL, page 328; Chapter 1, "PeopleCode Built-in
Functions," GenerateScriptPortalRelURL, page 329 and Chapter 1, "PeopleCode Built-in Functions,"
GenerateScriptPortalURL, page 331

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 335

GenerateTree

Syntax

GenerateTree(&rowset [, TreeEventField])

Description

Use the GenerateTree function to display data in a tree format, with nodes and leaves. The result of the
GenerateTree function is an HTML string, which can be displayed in an HTML area control. The tree
generated by GenerateTree is called an HTML tree.

The GenerateTree function can be used in conjunction with the Tree Classes to display data from trees
created using Tree Manager.

The GenerateTree function works with both an HTML area control and a hidden field. The TreeEventField
parameter contains the contents of the invisible character field used to process the HTML tree events.

When an end user selects a node, expands a node, collapses a node, or uses one of the navigation links, that
event (end-user action) is passed to the invisible field, and the invisible field's FieldChange PeopleCode is
executed.

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Using HTML Trees and the GenerateTree Function,"
Using HTML Tree Actions (Events)

PeopleTools 8.52: PeopleCode Developer's Guide, "Using HTML Trees and the GenerateTree Function,"
Building HTML Tree Pages

Parameters

Parameter Description

&rowset Specify the name of the rowset you've populated with tree data.

TreeEventField Specify the contents of the invisible character field used to process the HTML tree
events. The first time the GenerateTree function is used, that is, to generate the
initial tree, you do not need to include this parameter. Subsequent calls require this
parameter.

Returns

A string that contains HTML code that can be used with the HTML control to display a tree.

PeopleCode Built-in Functions Chapter 1

336 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

In the following example, TREECTLEVENT is the name of the invisible control field that contains the event
string that was passed from the browser.

HTMLAREA = GenerateTree(&TREECTL, TREECTLEVENT);

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Using HTML Trees and the GenerateTree Function,"
Using the GenerateTree Function

GenerateWorklistPortalURL

Syntax

GenerateWorklistPortalURL(PORTAL.portalname,NODE.nodename,BusProc,Activity,
Event,Worklist,Instance)

Description

Use the GenerateWorklistPortalURL function to create a URL string that represents an absolute reference the
specified Worklist (URL) on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated URL
contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateWorklistRelativeURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

BusProc Specify the business process of the Worklist.

Activity Specify the activity of the Worklist.

Event Specify the event of the Worklist.

Instance Specify the instance of the Worklist.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 337

Returns

A string of the following format:

http://PortalURI/Portal/node/w/BusProc.Activity.Event.Worklist.Instance

This function returns a Null string if you specify an invalid portal or node.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateWorklistRelativeURL, page 337

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: Workflow Technology, "Understanding PeopleSoft Workflow"

GenerateWorklistRelativeURL

Syntax

GenerateWorklistRelativeURL(PORTAL.portalname,NODE.nodename,BusProc,Activity,
Event,Worklist,Instance)

Description

Use the GenerateWorklistRelativeURL function to create a URL string that represents a relative reference to
the specified Worklist on the portal servlet. The relative reference is suitable for use on any page that itself
has the simple URL format.

If you want to generate an absolute URL, use the GenerateWorklistPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed with the reserved
word PORTAL. You can also use a string, such as %Portal, for this value.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

BusProc Specify the business process of the Worklist.

Activity Specify the activity of the Worklist.

Event Specify the event of the Worklist.

PeopleCode Built-in Functions Chapter 1

338 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Instance Specify the instance of the Worklist.

Returns

A string of the following format:

../../../Portal/Node/w/BusProc.Activity.Event.Worklist.Instance

This function returns a Null string if you specify an invalid portal or node.

Example

Given the following activity:

Example activity

The following is an example PeopleCode statement used to access this activity:

GenerateWorklistRelativeURL(%Portal, %Node, "Administer Workflow", "Find Timeout
 Worklists", "Worklist Current Operator", "Timeout Notification", 1);

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateWorklistPortalURL, page 336

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: Workflow Technology, "Understanding PeopleSoft Workflow"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 339

GenHTMLMenu

Syntax

GenHTMLMenu(list[, fldr_img_class_ID]
[, element_label])

Description

Use this function to generate an HTML code fragment that will be rendered in the browser as menu drop-
downs, fly-outs, and breadcrumbs. Typically, this function is used when the SmartNavigation data source is a
tree. The elements in the input string are created by the GenRelatedActions function, the
GenABNMenuElement method of the Node class, and the GenABNMenuElement method of the Leaf class.

Parameters

Parameter Description

list Specifies the list of elements as a string.

fldr_img_class_ID Specifies the class ID for a custom folder icon as a string. This class must be
defined in a style sheet, and the style sheet must be assigned to the
SmartNavigation folder.

See PeopleTools 8.52: PeopleTools Portal Technologies, "Replacing
SmartNavigation Images."

This is an optional parameter. To use the default folder icon, you can omit this
parameter or specify the null string "". However, to ensure forward compatibility
or to use the default folder icon while specifying the element_label parameter, you
must specify the null string.

element_label Specifies a label for a drop-down menu item as an array with two numeric
elements, which represents a message catalog entry. The first element is the
message set number and the second element is the message number.

This label is applied to a drop-down menu item that is generated for the
SmartNavigation breadcrumb on which the user has clicked, allowing the user to
view the chart associated with that breadcrumb. The complete label is the word
"View" with the element_label message appended.

This is an optional parameter.

If the element_label is not provided or if the message set or number is undefined,
then a default message catalog entry (95, 9109) is used, which includes the default
message, "User Profile Page," in the label for the drop-down menu item.

Returns

None.

PeopleCode Built-in Functions Chapter 1

340 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

To use the default folder icon, use a call similar to one of the following:

GenHTMLMenu(&szLI, "");

GenHTMLMenu(&szLI);

Note. To ensure forward compatibility or to use the default folder icon while specifying the element_label
parameter, you must follow the first example and specify the null string.

The following example shows how the list of elements is created for a node. In this example,
elements are generated for related actions, the first child node, and child leaves. This list is then passed to the
GenHTMLMenu function.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 341

Local string &szLI;
Local array of number &NavElementLabel;

rem generate the requested node's related actions;
&szLI = &szLI | &MyNode.GenRelatedActions();

/* Begin, Filter the requested tree node's child nodes and leaves that are */
/* displayed based on whatever criteria */

&nNodeOrder = &MyNode.allChildCount;
If &MyNode.HasChildNodes Then
 /* get the first child node */
 &ChildNode = &MyNode.FirstChildNode;

 /* generate the LI tag that is consumed by the portal for this node */
 &szLI = &szLI | &ChildNode.GenABNMenuElement(GetABNInitialNode(&reqParams));

 &ChildNode.LoadABNChart(&rs, &rars, False, GetABNInitialNode(&reqParams));

End-If;

If &MyNode.HasChildLeaves Then
 If &MyNode.ChildLeafCount >= 3 Then
 &MaxCount = 3;
 Else
 &MaxCount = &MyNode.ChildLeafCount;
 End-If;

 For &i = 1 To &MaxCount
 If &i = 1 Then /* get the first child leaf */
 &ChildLeaf = &MyNode.FirstChildLeaf;
 Else /* get the next child leaf */
 &ChildLeaf = &ChildLeaf.NextSib;
 End-If;

 /* generate the LI tag that is consumed by the portal for this leaf */
 &szLI = &szLI | &ChildLeaf.GenABNMenuElement();

 &ChildLeaf.LoadABNChart(&rs, &rars);
 End-For;

End-If;

/* End, Filter the requested tree node's child nodes and leaves that are */
/* displayed based on whatever criteria */

/* GenHTMLMenu(&szLI): Generate the HTML snippet required by the portal */
/* html snippet written to the response object when mouse over event */
/* inject html snippet during page generation when on click event */

&NavElementLabel = CreateArray(6045, 4);
GenHTMLMenu(&szLI, "myfldricon", &NavElementLabel);

PeopleCode Built-in Functions Chapter 1

342 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenDynABNElement, page 293

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," GenABNMenuElement and PeopleTools
8.52: PeopleCode API Reference, "Tree Classes," GenABNMenuElementWithImage

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," GenABNMenuElement; PeopleTools 8.52:
PeopleCode API Reference, "Tree Classes," GenABNMenuElementWithImage and PeopleTools 8.52:
PeopleCode API Reference, "Tree Classes," GenRelatedActions

GenToken

Syntax

GenToken()

Description

Use the GenToken function to create an authentication token for the user currently logged in, as a string.

Generally this function is used in an application engine program when an authentication token is not
automatically generated. However, it can be used anytime. The token that is generated is usually passed to
another process that has no token.

Parameters

None.

Returns

A string containing the authentication token.

See Also

Chapter 3, "System Variables," %AuthenticationToken, page 813

GetABNChartRowSet

Syntax

GetABNChartRowSet()

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 343

Description

Use this function to return a reference to a rowset representing the SmartNavigation chart for the rowset or
tree data currently in the component buffer. This function flushes the rowset prior to returning. The
SmartNavigation chart rowset comprises two record definitions: and PT_ABNCHARTNODE and
PT_ABN_CHART_ND.

Parameters

None.

Returns

A SmartNavigation chart rowset. If the user clicks on a menu folder description instead, then this function
returns Null.

Example

&chart_RS = GetABNChartRowSet();

GetABNInitialNode

Syntax

GetABNInitialNode(&reqParams)

Description

Use this function to return the identifier of the initial SmartNavigation chart node as a string.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs) generated by the
GetABNReqParameters function. This is an array of array of string.

Returns

The identifier of the initial chart node as a string.

PeopleCode Built-in Functions Chapter 1

344 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following example loads the SmartNavigation chart with the initial chart node set to tree node 10100:

&reqParams = GetABNReqParameters("10100");
&MyTree = &Session.GetTree();
&MyNode = &MyTree.FindNode(GetABNNode(&reqParams), "");
&MyNode.LoadABNChart(&rs, True, GetABNInitialNode(&reqParams));

The following example loads the SmartNavigation chart with the initial chart node set to the root of the tree:

&reqParams = GetABNReqParameters();
&MyTree = &Session.GetTree();
&MyNode = &MyTree.FindNode(GetABNNode(&reqParams), "");
&MyNode.LoadABNChart(&rs, True, GetABNInitialNode(&reqParams));

The following example loads the SmartNavigation chart with the initial chart node set to a specific row in the
rowset data source:

&reqParams = GetABNReqParameters("MYROW01");
&rs_ChartRowset = GetABNChartRowSet();
&rs_RelatedActions = GetABNRelActnRowSet();
LoadABN(&rs_DataSource, &rs_ChartRowset, &rs_RelatedActions, ⇒
GetABNNode(&reqParams), GetABNInitialNode(&reqParams));

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

GetABNNode

Syntax

GetABNNode(&reqParams)

Description

Use this function to return the identifier of the current SmartNavigation chart node as a string. The user
requests this chart node through a mouse-click event

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs) generated by the
GetABNReqParameters function. This is an array of array of string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 345

Returns

The identifier of the current SmartNavigation chart node as a string.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

GetABNRelActnRowSet

Syntax

GetABNRelActnRowSet()

Description

Use this function to return a reference to the related actions rowset for the SmartNavigation chart. This
function flushes the rowset prior to returning.

Parameters

None.

Returns

A related actions rowset. If the user clicks on the menu folder description instead, then this function returns
Null.

Example

&relAction_RS = GetABNRelActnRowSet();

GetABNReqParameters

Syntax

GetABNReqParameters([start])

PeopleCode Built-in Functions Chapter 1

346 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use this function to generate HTTP request parameters as an array of name-value pairs. The start parameter
specifies the initial node of the data source. When using a tree data source, the start parameter is optional. If
the initial node is not provided, the tree's root node is the initial node.

When using a rowset data source, the start parameter is required. The returned request parameter array
contains the following values:

Array Element HTTP Request Parameter Name/Value

[1][1]

[1][2]

TREE_NAME

The tree's name.*

[2][1]

[2][2]

TREE_SETID

The tree's setID key.*

[3][1]

[3][2]

TREE_USERKEY

The tree's user key.*

[4][1]

[4][2]

TREE_EFFDT

The tree's effective date key.*

[5][1]

[5][2]

TREE_NODE

The name of the currently requested tree node.*

[6][1]

[6][2]

INITIAL_TREE_NODE

The name of the initial node.

* Set to an empty string when the data source is a rowset.

Parameters

Parameter Description

start Specifies a string representing the initial node of the tree or rowset data source.

Returns

An array of array of string representing the HTTP request parameters (name-value pairs).

Example

Local array of array of string &reqParams;

&reqParams = GetABNReqParameters("00001");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 347

GetABNTreeEffdt

Syntax

GetABNTreeEffdt(&reqParams)

Description

Use this function to extract the effective date key for the tree from the request parameter array. The output of
this function is used to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs) generated by the
GetABNReqParameters function. This is an array of array of string.

Returns

A string representing the effective date key for the tree.

Note. If the SmartNavigation chart data source is a rowset, this function returns an empty string.

Example

Local array of array of string &reqParams;

&reqParams = GetABNReqParameters();

&TreeReturn = &MyTree.Open(GetABNTreeSetid(&reqParams), GetABNTreeUserKey⇒
(&reqParams), GetABNTreeName(&reqParams), GetABNTreeEffdt(&reqParams), "", True);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," Open

PeopleCode Built-in Functions Chapter 1

348 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetABNTreeName

Syntax

GetABNTreeName(&reqParams)

Description

Use this function to extract the tree name from the request parameter array. The output of this function is used
to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs) generated by the
GetABNReqParameters function. This is an array of array of string.

Returns

A string representing the tree name.

Note. If the SmartNavigation chart data source is a rowset, this function returns an empty string.

Example

Local array of array of string &reqParams;

&reqParams = GetABNReqParameters();

&TreeReturn = &MyTree.Open(GetABNTreeSetid(&reqParams), GetABNTreeUserKey⇒
(&reqParams), GetABNTreeName(&reqParams), GetABNTreeEffdt(&reqParams), "", True);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," Open

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 349

GetABNTreeSetid

Syntax

GetABNTreeSetid(&reqParams)

Description

Use this function to extract the setID key for the tree from the request parameter array. The output of this
function is used to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs) generated by the
GetABNReqParameters function. This is an array of array of string.

Returns

A string representing the setID key for the tree.

Note. If the SmartNavigation chart data source is a rowset, this function returns an empty string.

Example

Local array of array of string &reqParams;

&reqParams = GetABNReqParameters();

&TreeReturn = &MyTree.Open(GetABNTreeSetid(&reqParams), GetABNTreeUserKey⇒
(&reqParams), GetABNTreeName(&reqParams), GetABNTreeEffdt(&reqParams), "", True);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," Open

PeopleCode Built-in Functions Chapter 1

350 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetABNTreeUserKey

Syntax

GetABNTreeUserKey(&reqParams)

Description

Use this function to extract the user key for the tree from the request parameter array. The output of this
function is used to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs) generated by the
GetABNReqParameters function. This is an array of array of string.

Returns

A string representing the user key for the tree.

Note. If the SmartNavigation chart data source is a rowset, this function returns an empty string.

Example

Local array of array of string &reqParams;

&reqParams = GetABNReqParameters();

&TreeReturn = &MyTree.Open(GetABNTreeSetid(&reqParams), GetABNTreeUserKey⇒
(&reqParams), GetABNTreeName(&reqParams), GetABNTreeEffdt(&reqParams), "", True);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNReqParameters, page 345

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes," Open

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 351

GetAESection

Syntax

GetAESection(ae_applid,ae_section [, effdt])

Description

Use the GetAESection function to open and associate an AESection PeopleCode object with the base section,
as specified. If no base section by the specified name is found, one is created. This enables you to create base
sections as needed.

Warning! When you open or get an AESection object, (that is, the base section) any existing steps in the
section are deleted.

After you've instantiated the AESection object, set the template section using the SetTemplate AESection
class method. You can copy steps from the template section to the base section before you start the
Application Engine program. This is useful for applications that let users input their "rules" into a user-
friendly page, then convert these rules, at save time, into Application Engine constructs.

When an AESection is opened (or accessed), the system first looks to see if it exists with the given input
parameters. If such a section doesn't exist, the system looks for a similar section based on market, database
platform, and effective date.

The AESection Object is designed for use within an online program. Typically, dynamic sections should be
constructed in response to an end-user action.

Note. Do not call an AESection object from an Application Engine PeopleCode Action. If you need to access
another section, use the CallSection action instead.

Parameters

Parameter Description

ae_applid Specifies the application ID of the section you want to modify.

ae_section Specifies the section name of the base section you want to modify. If no base
section by the specified name is found, one is created.

effdt Specifies the effective date of the section you want to modify (optional).

Returns

An AESection object is returned.

PeopleCode Built-in Functions Chapter 1

352 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "AESection Class"

PeopleTools 8.52: PeopleCode API Reference, "AESection Class," Open

PeopleTools 8.52: PeopleCode API Reference, "AESection Class," AESection Example

GetAnalyticGrid

Syntax

GetAnalyticGrid(PAGE.pagename,gridname)

Description

Use the GetAnalyticGrid function to instantiate an analytic grid object from the AnalyticGrid class, and
populates it with the grid specified by gridname, which is the Page Field Name on the General tab of that
analytic grid's page field properties.

Specify a grid name consisting of any combination of uppercase letters, digits and "#", "$", "@", and "_".

Note. PeopleSoft builds a page grid one row at a time. Because the AnalyticGrid class applies to a complete
grid, you can't attach PeopleCode that uses the AnalyticGrid class to events that occur before the grid is built;
the earliest event you can use is the page Activate event.

See PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor,"
Activate Event.

Using the Grid Name

When you place an analytic grid on a page, the grid is automatically named the same as the name of the
primary record of the scroll for the grid (in the Page Field Name.)

Note. If the name of the record changes, the Page Field Name is not automatically updated. You must change
this name if you want the name of the grid to reflect the name of the record.

This is the name you use with the GetAnalyticGrid function. You can change this name on the General tab of
the Analytic Grid control properties.

To change a grid name:

1. Open the page in Application Designer, select the analytic grid and access the Analytic Grid control
properties.

2. On the General tab, type the new grid name in Page Field Name.

Note. Every grid on a page must have a unique name.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 353

Parameters

Parameter Description

PAGE.pagename Specify the name of the page definition containing the grid you want to access.

gridname Specify the Page Field Name on the General tab of the grid's page field properties.

Returns

A reference to an AnalyticGrid object.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Analytic Grid Classes"

GetAnalyticInstance

Syntax

GetAnalyticInstance(ID)

Description

Use the GetAnalyticInstance function to return a reference to the AnalyticInstance object as specified by the
ID.

The analytic instance specified by ID must already be created before using this function.

Parameters

Parameter Description

ID Specify the analytic instance identifier that you want to access.

Returns

An AnalyticInstance object if successful, null otherwise.

PeopleCode Built-in Functions Chapter 1

354 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateAnalyticInstance, page 140

PeopleTools 8.52: PeopleCode API Reference, "Analytic Calculation Engine Classes," CheckStatus

GetArchPubHeaderXmlDoc

Syntax

GetArchPubHeaderXmlDoc(PubID,PubNode,ChannelName,VersionName[, Segment])

Description

Use the GetArchPubHeaderXMLDoc function to retrieve an archived message header from the message
queue.

This function has been deprecated. You will receive an error if you use this function.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Consuming Services"

GetArchPubXmlDoc

Syntax

GetArchPubXmlDoc(PubID,PubNode,ChannelName, VersionName,MessageName,SubNode[,
Segment])

Description

Use the GetArchPubXmlDoc function to retrieve an archived message from the message queue.

This function has been deprecated. You will receive an error if you use this function.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Error Handling, Logging, Tracing, and
Debugging"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 355

GetArchSubXmlDoc

Syntax

GetArchSubXmlDoc(PubID,PubNode,ChannelName, VersionName,MessageName[, Segment])

Description

Use the GetArchSubXmlDoc function to retrieve an archived message from the message queue.

This function has been deprecated. You will receive an error if you use this function.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Understanding PeopleSoft Integration Broker"

GetAttachment

Syntax

GetAttachment(URLSource,DirAndSysFileName,DirAndLocalFileName[, LocalDirEnvVar[,
 PreserveCase]])

Description

Use the GetAttachment function to download a file from its source storage location to the file system of the
application server.

Note. All directories that are part of the destination full path name must exist before GetAttachment is called.
The GetAttachment function will not create any directories on the application server's file system.

Additional information that is important to the use of GetAttachment can be found in the PeopleTools 8.52:
PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," File Name
Considerations.

PeopleCode Built-in Functions Chapter 1

356 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Attachments
with non-ASCII File Names.

• The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Considerations
When Attaching Text Files.

File System Considerations

If you are uncertain which type of file system the file is going to be transferred to, either a UNIX or Windows
system, you should simply specify a file name for the DirAndLocalFileName parameter and either explicitly
set the LocalDirEnvVar parameter or accept its default value, which is "TMP" (indicating that the value of the
TMP environment variable will be used).

The following code example works for Windows systems, but not UNIX systems:

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "c:\temp\resume.doc");

The following code example works for Unix systems, but not Windows systems:

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "/tmp/resume.doc");

The following two examples work for both Windows and Unix systems:

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "resume.doc");

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "resume.doc", "PS_CFG_HOME");

Warning! If the effectively specified target directory that is to ultimately contain the downloaded file on the
application server is a UNC (Universal Naming Convention) share, an error will occur and GetAttachment
will fail to download the file.

You cannot use a share as the target directory—that is, as the ultimate destination—to download a file onto an
application server using GetAttachment. However, you can use a subdirectory of a UNC share as the target
directory.

For example, if a directory similar to the following were the target directory, GetAttachment would fail:

\\server_name\share_name

However, the following subdirectory of the same UNC share could be used with GetAttachment:

\\server_name\share_name\temp

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 357

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier the form URL.URL_ID,
or a string. This (along with the DirAndSysFileName parameter) indicates the file's
source location.

The URLSource parameter requires forward slashes ("/"). Backward slashes ("\")
are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndSysFileName The relative path and file name of the file at the storage location. This is appended
to URLSource to form the full URL where the file will be transferred from. This
parameter takes a string value.

Note. The URLSource requires "/" slashes. Because DirAndSysFileName is
appended to the URL, it also requires only "/" slashes. "\" are NOT supported in
anyway for either the URLSource or the DirAndSysFileName parameter.

DirAndLocalFileName The name, relative path name, or full path name of the destination file on the
application server. This parameter takes a string value. If you specify only a name
or a relative path name for the destination file, the file will be placed in or relative
to:

• The directory indicated by the value of the environment variable specified by
the LocalDirEnvVar parameter.

• The directory indicated by the value of the TMP environment variable if the
LocalDirEnvVar parameter has not been specified.

If you do not want to use the LocalDirEnvVar parameter or the value of the TMP
environment variable in this way, you must specify a full path name as appropriate
to the application server's operating system.

PeopleCode Built-in Functions Chapter 1

358 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

LocalDirEnvVar This optional parameter takes a string value.

If LocalDirEnvVar is specified, then its value will be prefixed to the value of the
DirAndLocalFileName parameter to form the full path name of the destination file
on the application server's file system. With this parameter, you can avoid the need
to hard-code the full path name.

If LocalDirEnvVar is not specified and the value of the DirAndLocalFileName
parameter is already a full path file name, then that value will itself be used as the
full path name that the downloaded file will have at its destination on the
application server machine. If LocalDirEnvVar is not specified and the value of
the DirAndLocalFileName parameter is not a full path file name, then the value of
the TMP environment variable will be prefixed to the value of the
DirAndLocalFileName parameter to form the full path name that the downloaded
file will have at its destination on the application server machine.

Note. In order to use the optional parameter PreserveCase, you must pass some
value for LocalDirEnvVar. If you want to use the default behavior of
LocalDirEnvVar and also use PreserveCase, you can specify "" (the empty string)
for LocalDirEnvVar. Then the function behaves as if no value is specified. In this
situation, if you wish to use the TMP environment variable, it must be explicitly
specified.

Note.

Do not specify LocalDirEnvVar if you use an absolute path for the
DirAndLocalFileName parameter.

PreserveCase When searching for the file specified by the DirAndSysFileName parameter,
PreserveCase specifies a Boolean value to indicate whether the case of its file
name extension is preserved: True, preserve the case, False, convert the file name
extension in DirAndSysFileName to all lowercase letters.

The default value is False.

For a particular file, use the same value for this parameter that was used when the
file was originally uploaded.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

This is an optional parameter.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 359

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

PeopleCode Built-in Functions Chapter 1

360 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

4 %Attachment_NoDiskSpaceAppServ No disk space on the application
server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

• Improper URL format.

• Failed to connect to the server
specified.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 361

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

Example

The following downloads the file, HRarchive/NewHire/11042000resume.txt, from the FTP server
to c:\NewHires\resume.txt on the application server machine.

&retcode = GetAttachment("ftp://anonymous:hobbit1@ftp.ps.com/HRarchive/", ⇒
"NewHire/11042000resume.txt", "c:\NewHires\resume.txt");

PeopleCode Built-in Functions Chapter 1

362 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," CopyAttachments,
page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment, page 200; Chapter 1, "PeopleCode
Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode Built-in Functions,"
MAddAttachment, page 486; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

GetBiDoc

Syntax

GetBiDoc(XMLstring)

Description

Use the GetBiDoc function to create a BiDocs structure. You can populate the structure with data from
XMLstring. This is part of the incoming Business Interlink functionality, which enables PeopleCode to
receive an XML request and return an XML response.

Note. Business Interlinks is a deprecated product. Use PeopleSoft Integration Broker instead.

See PeopleTools 8.52: PeopleSoft Integration Broker PeopleBook.

Parameters

Parameter Description

XMLstring A string containing XML. You can specify a NULL string for this parameter, that
is, two quotation marks ("") without a space between them.

Return Value

A BiDocs object.

Example

The following example gets an XML request, puts it into a text string, and puts that into a BiDoc. After this is
done, the GetDoc method and the GetValue method can get the value of the skills XML element, which is
contained within the postreq XML element in the XML request.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 363

Local BIDocs &rootInDoc, &postreqDoc;
Local string &blob;
Local number &ret;

&blob = %Request.GetContentBody();
/* process the incoming xml(request)- Create a BiDoc and fill with the request*/
&rootInDoc = GetBiDoc(&blob);
&postreqDoc = &rootInDoc.GetDoc("postreq");
&ret = &postreqDoc.GetValue("skills", &skills);

You can also create an empty BiDoc with GetBiDoc, as in the following example.

Local BIDocs &rootInDoc, &postreqDoc;
Local string &blob;
Local number &ret;

&blob = %Request.GetContentBody();
/* process the incoming xml(request)- Create a BiDoc and fill with the request*/
&rootInDoc = GetBiDoc("");
&ret = &rootInDoc.ParseXMLString(&blob);
&postreqDoc = &rootInDoc.GetDoc("postreq");
&ret = &postreqDoc.GetValue("skills", &skills);

GetCalendarDate

Syntax

GetCalendarDate(comparedate,periods,periodadjustment,outfieldname,company,
paygroup)

Description

Use the GetCalendarDate function to return the value of a Date field from the PS_PAY_CALENDAR table.
If a table entry is not found, GetCalendarDate returns 1899-01-01.

Processing Rules

The following are the processing rules for GetCalendarDate:

1. The function SELECTs all the values for outfieldname, PAY_BEGIN_DT and PAY_END_DT from
PS_PAY_CALENDAR. The result set is sorted in increasing PAY_END_DT order.

2. A SQL SELECT statement is generated in the following form:

3. SELECT outfieldname, PAY_BEGIN_DT, PAY_END_DT FROM PS_PAY_CALENDAR WHERE
COMPAny=:1 AND PAYGROUP=:2 ORDER BY PAY_END_DT;

4. Rows are fetched from the result set until the value of comparedate falls between PAY_BEGIN_DT and
PAY_END_DT. The value of outfieldname is stored in a storage stack.

5. A work variable equal to the value in periods is set.

6. If the value of outfieldname in the located result row is equal to comparedate, then the value in
periodadjustment is added to the work variable. Because periodadjustment may be negative, the result
may be negative.

PeopleCode Built-in Functions Chapter 1

364 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

7. If the work variable is negative then the saved value of outfieldname is returned from the storage stack at
the level specified by the work variable. If the work variable is positive then fetch forward the number of
times specified by the work variable. The value of outfieldname is returned from the most recently fetched
(current) row.

Parameters

Parameter Description

comparedate A date field set by the caller as the date of interest, for example, "1997-02-17."

periods A numeric variable set by the caller specifying the number of periods forward or
backward to be returned.

periodadjustment A numeric variable that adjusts the periods if the comparedate equals the period
end date. This is typically used to adjust for period end dates. Usually the
periodadjustment is either -1, 0, or 1.

outfieldname The name of a date field in the PS_PAY_CALENDAR table. For example
PAY_BEGIN_DT. The value of this field is not referenced or modified by the
routine, but the name of the field is used to build a SQL SELECT statement and to
indicate which value from the table to return in the return date.

company A field set by the caller to be equal to the company code of interest, for example,
"CCB".

paygroup A variable set by the caller to be equal to the PayGroup code of interest, for
example, "M01".

Returns

Returns a Date value from the PS_PAY_CALENDAR table.

Example

The following examples use the sample PS_PAY_CALENDAR entries in the following table. In the example,
comparedate and the result date are Date type fields defined in some record.

COMPANY PAYGROUP PAY_END_DT PAY_BEGIN_DT CHECK_DT

CCB MO1 1997-01-31 1997-01-01 1997-01-31

CCB MO1 1997-02-28 1997-02-01 1997-02-28

CCB MO1 1997-03-31 1997-03-01 1997-03-29

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 365

COMPANY PAYGROUP PAY_END_DT PAY_BEGIN_DT CHECK_DT

CCB MO1 1997-04-30 1997-04-01 1997-04-30

CCB MO1 1997-05-31 1997-05-01 1997-05-31

CCB MO1 1997-06-30 1997-06-01 1997-06-28

CCB MO1 1997-07-31 1997-07-01 1997-07-31

CCB MO1 1997-08-31 1997-08-01 1997-08-30

CCB MO1 1997-09-30 1997-09-01 1997-09-30

CCB MO1 1997-10-31 1997-10-01 1997-10-31

CCB MO1 1997-11-30 1997-11-01 1997-11-27

CCB MO1 1997-12-31 1997-12-01 1997-12-31

CCB SM1 1997-01-15 1997-01-01 1997-01-15

Find the begin date of the pay period containing the date 1997-05-11 (the value of &COMPAREDate). The
result date returned would be 1997-05-01.

&RESULT_Date = GetCalendarDate(&COMPAREDate, 0, 0,
 PAY_BEGIN_DT, COMPAny, PAYGROUP);

Or:

&RESULT_Date = GetCalendarDate(&COMPAREDate, 1, -1,
 PAY_BEGIN_DT, COMPAny, PAYGROUP);

GetChart

Syntax

GetChart(RecordName.FieldName)

Description

Use the GetChart function to get a reference to a Chart class object. You associate a record and field name
with a chart page control in Application Designer.

PeopleCode Built-in Functions Chapter 1

366 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field name associated with the chart.

Returns

A reference to a chart object.

Example

&MyChart = GetChart(Chart_Record.Chart_Field);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes"

GetChartURL

Syntax

GetChartURL(&Chart)

Description

Use the GetChartURL function to generate the URL of a chart object. This URL can then be used in your
application for displaying a chart.

GetChartURL is used only with the Chart class and Gantt class.

Parameters

Parameter Description

&Chart Specify an already instantiated chart object.

Returns

A URL as a string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 367

Example

Function IScript_GetChartURL()
local object &MyChart;
local string &MyURL;

 &MyChart = CreateObject("Chart");
 &MyChart .SetData = xx;

/* xx will be a data row set */

 &MyURL = %Response.GetChartURL(&MyChart);
 &sMap = &oChart.ImageMap;

 %Response.Write("<HTML><IMG SRC=");
 %Response.Write(&MyURL);
 %Response.Write(" USEMAP=#THEMAP><MAP NAME=THEMAP>");
 %Response.Write(&sMap);
 %Response.Write("</MAP></HTML>");

End-Function;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes"

GetCwd

Syntax

GetCwd()

Description

 Use the GetCwd function to determine the current working directory of the process that executes it. This
means that in PeopleSoft Pure Internet Architecture it returns the current working directory on the server, in
an Application Engine program it returns the current working directory of the Application Engine process,
and so on.

Returns

Returns a string containing the path of the current working directory.

Example

The example stores a string specifying the current working directory in &CWD.

&CWD = GetCwd();

PeopleCode Built-in Functions Chapter 1

368 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetEnv, page 368 and Chapter 1, "PeopleCode Built-in
Functions," ExpandEnvVar, page 271

GetEnv

Syntax

GetEnv(env_var)

Description

Use the GetEnv function to return the value of an environment variable specified by env_var as a string. If the
environment variable does not exist, GetEnv it returns a null string.

For example, you can use the GetEnv function to determine the actual path of PS_HOME. You could use this
with the Exec function, which automatically prepends the command string with the path of PS_HOME.

Parameters

Parameter Description

env_var A string specifying the environment variable.

Important! Because the input string is converted to all uppercase, the env_var
parameter is case-insensitive. While environment variable names are case-
sensitive on UNIX systems—that is, "netdrive" is a different variable from
"NetDrive"—in both cases, GetEnv returns the value of the NETDRIVE
environment variable if it exists.

Returns

A string representing the value of the specified environment variable; Null if the variable does not exist.

Example

Assume that the environment variable NETDRIVE is equal to "N:" and the environment variable netdrive is
equal to "P:". The following statement returns "N:" in &drive:

&drive = GetEnv("netdrive");

Furthermore, if the environment variables netdrive and NetDrive are defined on a UNIX system, but not
NETDRIVE, each of the following calls to GetEnv return Null:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 369

&string = GetEnv("netdrive");
&string = GetEnv("NetDrive");
&string = GetEnv("NETDRIVE");

See Also

Chapter 1, "PeopleCode Built-in Functions," GetCwd, page 367 and Chapter 1, "PeopleCode Built-in
Functions," ExpandEnvVar, page 271

GetField

Syntax

GetField([recname.fieldname])

Description

Use the GetField function to create a reference to a field object for the current context; that is, from the row
containing the currently executing program.

If you do not specify recname.fieldname, the current field executing the PeopleCode is returned.

Note. For PeopleCode programs located in events that are not associated with a specific row, record, and field
at the point of execution this function is invalid. That is, you cannot use this function in PeopleCode programs
on events associated with high-level objects like pages or components. For events associated with record level
programs (like component record), this function is valid, but it must be specified with a field name, as there is
an assumed record, but no assumed field name.

When GetField is used with an associated record and field name on component buffer data, the following is
assumed:

&FIELD = GetRow().recname.fieldname;

Parameters

Parameter Description

recname.fieldname If you do not want to refer to the field executing the PeopleCode, specify a record
name and field name.

Returns

This function returns a field object that references the field from the specified record.

PeopleCode Built-in Functions Chapter 1

370 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

Local Field &CHARACTER;

&CHARID = GetField(FIELD.CHAR_ID);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class" and Chapter 1, "PeopleCode Built-in
Functions," GetPageField, page 398

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

GetFile

Syntax

GetFile(filename,mode [, charset] [, pathtype])

Description

Use the GetFile function to instantiate a new file object from the File class, associate it with an external file,
and open the file so you can use File class methods to read from or write to it.

Any file opened for writing (using a call to the GetFile function or the File class Open method) by a
PeopleCode program that runs in the Process Scheduler is automatically managed by the Report Repository.

You can use the GetFile or GetTempFile functions to access an external file, but each execution of GetFile or
GetTempFile instantiates a new file object. If you plan to access only one file at a time, you need only one
file object. Use GetFile or GetTempFile to instantiate a file object for the first external file you access. Then,
use Open to associate the same file object with as many different external files as you want. However, if you
expect to have multiple files open at the same time, you need to instantiate multiple file objects with GetFile
or GetTempFile.

GetFile and Open both perform implicit commits. Therefore, the GetTempFile function has been introduced
specifically to avoid these implicit database commits. GetTempFile differs from GetFile in two respects:

• GetTempFile does not perform an implicit commit.

• GetTempFile does not make the associated file available through the Report Repository even when the
calling PeopleCode program is run through the Process Scheduler.

Therefore, GetTempFile can be a good choice when you wish to avoid implicit database commits and when
you do not need to have the file managed through the Report Repository. Otherwise, GetTempFile operates
exactly the same as GetFile.

See Chapter 1, "PeopleCode Built-in Functions," GetTempFile, page 425.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 371

Parameters

Parameter Description

filespec Specify the name, and optionally, the path, of the file you want to open.

mode A string indicating how you want to access the file. The mode can be one of the
following:

"R" (Read mode): opens the file for reading, starting at the beginning.

"W" (Write mode): opens the file for writing.

Warning! When you specify Write mode, any existing content in the file is
discarded.

"A" (Append mode): opens the file for writing, starting at the end. Any existing
content is retained.

 "U" (Update mode): opens the file for reading or writing, starting at the beginning
of the file. Any existing content is retained. Use this mode and the GetPosition and
SetPosition methods to maintain checkpoints of the current read/write position in
the file.

In Update mode, any write operation clears the file of all data that follows the
position you set.

Note. Currently, the effect of the Update mode and the GetPosition and
SetPosition methods is not well defined for Unicode files. Use the Update mode
only on files stored with a non-Unicode character set.

"E" (Conditional "exist" read mode): opens the file for reading only if it exists,
starting at the beginning. If it doesn't exist, the Open method has no effect. Before
attempting to read from the file, use the IsOpen property to confirm that it's open.

"N" (Conditional "new" write mode): opens the file for writing, only if it doesn't
already exist. If a file by the same name already exists, the Open method has no
effect. Before attempting to write to the file, use the IsOpen property to confirm
that it's open. You can insert an asterisk (*) in the file name to ensure that a new
file is created. The system replaces the asterisk with numbers starting at 1 and
incrementing by 1, and checks for the existence of a file by each resulting name in
turn. It uses the first name for which a file doesn't exist. In this way you can
generate a set of automatically numbered files. If you insert more than one
asterisk, all but the first one are discarded.

PeopleCode Built-in Functions Chapter 1

372 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

charset A string indicating the character set you expect when you read the file, or the
character set you want to use when you write to the file. You can abbreviate
Unicode UCS-2 to "U" and the host operating system's default non-Unicode
(sometimes referred to as the ANSI character set) to "A". All other character sets
must be spelled out in full, for example, ASCII, Big5, Shift-JIS, UTF8, or
UTF8BOM.

If "A" is specified as the character set, or you do not specify a character set, the
character set used is dependent on the application server configuration. On a
Windows application server, the default non-Unicode character set is dependent on
the Windows ANSI Codepage (ACP) which can be checked using the DOS
command chcp. On a Unix application server, the default non-Unicode character
set is specified in the application server configuration file, psappsrv.cfg, and can
be modified using PSADMIN. You can also use a record field value to specify the
character set (for example, RECORD.CHARSET.)

A list of supported character set names valid for this argument can be found in
PeopleTools 8.52: Global Technology PeopleBook.

See PeopleTools 8.52: Global Technology, "Selecting and Configuring Character
Sets and Language Input and Output," Character Sets in the PeopleSoft Pure
Internet Architecture.

Note. If you attempt to read data from a file using a different character set than
was used to write that data to the file, the methods used generate a runtime error or
the data returned is unusable.

When a file is opened for reading using the "U" charset argument, GetFile expects
the file to begin with a Unicode byte order mark (BOM). This mark indicates
whether the file is written in big endian order or little endian order. A BOM
consisting of the hex value 0xFEFF indicates a big endian file, a BOM consisting
of the hex value 0xFFEF indicates a little endian file. If the Unicode UCS-2 file
being opened does not start with a BOM, an error is returned. The BOM is
automatically stripped from the file when it is read into the buffers by GetFile.

When a file is opened for writing using the "U" charset argument, the appropriate
Unicode BOM is automatically written to the start of the file depending on
whether the application server hardware platform operates in little endian or big
endian mode.

BOMs are only expected or supported for files in Unicode character sets such as
UTF8, UTF8BOM, and UCS2. For consuming applications that do expect the
BOM for UTF-8 files, the UTF8BOM character set is to create UTF-8 files with
the BOM.

Note. For example, the UTF-8 BOM is represented by the sequence 0xEF BB BF.
This sequence can be misinterpreted by a non-Unicode character set such as ISO-
8859-1 and appears as ISO characters ï»¿.

When working with XML documents, specify UTF8 or UTF8BOM for charset.

If you are writing an XML file using a different character set, you must remember
to include a character set declaration in the XML file.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 373

Parameter Description

pathtype If you have prepended a path to the file name, use this parameter to specify
whether the path is an absolute or relative path. The valid values for this parameter
are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don't specify pathtype the default is %FilePath_Relative.

If you specify a relative path, that path is appended to the path constructed from a
system-chosen environment variable. A complete discussion of relative paths and
environment variables is provided in documentation on the File class.

See PeopleTools 8.52: PeopleCode API Reference, "File Class," Working With
Relative Paths.

If the path is an absolute path, whatever path you specify is used verbatim. You
must specify a drive letter and the complete path. You can't use any wildcards
when specifying a path.

The Component Processor automatically converts platform-specific separator
characters to the appropriate form for where your PeopleCode program is
executing. On a Windows system, UNIX "/" separators are converted to "\", and
on a UNIX system, Windows "\" separators are converted to "/".

Note. The syntax of the file path does not depend on the file system of the
platform where the file is actually stored; it depends only on the platform where
your PeopleCode is executing.

Note. The syntax of the file path does not depend on the file system of the platform where the file is actually
stored; it depends only on the platform where your PeopleCode is executing.

Returns

A file object if successful; Null otherwise.

Example

The following example opens an existing UCS-2 file for reading:

&MYFILE = GetFile(&SOMENAME, "E", "U");
If &MYFILE.IsOpen Then
 while &MYFILE.ReadLine(&SOMESTRING);
 /* Process the contents of each &SOMESTRING */
 End-While;
 &MYFILE.Close();
End-If;

The following example opens a numbered file for writing in a non-Unicode format, without overwriting any
existing files:

PeopleCode Built-in Functions Chapter 1

374 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&MYFILE = GetFile("c:\temp\item*.txt", "N", %FilePath_Absolute);
If &MYFILE.IsOpen Then
 &MYFILE.WriteLine("Some text.");
 &MYFILE.Close();
End-If;

The following example uses the CHARSET field to indicate the character set to be used:

&MYFILE = GetFile("INPUT.DAT", "R", RECORD.CHARSET);

See Also

Chapter 1, "PeopleCode Built-in Functions," FileExists, page 278; Chapter 1, "PeopleCode Built-in
Functions," FindFiles, page 283 and Chapter 1, "PeopleCode Built-in Functions," GetTempFile, page 425

PeopleTools 8.52: PeopleCode API Reference, "File Class"

PeopleTools 8.52: PeopleCode API Reference, "File Class," Open

PeopleTools 8.52: PeopleCode API Reference, "File Class," GetPosition

PeopleTools 8.52: PeopleCode API Reference, "File Class," SetPosition

PeopleTools 8.52: PeopleCode API Reference, "File Class," IsOpen

PeopleTools 8.52: PeopleCode API Reference, "File Class," File Access Interruption Recovery

GetGanttChart

Syntax

GetGanttChart([RecordName.FieldName])

Description

Use the GetGanttChart function to get a reference to a Gantt class chart object. You associate a record and
field name with a page control in Application Designer.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want to get.

Returns

A reference to a Gantt object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 375

Example

&gGantt = GetGanttChart(QE_CHART_DUMREC.QE_CHART_FIELD);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes"

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes," Using the Gantt Class

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Using Page Controls," Using Charts

GetGrid

Syntax

GetGrid(PAGE.pagename,gridname)

Description

Use the GetGrid function to instantiate a grid object from the Grid class, and populates it with the grid
specified by gridname, which is the Page Field Name on the General tab of that grid's page field properties.

Use the GetGrid function to return a reference to a grid object. If you want to access an AnalyticGrid, use the
GetAnalyticGrid function instead.

Note.

If more than one occurs count was specified for the grid in Application Designer, GetGrid will return only the
first occurence of the grid.

Specify a grid name consisting of any combination of uppercase letters, digits and "#", "$", "@", and "_".

Note. PeopleSoft builds a page grid one row at a time. Because the Grid class applies to a complete grid, you
can't attach PeopleCode that uses the Grid class to events that occur before the grid is built; the earliest event
you can use is the page Activate Event.

See PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor,"
Activate Event.

Using the Grid Name

When you place a grid on a page, the grid is automatically named the same as the name of the primary record
of the scroll for the grid (in the Page Field Name.)

Note. If the name of the record changes, the Page Field Name is not automatically updated. You must change
this name if you want the name of the grid to reflect the name of the record.

PeopleCode Built-in Functions Chapter 1

376 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

This is the name you use with the GetGrid function. You can change this name on the Record tab of the Grid
properties.

Changing a grid name

To change a grid name:

1. Open the page in Application Designer, select the grid and access the page field properties.

2. On the General tab, type the new grid name in Page Field Name.

Note. Every grid on a page must have a unique name.

Parameters

Parameter Description

PAGE.pagename Specify the name of the page definition containing the grid you want.

gridname Specify the Page Field Name on the General tab of the grid's page field properties.

Returns

A Grid object populated with the requested grid.

Example

This example retrieves the second grid named "EMPL_GRID" within a scroll:

local Grid &MYGRID;

&MYGRID = GetGrid(PAGE.EMPLOYEE_CHECKLIST, "EMPL_GRID");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 377

See Also

PeopleTools 8.52: PeopleCode API Reference, "Grid Classes," GetColumn

Chapter 1, "PeopleCode Built-in Functions," GetAnalyticGrid, page 352

GetHTMLText

Syntax

GetHTMLText(HTML.textname [, paramlist])

Where paramlist is an arbitrary-length list of values of undetermined (Any) data type in the form:

inval1 [, inval2] ...

Description

Use the GetHTMLText function to retrieve a predefined HTML text from an HTML definition in the user's
current language, or the base language if no entry exists in the user's current language. If any values are
included in paramlist, they are substituted into the HTML text based on positional reference (for example,
%BIND(:1) is the first parameter, %BIND(:2) is the second, and so on.)

Note. Use the GetHTMLText function only to retrieve HTML, or HTML that contains a JavaScript program,
from an HTML definition. If you have an HTML definition that contains only JavaScript, use the
GetJavaScriptURL response class method to access it.

See PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)," GetJavaScriptURL.

Restrictions on Use

Use this function with the PeopleSoft Pure Internet Architecture only. If run from a two-tier environment, the
parameter substitution does not take place. This function cannot be used within Application Engine programs.

Parameters

Parameter Description

HTML.textname Specify the name of an existing HTML text from an HTML definition.

Returns

The resulting HTML text is returned as a string.

PeopleCode Built-in Functions Chapter 1

378 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following is the text in the HTML definition TEST_HTML:

This is a %BIND(:1) and %BIND(:2) test.

The following is the PeopleCode program:

Local Field &HTMLfield;

&string = GetHTMLText(HTML.TEST_HTML, "good", "simple");
&HTMLfield = GetRecord(Record.CHART_DATA).HTMLAREA;
&HTMLfield.Value = &string;

The output from &string (displayed in an HTML area control) is:

This is a good and simple test.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and PeopleSoft Pure Internet Architecture,"
Using HTML Definitions and the GetHTMLText Function

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Using Page Controls," Using HTML
Areas

GetImageExtents

Syntax

GetImageExtents(IMAGE.ImageName)

Description

Use the GetImageExtents function to return the width and height of the image specified by ImageName.

Parameters

Parameter Description

ImageName Specify the name of the image on the page. This image must exist on the page.

Returns

An array of data type number, where element 1 is the image height and element 2 is the image width.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 379

Example

Local array of number &ImageExtents;

&ImageExtents = GetImageExtents(Image.PT_TREE_EXPANDED);

WinMessage("Height is " | &ImageExtents[1] | " and width is " | &ImageExtents[2]);

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Field Definitions,"
Specifying Image Field Attributes

GetInterlink

Syntax

GetInterlink(Interlink.name)

Description

Use the GetInterlink function to instantiate a Business Interlink definition object based on a Business
Interlink definition created in Application Designer. The Business Interlink object can provide a gateway for
PeopleSoft applications to the services of any external system.

Note. Business Interlinks is a deprecated product. Use PeopleSoft Integration Broker instead.

See PeopleTools 8.52: PeopleSoft Integration Broker PeopleBook.

After you use this function, you may want to refresh your page. The Refresh rowset class reloads the rowset
(scroll) using the current page keys. This causes the page to be redrawn. GetLevel0().Refresh()
refreshes the entire page. If you only want a particular scroll to be redrawn, you can refresh just that part.

Generally, do not use the GetInterlink function in a program you create from scratch. If you drag a Business
Interlink definition from the project workspace (in Application Designer) to an open PeopleCode editor
window, a "template" is created, with values filled in based on the Business Interlink definition you dragged
in.

The following is the template created from dragging the Business Interlink definition LDAP_SEARCHBIND
to an open PeopleCode editor window.

PeopleCode Built-in Functions Chapter 1

380 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

/* ===>
 This is a dynamically generated PeopleCode template to be used only as a helper
 to the application developer. You need to replace all references to '<*>' OR
 default values with references to PeopleCode variables and/or a Rec.Fields.*/

/* ===> Declare and instantiate: */
Local Interlink &LDAP_SEARCHBI_1;
Local BIDocs &inDoc;
Local BIDocs &outDoc;
Local Boolean &RSLT;
Local number &EXECRSLT;
&LDAP_SEARCHBI_1 = GetInterlink(INTERLINK.LDAP_SEARCHBIND);

/* ===> You can use the following assignments to set the configuration parameters.
*/

&LDAP_SEARCHBI_1.Server = "jtsay111198.peoplesoft.com";
&LDAP_SEARCHBI_1.Port = 389;
&LDAP_SEARCHBI_1.User_DN = "cn=Admin,o=PeopleSoft";
&LDAP_SEARCHBI_1.Password = &password;
&LDAP_SEARCHBI_1.UserID_Attribute_Name = "uid";
&LDAP_SEARCHBI_1.URL = "///file:C:/User/Documentum/XML%20Applications/proddoc/
peoplebook_upc/peoplebook_
upc.dtd";
&LDAP_SEARCHBI_1.BIDocValidating = "Off";

/* ===> You might want to call the following statement in a loop if there is more⇒
 than one row of data to be added. */

/* ===> Add inputs: */
&inDoc = &LDAP_SEARCHBI_1.GetInputDocs("");
&ret = &inDoc.AddValue("User_ID", <*>);
&ret = &inDoc.AddValue("User_Password", <*>);
&ret = &inDoc.AddValue("Connect_DN", <*>);
&ret = &inDoc.AddValue("Connect_Password", <*>);
&Directory_Search_ParmsDoc = &inDoc.AddDoc("Directory_Search_Parms");
&ret = &Directory_Search_ParmsDoc.AddValue("Host", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Port", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Base", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Scope", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Filter", <*>);

/* ===> The following statement executes this instance: */
&EXECRSLT = &LDAP_SEARCHBI_1.Execute();
If (&EXECRSLT <> 1) Then
 /* The instance failed to execute */
Else
&outDoc = &LDAP_SEARCHBI_1.GetOutputDocs("");
&ret = &outDoc.GetValue("Distinguished_Name", <*>);
&ret = &outDoc.GetValue("return_status", <*>);
&ret = &outDoc.GetValue("return_status_msg", <*>);

End-If; /* If NOT &RSLT ... */

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 381

Parameters

Parameter Description

Interlink.name Specify the name of the Business Interlink definition from which to instantiate a
Business Interlink object.

Returns

A Business Interlink object.

Example

The following example instantiates a Business Interlink object based on the Business Interlink definition
QE_RP_SRAALL.

Local Interlink &SRA_ALL_1;

&SRA_ALL_1 = GetInterlink(Interlink.QE_RP_SRAALL);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Business Interlink Class"

GetJavaClass

Syntax

GetJavaClass(ClassName)

Description

Use the GetJavaClass function to access a Java class so that you can manipulate it in PeopleCode. This is
used for those classes that have static members, where it isn't appropriate to instantiate an object of the class.
You can call only static methods, that is, class methods, with the object created with this function.

In Java, you access such static members of a class by using the class name:

result = java.class.name.SomeStaticMethod();

To do this in PeopleCode, do the following:

&Result = GetJavaClass("java.class.name").SomeStaticMethod();

Note. If you create a class that you want to call using GetJavaClass, it can be located in a directory specified
in the PS_CLASSPATH environment variable or in other specified locations. The PeopleCode API Reference
provides details on where you can place custom and third-party Java classes.

PeopleCode Built-in Functions Chapter 1

382 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See PeopleTools 8.52: PeopleCode API Reference, "Java Class," System Setup for Java Classes.

Parameters

Parameter Description

ClassName Specify the name of an already existing class. This parameter takes a string value.

Returns

A JavaObject that refers to the named Java class.

Example

The Java class java.lang.reflect.Array has no public constructors and has only static methods. The methods
are used to manipulate Java array objects. One of these static methods is GetInt:

public static int getInt(Object array, int index)

To use this method, get the class by using GetJavaClass. This code illustrates accessing the value of the fifth
element of an integer array.

Local JavaObject &RefArray, &MyArray;

. . .

&RefArray = GetJavaClass("java.lang.reflect.Array");

. . .

&MyArray = CreateJavaArray("int[]", 24);

. . .

&FifthElement = &RefArray.getInt(&MyArray, 4);

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateJavaObject, page 151 and Chapter 1, "PeopleCode Built-
in Functions," CreateJavaArray, page 150

PeopleTools 8.52: PeopleCode API Reference, "Java Class"

GetLevel0

Syntax

GetLevel0()

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 383

Description

Use the GetLevel0 function to create a rowset object that corresponds to level 0 of the component buffer. If
used from PeopleCode that isn't associated with a page, it returns the base rowset from the current context.

Parameters

 GetLevel0 has no parameters. However, it does have a default method, GetRow, and a shortcut. Specifying
GetLevel0()(1) is the equivalent of specifying GetLevel0().GetRow(1).

Returns

This function returns a rowset object that references the base rowset. For a component, this is the level 0 of
the page. For a Application Engine program, this is the state record rowset. For a message, this is the base
rowset.

Note. You can also get the base rowset for a message using the GetRowset message class method, that is,
&MSG.GetRowset().

Example

The following code sample returns the level one rowset.

Local Rowset &ROWSET;

&ROWSET = GetLevel0().GetRow(1).GetRowset(SCROLL.LEVEL1_REC);

The following is equivalent to the previous example.

Local Rowset &ROWSET;

&ROWSET = GetLevel0()(1).GetRowset(SCROLL.LEVEL1_REC);

To reference a level 2 rowset you would have code similar to this:

Local Rowset &ROWSET_LEVEL2, &ROWSET_LEVEL0, &ROWSET_LEVEL1;

&ROWSET_LEVEL2 = GetLevel0().GetRow(1).GetRowset(SCROLL.LEVEL1_REC).GetRow(5).
 GetRowset(SCROLL.LEVEL2_REC);

 /* or */

&ROWSET_LEVEL0 = GetLevel0();
&ROWSET_LEVEL1 = &ROWSET_LEVEL0.GetRow(1).GetRowset(SCROLL.LEVEL1_REC);
&ROWSET_LEVEL2 = &ROWSET_LEVEL1.GetRow(5).GetRowset(SCROLL.LEVEL2_REC);
 /* or */
&ROWSET_LEVEL2 = GetLevel0()(1).LEVEL1_REC(5).GetRowset(SCROLL.LEVEL2_REC);

PeopleCode Built-in Functions Chapter 1

384 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRowset, page 413

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

GetMethodNames

Syntax

GetMethodNames(Type, Name)

Description

Use the GetMethodNames function to return either the method names for a Component Interface, or the
function names of a WEBLIB record.

Parameters

Parameter Description

Type Specify the type of methods or functions you want returned. This parameter takes
a string value. The values are:

• WebLib

• CompIntfc

Name Specify the name of the Component Interface or WEBLIB record that you want to
know the methods or functions for.

Returns

An array of string containing the method or function names.

Example

Local array of string &Array;

&Array = GetMethodNames("CompIntfc", CompIntfc.USER_PROFILE);

&Array = GetMethodNames("WebLib", Record.WEBLIB_PORTAL);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 385

See Also

PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes"

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)," Web Libraries

GetMessage

Syntax

GetMessage()

Description

Use the GetMessage function to return a message.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

It retrieves a message from the message queue for the current message being processed.

Note.

The GetMessage function does not load the message with data. It always creates a new instance of a message
object. You must use another method, such as GetRowset, to populate the message object. In addition, you
must populate the message object with data before running any methods on it.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetMessage

Parameters

None.

Returns

A reference to an empty message object if successful, NULL if not successful.

Example

Local message &MSG;
&MSG = GetMessage();

PeopleCode Built-in Functions Chapter 1

386 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateMessage, page 153

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetRowset

PeopleTools 8.52: PeopleCode API Reference, "Message Classes"

GetMessageInstance

Syntax

GetMessageInstance(pub_id,pub_nodename,channelname)

Description

Use the GetMessageInstance function to get a message from the message queue.

Note. This function has been deprecated and is no longer supported.

GetMessageXmlDoc

Syntax

GetMessageXmlDoc()

Description

Use the GetMessageXmlDoc function in any of the messaging PeopleCode events.

Note. This function has been deprecated and remains for backward compatibility only. Use the Message class
GetXMLDoc method instead.

It retrieves an XML message, either from the message queue for asynchronous messages, or in memory for
synchronous messages, for the current message being processed. An XML message is a message that is
unstructured, that is, isn't based on a record hierarchy. It creates and loads a data tree for the default message
version, and returns NULL if not successful.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetXmlDoc

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 387

Parameters

None.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

Example

The following example uses the GetMessageXmlDoc built-in function.

Local XmlDoc &BIGMAN;
Local XmlNode &node, &root;
Local string &outstring;
Local Rowset &LEVEL0;
Local Record &SALES_ORDER_INFO, &REC;

&CRLF = Char(13) | Char(10);

&BIGMAN = GetMessageXmlDoc();

&root = &BIGMAN.DocumentElement;
&child_count = &root.ChildNodeCount;

/* Get values out of XMLDoc */
&node_array = &root.GetElementsByTagName("QE_ACCT_ID");
&acct_id_node = &node_array.Get(2);
&account_id_value = &acct_id_node.NodeValue;

&node_array = &root.GetElementsByTagName("QE_ACCOUNT_NAME");
&acct_name_node = &node_array.Get(2);
&account_name_value = &acct_name_node.NodeValue;

&node_array = &root.GetElementsByTagName("QE_ADDRESS");
&address_node = &node_array.Get(2);
&address_value = &address_node.NodeValue;

&node_array = &root.GetElementsByTagName("QE_PHONE");
&phone_node = &node_array.Get(2);
&phone_value = &phone_node.NodeValue;

&outstring = "GetMessageXMLDoc Test";
&outstring = &outstring | &CRLF | &account_id_value | &CRLF | &account_name_value
 | &CRLF | &address_value | &CRLF | &phone_value;

&SALES_ORDER_INFO = CreateRecord(Record.QE_SALES_ORDER);
&SALES_ORDER_INFO.GetField(Field.QE_ACCT_ID).Value = &account_id_value;
&SALES_ORDER_INFO.GetField(Field.DESCRLONG).Value = &outstring;
&SALES_ORDER_INFO.Update();

PeopleCode Built-in Functions Chapter 1

388 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," PublishXmlDoc, page 540 and Chapter 1, "PeopleCode Built-in
Functions," SyncRequestXmlDoc, page 672

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

PeopleTools 8.52: PeopleCode API Reference, "Message Classes"

GetNextNumber

Syntax

GetNextNumber ({record.field | record_name,field_name}, max_number)

Description

Use the GetNextNumber function to increment the value in a record for the field you specify by one and
returns that value. You might use this function to increment an employee ID field by one when you are
adding a new employee. If the new value generated exceeds max_number, a negative value is returned and
the field value isn't incremented.

The maximum value possible for max_number is 2147483647.

PeopleCode Event Considerations

Because this function results in a database update (specifically, UPDATE, INSERT, and DELETE) it should
only be issued in the following events:

• SavePreChange

• WorkFlow

• SavePostChange

If you use this function in an event other than these, you need to ensure that the dataflow is correct and that
you do not receive unexpected results.

GetNextNumber and GetNextNumberWithGapsCommit

The following is some of the differences between the two functions, to enable you to better chose which one
is better for your application.

GetNextNumber GetNextNumberWithGapsCommit

No AutoCommit (which can be a problem, as the table
is locked until all Save events are finished.)

AutoCommit (this can be a performance enhancement
as table is not locked as long).

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 389

GetNextNumber GetNextNumberWithGapsCommit

Ability to use WHERE criteria for maintaining multiple
sequence numbers in a single record.

Ability to increment by more than 1.

Allowed in SavePostChange Can be used in any PeopleCode event.

Parameters

Parameter Description

record.field Specify the record and field identifiers for the field for which you want the new
number. This is the recommended way to identify the field.

record_name Specify as a string the name of the record containing the field for which you want
the new number. This parameter with field_name was used prior to PeopleTools 8.

field_name Specify as a string the name of the field for which you want the new number. This
parameter with record_name was used prior to PeopleTools 8.

Note. If you use the older syntax (record_name,field_name), you have to manually
update these two parameters in your programs whenever that record or field is
renamed. The new syntax (record.field) is automatically updated, so you won't
have to maintain it.

max_number Specify the highest allowed value for the field you're incrementing. The maximum
value possible for max_number is 2147483647.

Returns

A Number value equal to the highest value of the field specified plus one.

 GetNextNumber returns an error if the value to be returned would be greater than max_number. The function
returns one of the following:

Numeric Value Constant Value Description

Number N/A The new number

-1 %GetNextNumber_SQLFailure SQL failure

-2 %GetNextNumber_TooBig Number too large, beyond
max_number

PeopleCode Built-in Functions Chapter 1

390 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

-3 %GetNextNumber_NotFound No number found, invalid data format

Example

If %Component = "RUN_AR33000" Then
 DUN_ID_NUM = GetNextNumber(INSTALLATION_AR.DUN_ID_NUM, 99999999);
End-if;

The following uses the constant to check for the value returned:

&VALUE = GetNextNumber(INSTALLATION_AR.DUN_ID_NUM, 999);

Evaluate &VALUE
When = %GetNextNumber_SQLFailure
 /* do processing */
When = %GetNextNumber_TooBig
 /* do processing */
When = %GetNextNumber_NotFound
 /* Do processing */
When-other
 /* do other processing */
End-Evaluate;

See Also

Chapter 1, "PeopleCode Built-in Functions," GetNextNumberWithGaps, page 390

GetNextNumberWithGaps

Syntax

GetNextNumberWithGaps(record.field,max_number,increment [, WHERE_Clause,
paramlist])

Where paramlist is an arbitrary-length list of values in the form:

var1 [, var2] ...

Description

Use the GetNextNumberWithGaps function to determine the highest value in a table for the field you specify,
and return that value plus increment.

Note. This function has been deprecated and remains for backward compatibility only. Use the
GetNextNumberWithGapsCommit function instead.

This function also enables you to specify a SQL WHERE clause as part of the function for maintaining
multiple sequence numbers in a single record.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 391

Note. GetNextNumberWithGaps also issues a COMMIT after incrementing the sequence number if no other
database updates have occurred since the last COMMIT. This limits the time a database lock is held on the
row and so may improve performance.

PeopleCode Event Considerations

Because this function results in a database update (specifically, UPDATE, INSERT, and DELETE) it should
only be issued in the following events:

• SavePreChange

• WorkFlow

If you use this function in an event other than these, you need to ensure that the dataflow is correct and that
you do not receive unexpected results.

Parameters

Parameter Description

record.field Specify the record and field identifiers for the field for which you want the new
number. This is the recommended way to identify the field.

max_number Specify the highest allowed value for the field you're incrementing. You can
specify up to 31 digits for this value.

increment Specify the value you want the numbers incremented by. You can specify up to 31
digits for this value.

WHERE_Clause Specify a WHERE clause for maintaining multiple sequence numbers.

paramlist Parameters for the WHERE clause.

Returns

A Number value equal to the highest value of the field specified plus one.

GetNextNumberWithGaps returns an error if the value to be returned would be greater than max_number.
The function returns one of the following:

Numeric Value Constant Value Description

Number N/A The new number

-1 %GetNextNumber_SQLFailure SQL failure

-2 %GetNextNumber_TooBig Number too large, beyond
max_number

PeopleCode Built-in Functions Chapter 1

392 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

-3 %GetNextNumber_NotFound No number found, invalid data format

Example

The following PeopleCode:

&greg = GetNextNumberWithGaps(GREG.DURATION_DAYS, 999999, 50,
"where emplid = :1", 8001);

results in the following:

2-942 21.53.09 0.000 Cur#4.PTTST81B RC=0 Dur=0.000 Connect=PTTST81B/sa/
2-943 21.53.09 0.000 Cur#4.PTTST81B RC=0 Dur=0.000 COM Stmt=UPDATE PS_GREG
 SET DURATION_DAYS = DURATION_DAYS + 50 where emplid = 8001
2-944 21.53.09 0.000 Cur#4.PTTST81B RC=0 Dur=0.000 EXE
2-945 21.53.09 0.000 Cur#4.PTTST81B RC=0 Dur=0.000 COM Stmt=SELECT DURATION_
DAYS FROM PS_GREG where emplid = 8001
2-946 21.53.09 0.000 Cur#4.PTTST81B RC=0 Dur=0.000 EXE
2-947 21.53.09 0.000 Cur#4.PTTST81B RC=0 Dur=0.000 Fetch
2-948 21.53.09 0.010 Cur#4.PTTST81B RC=0 Dur=0.010 Commit
2-949 21.53.09 0.010 Cur#4.PTTST81B RC=0 Dur=0.010 Disconnect

See Also

Chapter 1, "PeopleCode Built-in Functions," GetNextNumber, page 388

GetNextNumberWithGapsCommit

Syntax

GetNextNumberWithGapsCommit(record.field,max_number, increment [, WHERE_Clause,
paramlist])

Where paramlist is an arbitrary-length list of values in the form:

var1 [, var2] ...

Description

Use the GetNextNumberWithGapsCommit function to return the sequence number value plus increment for
the given field residing in the given record. This function also enables you to specify a SQL Where clause as
part of the function for maintaining multiple sequence numbers in a single record.

This function is typically used for obtaining a new sequence number for the application, for example, getting
a new Purchase Order number to be used in the application transaction.

Use this function instead of the GetNextNumberWithGaps function. The GetNextNumberWithGaps function
is very restrictive in its usage. The GetNextNumberWithGapsCommit function can be used in any event. The
sequence number (record.field) is incremented right away and it doesn't hold any database internal row lock
beyond the execution of this function.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 393

Note. A secondary database connection is used to increment and retrieve record.field. The default behavior is
to keep the secondary database connection persistent in order to improve performance for the next
GetNextNumberWithGapsCommit usage. If the database administrator finds the persistent connection too
high an overhead for the production environment (which should not be the case since PeopleSoft uses
application server to mulitplex the database connection), the database administrator can change the default
behavior to use an on-demand connection method. The persistent second connection is disabled using
DbFlags bit eight in the application server and process scheduler configuration files. The second connection
can be completely disabled using DbFlags bit four in the application server and process scheduler
configuration files

Considerations Using GetNextNumberWithGapsCommit

The following restrictions apply to the GetNextNumberWithGapsCommit function:

• PeopleSoft does not recommend Using both the GetNextNumberWithGapsCommit function and the
GetNextNumber function in the same application, on the same table, in the same unit of work. This can
lead to lock contention or deadlocking.

• For a DB2 z/OS database, isolate the table that contains the sequence number to its own tablespace and
set the locksize parameter to row.

See Also

PeopleTools 8.52: System and Server Administration, "Setting Application Server Domain Parameters,"
PSTOOLS Options

Parameters

Parameter Description

record.field Specify the record and field names for the field for which you want the new
number. This is the recommended way to identify the field.

max_number Specify the highest allowed value for the field you're incrementing. You can
specify up to 31 digits for this value.

increment Specify the value you want the numbers incremented by. You can specify up to 31
digits for this value.

WHERE_Clause Specify a SQL Where clause for maintaining multiple sequence numbers.

paramlist Specify the parameters for the SQL Where clause.

Returns

A number value equal to the highest value of the field specified plus one increment.

The GetNextNumberWithGapsCommit function returns an error if the value to be returned would be greater
than max_number. The function returns one of the following:

PeopleCode Built-in Functions Chapter 1

394 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

Number None The new number

-1 %GetNextNumber_SQLFailure SQL failure

-2 %GetNextNumber_TooBig Number returned is too large, beyond
max_number.

-3 %GetNextNumber_NotFound No number found, invalid data format.

Example

The following PeopleCode increments the MCF_EMAIL_ID field by one and returns the new value,
committing immediately.

&LAST_AUTO_NBR = GetNextNumberWithGapsCommit(MCF_INSTALL.MCF_EMAIL_ID, 2147483647,
 1);

The above code produces output similar to the following:

1-192 10.39.54 0.320 Cur#2.1980.DB844901 RC=0 Dur=0.320 Connect=Secondry
/DB844901/testdb2/
1-193 10.39.54 0.000 GNNWGC ---- Successful obtain Second DB connection
1-194 10.39.54 0.010 Cur#2.1980.DB844901 RC=0 Dur=0.010 COM Stmt=UPDATE PS_
MCF_INSTALL SET MCF_EMAIL_ID = MCF_EMAIL_ID + 1
1-195 10.39.54 0.000 Cur#2.1980.DB844901 RC=0 Dur=0.000 COM Stmt=SELECT MCF_
EMAIL_ID FROM PS_MCF_INSTALL
1-196 10.39.54 0.000 Cur#2.1980.DB844901 RC=0 Dur=0.000 Commit
1-197 10.39.54 0.000 Cur#2.1980.DB844901 RC=0 Dur=0.000 Disconnect

See Also

Chapter 1, "PeopleCode Built-in Functions," GetNextNumber, page 388

GetNextProcessInstance

Syntax

GetNextProcessInstance([Commit])

Description

Use the GetNextProcessInstance function to retrieve the next available process instance from the Process
Scheduler System table. When determining to find the next process instance in the sequence, the function
ensures the next available process instance does not exist in both the Process Request and Message Log
tables.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 395

By default, the function commits the changes to the Process Scheduler system table to set it to the next
available process instance for the next available request. If this function is called within a PeopleCode
function for which issuing a COMMIT to the database destroys a unit of work, specify "0" for Commit.

Parameters

Parameter Description

Commit Specify whether the current data instance should be committed to the database.
This parameter takes a string value: "1", commit the data, "0", do not commit the
data. "1" is the default value.

Returns

An integer representing the next available process instance if successful, otherwise 0 in case of a failure.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Process Request Classes"

GetNRXmlDoc

Syntax

GetNRXmlDoc(NRID,EntityName)

Description

Use the GetNRXmlDoc function in any of the messaging PeopleCode events. It retrieves an XML message,
categorized as non-repudiation, from the message queue for the specified non-repudiation ID. An XML
message is a message that is unstructured, that is, isn't based on a record hierarchy. It creates and loads a data
tree for the default message version, and returns Null if not successful.

Parameters

Parameter Description

NRID Specify the non-repudiation ID for the XML message that you want to retrieve.
This parameter takes a numeric value.

EntityName Specify the name of the entity that signed the data, as a string. For Peoplesoft, this
is the node name.

PeopleCode Built-in Functions Chapter 1

396 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A reference to an XmlDoc object if successful, Null if not successful.

See Also

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

GetOrgChart

Syntax

GetOrgChart([RecordName.FieldName])

Description

Use the GetOrgChart function to get a reference to an OrgChart class object. You associate a record and field
name with a chart page control in Application Designer.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want to get.

Returns

A reference to a an OrgChart object.

Example

&ocOrgChart = GetOrgChart(QE_CHART_DUMREC.QE_CHART_FIELD);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes"

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes," Using the OrgChart Class

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Using Page Controls," Using Charts

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 397

GetPage

Syntax

GetPage(PAGE.pagename)

Description

Use the GetPage function to return a reference to a page object. Generally, page objects are used to hide or
unhide pages in a component.

Generally, the PeopleCode used to manipulate a page object would be associated with PeopleCode in the
Activate event.

Note. The page object shouldn't be used until after the Component Processor has loaded the page: that is,
don't instantiate this object in RowInit PeopleCode, use it in PostBuild or Activate instead.

Note

An expression of the form

PAGE.name.property

is equivalent to GetPage(name).property.

Parameters

Parameter Description

PAGE.pagename The name of the page for which you want to create an object reference. Must be a
page in the current context.

Returns

A page object that references the page.

Example

In the following example, a page is hidden based on the value of the current field.

If PAYROLE_TYPE = "Global" Then
 GetPage(PAGE.JOB_EARNINGS).Visible = False;
End-If;

PeopleCode Built-in Functions Chapter 1

398 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Page Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

GetPageField

Syntax

GetPageField(Page.pagename, [scrollpath. [target_row,]] page_field_name)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the GetPageField function to reference a specific page field anywhere in the current component.
Generally, you will need to use GetPageField to reference radio buttons, which represent multiple instances
of a record field.

Note. The page field name is not the same as the record field name. The page field name is the name
specified on the General tab for the page field properties in the page definition in Application Designer.

The GetField function, by contrast, uses the record field name as an argument.

If you need to reference a field that is unique in the current context, you can use the GetField function.

See Chapter 1, "PeopleCode Built-in Functions," Idiv, page 445; Chapter 1, "PeopleCode Built-in Functions,"
Idiv, page 445; Chapter 1, "PeopleCode Built-in Functions," GetField, page 369 and PeopleTools 8.52:
PeopleCode Developer's Guide, "Accessing the Data Buffer," Understanding Current Context.

Parameters

Parameter Description

Pagename The name of the page specified in the page definition, preceded by the keyword
Page. The pagename page must be in the current component. You can also pass
the %page system variable in this parameter (without the Page reserved word).

scrollpath A construction that specifies a scroll level in the component buffer. This parameter
is optional. The default is the current scroll.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 399

Parameter Description

target_row The row number of the row in which the field occurs. This parameter is optional.
The default is the current row.

page_field_name The name of the page field specified in the page field properties in the page
definition.

Returns

This function returns a field object that references a specific instance of a page field in the component buffer.

Example

The following example initializes four Field objects to four specific radio button page fields and conditionally
sets their labels to either a long version or a short version.

&Fld1 = GetPageField(Page.GNNWG_PAGE, "INITIALIZE"); /* Initialize Radio Button */
&Fld2 = GetPageField(Page.GNNWG_PAGE, "COMMIT"); /* Commit Radio Button */
&Fld3 = GetPageField(Page.GNNWG_PAGE, "ROLLBACK"); /* Rollback Radio Button */
&Fld4 = GetPageField(Page.GNNWG_PAGE, "SAMFAIL"); /* SAMFAIL Radio Button */

If &SetLabel = "Long" Then
 &Fld1.Label = "Initialize_Long_Label_Name";
 &Fld2.Label = "Commit_Long_Label_Name";
 &Fld3.Label = "Rollback_Long_Label_Name";
 &Fld4.Label = "SAMFAIL_Long_Label_Name";
Else
 &Fld1.Label = "Initialize";
 &Fld2.Label = "Commit";
 &Fld3.Label = "Rollback";
 &Fld4.Label = "SAMFAIL";
End-If;

Even though all of the radio buttons represent the same record field, GetPageField enables you to reference
each radio button individually.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Chapter 1, "PeopleCode Built-in Functions," Idiv, page 445

Chapter 1, "PeopleCode Built-in Functions," GetField, page 369

PeopleCode Built-in Functions Chapter 1

400 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetProgramFunctionInfo

Syntax

GetProgramFunctionInfo(ProgramId)

Where ProgramId is the following for PeopleCode user-defined functions:

RECORD.RecordName.FIELD.FieldName.METHOD.MethodName

Where ProgramId is the following for Component Interface user-defined methods:

COMPONENTINTERFACE.CIName.METHODS.Methods

Description

Use the GetProgramFunctionInfo function to determine the full signature and return values of a PeopleCode
user-defined function, or a Component Interface method.

Considerations Using Component Interfaces

Component Interfaces only support type conversion of primitive data types back and forth between
PeopleCode values and those using inside Component Interface processing.

Component Interface processing traps all errors that occur inside the invocation of the Component Interface
and on failure simply returns a false value.

Parameters

Parameter Description

ProgramId Specify the full name of the function or the Component Interface method, as a
string.

Returns

An array of array of any.

There is one array for every function or method defined in the program. Each array contains the following
information:

1. The name of the function.

2. The signature of the parameters as a comma-separated string (see additional information below.)

3. The signature of the result (see result list below.)

4. The annotation of the Doc tag.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 401

5. A boolean indicator of whether this function is to be exported (as indicated by the noexp tag).

6. A boolean indicator of whether this function is permitted to be called by this user. This only makes sense
for Functions defined as CI methods in Component Interface PeopleCode. The default value is True.

The parameters may be modified by the following values:

Value Description

? An optional parameter.

* A repeated parameter.

& A parameter reference (PARM_NAME)

The possibly values of the result are as follows. Note the use of both lower and upper case letters.

Value Description

D Dec

d Date

S String

A Any

B Boolean

V None

t Time

T DateTime

I Image

i Integer

O Object

f Float

9 Number

x Unknown

PeopleCode Built-in Functions Chapter 1

402 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Description

[<value> Array

A single bracket indicates a single array. Two brackets indicates a two-
dimensional array, three brackets a three-dimensional array, and so on.

The value following the bracket indicates the type of array. For example, [i
indicates an array of integer, [[S indicates an array of array of string.

Example

In the following example, this code is associated with the record QE_ABSENCE_HIST, on the field
QE_REASON, in the FieldChange event.

Function Update(&1 As string) Returns number NoExport
 Doc "this is some attached annotation"
 Return 1.23;
End-Function;
/* everything else . . */

The following PeopleCode program:

Local array of array of any &r;
&r = GetProgramFunctionInfo("RECORD.QE_ABSENCE_HIST.FIELD.QE_REASON.METHOD.Field
Change");

Returns a two-dimensional array with a single row that contains the following:

&r[1][1] – the name of the function "Update"

&r[1][2] – the signature of the parameter "S&"

&r[1][3] – the signature of the result "9"

&r[1][4] – the annotation of the doc tag "this is some attached annotation"

&r[1][5] – a boolean indicator of whether this function is to be exported. In this case it returns false.

The following example is used with a Component Interface program:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 403

Function Update(&1 As string) Returns number NoExport
 Doc "this is some attached annotation"
 Return 1.23;
End-Function;

Function Updateagain(&1 As string) Returns number
 Doc "this is some more attached annotation"
 Return 1.23;
End-Function;

Local File &log;

Function LogText(&msg As string)
 If &log = Null Then
 Return
 End-If;
 &log.WriteLine(&msg);
End-Function;

Function CreateCI(&Name As string) Returns ApiObject
 Local ApiObject &CI;
 /** Get Component Interface **/
 &CI = %Session.GetCompIntfc(@("CompIntfc." | &Name));
 /* instantiate */
 &CI.PROCESSNAME = "AEMINITEST";
 &CI.PROCESSTYPE = "Application Engine";
 &CI.RUNCONTROLID = 99;
 &CI.Create();
 Return &CI;
End-Function;

Function DisplayProgramFuncInfo(&r As array of array of any)

 Local integer &i;

 For &i = 1 To &r.Len
 Local string &o;
 &o = &r [&i][1] | "(" | &r [&i][2] | ";" | &r [&i][3] | ") doc '"
 | &r [&i][4] | "'";
 If &r [&i][5] = 0 Then
 &o = &o | " noexport ";
 Else
 &o = &o | " export ";
 End-If;
 If &r [&i][6] = 0 Then
 &o = &o | " no permission ";
 Else
 &o = &o | " permitted ";
 End-If;
 LogText(&o);
 End-For;
End-Function;

Function SetupParameters(&Names As array of string, &Sigs As array of string)
 Returns array of any
 Local array of any &p = CreateArrayAny();
 Local integer &i;

 /* could use the parameter name to get values out of a dom?? */
 /* Base types we could handle
// D = Dec
// S = String
// d = Date

PeopleCode Built-in Functions Chapter 1

404 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

// A = Any
// B = Boolean
// V = None
// t = Time
// T = DateTime
// I = Image
// O = Object
// i = Integer
// f = Float
// 9 = Number
// x = Unknown
*/
 For &i = 1 To &Sigs.Len
 Local string &parName = RTrim(LTrim(&Names [&i + 1]));
/* first name is create/get/?? */
 /* Here is where you'd get the value for this particular parameter
 and then push it properly onto the parameter array */
 Evaluate Substring(&Sigs [&i], 1, 1)
 When = "D"
 &p.Push(1);
 Break;
 When = "S"
 &p.Push("String for " | &parName);
 Break;
 When = "9"
 When = "i"
 &p.Push(&i);
 Break;
 When-Other
 &p.Push("Unimplemented . . .");
 End-Evaluate
 End-For;

 Return &p;
End-Function;

Function CallUDMMethod(&ci As ApiObject, &funcInfo As array of array of any,
 &methodName As string) Returns any

 /* an example of calling a user defined method on a ci */

 /* 1. find it in the funcinfo */
 Local integer &i = 1;
 Local integer &nFuncs = &funcInfo.Len;

 While &i <= &nFuncs
 /* name should match and it should be exportable (the default)
 and the doc tag should have something in it
 and it should be permitted */
 If &funcInfo [&i][1] = &methodName And
 &funcInfo [&i][5] <> 0 And
 Len(&funcInfo [&i][4]) > 0 And
 &funcInfo [&i][6] <> 0 Then
 Break;
 End-If;
 &i = &i + 1;
 End-While;

 If &i > &nFuncs Then
 LogText("not found");
 Return False;
 End-If;

 /* 2. Next get the info necessary to call the function based on the signature

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 405

 info */
 Local string &parSignatures = &funcInfo [&i][2];
 Local boolean &bPars = False;
 Local array of any &Pars;
 If Len(&parSignatures) > 0 Then
 &bPars = True;
 Local array of string &parSignature = Split(&parSignatures, ",");
 Local array of string &parNames = Split(&funcInfo [&i][4], ",");
/* first one should be Create/get/? */
 /* number of parameters should match number of parameter names */
 If &parSignature.Len <> &parNames.Len - 1 Then
 LogText("length mismatch");
 Return False;
 End-If;
 &Pars = SetupParameters(&parNames, &parSignature);
 Else
 &Pars = CreateArrayAny();
 End-If;

 /* 3. Call the udm method with our parameters */
 Return &ci.InvokeMethodUDF(&methodName, &Pars);

End-Function;

QE_ABSENCE_HIST.QE_REASON.Value = ""; /* clean it up */
Local string &ciName = "PROCESSREQUEST";

Local ApiObject &CI = CreateCI(&ciName);

Local array of any &pars = CreateArrayAny("First parameter", 2);
/* check with variable for method name */
Local string &methodname = "FoxTest";
/* add in a bogus parameter - tested - works - fails with false return :-(as per⇒
 usual in api objects*/
Local string &bogus = "bogus par";

&log = GetFile("C:\temp\junk\udflog.txt", "a", %FilePath_Absolute);
LogText("=====================================");
LogText("Result of direct call: " | &CI.InvokeMethodUDF(&methodname, &pars /* ,⇒
 &bogus */));
rem LogText("&ci: " | &CI);

/* do this the new way - at least model how a webservices Peoplecode⇒
 implementation could do it */
Local string &ciObjid = "COMPONENTINTERFACE." | &ciName | ".METHOD.Methods";
/* get the program information */
Local array of array of any &progInfo;
&progInfo = GetProgramFunctionInfo(&ciObjid);
/* returns a an array of arrays: an array for each function defined in the program.

Each row has the following ([i] = position i):
[1] = program name (string)
[2] = comma separated list of parameter signatures (string)
[3] = result signature (string)
[4] = text that was with the doc tag. Convention here is a comma separated list of⇒
 values:
 first item is one of either Create or Get, specifying what method has to be⇒
 called first
 second and subsequent items are the names of the parameters (this information⇒
 is not obtainable from the
 program information. These are the names to be exposed as the web service⇒
 parameter names

PeopleCode Built-in Functions Chapter 1

406 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 e.g. the above function would have a doc like "Create, StringParameter,⇒
 NumericParameter"
[5] = an integer setting: 0=no export and 1=export (the default)
[6] = an integer setting indicating the permission for user to call this (only⇒
 applies to CI programs)
 0=no permission and 1=permitted (the default)

*/
DisplayProgramFuncInfo(&progInfo);
If &CI = Null Then
 &CI = CreateCI(&ciName);
End-If;
LogText("Result of indirect call: " | CallUDMMethod(&CI, &progInfo, &methodname));

See Also

PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes"

GetPubContractInstance

Syntax

GetPubContractInstance(pub_id,pub_nodename,channelname,sub_nodename)

Description

Note. This function is no longer available. It has been replaced with the GetPubXmlDoc function.

See Chapter 1, "PeopleCode Built-in Functions," GetPubXmlDoc, page 407.

GetPubHeaderXmlDoc

Syntax

GetPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName[, Segment])

Description

Use the GetPubHeaderXmlDoc function to retrieve the message header from the message queue.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

The message header, also known as the message instance, is the published message before any
transformations were performed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 407

Note. This function should not be used in standard message processing. It should only be used when
correcting or debugging a publication contract that is in error.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetMessage

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubHeaderXmlDoc, page 571 and Chapter 1,
"PeopleCode Built-in Functions," GetPubXmlDoc, page 407

GetPubXmlDoc

Syntax

GetPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode [,
Segment])

Description

Use the GetPubXmlDoc function to retrieve a message from the message queue.

PeopleCode Built-in Functions Chapter 1

408 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

This is the message after any transformations have been preformed. It creates and loads a data tree for the
specified message version, and returns NULL if not successful. This function is used for publication contract
error correction when the error correction process needs to fetch a particular message instance for the
publication contract in error. SQL on the Publication Contract table is used to retrieve the key fields.

Note. This function should not be used in standard message processing. It should only be used when
correcting or debugging a publication contract that is in error.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetMessage

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

MessageName Specify the name of the message.

SubNode Specify the subnode of the message.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubXmlDoc, page 572 and Chapter 1, "PeopleCode
Built-in Functions," ReSubmitPubHeaderXmlDoc, page 571

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 409

GetRatingBoxChart

Syntax

GetRatingBoxChart([RecordName.FieldName])

Description

Use the GetRatingBoxChart function to get a reference to an RatingBoxChart class object. You associate a
record and field name with a chart page control in Application Designer.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want to get.

Returns

A reference to a RatingBoxChart object.

Example

&rbRatingBoxChart = GetRatingBoxChart(QE_CHART_DUMREC.QE_CHART_FIELD);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes"

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes," Using the RatingBoxChart Class

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Using Page Controls," Using Charts

GetRecord

Syntax

GetRecord([RECORD.recname])

PeopleCode Built-in Functions Chapter 1

410 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the GetRecord function to create a reference to a record object for the current context, that is, from the
row containing the currently executing program.

The following code:

&REC = GetRecord();

is equivalent to:

&REC = GetRow().GetRecord(Record.recname);

or

&REC = GetRow().recname;

Note. This function is invalid for PeopleCode programs located in events that aren't associated with a specific
row and record at the point of execution. That is, you cannot use this function in PeopleCode programs on
events associated with high-level objects like pages (the Activate event) or components (component events).

Parameters

With no parameters, this function returns a record object for the current context (the record containing the
program that is running).

If a parameter is given, RECORD.recname must specify a record in the current row.

Returns

 GetRecord returns a record object.

Example

In the following example, the level 2 rowset (scroll) has two records: EMPL_CHKLST_ITM, (the primary
record) and CHKLST_ITM_TBL. If the code is running from a field on the EMPL_CHKLST_ITM record,
the following returns a reference to that record:

&REC = GetRecord(); /*returns primary record */

The following returns the other record in the current row.

&REC2 = GetRecord(RECORD.CHKLST_ITM_TBL);

The following event uses the @ symbol to convert a record name that's been passed in as a string to a
component name.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 411

Function set_sub_event_info(&REC As Record, &NAME As string)
 &FLAGS = CreateRecord(RECORD.DR_LINE_FLG_SBR);
 &REC.CopyFieldsTo(&FLAGS);
 &INFO = GetRecord(@("RECORD." | &NAME));
 If All(&INFO) Then
 &FLAGS.CopyFieldsTo(&INFO);
 End-If;
End-Function;

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateRecord, page 160

PeopleTools 8.52: PeopleCode API Reference, "Message Classes"

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

GetRelField

Syntax

GetRelField(ctrl_field,related_field)

Description

 Use the GetRelField function to retrieve the value of a related display field and returns it as an unspecified
(Any) data type.

Note. This function remains for backward compatibility only. Use the GetRelated field class method instead.

The field ctrl_field specifies the display control field, and related_field specifies the name of the related
display field whose value is to be retrieved. In most cases, you could get the value of the field by referencing
it directly. However, there are two instances where GetRelField can be useful:

• If there are two related display fields bound to the same record field, but controlled by different display
control fields, use this function to specify which of the two related display fields you want.

• If all of a page's level-zero fields are search keys, the Component Processor does not load the entire row
of level-zero data into the component buffer; it only loads the search keys. Adding a non-search-key
level-zero field to the page would cause the Component Processor to load the entire row into the
component buffer. To prevent a large row of data from being loaded into the buffer, you may occasionally
want to make a level-zero display-only field a related display, even though the field is in the primary
level-zero record. You won't be able to reference this related display field directly, but you can using
GetRelField.

See PeopleTools 8.52: PeopleCode API Reference, "Field Class," GetRelated.

PeopleCode Built-in Functions Chapter 1

412 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using GetRelField With a Control Field

PeopleCode events on the Control Field can be triggered by the Related Edit field. When this happens, there
can be different behavior than with other types of fields:

• If the events are called from FieldEdit of the Control Field, and that FieldEdit is triggered by a change in
the Related Edit field, the functions return the previous value.

• If the events are called from FieldChange of the Control Field, and that FieldChange is triggered by a
change in the Related Edit field, the functions return the value entered into the Related Edit. This may be
a partial value that will subsequently be expanded to a complete value when the processing is complete.

Example

In the following example, there are two related display fields in the page bound to
PERSONAL_DATA.NAME. One is controlled by the EMPLID field of the high-level key, the other
controlled by an editable DERIVED/WORK field in which the user can enter a new value. Use GetRelField
to get the value of the related display controlled by EMPLID.

/* Use a related display of a required non-default field to verify
 * that the new Employee Id is not already in use */
If GetRelField(EMPLID, PERSONAL_DATA.NAME) <> "" Then
 Error MsgGet(1000, 65, "New Employee ID is already in use. Please reenter.");
End-If;

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

GetRow

Syntax

GetRow()

Description

Use the GetRow function to obtain a row object for the current context, that is the row containing the
currently executing program.

Using the GetRow function is equivalent to:

&ROW = GetRowset().GetRow(CurrentRowNumber());

Note. For PeopleCode programs located in events that are not associated with a specific row at the point of
execution, this function is invalid. That is, you cannot use this function in PeopleCode programs on events
associated with high-level objects like pages or components.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 413

Parameters

None.

Returns

GetRow returns a row object that references the current row in the component buffers. If the program is not
being run from a page (such as from Application Engine, or as part of a Message program) it references that
data.

Example

Local Row &ROW;

&ROW = GetRow();

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRowset, page 413

PeopleTools 8.52: PeopleCode API Reference, "Row Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

GetRowset

Syntax

GetRowset([SCROLL.scrollname])

Description

Use the GetRowset function to get a rowset object based on the current context. That is, the rowset is
determined from the row containing the program that is running.

Syntax Format Considerations

An expression of the form

RECORD.scrollname.property

or

RECORD.scrollname.method(. . .)

is converted to an object expression by using GetRowset(SCROLL.scrollname).

PeopleCode Built-in Functions Chapter 1

414 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

If a parameter is specified, it must be the name of the primary record for the scroll that is a child of the current
context.

Returns

With no parameters, GetRowset returns a rowset object for the rowset containing the currently running
program. If a parameter is specified, it returns a rowset for that child scroll. scrollname must be the name of
the primary record for the scroll.

Example

In the following example, RS1 is a level 1 rowset, and RS2 is a child rowset of RS1.

Local Rowset &RS1, &RS2;

&RS1 = GetRowset();
&RS2 = GetRowset(SCROLL.EMPL_CHKLST_ITM);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetLevel0, page 382

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

GetRowsetCache

Syntax

GetRowsetCache([Rowset.]name, [language])

Description

Use GetRowsetCache to return the existing rowset cache with the given name.

Note. This function returns a RowsetCache object, not a rowset object. You must use the Get RowsetCache
method in order to convert a RowsetCache object into a rowset object.

Every time you use the GetRowsetCache function, you should verify that the function executed successfully
by testing for a null object. For example:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 415

Local RowsetCache &RSC;

&RSC = GetRowsetCache(Rowset.MyRowset);

If All(&RSC) Then
 /* do processing */
Else
 /* call to populate rowset cache */
End-if;

Parameters

Parameter Description

Record.name Specify the name of a RowsetCache. If you just specify name, you must enclose
the name in quotation marks.

language Specify which language the rowset cache is retrieved from.

Possible values are:

%RowsetCache_SignonLang – Fetch the rowset cache for the sign-on language. If
it doesn't exist then return failure.

%RowsetCache_BaseLang – Fetch the rowset cache for the base language only. If
it doesn't exist then return failure.

%RowsetCache_SignonOrBaseLang – Fetch the rowset cache for the sign-on
language. If the rowset cache for the sign-on language doesn't exist then fetch the
base language rowset cache. If the base language rowset cache doesn't exist then
return failure.

This parameter is optional.

The default is %RowsetCache_SignonLang

Returns

A RowsetCache object populated with the rowset cache instance specified.

Example

&Cache1 = GetRowsetCache("AAROWSET1");

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateRowsetCache, page 164

PeopleTools 8.52: PeopleCode API Reference, "RowsetCache Class"

PeopleCode Built-in Functions Chapter 1

416 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetSelectedTreeNode

Syntax

GetSelectedTreeNode(RECORD.recordname)

Description

 Use the GetSelectedTreeNode function to determine what node the user has selected in a dynamic tree
control.

Note. Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Appendix A, "Viewing Trees From Application Pages," page 851

GetSession

Syntax

GetSession()

Description

Use the GetSession function to retrieve a PeopleSoft session object.

After you use GetSession, you can instantiate many other types of objects, like Component Interfaces, data
trees, and so on.

After you use GetSession you must connect to the system using the Connect property.

If you are connecting to the existing session and not doing additional error checking, you may want to use the
%Session system variable instead of GetSession. %Session returns a connection to the existing session.

Parameters

None.

Returns

A PeopleSoft session object.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 417

Example

Local ApiObject &MYSESSION;

&MYSESSION = GetSession();

See Also

PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes"

PeopleTools 8.52: PeopleCode API Reference, "Portal Registry Classes"

PeopleTools 8.52: PeopleCode API Reference, "Query Classes"

PeopleTools 8.52: PeopleCode API Reference, "Verity Search Classes"

PeopleTools 8.52: PeopleCode API Reference, "Session Class"

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes"

Chapter 3, "System Variables," %Session, page 832

GetSetId

Syntax

GetSetId({FIELD.fieldname | text_fieldname}, set_ctrl_fieldvalue, {RECORD.
recname | text_recname}, treename)

Description

 Use the GetSetId function to return a string containing a setID based on a set control field (usually
BUSINESS_UNIT), a set control value, and one of the following:

• The name of a control table (or view) belonging to a record group in the TableSet Control controlled by
the set control value.

• The name of a tree in the TableSet Control controlled by the set control value.

If you want to pass a control record name to the function, you must pass an empty string in the treename
parameter. Conversely, if you want to pass a tree name, you must pass an empty string in the text_recname
parameter. In practice, tree names are rarely used in this function.

Note. This function does not validate the parameters passed to it. It is up to your application to ensure that
only valid data is used. If an invalid value is used, the defined default value is used.

PeopleCode Built-in Functions Chapter 1

418 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

fieldname Specify the set control field name as a FIELD reference. Use this parameter
(recommended) or the text_fieldname parameter.

text_fieldname Specify the name of the set control field as a string. Use this parameter or the
fieldname parameter.

set_ctrl_fieldvalue Specify the value of the set control field as a string.

recname Specify as a RECORD reference the name of the control record belonging to the
record group for which you want to obtain the setID corresponding to the set
control value. Use this parameter (recommended) or the text_recname parameter.

text_recname Specify as a string the name of the control record belonging to the record group for
which you want to obtain the setID corresponding to the set control field value.
Use this parameter or the recname parameter.

treename Specify as a string the name of the tree for which you want to obtain the setID
corresponding to the set control field value.

Returns

 GetSetId returns a five-character setID string.

Example

In this example, BUSINESS_UNIT is the Set Control Field, and PAY_TRMS_TBL is a control table
belonging to a record group controlled by the current value of BUSINESS_UNIT. The function returns the
setID for the record group.

&SETID = GetSetId(FIELD.BUSINESS_UNIT, &SET_CTRL_VAL, RECORD.PAY_TRMS_TBL, "");

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Planning Records, Control Tables,
and TableSets," Control Tables

GetSQL

Syntax

GetSQL(SQL.sqlname [, paramlist])

Where paramlist is an arbitrary-length list of values in the form:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 419

inval1 [, inval2] ...

Description

Use the GetSQL function to instantiate a SQL object and associates it with the SQL definition specified by
sqlname. The SQL definition must already exist, either created using Application Designer or the StoreSQL
function.

Processing of the SQL definition is the same as for a SQL statement created by the CreateSQL function.

Setting Data Fields to Null

This function does not set Component Processor data buffer fields to NULL after a row not found fetching
error. However, it does set fields that aren't part of the Component Processor data buffers to NULL.

Using Arrays With paramlist

You can use a parameter of type "Array of Any" in place of a list of bind values. This is primarily used when
you do not know the number of values being supplied until the code runs.

For example, suppose you had a SQL definition INSERT_TEST, that had PeopleCode that dynamically (that
is, at runtime) generated the following SQL statement:

"INSERT INTO PS_TESTREC (TESTF1, TESTF2, TESTF3, TESTF4, . . .TESTN) VALUES (:1, :⇒
2, %DateTimeIn(:3), %TextIn(:4). . .N)";

Suppose you have placed the values to be inserted into an Array of Any, say &AAny:

&AAny = CreateArrayAny("a", 1, %DateTime, "abcdefg", . . .N);

You can execute the insert by:

GetSQL(SQL.INSERT_TEST, &AAny);

Because the Array of Any promotes to absorb any remaining select columns, it must be the last parameter for
the SQL object Fetch method or (for results) SQLExec. For binding, it must be the only bind parameter, as it
is expected to supply all the bind values needed.

Parameters

Parameter Description

SQL.sqlname Specify the name of a SQL definition.

paramlist Specify input values for the SQL string.

Returns

A SQL object.

PeopleCode Built-in Functions Chapter 1

420 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following code creates and opens an SQL object on the SQL definition stored as ABCD_XY (for the
current market, database type and as of date). It binds the given input values, and executes the statement. If
the SQL.ABCD is a SELECT, this should be followed by a series of Fetch method calls.

&SQL = GetSQL(SQL.ABCD_XY, ABSENCE_HIST, &EMPLID);

The following is a generic function that can be called from multiple places to retrieve a specific record using
the SQL Objects.

Local SQL &SQL;
Local string &SETID, &TEMPLATE;
Local date &EFFDT;

Function FTP_GET_TEMPLATE(&REC As Record) Returns Boolean ;
 &TEMPLATE = FTP_RULE_TEMPLATE;
 &EFFDT = EFFDT;
 &SETID = SETID;
 &SQL = GetSQL(SQL.FTP_TEMPLATE_SELECT, &SETID, &TEMPLATE, &EFFDT);
 If &SQL.Status = 0 Then
 If &SQL.Fetch(&REC) Then
 &SQL.Close();
 Return True;
 End-If;
 Else
 &TITLE = MsgGet(10640, 24, "SQL Error");
 MessageBox(64, &TITLE, 10640, 23, "SQL Object Not Found in SQL", SQL.FTP_⇒
TEMPLATE_SELECT);
 End-If;
 &SQL.Close();
 Return False;
End-Function;

The SQL definition FTP_TEMPLATE_SELECT has the following code. Note that it uses the %List and
%EFFDTCHECK meta-SQL statements. This makes the code easier to maintain: if there are any changes to
the underlying record structure, this SQL definition won't have to change:

SELECT %List(FIELD_LIST,FTP_DEFAULT_TBL A)
FROM PS_FTP_TEMPLATE_TBL A
WHERE A.SETID = :1 AND A.FTP_RULE_TEMPLATE = :2
AND %EFFDTCHECK(FTP_DEFAULT_TBL A1,A,:3) AND A.EFF_STATUS = 'A'

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165; Chapter 1, "PeopleCode Built-in
Functions," DeleteSQL, page 209; Chapter 1, "PeopleCode Built-in Functions," FetchSQL, page 273 and
Chapter 1, "PeopleCode Built-in Functions," SQLExec, page 654

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

PeopleTools 8.52: PeopleCode API Reference, "SQL Class," Open

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 421

GetStoredFormat

Syntax

GetStoredFormat(scrollpath,target_row,
 [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

 Use the GetStoredFormat function to return the name of a field's custom stored format.

Note. This function remains for backward compatibility only. Use the StoredFormat field class property
instead.

To return the format for a field on level zero of the page, pass 1 in target_row.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," StoredFormat

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying the row of the target field. If you are testing a field on level
zero, pass 1 in this parameter.

[recordname.]fieldname The name of the field from which to get the stored format name. The field can be
on any level of the active page. The recordname prefix is required if the call to
GetStoredFormat is not on the record definition recordname.

Returns

Returns a String equal to the name of the stored custom format for the field.

PeopleCode Built-in Functions Chapter 1

422 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

This example returns a string containing the custom format for postal codes on level zero of the page or on
the current row of scroll level one. This function is called in the RowInit event, so no looping is necessary.

Function get_postal_format() Returns string
 &CURR_LEVEL = CurrentLevelNumber();
 Evaluate &CURR_LEVEL
 When = 0
 &FORMAT = GetStoredFormat(POSTAL, 1);
 When = 1
 &FORMAT = GetStoredFormat(POSTAL, CurrentRowNumber(1));
 End-Evaluate;
 Return (&FORMAT);
End-Function;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDisplayFormat, page 623

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

GetSubContractInstance

Syntax

GetSubContractInstance(pub_id,pub_nodename,channelname,messagename,sub_name)

Description

Note. This function is no longer available. It has been replaced with the GetSubXmlDoc function.

See Chapter 1, "PeopleCode Built-in Functions," GetSubXmlDoc, page 422.

GetSubXmlDoc

Syntax

GetSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName[, Segment])

Description

Use the GetSubXmlDoc function to retrieve a message from the message queue.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 423

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

It creates and loads a data tree for the specified message version, and returns NULL if not successful. This
function is used for subscription contract error correction, when the error correction process needs to fetch a
particular message instance for the subscription contract in error. SQL on the Subscription Contract table is
used to retrieve the key fields.

Note. This function should not be used in standard message processing. It should only be used when
correcting or debugging a subscription contract that is in error.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetMessage

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

MessageName Specify the name of the message.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitSubXmlDoc, page 573

PeopleCode Built-in Functions Chapter 1

424 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

GetSyncLogData

Syntax

GetSyncLogData(GUID,pubnode,chnlname, msg_name,logtype [, message_version])

Description

Use the GetSyncLogData to return a log containing information about the specified synchronous message.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetSyncLogData method instead.

You can use this information for debugging. Using this function, you can obtain the request and response data
in a synchronous request, both pre- and post-transformation.

This function is used in the PeopleCode for the Message Monitor.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," GetSyncLogData

Parameters

Parameter Description

GUID Specify the GUID for the published synchronous message as a string. This
property is populated after the message is sent.

pubnode Specify the name of the node that the synchronous message was published from as
a string.

chnlname Specify the name of the channel the synchronous message was published to as a
string.

msg_name Specify the message definition name that you want to retrieve log data from as a
string.

Log_type Specify the type of log data you want to obtain, as a number. Values are:

1: the original request

2: the transformed request

3: the original response

4: the transformed response

message_version Specify the message version name as a string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 425

Returns

An XML string containing the log data.

Example

Local String &guid, &pubnode, &channel, &msg_name;
Local Number &log_type;
..
..
&descrlong = GetSyncLogData(&guid, &pubnode, &channel, &msg_name, &log_type);

GetTempFile

Syntax

GetTempFile(filename,mode [, charset] [, pathtype])

Description

The GetTempFile function provides an alternative to GetFile. Similar to GetFile, use the GetTempFile
function to instantiate a new file object from the File class, associate it with an external file, and open the file
so you can use File class methods to read from or write to it.

GetTempFile differs from GetFile in two respects:

• GetTempFile does not perform an implicit commit.

• GetTempFile does not make the associated file available through the Report Repository even when the
calling PeopleCode program is run through the Process Scheduler.

Therefore, GetTempFile can be a good choice when you wish to avoid implicit database commits and when
you do not need to have the file managed through the Report Repository. Otherwise, GetTempFile operates
exactly the same as GetFile. For additional information about GetTempFile, see the documentation on
GetFile.

See Chapter 1, "PeopleCode Built-in Functions," GetFile, page 370.

Parameters

Parameter Description

filespec Specify the name, and optionally, the path, of the file you want to open.

PeopleCode Built-in Functions Chapter 1

426 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

mode A string indicating how you want to access the file. The mode can be one of the
following:

"R" (Read mode): opens the file for reading, starting at the beginning.

"W" (Write mode): opens the file for writing.

Warning! When you specify Write mode, any existing content in the file is
discarded.

"A" (Append mode): opens the file for writing, starting at the end. Any existing
content is retained.

 "U" (Update mode): opens the file for reading or writing, starting at the beginning
of the file. Any existing content is retained. Use this mode and the GetPosition and
SetPosition methods to maintain checkpoints of the current read/write position in
the file.

In Update mode, any write operation clears the file of all data that follows the
position you set.

Note. Currently, the effect of the Update mode and the GetPosition and
SetPosition methods is not well defined for Unicode files. Use the Update mode
only on files stored with a non-Unicode character set.

"E" (Conditional "exist" read mode): opens the file for reading only if it exists,
starting at the beginning. If it doesn't exist, the Open method has no effect. Before
attempting to read from the file, use the IsOpen property to confirm that it's open.

"N" (Conditional "new" write mode): opens the file for writing, only if it doesn't
already exist. If a file by the same name already exists, the Open method has no
effect. Before attempting to write to the file, use the IsOpen property to confirm
that it's open. You can insert an asterisk (*) in the file name to ensure that a new
file is created. The system replaces the asterisk with numbers starting at 1 and
incrementing by 1, and checks for the existence of a file by each resulting name in
turn. It uses the first name for which a file doesn't exist. In this way you can
generate a set of automatically numbered files. If you insert more than one
asterisk, all but the first one are discarded.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 427

Parameter Description

charset A string indicating the character set you expect when you read the file, or the
character set you want to use when you write to the file. You can abbreviate
Unicode UCS-2 to "U" and the host operating system's default non-Unicode
(sometimes referred to as the ANSI character set) to "A". All other character sets
must be spelled out in full, for example, ASCII, Big5, Shift-JIS, UTF8, or
UTF8BOM.

If "A" is specified as the character set, or you do not specify a character set, the
character set used is dependent on the application server configuration. On a
Windows application server, the default non-Unicode character set is dependent on
the Windows ANSI Codepage (ACP) which can be checked using the DOS
command chcp. On a Unix application server, the default non-Unicode character
set is specified in the application server configuration file, psappsrv.cfg, and can
be modified using PSADMIN. You can also use a record field value to specify the
character set (for example, RECORD.CHARSET.)

A list of supported character set names valid for this argument can be found in
PeopleTools 8.52: Global Technology PeopleBook.

See PeopleTools 8.52: Global Technology, "Selecting and Configuring Character
Sets and Language Input and Output," Character Sets in the PeopleSoft Pure
Internet Architecture.

Note. If you attempt to read data from a file using a different character set than
was used to write that data to the file, the methods used generate a runtime error or
the data returned is unusable.

When a file is opened for reading using the "U" charset argument, GetFile expects
the file to begin with a Unicode byte order mark (BOM). This mark indicates
whether the file is written in big endian order or little endian order. A BOM
consisting of the hex value 0xFEFF indicates a big endian file, a BOM consisting
of the hex value 0xFFEF indicates a little endian file. If the Unicode UCS-2 file
being opened does not start with a BOM, an error is returned. The BOM is
automatically stripped from the file when it is read into the buffers by GetFile.

When a file is opened for writing using the "U" charset argument, the appropriate
Unicode BOM is automatically written to the start of the file depending on
whether the application server hardware platform operates in little endian or big
endian mode.

BOMs are only expected or supported for files in Unicode character sets such as
UTF8, UTF8BOM, and UCS2. For consuming applications that do expect the
BOM for UTF-8 files, the UTF8BOM character set is to create UTF-8 files with
the BOM.

Note. For example, the UTF-8 BOM is represented by the sequence 0xEF BB BF.
This sequence can be misinterpreted by a non-Unicode character set such as ISO-
8859-1 and appears as ISO characters ï»¿.

When working with XML documents, specify UTF8 or UTF8BOM for charset.

If you are writing an XML file using a different character set, you must remember
to include a character set declaration in the XML file.

PeopleCode Built-in Functions Chapter 1

428 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

pathtype If you have prepended a path to the file name, use this parameter to specify
whether the path is an absolute or relative path. The valid values for this parameter
are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don't specify pathtype the default is %FilePath_Relative.

If you specify a relative path, that path is appended to the path constructed from a
system-chosen environment variable. A complete discussion of relative paths and
environment variables is provided in documentation on the File class.

See PeopleTools 8.52: PeopleCode API Reference, "File Class," Working With
Relative Paths.

If the path is an absolute path, whatever path you specify is used verbatim. You
must specify a drive letter and the complete path. You can't use any wildcards
when specifying a path.

The Component Processor automatically converts platform-specific separator
characters to the appropriate form for where your PeopleCode program is
executing. On a Windows system, UNIX "/" separators are converted to "\", and
on a UNIX system, Windows "\" separators are converted to "/".

Note. The syntax of the file path does not depend on the file system of the
platform where the file is actually stored; it depends only on the platform where
your PeopleCode is executing.

Returns

A file object if successful; Null otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetFile, page 370

PeopleTools 8.52: PeopleCode API Reference, "File Class," Open

GetTreeNodeParent

Syntax

GetTreeNodeParent(node)

Description

Use the GetTreeNodeParent function to access data from dynamic tree controls.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 429

Note. Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Appendix A, "Viewing Trees From Application Pages," page 851

GetTreeNodeRecordName

Syntax

GetTreeNodeRecordName(node)

Description

Use the GetTreeNodeRecordName function in accessing data from dynamic tree controls.

Note. Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Appendix A, "Viewing Trees From Application Pages," page 851

GetTreeNodeValue

Syntax

GetTreeNodeValue(node, [recordname.]fieldname)

Description

Use the GetTreeNodeValue function in accessing data from dynamic tree controls.

Note. Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

PeopleCode Built-in Functions Chapter 1

430 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Appendix A, "Viewing Trees From Application Pages," page 851

GetURL

Syntax

GetURL(URL.URLIdentifier)

Description

Use the GetURL function to return the URL, as a string, for the specified URLIdentifier. The URLIdentifier
must exist and been created using URL Maintenance.

Note. If the URL identifier contains spaces, you must use quotation marks around URLIdentifier. For
example, GetURL(URL."My URL");

If a language-specific URL exists for the user's current session language, and the user is not calling GetURL
from a batch program, it is returned. Otherwise, the base language version of the URL is returned.

When GetURL is called from an application engine program, the URL is retrieved either from the base URL
table or the related language table depending on the language code. The language code is provided by the
User Profile for the user that executed the application engine program. The language code does not come
from the language that the user specified when logging into the system.

Parameters

Parameter Description

URLIdentifier Specify a URL Identifier for a URL that already exists and was created using the
URL Maintenance page.

Returns

A string containing the URL value for that URL Identifier, using the user's language preference.

Example

Suppose you have a URL with the identifier PEOPLESOFT, and the following URL:

http://www.peoplesoft.com

From the following code example

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 431

&PS_URL = GetURL(URL.PEOPLESOFT);

&PS_URL has the following value:

http://www.peoplesoft.com

Suppose you have the following URL stored in the URL Maintenance, with the name QE_CALL:

/S/WEBLIB_QE_MCD.QE_MCD_MAIN.FieldFormula.iScript_Call

You could combine this in the following code to produce an HTML string used as part of a response:

&output = GetHTMLText(HTML.QE_PHONELIST, %Request.RequestURI | "?" |
GetURL(URL.QE_CALL));

See Also

Chapter 1, "PeopleCode Built-in Functions," ViewURL, page 733

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance

GetUserOption

Syntax

GetUserOption(Level,OPTN)

Description

Use the GetUserOption function to return the default value for the specified option.

Parameters

Parameter Description

Level Specify the option category level as a string.

OPTN Specify the option as a string.

Returns

The default value for the specified option.

Example

Local Any &MyValue;

&MyValue = GetUserOption("PPLT", "TZONE");

PeopleCode Built-in Functions Chapter 1

432 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetUserOption, page 648

PeopleTools 8.52: Security Administration, "Managing PeopleSoft Personalizations"

GetWLFieldValue

Syntax

GetWLFieldValue(fieldname)

Description

When the user has opened a page from a Worklist (by selecting one of the work items) use the
GetWLFieldValue function to retrieve the value of a field from the current row of the application Worklist
record. You can use the %WLName system variable to check whether the page was accessed from a
Worklist.

Returns

Returns the value of a specified field in the Worklist record as an Any data type.

Example

This example, from RowInit PeopleCode, populates page fields with values from the Worklist record. The
%WLName system variable is used to determine whether there is a currently active Worklist (that is, whether
the user accessed the page using a Worklist).

&WL = %WLName;
If &WL > " " Then
 &TEMP_NAME = "ORDER_NO";
 ORDER_NO = GetWLFieldValue(&TEMP_NAME);
 &TEMP_NAME = "BUSINESS_UNIT";
 BUSINESS_UNIT = GetWLFieldValue(&TEMP_NAME);
 &TEMP_NAME = "SCHED_Date";
 &SCHED_Date = GetWLFieldValue(&TEMP_NAME);
 SCHED_Date = &SCHED_Date;
 &TEMP_NAME = "DEMAND_STATUS";
 DEMAND_STATUS = GetWLFieldValue(&TEMP_NAME);
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," MarkWLItemWorked, page 496 and Chapter 1, "PeopleCode
Built-in Functions," TriggerBusinessEvent, page 709

Chapter 3, "System Variables," %WLName, page 837

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 433

Global

Syntax

Globaldata_type &var_name

Description

Use the Global statement to declare PeopleCode global variables. A global variable, once declared in any
PeopleCode program, remains in scope throughout the PeopleSoft session. The variable must be declared
with the Global statement in any PeopleCode program in which it is used.

Declarations tend to appear at the beginning of the program, intermixed with function declarations.

Not all PeopleCode data types can be declared as Global. For example, ApiObject data types can only be
declared as Local.

Parameters

Parameter Description

data_type Specify a PeopleCode data type.

&var_name A legal variable name.

Example

The following example declares a global variable and then assigns it the value of a field:

global string &AE_APPL_ID;
&AE_APPL_ID = AE_APPL_ID;

See Also

Chapter 1, "PeopleCode Built-in Functions," Local, page 482 and Chapter 1, "PeopleCode Built-in
Functions," Component, page 106

PeopleTools 8.52: PeopleCode Developer's Guide, "Understanding the PeopleCode Language," Data Types

Gray

Syntax

Gray(scrollpath,target_row, [recordname.]fieldname)

PeopleCode Built-in Functions Chapter 1

434 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

If you put the function on the same scroll level as the field being changed, you can use the following syntax:

Gray(Fieldname)

The more complex syntax can be used to loop through a scroll on a lower level than the PeopleCode program.

Description

Use the Gray function to make a field unavailable for entry a page field, preventing the user from making
changes to the field.

Note. This function remains for backward compatibility only. Use the Enabled field class property instead.

 Gray makes a field display-only, while Hide makes it invisible. You can undo these effects using the built-in
functions Ungray and Unhide.

Note. If you specify a field as Display Only in Application Designer, using the PeopleCode functions Gray,
followed by Ungray, will not make it editable. This function shouldn't be used in any event prior to RowInit.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Enabled

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying the row on the target scroll level where the referenced buffer
field is located.

 [recordname.]fieldname The name of the field to gray. The field can be on scroll level one, two, or three of
the active page. The recordname prefix is required if the call to Gray is not on the
record definition recordname.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 435

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Example

This example, which would typically be found in the RowInit event, disables the page's address fields if the
value of the SAME_ADDRESS_EMPL field is "Y".

If SAME_ADDRESS_EMPL = "Y" Then
 Gray(STREET1);
 Gray(STREET2);
 Gray(CITY);
 Gray(STATE);
 Gray(ZIP);
 Gray(COUNTRY);
 Gray(HOME_PHONE);
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," Hide, page 437; Chapter 1, "PeopleCode Built-in Functions,"
Ungray, page 714 and Chapter 1, "PeopleCode Built-in Functions," Unhide, page 716

GrayMenuItem

Syntax

GrayMenuItem(BARNAME.menubar_name,ITEMNAME.menuitem_name)

Description

Note. The GrayMenuItem function is supported for compatibility with previous releases of PeopleTools. New
applications should use DisableMenuItem instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," DisableMenuItem, page 220

Hash

Syntax

Hash(ClearTextString)

PeopleCode Built-in Functions Chapter 1

436 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

The Hash function returns a fixed length value, based on the input. The output is always 28 characters. The
input is variable length, with no maximum size.

Regardless of the operating system platform, underlying character encoding or hardware byte order, identical
character strings always generate identical hash values regardless of the platform on which the hash
generation is run. Because of this, hash output should not be used as a unique key to a table of data. Given the
output of hash, it is impossible to determine the input.

Some of the original data is deliberately lost during the conversion process. This way, even if you know the
algorithm, you can't "un-hash" the data.

Generally the Hash function is used like a checksum, to compare hashed values to ensure they match.

Parameters

Parameter Description

ClearTextString Specify the string you want converted.

Returns

A hash string.

Example

MessageBox("Please confirm password");

&HASHPW = Hash(&PASSWD);
&OPERPSWD = USERDEFN.OPERPSWD.Value;

If not (&HASHPW = &OPERPSWD) Then
 /* do error handling */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," Decrypt, page 199 and Chapter 1, "PeopleCode Built-in
Functions," Encrypt, page 245

HermiteCubic

Syntax

HermiteCubic(DataPoints)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 437

Description

Use the HermiteCubic function to compute a set of interpolating equations for a set of at least three
datapoints. This particular Hermitian cubic is designed to mimic a hand-drawn curve.

Parameters

Parameter Description

DataPoints This parameter takes an array of array of number. The array's contents are an array
of six numbers. The first two of these six numbers are the x and y points to be fit.
The last four are the four coefficients to be returned from the function: a,b,c and d.
a is the coefficient of the x0 term, b is the coefficient of the x1 term, c is the
coefficient of the x2 term, and d is the coefficient of the x3 term.

Returns

A modified array of array of numbers. The elements in the array correspond to the elements in the array used
for DataPoints.

See Also

Chapter 1, "PeopleCode Built-in Functions," CubicSpline, page 169 and Chapter 1, "PeopleCode Built-in
Functions," LinearInterp, page 479

Hide

Syntax

Hide(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

Use the Hide function to make a page field invisible.

Note. This function remains for backward compatibility only. Use the Visible field class property instead.

You can display the field again using Unhide, but Unhide has no effect on a field that has been made display-
only in the page definition.

PeopleCode Built-in Functions Chapter 1

438 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 Gray, Hide, Ungray, and Unhide usually appear in RowInit programs that set up the initial display of data,
and in FieldChange programs that change field display based on changes the user makes to a field. Generally,
you put the functions on the same scroll level as the field that is being changed. This reduces the complexity
of the function's syntax to:

Hide(fieldname)

The more complex syntax can be used to loop through a scroll on a lower level than the PeopleCode program.

Note. This function shouldn't be used in any event prior to RowInit.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Visible

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying the row on the target scroll level where the referenced buffer
field is located.

[recordname.]fieldname The name of the field to hide. The field can be on scroll level one, two, or three of
the active page. The recordname prefix is required if the call to Hide is not on the
record definition recordname

Returns

Boolean (optional). Hide returns a Boolean value indicating whether it executed successfully.

Example

This example hides the page's address fields if SAME_ADDRESS_EMPL is equal to "Y":

If SAME_ADDRESS_EMPL = "Y" Then
 Hide(STREET1);
 Hide(STREET2);
 Hide(CITY);
 Hide(STATE);
 Hide(COUNTRY);
 Hide(HOME_PHONE);
End-if;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 439

See Also

Chapter 1, "PeopleCode Built-in Functions," Gray, page 433; Chapter 1, "PeopleCode Built-in Functions,"
Ungray, page 714 and Chapter 1, "PeopleCode Built-in Functions," Unhide, page 716

HideMenuItem

Syntax

HideMenuItem(BARNAME.menubar_name,ITEMNAME.menuitem_name)

Description

Use the HideMenuItem function to hide a specified menu item. To apply this function to a pop-up menu, use
the PrePopup Event of the field with which the pop-up menu is associated.

If you're using this function with a pop-up menu associated with a page (not a field), the earliest event you
can use is the PrePopup event for the first "real" field on the page (that is, the first field listed in the Order
view of the page in Application Designer.)

When a menu is first displayed, all menus are visible by default, so there is no need for a function to re-
display a menuitem that has been hidden.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Parameters

Parameter Description

menubar_name Name of the menu bar that owns the menuitem, or, in the case of pop-up menus,
the name of the pop-up menu that owns the menuitem.

menuitem_name Name of the menu item.

Returns

None.

Example

HideMenuItem(BARNAME.MYPOPUP1, ITEMNAME.DO_JOB_TRANSFER);

PeopleCode Built-in Functions Chapter 1

440 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," DisableMenuItem, page 220 and Chapter 1, "PeopleCode Built-
in Functions," EnableMenuItem, page 241

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," PrePopup
Event

HideRow

Syntax

HideRow(scrollpath)[, target_row])

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

Use the HideRow function to hide a row occurrence programmatically.

Note. This function remains for backward compatibility only. Use the Visible row class property instead.

It hides the specified row and any associated rows at lower scroll levels.

Hiding a row just makes the row invisible, it does not affect database processing such as inserting new rows,
updating changed values, or deleting rows.

When you hide a row, it becomes the last row in the scroll or grid, and the other rows are renumbered
accordingly. If you later use UnHideRow to make the row visible again, it is not moved back to its original
position, but remains in its new position. When HideRow is used in a loop, you have to process rows from the
highest number to the lowest to achieve the correct results.

Note. HideRow cannot be executed from the same scroll level as the row that is being hidden, or from a
lower scroll level. Place the PeopleCode in a higher scroll level record.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Row Class," Visible

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 441

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying which row in the scroll to hide. If this parameter is omitted,
the row on which the PeopleCode program is executing is assumed.

Returns

Boolean (optional). HideRow returns a Boolean value indicating whether the function executed successfully.

Example

This example hides all rows in scroll level 1 where the EXPORT_SW field is equal to "Y". Note that the loop
has to count backwards from ActiveRowCount to 1.

For &ROW = ActiveRowCount(RECORD.EXPORT_OBJECT) to 1
step - 1
 &EXPORT_SW = FetchValue(EXPORT_OBJECT.EXPORT_SW, &ROW);
 If &EXPORT_SW "Y" Then
 HideRow(RECORD.EXPORT_OBJECT, &ROW);
 Else
 /* WinMessage("not hiding row " | &ROW);*/
 End-if;
End-for;

See Also

Chapter 1, "PeopleCode Built-in Functions," UnhideRow, page 717 and Chapter 1, "PeopleCode Built-in
Functions," DeleteRow, page 207

HideScroll

Syntax

HideScroll(scrollpath)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

PeopleCode Built-in Functions Chapter 1

442 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

 Use the HideScroll function to programmatically hide a scroll bar and all data items within the scroll.

Note. This function remains for backward compatibility only. Use the HideAllRows rowset class method
instead.

Typically this function is used in RowInit and FieldChange PeopleCode to modify the page based on user
action.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," HideAllRows

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

Returns

HideScroll returns a Boolean value indicating whether the function executed successfully.

Example

This example, from RowInit PeopleCode, initializes the visibility of the scroll based on a field setting:

If %Component = COMPONENT.APPR_RULE Then
 If APPR_AMT_SW = "N" Then
 HideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL,⇒
 CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
 Else
 UnhideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_⇒
DETL, CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
 End-If;
End-If;

The corresponding FieldChange PeopleCode dynamically changes the appearance of the page based on user
changes to the APPR_AMT_SW field:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 443

If APPR_AMT_SW = "N" Then
 HideScroll(RECORD.APPR_RULEs_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL,⇒
 CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
 &AMT_ROWS = ActiveRowCount(RECORD.APPR_RULE_LN, CurrentRowNumber(1),⇒
 RECORD.APPR_RULE_DETL, CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
 For &AMT_LOOP = &AMT_ROWS To 1 Step - 1
 DeleteRow(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL,⇒
 CurrentRowNumber(2), RECORD.APPR_RULE_AMT, &AMT_LOOP);
 End-For;
Else
 UnhideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL,⇒
 CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," UnhideRow, page 717; Chapter 1, "PeopleCode Built-in
Functions," HideRow, page 440 and Chapter 1, "PeopleCode Built-in Functions," UnhideScroll, page 718

HistVolatility

Syntax

HistVolatility(Closing_Prices,Trading_Days)

Description

Use the HistVolatility function to compute the historical volatility of a market-traded instrument.

Parameters

Parameter Description

Closing_Prices An array of number. The elements in this array contain a vector of closing prices
for the instrument.

Trading_Days The number of trading days in a year.

Returns

A number.

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertRate, page 125

PeopleCode Built-in Functions Chapter 1

444 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Hour

Syntax

Hour(time_value)

Description

 Use the Hour function to extract a Number value for the hour of the day based on a time or DateTime value.
The value returned is a whole integer and is not rounded to the nearest hour.

Parameters

Parameter Description

time_value A DateTime or Time value.

Returns

Returns a Number equal to a whole integer value from 0 to 23 representing the hour of the day.

Example

If &TIMEOUT contains a Time value equal to 04:59:59 PM, the following example sets
&TIMEOUT_HOUR to 16:

&TIMEOUT_HOUR = Hour(&TIMEOUT);

See Also

Chapter 1, "PeopleCode Built-in Functions," Minute, page 506 and Chapter 1, "PeopleCode Built-in
Functions," Second, page 595

IBPurgeDomainStatus

Syntax

IBPurgeDomainStatus()

Description

Use the IBPurgeDomainStatus function to purge the domain status.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 445

Parameters

None.

Returns

A boolean value: true if the functions completes successfully, false otherwise.

IBPurgeNodesDown

Syntax

IBPurgeNodesDown()

Description

Use the IBPurgeNodesDown function to purge the down nodes from the service operation monitor.

Parameters

None.

Returns

Boolean: true if the function completes successfully, false otherwise.

Idiv

Syntax

Idiv(x,divisor)

Description

The Idiv function is an explicit integer division operation. It divides one number (x) by another (divisor).

Parameters

Parameter Description

X Specify an integer to be divided.

PeopleCode Built-in Functions Chapter 1

446 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

divisor Specify the integer used to divide the first parameter.

Returns

An integer value.

Example

The following example sets &I1 to 1 and &I2 to -1:

&I1 = Idiv(3, 2);

&I2 = Idiv(17, 10);

See Also

Chapter 1, "PeopleCode Built-in Functions," Mod, page 507; Chapter 1, "PeopleCode Built-in Functions," Int,
page 455; Chapter 1, "PeopleCode Built-in Functions," Integer, page 456; Chapter 1, "PeopleCode Built-in
Functions," Round, page 581; Chapter 1, "PeopleCode Built-in Functions," Truncate, page 710 and Chapter 1,
"PeopleCode Built-in Functions," Value, page 725

If

Syntax

If condition Then
 [statement_list_1]
[Else
 [statement_list_2]]
End-If

Description

Use the If statement to execute statements conditionally, depending on the evaluation of a conditional
expression. The Then and Else clauses of an If consist of arbitrary lists of statements. The Else clause may be
omitted. If condition evaluates to True, all statements in the Then clause are executed; otherwise, all
statements in the Else clause are executed.

Example

The following example's first If statement checks for BEGIN_DT and RETURN_DT, and makes sure that
RETURN_DT is greater (later) than BEGIN_DT. If this is True, the execution continues at the following line,
otherwise execution continues at the line beginning with WinMessage:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 447

If All(BEGIN_DT, RETURN_DT) and
 BEGIN_DT = RETURN_DT Then
 &DURATION_DAYS = RETURN_DT - BEGIN_DT;
 If &DURATION_DAYS 999 Then
 DURATION_DAYS = 999;
 Else
 DURATION_DAYS = &DURATION_DAYS;
 End-if;
Else
 WinMessage("The beginning date is later then the return date!");
End-if;

InboundPublishXmlDoc

Syntax

InboundPublishXmlDoc(&XmlDoc,Message.MessageName,Node.PubNodeName [, Enqueue])

Description

Use the InboundPublishXmlDoc function to send an asynchronous message that simulates an inbound request
from an external node. The content data is based on an XmlDoc object.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class InboundPublish method instead.

This function is used to test inbound message processing. Though you are sending a message to yourself, it
goes through all the inbound message processing on PubNodeName.

The &XmlDoc object must already be instantiated and populated. The message included in the function call
should be a nonrowset-based message, that is, one that isn't based on a hierarchical record structure.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," InBoundPublish

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object that you want to test.

MessageName Specify an already existing nonrowset-based message, prefaced with the reserved
word Message.

PubNodeName Specify a node. This is for Sender Specified Routing (SSR), prefixed with the
reserved word Node. The node defines the target for the published message.

Enqueue Specify if the message is enqueued. This parameter takes a Boolean value.

PeopleCode Built-in Functions Chapter 1

448 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A Boolean value: True if the message was successfully published, False otherwise.

Example

The following code example re-publishes the XmlDoc and simulates that it is coming from the node
EXTERNAL.

Local XMLDOC &xmldoc = GetMessageXmlDoc();

InBoundPublishXmlDoc(&xmldoc, NODE.EXTERNAL);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetMessageXmlDoc, page 386 and Chapter 1, "PeopleCode
Built-in Functions," SyncRequestXmlDoc, page 672

InitChat

Syntax

InitChat(logical queue ID,application data URL, customer username, [chat_subject
][, chat_question][, wizard_URL][, priority][, skill_level][, cost])

Description

Use the InitChat function to engage a customer and an agent in a chat session. It places a chat request on a
MultiChannel Framework queue and immediately launches a customer chat window. When an agent accepts
this task from the queue, the system launches an agent chat window.

Note. Chats are implicitly queued with the current language setting of the initiator (%Language_user). Chats
are only assigned to agents who have this language in their language list as specified on the Languages page
of the Agents component.

Parameters

Parameter Description

logical queue ID Specifies the logical queue in which the task should be queued. It is a string value.

The logical queue ID is a case-sensitive value. The case used in the InitChat
function must exactly match the case used when creating the logical queue ID on
the Queues page.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 449

Parameter Description

application data relative URL This is the relative URL of the application page you want the agent to see on the
left side of the agent-to-customer chat window when the agent accepts the chat.
This value needs to be provided by your program.

Note. This URL parameter must not point to content that includes JavaScript that
breaks surrounding frames or that references the "top" window. In addition, the
application page should not contain URL links to such content. This is because the
Agent Chat Console is framed by the RenServer API which sends and receives the
chat text.

customer username This reflects the name of the customer or end user initiating the chat request. This
value can be derived from the signon mechanism (%UserID) or by prompting the
user.

This is the name used to identify the chat requestor in the MultiChannel
Framework chat console. For example, in the chat history window, all text sent by
the customer is prefixed with this name.

chat_subject This is an optional string parameter. The application can indicate a subject of the
chat request.

This could be prompted from the user or inferred from the page from which the
chat is initiated. The system displays the subject on the agent's chat console when
it assigns the chat to an agent.

chat_question This is an optional string parameter. The application can indicate a specific
question to be addressed in the chat. This could be prompted from the user or
inferred from the page from which the chat is initiated.

The value appears in the agent's chat window history box immediately after
accepting the chat. This enables the agent to know the customer's question without
having to ask.

wizard_URL This feature leads the agent to an application page from which the agent can select
a URL to push to the customer. This is an optional string parameter. This is the
relative URL of the application page you wish the agent to launch when the agent
clicks the Grab button on the Agent Chat console.

 If you do not provide this value, a default wizard is launched with no application-
specific functionality.

If you do provide this value, the application page must provide a wizard for
pushing a URL to the customer.

The wizard page provided by the application must be able to write the URL
generated by the wizard to the URL field. The URL field is defined by PeopleSoft.
In addition, you need to embed the HTML definition, MCF_GRABURL, which
provides the Push and Push and Close buttons that push the URL in the URL field
to the customer.

See the Example section for examples showing the PeopleCode that would be used
to generate the relative URL that is passed in to InitChat and the PeopleCode that
would be used to embed the provided MCF_GRABURL definition into your
application page.

PeopleCode Built-in Functions Chapter 1

450 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

priority This is an optional parameter. It is an integer value expressing the priority level of
the request. The minimum value is 0 and there is no maximum value.

Specify the priority of this chat task. A higher value means a higher priority.
MultiChannel Framework tasks are ordered on a physical queue based on their
assigned priority, which means the system assigns a task of a higher priority
before it assigns a task of a lower priority.

 If no value is specified, the system uses the default value specified for that task
type on the Task Configuration page.

When tasks have the same priority, the system orders the tasks according to time
they were created. For example, suppose the following tasks exist: Priority 2
created at 11:15 AM and Priority 2 created at 11:16 AM. In this case, the system
places the task created at 11:15 AM before the task created at 11:16 AM.

skill level This is an optional parameter. It is an integer value expressing the minimum skill
level required of the agent to whom the system routes the request. You set an
agent's skill level in the Agent page. The minimum value is 0 and there is no
maximum value.

The queue server assigns this task type to an available agent on that queue with the
lowest skill level greater than or equal to the skill level required by the task.

If no value is specified, the system uses the default value specified for that task
type in the Task Configuration page.

cost This is an optional parameter. It is an integer value measuring the workload each
task places on an agent. The cost of a task is an estimate of the tasks's expected
complexity and of the time required to resolve the task. The minimum value is 0,
and there is no maximum value.

The cost of a task is added to an agent's workload after accepting a task on the
MultiChannel Framework console. A task can't be assigned to an agent if the
difference between the current workload and the maximum workload defined for
that agent on the Agent configuration page is less than the cost of this task.

If you do not specify a value, the system uses the default value specified for that
task in the Task Configuration pages.

Note. If the required skill level or cost submitted exceeds the highest skill level or
maximum workload of any of the agents on that queue, the task cannot be
assigned.

Returns

Returns a unique Chat ID in the form of an integer. You can use this ID to reference the chat in the chat log.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example

For example, the following PeopleCode could be used to generate the relative URL that is passed in to
InitChat.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 451

&WizURL = GenerateComponentContentRelURL(%Portal, %Node, MenuName.PT_MCF, "GBL",⇒
 Component.MCF_DEMO_CMP, Page.MCF_URLWIZARD, "U");

The following is an example of embedding the provided MCF_GRABURL definition into your application
page, using the GetHTMLText function.

Function IScript_GrabURL()
 &cssPTMCFDEF = %Response.GetStyleSheetURL(StyleSheet.PTMCFDEF);
 &cssPTSTYLEDEF = %Response.GetStyleSheetURL(StyleSheet.PTSTYLEDEF);
 &titleGrabURL = MsgGetText(162, 1170, "URL Wizard");
 &psDomain = SetDocDomainForPortal();
 If (&psDomain = "") Then
 &psDomain = SetDocDomainToAuthTokenDomain();
 End-If;
 &labelBtPush = MsgGetText(162, 1181, "Push");
 &labelBtPushClose = MsgGetText(162, 1186, "Push and Close");
 &HTML = GetHTMLText(HTML.MCF_GRABURL, &titleGrabURL, &cssPTSTYLEDEF, &css⇒
PTMCFDEF, &psDomain, &labelBtPush, &labelBtPushClose);
 %Response.Write(&HTML);
End-Function;

The following is an example of the usage of InitChat.

&ret = InitChat("SALES", "http://www.support.company.com/products.html",
"John Smith", "Widgets", "How to order widgets", "", 2, 2);

The following example illustrates how to pass a PeopleCode-generated URL using the
GenerateComponentContentRelURL function for Application Data URL and wizards.

 &urlTestComponent = GenerateComponentContentRelURL(%Portal, %Node, Menu⇒
Name.UTILITIES, "GBL", Component.MESSAGE_CATALOG1, Page.MESSAGE_CATALOG, "U");

 &WizURL = GenerateComponentContentRelURL(%Portal, %Node, MenuName.PT_MCF,⇒
 "GBL", Component.MCF_DEMO_CMP, Page.MCF_URLWIZARD, "U");

 try

 &ret = InitChat(&QUEUEID, &urlTestComponent, &Username, &subject, &question,⇒
 &wizurl, &priority, &minskill);
 catch Exception &E

 MessageBox(0, "", 0, 0, "Caught exception: " | &E.ToString());
 end-try;

InsertImage

Syntax

InsertImage(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[SCROLL.level1_recname,level1_row, [SCROLL.level2_recname,level2_row,]] SCROLL.
target_recname

PeopleCode Built-in Functions Chapter 1

452 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the InsertImage function to associate an image file with a record field on a page. After the image file is
associated with the record field, it can be saved to the database when the component is saved.

The following are the valid types of image files that can be associated with a record field:

• JPEG

• BMP

• DIB

InsertImage uses a search page to enable the end user to select the image file to be used. This is the same
search page used to add an attachment.

Note. To update an image field using this function, be sure that PSIMAGEVER field is also on the same
record as the image field being updated.

Restrictions on Use in PeopleCode Events

 InsertImage is a "think-time" function, which means it shouldn't be used in any of the following PeopleCode
events:

• SavePreChange

• SavePostChange

• Workflow

• RowSelect

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Image Size Considerations

The size of the image that can be saved to the database depends on the database platform.

Database Platform Size limitation

DB2/400 30 KB

DB2/MVS 31 KB

DB2/Unix 31 KB

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 453

Platforms other than those listed here are effectively without a size limit, that is, they allow for images equal
to or greater than 2 GB.

Platform size limitations are subject to change.

Parameters

Parameter Description

scrollpath A construction that specifies a scroll area in the component buffer.

target_row The row number of the target row.

 [recordname.]fieldname The name of the field to be associated with the image file. The field can be on
scroll level one, two, or three of the active page. The recordname prefix is
required if the function call is not on the record definition recordname

Returns

The InsertImage function returns either a constant or a number:

Numeric Value Constant Value Description

0 %InsertImage_Success Image was successfully associated
with the record field.

1 %InsertImage_Failed Image was not successfully associated
with the record field. When the
component is saved the image file will
not be saved to the database.

2 %InsertImage_Canceled User canceled the transaction so image
file isn't associated with record field.

3 %InsertImage_ExceedsMaxSize Image exceeds the maximum allowed
size.

Example

&RC = InsertImage(EMPL_PHOTO.EMPLOYEE_PHOTO);

See Also

Chapter 1, "PeopleCode Built-in Functions," DeleteImage, page 205

PeopleCode Built-in Functions Chapter 1

454 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

InsertRow

Syntax

InsertRow(scrollpath,target_row [, turbo])

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

Use the InsertRow function to programmatically perform the ALT+7 and ENTER (RowInsert) function.

Note. This function remains for backward compatibility only. Use the InsertRow method of the Rowset class
instead.

InsertRow inserts a new row in the scroll buffer and causes a RowInsert PeopleCode event to fire, followed
by the events that normally follow a RowInsert, as if the user had manually pressed ALT+7 and ENTER.

In scrolls that are not effective-dated, the new row is inserted after the target row specified in the function
call. However, if the scroll is effective-dated, then the new row is inserted before the target row, and all the
values from the previous current row are copied into the new row, except for EffDt, with is set to the current
date.

Note. InsertRow cannot be executed from the same scroll level where the insertion will take place, or from a
lower scroll level. Place the PeopleCode in a higher scroll level record.

Turbo Mode

The InsertRow built-in function can be executed in turbo mode or non-turbo mode. In turbo mode, default
processing is performed on the row being inserted only, which provides a performance improvement over
non-turbo mode. In non-turbo mode, default processing is performed on all rows.

Turbo mode is available as an option to the InsertRow, RowScrollSelect, RowScrollSelectNew, ScrollSelect,
and ScrollSelectNew PeopleCode built-in functions. To execute any of these functions in turbo mode, pass a
value of True in the optional turbo parameter. Non-turbo mode is the default for these functions.

Note. For the Flush, InsertRow, and Select methods of the Rowset class, turbo mode is the only available
operating mode.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 455

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," InsertRow

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number indicating the position where the new row will be inserted.

turbo Specifies whether default processing is performed on the entire scroll buffer (non-
turbo mode) or just the row being inserted (turbo mode). Pass a value of True to
perform processing in turbo mode. Non-turbo mode is the default.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The example inserts a row on the level-two page scroll. The PeopleCode has to be in the scroll-level-one
record:

InsertRow(RECORD.BUS_EXPENSE_PER, &L1_ROW, RECORD.BUS_EXPENSE_DTL, &L2_ROW);

See Also

Chapter 1, "PeopleCode Built-in Functions," DeleteRow, page 207; Chapter 1, "PeopleCode Built-in
Functions," HideRow, page 440 and Chapter 1, "PeopleCode Built-in Functions," UnhideRow, page 717

Int

Syntax

Int(decimal)

PeopleCode Built-in Functions Chapter 1

456 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

 Use the Int function to truncate a decimal number x to an integer and returns the result as a Number value.

Note. PeopleSoft only supports 32 bit integers. The largest integer value we support is 4294967295.

Parameters

Parameter Description

decimal A decimal number to be truncated.

Returns

Returns a Number equal to decimal truncated to a whole integer.

Example

The following example sets &I1 to 1 and &I2 to -4:

&I1 = Int(1.975);
&I2 = Int(-4.0001);

See Also

Chapter 1, "PeopleCode Built-in Functions," Mod, page 507; Chapter 1, "PeopleCode Built-in Functions,"
Round, page 581; Chapter 1, "PeopleCode Built-in Functions," Truncate, page 710 and Chapter 1,
"PeopleCode Built-in Functions," Value, page 725

Integer

Syntax

Integer(decimal)

Description

Use the Integer function to convert decimal to an integer (32 bit signed twos complement number) by
truncating any fraction part towards zero and returns the result as an Integer value.

Differences between Int and Integer

There is one primary difference between the Int function and the Integer function.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 457

• The Int function rounds to a number in floating-decimal-point representation with a range of -
9,999,999,999,999,999,999,999,999,999,999 to 9,999,999,999,999,999,999,999,999,999,999.

• The Integer function truncates to a number in 32 bit binary twos-complement representation with a range
of -2,147,483,648 to 2,147,483,647.

Parameters

Parameter Description

decimal A decimal number to be truncated to an integer.

Returns

Returns an Integer equal to decimal truncated to a whole integer. If decimal is outside the range that can be
represented by an integer type, the result isn't defined.

See Also

Chapter 1, "PeopleCode Built-in Functions," Mod, page 507; Chapter 1, "PeopleCode Built-in Functions," Int,
page 455; Chapter 1, "PeopleCode Built-in Functions," Round, page 581; Chapter 1, "PeopleCode Built-in
Functions," Truncate, page 710 and Chapter 1, "PeopleCode Built-in Functions," Value, page 725

IsAlpha

Syntax

IsAlpha(String)

Description

Use the IsAlpha function to determine if String contains only textual characters, including alphabetic
characters from several scripts including Latin, Greek, Cyrillic and Thai, ideographic characters from
Chinese, Japanese and Korean and Japanese kana. It excludes all punctuation, numerics, spaces and control
codes

Parameters

Parameter Description

String Specify the string you want to search for alphabetic and other textual characters.

PeopleCode Built-in Functions Chapter 1

458 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A Boolean value: true if the string contains only alphabetic and textual characters, false if it contains any
numbers, punctuation or spaces.

Example

&Value = Get Field().Value;
If IsAlpha(&Value) Then
 /* do textual processing */
Else
 /* do non-textual processing */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in
Functions," IsDigits, page 462; Chapter 1, "PeopleCode Built-in Functions," IsDate, page 459; Chapter 1,
"PeopleCode Built-in Functions," IsDateTime, page 460; Chapter 1, "PeopleCode Built-in Functions,"
IsNumber, page 471 and Chapter 1, "PeopleCode Built-in Functions," IsTime, page 473

IsAlphaNumeric

Syntax

IsAlphaNumeric(String)

Description

Use the IsAlphaNumeric function to determine if String contains only textual and numeric characters.

Textual characters include all characters valid for the IsAlpha function. Alphanumeric characters do not
include sign indicators and comma and period decimal points. If you want to check for numbers as well as
sign indicators, use the IsNumber function.

Parameters

Parameter Description

String Specify the string you want to search for alphanumeric characters.

Returns

A Boolean value: True if the string contains only alphanumeric characters, False otherwise.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 459

Example

&Value = Get Field().Value;
If IsAlphaNumeric(&Value) Then
 /* do alphanumeric processing */
Else
 /* do non-alphanumeric processing */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," IsNumber, page 471 and Chapter 1, "PeopleCode Built-in
Functions," IsAlpha, page 457

IsDate

Syntax

IsDate(Value)

Description

Use the IsDate function to determine if Value contains a valid date.

You can use this function when you want to determine if a value is compatible with the Date built-in function.

Unintialized date variables, 0 numerics, or blank strings return true. If these values are possibilities for a
variable passed to the IsDate function, you should add an additional check to ensure there is a value, such as
using the All function.

Parameters

Parameter Description

Value Specify either a string or number you want to search for a valid date. Value is a
number of the format YYYYMMDD or string of the format YYYY-MM-DD.

Returns

A Boolean value: True if the string contains a valid date, False otherwise.

Example

If IsDate(&Num) Then
 &Datevalue = Date(&Num);
End-if;

PeopleCode Built-in Functions Chapter 1

460 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in
Functions," IsDigits, page 462; Chapter 1, "PeopleCode Built-in Functions," IsDateTime, page 460; Chapter 1,
"PeopleCode Built-in Functions," IsNumber, page 471 and Chapter 1, "PeopleCode Built-in Functions,"
IsTime, page 473

IsDateTime

Syntax

IsDateTime(String)

Description

Use the IsDateTime function to determine if String contains a date/time string in the standard PeopleSoft
format, that is, in the following format:

yyyy-mm-dd hh:mm:ss.mmmmmm

Parameters

Parameter Description

String Specify the string you want to search for a valid PeopleSoft date/time.

Returns

A Boolean value: True if the string contains a valid PeopleSoft date/time, False otherwise.

Example

The following example uses the short form of dot notation, by combining the getting the field value with
getting the value of IsDateTime and making it a conditional statement:

If IsDateTime(GetField().Value) Then
 /* do date processing */
Else
 /* do non-date processing */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in
Functions," IsDigits, page 462; Chapter 1, "PeopleCode Built-in Functions," IsDate, page 459; Chapter 1,
"PeopleCode Built-in Functions," IsNumber, page 471 and Chapter 1, "PeopleCode Built-in Functions,"
IsTime, page 473

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 461

IsDaylightSavings

Syntax

IsDaylightSavings(datetime, {timezone | "Local" | "Base"});

Description

 Use the IsDaylightSavings function to determine if daylight saving time is active in the specified time zone at
the specified date and time. For time zones that don't observe daylight saving time, this function always
returns False.

The system's base time zone is specified on the PSOPTIONS table.

Parameters

Parameter Description

datetime The DateTime value you want to check.

timezone | Local | Base Specify a value for converting datetime. The values are:

• timezone - a time zone abbreviation or a field reference to be used for
converting datetime.

• Local - use the local time zone for converting datetime.

• Base - use the base time zone for converting datetime.

Returns

A Boolean value: True if daylight saving time is active in the specified time zone at the specified date and
time. Returns False otherwise.

Example

In the first example, TESTDTTM has value of 01/01/99 10:00:00AM. &OUTPUT is False.

&OUTPUT = IsDaylightSavings(TESTDTTM, "EST")

In this example, TESTDTTM has value of 04/05/99 12:00:00AM. &OUTPUT has a value of True: 12:00am
PST = 3:00am EST, so daylight saving time has switched on.

&OUTPUT = IsDaylightSavings(TESTDTTM, "EST")

In this example, TESTDTTM has value of 04/05/99 12:00:00AM. &OUTPUT returns False: 12:00am PST =
1:00am MST, so daylight saving time hasn't started yet.

&OUTPUT = IsDaylightSavings(TESTDTTM, "MST")

PeopleCode Built-in Functions Chapter 1

462 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

In this example, TESTDTTM has value of 07/07/99 10:00:00. &OUTPUT returns False: ESTA is Indiana
time, where they do not observe daylight saving time.

&OUTPUT = IsDaylightSavings(TESTDTTM, "ESTA")

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," ConvertTimeToBase, page 126; Chapter 1, "PeopleCode Built-in Functions,"
DateTimeToTimeZone, page 185; Chapter 1, "PeopleCode Built-in Functions," TimeToTimeZone, page 678
and Chapter 1, "PeopleCode Built-in Functions," TimeZoneOffset, page 680

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities"

IsDigits

Syntax

IsDigits(String)

Description

Use the IsDigits function to determine if String contains only digit (numeric) characters. Numeric characters
do not include sign indicators and comma and period decimal points. If you want to check for numbers as
well as sign indicators, use the IsNumber function.

Parameters

Parameter Description

String Specify the string you want to search.

Returns

A Boolean value: True if the string contains digits, False otherwise.

Example

If IsDigits(&MyValue) Then
 /* do processing */
Else
 /* do error processing */
End-if;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 463

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlpha, page 457; Chapter 1, "PeopleCode Built-in Functions,"
IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in Functions," IsDate, page 459; Chapter 1,
"PeopleCode Built-in Functions," IsDateTime, page 460; Chapter 1, "PeopleCode Built-in Functions,"
IsNumber, page 471 and Chapter 1, "PeopleCode Built-in Functions," IsTime, page 473

IsHidden

Syntax

IsHidden(scrollpath,target_row)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

Use the IsHidden function to verify whether a row is hidden or not.

Note. This function remains for backward compatibility only. Use the Visible row class property instead.

It returns True if the row is hidden, otherwise it returns False. IsHidden must be called in a PeopleCode
program on a higher scroll level than one you are checking.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Row Class," Visible

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number indicating the position of the row.

PeopleCode Built-in Functions Chapter 1

464 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following example tests whether a specific row on scroll level one is hidden:

&ROW_CNT = ActiveRowCount(RECORD.LD_SHP_INV_VW);
&FOUND = True;
If &ROW_CNT = 1 Then
 &ORDER = FetchValue(LD_SHP_INV_VW.ORDER_NO, 1);
 If None(&ORDER) Then
 &FOUND = False;
 End-If;
End-If;
If &FOUND Then
 For &I = 1 To &ROW_CNT
 If Not IsHidden(RECORD.LD_SHP_INV_VW, &I) Then
 UpdateValue(ITEM_SELECTED, &I, "N");
 End-If;
 End-For;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateScriptContentURL, page 328 and Chapter 1,
"PeopleCode Built-in Functions," UnhideRow, page 717

ISOToDate

Syntax

ISOToDate(textdatetime)

Description

Use the ISOToDate function to convert the text value textdatetime in ISO 8601 format to a date value in the
base time zone. This function automatically calculates whether daylight saving time is in effect for the base
time zone.

The system's base time zone is specified in the PSOPTIONS table.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 465

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the ISO 8601 format: YYYY-MM-DDThh
:mm:ss[.S]TZD (for example, 1999-01-01T19:20:30.000000+0800)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z,+/-hh:mm or +/-hhmm).

Returns

Returns a date value in the base time zone.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DATE would have a
date value of "1999-01-01":

&DATE= ISOToDate("1999-01-01T18:00:00.000000-0800");

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," DateTimeToISO, page 181; Chapter 1, "PeopleCode Built-in Functions,"
DateTimeValue, page 186 and Chapter 1, "PeopleCode Built-in Functions," ISOToDateTime, page 465

ISOToDateTime

Syntax

ISOToDateTime(textdatetime)

PeopleCode Built-in Functions Chapter 1

466 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the ISOToDatetime function to convert the text value textdatetime in ISO 8601 format to a DateTime
value in base time zone. This function automatically calculates whether daylight savings time is in effect for
the base time zone.

The system's base time zone is specified on the PSOPTIONS table.

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the ISO 8601 format: YYYY-MM-DDThh
:mm:ss[.S]TZD (for example, 1999-01-01T19:20:30.000000+0800)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z,+/-hh:mm or +/-hhmm).

Returns

Returns a DateTime value in the base time zone.

Example

In each of the following examples, assuming the base time (as defined in PSOPTIONS) is PST,
&DATETIME would have a DateTime value of "1999-01-01 18:00:00.000000":

&DATETIME= ISOToDateTime("1999-01-01T18:00:00.000000-08:00");
&DATETIME= ISOToDateTime("1999-01-01T21:00:00.000000-0500");
&DATETIME= ISOToDateTime("1999-01-02T02:00:00.0Z");

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," DateTimeToISO, page 181; Chapter 1, "PeopleCode Built-in Functions,"
DateTimeValue, page 186 and Chapter 1, "PeopleCode Built-in Functions," ISOToDate, page 464

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 467

IsMenuItemAuthorized

Syntax

IsMenuItemAuthorized(MENUNAME.menuname, BARNAME.barname,ITEMNAME.menuitem_name,
PAGE.component_item_name[, action])

Description

The IsMenuItemAuthorized function returns True if the current user is allowed to access the specified menu
item.

Note. You do not need to use this function to gray internal link pushbuttons/hyperlinks. This function is
generally used for transfers that are part of some PeopleCode processing.

Parameters

Parameter Description

menuname The name of the menu where the page is located, prefixed with the reserved word
MENUNAME.

barname The name of the menu bar where the page is located, prefixed with the reserved
word BARNAME.

menu_itemname The name of the menu item where the page is located, prefixed with the reserved
word ITEMNAME.

component_item_name Specify the component item name of the page to be displayed on top of the
component when it displays. The component item name is specified in the
component definition. If you specify a page, it must be prefixed with the keyword
PAGE. You can also specify a null ("") for this parameter.

action String representing the action mode in which to start up the page. If action is
omitted, the current action is used. Values are:

Constant Description

%Action_Add Add

%Action_UpdateDisplay Update/Display

%Action_UpdateDisplayAll Update/Display All

PeopleCode Built-in Functions Chapter 1

468 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Constant Description

%Action_Correction Correction

%Action_DataEntry Data Entry

%Action_Prompt Prompt

Returns

A Boolean value: True if the user is authorized to access the specified page, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223; Chapter 1, "PeopleCode Built-in
Functions," DoModalComponent, page 226; Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683
and Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

IsMessageActive

Syntax

IsMessageActive(Message.Message_Name)

Description

Use the IsMessageActive built-in function to determine whether the specified message definition has been set
to inactive in Application Designer.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class IsOperationActive method instead.

Note. This function is used only with XmlDoc messages, that is, after you get an XmlDoc message (using
GetMessageXmlDoc) use this function to determine if the message is active. Use the IsActive message class
property to determine if a rowset-based message definition is active.

This function returns True if the message definition for the XmlDoc message is active, False if it's been
inactivated from Application Designer. If you have a lot of PeopleCode associated with publishing an
XmlDoc message, you might use this function to check if the message is active before you publish it.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," IsOperationActive

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 469

Parameters

Parameter Description

Message_Name Specify the name of the message you want to inquire about. The message name
must be prefixed with the reserved work Message. This function is used only with
XmlDoc message definitions.

Returns

A Boolean value: True if the message is active, False otherwise.

Example

&Active = IsMessageActive(Message.MyMessage);
If &Active Then
 /* code for getting message, populating it and publishing it */
End-if;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," IsActive and PeopleTools 8.52:
PeopleCode API Reference, "XmlDoc Classes"

IsModal

Syntax

IsModal()

Description

 The IsModal function returns True if executed from PeopleCode running in a modal secondary page and
False if executed elsewhere. This function is useful in separating secondary page-specific logic from general
PeopleCode logic.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Parameters

None.

PeopleCode Built-in Functions Chapter 1

470 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A Boolean value.

Example

The following example executes logic specific to a secondary page:

If Not IsModal() Or
 Not (%Page = PAGE.PAY_OL_REV_RUNCTL Or
 %Page = PAGE.PAY_OL_RE_ASSGN_C Or
 %Page = PAGE.PAY_OL_RE_ASSGN_S) Then
 Evaluate COUNTRY
 When = "USA"
 When = "CAN"
 If Not AllOrNone(ADDRESS1, CITY, STATE) Then
 Warning MsgGet(1000, 5, "Address should consist of at least Street (Line⇒
 1), City, State, and Country.")
 End-If;
 Break;
 When-Other;
 If Not AllOrNone(ADDRESS1, CITY, COUNTRY) Then
 Warning MsgGet(1000, 6, "Address should consist of at least Street (Line⇒
 1), City, and Country.")
 End-If;
 End-Evaluate;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModal, page 223 and Chapter 1, "PeopleCode Built-in
Functions," EndModal, page 248

IsModalComponent

Syntax

IsModalComponent()

Description

Use the IsModalComponent function to test whether a secondary component is currently executing, enabling
you to write PeopleCode that only executes when a component has been called with DoModalComponent.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 471

Parameters

None.

Returns

Returns a Boolean value: True if the current program is executing from a secondary component, False
otherwise.

Example

If IsModalComponent() then
/* Logic that executes only if component is executing modally. */
end-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226

IsModalPanelGroup

Syntax

IsModalPanelGroup()

Description

Use the IsModalPanelGroup function to test whether a secondary component is currently executing.

Note. The IsModalPanelGroup function is supported for compatibility with previous releases of PeopleTools.
New applications should use the IsModalComponent function instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," IsModalComponent, page 470

IsNumber

Syntax

IsNumber(Value)

PeopleCode Built-in Functions Chapter 1

472 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the IsNumber function to determine if Value contains a valid numeric value. Numeric characters include
sign indicators and comma and period decimal points.

To determine if a value is a number and if it's in the user's local format, use the IsUserNumber function.

Parameters

Parameter Description

Value Specify a string you want to search to determine if it is a valid number.

Returns

A Boolean value: True if Value contains a valid numeric value, False otherwise.

Example

&Value = Get Field().Value;
If IsNumber(&Value) Then
 /* do numeric processing */
Else
 /* do non-numeric processing */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlpha, page 457; Chapter 1, "PeopleCode Built-in Functions,"
IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in Functions," IsDigits, page 462; Chapter 1,
"PeopleCode Built-in Functions," IsDate, page 459; Chapter 1, "PeopleCode Built-in Functions," IsDateTime,
page 460 and Chapter 1, "PeopleCode Built-in Functions," IsTime, page 473

Chapter 1, "PeopleCode Built-in Functions," IsUserNumber, page 476

IsOperatorInClass

Syntax

IsOperatorInClass(operclass1 [, operclass2]. . .)

Description

 The IsInOperatorClass takes an arbitrary-length list of strings representing the names of operator classes and
determines whether the current operator belongs to any class in a list of classes.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 473

Note. The IsOperatorInClass function is supported for compatibility with previous releases of PeopleTools.
New applications should use the IsUserInPermissionList function instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," IsUserInPermissionList, page 474

IsSearchDialog

Syntax

IsSearchDialog()

Description

Use the IsSearchDialog function to determine whether a search dialog, add dialog, or data entry dialog box is
currently executing. Use it to make processes conditional on whether a search dialog box is running.

Returns

Returns a Boolean value: True if a search dialog box is executing, False otherwise.

Example

If Not (IsSearchDialog()) Then
 If %Component = COMPONENT.SALARY_GRADE_TBL Then
 If All(SALARY_MATRIX_CD) Then
 Gray(RATING_SCALE)
 End-If;
 calc_range_spread();
 End-If;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetSearchDialogBehavior, page 637

IsTime

Syntax

IsTime(Value)

PeopleCode Built-in Functions Chapter 1

474 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the IsTime function to determine if Value contains a valid Time.

You can use this function when you want to determine if a value is compatible with the Time function.

Parameters

Parameter Description

Value Specify either a string or number you want to search for to determine if it's a valid
Time.

Returns

A Boolean value: True if the string contains a valid Time value, False otherwise.

Example

If IsTime(&Num) Then
 &Timevalue = Time(&Num);
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlpha, page 457; Chapter 1, "PeopleCode Built-in Functions,"
IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in Functions," IsDigits, page 462; Chapter 1,
"PeopleCode Built-in Functions," IsDate, page 459; Chapter 1, "PeopleCode Built-in Functions," IsDateTime,
page 460; Chapter 1, "PeopleCode Built-in Functions," IsNumber, page 471 and Chapter 1, "PeopleCode
Built-in Functions," IsTime, page 473

IsUserInPermissionList

Syntax

IsUserInPermissionList(PermissionList1 [, PermissionList2]. . .)

Description

 Use the IsUserInPermissionList function to take an arbitrary-length list of strings representing the names of
Permission Lists and determine whether the current user belongs to any of the Permission Lists.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 475

Parameters

Parameter Description

PermissionList An arbitrary-length list of string, each of which represents a Permission List.

Returns

Returns a Boolean value: True if the current user has access to one or more of the Permission Lists, False
otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ExecuteRolePeopleCode, page 265; Chapter 1, "PeopleCode
Built-in Functions," ExecuteRoleQuery, page 266; Chapter 1, "PeopleCode Built-in Functions,"
ExecuteRoleWorkflowQuery, page 267 and Chapter 1, "PeopleCode Built-in Functions," IsUserInRole, page
475

Chapter 3, "System Variables," %PermissionLists, page 829

Chapter 3, "System Variables," %PrimaryPermissionList, page 830

Chapter 3, "System Variables," %Roles, page 832

Chapter 3, "System Variables," %RowSecurityPermissionList, page 832

PeopleTools 8.52: Security Administration, "Setting Up Permission Lists"

IsUserInRole

Syntax

IsUserInRole(rolename1 [, rolename2]. . .)

Description

Use the IsUserInRole function to take an arbitrary-length list of strings representing the names of roles and
determine whether the current user belongs to any role in an array of roles.

Parameters

Parameter Description

rolename An arbitrary-length list of strings, each of which represents a role.

PeopleCode Built-in Functions Chapter 1

476 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

Returns a Boolean value: True if the current user belongs to one or more of the roles in the user role array,
False otherwise.

See Also

PeopleTools 8.52: Security Administration, "Setting Up Roles"

IsUserNumber

Syntax

IsUserNumber(Value)

Description

Use the IsUserNumber function to determine if Value contains a valid numeric value that uses the locale-
specific form of the number for the current user. Numeric characters include sign indicators and comma and
period decimal points.

For example, if your regional settings specified periods for the thousands separator, and the number uses
commas, this function returns false.

To determine if a value is a number regardless if it's in the user's local format, use the IsNumber function.

Parameters

Parameter Description

Value Specify a string you want to search to determine if it is a valid number in the
correct format.

Returns

A Boolean value: True if Value contains a valid numeric value in the correct format, False otherwise.

Example

&Value = Get Field().Value;
If IsUserNumber(&Value) Then
 /* display number */
Else
 /* do other processing */
End-if;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 477

See Also

Chapter 1, "PeopleCode Built-in Functions," IsAlpha, page 457; Chapter 1, "PeopleCode Built-in Functions,"
IsAlphaNumeric, page 458; Chapter 1, "PeopleCode Built-in Functions," IsDigits, page 462; Chapter 1,
"PeopleCode Built-in Functions," IsDate, page 459; Chapter 1, "PeopleCode Built-in Functions," IsDateTime,
page 460 and Chapter 1, "PeopleCode Built-in Functions," IsTime, page 473

Chapter 1, "PeopleCode Built-in Functions," IsNumber, page 471 and Chapter 1, "PeopleCode Built-in
Functions," ValueUser, page 725

Left

Syntax

Left(source_str,num_chars)

Description

Use the Left function to return a substring containing the leftmost number of characters in source_str.
num_chars specifies how many characters to extract. If the string contains Unicode non-BMP characters,
each code unit of the surrogate pair is counted as a separate character and care should be taken not to split the
surrogate pair.

Parameters

Parameter Description

source_str A String from which to derive the substring.

num_chars A Number specifying how many characters to take from the left of source_str. The
value of num_chars must be greater than or equal to zero. If num_chars is greater
than the length of source_str, Left returns the entire string. If num_chars is
omitted, it is assumed to be one.

Returns

Returns a String value derived from source_str.

Example

The following example sets &SHORT_ZIP to "90210":

&SHORT_ZIP = Left("90210-4455", 5);

PeopleCode Built-in Functions Chapter 1

478 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Right, page 580

Len

Syntax

Len(str)

Description

Use the Len function to determine the number of characters in a string. If the string contains Unicode non-
BMP characters, each code unit of the surrogate pair is counted as a separate character.

Returns

Returns a Number value equal to the number of characters, including spaces, in str.

Example

The following example sets &STRLEN to 10, then to 0:

&STRLEN = Len("PeopleSoft");
&STRLEN = Len("");

See Also

Chapter 1, "PeopleCode Built-in Functions," Lenb, page 478

Lenb

Syntax

Lenb(str)

Description

Note. This function has been deprecated and is no longer supported.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 479

LinearInterp

Syntax

LinearInterp(DataPoints)

Description

Use the LinearInterp function to compute a set of lines through a sequence of at least two points.

Parameters

Parameter Description

DataPoints This parameter takes an array of array of number. The array's contents are an array
of six numbers. The first two of these six numbers are the x and y points to be fit.
The last four are the four coefficients to be returned from the function: a,b,c and d.
a is the coefficient of the x0 term, b is the coefficient of the x1 term, c is the
coefficient of the x2 term, and d is the coefficient of the x3 term.

Returns

A modified array of array of numbers. The elements in the array correspond to the elements in the array used
for DataPoints. The c and d elements contain zeros.

See Also

Chapter 1, "PeopleCode Built-in Functions," CubicSpline, page 169 and Chapter 1, "PeopleCode Built-in
Functions," HermiteCubic, page 436

Ln

Syntax

Ln(i)

Description

Use the Ln function to determine the natural logarithm of a number. Natural logarithms are based on the
constant e, which equals 2.71828182845904. The number i must be a positive real number. Ln is the inverse
of the Exp function.

PeopleCode Built-in Functions Chapter 1

480 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A Number equal to the natural logarithm of i.

Example

The following examples set &I to 2.302585 and &J to 1:

&I = Ln(10);
&J = Ln(2.7182818);

See Also

Chapter 1, "PeopleCode Built-in Functions," Exp, page 269 and Chapter 1, "PeopleCode Built-in Functions,"
Log10, page 484

LoadABN

Syntax

LoadABN(&DS_rowset,&chart_rowset,&relactions_rowset,node,initial_node[,
disp_relactions][, fldr_img_class_ID][, CREF_img_class_ID])

Description

Use this function to load data into the SmartNavigation chart and to generate an HTML code fragment that
will be rendered in the browser as menu drop-downs, fly-outs, and breadcrumbs. The function loads data for
the node specified by the node parameter from the rowset data source into the SmartNavigation chart rowset.
If the data source contains siblings of node, the siblings are loaded and displayed in the chart at the same level
as node.

The LoadABN function is applicable to rowset data sources only, and not to tree data sources. The standalone
data source record specified by the &DS_rowset parameter must include the PT_ABNORGND_SBR,
PT_ABNNDURL_SBR, PT_ABNNDDTL_SBR and PTORGBOXFLD_SBR subrecords in that order. Prior
to calling the LoadABN function, data must be loaded from the applicable database data source into the
standalone rowset data source.

Because this standalone rowset data source includes the PT_ABNORGND_SBR subrecord, the data is
organized by an organization chart hierarchy of parent and child nodes. To simplify loading data from the
database data source, it should also be organized using the organization chart hierarchy.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Charting Classes," Creating an Organization Chart

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 481

Parameters

Parameter Description

&DS_rowset Specifies the data source as a standalone rowset.

&chart_rowset Specifies the SmartNavigation chart rowset. Typically, this is the rowset returned
by the GetABNChartRowSet function.

&relactions_rowset Specifies the related actions rowset. Typically, this is the rowset returned by the
GetABNRelActnRowSet function.

node Specifies the currently requested chart node. Typically, this is returned directly by
calling the GetABNNode function.

initial_node Specifies the initial chart node. Typically, this is returned directly by calling the
GetABNInitialNode function.

disp_relactions Specifies a Boolean value indicating whether to display the related actions folder
in the fly-out menus. True indicates to display the related actions folder; False
indicates that the related actions folder is not displayed. The default value is True.

This is an optional parameter. However, if you want to use custom folder or CREF
icons (with the fldr_img_class_ID or CREF_img_class_ID parameters,
respectively), you must explicitly define the disp_relactions parameter.

fldr_img_class_ID Specifies the class ID for a custom folder icon as a string. This class must be
defined in a style sheet, and the style sheet must be assigned to the
SmartNavigation folder.

See PeopleTools 8.52: PeopleTools Portal Technologies, "Replacing
SmartNavigation Images."

This is an optional parameter. To use the default folder icon, you can omit this
parameter or specify the null string "". However, to ensure forward compatibility,
you must specify the null string.

CREF_img_class_ID Specifies the class ID for a custom CREF icon as a string. This class must be
defined in a style sheet, and the style sheet must be assigned to the
SmartNavigation folder.

See PeopleTools 8.52: PeopleTools Portal Technologies, "Replacing
SmartNavigation Images."

This is an optional parameter. To use the default CREF icon, you can omit this
parameter or specify the null string "". However, to ensure forward compatibility,
you must specify the null string.

Returns

None.

PeopleCode Built-in Functions Chapter 1

482 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

LoadABN(&rs_DataSource, &rs_ChartRowset, &rs_RelatedActions, ⇒
GetABNNode(&reqParams), GetABNInitialNode(&reqParams), False, "myfldricon", ⇒
"mycreficon");

See Also

Chapter 1, "PeopleCode Built-in Functions," GetABNChartRowSet, page 342; Chapter 1, "PeopleCode Built-
in Functions," GetABNInitialNode, page 343 and Chapter 1, "PeopleCode Built-in Functions,"
GetABNNode, page 344

Chapter 1, "PeopleCode Built-in Functions," GetABNRelActnRowSet, page 345

Local

Syntax

Localdata_type &var_name [= expression]

Description

Use the Local statement to explicitly define local variables in PeopleCode.

Variable declarations can appear at the start of the program, intermixed with function declarations. Local
variable declarations can also appear in the body of a program, including inside functions.

The scope of local variables declared outside of a function is the PeopleCode program. The scope of local
variables declared inside a function is to the end of the function. Also, these function local variables are
different variables for each call of the function (even for recursive calls,) in the same manner as parameters.

Local variable declarations intermixed with the body of the program or inside functions can include
initialization, that is, the variable can be set to a value at the same time it is declared.

In the absence of an initialization, the system automatically initializes temporary variables. Declared variables
always have values appropriate to their declared type. Undeclared local variables are initialized as null
strings.

Parameters

Parameter Description

data_type Any PeopleCode data type.

&var_name A legal variable name.

expression Specify the value of the variable. This parameter is optional.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 483

Example

local string &LOC_FIRST;

The following example scopes the local variable &Constant as a local variable, as well as initializing it.

Local Number &Constant = 42;

See Also

Chapter 1, "PeopleCode Built-in Functions," Global, page 433 and Chapter 1, "PeopleCode Built-in
Functions," Component, page 106

PeopleTools 8.52: PeopleCode Developer's Guide, "Understanding the PeopleCode Language," Data Types

LogObjectUse

Syntax

LogObjectUse([annotation])

Description

Use the LogObjectUse function to write to the system log a list of all the current PeopleCode objects with the
current count, the object class name, and the maximum count of objects of this type.

While this function is mainly used to determine memory usage, the output is also an informative display of
the object use in your system at a particular point in time.

Parameters

Parameter Description

annotations Specify a string to become the first line in the log file. This enables you to easily
identify output corresponding to your use of this built-in.

Returns

None.

Example

The following is an example of output that can be generated in the system log.

PeopleCode Built-in Functions Chapter 1

484 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode side - after Java
 1902 JavaPeerReference
 0 Field 14
 0 ContentRefCollection 4
 0 PortalCollection 3
 83 String 116459
 0 PT_NAV:NavEndNode 6
 0 PT_NAV:NavFolderNode 35
 0 PT_NAV:NavTheme 1
 0 PT_NAV:NavNodeCollection 4
 0 PortalRegistry 7
 0 PT_BRANDING:HeaderLinkBase 1
 0 PT_NAV:NavNode 45
 0 PT_BRANDING:HeaderLinkHP 1
 0 BIDocs 4
 0 PT_NAV:NavPortal 1
 1 SyncServer 1
 0 TabDefinition 1
 951 Rowset 220001
 0 FolderCollection 4
 0 SQL 5
 0 Folder 69
 1 Response 14
 1 Foxtest 3
 0 Record 1
 23 Array 264
 1 Request 15
 0 AttributeCollection 40
 0 UserHomepage 2
 0 Portal 3
 0 NodeCollection 3
 0 UserTabCollection 1
 0 ObjPropRef 3
 951 FOXTEST:Test 110001
 0 PT_BRANDING:BrandingBase 3
 0 ContentRef 13
 0 PT_NAV:NavPagelet 1
 0 TabDefinitionCollection 1
 0 Session 10
 0 NetworkNode 3

See Also

Chapter 3, "System Variables," %PerfTime, page 828

PeopleTools 8.52: PeopleCode Developer's Guide, "Improving Your PeopleCode"

Log10

Syntax

Log10(x)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 485

Description

Use the Log10 function to return the base-10 logarithm of a number x as a number value. The number x must
be a positive real number.

Returns

Returns a Number equal to the base-10 logarithm of x.

Example

The following example sets &X to 1 and &Y to 1.39794:

&X = Log10(10);
&Y = Log10(25);

See Also

Chapter 1, "PeopleCode Built-in Functions," Exp, page 269 and Chapter 1, "PeopleCode Built-in Functions,"
Ln, page 479

Lower

Syntax

Lower(string)

Description

Use the Lower function to convert all uppercase characters in a text string to lowercase characters and returns
the result as a String value. Lower does not change characters that are not letters or characters do not have
case sensitivity.

Returns

A String value equal to string, but in all lowercase format.

Example

The example sets &GOODKD to "k d lang":

&GOODKD = Lower("K D Lang");

PeopleCode Built-in Functions Chapter 1

486 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Proper, page 540 and Chapter 1, "PeopleCode Built-in
Functions," Upper, page 724

LTrim

Syntax

LTrim(string1 [,string2])

Description

Use the LTrim function to return a string formed by deleting from the beginning of string1, all occurrences of
each character in string2. If string2 is omitted, " " is assumed; that is, leading blanks are trimmed.

Example

The following removes leading blanks from &NAME:

&TRIMMED = LTrim(&NAME);

The following removes leading punctuation marks from REC.INP:

&TRIMMED = LTrim(REC.INP, ".,;:!?");

See Also

Chapter 1, "PeopleCode Built-in Functions," RTrim, page 588

MAddAttachment

Syntax

MAddAttachment(URLDestination,DirAndFilePrefix, Prompts,&UserFileArray,
&ActualSizeArray,&DetailedReturnCodeArrayName [, MaxSize [, PreserveCase[,
UploadPageTitle[, AllowLargeChunks[, StopOnError]]]]])

Description

Use the MAddAttachment function to upload one or more files from an end-user machine to a specified
storage location. The Prompts parameter specifies that maximum number of files that the end user can upload
at one time. Use the AddAttachment function to upload a single file.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 487

Warning! Virus scanning cannot currently be performed on files uploaded with the MAddAttachment
function; however, virus scanning can be performed on all files uploaded with the AddAttachment function.

Important! It is the responsibility of the calling PeopleCode program to store the returned file names for
further use.

If a file exists at a particular place on a storage location and then another file with the same name is uploaded
to that same place on that same storage location, the original file will be silently overwritten by the new file.
If that is not the behavior you desire, it is recommended that you implement PeopleCode to guarantee the
ultimate uniqueness of either the name of the file at its place on the storage location or the name of its place
(the subdirectory) on the storage location.

You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If end users
experience problems in uploading files, ensure that they browse to the file they wish to upload rather than
attempting to manually enter the full path name of the file. This problem can manifest itself differently
depending on the browser used. For example, with some browser versions, the PeopleSoft page appears to be
in an infinite "Processing" state. Information is available on working with different browsers.

See My Oracle Support, "Troubleshooting Browser Limitations"

Additional information that is important to the use of MAddAttachment can be found in the PeopleTools
8.52: PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," File Name
Considerations.

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Attachments
with non-ASCII File Names.

• The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Considerations
When Attaching Text Files.

• Because MAddAttachment is interactive, it is known as a "think-time" function, and is restricted from
use in certain PeopleCode events.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restrictions
on Invoking Functions in Certain PeopleCode Events.

• You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restricting the
File Types That Can Be Uploaded or Downloaded.

PeopleCode Built-in Functions Chapter 1

488 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restricting the
File Types That Can Be Uploaded or Downloaded.

Parameters

Parameter Description

URLDestination A reference to a URL. This can be either a URL identifier in the form URL.
URL_ID, or a string. This is the storage location to which the files in this
invocation of MAddAttachment are transferred.

Note. The URLDestination parameter requires forward slashes ("/"). Backward
slashes ("\") are not supported for this parameter.

Note. Oracle recommends that you do not use a URL of the form file://
file_name with the PeopleCode file processing functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndFilePrefix A directory and file name prefix. This is appended to the URLDestination to make
up the full URL when the file is transferred to an FTP server or, when the file
transferred to a database table, to make the file name unique.

Note. If the destination location is an FTP server, then it is very important whether
the value passed into a call of MAddAttachment for the DirAndFilePrefix
parameter ends with a slash or not. If the value for the DirAndFilePrefix parameter
ends with a slash, then it will be appended to the value of the URLDestination and
used to indicate the relative (to the configured root directory of the FTP server)
path name of the directory in which the uploaded file will be stored. If the value
for the DirAndFilePrefix parameter does not end with a slash, then the portion of it
prior to its right-most slash will be appended to the value of the URLDestination
and used to indicate the relative (to the configured root directory of the FTP
server) path name of the directory in which the uploaded file will be stored, and
the portion after the right-most slash will be prepended to the name of the file that
will be created at the destination.

Note. Because the DirAndFilePrefix parameter is appended to the URL, it also
requires forward slashes ("/"). Backward slashes ("\") are not supported for this
parameter.

Prompts Specifies the number of files that the end user will be prompted to upload as an
integer.

&UserFileArray Returns the names of the files on the source system as an array of strings.

Note. You can specify this parameter as a zero-length array of string. The array
will be populated by MAddAttachment with the actual file names.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 489

Parameter Description

&ActualSizeArray Returns the file sizes in kilobytes for the uploaded files as an array of numbers.

Note. You can specify this parameter as a zero-length array of number. The array
will be populated by MAddAttachment with the actual file sizes.

&DetailedReturnCodeArray Returns the return code for each individual file attachment operation as an array of
numeric constants.

Note. You can specify this parameter as a zero-length array of number. The array
will be populated by MAddAttachment with the actual return codes.

MaxSize Specify, in kilobytes, the maximum size of each file.

If you specify 0, it indicates "no limit," so any file size can be uploaded. The
default value of this parameter is 0.

Note. The system cannot check the size of the file selected by the end user until
that file has been uploaded to the web server.

PreserveCase Specify a Boolean value to indicate whether the case of the extension of the
specified file is preserved or not at the storage location; True, preserve the case,
False, convert the file name extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

Note. MAddAttachment provides no indication of a conversion in the file name it
returns.

UploadPageTitle Specify a string value to be displayed on the File Upload page. This string is
embedded in the HTML above the file input box. The string can contain HTML
elements, and these are visible on the page. Only simple HTML elements should
be used, and they should only be incorporated to do basic formatting of the actual
data in the string.

Note. The parameter does not automatically handle localization issues. The string
passed into the function is the exact string embedded in the page. You and your
application are responsible for any translation issues.

PeopleCode Built-in Functions Chapter 1

490 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

AllowLargeChunks Specify a Boolean value to indicate whether to allow large chunks.

If the value specified in the Maximum Attachment Chunk Size field on the
PeopleTools Options page is larger than is allowed for retrieval, then the system
breaks the file upload into the largest sized chunks allowed. If AllowLargeChunks
is set to True, this behavior can be overridden so that it is possible for an end user
to upload a file in chunks that are too large for the system to retrieve. If
AllowLargeChunks is set to False, the system will use the largest size chunk that is
allowed for retrieval, or the configured chunk size, whichever is smaller.

Note. If the chunks are too big to be retrieved, then any file retrieval built-in
function, such as GetAttachment, will fail.

Note. The AllowLargeChunks parameter is only applicable when the storage
location is a database record. It has no impact when the storage location is an FTP
site or an HTTP repository, since attachments at those locations are never
chunked.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools
Utilities," PeopleTools Options.

This is an optional parameter.

The default value is False.

StopOnError Specify a Boolean value to indicate whether to continue processing files when a
system error is encountered.

If StopOnError is set to False, processing continues with the next selected file. If
StopOnError is set to True, MAddAttachment terminates on the first system error
encountered (for example, %Attachment_Failed,
%Attachment_FileTransferFailed, and so on). No attempt is made to upload any of
the remaining files. For each of the remaining files, a return code of
%Attachment_Unprocessed is returned as the detailed return code.

This is an optional parameter.

The default value is False.

Returns

The MAddAttachment function returns one of the following summary return codes that you can check for
either as an integer or as a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success Upload not cancelled—that is, at least
one non-empty file name was specified
by the user and all the files specified
with non-empty names were
successfully uploaded.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 491

Numeric Value Constant Value Description

1 %Attachment_Failed Either the user cancelled the upload,
the user specified no files to upload, or
at least one of the specified files did
not successfully upload.

In addition, the MAddAttachment function returns detailed return codes in the array specified by the
&DetailedReturnCodeArray parameter. The array contains the number of elements specified by the Prompts
parameter even if some files remain unprocessed or were not selected by the user. You can check for the
detailed return codes either as integers or as constant values:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected or bad
reply from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

PeopleCode Built-in Functions Chapter 1

492 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

2 %Attachment_Cancelled File transfer didn't complete because
the operation was canceled by the end
user.

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

6 %Attachment_FileExceedsMaxSize File exceeds maximum size, if
specified.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 493

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

11 %Attachment_NoFileName File transfer failed because no file
name was specified.

12 %Attachment_FileNameTooLong File transfer failed because name of
selected file is too long. Maximum is
64 characters.

PeopleCode Built-in Functions Chapter 1

494 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

20 %Attachment_Unprocessed This file was not processed.

The following are some possible
situations where
%Attachment_Unprocessed could be
returned:

1. This file was not processed due to
an error in processing another file
attachment.

2. This file was not processed
because the operation was
canceled by the user.

21 %Attachment_Rejected File transfer failed because the file
extension is not allowed.

Example

&retcode = MAddAttachment(URL.MYFTP, ATTACHSYSFILENAME, 4, &MyFileArray, ⇒
&MySzArray, &MyRtrnCodeArray, 0, False, "Upload Attachments", False, True);

The following example demonstrates initialization of the arrays used to store the values returned by
MAddAttachment:

&prompts = 2;
Local array of string &AttachUsrFiles;
&AttachUsrFiles = CreateArrayRept("", 0);

Local array of number &AttachSzs;
&AttachSzs = CreateArrayRept(0, 0);

Local array of number &AttachRtrnCds;
&AttachRtrnCds = CreateArrayRept(0, 0);

If Exact(Left(&URL_ID, 4), "URL.") Then
 &sum_rt_cd = MAddAttachment(@(&URL_ID), ATTACHSYSFILENAME, &prompts, ⇒
&AttachUsrFiles, &AttachSzs, &AttachRtrnCds);
Else
 &sum_rt_cd = MAddAttachment(&URL_ID, ATTACHSYSFILENAME, &prompts, ⇒
&AttachUsrFiles, &AttachSzs, &AttachRtrnCds);
End-If;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 495

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," CopyAttachments,
page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment, page 200; Chapter 1, "PeopleCode
Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode Built-in Functions,"
GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and Chapter
1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

MarkPrimaryEmailAddress

Syntax

MarkPrimaryEmailAddress(Type)

Description

Use the MarkPrimaryEmailAddress function to specify which email address is the primary email address for
the current user. You can only have one primary email address per user.

Parameters

Parameter Description

Type Specify the type that you want to change the email address to. This parameter
takes a string value. The valid values are:

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Returns

None.

PeopleCode Built-in Functions Chapter 1

496 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddEmailAddress, page 45; Chapter 1, "PeopleCode Built-in
Functions," ChangeEmailAddress, page 80 and Chapter 1, "PeopleCode Built-in Functions,"
DeleteEmailAddress, page 204

MarkWLItemWorked

Syntax

MarkWLItemWorked()

Description

Use the MarkWLItemWorked function to mark the current Worklist entry as worked using this function. This
function works only if you've invoked a page from the Worklist. This function should be called only in
Workflow PeopleCode. You can use the %WLName system variable to check whether the page has been
accessed using a Worklist.

Note. If the Worklist entry was created using a web service, and you do not need to send any additional
information other than the Mark Worked reply message, you can use this function to mark the Worklist entry
as worked. However, if you need to send additional data, you must use the WorklistEntry class
SaveWithCustomData method to mark the Worklist entry as finished.

See PeopleTools 8.52: PeopleCode API Reference, "Notification Classes," SaveWithCustomData.

Parameters

None.

Returns

Returns a Boolean value indicating whether it executed successfully. The return value is not optional.

Example

This example, which would be in the WorkFlow event, checks to see whether a page check box
MARK_WORKED_SW is selected, and if so, it marks the item in the worklist as complete:

If MARK_WORKED_SW = "Y" Then
 If MarkWLItemWorked() Then
 End-If;
End-If;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 497

See Also

Chapter 1, "PeopleCode Built-in Functions," GetWLFieldValue, page 432 and Chapter 3, "System
Variables," %WLName, page 837

Max

Syntax

Max(param_list)

Where param_list has the form

parameter1,parameter2 [, parameter3, . . . parameterN]

Description

Use the Max function to determine the maximum value in the parameter list. The type of every item in the
parameter list must be compatible with the first parameter in the list.

For example, if the first parameter is a string and the second parameter is a number with value 123.456, the
second parameter is converted to the string "123.456" before the comparison is performed.

If all the values in the parameter list are alpha characters, "Z" is greater than "A" so Max("Z", "A") returns
"Z".

Parameters

Parameter Description

param_list Specify a list of items to be compared. All items in the parameter list must be of
the same type. If a value isn't defined, the system assumes it's of the same type as
the first parameter.

Returns

The item in the list that has the maximum value.

Example

&RSULT = Max("A", "B", "C", "D", "E");

See Also

Chapter 1, "PeopleCode Built-in Functions," Min, page 505

PeopleCode Built-in Functions Chapter 1

498 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

MCFBroadcast

Syntax

MCFBroadcast(ClusterID,QueueID,ChannelID, AgentState,AgentPresence,Message,
MessageSetNumber,MessageNumber,DefaultMessage,SecurityLevel,ImportanceLevel,
SenderId,NameValueString)

Description

Use the MCFBroadcast function to broadcast a notification message. You can specify whether to send the
message to agents, to a queue, or even system wide. This function is used with the MultiChannel Framework.

Parameters

Parameter Description

ClusterID Specify the name of the cluster that you want to broadcast the message to, such as,
RENCLSTR_001, as a string.

QueueID Specify the name of the physical or logical queue that you want to broadcast the
message to, such as, SALES, as a string.

ChannelID Specify the name of the channel, or task, for the broadcast, such as Email, Chat,
Voice or Generic, as a string.

AgentState Specify the state of the agents you want to broadcast the message to, such as
Available, as a string.

AgentPresence Specify the presence of the agents you want to broadcast the message to, such as
Active, as a string.

Message Specify the text of the message you want to broadcast, as a string.

MessageSetNumber Specify the message set number of a message from the message catalog if you
want to broadcast a message from the message catalog. You must also specify
values for the MessageNumber and DefaultMessageText parameters if you want to
broadcast this type of message. Specify the message set number as a number.

MessageNumber Specify the message number of a message from the message catalog if you want to
broadcast a message from the message catalog. You must also specify values for
the MessageSetNumber and DefaultMessageText parameters if you want to
broadcast this type of message. Specify the message number as a number.

DefaultMessageText Specify the text to be used if the specified message catalog message isn't found.
Use the MessageSetNumber and MessageNumber parameters to specify the
catalog message. Specify the default message text as a string.

SercurityLevel Specify the security level for the broadcast message, as a string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 499

Parameter Description

ImportanceLevel Specify the importance level of the broadcast message, as a string.

SenderID Specify the ID of the sender of the broadcast message, as a string.

NameValueString Specify a string containing name-value pairs specific to your application.

Returns

None.

Example

The following example would broadcast a message to a specific logical queue:

MCFBroadcast("", "SALES", "", "", "Best of Luck!", "", "", "Default Message",⇒
 "PRIV1", "URGENT", "Admin", "EffDate, 2005-10-25:12:00:45");

See Also

PeopleTools 8.52: PeopleCode API Reference, "Universal Queue Classes"

MessageBox

Syntax

MessageBox(style,title,message_set, message_num,default_txt [,paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted in
the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MessageBox function to display a message box window. This function combines dialog-display
ability with the text-selection functionality of MsgGet, MsgGetText, or MsgGetExplainText. The style
parameter selects the buttons to be included. title determines the title of message.

Note. The title parameter is ignored for messages displayed in the PeopleSoft Pure Internet Architecture.
Beginning with PeopleTools 8.50, the title of a message box is the severity set in Message Catalog. If this is
not available, the default title is "Message".

Also, style is ignored if the message has any severity other than Message.

The remaining parameters are used to retrieve and process a text message selected from the Message Catalog.

PeopleCode Built-in Functions Chapter 1

500 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 MessageBox can be used for simple informational display, where the user reads the message, then clicks an
OK button to dismiss the message box. Use MessageBox as a way of branching based on user choice, in
which case the message box contains two or more buttons (such as OK and Cancel or Yes, No, and Cancel).
The value returned by the function tells you which button the user clicked, and your code can branch based on
that value.

In the MessageBox dialogs, both the Text and the Explanation, that is, more detailed information stored in the
Message Catalog, are included.

If MessageBox displays buttons other than OK, it causes processing to stop while it waits for user response.
This makes it a "user think-time" function, restricting its use to certain PeopleCode events.

See Chapter 1, "PeopleCode Built-in Functions," MsgGet, page 508; Chapter 1, "PeopleCode Built-in
Functions," MsgGetText, page 511; Chapter 1, "PeopleCode Built-in Functions," MsgGetExplainText, page
509 and PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-
Time Functions.

Message Retrieval

 MessageBox retrieves a message from the Message Catalog and substitutes the values of the parameters into
the text message and explanation.

You can access and update the Message Catalog through PeopleTools Utilities, using the Message Catalog
page located under the Use menu. You can enter message text in multiple languages. The message_set and
message_num parameters specify the message to retrieve from the catalog. If the message is not found in the
Message Catalog, the default message provided in default_txt is used. Message sets 1 through 19,999 are
reserved for use by PeopleSoft applications. Message sets 20,000 through 32,767 can be used by PeopleSoft
users.

The optional paramlist is a comma-separated list of parameters; the number of parameters in the list is
arbitrary. The parameters are referenced in the message text using the % character followed by an integer
corresponding to the position of the parameter in the paramlist. For example, if the first and second
parameters in paramlist were &FIELDNAME and &USERNAME, they would be inserted into the message
string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to indicate an end-of-
string and terminates the string at that point. This is generally used to specify fixed-length strings with trailing
blanks.

Message Severity

MessageBox specifies processing for error handling functions based on the Message Severity of the message,
which you can set in the Message Catalog. This enables you to change the severity of an error without
changing the underlying PeopleCode, by setting the severity level for the message in the Message Catalog.
The Message Severity settings and processing options are:

Severity Processing

Message The message is displayed and processing continues.

Warning The message is displayed and treated as a warning.

Error The message is displayed and treated as an error.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 501

Severity Processing

Cancel The message is displayed and forces a Cancel.

In addition, in the PeopleSoft Pure Internet Architecture the Message Severity dictates how the message
displays:

• If the message has a severity of Warning, Error, or Cancel, the message is displayed in a pop-up dialog
box with a single OK button regardless of the value of the style parameter.

• If the message has a severity of Message and style is %MsgStyle_OK (0), the message displays in a pop-
up dialog box with the single OK button.

• If the message has a severity of Message and style is not %MsgStyle_OK (0), the message displays in a
separate window.

Restrictions on Use in PeopleCode Events

If MessageBox displays any buttons other than OK, it returns a value based on the end user response and
interrupts processing until the end user has clicked one of the buttons. This makes it a "user think-time"
function, subject to the same restrictions as other think-time functions which means that it cannot be used in
any of the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

If the style parameter specifies a single button (that is, the OK button), the function can be called in any
PeopleCode event.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Restrictions on Use With PeopleSoft Pure Internet Architecture

In the PeopleSoft Pure Internet Architecture, you can't change the icon of a message box. You can change the
number and type of buttons, and the default button, but the message always displays with the warning icon (a
triangle with an exclamation mark in it.)

In addition, you can't change the message box title. The message box title is always 'Message'.

 If the message has a severity of Warning and the MessageBox PeopleCode is in a SaveEdit event, the
message is displayed in a new window with the OK and Cancel buttons.

PeopleCode Built-in Functions Chapter 1

502 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Restrictions on Use With Application Engine

If you call MessageBox from a PeopleCode action in an Application Engine program, the syntax is the same.
However, all GUI-related parameters like style and title are ignored. You should use 0 and "".

Note. If you have an existing MessageBox in code called from a page, it should work as is.

The actual message data is routed to PS_MESSAGE_LOG at runtime, and you can view it from the Process
Monitor by drilling down to the process details.

Parameters

Parameter Description

Style Either a numerical value or a constant specifying the contents and behavior of the
dialog box. This parameter is calculated by cumulatively adding either a value or a
constant from each of the following list of categories:

Note. In PeopleSoft Pure Internet Architecture style is ignored if the message has any severity other than
Message. If the message has a severity of Warning and the MessageBox PeopleCode is in a SaveEdit event,
the message is displayed in a new window with the OK and Cancel buttons.

Category Value Constant Meaning

Buttons 0 %MsgStyle_OK The message box
contains one pushbutton:
OK.

1 %MsgStyle_OKCancel The message box
contains two pushbuttons:
OK and Cancel.

2 %MsgStyle_AbortRetryI
gnore

The message box
contains three
pushbuttons: Abort,
Retry, and Ignore.

3 %MsgStyle_YesNoCance
l

The message box
contains three
pushbuttons: Yes, No,
and Cancel.

4 %MsgStyle_YesNo The message box
contains two push
buttons: Yes and No.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 503

Category Value Constant Meaning

5 %MsgStyle_RetryCancel The message box
contains two push
buttons: Retry and
Cancel.

Parameter Description

title Title of message box. If a null string is specified, then PeopleTools provides an
appropriate value.

Note. The title parameter is ignored for messages displayed in the PeopleSoft Pure Internet Architecture. The
title of a message box in PeopleSoft Pure Internet Architecture is always "Message".

Parameter Description

message_set The message set number of the message to be displayed. When message set and
number are provided, it overrides the specified text. A value less than one
indicates that the message comes from the provided text and not the Message
Catalog.

message_num The message number of the message to be displayed.

default_txt Default text to be displayed in the message box.

paramlist A comma-separated list of parameters; the number of parameters in the list is
arbitrary. The parameters are referenced in the message text using the % character
followed by an integer corresponding to the position of the parameter in the
paramlist.

Returns

Returns either a Number value or a constant. The return value is zero if there is not enough memory to create
the message box. In other cases the following menu values are returned:

Value Constant Meaning

-1 %MsgResult_Warning Warning was generated.

1 %MsgResult_OK OK button was selected.

2 %MsgResult_Cancel Cancel button was selected.

3 %MsgResult_Abort Abort button was selected.

PeopleCode Built-in Functions Chapter 1

504 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Constant Meaning

4 %MsgResult_Retry Retry button was selected.

5 %MsgResult_Ignore Ignore button was selected.

6 %MsgResult_Yes Yes button was selected.

7 %MsgResult_No No button was selected.

Note. In PeopleSoft Pure Internet Architecture, pressing the ESC key has no effect.

Example

Suppose the following string literal is stored in the Message Catalog as the message text:

Expenses of employee %1 during period beginning %2 exceed allowance.

The following is stored in the Explanation:

You do not have the authority to approve this expense. Only a director
can approve this.

Here %1 is a placeholder for the employee ID and %2 a placeholder for the expense period date. The
following MessageBox call provides bind variables corresponding to these placeholders at the end of its
parameter list:

MessageBox(0, "", 30000, 1, "Message not found.", BUS_EXPENSE_PER.EMPLID, BUS_⇒
EXPENSE_PER.EXPENSE_PERIOD_DT);

The call would display a message box similar to this, if the message severity was Error or Warning.

Example of message box

Suppose the following is stored in the Message Catalog as the message text:

File not found.

The following is stored in the Explanation:

The file you specified wasn't found. Either select retry, and specify a new file,⇒
 or cancel.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 505

Suppose this message had a Severity of message, and you used the %MsgStyle_RetryCancel, in the following
code:

MessageBox(%MsgStyle_RetryCancel, "", 30000, 2, "Message not found.");

This is how the message displays:

Example message with Retry and Cancel buttons

If the message severity is of type Cancel, the message displayed looks like this:

Critical type error message

See Also

Chapter 1, "PeopleCode Built-in Functions," MsgGet, page 508; Chapter 1, "PeopleCode Built-in Functions,"
MsgGetText, page 511 and Chapter 1, "PeopleCode Built-in Functions," MsgGetExplainText, page 509

Min

Syntax

Min(param_list)

Where param_list has the form

parameter1,parameter2 [, parameter3, . . . parameterN]

Description

Use the Min function to determine the minimum value in the parameter list. The type of every item in the
parameter list must be compatible with the first parameter in the list.

PeopleCode Built-in Functions Chapter 1

506 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For example, if the first parameter is a string and the second parameter is a number with value 123.456, the
second parameter is converted to the string "123.456" before the comparison is performed.

If all the values in the parameter list are alpha characters, "a" is less than "m", so Min("a", "m") returns "a".

Parameters

Parameter Description

param_list Specify a list of items to be compared. All items in the parameter list must be of
the same type. If a value isn't defined, the system assumes it's of the same type as
the first parameter.

Returns

The item in the list that has the minimum value.

Example

&RES = Min(&A, Max(&B, &C, &D), "-20");

See Also

Chapter 1, "PeopleCode Built-in Functions," Max, page 497

Minute

Syntax

Minute(timevalue)

Description

Use the Minute function to extract the minute component of a Time value.

Returns

Returns the minute part of timevalue as a Number data type.

Example

If &TIMEOUT contains "16:48:01" then the example sets &TIMEOUT_MINUTES to 48:

&TIMEOUT_MINUTES = Minute(&TIMEOUT);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 507

See Also

Chapter 1, "PeopleCode Built-in Functions," Hour, page 444 and Chapter 1, "PeopleCode Built-in
Functions," Second, page 595

Mod

Syntax

Mod(x,divisor)

Description

The Mod function is the modulus math function, which divides one number (x) by another (divisor) and
returns the remainder.

Returns

Returns a Number equal to the remainder of the division of the number x by divisor.

Example

The example sets &NUM1 to 1 and &NUM2 to 0:

&NUM1 = Mod(10,3);
&NUM2 = Mod(10,2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Int, page 455; Chapter 1, "PeopleCode Built-in Functions,"
Round, page 581 and Chapter 1, "PeopleCode Built-in Functions," Truncate, page 710

Month

Syntax

Month(datevalue)

Description

Use the Month function to return the month of the year as an integer from 1 to 12 for the specified datevalue.
The Month function accepts a date or DateTime value as a parameter.

PeopleCode Built-in Functions Chapter 1

508 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

datevalue A date or DateTime value on the basis of which to determine the month.

Returns

Returns a Number value from 1 to 12 specifying the month of the year.

Example

This example sets &HIRE_MONTH to 3:

&HIREDATE = DateTime6(1997, 3, 15, 10, 9, 20);
&HIRE_MONTH = Month(&HIRE_DATE);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days360, page 190; Chapter
1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in Functions,"
Weekday, page 736 and Chapter 1, "PeopleCode Built-in Functions," Year, page 745

MsgGet

Syntax

MsgGet(message_set,message_num,default_msg_txt [, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted in
the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MsgGet function to retrieve a message from the PeopleCode Message Catalog and substitutes in the
values of the parameters into the text message.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 509

You can access and update the Message Catalog through the PeopleTools Utilities, using the Message
Catalog page located under the Use menu. You can enter message text in multiple languages. The Message
Catalog also enables you to enter more detailed "Explain" text about the message. The message_set and
message_num parameters specify the message to retrieve from the catalog. If the message is not found in the
Message Catalog, the default message provided in default_msg_txt is used. Message sets 1 through 19,999 are
reserved for use by PeopleSoft applications. Message sets 20,000 through 32,767 can be used by PeopleSoft
users.

The optional paramlist is a comma-separated list of parameters; the number of parameters in the list is
arbitrary. The parameters are referenced in the message text using the % character followed by an integer
corresponding to the position of the parameter in the paramlist. For example, if the first and second
parameters in paramlist were &FIELDNAME and &USERNAME, they would be inserted into the message
string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to indicate an end-of-
string and terminates the string at that point. This is generally used to specify fixed-length strings with trailing
blanks.

 MsgGet suffixes the message with "[Message Set# and Message Error#]", so it can be processed by a user
not conversant in the translated language.

Example

&MsgText = MsgGet(30000, 2, "Message not found");

See Also

Chapter 1, "PeopleCode Built-in Functions," MsgGetText, page 511; Chapter 1, "PeopleCode Built-in
Functions," MsgGetExplainText, page 509 and Chapter 1, "PeopleCode Built-in Functions," MessageBox,
page 499

MsgGetExplainText

Syntax

MsgGetExplainText(message_set,message_num,default_msg_txt [, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted in
the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MsgGetExplainText function to retrieve the Explain text of a message from the PeopleCode Message
Catalog and substitutes the values of the parameters in paramlist into the explain text. It returns the resulting
message explain text as a String data type.

You can access and update the Message Catalog through the PeopleTools Utilities, using the Message
Catalog. You can enter messages in multiple languages.

Message sets 1 through 19,999 are reserved for use by PeopleSoft applications. Message sets 20,000 through
32,767 can be used by PeopleSoft users.

PeopleCode Built-in Functions Chapter 1

510 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Unlike the MsgGet function, MsgGetExplainText returns the message without a message set and message
number appended to the message.

Parameters

Parameter Description

message_set Specify the message set to be retrieved from the catalog. This parameter takes a
number value.

message_num Specify the message number to be retrieved from the catalog. This parameter takes
a number value.

default_msg_txt Specify the text to be displayed if the message isn't found. This parameter takes a
string value.

paramlist Specify values to be substituted into the message explain text.

The parameters listed in the optional paramlist are referenced in the message
explain text using the % character followed by an integer referencing the position
of the parameter in the function call. For example, if the first and second
parameters in paramlist were &FIELDNAME and &USERNAME, they would be
inserted into the message string as %1 and %2.

Note. This substitution only takes place in message explain text when the
MsgGetExplainText function is used. If you use a message box, the parameter
substitution will not occur in the explain text.

To include a literal percent sign in the string, use %%; %\ is used to indicate an
end-of-string and terminates the string at that point. This is generally used to
specify fixed-length strings with trailing blanks.

Example

Suppose the following explain text is stored in the Message Catalog:

A reference was made to a record.field (%1.%2) that is not defined within⇒
 Application Designer. Check for typographical errors in the specification of the⇒
 record.field or use Application Designer to add the new field or record.

Here %1 is a placeholder for the record name and %2 a placeholder for the field name. If the record.field in
error was MyRecord.Field5, the above would resolve as follows:

A reference was made to a record.field (MyRecord.Field5) that is not defined⇒
 within Application Designer. Check for typographical errors in the specification⇒
 of the record.field or use Application Designer to add the new field or record.

See Also

Chapter 1, "PeopleCode Built-in Functions," MsgGetText, page 511; Chapter 1, "PeopleCode Built-in
Functions," MsgGet, page 508 and Chapter 1, "PeopleCode Built-in Functions," MessageBox, page 499

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 511

MsgGetText

Syntax

MsgGetText(message_set,message_num,default_msg_txt [, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted in
the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MsgGetText function to retrieve a message from the PeopleCode Message Catalog and substitutes the
values of the parameters in paramlist into the text message. It returns the resulting message text as a String
data type.

You can access and update the Message Catalog through the PeopleTools Utilities window, using the
Message Catalog page located under the Use menu. You can enter message text in multiple languages. The
message_set and message_num parameters specify the message to retrieve from the catalog. If the message is
not found in the Message Catalog, the default message provided in default_msg_txt is used. Message sets 1
through 19,999 are reserved for use by PeopleSoft applications. Message sets 20,000 through 32,767 can be
used by PeopleSoft users.

The parameters listed in the optional paramlist are referenced in the message text using the % character
followed by an integer referencing the position of the parameter in the function call. For example, if the first
and second parameters in paramlist were &FIELDNAME and &USERNAME, they would be inserted into
the message string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to
indicate an end-of-string and terminates the string at that point. This is generally used to specify fixed-length
strings with trailing blanks.

Unlike the MsgGet function, MsgGetText returns the message without a message set and message number
appended to the message.

Example

&MsgText = MsgGetText(30000, 2, "Message not found");

See Also

Chapter 1, "PeopleCode Built-in Functions," MsgGet, page 508; Chapter 1, "PeopleCode Built-in Functions,"
MsgGetExplainText, page 509 and Chapter 1, "PeopleCode Built-in Functions," MessageBox, page 499

NextEffDt

Syntax

NextEffDt(field)

PeopleCode Built-in Functions Chapter 1

512 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the NextEffDt function to return the value of the specified field from the record with the next effective
date (and effective sequence number if specified). The return value is an Any data type. This function is valid
only for effective-dated records.

If the next record doesn't exist, the statement is skipped. If the NextEffDt function isn't a top-level statement,
that is, if it's contained within a compound statement or a loop, the statement is skipped and execution restarts
with the next top-level statement.

In the following example, execution skips to the top If statement:

If ACTION <> "REH" Then /* skip to here if NextEffDt fails to find next record */
 If STD_HOURS <> NextEffDt(STD_HOURS) And
 Day(EFFDT) <> 1 Then
 Error MsgGet(30000, 8, "Meldung nicht vorhanden - WAZ bzw.⇒
 Beschäftigungsgradänderungen sind nur zum ersten eines Monats zulässig.")
 End-If;
End-If;
/* if NextEffDt fails, run to here directly */

See Also

Chapter 1, "PeopleCode Built-in Functions," NextRelEffDt, page 512; Chapter 1, "PeopleCode Built-in
Functions," PriorRelEffDt, page 536 and Chapter 1, "PeopleCode Built-in Functions," PriorEffDt, page 534

NextRelEffDt

Syntax

NextRelEffDt(search_field,fetch_field)

where fieldlist is an arbitrary-length list of fields in the form:

field1 [,field2]. . .

Description

Use the NextRelEffDt function to locate the next occurrence of the search_field with the next effective date
(and effective sequence number if the record contains an effective sequence number). It then returns the value
of the specified fetch_field corresponding to the search_field. The return value is an Any data type. Typically,
this function is used to retrieve values for related display fields.

This function is valid only for effective-dated records.

If a next record doesn't exist, the statement is skipped. If the NextRelEffDt function isn't a top-level
statement, that is, if it's contained within a compound statement or a loop, the statement is skipped and
execution restarts with the next top-level statement.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 513

See Also

Chapter 1, "PeopleCode Built-in Functions," GetRelField, page 411; Chapter 1, "PeopleCode Built-in
Functions," NextEffDt, page 511; Chapter 1, "PeopleCode Built-in Functions," PriorRelEffDt, page 536 and
Chapter 1, "PeopleCode Built-in Functions," PriorEffDt, page 534

NodeDelete

Syntax

NodeDelete(nodeName)

Description

Use the NodeDelete function to delete the specified node and all subordinate objects (transactions, node
properties, certificates, and so on.)

Warning! Once this function has completed, you cannot recover the node.

Event Considerations

PeopleSoft recommends only using this function in the SavePostChange event. In addition, you should put a
warning in the SaveEdit event, so the user has a chance to change their mind about deleting the node.

If you use a pushbutton on a page to delete a node, PeopleSoft recommends the following code in the
FieldChange event:

If %Page = Page.YourDeletePage Then
/* changes the record in the buffer so that the DoSaveNow fires */
 PSMSGNODEDEFN.DESCR = PSMSGNODEDEFN.DESCR | " ";
 DoSaveNow();
 ClearKeyList();
/* Transfer to another component or display information message; */
End-If;

Parameters

Parameter Description

nodeName Specify the name of the node you want to delete, as a string. All node names are
uppercase.

Returns

A Boolean value: True, the function completed successfully deleted, False otherwise.

PeopleCode Built-in Functions Chapter 1

514 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

&Rslt = NodeDelete("QEM_TEST_NODE");

If Not &Rslt Then

 /* Do error processing */

End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," NodeRename, page 514 and Chapter 1, "PeopleCode Built-in
Functions," NodeSaveAs, page 515

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

NodeRename

Syntax

NodeRename(oldNodeName,newNodeName)

Description

Use the NodeRename function to rename a node. All node names are uppercase.

Event Considerations

PeopleSoft recommends using this function only in the SavePreChange event. This gives the user a chance to
edit any other page fields before executing, which may be important because this function affects several
tables.

Parameters

Parameter Description

oldNodeName Specify the name of the node that you want to change, as a string.

newNodeName Specify the new name for the node, as a string.

Returns

A Boolean value: True, the function completed successfully deleted, False otherwise.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 515

Example

&Rslt = NodeRename("QEM_TEST_NODE", "QE_TEST_NODE");

If Not &Rslt Then

 /* Do error processing */

End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," NodeDelete, page 513 and Chapter 1, "PeopleCode Built-in
Functions," NodeSaveAs, page 515

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

NodeSaveAs

Syntax

NodeSaveAs(oldNodeName,newNodeName)

Description

Use the NodeSaveAs function to create a copy of the node specified by oldNodeName, and save it to the
database as newNodeName. All node names are uppercase.

Event Considerations

PeopleSoft recommends using this function only in the SavePreChange event. This gives the user a chance to
edit any other page fields before executing, which may be important because this function affects several
tables.

Parameters

Parameter Description

oldNodeName Specify the name of the node that you want to copy, as a string.

newNodeName Specify the name for the new node, as a string.

Returns

A Boolean value: True, the function completed successfully deleted, False otherwise.

PeopleCode Built-in Functions Chapter 1

516 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

&Rslt = NodeSaveAs("PRODUCTION_NODE", "MY_TEST_NODE");

If Not &Rslt Then

 /* Do error processing */

End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," NodeRename, page 514 and Chapter 1, "PeopleCode Built-in
Functions," NodeDelete, page 513

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

NodeTranDelete

Syntax

NodeTranDelete(MsgNodeName,EffDt,TrxType, RqstMsgName,RqstMsgVer);

Description

Use the NodeTranDelete function to delete a node transaction.

Warning! If you delete a node transaction, any transaction modifier using that transaction is also deleted.

Parameters

Parameter Description

MsgNodeName Specify the message node name as a string.

EffDt Specify the effective date as a string.

TrxType Specify the transaction type as a string.

RqstMsgName Specify the request message name as a string.

RqstMsgVer Specify the request message version as a string.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 517

Returns

A Boolean value, True if the function completed successfully, False otherwise.

Example

&ret = NodeTranDelete("QE_LOCAL", "1900-01-01", "IA", "ROLESYNCH_MSG",
"VERSION_1");

See Also

Chapter 1, "PeopleCode Built-in Functions," RelNodeTranDelete, page 558

None

Syntax

None(fieldlist)

where fieldlist is an arbitrary-length list of fields in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

The None function takes an arbitrary number of field names as parameters and tests for values. None returns
True if none of the specified fields contain a value. It returns False if any one of the fields contains a value.

A blank character field, or a zero (0) numeric value in a required numeric field is considered a null value.

Related Functions

 All Checks to see if a field contains a value, or if all the fields in a list of fields
contain values. If any of the fields is Null, then All returns False.

 AllOrNone Checks if either all the field parameters have values, or none of them have
values. Use this in cases where if an end user fills in one field, she must all
fill in the other related values.

 OnlyOne Checks if exactly one field in the set has a value. Use this when the end
user must fill in only one of a set of mutually exclusive fields.

 OnlyOneOrNone Checks if no more than one field in the set has a value. Use this in cases
when a set of fields is both optional and mutually exclusive; that is, if the
end user puts can put a value into one field in a set of fields, or leave them
all empty.

PeopleCode Built-in Functions Chapter 1

518 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following example uses None to check whether REFERRAL_SOURCE has a value:

If None(REFERRAL_SOURCE) or
 REFERRAL_SOURCE = "EE" Then
 Gray(EMP_REFERRAL_ID);
End-if;

The following example uses None with a variable:

&ONETIME = FetchValue(POSN_INCUMB_WS.EMPLID, 1);
 If None(&ONETIME) Then
 /* do processing */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," All, page 53; Chapter 1, "PeopleCode Built-in Functions,"
AllOrNone, page 54; Chapter 1, "PeopleCode Built-in Functions," OnlyOne, page 531 and Chapter 1,
"PeopleCode Built-in Functions," OnlyOneOrNone, page 532

NotifyQ

Syntax

NotifyQ(logical queue ID,task type)

Description

Use the NotifyQ function to notify the queue server of an incoming task. NotifyQ should always follow the
use of the EnQueue function. EnQueue inserts the task into the PeopleSoft database, and NotifyQ notifies the
queue server about a task's existence and location.

When you process a batch of tasks to be enqueued, PeopleSoft recommends calling NotifyQ just once (after
the last task is processed). NotifyQ forces the queue server to reorder its internal lists and save its state to the
database, and therefore affects performance.

NotifyQ is not required for chat or voice tasks, and should not be used for these tasks.

Note. If tasks of different types or tasks that are assigned to different logical queues are enqueued, at least one
NotifyQ is required for each logical queue and for each task type. This ensures that the system is notified of
tasks waiting to be assigned.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 519

Parameters

Parameter Description

logical queue ID Specifies the logical queue in which the task should be queued. It is a string value.

The logical queue ID is a case-sensitive value. The case used in the NotifyQ
function must exactly match the case used when creating the logical queue ID on
the Queues page.

task type Specifies the type of task to be inserted. It is a string value. The valid values are:

• email

• generic

Returns

Returns 0 if the function was successful.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example

&strtasknum = EnQueue(&queueID, "email", &MyCompURL, &langcode,
&subject, "QEDMO", 15, 60, &cost, &priority, &minskill);

&nret = NotifyQ(&queueID, "email");
 If &nret = 0 Then
 MessageBox(0, "", 162, 1547, "Queue Successfully notified.");

 End-If

NumberToDisplayString

Syntax

NumberToDisplayString(Format,Number [, Width] [, Precision])

Description

Use the NumberToDisplayString function to format Number according to the pattern specified in Format.
The decimal and thousand's separator are formatted with what is with the current user's personalizations.

Specify the Width and Precision parameters when you want to dynamically specify the width or precision.
Both width and precision can be set based on Format. For example, the following statically specifies the
width to be 6, and the precision to be 2:

PeopleCode Built-in Functions Chapter 1

520 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&MyValue = NumberToDisplayString("%6.2", &Num);

The following example show the width taken dynamically from the &Width variable:

&MyValue = NumberToDisplayString("%*.2", &Num, &Width);

The following example shows how both the width and the precision values are taken dynamically from the
&Width and &Precision variables, respectively.

&MyValue = NumberToDisplayString("%*.*", &Num, &Width, &Precision);

Parameters

Parameter Description

Format Specify the pattern for how Number is supposed to be formatted. See Using the
Format parameter, below.

Number Specify the number to be formatted.

Width Specify the width of the string to be formatted.

Precision Specify the precision of the string to be formatted.

Using the Format Parameter

The Format parameter has the following format:

%[flags][width][.precision][R | T] [type]

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 521

• Flags have the following format:

Flag Description

- Left align the number.

$ Fill out field on left hand side with international
currency symbol.

Force the number to have a decimal point.

blank Pad left hand side with blanks only indicating a
negative number with a '-' sign.

+ Prefix output with plus sign.

M Append " (cr)" on right for negative numbers and "
(dr)" for positive numbers.

m Opposite of M: " (dr)" for negative and " (cr)" for
positive.

A Bracket negative numbers with "[" and "]".

a Bracket negative numbers with "(" and ")".

q Display zeros as blanks.

Q Display zeros as "None".

0 Pad left hand side with zeroes. This must be the last
flag before any other pattern indicators.

• Width must be specified as a non-negative integer. Specifying an asterisks ("*") allows for dynamic field
width specification. The maximum width is 50.

• Precision specifies how many digits follow the ".". It must be specified as a non-negative integer.
Specifying an asterisks ("*") allows for a dynamic precision specification. The maximum precision is 50.

• R specifies rounding in conversion from the internal PeopleCode representation, that is, specifying 12.345
with precision of 2 (%n.2Rt) prints 12.35. In the absence of the R control rounding is the default.

• T specifies truncation in conversion from the internal PeopleCode representation, that is, specifying 2.345
with precision of 2 (%n.2Tt) prints 12.34.

PeopleCode Built-in Functions Chapter 1

522 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Type has the following format:

Type Description

t Type has format like printf %f. For example, the form
dddd.dddd. This is the default value.

v 1000ths separator delimited output. For example, if
the separator is a comma, the format is 1,000,000.02.

w Scientific format like printf %e. For example, the
form d.ddddeddd where "e" indicates exponent. d
specifies 1 decimal digit and dddd specifies an
arbitrary number.

W Scientific format (like above, for "w") except "e" is
"E".

z Scientific Engineering format like printf %e where
the exponent is always a multiple of 3 and the
mantissa is between 1 and a 1000.

Z Scientific Engineering format (like above, for "z")
except "e" is "E".

Returns

A string value.

Example

In the following example, &Str1 would be "0001234,56".

&Num = 1234.56;

&Str1 = NumberToDisplayString("%#010.2t", &Num);

In the following example, &Str2 would be "$$$1234.56".

&Num = 1234.56;

&Str2 = NumberToDisplayString("%$10.2", &Num);

In the following example, &Str3 would be " 1,234.56".

&Num = 1234.56;

&Str3 = NumberToDisplayString("%10.2v", &Num);

In the following example, &Str4 would be "1.23456e+003".

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 523

&Num = 1234.56;

&Str4 = NumberToDisplayString("%w", &Num);

See Also

Chapter 1, "PeopleCode Built-in Functions," NumberToString, page 523

NumberToString

Syntax

NumberToString(Format,Number [, Width] [, Precision])

Description

Use the NumberToString function to format Number according to the pattern specified in Format.

Specify the Width and Precision parameters when you want to dynamically specify the width or precision.
Both width and precision can be set based on Format. For example, the following statically specifies the
width to be 6, and the precision to be 2:

&MyValue = NumberToString("%6.2", &Num);

The following example show the width taken dynamically from the &Width variable:

&MyValue = NumberToString("%*.2", &Num, &Width);

The following example shows how both the width and the precision values are taken dynamically from the
&Width and &Precision variables, respectively.

&MyValue = NumberToString("%*.*", &Num, &Width, &Precision);

Parameters

Parameter Description

Format Specify the pattern for of how Number is supposed to be formatted.

Number Specify the Number to be formatted.

Width Specify the width of the string to be formatted.

Precision Specify the precision of the string to be formatted.

Using the Format Parameter

The Format parameter has the following format:

%[flags][width][.precision][R | T] [type]

PeopleCode Built-in Functions Chapter 1

524 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Flags have the following format:

Flag Description

- Left align the number.

$ Fill out field on left hand side with international
currency symbol.

Force the number to have a decimal point.

blank Pad left hand side with blanks only indicating a
negative number with a '-' sign.

+ Prefix output with plus sign.

M Append " (cr)" on right for negative numbers and "
(dr)" for positive numbers.

m Opposite of M: " (dr)" for negative and " (cr)" for
positive.

A Bracket negative numbers with "[" and "]".

a Bracket negative numbers with "(" and ")".

q Display zeros as blanks.

Q Display zeros as "None".

0 Pad left hand side with zeroes. This must be the last
flag before any other pattern indicators.

• Width must be specified as a non-negative integer. Specifying an asterisks ("*") allows for dynamic field
width specification. The maximum width is 50.

• Precision specifies how many digits follow the ".". It must be specified as a non-negative integer.
Specifying an asterisks ("*") allows for a dynamic precision specification. The maximum precision is 50.

• R specifies rounding in conversion from the internal PeopleCode representation, that is, specifying 12.345
with precision of 2 (%n.2Rt) prints 12.35. In the absence of the R control rounding is the default.

• T specifies truncation in conversion from the internal PeopleCode representation, that is, specifying 2.345
with precision of 2 (%n.2Tt) prints 12.34.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 525

• Type has the following format:

Type Description

t Type has format like printf %f. For example, the form
dddd.dddd. This is the default value.

v 1000ths separator delimited output. For example, if
the separator is a comma, the format is 1,000,000.02.

w Scientific format like printf %e. For example, the
form d.ddddeddd where "e" indicates exponent. d
specifies 1 decimal digit and dddd specifies an
arbitrary number.

W Scientific format (like above, for "w") except "e" is
"E".

z Scientific Engineering format like printf %e where
the exponent is always a multiple of 3 and the
mantissa is between 1 and a 1000.

Z Scientific Engineering format (like above, for "z")
except "e" is "E".

Returns

A string value.

Example

In the following example, &Str1 would be "0001234.56".

&Num = 1234.56;

&Str1 = NumberToString("%#010.2t", &Num);

In the following example, &Str2 would be "$$$1234.56".

&Num = 1234.56;

&Str2 = NumberToString("%$10.2", &Num);

In the following example, &Str3 would be " 1,234.56".

&Num = 1234.56;

&Str3 = NumberToString("%10.2v", &Num);

In the following example, &Str4 would be "1.23456e+003".

PeopleCode Built-in Functions Chapter 1

526 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&Num = 1234.56;

&Str4 = NumberToString("%w", &Num);

See Also

Chapter 1, "PeopleCode Built-in Functions," NumberToDisplayString, page 519; Chapter 1, "PeopleCode
Built-in Functions," String, page 666 and Chapter 1, "PeopleCode Built-in Functions," Value, page 725

ObjectDoMethod

Syntax

ObjectDoMethod(obj_this,str_method_name [, paramlist])

Where paramlist is a list of parameters of arbitrary length:

param1 [, param2]. . .

Description

Use the ObjectDoMethod function to invoke the method specified by str_method_name for the object
object_this, passing in any required parameters using paramlist.

You can use ObjectDoMethod with Component Interfaces, Application Classes, OLE Automation objects,
and so on.

This method can be useful if you know the number of parameters you need to pass for a method. If you do not
know how many parameters you may need to pass when you write your PeopleCode, use the
ObjectDoMethodArray function.

Parameters

Parameter Description

obj_this Specify an already instantiated object. This variable must have been instantiated
either with CreateObject, or another function or method that creates objects.

str_method_name A string containing the name of an exposed method of obj_this.

paramlist The parameter list to pass to the str_method_name method.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 527

Example

This simple example instantiates an Excel worksheet object, makes it visible, names it, saves it, and displays
its name.

&WORKAPP = CreateObject("Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the⇒
 INVOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

This simple example invokes a user-defined method associated with the current component interface object:

ObjectDoMethod(%CompIntfcName, &inMethodName);

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155; Chapter 1, "PeopleCode Built-in
Functions," ObjectGetProperty, page 528; Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty,
page 530; Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157 and Chapter 1,
"PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using OLE
Functions

ObjectDoMethodArray

Syntax

ObjectDoMethodArray(Object_Name,Method_Name,Array_of_Args)

Description

Use the ObjectDoMethodArray function to invoke the method specified by method_name for the object
object_name, passing in any required parameters using the array.

Use this function when you're not certain, at the time you're writing your PeopleCode program, how many
parameters a method is going to require. If you know the number of parameters, use the ObjectDoMethod
function instead.

The array of parameters is an array of Any. It can only be one-dimensional. You cannot pass in field
references, that is, you can't pass in references of the form RECORD.FIELDNAME.

If you do not want to supply any parameters, you can use an empty array, or a reference to a Null array.

PeopleCode Built-in Functions Chapter 1

528 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

Object_Name Specify an already instantiated object on which the method is to be evaluated.

Method_Name Specify the name of an exposed method for the object.

Array_Of_Args Specify an Array of Any containing the parameters for the method.

Returns

Depends on the specified object and method if a result is returned or not.

Example

&MyRslt = ObjectDoMethodArray(&MyObject, "My-Method", &MyArray);

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155; Chapter 1, "PeopleCode Built-in
Functions," ObjectGetProperty, page 528; Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty,
page 530; Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157 and Chapter 1,
"PeopleCode Built-in Functions," ObjectDoMethod, page 526

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using OLE
Functions

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

ObjectGetProperty

Syntax

ObjectGetProperty(obj_this,str_property_name [, index_param_list])

Description

Use the ObjectGetProperty function to return the value of a property str_property_name of the object
obj_this.

Note. The object must have already been instantiated, either using CreateObject or another function or
method that returns an object. Default" OLE Automation object properties are not supported. You must
specify the object property that you want to retrieve explicitly.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 529

Parameters

Parameter Description

obj_this Specify an already instantiated object. This variable must have been instantiated
either with CreateObject or another function or method that creates objects.

str_property_name A string containing the name of an exposed property of obj_this.

index_param_list A comma-separated list for accessing an OLE automation object indexed property.
(These parameters are only used with OLE/COM objects.)

Returns

Returns an Any value equal to the value of the str_property_name property of the obj_this object.

Example

This simple example instantiates an Excel worksheet object, makes it visible, names it, saves it, and displays
its name.

&WORKAPP = CreateObject("Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the⇒
 INVOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

Excel Worksheets had an index property called Range that has the following signature:

Property Range (Cell1 [, Cell2]) as Range

In the following example, the range is A1:

&CELL = ObjectGetProperty(&SHEET, "Range", "A1");

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155; Chapter 1, "PeopleCode Built-in
Functions," ObjectDoMethod, page 526; Chapter 1, "PeopleCode Built-in Functions," ObjectSetProperty,
page 530; Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157 and Chapter 1,
"PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using OLE
Functions

PeopleCode Built-in Functions Chapter 1

530 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ObjectSetProperty

Syntax

ObjectSetProperty(obj_this,str_property_name,val [, index_param_list])

Description

Use the ObjectSetProperty function to set the value of a property str_property_name of the object obj_this to
val.

The object must have already been instantiated, either using CreateObject or another function or method that
returns an object.

Note. Default OLE Automation object properties are not supported. You must specify the object property that
you want to set explicitly.

Parameters

Parameter Description

obj_this Specify an already instantiated object. This variable must have been instantiated
either with CreateObject or another function or method that creates objects.

str_property_name A string containing the name of an exposed property of obj_this.

val str_property_name is set to this value.

index_param_list A comma-separated list of parameters for accessing an OLE automation object
indexed property. (This is only used with COM/OLE objects.)

Returns

None.

Example

This simple example instantiates an Excel worksheet object, makes it visible, names it, saves it, and displays
its name.

&WORKAPP = CreateObject("Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the⇒
 INVOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 531

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateObject, page 155; Chapter 1, "PeopleCode Built-in
Functions," ObjectDoMethod, page 526; Chapter 1, "PeopleCode Built-in Functions," ObjectGetProperty,
page 528; Chapter 1, "PeopleCode Built-in Functions," CreateObjectArray, page 157 and Chapter 1,
"PeopleCode Built-in Functions," ObjectDoMethodArray, page 527

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using OLE
Functions

OnlyOne

Syntax

OnlyOne(fieldlist)

where fieldlist is an arbitrary-length list of fields in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

 Use the OnlyOne function to check a list of fields and return True if one and only one of the fields has a
value. If all of the fields are empty, or if more than one of the fields has a value, OnlyOne returns False. This
function is used to validate that only one of a set of mutually exclusive fields has been given a value.

A blank character field, or a zero numeric value in a required numeric field is considered a Null value.

Related Functions

 All Checks to see if a field contains a value, or if all the fields in a list of fields
contain values. If any of the fields is Null, then All returns False.

 None Checks that a field or list of fields have no value. None is the opposite of
All.

 AllOrNone Checks if either all the field parameters have values, or none of them have
values. Use this in cases where if an end user fills in one field, she must all
fill in the other related values.

 OnlyOneOrNone Checks if no more than one field in the set has a value. Use this in cases
when a set of fields is both optional and mutually exclusive; that is, if the
end user puts can put a value into one field in a set of fields, or leave them
all empty.

PeopleCode Built-in Functions Chapter 1

532 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

You typically use OnlyOne as follows:

If OnlyOne(param_one, param_two)
 Then value_a = "y";
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," All, page 53; Chapter 1, "PeopleCode Built-in Functions,"
AllOrNone, page 54; Chapter 1, "PeopleCode Built-in Functions," None, page 517 and Chapter 1,
"PeopleCode Built-in Functions," OnlyOneOrNone, page 532

OnlyOneOrNone

Syntax

OnlyOneOrNone(fieldlist)

where fieldlist is an arbitrary-length list of fields in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

 Use the OnlyOneOrNone function to check a list of fields and return True if either of these conditions is true:

• Only one of the fields has a value.

• None of the fields has a value.

This function is useful when you have a set of mutually exclusive fields in a page and the entire set of fields is
optional. The end user can leave all the fields blank or enter a value in one of the fields only.

A blank character field, or a zero numeric value in a required numeric field is considered a null value.

Related Functions

 All Checks to see if a field contains a value, or if all the fields in a list of fields
contain values. If any of the fields is Null, then All returns False.

 None Checks that a field or list of fields have no value. None is the opposite of
All.

 AllOrNone Checks if either all the field parameters have values, or none of them have
values. Use this in cases where if an end user fills in one field, she must fill
in all the other related values.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 533

 OnlyOne Checks if exactly one field in the set has a value. Use this when the end
user must fill in only one of a set of mutually exclusive fields.

Example

You typically use OnlyOneOrNone as follows:

If OnlyOneOrNone(param_one, param_two)
 Then value_a = "y";
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," All, page 53; Chapter 1, "PeopleCode Built-in Functions,"
AllOrNone, page 54; Chapter 1, "PeopleCode Built-in Functions," None, page 517 and Chapter 1,
"PeopleCode Built-in Functions," OnlyOne, page 531

PanelGroupChanged

Syntax

PanelGroupChanged()

Description

Use the PanelGroupChanged function to determine whether a component has changed since the last save,
whether by the user or by PeopleCode.

Note. The PanelGroupChanged function is supported for compatibility with previous releases of PeopleTools.
New applications should use the ComponentChanged function instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," ComponentChanged, page 107

PingNode

Syntax

PingNode(MsgNodeName)

PeopleCode Built-in Functions Chapter 1

534 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the PingNode function to ping the specified node. It returns an XmlDoc object that you must go through
to find the status of the node.

Parameters

Parameter Description

MsgNodeName Specify the name of the message node you want to ping, as a string.

Returns

An XmlDoc object. The node in the XmlDoc object with the name of status contains information about the
node you pinged.

Example

Local XmlDoc &ErrorInfo;

&ErrorInfo = PingNode("TESTNODENAME");
 &Root = &ErrorInfo.DocumentElement;
 &MsgNodeArray = &Root.GetElementsByTagName("msgnode");
 For &M = 1 To &MsgNodeArray.Len
 &MsgNode = &MsgNodeArray [&M];
 &MsgText = &MsgNode.FindNode("status").NodeValue;
 If &MsgText <> "Success (117,73)" Then
 Error ("Web Server not available for web service");
 End-If;
 End-For;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

PeopleTools 8.52: PeopleCode API Reference, "Message Classes"

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

PriorEffDt

Syntax

PriorEffDt(field)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 535

Description

Use the PriorEffDt function to return the value of the specified field from the record with the prior effective
date. This function is valid only for effective-dated records.

If the record contains an effective sequence number field, the value of this field is compared along with the
effective-date field when the prior effective date/effective record sequence is determined. Therefore, if there
is an effective-sequence number, it's possible that the effective-date field will be the same as the current
record, but the sequence number would be earlier.

If a prior record does not exist, the statement is skipped. If the PriorEffDt function is not a top-level
statement, that is, if it's contained with a compound statement or a loop, the statement is skipped and
execution begins with the next top-level statement.

In the following example, execution skips to the top If statement:

If ACTION <> "REH" Then /* skip to here if PriorEffdt fails to find prior record⇒
 */
 If STD_HOURS <> PriorEffdt(STD_HOURS) And
 Day(EFFDT) <> 1 Then
 Error MsgGet(30000, 8, "Meldung nicht vorhanden - WAZ bzw.⇒
 Beschäftigungsgradänderungen sind nur zum ersten eines Monats zulässig.")
 End-If;
End-If;
/* if PriorEffdt fails, run to here directly */

Example

If CURRENCY_CD = PriorEffdt(CURRENCY_CD) Then
 Evaluate ACTION
 When = "PAY"
 If ANNUAL_RT = PriorEffdt(ANNUAL_RT) Then
 Warning MsgGet(1000, 27, "Pay Rate Change action is chosen and Pay⇒
 Rate has not been changed.");
 End-if;
 Break;
 When = "DEM"
 If ANNUAL_RT >= PriorEffdt(ANNUAL_RT) Then
 Warning MsgGet(1000, 29, "Demotion Action is chosen and Pay Rate has⇒
 not been decreased.");
 end-if;
 When-other
 End-evaluate;
 WinMessage("This message appears after executing either of the BREAK⇒
 statements or after all WHEN statements are false");
 End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," NextEffDt, page 511; Chapter 1, "PeopleCode Built-in
Functions," NextRelEffDt, page 512 and Chapter 1, "PeopleCode Built-in Functions," PriorRelEffDt, page
536

PeopleCode Built-in Functions Chapter 1

536 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PriorRelEffDt

Syntax

PriorRelEffDt(search_field,fetch_field)

Description

 Use the PriorRelEffDt function to locate the prior occurrence of the search_field with the prior effective date
(and effective-sequence number if specified), then return the value of the specified fetch_field corresponding
to the search_field. The return value is an Any data type. Typically, this function is used to retrieve values for
related display fields.

This function is valid only for effective-dated records.

If a prior record does not exist, then the statement is skipped. If the PriorRelEffDt function isn't a top-level
statement, that is, if it's contained within a compound statement or a loop, the statement is skipped and
execution restarts with the next top-level statement.

See Also

Chapter 1, "PeopleCode Built-in Functions," NextEffDt, page 511; Chapter 1, "PeopleCode Built-in
Functions," NextRelEffDt, page 512 and Chapter 1, "PeopleCode Built-in Functions," PriorEffDt, page 534

PriorValue

Syntax

PriorValue(fieldname)

Description

Use the PriorValue function in FieldEdit and FieldChange PeopleCode to obtain the prior value of a buffer
field that the user just changed. It returns the value that was in the buffer field before the user changed it, not
the value of the field the last time the component was saved.

PriorValue gives correct results only in FieldEdit and FieldChange PeopleCode, and only for the buffer field
where the function is executing. If you pass another field name to the function, it returns the current value of
the buffer field, not the prior value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 537

Parameters

Parameter Description

fieldname The name of the record field. For correct results, this must be the name of the field
where the call to PriorValue executes.

Returns

Returns an Any value equal to the value that was in the current buffer field immediately prior to the last edit.

Example

The following example from FieldChange PeopleCode gets the prior value of a field:

&PRIOR = PriorValue(QUANTITY);
DERIVED_TEST.TOTAL_AMT = (DERIVED_TEST.TOTAL_AMT - &PRIOR) + QUANTITY;

See Also

Chapter 1, "PeopleCode Built-in Functions," CurrentRowNumber, page 175

Product

Syntax

Product(numlist)

where numlist is an arbitrary-length list of numbers in the form

n1 [, n2]. . .

Description

Use the Product function to multiply all the numbers in numlist and returns the product as a Number data
type. The numbers in the list can be any number expressed as a number, variable, or expression.

Returns

Returns a Number value equal to the product of the numbers in numlist.

Example

The example sets &N2 to 96:

PeopleCode Built-in Functions Chapter 1

538 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&N2 = Product(4,80,0.3);

See Also

Chapter 1, "PeopleCode Built-in Functions," Fact, page 273

Prompt

Syntax

Prompt(title,heading, {fieldlist | &Record})

where fieldlist is an arbitrary-length list of fields in the form:

field1 [, label1 [, tempvar1]] [, field2 [, label2 [, tempvar2]]]...

Note that the label parameter is required before the temporary variable.

Description

Use the Prompt function to display a page prompting the user to insert values into one or more text boxes. If
the user cancels the page, any entered values are discarded and the function returns False. When the prompt
page is displayed, the text boxes are initially filled with default values from the fields in fieldlist. The user can
change the values in the text boxes, then if the user clicks OK, the values are placed either into the buffer for
the appropriate field, or into a temporary variable, if a tempvar for that field is provided in the function call.

Prompt can also take a record object. This is primarily used with the Query classes, when running a query, to
prompt the end user for the prompt values of a query.

Prompt is a think-time function, and as such cannot be used during the PeopleCode attached to the following
events:

• SavePreChange

• Workflow

• RowSelect

• SavePostChange

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

 Prompt should also not be called in any PeopleCode event that fires as a result of a ScrollSelect or its
relatives, or a Select Rowset class method or its relatives.

See Also

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 539

Parameters

Parameter Description

title Used as the title for the page.

heading Displayed in the page above the fields. If a zero-length string ("") is passed, the
heading line is omitted in the page.

fieldlist | &Record A list of one or more fields; each field in the list consists of a [recordname.]
fieldname followed by an optional label and an optional temporary variable for
storing the input value. The label parameter is required if you supply the
temporary variable parameter.

Instead of a list of fields, you can also specify an already instantiated and
populated record object.

field The name of the field being prompted for, the form [recordname.]fieldname.

label Optional label for the prompted field. If this parameter is omitted, the field RFT
Long value is used. This parameter is required before the tempvar parameter.

tempvar Optional temporary variable to receive the user-entered value. If this parameter is
omitted, the value is placed into the buffer for the field specified. Using a temp
variable enables the PeopleCode program to inspect and process the entered value
without affecting the buffer contents.

Returns

Optionally returns a Boolean value:

• False if the user clicks the Cancel button.

• True if the user clicks the OK button.

Example

The following example prompts for a single field, using calls to the MsgGetText function to retrieve values
for the window title and prompt, and places the result into FISCAL_YEAR field:

Prompt(MsgGetText(5000, 182, " "), MsgGetText(5000, 184, " "), FISCAL_YEAR);

To following example places the results of the prompt into a temporary variable:

Prompt("Change Voucher", "", VOUCHER_ID, "Change Voucher ID to", &NEW_VOUCHER_ID);

The following code is in the USA push button FieldChange PeopleCode, and calls for the single field as
shown in the page.

When = PAGE.PERSONAL_DATA1
 /* Administer Global Personnel - USA Flag Btn on PERSONAL_DATA1 Page */
 Prompt("US Social Security Number", "", PERSONAL_DATA.SSN);
 Break;

PeopleCode Built-in Functions Chapter 1

540 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Proper

Syntax

Proper(string)

Description

Use the Proper function to capitalize the first letter in a text string and any other letters in a text string that
follow any character other than another letter. It also converts all other letters in a text string to lowercase.
Punctuation and other characters that have no case sensitivity are not changed.

Returns

Returns a String value with the first character of each word capitalized.

Example

 The example sets the value of &BADKD to "K. D. Lang".

&BADKD = Proper("k. d. LANG")

See Also

Chapter 1, "PeopleCode Built-in Functions," Lower, page 485 and Chapter 1, "PeopleCode Built-in
Functions," Upper, page 724

PublishXmlDoc

Syntax

PublishXmlDoc(&XmlDoc,Message.MessageName [, Node.NodeName])

Description

Use the PublishXmlDoc function to send an asynchronous message that is based on an XmlDoc object.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Publish method instead.

The XmlDoc object must already be instantiated and populated. The message included in the function call
should be an unstructured message, that is, one that isn't based on a hierarchical record structure.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 541

If you want to retrieve an XmlDoc message that was sent asynchronously, use the GetMessageXmlDoc built-
in function.

If you want to handle an XmlDoc as a Message object, you need to define a Message object with a
hierarchical structure and migrate the data in the XmlDoc object into the Message object.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Publish

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object that you want to
send as an asynchronous message.

MessageName Specify an already existing nonrowset-based message, prefaced with the reserved
word Message.

NodeName Specify a node. This is for Sender Specified Routing (SSR), prefixed with the
reserved word Node. The node defines the target for the published message.

Returns

A Boolean value: True if the message was successfully published, False otherwise.

Example

Local XmlDoc &MyDoc;

. . .

PublishXmlDoc(&MyDoc, Message.MyXmlMessage, Node.MyNode);

See Also

Chapter 1, "PeopleCode Built-in Functions," GetMessageXmlDoc, page 386 and Chapter 1, "PeopleCode
Built-in Functions," SyncRequestXmlDoc, page 672

PutAttachment

Syntax

PutAttachment(URLDestination,DirAndSysFileName, DirAndLocalFileName[,
LocalDirEnvVar[, PreserveCase[, AllowLargeChunks]]])

PeopleCode Built-in Functions Chapter 1

542 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the PutAttachment function to upload a file from the file system of the application server to the specified
storage location.

Note. It is the responsibility of the calling PeopleCode program to store the specified file name for further
use.

If a file exists at a particular place on a storage location and then another file with the same name is uploaded
to that same place on that same storage location, the original file will be silently overwritten by the new file.
If that is not the behavior you desire, it is recommended that you implement PeopleCode to guarantee the
ultimate uniqueness of either the name of the file at its place on the storage location or the name of its place
(the subdirectory) on the storage location.

Note. If the web server load-balances via Jolt session pooling, then it may be difficult to anticipate which
application server machine will be expected to have the specified file.

Note. If the specified destination subdirectories do not exist at the storage location, this function tries to
create them.

Additional information that is important to the use of PutAttachment can be found in the PeopleTools 8.52:
PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," File Name
Considerations.

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Attachments
with non-ASCII File Names.

• The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Considerations
When Attaching Text Files.

File System Considerations

If you are uncertain which type of file system the file is going to be transferred from, either a Unix or
Windows system, you should simply specify a file name for the DirAndLocalFileName parameter and either
explicitly set the LocalDirEnvVar parameter or accept its default value, which is "TMP" (indicating that the
value of the TMP environment variable will be used).

The following code example works for Windows systems, but not Unix systems:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 543

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "c:tempresume.doc");

The following code example works for Unix systems, but not Windows systems:

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "/tmp/resume.doc");

The following two examples work for both Windows and Unix systems:

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "resume.doc");

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "resume.doc", "PS_CFG_HOME");

Parameters

Parameter Description

URLDestination A reference to a URL. This can be either a URL identifier the form URL.URL_ID,
or a string. This (along with the corresponding DirAndSysFileName) indicates a
file's destination location.

Note. The URLDestination parameter requires forward slashes (/). Backward
slashes (\) are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndSysFileName The relative path and file name of the file at the storage location. This is appended
to URLDestination to form the full URL where the file will be transferred to. This
parameter takes a string value.

Note. The URLDestination parameter requires "/" slashes. Because
DirAndSysFileName is appended to the URL, it also requires only "/" slashes. You
cannot use "\" slashes in any way for either the URLDestination or the
DirAndSysFileName parameter.

DirAndLocalFileName The name, relative path name, or full path name of the source file on the
application server. This parameter takes a string value. If you specify only a name
or a relative path name for the source file, the file will be searched for in or
relative to:

• The directory indicated by the value of the environment variable specified by
the LocalDirEnvVar parameter.

• The directory indicated by the value of the TMP environment variable if the
LocalDirEnvVar parameter has not been specified.

PeopleCode Built-in Functions Chapter 1

544 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

LocalDirEnvVar This optional parameter takes a string value.

If LocalDirEnvVar is specified, then its value will be prefixed to the value of the
DirAndLocalFileName parameter to form the full path name of the source file on
the application server's file system. With this parameter, you can avoid the need to
hard-code the full path name.

If LocalDirEnvVar is not specified and the value of the DirAndLocalFileName
parameter is already a full path file name, then that value will itself be used as the
full path name of the source file on the application server. If LocalDirEnvVar is
not specified and the value of the DirAndLocalFileName parameter is not a full
path file name, then the value of the TMP environment variable will be prefixed to
the value of the DirAndLocalFileName parameter to form the full path name of the
source file on the application server.

Note.

Do not specify LocalDirEnvVar if you use an absolute path for the
DirAndLocalFileName parameter.

Note.

In order to use the optional parameter PreserveCase, you must pass some value for
LocalDirEnvVar. If you want to use the default behavior of LocalDirEnvVar and
also use PreserveCase, you can specify "" (the empty string) for LocalDirEnvVar.
Then the function behaves as if no value is specified. In this situation, if you wish
to use the TMP environment variable, it must be explicitly specified.

PreserveCase Specify a Boolean value to indicate whether the case of the extension of the file
specified in DirAndSysFileName is preserved at the storage location: True,
preserve the case, False, convert the file name extension in DirAndSysFileName to
all lower case letters.

The default value is False.

For a particular file, save the value specified for this parameter so that it may be
used when later calling other file-processing built-in functions on this file.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

This is an optional parameter.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 545

Parameter Description

AllowLargeChunks Specify a Boolean value to indicate whether to allow large chunks.

If the value specified in the Maximum Attachment Chunk Size field on the
PeopleTools Options page is larger than is allowed for retrieval, then the system
breaks the file upload into the largest sized chunks allowed. If AllowLargeChunks
is set to True, this behavior can be overridden so that it is possible for an end user
to upload a file in chunks that are too large for the system to retrieve. If
AllowLargeChunks is set to False, the system will use the largest size chunk that is
allowed for retrieval, or the configured chunk size, whichever is smaller.

The default value is False.

Note. If the chunks are too big to be retrieved, then any file retrieval built-in
function, such as GetAttachment, will fail.

Note. The AllowLargeChunks parameter is only applicable when the storage
location is a database record. It has no impact when the storage location is an FTP
site or an HTTP repository, since attachments at those locations are never
chunked.

See PeopleTools 8.52: System and Server Administration, "Using PeopleTools
Utilities," PeopleTools Options.

This is an optional parameter.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

PeopleCode Built-in Functions Chapter 1

546 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 547

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

4 %Attachment_NoDiskSpaceAppServ No disk space on the application
server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

PeopleCode Built-in Functions Chapter 1

548 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

Example

The following uploads the file, HRarchive/NewHire/11042000resume.txt, to the FTP server from
c:\NewHires\resume.txt on the application server machine.

&retcode = PutAttachment("ftp://anonymous:hobbit1@ftp.ps.com/HRarchive/", ⇒
"NewHire/11042000resume.txt", "C:\NewHires\resume.txt");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 549

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," CopyAttachments,
page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment, page 200; Chapter 1, "PeopleCode
Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode Built-in Functions,"
GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions," MAddAttachment, page 486 and
Chapter 1, "PeopleCode Built-in Functions," ViewAttachment, page 726

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

Quote

Syntax

Quote(String)

Description

Use the Quote function to enclose a string in single quotation marks. This function also can be used to put
quotation marks around SQL statements.

Parameters

Parameter Description

String Specify the string you want to enclose in single quotation marks.

Returns

The string specified by String enclosed in single quotation marks.

Example

The following code returns 'Bob':

&QuotedString = Quote("Bob");

The following code returns 'Bob''s' (two single quotes to represent the apostrophe)

&QuotedString = Quote("Bob's");

The following code returns '%'' OR USER ID LIKE ''%':

&QuotedString = Quote("%' OR USERID LIKE '%");

PeopleCode Built-in Functions Chapter 1

550 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Radians

Syntax

Radians(angle)

Description

Use the Radians function to convert the given angle from degree measurement to radian measurement.

Parameters

Parameter Description

angle The size of an angle in degrees.

Returns

The size of the given angle in radians.

Example

The following example returns the equivalent size in radians of an angle measuring 65.5 degrees:

&RADIAN_SIZE = Radians(65.5);

The following example returns the value of pi, that is, 180 degrees expressed as radians:

&PI = Radians(180);

Note. This example represents pi with a high degree of accuracy, but no computer system can represent
irrational numbers exactly. Thus, the results of extended calculations based on pi have the potential for a
cumulative reduction in precision.

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Atan, page 58; Chapter 1, "PeopleCode Built-in
Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in Functions," Cot, page 139; Chapter 1,
"PeopleCode Built-in Functions," Degrees, page 200; Chapter 1, "PeopleCode Built-in Functions," Sin, page
650 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 551

Rand

Syntax

Rand()

Description

Use the Rand function to generate a random number greater than or equal to 0 and less than 1. To generate a
random integer that is greater than or equal to 0 but less than x, use Int(Rand()*x).

Returns

Returns a random Number value greater than or equal to 0 and less than 1.

Example

The example sets &RANDOM_NUM to a random value less than 100.

&RANDOM_NUM = Int(Rand()*100)

See Also

Chapter 1, "PeopleCode Built-in Functions," Int, page 455

RecordChanged

Syntax

The syntax of the RecordChanged function varies, depending on whether you use a scroll path reference or a
contextual reference to designate the row being tested.

Using a scroll path reference, the syntax is:

RecordChanged(scrollpath, target_row)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row,]]
RECORD.target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Using a contextual reference the syntax is:

RecordChanged(RECORD.target_recname)

PeopleCode Built-in Functions Chapter 1

552 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

A contextual reference specifies the current row on the scroll level designated by RECORD.target_recname.

An older construction, in which a record field expression is passed, is also supported. The record field is any
field in the row where the PeopleCode program is executing (typically the one on which the program is
executing).

RecordChanged(recordname.fieldname)

Description

Use the RecordChanged function to determine whether the data in a specific row has been modified since it
was retrieved from the database either by the user or by a PeopleCode program.

Note. This function remains for backward compatibility only. Use the IsChanged record class property
instead.

This is useful during save processing for making updates conditional on whether rows have changed.

Note. The word "record" is used in this function name in a misleading way. Remember that this function (like
the related functions RecordDeleted and RecordNew) checks the state of a row, not a record.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class," IsChanged and PeopleTools 8.52:
PeopleCode API Reference, "Row Class," DeleteEnabled

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

RECORD.target_recname The primary scroll record of the scroll level where the row being referenced is
located. As an alternative, you can use SCROLL.scrollname.

Returns

Returns a Boolean value:

• True if any data in the target row has been changed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 553

• False if no data in the target row has been changed.

Example

This example shows a RecordChanged call using a contextual reference:

If RecordChanged(RECORD.BUS_EXPENSE_DTL) Then
 WinMessage("Changed row msg from current row.", 64);
End-If;

The following example, which would execute on level one, checks rows on level two to determine which
have been changed:

For &I = 1 To ActiveRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1),⇒
 RECORD.BUS_EXPENSE_DTL);
 If RecordChanged(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS_⇒
EXPENSE_DTL, &I) Then
 WinMessage("Changed row message from level one.", 64);
 End-If;
End-For;

See Also

Chapter 1, "PeopleCode Built-in Functions," FieldChanged, page 276; Chapter 1, "PeopleCode Built-in
Functions," RecordDeleted, page 553 and Chapter 1, "PeopleCode Built-in Functions," RecordNew, page 555

RecordDeleted

Syntax

The syntax of the RecordDeleted function varies, depending on whether you use a scroll path reference or a
contextual reference to designate the row being tested.

Using a scroll path reference, the syntax is:

RecordDeleted(scrollpath, target_row)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Using a contextual reference the syntax is:

RecordDeleted(RECORD.target_recname)

A contextual reference specifies the current row on the scroll level designated by RECORD.target_recname.

An older construction, in which a record field expression is passed, is also supported. The record field is any
field in the row where the PeopleCode program is executing (typically the one on which the program is
executing).

PeopleCode Built-in Functions Chapter 1

554 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RecordDeleted(recordname.fieldname)

Description

Use the RecordDeleted function to verify if a row of data has been marked as deleted, either by an end-user
row delete (F8) or by a call to DeleteRow.

Note. This function remains for backward compatibility only. Use the IsDeleted record class property instead.

 RecordDeleted is useful during save processing to make processes conditional on whether a row has been
deleted.

Deleted rows are not actually removed from the buffer until after the component has been successfully saved,
so you can check for deleted rows all the way through SavePostChange PeopleCode.

RecordDeleted is not typically used in a loop, because it is easier to put it on the same scroll level as the rows
being checked in SavePreChange or SavePostChange PeopleCode: these events execute PeopleCode on every
row in the scroll, so no looping is necessary.

Note. To avoid confusion, note that this function (like the related functions RecordChanged and RecordNew)
checks the state of a row, not a record.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Record Class," IsDeleted and PeopleTools 8.52: PeopleCode
API Reference, "Row Class," IsDeleted

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

RECORD.target_recname The primary scroll record of the scroll level where the row being referenced is
located. As an alternative, you can use SCROLL.scrollname.

Returns

Returns a Boolean value:

• True if the target row has been deleted.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 555

• False if the target row has not been deleted.

Example

This example shows a RecordDeleted call using a contextual reference

If RecordDeleted(RECORD.BUS_EXPENSE_DTL) Then
 WinMessage("Deleted row msg from current row.", 64);
End-If;

The following example, which would execute on level zero, checks rows on level one to determine which
have been deleted:

For &I = 1 To TotalRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1),⇒
 RECORD.BUS_EXPENSE_DTL);
 If RecordDeleted(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS_⇒
EXPENSE_DTL, &I) Then
 WinMessage("Deleted row message from level one.", 64);
 End-If;
End-For;

Note that the loop is delimited by TotalRowCount. For loops delimited by ActiveRowCount don't process
deleted rows.

See Also

Chapter 1, "PeopleCode Built-in Functions," FieldChanged, page 276; Chapter 1, "PeopleCode Built-in
Functions," RecordChanged, page 551; Chapter 1, "PeopleCode Built-in Functions," RecordNew, page 555;
Chapter 1, "PeopleCode Built-in Functions," TotalRowCount, page 681 and Chapter 1, "PeopleCode Built-in
Functions," ActiveRowCount, page 36

RecordNew

Syntax

The syntax of the RecordNew function varies, depending on whether you use a scroll path reference or a
contextual reference to designate the row being tested.

Using a scroll path reference, the syntax is:

RecordNew(scrollpath, target_row)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Using a contextual reference the syntax is:

RecordNew(RECORD.target_recname)

PeopleCode Built-in Functions Chapter 1

556 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

A contextual reference specifies the current row on the scroll level designated by RECORD.target_recname.

An older construction, in which a record field expression is passed, is also supported. The record field is any
field in the row where the PeopleCode program is executing (typically the one on which the program is
executing).

RecordNew(recordname.fieldname)

Description

Use the RecordNew function to check a specific row to determine whether it was added to the component
buffer since the component was last saved.

Note. This function remains for backward compatibility only. Use the IsNew row class property instead.

This function is useful during save processing to make processes conditional on whether or not a row is new.

Note. To avoid confusion, remember that this function (like the related functions RecordChanged and
RecordDeleted) checks the state of a row, not a record. In normal PeopleSoft usage, the word "record"
denotes a table-level object (such as a table, view, or Derived/Work record).

See Also

PeopleTools 8.52: PeopleCode API Reference, "Row Class," IsNew

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer,"
Understanding Current Context

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

RECORD.target_recname The primary scroll record of the scroll level where the row being referenced is
located. As an alternative, you can use SCROLL.scrollname.

Returns

Returns a Boolean value:

• True if the target row is new.

• False if the target row is not new.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 557

Example

This example shows a RecordNew call using a contextual reference:

If RecordNew(RECORD.BUS_EXPENSE_DTL) Then
 WinMessage("New row msg from current row.", 64);
End-If;

The following example, which would execute on level one, checks rows on level two to determine which
have been added:

For &I = 1 To ActiveRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1),⇒
 RECORD.BUS_EXPENSE_DTL);
 If RecordNew(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS_EXPENSE_⇒
DTL, &I) Then
 WinMessage("New row message from level one.", 64);
 End-If;
End-For;

See Also

Chapter 1, "PeopleCode Built-in Functions," FieldChanged, page 276; Chapter 1, "PeopleCode Built-in
Functions," RecordChanged, page 551 and Chapter 1, "PeopleCode Built-in Functions," RecordDeleted, page
553

RefreshTree

Syntax

RefreshTree(Record.bound_recname)

Description

Use the RefreshTree function to update a dynamic tree.

Note. Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

See Also

Chapter 1, "PeopleCode Built-in Functions," GenerateTree, page 335

Appendix A, "Viewing Trees From Application Pages," page 851

PeopleCode Built-in Functions Chapter 1

558 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RelNodeTranDelete

Syntax

RelNodeTranDelete(RelationshipId ,SrcTrxType,SrcNode,SrcRqstMsgName,
SrcRqstMsgVer,TgtNode,TgtRqstMsgName, TgtRqstMsgName,TgtRqstMsgVer);

Description

Use the RelNodeTranDelete function to delete a transaction modifier.

Parameters

Parameter Description

RelationshipId Specify the relationship ID as a string.

ScrTrxType Specify the source transaction type as a string.

SrcNode Specify the source node as a string.

ScrRqstMsgName Specify the source request message name as a string.

ScrRqstMsgVer Specify the source request message version as a string.

TgtNode Specify the target node as a string.

TgtRqstMsgName Specify the target request message name as a string.

TgtRqstMsgName Specify the target message name as a string.

TgtRqstMsgVer Specify the target request message version as a string.

Returns

A Boolean value, True if the function completed successfully, False otherwise.

Example

&ret = RelNodeTranDelete("QE_TEST", "CMS_TEST", "CMS_TEST_LOCAL", "OA", ⇒
 "ROLESYNCH_MSG", "VERSION_1", "CMS_TEST_LOCAL2", "ROLESYNCH_MSG2", ⇒
 "VERSION_1",);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 559

See Also

Chapter 1, "PeopleCode Built-in Functions," NodeTranDelete, page 516

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Service Operations"

RemoteCall

Syntax

RemoteCall(dispatcher_name [, service_paramlist] [, user_paramlist])

where service_paramlist and user_paramlist are arbitrary-length lists of parameters in the form:

var1,val1 [, var2,val2]. . .

Description

Use the RemoteCall function to call a Tuxedo service from a PeopleSoft application. A typical use of Remote
Call is to run data-intensive, performance-sensitive programs near or on the database server.

Note. After PeopleTools 8 you can no longer use RemoteCall to start an Application Engine program. You
must use CallAppEngine instead.

Because complex PeopleCode processes can now be run on the application server in three-tier mode, the
RemoteCall PeopleCode function has more limited utility. However, RemoteCall can still be very useful,
because it provides a way to take advantage of existing COBOL processes.

• In three-tier mode, RemoteCall always runs on the application server.

• In two-tier mode, RemoteCall always runs on the client.

This means that it is no longer necessary to set a location for the remote call in PeopleSoft Configuration
Manager.

Each RemoteCall service can have zero or more standard parameters and any number of user parameters. The
standard parameters are determined by the RemoteCall dispatcher, the user parameters by the COBOL
program being run.

There is only one RemoteCall dispatcher delivered with PeopleTools 7, PSRCCBL, which executes a
COBOL program using the connect information of the current end user.

In the application server configuration file, you can specify where RemoteCall can find the COBOL
executables

 RemoteCall can be used from any type of PeopleCode except SavePostChange, SavePreChange, Workflow,
and RowSelect. However, remote programs that change data should not be run as part of the SaveEdit
process, because the remote program may complete successfully even though an error occurs in a later part of
the save process. For remote programs that change data, the normal place for them would be in the
FieldChange PeopleCode behind a command push button, or in a pop-up menu item.

PeopleCode Built-in Functions Chapter 1

560 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

After you use RemoteCall, you may want to refresh your page. The Refresh method, on a rowset object,
reloads the rowset (scroll) using the current page keys. This causes the page to be redrawn. The following
code refreshes the entire page:

GetLevel0().Refresh()

If you only want a particular scroll to be redrawn, you can refresh just that part.

See Also

Chapter 1, "PeopleCode Built-in Functions," CallAppEngine, page 73

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Refresh

PeopleTools 8.52: System and Server Administration, "Setting Application Server Domain Parameters,"
Remote Call Options

Parameters

The parameters passed to RemoteCall can be broken into three parts: the RemoteCall Dispatcher Name, the
standard Parameter Lists for the service, and the User Parameter Lists for the program being called on the
service.

Dispatcher Name

The dispatcher_name parameter is a string value that specifies the type of RemoteCall performed. For
PeopleTools 7 there is only one RemoteCall dispatcher delivered, PSRCCBL, which executes a COBOL
program using the connect information of the current end user, so the value you pass to this parameter should
always be "PSRCCBL". Future versions of PeopleTools may provide support for Red Pepper, SQR, or
customer supplied remote calls.

Parameter Lists

Both the standard parameter list and user parameter list have the same form. Think of the parameters passed
to the service as being passed as pairs of variable names and values of input and output parameters:

variable_name, value

Where:

• variable_name is a string literal or string variable that contains the name of the input or output variable as
referenced in the remote program. For example, if the remote program expects a variable named
"USERNAME", then the PeopleCode should use "USERNAME" or &VARIABLE (which had been
assigned the value "USERNAME").

• For input variables, value is the value to be passed to the remote program with the variable name. It can
be either a variable or literal with a data type that corresponds to the variable_name variable. For output
variables, value is the value returned to the PeopleCode program from the remote program. It must be a
variable in this case, representing the buffer into which the value is returned.

An arbitrary number of parameters can be passed to the service. There is, however, a limitation on the number
of variables that can be passed in PeopleCode, which is limited by the size of the PeopleCode parameter
stack, currently 128.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 561

In the case of the PSRCCBL dispatcher, there are three standard parameters, listed in the following table:

Dispatcher Parameter Required Description

PSRCCBL PSCOBOLPROG Y Name of the COBOL
program to run.

PSRCCBL PSRUNCTL N Run-control parameter to
pass to the COBOL
program.

PSRCCBL INSTANCE N Process instance
parameter to pass to the
COBOL program.

User Parameter List

For PSRCCBL, the remote COBOL program must match the user parameters to the usage of its application.
The names of the parameters are sent to the server and can be used by the COBOL program. The COBOL
program returns any modified (output) parameters by name. Parameters which are not returned are not
modified, and any extra returned parameters (that is, parameters beyond the number passed or of different
names) are discarded with no effect.

Returns

None.

Example

You could use the following PeopleCode to execute the program "CBLPROG1":

Rem Set the return code so we are sure it is sent back.
&Returncode = -1;
Rem Set the parameters that will be sent across.
¶m1 = "John";
¶m2 = "Smith";
Rem Set the standard parameters that indicate program name and run-control.
&RemoteCobolPgm = "CBLPROG1";
/* call the remote function */
RemoteCall ("PSRCCBL",
"PSCOBOLPROG", &RemoteCobolPgm,
"PSRUNCTL", workrec.runctl,
"FirstName", ¶m1,
"LastName", ¶m2,
"Returncode", &Returncode,
"MessageSet", &msgset,
"MessageID", &msgid,
"MessageText1", &msgtext1,
"MessageText2", &msgtext2);
if &Returncode <> 0
 WinMessage(MsgGet(&msgset, &msgid, "default message", &msgtext1, &msgtext2));
end-if;

PeopleCode Built-in Functions Chapter 1

562 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Exec, page 261 and Chapter 1, "PeopleCode Built-in Functions,"
WinExec, page 738

PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Using the
RemoteCall Feature

RemoveDirectory

Syntax

RemoveDirectory(path [, remove_parameters])

where remove_parameters can be in the form:

path_type [+ directory_type]

Description

Use the RemoveDirectory function to remove the directory specified by path. You can also specify whether
to remove just the directory, or to delete the directory and all subdirectories, including any files, that is, to
remove the entire directory tree.

Parameters

Parameter Description

path Specify the directory to be removed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 563

Parameter Description

remove_parameters Specify additional considerations about the directory to be removed.

Specify whether the path is an absolute or relative path. Values are:

• %FilePath_Relative (default)

• %FilePath_Absolute

The default is %FilePath_Relative.

If you specify a relative path, that path is appended to the path constructed from a
system-chosen environment variable. A complete discussion of relative paths and
environment variables is provided in documentation on the File class.

See PeopleTools 8.52: PeopleCode API Reference, "File Class," Working With
Relative Paths.

If the path is an absolute path, whatever path you specify is used verbatim. You
must specify a drive letter as well as the complete path. You can't use any
wildcards when specifying a path.

The Component Processor automatically converts platform-specific separator
characters to the appropriate form for where your PeopleCode program is
executing. On a Windows system, UNIX "/" separators are converted to "\", and
on a UNIX system, Windows "\" separators are converted to "/".

Note. The syntax of the file path does not depend on the file system of the
platform where the file is actually stored; it depends only on the platform where
your PeopleCode is executing.

Specify whether to remove only the specified directory or to remove the directory
and all its subdirectories. The default is to just remove the specified directory.

The valid values are:

• %Remove_Subtree

• %Remove_Directory (default)

Returns

None.

Example

The following example is for a Windows operating system:

RemoveDirectory("C:\temp\mydir\temp", %filepath_absolute + %remove_subtree);

The following example is for a UNIX operating system:

RemoveDirectory("/temp/mydir/temp", %filepath_absolute + %remove_subtree);

PeopleCode Built-in Functions Chapter 1

564 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateDirectory, page 145; Chapter 1, "PeopleCode Built-in
Functions," DeleteAttachment, page 200; Chapter 1, "PeopleCode Built-in Functions," FileExists, page 278
and Chapter 1, "PeopleCode Built-in Functions," FindFiles, page 283

PeopleTools 8.52: PeopleCode API Reference, "File Class"

RenameDBField

Syntax

RenameDBField(Field.NewFieldName,Field.OldFieldName [, FixRefsOnly])

Description

Use the RenameDBField function to modify a field definition to have a new name. This function also cleans
up most references, such as in PeopleCode programs and on records so they now use the new name.

Note. Because using this function changes records that are used to build application tables, you must rebuild
(alter) the specified project before these changes can be used.

Considerations Using this Function

In SQL associated with records of type view, the field name is not changed. You must fix those by hand.

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

This operation is time consuming.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

NewFieldName Specify the new field name to be used. This name must be prefixed by the
reserved word Field.

OldFieldName Specify the name of the field to be changed. This name must be prefixed by the
reserved word Field.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 565

Parameter Description

FixRefsOnly Specify to rename all references of OldFieldName to NewFieldName whether or
not NewFieldName exists or not. This paramter takes a Boolean value. The default
value is False.

For example, suppose a company renames a field PROJECT to MYPROJECT.
Then they receive a patch which has records, pages, code, and so on that
references Field.PROJECT. In this case you could set this parameter to True,
rename MYPROJECT to PROJECT, and have all the references to the field
PROJECT redirect to the field MYPROJECT even if neither field exists in the
database, nor if only one exists.

Note. Using this parameter is a completely freeform path to renaming references.
Be aware that the system won't work if pages and records are not eventually
pointing to a valid field.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_FieldNotFound The field specified by OldFieldName wasn't found in the specified project or page
list.

%MDA_Duplicate The field specified by NewFieldName already exists.

Example

&ret = RenameDBField(Field.OrgId, Field.DeptId, True);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "RenameDBField succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "RenameDBField failed");
End-If;

The following example de-references the field name for the function.

&oldcf = "CF1";
&newcf = "XYZ_STORE_ID";
&new = "FIELD." | &newcf;
&old = "FIELD." | &oldcf;
&ret = RenameDBField(@(&new), @(&old));
If (&ret = 0) Then
 MessageBox(0, "RenameDBField", 0, 0, "Succeeded");
Else
 MessageBox(0, "RenameDBField", 0, 0, "Failed");
End-If;

PeopleCode Built-in Functions Chapter 1

566 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," RenamePage, page 566 and Chapter 1, "PeopleCode Built-in
Functions," RenameRecord, page 567

RenamePage

Syntax

RenamePage(Page.NewPageName,Page.OldPageName)

Description

Use the RenamePage function to modify a page definition to have a new name. This function also cleans up
most references so they now use the new name.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

This operation is time consuming

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

NewPageName Specify the new page name to be used. This name must be prefixed by the
reserved word Page.

OldPageName Specify the name of the page to be changed. This name must be prefixed by the
reserved word Page.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 567

Value Description

%MDA_Failure Bulk operation did not complete successfully.

%MDA_PageNotFound The page specified with OldPageName wasn't found.

Example

&ret = RenamePage(PAGE.OrgIdTbl, PAGE.DeptIdTbl);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "RenamePage succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "RenamePage failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," RenameDBField, page 564 and Chapter 1, "PeopleCode Built-in
Functions," RenameRecord, page 567

RenameRecord

Syntax

RenameRecord(Record.NewRecordName,Record.OldRecordName)

Description

Use the RenameRecord function to modify a record definition to have a name. This function also cleans up
most references so they now use the new name.

Note. Because using this function changes records that are used to build application tables, you must rebuild
(alter) the specified project before these changes can be used.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

This operation is time consuming.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

PeopleCode Built-in Functions Chapter 1

568 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

NewRecordName Specify the new record name to be used. This name must be prefixed by the
reserved word Record.

OldRecordName Specify the name of the record to be changed. This name must be prefixed by the
reserved word Record.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_RecordNotFound The record specified with OldRecordName wasn't found.

Example

&ret = RenameRecord(RECORD.OrgIdTbl, RECORD.DeptIdTbl);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "RenameRecord succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "RenameRecord failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," RenameDBField, page 564 and Chapter 1, "PeopleCode Built-in
Functions," RenamePage, page 566

Repeat

Syntax

Repeatstatement_listUntillogical_expression

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 569

Description

Use the Repeat loop to cause the statements in statement_list to be repeated until logical_expression is True.
Any kind of statements are allowed in the loop, including other loops. A Break statement inside the loop
causes execution to continue with whatever follows the end of the loop. If the Break is in a nested loop, the
Break does not apply to the outside loop.

Example

The following example repeats a sequence of statements until a complex Boolean condition is True:

Repeat
 &J = &J + 1;
 &ITEM = FetchValue(LOT_CONTROL_INV.INV_ITEM_ID, &J);
 &LOT = FetchValue(LOT_CONTROL_INV.INV_LOT_ID, &J);
Until (&ITEM = &INV_ITEM_ID And
 &LOT = &INV_LOT_ID) Or
 &J = &NUM_LOT_ROWS;

Replace

Syntax

Replace(oldtext,start,num_chars, newtext)

Description

Use the Replace function to replace a specified number of characters in a string.

Parameters

Parameter Description

oldtext A String value, part of which is to be replaced.

start A Number designating the position in oldtext from which to start replacing
characters.

num_chars A Number, specifying how many characters to replace in oldtext.

newtext A String value that replaces num_chars characters.

Returns

Returns a String value in which specific characters in oldtext are replaced with newtext.

PeopleCode Built-in Functions Chapter 1

570 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

After the following statement &NEWDATESTR equals "1997":

&NEWDATESTR = Replace("1996",3,2,"97");

If this example, where the number of characters in newtext is less than num_chars, &SHORTER equals
"txtx":

&SHORTER = Replace("txt123",4,3,"x");

In this example, where the number of characters in newtext is greater than num_chars, &LONGER equals
"txtxxxx":

&LONGER = Replace("txt123",4,3,"xxxx");

See Also

Chapter 1, "PeopleCode Built-in Functions," Substitute, page 667

Rept

Syntax

Rept(str,reps)

Description

Use the Rept function to replicate a text string a specified number of times and combine the result into a
single string.

Parameters

Parameter Description

str A String value to be replicated.

reps A Number value specifying how many times to replicate str. If reps is 0, Rept
returns an empty string. If reps is not a whole integer, it is truncated.

Returns

Returns a String value equal to str repeated reps times.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 571

Example

This example sets &SOMESTARS to "**********".

&SOMESTARS = Rept("*",10);

ReSubmitPubHeaderXmlDoc

Syntax

ReSubmitPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName)

Description

Use the ReSubmitPubHeaderXmlDoc function to programmatically resubmit a message instance, as the
message instance existed before any transformations were performed, much the same as you can do in the
message monitor. This function resubmits the corresponding publication contract header.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Resubmit method instead.

You may want to use this method after an end user has finished fixing any errors in the message data, and you
want to resubmit the message, rerunning the PeopleCode.

The function is only available when the XML message has one of the following statuses:

• Error

• Timeout

• Edited

• Canceled

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Resubmit

Parameters

Parameter Description

PubID Specify the PubID as a number.

PubNode Specify the Pub node as a string.

ChannelName Specify the channel name as a string.

PeopleCode Built-in Functions Chapter 1

572 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

VersionName Specify the version name as a string.

Returns

A Boolean value: True if function completed successfully, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubXmlDoc, page 572

ReSubmitPubXmlDoc

Syntax

ReSubmitPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode
[, Segment])

Description

Use the ReSubmitPubXmlDoc function to programmatically resubmit a message, much the same as you can
do in the message monitor.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Resubmit method instead.

This is the message publication as it exists after any transformations have been preformed. This function
resubmits the corresponding publication contract.

You may want to use this method after an end user has finished fixing any errors in the message data, and you
want to resubmit the message, rerunning the PeopleCode.

The function is only available when the message has one of the following statuses:

• Error

• Timeout

• Edited

• Canceled

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Resubmit

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 573

Parameters

Parameter Description

PubID Specify the PubID as a number.

PubNode Specify the Pub node as a string.

ChannelName Specify the channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the name of the message as a string.

SubNode Specify the name of the sub node as a string.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitSubXmlDoc, page 573 and Chapter 1, "PeopleCode
Built-in Functions," ReSubmitPubHeaderXmlDoc, page 571

ReSubmitSubXmlDoc

Syntax

ReSubmitSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName,
SubscriptionName[, Segment])

Description

Use the ReSubmitSubXmlDoc function to programmatically resubmit a message, much the same as you can
do in the message monitor. This function resubmits the corresponding subscription contract.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Resubmit method instead.

You may want to use this method after an end user has finished fixing any errors in the message data, and you
want to resubmit the message, rerunning the subscription PeopleCode.

PeopleCode Built-in Functions Chapter 1

574 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The function is only available when the message has one of the following statuses:

• Error

• Timeout

• Edited

• Canceled

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," Resubmit

Parameters

Parameter Description

PubID Specify the PubID as a number.

PubNode Specify the Pub node as a string.

ChannelName Specify the channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the name of the message as a string.

SubscriptionName Specify the name of the subscription as a string.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," ReSubmitPubHeaderXmlDoc, page 571 and Chapter 1,
"PeopleCode Built-in Functions," ReSubmitPubXmlDoc, page 572

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 575

Return

Syntax

Return [expression]

Description

Use the Return function to return from the currently active function; the flow of execution continues from the
point where the function was called. If the function returns a result, that is, if a return value is specified in the
Returns clause of the function definition, expression specifies the value to pass back to the caller and must be
included. If the function does not return a result, the expression is not allowed. If Return appears in a main
program, it acts the same as the Exit function.

Example

In the example a Boolean return value is specified in the Returns clause of the Function statement. The
Return statement returns a True or False value to the calling routine, based on the contents of &UPDATEOK.

function run_status_upd(&PROCESS_INSTANCE, &RUN_STATUS) returns Boolean;
 &UPDATEOK = SQLExec()("update PS_PRCS_RQST set run_status = :1 where process_⇒
instance = :2", &RUN_STATUS, &PROCESS_INSTANCE);
 If &UPDATEOK Then
 Return True;
 Else
 Return False;
 End-if;
End-function;

See Also

Chapter 1, "PeopleCode Built-in Functions," Function, page 290 and Chapter 1, "PeopleCode Built-in
Functions," Exit, page 268

ReturnToServer

Syntax

ReturnToServer({True | False | &NODE_ARRAY, | &Message})

Description

Use the ReturnToServer function to return a value from a PeopleCode messaging program to the publication
or subscription server.

PeopleCode Built-in Functions Chapter 1

576 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. ReturnToServer is a special case of a built-in function that's no longer supported. The deprecated
handler for OnRequest subscriptions cannot be upgraded. ReturnToServer can only be used in an OnRequest
event fired using the deprecated handler. This means that ReturnToServer no longer works and is not valid in
any case other than when the code has already been written and used in a deprecated handler.

You would use this in either your publication or subscription routing code, to either return an array of nodes
that the message should be published to, or to do error processing (return False if entire message wasn't
received.)

What is returned depends on where the PeopleCode program is called from.

From OnRoute Publication:

• True: All nodes the message was published to are returned.

• False: No nodes are returned (generally used with error checking).

• &NODE_ARRAY: The nodes specified in the array are returned.

• &Message: Return a response message. This must be an already instantiated message object.

Note. You can return XmlDoc objects as responses. Only homogeneous type transactions are supported, that
is, you can only return an XmlDoc object as a response if and only if an XmlDoc object was used in the
request. Similarly, you can only return a Message object if and only if a Message object was used in the
request.

From OnRoute Subscription:

• True: The subscription node is returned.

• False: No node is returned. This is generally used with error checking.

Parameters

Parameter Description

True | False |&NODE_ARRAY |
&Message

Specify True if you want publication nodes or the subscription node returned.

Specify False if you do not want any nodes returned, and nothing written to the
database. This is generally used with error checking.

Specify an object reference to an array of node names if you want to return a list of
nodes to be published to.

Specify a reference to a response message if you want to return a message.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 577

Example

The following is an example of a publication routing rule, which would be in the OnRoutePublication. It is
used to create publication contracts.

local message &MSG;
local array &NODE_ARRAY;
&MSG = GetMessage();
&EMPLID = &MSG.GetRowset()(1).QA_INVEST_HDR.EMPLID.Value;
&SELECT_SQL = CreateSQL("select PUBNODE from PS_EMPLID_NODE where EMPLID = :1",⇒
 &EMPLID);
&NODE_ARRAY = CreateArray();

While &SELECT_SQL.Fetch(&PUBNODE)
 &NODE_ARRAY.Push(&PUBNODE);
End-While;
ReturnToServer(&NODE_ARRAY);

The following is an example of a subscription routing rule, which would be placed in the OnRouteSubscribe
event:

local message &MSG;

&MSG = GetMessage();
&BUSINESS_UNIT = &MSG.GetRowset()(1).PO_HDR.BUSINESS_UNIT.Value;
SQLExec("Select BUSINESS_UNIT From PS_BUSINESS_UNIT where BUSINESS_UNIT = :⇒
1",&BUSINESS_UNIT,&FOUND);
If all(&FOUND) Then
 ReturnToServer(True);
Else
 ReturnToServer(False);
End-if;

The following is a basic example of using an XmlDoc object:

Local XmlDoc &xmldoc;
. . .
/* build xmldoc */
. . .
ReturnToServer(&xmldoc);

See Also

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

ReValidateNRXmlDoc

Syntax

ReValidateNRXmlDoc(NRID,EntityName)

PeopleCode Built-in Functions Chapter 1

578 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the ReValidateNRXmlDoc function to revalidate a non-repudiation XML message. After a document has
been signed and validated, you can use this function to verify it was delivered or received by the system
calling the function. This function is primarily used by the Message Monitor.

Parameters

Parameter Description

NRID Specify the non-repudiation ID for the XML message that you want to revalidate.
This parameter takes a numeric value.

EntityName Specify the name of the entity that signed the data, as a string. For Peoplesoft, this
is the node name.

Returns

A Boolean value: True if message is revalidated, False otherwise.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetNRXmlDoc, page 395

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

RevalidatePassword

Syntax

RevalidatePassword()

Description

Use the Revalidate function to validate the current end-user password.

This function displays a window prompting the user for the same password that the user signed onto the
database with.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 579

Revalidate password

Restrictions on Use in PeopleCode Events

Control does not return to the line after RevalidatePassword until after the user has filled in a value or pressed
ENTER. This interruption of processing makes RevalidatePassword a "think-time" function which means that
it shouldn't be used in any of the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Restrictions on Use in Signon PeopleCode

 RevalidatePassword does not work in Signon PeopleCode. If you use this function in Signon PeopleCode,
you create an infinite loop.

Returns

Returns a numeric value or a constant: you can check for either.

Value Constant Meaning

0 %RevalPW_Valid Password Validated

1 %RevalPW_Failed Password Validation Check Failed

2 %RevalPW_Cancelled Password Validation Cancelled

PeopleCode Built-in Functions Chapter 1

580 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

 RevalidatePassword is commonly used in the SaveEdit PeopleCode to verify that the user entering the data is
the same as the one who signed onto the database.

&TESTOP = RevalidatePassword();
Evaluate &TESTOP
/* Password does not match the current value */
When 1
 Error MsgGet(48, 18, "Message Not Found");
 Break;
End-Evaluate;

Right

Syntax

Right(str [, num_chars])

Description

Use the Right function to return a specified number of characters from the right side of a string. The function
is useful if, for example, you want to get the last set of characters in a zip code or other fixed-length
identification string. If the string contains Unicode non-BMP characters, each code unit of the surrogate pair
is counted as a separate character and care should be taken not to split the surrogate pair.

Parameters

Parameter Description

str A String value from which you want to get the rightmost characters.

num_chars A Number value, greater than or equal to zero. If num_chars is omitted it is
assumed to be equal to 1.

Returns

Returns a String value equal to the rightmost num_chars character(s) in str.

Example

If &ZIP is equal to "90210-4455", the following example sets &SUFFIX to "4455":

&SUFFIX = Right(&ZIP, 4)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 581

See Also

Chapter 1, "PeopleCode Built-in Functions," Left, page 477

Round

Syntax

Round(dec,precision)

Description

Use the Round function to round a decimal number to a specified precision.

Parameters

Parameter Description

dec A Number value to be rounded.

precision A number value specifying the decimal precision to which to round dec.

Returns

Returns a Number value equal to dec rounded up to precision decimal places.

Example

The following examples set the value of &TMP to 2.2, 9, then 24.09:

&TMP = Round(2.15,1);
&TMP = Round(8.789,0);
&TMP = Round(24.09372,2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Int, page 455; Chapter 1, "PeopleCode Built-in Functions,"
Mod, page 507 and Chapter 1, "PeopleCode Built-in Functions," Truncate, page 710

PeopleCode Built-in Functions Chapter 1

582 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RoundCurrency

Syntax

RoundCurrency(amt,currency_cd,effdt)

Description

Different currencies are represented at different decimal precessions. The RoundCurrency function is a
rounding function that takes currency precision into account, using a value stored in the
CURRENCY_CD_TBL PeopleTools table.

Parameters

Parameter Description

amt The amount to be rounded.

currency_cd The currency code.

effdt The effective date of currency rounding.

Returns

Returns a Number value equal to amt rounded to the currency precision for currency_cd.

Example

The following example rounds 12.567 to 12.57, using the appropriate currency precision for US Dollars
("USD"):

&RESULT = RoundCurrency(12.567, "USD", EFFDT);

See Also

PeopleTools 8.52: Global Technology, "Controlling Currency Display Format"

RowFlush

Syntax

RowFlush(scrollpath, target_row)

Where scrollpath is:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 583

[RECORD.level1_recname,level1_row,
[RECORD.level2_recname,level2_row,]
RECORD.target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the RowFlush function to remove a specific row from a page scroll and from the component buffer.

Note. This function remains for backward compatibility only. Use the FlushRow rowset method instead.

Rows that are flushed are not deleted from the database.

 RowFlush is a specialized and rarely used function. In most situations, you will want to use DeleteRow to
remove a row from the component buffer and remove it from the database as well when the component is
saved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," FlushRow

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number of the row to flush.

Returns

None.

Example

The following example flushes a row in a view from the component buffer:

RowFlush(RECORD.BNK_RCN_DTL_VW, &ROW1);

PeopleCode Built-in Functions Chapter 1

584 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," ScrollFlush, page 589 and Chapter 1, "PeopleCode Built-in
Functions," DeleteRow, page 207

RowScrollSelect

Syntax

RowScrollSelect(levelnum,scrollpath,RECORD.sel_recname
[, sqlstr [, bindvars]]
[, turbo])

Where scrollpath is:

[RECORD.level1_recname,level1_row,
[RECORD.level2_recname,level2_row,]
RECORD.target_recname

and where bindvars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

The RowScrollSelect is similar to ScrollSelect except that it reads data from the select record into a scroll
under a specific parent row, rather than automatically distributing the selected rows under the correct parent
rows throughout the buffer.

Note. This function remains for backward compatibility only. Use the Select rowset method instead.

You must use the WHERE clause in the SQL string to ensure that only rows that match the parent row are
read into the scroll from the select record. Otherwise, all rows are read in under the specified parent row.

See Also

Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591 and PeopleTools 8.52: PeopleCode API
Reference, "Rowset Class," Select

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 585

Parameters

Parameter Description

levelnum Specifies the scroll level of the scroll area into which selected rows will be read. It
can be 1, 2, or 3.

scrollpath A construction that specifies a scroll level in the component buffer.

RECORD.sel_recname Specifies the select record. The selname record must be defined in Application
Designer and SQL created as a table or a view, unless sel_recname and
target_recname are the same. The sel_recname record can contain fewer fields
than target_recname, although it must contain any key fields to maintain
dependencies page records. This enables you to limit the amount of data read into
the component buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from sel_recname and/or
an ORDER BY clause to sort the rows. The WHERE clause may contain the
PeopleSoft SQL platform functions that are used for SQLExec processing, such as
%DateIn or %Substring.

bindvars A list of bind variables to be substituted in the WHERE clause.

turbo Setting this parameter to True turns on turbo mode for RowScrollSelect. This will
improve the performance of ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See Chapter 1, "PeopleCode Built-in Functions," InsertRow, page 454.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not include
any additional rows read into autoselect child scrolls of the scroll.

Example

Here is an example of RowScrollSelect using bind variables:

PeopleCode Built-in Functions Chapter 1

586 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

If All(QTY_PICKED) Then
 &LEVEL1ROW = CurrentRowNumber(1);
 &LEVEL2ROW = CurrentRowNumber(2);
 &ORDER_INT_LINE_NO = FetchValue(RECORD.SHIP_SUM_INV_VW, &LEVEL1ROW,
 ORDER_INT_LINE_NO, &LEVEL2ROW);
 &INV_ITEM_ID = FetchValue(RECORD.SHIP_SUM_INV_VW, &LEVEL1ROW,
 INV_ITEM_ID, &LEVEL2ROW);
 &QTY = RowScrollSelect(3, RECORD.SHIP_SUM_INV_VW, CurrentRowNumber(1),
 RECORD.SHIP_DTL_INV_VW, CurrentRowNumber(2), RECORD.DEMAND_LOC_INV,
 RECORD.DEMAND_LOC_INV, "WHERE BUSINESS_UNIT = :1 AND ORDER_NO = :2
 AND DEMAND_SOURCE = :3 AND SOURCE_BUS_UNIT = :4
 AND ORDER_INT_LINE_NO = :5 AND SCHED_LINE_NO = :6 AND INV_ITEM_ID = :7
 AND DEMAND_LINE_NO = :8", SHIP_HDR_INV.BUSINESS_UNIT, ORDER_NO, DEMAND_SOURCE,
 SOURCE_BUS_UNIT, ORDER_INT_LINE_NO, SCHED_LINE_NO, INV_ITEM_ID, DEMAND_LINE_⇒
NO, True);
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelectNew, page 586; Chapter 1, "PeopleCode Built-
in Functions," ScrollSelect, page 591; Chapter 1, "PeopleCode Built-in Functions," ScrollSelectNew, page 593
; Chapter 1, "PeopleCode Built-in Functions," ScrollFlush, page 589 and Chapter 1, "PeopleCode Built-in
Functions," SQLExec, page 654

RowScrollSelectNew

Syntax

RowScrollSelectNew(levelnum,scrollpath,RECORD.sel_recname,
[sqlstr [, bindvars]]
[, turbo])

Where scrollpath is:

[RECORD.level1_recname,level1_row,
[RECORD.level2_recname,level2_row,]
RECORD.target_recname

where bindvars is an arbitrary-length list of bind variables in the form:

binvar1 [, bindvar2]. . .

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

 The RowScrollSelectNew function is similar to RowScrollSelect, except that all rows read into the work
scroll are marked new so they are automatically inserted into the database at Save time.

Note. This function remains for backward compatibility only. Use the SelectNew rowset method instead.

This capability can be used, for example, to insert new rows into the database by selecting data using a view
of columns from another database tables.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 587

See Also

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelect, page 584 and PeopleTools 8.52: PeopleCode
API Reference, "Rowset Class," SelectNew

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

level Specifies the scroll level of the scroll area into which selected rows are read. It can
be 1, 2, or 3.

scrollpath A construction that specifies a scroll level in the component buffer.

RECORD.sel_recname Specifies the select record. The selname record must be defined in the record
definition and SQL created as a table or a view, unless sel_recname and
target_recname are the same. The sel_recname record can contain fewer fields
than target_recname, although it must contain any key fields to maintain
dependencies with other page records. This enables you to limit the amount of data
read into the data buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from sel_recname and/or
an ORDER BY clause to sort the rows. The WHERE clause may contain the
PeopleSoft SQL platform functions that are used for SQLExec processing, such as
%DateIn or %Substring.

bindvars A list of bind variables to be substituted in the WHERE clause. The same
restrictions that exist for SQLExec exist for these variables.

turbo Setting this parameter to True turns on turbo mode for RowScrollSelectNew. This
will improve the performance of ScrollSelect verbs by as much as 300%, but
should be implemented with caution on existing applications.

See Chapter 1, "PeopleCode Built-in Functions," InsertRow, page 454.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not include
any additional rows read into autoselect child scrolls of the scroll.

Example

The following example reads rows into the level 2 scroll and marks the rows as new:

PeopleCode Built-in Functions Chapter 1

588 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&QTY = RowScrollSelectNew(2, RECORD.BI_LINE_VW, &ROW1, RECORD.BI_LINE_DST,⇒
 RECORD.BI_LINE_DST, "where business_unit = :1 and invoice = :2 and line_seq_num =⇒
 :3", BI_HDR.BUSINESS_UNIT, BI_HDR.INVOICE, &CURR_LINE_SEQ);

See Also

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelect, page 584; Chapter 1, "PeopleCode Built-in
Functions," ScrollSelect, page 591; Chapter 1, "PeopleCode Built-in Functions," ScrollSelectNew, page 593;
Chapter 1, "PeopleCode Built-in Functions," ScrollFlush, page 589 and Chapter 1, "PeopleCode Built-in
Functions," SQLExec, page 654

RTrim

Syntax

RTrim(source_str [, trim_str])

Description

Use the RTrim function to remove characters, usually trailing blanks, from the right of a string.

Parameters

Parameter Description

source_str A String from which you want to remove trailing characters.

trim_str A String consisting of a list of characters, all occurrences of which are removed
from the right of source_str. Characters in trim_str that occur in source_str to the
left of any character not in trim_str are be removed. If this parameter is not
specified, " " is assumed.

Returns

Returns a String formed by deleting, from the end of source_str, all occurrences of each character specified in
trim_str.

Example

The following example removes trailing blanks from &NAME and places the results in &TRIMMED:

&TRIMMED = RTrim(&NAME);

The following example removes trailing punctuation marks from REC.INP and places the results in
&TRIMMED:

&TRIMMED = RTrim(REC.INP, ".,;:!?");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 589

See Also

Chapter 1, "PeopleCode Built-in Functions," LTrim, page 486

ScheduleProcess

Syntax

ScheduleProcess(process_type,process_name
[, run_location] [, run_cntl_id] [, process_instance]
[, run_dttm] [, recurrence_name] [, server_name])

Description

Use the ScheduleProcess function to schedule a process or job, writing a row of data to the Process Request
table (PSPRCSRQST).

Note. This function is no longer supported. Use the CreateProcessRequest function instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateProcessRequest, page 159

ScrollFlush

Syntax

ScrollFlush(scrollpath)

Where scrollpath is:

[RECORD.level1_recname,level1_row,
[RECORD.level2_recname,level2_row,]
 RECORD.target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the ScrollFlush function to remove all rows inside the target scroll area and frees its associated buffer.

Note. This function remains for backward compatibility only. Use the Flush rowset method instead.

Rows that are flushed are not deleted from the database. This function is often used to clear a work scroll
before a call to ScrollSelect.

PeopleCode Built-in Functions Chapter 1

590 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Flush

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

Returns

None.

Example

The following example clears the level-one scroll then fills the level-one and level-two scrolls.

/* Throw away all rows */
ScrollFlush(RECORD.DBFIELD_VW);
/* Fill in new values */
&FIELDSEL = "where FIELDNAME like '" | FIELDNAME | "%'";
&ORDERBY = " order by FIELDNAME";
ScrollSelect(1, RECORD.DBFIELD_VW, RECORD.DBFIELD_VW, &FIELDSEL | &ORDERBY);
ScrollSelect(2, RECORD.DBFIELD_VW, RECORD.DBFIELD_LANG_VW, RECORD.DBFIELD_LANG_VW,⇒
 &FIELDSEL | " and LANGUAGE_CD = :1" | &ORDERBY, DBFIELD_SRCH.LANGUAGE_CD);

See Also

Chapter 1, "PeopleCode Built-in Functions," RowFlush, page 582; Chapter 1, "PeopleCode Built-in
Functions," RowScrollSelect, page 584; Chapter 1, "PeopleCode Built-in Functions," RowScrollSelectNew,
page 586; Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591 and Chapter 1, "PeopleCode
Built-in Functions," ScrollSelectNew, page 593

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 591

ScrollSelect

Syntax

ScrollSelect(levelnum,
[RECORD.level1_recname,
[RECORD.level2_recname,]]
RECORD.target_recname, RECORD.sel_recname
 [, sqlstr [, bindvars]]
 [, turbo])

where bindvars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

Description

 The ScrollSelect function, like the related ScrollSelect functions (ScrollSelectNew, RowScrollSelect, and
RowScrollSelectNew) reads data from database tables or views into a scroll area on the active page.

Note. This function remains for backward compatibility only. Use the Select rowset class method instead.

See PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Select.

Using ScrollSelect

 ScrollSelect automatically places child rows in the target scroll area under the correct parent row in the next
highest scroll area. If it cannot match a child row to a parent row an error occurs.

 ScrollSelect selects rows from a table or view and adds the rows to a scroll area of a page. Let's call the
record definition of the table or view that it selects from the select record; and let's call the record definition
normally referenced by the scroll area (as specified in the page definition) the default scroll record. The select
record can be the same as the default scroll record, or it can be a different record definition that has
compatible fields with the default scroll record. If you define a select record that differs from the default
scroll record, you can restrict the number of fields that are loaded into the component buffers by including
only the fields that you actually need.

 ScrollSelect accepts a SQL string that can contain a WHERE clause restricting the number of rows selected
into the scroll area. The SQL string can also contain an ORDER BY clause to sort the rows.

ScrollSelect functions generate a SQL SELECT statement at runtime, based on the fields in the select record
and WHERE clause passed to them in the function call. This gives ScrollSelect functions a significant
advantage over SQLExec: they enable you to change the structure of the select record without affecting the
PeopleCode, unless the field affected is referred to in the WHERE clause string. This can make the
application easier to maintain.

Often, ScrollSelect is used to select rows into a work scroll, which is sometimes hidden using HideScroll. A
work scroll is a scroll in which the No Auto Select option is selected on the record definition in Application
Designer so that PeopleTools does not automatically populate the scroll at page startup. You can right-click
on the scroll or grid then select the scroll's No Auto Select attribute check box in the record property dialog
box.

PeopleCode Built-in Functions Chapter 1

592 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Depending on how you intend the scroll to be used by the end user, you may also want to select No Auto
Update to prevent database updates, and prevent row insertions or deletions in the scroll area by selecting No
Row Insert or No Row Update.

To call ScrollSelect at page startup, place the function call in the RowInit event of a key field on the parent
scroll record. For example, if you want to fill scroll level one, place the call to ScrollSelect in the RowInit
event of a field on level zero.

Parameters

Parameter Description

levelnum Specifies the level of the scroll level to be filled (the target scroll area. The value
can be 1, 2, or 3.

target_recname Specifies a record identifying the target scroll, into which the selected rows are
read. If target_recname is on scroll level 2, it must be proceeded by a RECORD.
level1_recname. If it is on level 3, you must specify both RECORD.
level1_recname and RECORD.level2_recname.

RECORD.sel_recname Specifies the select record. The selname record must be defined in Application
Designer and SQL created (using Build, Project) as a table or a view, unless
sel_recname and target_recname are the same. The sel_recname record can
contain fewer fields target_recname, although it must contain any key fields to
maintain dependencies with other page records. This enables you to limit the
amount of data read into the component buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from sel_recname and/or
an ORDER BY clause to sort the rows. The WHERE clause can contain the
PeopleSoft meta-SQL functions such as %Datein or %CurrentDateIn. It can also
contain inline bind variables.

bindvars A list of bind variables to be substituted in the WHERE clause. The same
restrictions that exist for SQLExec exist for these variables.

turbo Setting this parameter to True turns on turbo mode for ScrollSelect. This will
improve the performance of ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See Chapter 1, "PeopleCode Built-in Functions," InsertRow, page 454.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not include
any additional rows read into autoselect child scrolls of the scroll.

Example

This example uses WHERE clauses to reset the rows in two scroll areas:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 593

&FIELD_CNT = ActiveRowCount(DBFIELD_VW.FIELDNAME);
For &I = 1 to &FIELD_CNT;
 If RecordChanged(DBFIELD_VW.FIELDNAME, &I, DBFIELD_LANG_VW.FIELDNAME, 1) Then
 &FIELDNAME = FetchValue(DBFIELD_VW.FIELDNAME, &I);
 &RET = WinMessage("Descriptions for " | &FIELDNAME | " have been changed. ⇒
 Discard changes?", 289, "DBField Changed!");
 If &RET = 2 Then
 /* Cancel selected */
 Exit;
 End-if;
 End-if;
End-for;
/* Now throw away all rows */
ScrollFlush(RECORD.DBFIELD_VW);
/* Fill in new values */
&FIELDSEL = "where FIELDNAME like '" | FIELDNAME | "%'";
&ORDERBY = " order by FIELDNAME";
&QTY1 = ScrollSelect(1, RECORD.DBFIELD_VW, RECORD.DBFIELD_VW, &FIELDSEL |⇒
 &ORDERBY);
&QTY2 = ScrollSelect(2, RECORD.DBFIELD_VW, RECORD.DBFIELD_LANG_VW, RECORD.DBFIELD_⇒
LANG_VW, &FIELDSEL | " and LANGUAGE_CD = :1" | &ORDERBY, DBFIELD_SRCH.LANGUAGE_⇒
CD);

See Also

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelect, page 584; Chapter 1, "PeopleCode Built-in
Functions," RowScrollSelectNew, page 586; Chapter 1, "PeopleCode Built-in Functions," ScrollFlush, page
589; Chapter 1, "PeopleCode Built-in Functions," ScrollSelectNew, page 593 and Chapter 1, "PeopleCode
Built-in Functions," SQLExec, page 654

ScrollSelectNew

Syntax

ScrollSelectNew(levelnum,
 [RECORD.level1_recname,
 [RECORD.level2_recname,]]
 RECORD.target_recname,RECORD.sel_recname [, sqlstr [, bindvars]]
 [, turbo])

and where bindvars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

Description

The ScrollSelectNew function is similar to ScrollSelect, except that all rows read into the work scroll are
marked new so they are automatically inserted into the database at Save time.

Note. This function remains for backward compatibility only. Use the SelectNew rowset class method
instead.

PeopleCode Built-in Functions Chapter 1

594 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

This capability can be used, for example, to insert new rows into the database by selecting data using a view
of columns from other database tables.

See Also

Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591 and PeopleTools 8.52: PeopleCode API
Reference, "Rowset Class," SelectNew

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

levelnum Specifies the level of the scroll level to be filled (the target scroll area. The value
can be 1, 2, or 3.

target_recname Specifies a record identifying the target scroll, into which the selected rows are
read. If target_recname is on scroll level 2, it must be proceeded by a RECORD.
level1_recname. If it is on level 3, you must specify both RECORD.
level1_recname and RECORD.level2_recname.

RECORD.sel_recname Specifies the select record. The selname record must be defined in Application
Designer and SQL created as a table or a view (using Build, Project), unless
sel_recname and target_recname are the same. The sel_recname record can
contain fewer fields target_recname, although it must contain any key fields to
maintain dependencies with other records on the page. This enables you to limit
the amount of data read into the component buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from sel_recname and/or
an ORDER BY clause to sort the rows. The WHERE clause may contain the
PeopleSoft SQL platform functions that are used for SQLExec processing, such as
%Datein or %Substring.

bindvars A list of bind variables to be substituted in the WHERE clause. The same
restrictions that exist for SQLExec exist for these variables.

turbo Setting this parameter to True turns on turbo mode for ScrollSelectNew. This will
improve the performance of ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See Chapter 1, "PeopleCode Built-in Functions," InsertRow, page 454.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not include
any additional rows read into autoselect child scrolls of the scroll.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 595

Example

The following statement selects rows from DATA2 and reads them into scroll level one on the page. If the
end user saves the page, these rows will be inserted into DATA1:

&QTY = ScrollSelectNew(1, RECORD.DATA1, RECORD.DATA2,
 "Where SETID = :1 and CUST_ID = :2",
 CUSTOMER.SETID, CUSTOMER.CUST_ID);

See Also

Chapter 1, "PeopleCode Built-in Functions," RowScrollSelect, page 584; Chapter 1, "PeopleCode Built-in
Functions," RowScrollSelectNew, page 586; Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page
591; Chapter 1, "PeopleCode Built-in Functions," ScrollFlush, page 589 and Chapter 1, "PeopleCode Built-in
Functions," SQLExec, page 654

Second

Syntax

Second(timevalue)

Description

Use the Second function to extract the seconds component of a Time value.

Parameters

Parameter Description

timevalue A Time value from which to extract seconds.

Returns

Returns a Number equal to the seconds part of timevalue.

Example

Assume that &TIMEOUT contains Time value of 16:48:21. The following would set &SECS to 21:

&SECS = Second(&TIMEOUT);

PeopleCode Built-in Functions Chapter 1

596 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Hour, page 444 and Chapter 1, "PeopleCode Built-in
Functions," Minute, page 506

SendMail

Syntax

SendMail(flags,recipients,CCs, BCCs,subject,text, [, attachment_filenames][,
attachment_titles] [, Mail_From] [, Mail_Sep] [, Content_Type] [, Reply_To] [,
Sender])

Description

Use the SendMail function to send an email message from a PeopleSoft application page.

The function sends a message using standard mail options, including recipient, CC, BCC, subject, and the text
of the note. You can use double byte characters as part of the display name for email address.

The message can include attached files, for which you supply fully qualified file names (that is, file names
with paths) and titles (which appear in place of the fully qualified file name in the message). In addition, you
can specify a Mail_From , which identifies the source email address. You can also use the Reply_To
parameter to specify the email address to be used by the recipient for replying, which should be different than
the Mail_From address.

For workflow, in the activity email routing, you can specify the field map for Reply_To and Sender.

Parameters

Parameter Description

flags An integer value. This parameter is ignored.

recipients A string consisting of a delimiter-separated list of email addresses containing the
names of the message's primary recipients.

Note. The delimiter is specified by the Mail_Sep parameter.

CCs A string consisting of a delimiter-separated list of email addresses that are sent
copies of the message.

Note. The delimiter is specified by the Mail_Sep parameter.

BCCs A string consisting of a delimiter-separated list of email addresses that are sent
copies of the message. These recipients won't appear on the message list.

Note. The delimiter is specified by the Mail_Sep parameter.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 597

Parameter Description

subject A string containing the text that appears in the message's Subject field.

text The text of the message.

attachment_filenames A string consisting of a semicolon-separated list of fully qualified file names,
containing the complete path to the file and the file name itself.

attachment_titles Another semicolon-separated list containing titles for each of the files provided in
the attachment_filenames parameter. The titles appear near the attachment icons in
place of the fully qualified file name.

Mail_From A string used to populate the 'reply-to' field. If this parameter isn't specified, the
sender address from application server configuration file is used.

Mail_Sep Specify the delimiter to be used to separate one email address from another. The
default value is a semicolon (;).

Content_Type Specify the content type of the email as a string. The default value is plain text.

If you want to specify HTML, you should use the following:

Content-type: text/html; charset=utf8

Reply_To Specify the email address that the receiver should use when replying to this email
instead of the Mail_From value.

Sender Specifies who the email is from, as a string. This may be different than the values
specified for Mail_From or Reply_To parameters.

Returns

Returns a number:

Return Code Description

0 No error

-1 No mail interface installed.

Example

The following example sets up several variables that are then used to construct an email message that
includes two attachments:

PeopleCode Built-in Functions Chapter 1

598 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&MAIL_FLAGS = 0;
&MAIL_TO = "dduffield@peoplesoft.com;sweet_pea@peoplesoft.com";
&MAIL_CC = "";
&MAIL_BCC = "mom@aol.com";
&MAIL_SUBJECT = "Live long and prosper!";
&MAIL_TEXT = "Please read my attached CV. You will be amazed and hire me⇒
 forthwith.";
&MAIL_FILES = "c:\mydocs\resume.doc;c:\mydocs\coverlet.doc";
&MAIL_TITLES = "My CV;READ ME";
&MAIL_SENDER = "MyEmail@Yahoo.com";
&RET = SendMail(&MAIL_FLAGS, &MAIL_TO, &MAIL_CC, &MAIL_BCC, &MAIL_SUBJECT, &MAIL_⇒
TEXT, &MAIL_FILES, &MAIL_TITLES, &MAIL_SENDER);
if not (&RET = 0) then
 WinMessage("Return status from mail = " | &RET);
end-if;

The following example uses aliases for the sender.

Local string &MAIL_CC, &MAIL_TO, &MAIL_BCC, &MAIL_SUBJECT, &MAIL_TITLES, &MAIL_⇒
TEXT, &MAIL_FILES, &MAIL_FROM, &REPLYTO, &SENDER;
Local number &MAIL_FLAGS;

&MAIL_FLAGS = 0;
&MAIL_TO = "laurie_thomas@peoplesoft.com";
&MAIL_CC = "";
&MAIL_BCC = "";
&MAIL_SUBJECT = "Testing SendMail - Are you receiving Attachment?";
&MAIL_TEXT = "This is a test for SendMail function";
&MAIL_FILES = "/data9/ps/e841g2bp/lat/attach.txt";
&MAIL_TITLES = "";
&MAIL_FROM = "peoplesoft@peoplesoft.com";
&MAIL_SEP = ";";
&CONTTYPE = "";
&REPLYTO = "lthomas@peoplesoft.com";
&SENDER = "00972@peoplesoft.com";
&RET = SendMail(&MAIL_FLAGS, &MAIL_TO, &MAIL_CC, &MAIL_BCC, &MAIL_SUBJECT, &MAIL_⇒
TEXT, &MAIL_FILES, &MAIL_TITLES, &MAIL_FROM, &MAIL_SEP, &CONTTYPE, &REPLYTO,⇒
 &SENDER);
If &RET <> 0 Then
 MessageBox(0, "", 0, 0, "Return code from SendMail=" | &RET);
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," TriggerBusinessEvent, page 709

PeopleTools 8.52: PeopleCode API Reference, "Mail Classes," MCFOutboundEmail Class

SetAuthenticationResult

Syntax

SetAuthenticationResult(AuthResult [, UserId] [,ResultDocument] [,
PasswordExpired] [DaysLeftBeforeExpire])

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 599

Description

Use the SetAuthenticationResult function in signon PeopleCode to customize the authentication process. It
enables the developer using Signon PeopleCode to implement additional authentication mechanisms beyond
the basic PeopleSoft ID and Password authentication.

When PasswordExpired is True, it indicates the password is expired, the passwordexpired.html page is
displayed during login when signon PeopleCode is enabled.

When DaysLeftBeforeExpire is greater than 0, and PasswordExpired is False, indicating that the password
will expire in x days, the passwordwarning.html page is displayed during login when signon PeopleCode is
enabled.

Note. If you set AuthResult to False, ResultDocument must be the text of an error message. This text is
displayed on the signon screen.

Parameters

Parameter Description

AuthResult Specify whether the authentication is successful. This parameter takes a Boolean
value. If True is used, the end user of the UserId specified on the Signon page is
allowed access to the system.

When AuthResult is True, the customer is responsible for providing a logout to the
end user. They will remain logged in until a logout command is issued from the
user, or the session expires.

UserId Specify the UserId of the user signing on. The default value is the UserId entered
on the signon page. This parameter takes a string value. This is the value returned
by %SignonUserId

ResultDocument When ResultDocument is blank (""), this parameter value is ignored. Otherwise,
specify a message to be displayed in the signonresultdoc.html file when
AuthResult is True.

If AuthResult is False, the ResultDocument text value is displayed on the signon
screen. If ResultDocument has a value, any values in PasswordExpired and
DaysLeftBeforeExpire are ignored.

PasswordExpired Specify if the user's password has expired. The values are:

• False (default) if the user's password hasn't expired.

• True if the user's password has expired

If this value is specified as True, the user is allowed to log in, but is able to access
only a limited portion of the system: just enough to change their expired password.

DaysLeftBeforeExpire A numeric value indicating the number of days left before the password expires. If
the value is greater than 0, a warning is displayed when Authorized is True and
Expired is False.

PeopleCode Built-in Functions Chapter 1

600 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Example

If updateUserProfile(%SignonUserId, %SignonUserPswd, &array_attribs) Then
 SetAuthenticationResult(True, &SignonUserID, "", False);
End-If;

The following example is within a function used for logging onto a system:

 If (AddToDateTime(&fmc_wsl_exp_date, 0, 0, 0, 0, 10, 0) >= %Datetime) Then
 /* WSL logon was within last x minutes, so accept WSL for PS logon */
 SetAuthenticationResult(True, Upper(&userID), "", False);
 Else
 /* WSL logonn was too long ago, so request a more recent WSL logon */
 SetAuthenticationResult(False, "getmorerecentcookie", "", False,7); ⇒
/*displays the customized passwordwarning.html. */
 End-If;

In the following example, AuthResult is True and ResultDocument is set as text to be displayed in an HTML
tag.

SetAuthenticationResult(True, &USERID, "Result Doc Text", False, 0);

As part of this example, specify the following in the configuration properties:

singonresultdoc_page=signonresultdoctext.html

In signonresultdoctext.html, add a meta field as follows:

<%=resultDoc%>:

<html>
....
 <tr><td class="PSSRCHACTION" no wrap=true><%=resultDoc%></td></tr>
.....
</html>

This produces a screen shot similar to the following:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 601

Example with Result Doc Text

See Also

Chapter 3, "System Variables," %ResultDocument, page 831

Chapter 3, "System Variables," %AuthenticationToken, page 813

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security," PeopleSoft Sign In

SetChannelStatus

Syntax

SetChannelStatus(ChannelName,Status)

Description

Use the SetChannelStatus to set the status of the specified channel. You could use this function to restart a
channel that had been paused, or pause a running channel.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class SetQueueStatus method instead.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," SetStatus

PeopleCode Built-in Functions Chapter 1

602 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

ChannelName Specify the channel name.

Status Specify the status you want to set the channel to. The values are:

• 1 for Run

• 2 for Pause

Returns

A Boolean value: True if the channel status was changed successfully. False otherwise.

Example

/* User has clicked on a channel to change its status */

If CHNL_STATUS = "1" Then
 rem running, so pause;
 &status = 2;
Else
 rem paused. So run;
 &status = 1;
End-If;

If SetChannelStatus(AMM_CHNL_SECVW.CHNLNAME, &status) Then
 CHNL_STATUS = String(&status);
Else
 MessageBox(0, MsgGetText(117, 1, ""), 117, 22, "");
End-If;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes"

PeopleTools 8.52: PeopleSoft Integration Broker, "Understanding PeopleSoft Integration Broker"

SetComponentChanged

Syntax

SetComponentChanged()

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 603

Description

Use the SetComponentChanged function to set the changed flag for the component. This flag is used to
determine if save processing is needed or not, when the user clicks Save, or save is triggered through DoSave
PeopleCode. This flag is also used to determine if a save warning needs to be issued to the user when they
leave the component.

Using SetComponentChanged causes full save processing to occur the next time a save is triggered. This
includes the SaveEdit, SavePreChange, Workflow, and SavePostChange events. This function can be used to
replace a workaround of changing a field to a different value then back to force save processing.

Using SetComponentChanged does not cause unchanged data to be saved. The Component Processor only
saves changed data to the database. If nothing in the component has been changed, nothing is saved to the
database.

After save processing has completed successfully, the flag is cleared.

Most components do not need to use this function. The changed flag is automatically set when the user
changes any value in the component, as well as when PeopleCode changes a database field buffer value. This
function is for certain pages that have a requirement to have save processing execute even if the user has not
changed a value.

Note. Using this function causes a save warning to be issued to the user when they try to leave the
component, assuming the save warning feature is enabled, and the end user has not saved the component
since the function was called.

Using SetComponentChanged before DoSave forces save processing to occur.

Parameters

None.

Returns

None.

See Also

Chapter 1, "PeopleCode Built-in Functions," DoSave, page 238 and Chapter 1, "PeopleCode Built-in
Functions," DoSaveNow, page 239

SetControlValue

Syntax

SetControlValue(Value, PageName,PageFieldName [, RowNumber][, &Field])

PeopleCode Built-in Functions Chapter 1

604 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the SetControlValue function to set an override string on the current field so that it simulates an end user
entering data.

When a page is refreshed after a PeopleCode program completes, each field value gets set from the buffer.
However, if you use this function to specify an override string for a field, the value you specify is used
instead of the value in the buffer. This value is inserted directly into the control on the page, as if the end user
typed it in. The field buffer remains unchanged. All validations, FieldEdit and FieldChange PeopleCode run
immediately.

This function can be used in the following scenario: Suppose you have a text field that has a menu pop-up
associated with it. The end user can use a secondary page to select an item to be used for the value. From the
menu PeopleCode, you can verify that the value is valid, but the field doesn't turn red and the end user can
leave the field. This could potential mean saving the page with bad data. You can use this function after the
secondary page is dismissed. This causes the same edits to be run as if the end user had typed in the value.

This function doesn't work for radio button or check box controls.

Considerations With Field Verification

SetControlValue only sets the value of the field. If you specify an incorrect value, SetControlValue has an
error at runtime.

For example, suppose you are setting a value like "1900-01-01" into a date field that is expecting the format
01/01/1900. If the end user entered 1900-01-01 they would get an error, so SetControlValue causes an error
with this value also. You may want to use a value in the format the end user might enter. You can get this
value by using the FormattedValue method on a field. For example:

&DATE_IN_EFFECT = SF_PRDN_AREA_IT.DATE_IN_EFFECT.FormattedValue;
...
SetControlValue(&DATE_IN_EFFECT, %Page, "DATE_IN_EFFECT", &OCCURSNUM);

The FormattedValue function converts the field value from the PeopleSoft representation to the
representation the end user would see and enter.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Parameters

Parameter Description

Value Specify an override value on the current field. This parameter takes a string value.

pagename Specify the name of page where the field exists.

pagefieldname Specify the page field name. This is not the name of the field. This is the name that
is assigned to the field in Application Designer, on the page field properties.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 605

Parameter Description

RowNumber Specify the row number of the field. The default value is 1 if this parameter isn't
set.

&Field Specify an already instantiated field object referencing the field you want to
override.

Note. If you want to set an override string for a field on the level 1 scroll for a page, you do not need to
specify either a row number or a field object. However, if you want to set the override string for a field on
either the second or third level scroll for a page, you must specify both a row number and a field object for
SetControlValue to work.

Returns

None.

Example

Declare Function item_seach PeopleCode FUNCLIB_ITEM.INV_ITEM_ID FieldFormula;

&SEARCHREC = "PS_" | RECORD.MG_ITEM_OWN1_VW;
item_seach("", SF_PRDN_AREA.BUSINESS_UNIT, "ITEM", &SEARCHREC, "", &INV_ITEM_ID,⇒
 "");
SetControlValue(&INV_ITEM_ID);

The following example is used in the PeopleSoft Pure Internet Architecture:

Declare Function item_search PeopleCode FUNCLIB_ITEM.INV_ITEM_ID FieldFormula;

Component string &ITEM_ID_SEARCH;

&ITEMRECNAME = "PS_" | Record.MG_ITEM_PDO_VW;
item_serach("", EN_PDO_WRK.BUSINESS_UNIT, "ITEM", &ITEMRECNAME, "", &INV_ITEM_ID,⇒
 "");
If All(&INV_ITEM_ID) Then
 Evaluate &ITEM_ID_SEARCH
 When "F"
 SetControlValue(&INV_ITEM_ID, Page.EN_PDO_COPY, "FROM_ITEMID")
 When "T"
 SetControlValue(&INV_ITEM_ID, Page.EN_PDO_COPY, "TO_ITEMID")
 End-Evaluate;
End-If;

SetCursorPos

Syntax

SetCursorPos(Page.pagename,scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

PeopleCode Built-in Functions Chapter 1

606 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the SetCursorPos to place the focus in a specific field anywhere in the current component. To transfer to
a page outside the current component, use Transfer.

Note. If you use SetCursorPos to change the focus to a field that is not on the current page, any PeopleCode
associated with the Activate event for the page being transferred to runs.

You can use the SetCursorPos function in combination with an Error or Warning function in SaveEdit to
place the focus on the field that caused the error or warning condition. You must call SetCursorPos before an
Error statement, because Error in SaveEdit terminates all save processing, including the program from which
it was called.

See Also

Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

Pagename The name of the page specified in the page definition, preceded by the keyword
Page. The pagename page must be in the current component. You can also pass
the %page system variable in this parameter (without the Page reserved word).

scrollpath A construction that specifies a scroll level in the component buffer.

[recordname.]fieldname Specify a field designating the record and field in the scroll where you want to
place the cursor.

target_row The row number of the row in which you want to place the cursor.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 607

Example

The following example places the cursor in the appropriate field if a SaveEdit validation fails. Note the use of
the %page system variable to get the page name. Note also that SetCursorPos is called before Error.

If None(&ITEM_FOUND) Then
 SetCursorPos(%Page, INV_ITEM_ID, CurrentRowNumber());
 Error (MsgGet(11100, 162, "Item is not valid in the order business unit.",⇒
 INV_ITEM_ID, CART_ATTRIB_INV.ORDER_BU));
End-If;

The following example is similar, but uses the Page reserved word and page name:

If %Component = COMPONENT.BUS_UNIT_TBL_GL Then
 SetCursorPos(PAGE.BUS_UNIT_TBL_GL1, DEFAULT_SETID, CurrentRowNumber());
End-If;
Error MsgGet(9000, 165, "Default TableSet ID is a required field.");

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

SetDBFieldAuxFlag

Syntax

SetDBFieldAuxFlag(Field.FieldName,FlagNumber, Setting)

Description

Use the SetDBFieldAuxFlag function to set the auxiliary flag mask (AuxFlagMask) property for the specified
field. This field indicates properties about the field.

Currently, only one flag comes preset from PeopleSoft: a 1 indicates a ChartField. If you want to associate a
property with a field, you must coordinate with other developers to make certain that no one else is setting a
property using the same flag number.

Use the GetAuxFlag Field method to read the current setting of the property.

If you use this function, the change is made to the database field, but it doesn't require a rebuild of the
database. However, the change is not reflected in the component buffer. You must reload the component for
the new setting to take place.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

PeopleCode Built-in Functions Chapter 1

608 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

Fieldname Specify the name of the field that you want the AuxMaskFlag property changed.
This name must be prefixed by the reserved word Field.

FlagNumber Specify the flag value, a number between 1 and 32. A 1 is a ChartField.

Setting Specify whether this flag should be on (True) or off (False).

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_FieldNotFound The specified field was not found in the database.

Example

&ret = SetDBFieldAuxFlag(Field.OrgId, 1, True);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldAuxFlag succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldAuxFlag failed");
End-If;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," GetAuxFlag

SetDBFieldCharDefn

Syntax

SetDBFieldCharDefn(Field.FieldName,Length [, FormatFamily])

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 609

Description

Use the SetDBFieldCharDefn function to create a field definition of type character, with the indicated name,
length, and format family.

Note. After using this function, you should use the SetDBFieldLabel function to define the label for the new
field.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

Fieldname Specify the name of the new field that you want to create. This name must be
prefixed by the reserved word Field.

Length Specify the length of the new field as a number.

FormatFamily Specify the format family of the new field. This parameter is optional: the default
value is upper case. The valid values are:

• %FormatFamilyType_Upper (default)

• %FormatFamilyType_Name

• %FormatFamilyType_Phone

• %FormatFamilyType_Zip

• %FormatFamilyType_SSN

• %FormatFamilyType_MixedCase

• %FormatFamilyType_NumOnly

• %FormatFamilyType_SIN

• %FormatFamilyType_PhoneIntl

• %FormatFamilyType_ZipIntl

PeopleCode Built-in Functions Chapter 1

610 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_Duplicate The field specified by FieldName already exists.

%MDA_FieldFmtLength The specified length conflicts with the specified format family and was
overwritten when the field was created.

Example

&ret = SetDBFieldCharDefn(Field.OrgId, 10,
%FormatFamilyType_MixedCase);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldCharDefn succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldCharDefn failed");
End-If;

You can also use this function with de-referenced parameters, as follows:

&ret = SetDBFieldCharDefn(@("FIELD." | FS_CF_UPD_AET.FIELDNAME),
FS_CF_UPD_AET.NEW_CF_LENGTH, %FormatFamilyType_MixedCase);

The following example adds a new character field:

&cf = "CF1";
&len = 10;
&frmt = %FormatFamilyType_Upper;
&fld = "FIELD." | &cf;
&ret = SetDBFieldCharDefn(@(&fld), &len, &frmt);
If (&ret = 0) Then
 MessageBox(0, "SetDBFieldCharDefn", 0, 0, "Succeeded");
Else
 MessageBox(0, "SetDBFieldCharDefn", 0, 0, "Failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldLabel, page 614

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 611

SetDBFieldFormat

Syntax

SetDBFieldFormat(Field.FieldName,FormatFamily [, FamilyName,DisplayName])

Description

Use the SetDBFieldFormat function to change the format family for a field.

Use the StoredFormat Field property to determine the existing format family for a field.

If you only want to change the display format of a single field at runtime, and not change the database field,
use the DisplayFormat Field property.

Note. This function only works with character fields.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

PeopleCode Built-in Functions Chapter 1

612 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

FormatFamily Specify the new format family of the field. The valid values are:

• %FormatFamilyType_Upper

• %FormatFamilyType_Name

• %FormatFamilyType_Phone

• %FormatFamilyType_Zip

• %FormatFamilyType_SSN

• %FormatFamilyType_MixedCase

• %FormatFamilyType_NumOnly

• %FormatFamilyType_SIN

• %FormatFamilyType_PhoneIntl

• %FormatFamilyType_ZipIntl

• %FomatFamilyType_Custom

FamilyName Specify a new family name. This parameter is optional, and only valid if
FormatFamily is specified as custom (%FormatFamilyType_Custom).

DisplayName Specify a new display name. This parameter is optional, and only valid if
FormatFamily is specified as custom (%FormatFamilyType_Custom).

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

Example

&ret = SetDBFieldFormat(Field.OrgId, %FormatFamilyType_Custom, "Postal_Code",⇒
 "Normal");
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldFormat succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldFormat failed");
End-If;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 613

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldFormatLength, page 613; PeopleTools 8.52:
PeopleCode API Reference, "Field Class," StoredFormat and PeopleTools 8.52: PeopleCode API Reference,
"Field Class," DisplayFormat

SetDBFieldFormatLength

Syntax

SetDBFieldFormatLength(FieldName,Length)

Description

Use the SetDBFieldFormatLength function to change the format length for a field. This length controls the
maximum number of characters an end user can type into an edit box for this character field. This can be used
to limit the user without having to rebuild or alter the table.

Note. This function only works with character fields.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

Length Specify the new format length as a number. Valid values are between 1 and 254.

Returns

A constant value. The values are:

PeopleCode Built-in Functions Chapter 1

614 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_FieldNotFound The specified field wasn't found in the database.

%MDA_Unsupported You tried to use this function on a non character field. This function is only
supported on character fields.

Example

&ret = SetDBFieldFormatLength(FIELD.OrgId, 10);
If (&ret = %MDA_success) Then
 MessageBox(0, "MetaData Fn Status", 0, 0, "SetDBFieldFormatLength succeeded");
Else
 MessageBox(0, "MetaData Fn Status", 0, 0, "SetDBFieldFormatLength failed");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDBFieldFormat, page 611 and PeopleTools 8.52:
PeopleCode API Reference, "Field Class," FormatLength

SetDBFieldLabel

Syntax

SetDBFieldLabel(Field.FieldName,LabelID, Long,Short,Default [, LanguageID])

Description

Use the SetDBFieldLabel function to either modify an existing label, or add a new label to a field definition.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 615

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

LabelID Specify the label ID of the field label that you want to modify as a string. If the
specified label ID isn't found, a new label, with the specified label ID, is created
for the field.

Long Specify the new long label for the field as a string.

Short Specify the new short label for the field as a string.

Default Specify whether the new label is the default label for the field. This parameter
takes a Boolean value: True, set the label as the default, False, do not.

LanguageID Specify the three character language code to use with this field. This parameter is
optional. If you do not specify a language code, the language of the current user is
used.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_FieldNotFound The specified field wasn't found.

Example

&ret = SetDBFieldLabel(Field.OrgId, "ORGID", "Organization ID", "OrgId", True);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLabel succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLabel failed");
End-If;

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Label

PeopleCode Built-in Functions Chapter 1

616 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SetDBFieldLength

Syntax

SetDBFieldLength(Field.FieldName,Length)

Description

Use the SetDBFieldLength function to modify an existing character field to have a new length.

Note. Because using this function changes records that are used to build application tables, you must rebuild
(alter) the specified project before these changes can be used.

Use the Length Field class property to find the existing length of a field.

Note. This function only works with character fields.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

Length Specify the new field length as a number between 1 and 254.

Note. If a default has been specified for this field in any record, and the size of the default is greater than the
new size, you must modify the record field separately.

Returns

A constant value. The values are:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 617

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_Unsupported The specified field isn't a character field. This function is only supported for
character fields.

%MDA_FieldNotFound The specified field wasn't found.

%MDA_FieldFmtLength The specified length isn't compatible with the current format family, or there are
record field defaults greater than the specified size.

Note. If a default has been specified for this field in any record, and the size of the default is greater than the
new size, you must modify the record field separately.

Example

&ret = SetDBFieldLength(Field.OrgId, 10);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLength succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLength failed");
End-If;

You can also use this function with de-referenced parameters, as follows:

&ret = SetDBFieldLength(@("FIELD." | FS_CF_UPD_AET.FIELDNAME), FS_CF_UPD_AET.NEW_⇒
CF_LENGTH);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," FieldLength

SetDBFieldNotUsed

Syntax

SetDBFieldNotUsed(Field.FieldName,NotUsed)

Description

Use the SetDBFieldNotUsed function to specify whether a database field is used as a chart field or not.

SetDBFieldNotUsed does the following for a field:

• Specifies whether the field is included in the index when indexes are built for records that contain this
field. The column always remains in the table associated with the record.

PeopleCode Built-in Functions Chapter 1

618 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Specifies that the field is ignored in Query.

• Specifies that the field is ignored in nVision.

In addition, fields marked as Search Keys or List Box Items in the Application Designer that are set as not
used do not display in search dialogs and list boxes.

Considerations Using this Function

This function is primarily intended for use during configuration time only, before active runtime usage is
initiated. Using this function during active runtime is not, in general, supported. Changes to data definitions
are not recognized on currently loaded component. In general, changes aren't recognized until the component
is reloaded. Using this function to modify records in components that have not been loaded, and then loading
those components will, while not changing indices, prevent Query and nVision from using the field, and may
be used to key display of the field in pages.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

NotUsed Specify whether this field is to be used as a chart field. This parameter takes a
Boolean value: True, this field is not used, False, this field is used.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_FieldNotFound The specified field wasn't found.

Example

&ret = SetDBFieldNotUsed(Field.OrgId, True);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldNotUsed succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldNotUsed failed");
End-If;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 619

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Performing Bulk Operations"

SetDefault

Syntax

SetDefault([recordname.]fieldname)

Description

Use the SetDefault function to set a field to a null value, so that the next time default processing occurs, it is
set to its default value: either a default specified in its record field definition or one set programmatically by
PeopleCode located in a FieldDefault event. If neither of these defaults exist, the Component Processor leaves
the field blank.

Note. This function remains for backward compatibility only. Use the SetDefault field class property instead.

Blank numbers correspond to zero on the database. Blank characters correspond to a space on the database.
Blank dates and long characters correspond to NULL on the database. SetDefault gives each field data type
its proper value.

See PeopleTools 8.52: PeopleCode API Reference, "Field Class," SetDefault.

Where to Use SetDefault

If a PeopleCode program or function executes the SetDefault built-in on a field that does not exist in the
component buffer, the remainder of the program or function is skipped. In the case of a function, execution of
the calling program continues with the next statement after the call to the function. However, if the program
containing the SetDefault call is at the "top level", meaning that it was called directly from the component
processor or application engine runtime, it exits.

Therefore, if you want to control the behavior of SetDefault, you should encapsulate any calls to this built-in
function inside your own functions. This enables your overall programs to continue, whether or not the
SetDefault succeeds.

Parameters

Parameter Description

[recordname.]fieldname Specify a field designating the fields that you want to set to its default value.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

PeopleCode Built-in Functions Chapter 1

620 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

This example resets the PROVIDER to its null value. This field is reset to its default value when default
processing is next performed:

If COVERAGE_ELECT = "W" Then
 SetDefault(PROVIDER);
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDefaultAll, page 620; Chapter 1, "PeopleCode Built-in
Functions," SetDefaultNext, page 621 and Chapter 1, "PeopleCode Built-in Functions," SetDefaultPrior, page
622

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Default
Processing

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

SetDefaultAll

Syntax

SetDefaultAll([recordname.]fieldname)

Description

Use the SetDefaultAll function to set all occurrences of the specified recordname.fieldname within a scroll to
a blank value, so that the next time default processing is run these fields are set to their default value, as
specified by the record definition, or one set programmatically by PeopleCode located in a FieldDefault
event. If neither of these defaults exist, the Component Processor leaves the field blank.

Note. This function remains for backward compatibility only. Use the SetDefault rowset method instead.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," SetDefault and PeopleTools 8.52:
PeopleCode API Reference, "Field Class," SearchDefault

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Example

The following example sets the fields TO_CUR and CUR_EXCHNG_RT to their default values on every row
of the scroll area where the PeopleCode is run:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 621

SetDefaultAll(TO_CUR);
SetDefaultAll(CUR_EXCHNG_RT);

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDefault, page 619; Chapter 1, "PeopleCode Built-in
Functions," SetDefaultNext, page 621; Chapter 1, "PeopleCode Built-in Functions," SetDefaultNextRel, page
621; Chapter 1, "PeopleCode Built-in Functions," SetDefaultPrior, page 622 and Chapter 1, "PeopleCode
Built-in Functions," SetDefaultPriorRel, page 623

SetDefaultNext

Syntax

SetDefaultNext([recordname.]fieldname)

Description

Use the SetDefaultNext function to locate the next occurrence of the recordname.fieldname with the next
effective date (and effective-sequence number if specified) and set the field to a blank value, so that the next
time default processing is run this field will be set to its default value, as specified by the record definition, or
one set programmatically by PeopleCode located in a FieldDefault event. If neither of these defaults exist, the
Component Processor leaves the field blank.

 SetDefaultNext is typically used to reset values within a scroll which are calculated within default
PeopleCode based on a next value.

This function is valid only for effective-dated records. If a next record does not exist, then the statement is
skipped.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDefaultAll, page 620; Chapter 1, "PeopleCode Built-in
Functions," SetDefaultNextRel, page 621; Chapter 1, "PeopleCode Built-in Functions," SetDefaultPrior, page
622 and Chapter 1, "PeopleCode Built-in Functions," SetDefaultPriorRel, page 623

SetDefaultNextRel

Syntax

SetDefaultNextRel(search_field,default_field)

PeopleCode Built-in Functions Chapter 1

622 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the SetDefaultNextRel function to locate the next occurrence of the search_fieldwith the next effective
date (and effective-sequence number if the record contains an effective-sequence number), then set the value
of the specified default_fieldcorresponding to the search_field to a blank value, so that the next time default
processing is run this field will be set to its default value, as specified by the record definition, or one set
programmatically by PeopleCode located in a FieldDefault event. If neither of these defaults exist, the
Component Processor leaves the field blank.

This function is valid only for effective-dated records. If a next record does not exist, then the statement is
skipped.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDefault, page 619; Chapter 1, "PeopleCode Built-in
Functions," SetDefaultAll, page 620; Chapter 1, "PeopleCode Built-in Functions," SetDefaultPrior, page 622
and Chapter 1, "PeopleCode Built-in Functions," SetDefaultPriorRel, page 623

SetDefaultPrior

Syntax

SetDefaultPrior([recordname.]fieldname)

Description

Use the SetDefaultPrior function to locate the prior occurrence of the recordname.fieldname with the prior
effective date (and effective-sequence number if specified), then set the field to a blank value, so that the next
time default processing is run this field will be set to its default value, as specified by the record definition, or
one set programmatically by PeopleCode located in a FieldDefault event. If neither of these defaults exist, the
Component Processor leaves the field blank.

 SetDefaultPrior is typically used to reset values within a scroll which are calculated within FieldDefault
PeopleCode based on a next value.

This function is valid only for effective-dated records. If a prior record does not exist, then the statement is
skipped.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDefault, page 619; Chapter 1, "PeopleCode Built-in
Functions," SetDefaultAll, page 620; Chapter 1, "PeopleCode Built-in Functions," SetDefaultNext, page 621;
Chapter 1, "PeopleCode Built-in Functions," SetDefaultNextRel, page 621 and Chapter 1, "PeopleCode Built-
in Functions," SetDefaultPriorRel, page 623

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 623

SetDefaultPriorRel

Syntax

SetDefaultPriorRel(search_field,default_field)

Description

Use the SetDefaultPriorRel function to locate the prior occurrence of the search_field with the prior effective
date (and effective sequence-number if the record contains an effective-equence number) and then sets the
specified default_field to a blank value, so that the next time default processing is run this field will be set to
its default value, as specified by the record definition, or one set programmatically by PeopleCode located in
a FieldDefault event. If neither of these defaults exist, the Component Processor leaves the field blank.

This function is valid only for effective-dated records. If a next record does not exist, then the statement is
skipped.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetDefault, page 619; Chapter 1, "PeopleCode Built-in
Functions," SetDefaultAll, page 620; Chapter 1, "PeopleCode Built-in Functions," SetDefaultNext, page 621;
Chapter 1, "PeopleCode Built-in Functions," SetDefaultNextRel, page 621 and Chapter 1, "PeopleCode Built-
in Functions," SetDefaultPrior, page 622

SetDisplayFormat

Syntax

SetDisplayFormat(scrollpath,target_row,
 [recordname.]fieldname, display_format_name)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Usethe SetDisplayFormat function to change the display format of Custom Defined Fields at runtime. For
instance, you may want to update a custom numeric display to reveal more decimal points.

Note. This function remains for backward compatibility only. Use the DisplayFormat field property instead.

PeopleCode Built-in Functions Chapter 1

624 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," DisplayFormat

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number of the target row.

[recordname.]fieldname The name of the field to change. The field can be on scroll level one, two, or three
of the active page. The recordname prefix is required if the call to
SetDisplayFormat is not on the record definition recordname.

display_format_name The name of the custom display format specified in the field definition.

Returns

Returns a Boolean value indicating whether the function executed successfully. The return value is not
optional.

See Also

Chapter 1, "PeopleCode Built-in Functions," GetStoredFormat, page 421

SetLabel

Syntax

SetLabel(scrollpath,target_row, [recordname.]fieldname,new_label_text)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 625

Description

Use the SetLabel function to change the label text of a page field or grid column heading.

Note. This function remains for backward compatibility only. Use the Label field property instead.

You can't use this function to set labels longer than 100 characters. If you try to set a label of more than 100
characters, the label is truncated to 100 characters.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Label

PeopleTools 8.52: PeopleCode API Reference, "Field Class," GetLongLabel

PeopleTools 8.52: PeopleCode API Reference, "Field Class," GetShortLabel

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number of the target row.

 [recordname.]fieldname The name of the field with the associated label text. The field can be on scroll
level one, two, or three of the active page. The recordname prefix is required if the
function call is not on the record definition recordname.

new_label_text A String value specifying the new value for the field or grid column label.

Returns

Optionally returns a Boolean value indicating whether the function completed successfully.

Example

If training_loc = "HAW" then
 SetLabel(voucher_tbl.training_loc, "Hawaii Training Center");
End-if;

PeopleCode Built-in Functions Chapter 1

626 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SetLanguage

Syntax

SetLanguage(language_code)

Description

Use the SetLanguage function to set the end user's current language preference to the specified
language_code.language_code must be a valid translate value for the field LANGUAGE_CD. SetLanguage
returns True if it is successful, and it returns False if it fails or an invalid value was passed. The new language
preference is temporary, remaining in effect only until the user logs off, or until another call is made to
SetLanguage.

Note. SetLanguage does not work in Signon PeopleCode, or with asynchronous messages.

Considerations Using SetLanguage With %Language

The value of %Language depends on the type of application:

• For online applications, %Language is the language code that the current component is using.

• For non-online applications (such as in an application engine program), %Language is the language code
of the user based on their language preference in their User Profile.

SetLanguage changes the default language for the current session only. The language change does not take
effect until the component buffer is flushed and repopulated. For example, transferring to a new component
causes the buffer to be flushed.

%Language reflects the value using SetLanguage after the function is executed.

SetLanguage changes the current user interface and data language simultaneously. If the Multi Language
Entry personalization option is enabled, users can change the data language independently from the user
interface language. There is no way to change the data language from PeopleCode without also changing the
user interface language using SetLanguage.

Parameters

Parameter Description

language_code A valid language code, stored in the Translate table for the LANGUAGE_CD
field.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully. Returns False if an
invalid language code is passed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 627

Example

The following example switches the language code and displays a message informing the end user of the
change:

 If SetLanguage(LANGUAGE_CD) Then
 WinMessage(MsgGet(102, 5, "Language preference changed to ", LANGUAGE_CD));
 Else
 WinMessage(MsgGet(102, 6, "Error in setting language. Language is currently⇒
 %1", %Language));
 End-if;

See Also

Chapter 3, "System Variables," %Language, page 820

SetMessageStatus

Syntax

SetMessageStatus(Message.MessageName,Status)

Description

Use the SetMessageStatus function to specify whether a message is active or inactive.

Parameters

Parameter Description

MessageName Specify the name of the message definition that you want to change the status for.
Prefix this name with the reserved word Message.

Status Specify the status for the message. Valid values are:

• %IB_Status_Active

• %IB_Status_InActive

Returns

A Boolean value: true if the status is set correctly, false otherwise.

PeopleCode Built-in Functions Chapter 1

628 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetChannelStatus, page 601

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Service Operations"

SetNextPanel

Syntax

SetNextPanel(panelname)

Description

Use the SetNextPanel to specify the panel name to which the user will be transferred when selecting the
NextPanel (F6) function or specifying it with the PeopleCode TransferPage function.

Note. The SetNextPanel function is supported for compatibility with previous releases of PeopleTools. New
applications should use the SetNextPage function instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetNextPage, page 628

SetNextPage

Syntax

SetNextPage(pagename)

Description

Use the SetNextPage function to specify the page name to which the user is transferred when selecting the
NextPage (ALT+6 and ENTER) function or specifying it with the PeopleCode TransferPage function.

 SetNextPage validates that pagename is listed on current menu. This selection is cleared when the user
transfers to a new page.

Parameters

Parameter Description

pagename A String equal to the name of the page as specified in the page definition.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 629

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

See Chapter 1, "PeopleCode Built-in Functions," AddKeyListItem, page 46.

ClearKeyListItem();
AddKeyListItem(OPRID, OPRID);
AddKeyListItem(REQUEST_ID, REQUEST_ID);
SetNextPage("PAGE_2");
DoSave();
TransferPage();

The following example sets up and transfers the user to page JOB_DATA.

If SetNextPage(PAGE.JOB_DATA) Then
 TransferPage();
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

SetPageFieldPageFieldName

Syntax

SetPageFieldPageFieldName(Page.PageName,Record.RecordName,Field.FieldName,
PageFieldName)

Description

Use the SetPageFieldPageFieldName function to add or change a page field name for a field. The page field
name is set on the General tab of the page field properties. Changing a name to itself is not supported.

The first field on the page with the specified record name and field name is the field that's changed.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

PeopleCode Built-in Functions Chapter 1

630 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

PageName Specify the page containing the field you want to change. This name must be
prefixed by the reserved word Page.

RecordName Specify the record containing the field you want to change. This name must be
prefixed by the reserved word Record.

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

PageFieldName Specify the page field name that you want associated with the page field as a
string.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_PageNotFound The specified page wasn't found.

%MDA_PageFieldNotFound The specified field wasn't found on the specified page.

%MDA_Duplicate A second field by the same name was found on the page. Only the first page field
name was changed.

Example

The following example adds a page field name to a page field.

&ret = SetPageFieldPageFieldName(Page.ABSENCE_HIST, Record.ABSENCE_HIST,⇒
 Field.EMPLID, "EMPLID")

The following example adds a page field name to a page field using dereferenced parameters.

&Pnl = "Page." | "ABSENCE_HIST";
&Rec = "Record." | "ABSENCE_HIST";
&Field = "Field." | "EMPLID";
&Name = "EMPLID"
&ret = SetPageFieldPageFieldName(@(&Pnl), @(&Rec), @(&Field), &Name);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 631

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Field Definitions"

SetPasswordExpired

Syntax

SetPasswordExpired(NewValue)

Description

Use the SetPasswordExpired function to set the password expired status for the current user. When the user's
password expired flag is set to True, they can only access the page that allows them to change their password.
The function returns the old value, that is, the value that represented the status of the flag before it was set to
NewValue.

Parameters

Parameter Description

NewValue Specify a new value for the user's password expired flag. This parameter takes a
Boolean value

Returns

A Boolean value: True if you've set the password expire flag to False, False if you've set the password expire
flag to True.

Example

If %PasswordExpired Then
 &NewValue = SetPasswordExpired(True);
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," SwitchUser, page 670 and Chapter 3, "System Variables,"
%PasswordExpired, page 827

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

PeopleCode Built-in Functions Chapter 1

632 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SetPostReport

Syntax

SetPostReport()

Description

Use the SetPostReport function to create a reference to a PostReport object. After you've created this object,
you can assign values to its properties, then use the Put method to initiate the posting of the files to the Report
Repository.

Parameters

None.

Returns

A reference to a PostReport object.

See Also

PeopleTools 8.52: PeopleCode API Reference, "PostReport Class"

SetRecFieldEditTable

Syntax

SetRecFieldEditTable(Record.RecordName,Field.FieldName,EditTable [,
TableEditType])

Description

Use the SetRecFieldEditTable function to set the edit table value for a record field. This overwrites the value
for the edit table for the record field. Use the SetEditTable Record method to just set the edit table value at
runtime.

If you specify a null value for EditTable, and no value is specified for TableEditType, the table edit flag is
turned off, that is, no prompt table is set for the record field.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 633

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

RecordName Specify the record containing the field you want to change. This name must be
prefixed by the reserved word Record.

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

EditTable Specify the name of the edit table record. This name must be prefixed by the
reserved word Record. If you do not want to specify a record name, specify
Record."".

TableEditType Specify the type of edit table record to be associated with the record field. If you
specify a value for EditTable (and not a null value) this parameter is required. You
can specify either a constant or numeric value for this parameter. Valid values are:

Constant Value Numeric Value Used for which types of fields

%EditTableType_NoEdit 0 Character, Number, Date, Time,
Datetime

%EditTableType_Prompt 1 Character, Number, Date, Time,
Datetime

%EditTableType_YesNo 2 Character

%EditTableType_Translate 3 Character fields with length 4 or
less only

%EditTableType_OneZero 4 Number fields only

Returns

A constant value. The values are:

PeopleCode Built-in Functions Chapter 1

634 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_RecordNotFound The specified record wasn't found.

%MDA_RecFieldNotFound The specified field wasn't found on the record.

Example

&ret = SetRecFieldEditTable(RECORD.AbsHist, Field.OrgId, RECORD.EmplId_Tbl, %Edit⇒
TableType_Prompt);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldEditTable succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldEditTable failed");
End-If;

SetRecFieldKey

Syntax

SetRecFieldKey(Record.RecordName,Field.FieldName,Key)

Description

Use the SetRecFieldKey function to specify whether a field on a record is a key field or not.

Use the IsKey field class property to determine whether or not the field is already a key.

Note. Because performing this operation changes records, you must subsequently rebuild the project (alter
tables).

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized on
currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation of
any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 635

Parameters

Parameter Description

RecordName Specify the record containing the field you want to change. This name must be
prefixed by the reserved word Record.

FieldName Specify the name of the field that you want to modify. This name must be prefixed
by the reserved word Field.

Key Specify whether the field is a key or not. This parameter takes a Boolean value:
True, the field is a key field, False, it isn't.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_RecordNotFound The specified record wasn't found.

%MDA_RecFieldNotFound The specified field wasn't found on the record.

Example

&ret = SetRecFieldKey(RECORD.AbsHist, Field.OrgId, True);
If (&ret = %MDA_Success) Then
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldKey succeeded");
Else
 MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldKey failed");
End-If;

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Field Definitions"

SetReEdit

Syntax

SetReEdit(reedit_on)

PeopleCode Built-in Functions Chapter 1

636 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the SetReEdit to switch re-edit mode on and off. When re-edit mode is on, definitional edits (such as
translate table and prompt table edits), as well as FieldEdit PeopleCode, are run on each editable field in the
component when the component is saved. If an error is found, the component data is not saved. SetReEdit can
be called at any time during the life of the component before the SaveEdit event fires, and would typically be
called in RowInit when other page settings are being initialized. When a component is started, re-edit mode is
off by default.

 SetReEdit is used primarily in financial applications, where transactions are sometimes brought into the
database by non-online processes. When re-edit mode is on, the values read in during these transactions can
be validated by simply bringing them up in the page and saving. Any errors are then reported, as if the end
user had entered all of the data online.

Parameters

Parameter Description

reedit_on A Boolean value specifying whether to switch re-edit mode on or off. True turns
re-edit mode on, False turns re-edit mode off.

Example

This example is used in RowInit PeopleCode to initialize component settings. After re-edit mode is on, field-
level edits are re-applied when the component is saved.

SetReEdit(True);

SetSearchDefault

Syntax

SetSearchDefault([recordname.]fieldname)

Description

Use the SetSearchDefault function to set system defaults (default values set in record field definitions) for the
specified field on search dialog boxes. It does not cause the FieldDefault event to fire.

Note. This function remains for backward compatibility only. Use the SearchDefault field property instead.

The system default occurs only once, when the search dialog box first starts, immediately after SearchInit
PeopleCode. If the end user subsequently blanks out a field, the field is not reset to the default value. The
related function ClearSearchDefault disables default processing for the specified field. SetSearchDefault is
effective only when used in SearchInit PeopleCode programs.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 637

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," SearchDefault

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

[recordname.]fieldname The name of the target field, a search or alternate search key that is about to appear
in the search dialog box. The recordname prefix is required if the call to
SetSearchDefault is not on the record definition recordname.

Example

This example, from SearchInit PeopleCode turns on edits and defaults for the SETID field in the search
dialog box:

SetSearchEdit(SETID);
SetSearchDefault(SETID);

See Also

Chapter 1, "PeopleCode Built-in Functions," ClearSearchDefault, page 92; Chapter 1, "PeopleCode Built-in
Functions," ClearSearchEdit, page 93; Chapter 1, "PeopleCode Built-in Functions,"
SetSearchDialogBehavior, page 637 and Chapter 1, "PeopleCode Built-in Functions," SetSearchEdit, page 638

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Search
Processing in Update Modes

SetSearchDialogBehavior

Syntax

SetSearchDialogBehavior(force_or_skip)

Description

Use the SetSearchDialogBehavior function in SearchInit PeopleCode to set the behavior of search and add
dialog boxes before a page is displayed, overriding the default behavior. There are two dialog behavior
settings: skip if possible (0) and force display (1).

 Skip if possible means that the dialog box is skipped if all of the following are true:

• All required keys have been provided (either by system defaults or by PeopleCode).

PeopleCode Built-in Functions Chapter 1

638 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• If this an Add dialog box, then no duplicate key error results from the provided keys; if this error occurs,
the processing resets to the default behavior.

• If this is a Search dialog box, then at least one row is returned based on the provided keys.

 Force display means that the dialog box displays even if all required keys have been provided.

The default behavior of the search and add dialog boxes is force display.

Note. SetSearchDialogBehavior can only be used in SearchInit PeopleCode.

Parameters

Parameter Description

force_or_skip A Number equal to one of the following values:

• 0: sets the dialog behavior to skip if possible.

• 1: sets the dialog behavior to force display.

Returns

None.

Example

The following function call, which must occur in SearchInit PeopleCode, sets the dialog behavior to skip if
possible.

SetSearchDialogBehavior(0);

See Also

Chapter 1, "PeopleCode Built-in Functions," SetSearchDefault, page 636; Chapter 1, "PeopleCode Built-in
Functions," SetSearchEdit, page 638; Chapter 1, "PeopleCode Built-in Functions," ClearSearchEdit, page 93;
Chapter 1, "PeopleCode Built-in Functions," ClearSearchDefault, page 92 and Chapter 1, "PeopleCode Built-
in Functions," IsUserInRole, page 475

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Search
Processing in Update Modes

SetSearchEdit

Syntax

SetSearchEdit([recordname.]fieldname)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 639

Description

Use the SetSearchEdit function to enable system edits (edits specified in the record field definition) for the
specified [recordname.]fieldname, for the life of the search dialog box, or until the ClearSearchEdit function
is called with that same field.

Note. This function remains for backward compatibility only. Use the SearchEdit field property instead.

See PeopleTools 8.52: PeopleCode API Reference, "Field Class," SearchEdit.

Using SetSearchEdit

In the Add mode search dialog, the following edits are performed when the end user clicks the Add button. In
any other mode, the following edits are performed when the end user clicks the Search button:

• Formatting

• Required Field

• Yes/No Table

• Translate Table

• Prompt Table

SetSearchEdit does not cause the FieldEdit, FieldChange, or SaveEdit PeopleCode events to fire during the
search dialog.

You might use SetSearchEdit to control access to the system. For example, you can apply this function to the
SETID field of a dialog box and require the end user to enter a valid SETID.

If you use this function in the SearchInit event, the search page options are limited to the "=" and "IN"
operators.

Parameters

Parameter Description

fieldname The name of the search dialog field on which to enable field edits.

Returns

Returns a Boolean value indicating whether the function executed successfully.

Example

This example turns on edits and system defaults for the SETID field in the search dialog box:

SetSearchEdit(SETID);
SetSearchDefault(SETID);

PeopleCode Built-in Functions Chapter 1

640 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," ClearSearchEdit, page 93; Chapter 1, "PeopleCode Built-in
Functions," ClearSearchDefault, page 92; Chapter 1, "PeopleCode Built-in Functions," SetSearchDefault,
page 636 and Chapter 1, "PeopleCode Built-in Functions," SetSearchDialogBehavior, page 637

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Search
Processing in Update Modes

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

SetTempTableInstance

Syntax

SetTempTableInstance(instance_number)

Description

Use the SetTempTableInstance function to set the default temp table instance to the specified number for the
processing of temporary tables. This default is used by all %Table meta-SQL references to temporary tables,
and by all SQL operations. Generally, you use this function only when you're trying to use any of the
ScrollSelect functions, the Rowset class Select or SelectAll methods, the record class SQL methods
(SelectByKey, Insert, and so on.), or any of the meta-SQL statements that use %Table (%InsertSelect,
%InsertSelectWithLongs, %SelectAll, %Delete, and so on.) Generally, %Table should be used to override the
default.

If you use this built-in within an Application Engine program, and the program uses a process-level instance
on the request, the old instance value must be saved, then restored after you're finished using the new
instance.

If you pass a zero for instance_number, the Fill method uses the physical table instance with no table append,
for example, if the temporary table record is FI_INSTR_T, the physical table used is PS_FI_INSTR_T.

Parameters

Parameter Description

instance_number Specify the instance number for the temporary tables.

Returns

Existing (or previous) instance number.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 641

Example

To avoid interfering with other uses of temporary tables, you should only set the temporary table instance for
your process, then set it back to the default. For example:

/* Set temp table instance */
&PrevInstNum = SetTempTableInstance(&NewInstNum);
/* use the temporary table */
. . .
/* Restore the temp table instance */
SetTempTableInstance(&PrevInstNum);

See Also

PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode," %Table

SetTracePC

Syntax

SetTracePC(n)

Description

Use the SetTracePC function to control Trace PeopleCode settings programmatically. This is useful if you
want to isolate and debug a single program or part of a program.

Note. If you're using an API with the Session class, use the Trace Setting class properties instead of this
function.

You can set options prior to starting a PeopleTools session using the Trace tab of PeopleSoft Configuration
Manager.

Trace PeopleCode creates and writes data to a trace file that it shares with Trace SQL; Trace SQL and Trace
PeopleCode information are both output to the file in the order of execution. The trace file uses a file name
and location specified in the Trace page of PeopleSoft Configuration Manager. If no trace file is specified in
PeopleSoft Configuration Manager, the file is set by default to DBG1.TMP in your Windows Temp directory.
If you specify only a file name, and no directory is specified, the file is written to the directory you're running
Tools from. This file is cleared each time you log on and can be opened in a text editor while you are in a
PeopleTools session, so if you want to save it, you must print it or copy it from your text editor.

Trace timings are given in the elapsed time in seconds, but reported in microseconds and include CPU time
and "cycles". The CPU time measurement, depending on platform, may not be very precise. The "cycles" is a
measure of how much PeopleCode the program is executing. It counts loops around the PeopleCode
interpreter. This cycle count is only updated when some tracing or debugging is going on. So, for example,
turning the trace off then back on again will skip some cycles.

Note. PeopleSoft recommends using a value of %TracePC_EachStmt (2048) instead of
%TracePC_Functions (1) and %TracePC_List (2).

PeopleCode Built-in Functions Chapter 1

642 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Session Class," Trace Setting Class Properties

PeopleTools 8.52: System and Server Administration, "Using PeopleSoft Configuration Manager,"
Understanding PeopleSoft Configuration Manager

Parameters

Parameter Description

options Either a number or a constant value that sets trace options. Calculate options by
either totaling the numbers associated with any of the following options or by
adding constants together:

Numeric Value Constant Value Description

0 %TracePC_None Set trace off.

1 %TracePC_Functions Provide a trace of the program as it is
executed. This implies options 64, 128,
and 256 described in the following
rows.

2 %TracePC_List Provide a listing of the entire program.

4 %TracePC_Assigns Show the results of all assignments
made to variables.

8 %TracePC_Fetches Show the values fetched for all
variables.

16 %TracePC_Stack Show the contents of the internal
machine stack. This option is normally
used for debugging the PeopleCode
language and not PeopleCode
programs.

64 %TracePC_Starts Provide a trace showing when each
program starts.

128 %TracePC_ExtFuncs Provide a trace showing the calls made
to each external PeopleCode routine.

256 %TracePC_IntFuncs Provide a trace showing the calls made
to each internal PeopleCode routine.

512 %TracePC_ParamsIn Show the values of the parameters to a
function.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 643

Numeric Value Constant Value Description

1024 %TracePC_ParamsOut Show the values of the parameters as
they exist at the return from a function.

2048 %TracePC_EachStmt Show each statement as it's executed
(and do not show statements on
branches not taken.)

32768 %TracePC_Evaluations Start the timing tracing of the start and
end of top-level program evaluations.
This is similar to the Trace Start of
Programs, but only traced when the
call isn't directly from PeopleCode.

It traces recursive evaluations, like
what happens when a ScrollSelect in a
RowInit event causes another recursive
RowInit to fire during the outer
RowInit.

If both Trace Evaluations (32768) and
Trace Start of Programs (64) are on
(32768+64 = 32832) then all routine
calls (functions, methods, get, set for
both internal and external PeopleCode
to PeopleCode calls) are traced. The
resulting trace file can be processed by
a program to add up the timings for
each routine and separate the in-
routine timings from those for called
routines.

Returns

None.

Example

The following example is part of a SavePreChange PeopleCode program that sets PeopleCode trace based on
page field settings:

PeopleCode Built-in Functions Chapter 1

644 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

DEBUG_CODE = 0;
If DEBUG_TRACE_ALL = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 1
End-if;
If DEBUG_LIST = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 2
End-if;
If DEBUG_SHOW_ASSIGN = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 4
End-if;
If DEBUG_SHOW_FETCH = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 8
End-if;
If DEBUG_SHOW_STACK = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 16
End-if;
If DEBUG_TRACE_START = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 64
End-if;
If DEBUG_TRACE_EXT = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 128
End-if;
If DEBUG_TRACE_INT = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 256
End-if;
If DEBUG_SHOW_PARMS = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 512
End-if;
If DEBUG_SHOW_PARMSRT = "Y" Then
 DEBUG_CODE = DEBUG_CODE + 1024
End-if;
SetTracePC(DEBUG_CODE);

The following example sets Trace PC to show a listing of all the calls made to external routines as well as
calls made to internal routines:

SetTracePC(384);

The following is identical to the previous example:

SetTracePC(%TracePC_ExtFuncs + %TracePC_IntFuncs);

If you need a thorough trace, you can use a value of 3596. That combines the following:

Value Description

2048 Show each statement as it's executed

1024 Show the values of the parameters as they return

512 Show the values of the parameters to a function

8 Show the values fetched for all variables

4 Show the results of all assignments

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 645

See Also

Chapter 1, "PeopleCode Built-in Functions," SetTraceSQL, page 645

PeopleTools 8.52: Data Management, "Employing Database Level Auditing"

SetTraceSQL

Syntax

SetTraceSQL(options)

Description

Use the SetTraceSQL function to programmatically control the Trace SQL utility, enabling you to control
TraceSQL options during the course of program execution.

Note. If you're using an API with the Session class, use the Trace Setting class properties instead of this
function.

When you interact with PeopleTools, SQL statements transparently perform actions such as page
construction. The Trace SQL utility creates and updates a file showing the SQL statements generated by
PeopleTools.

You can set options prior to starting a PeopleTools session using the Trace tab of PeopleSoft Configuration
Manager.

Trace SQL creates and writes data to a trace file that it shares with Trace PeopleCode; Trace SQL and Trace
PeopleCode information are both output to the file in the order of execution. The trace file uses a file name
and location specified in the Trace page of PeopleSoft Configuration Manager. If no trace file is specified in
PeopleSoft Configuration Manager, the file is set by default to DBG1.TMP in your Temp directory. If you
specify only a file name, and no directory is specified, the file is written to the directory you're running Tools
from. This file is cleared each time you log on and can be opened in a text editor while you are in a
PeopleTools session, so if you want to save it, you must print it or copy it from your text editor.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Session Class," Trace Setting Class Properties

PeopleTools 8.52: System and Server Administration, "Using PeopleSoft Configuration Manager,"
Understanding PeopleSoft Configuration Manager

PeopleCode Built-in Functions Chapter 1

646 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

options Either a Number value or a constant that sets trace options. Calculate options by
either totaling the numbers associated with any of the following options, or adding
constants together:

Numeric Value Constant Value Description

0 %TraceSQL_None No output

1 %TraceSQL_Statements SQL statements

2 %TraceSQL_Variables SQL statement variables (binds)

4 %TraceSQL_Connect SQL connect, disconnect, commit and
rollback

8 %TraceSQL_Fetch Row Fetch (indicates that it occurred
and the return code - not the data
fetched.)

16 %TraceSQL_MostOthers All other API calls except Set Select
Buffers

32 %TraceSQL_SSB Set Select Buffers(identifies the
attributes of the columns to be
selected)

64 %TraceSQL_DBSpecific Database API-specific calls

128 %TraceSQL_Cobol COBOL Statement Timings

256 %TraceSQL_SybBind Sybase Bind Information

512 %TraceSQL_SybFetch Sybase Fetch Information

1024 %TraceSQL_DB2400Server Manager information for DB2/400
only

4096 %TraceSQL_ManagerInfo All manager information.

8192 %TraceSQL_AppEngineInfo Trace Application Engine information.

Note. PeopleSoft recommends setting options to 3 to provide most essential information without performance
degradation. Options 8 and 32 greatly increase the volume of the trace and will noticeably degrade
performance.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 647

Returns

None.

Example

The following example switches off Trace SQL:

SetTraceSQL(0);

The following is identical to the previous example:

SetTraceSQL(%TraceSQL_None);

The following example sets Trace SQL to typical settings that won't degrade performance:

SetTraceSQL(3);

The following is identical to the previous example:

SetTraceSQL(%TraceSQL_Statements + %TraceSQL_Variables);

See Also

Chapter 1, "PeopleCode Built-in Functions," SetTracePC, page 641

PeopleTools 8.52: Data Management, "Employing Database Level Auditing"

SetupScheduleDefnItem

Syntax

SetupScheduleDefnItem(ScheduleName, JobName)

Description

Use the SetupScheduleDefnItem function to create a ProcessRequest object. After you've created this object,
you can assign values to its properties then specific methods created to either schedule or print info for a
Scheduled Jobset.

Parameters

Parameter Description

ScheduleName Specify the process type as a string. Values depend on the Scheduled Jobset
defined for your system.

PeopleCode Built-in Functions Chapter 1

648 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

JobsName Specify the name of the job name as a string.

Returns

A reference to a ProcessRequest object.

Example

Local ProcessRequest &MYRQST;

&MYRQST = SetupScheduleDefnItem("SampleSchedule", &MyJobName);

See Also

PeopleTools 8.52: PeopleCode API Reference, "Process Request Classes"

SetUserOption

Syntax

SetUserOption(Level,OPTN,Value)

Description

Use the SetUserOption to set the default value for the specified option.

Parameters

Parameter Description

Level Specify the option category level as a string.

OPTN Specify the option as a string.

Value Specify the value of the option.

Returns

A Boolean value: True, if the function completed successfully, False otherwise.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 649

See Also

Chapter 1, "PeopleCode Built-in Functions," GetUserOption, page 431

PeopleTools 8.52: Security Administration, "Managing PeopleSoft Personalizations"

Sign

Syntax

Sign(n)

Description

Use the Sign function to determine the sign of a number.

Parameters

Parameter Description

n A number value of which to determine the sign.

Returns

Returns a number value equal to:

• 1 if n is positive

• 0 if n is 0

• -1 if n is negative

Example

The example sets &NUMSIGN to 1:

&NUMSIGN = Sign(25);

See Also

Chapter 1, "PeopleCode Built-in Functions," Abs, page 32

PeopleCode Built-in Functions Chapter 1

650 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Sin

Syntax

Sin(angle)

Description

Use the Sin function to calculate the sine of the given angle (opposite / hypotenuse).

Parameters

Parameter Description

angle A value in radians.

Returns

A real number between -1.00 and 1.00.

Example

The following example returns the sine of an angle measuring 1.2 radians:

&MY_RESULT = Sin(1.2);

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Atan, page 58; Chapter 1, "PeopleCode Built-in
Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in Functions," Cot, page 139; Chapter 1,
"PeopleCode Built-in Functions," Degrees, page 200; Chapter 1, "PeopleCode Built-in Functions," Radians,
page 550 and Chapter 1, "PeopleCode Built-in Functions," Tan, page 673

SinglePaymentPV

Syntax

SinglePaymentPV(int_rate,n_per)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 651

Description

Use the SinglePaymentPV function to calculate the future value of a single monetary unit after a specified
number of periods at a specified interest rate.

Parameters

Parameter Description

int_rate A number representing the interest rate at which value is accrued per period.

n_per A number specifying the number of periods on which to base the calculated value.

Returns

Returns a number value equal to the value of the unit after n_per periods at an interest rate of int_rate per
period.

Example

The example calculates &PMT as .857338820301783265:

&PMT = SinglePaymentPV(8, 2);

See Also

Chapter 1, "PeopleCode Built-in Functions," UniformSeriesPV, page 720

SortScroll

Syntax

SortScroll(level,scrollpath,sort_fields)

Where scrollpath is:

[RECORD.level1_recname, [RECORD.level2_recname,] RECORD.target_recname

and where sort_fields is a list of field specifiers in the form:

[recordname.]field_1, order_1 [, [recordname.]field_2, order_2]. . .

Description

The SortScroll function programmatically sorts the rows in a scroll area on the active page. The rows can be
sorted on one or more fields.

PeopleCode Built-in Functions Chapter 1

652 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. This function remains for backward compatibility only. Use the Sort rowset method instead.

The type of sort done by this function, that is, whether it is a linguistic or binary sort, is determined by the
Sort Order Option on the PeopleTools Options page.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," Sort

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

Parameters

Parameter Description

level Integer specifying the level of the scroll to sort. It can be 1, 2, or 3.

scrollpath A construction that specifies a scroll area in the component buffer.

sort_fields A list of field and order specifiers which act as sort keys. The rows in the scroll
area are sorted by the first field in either ascending or descending order, then by
the second field in either ascending or descending order, and so on.

[recordname.]field_n Specifies a sort key field in target_recname. The recordname prefix is required if
the call to SortScroll is in a record other than target_recname.

order_n A single-character string. "A" specifies ascending order; "D" specifies descending
order.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The first example repopulates a scroll in a page programmatically by first flushing its contents, selecting new
contents using ScrollSelect, then sorting the rows in ascending order by EXPORT_OBJECT_NAME:

Function populate_scrolls;
 ScrollFlush(RECORD.EXPORT_OBJECT);
 ScrollSelect(1, RECORD.EXPORT_OBJECT, RECORD.EXPORT_OBJECT,
 "where export_type = :EXPORT_TYPE_VW.EXPORT_TYPE");
 SortScroll(1, RECORD.EXPORT_OBJECT, EXPORT_OBJECT.EXPORT_OBJECT_NAME, "A");
End-function;

The second example sorts the rows on scroll level one by primary and secondary key fields:

SortScroll(1,RECORD.EN_BOM_COMPS,EN_BOM_COMPS.SETID,"A",
 EN_BOM_CMOPS.INV_ITEM_ID,"A");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 653

See Also

Chapter 1, "PeopleCode Built-in Functions," HideScroll, page 441; Chapter 1, "PeopleCode Built-in
Functions," RowScrollSelect, page 584; Chapter 1, "PeopleCode Built-in Functions," RowScrollSelectNew,
page 586; Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591; Chapter 1, "PeopleCode Built-
in Functions," ScrollSelectNew, page 593 and Chapter 1, "PeopleCode Built-in Functions," UnhideScroll,
page 718

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," PeopleTools Options

Split

Syntax

Split(string, separator)

Description

Use the Split function to convert a string into an array of strings by looking for the string separator in the
given string.

Note. Split does not split an array.

If separator is omitted, a blank is used.

If separator is a null string (""), the string is split into single characters.

If separator is the last character in the string, you will not get an empty string. For example, in the following
code, &array only has a value of 2:

&test = "value1:value2:";

&array = Split(&test, ":");

Parameters

Parameter Description

string The string to be converted into an array

separator The character used for dividing the string.

Returns

Returns a reference to the array.

PeopleCode Built-in Functions Chapter 1

654 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The following code produces in &AS the array ("This", "is", "a", "simple", "example.").

&STR = "This is a simple example.";

&AS = Split(&STR);

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateArray, page 141 and Chapter 1, "PeopleCode Built-in
Functions," CreateArrayRept, page 144

PeopleTools 8.52: PeopleCode API Reference, "Array Class"

SQLExec

Syntax

SQLExec({sqlcmd | SQL.sqlname}, bindexprs,outputvars)

where bindexprs is a list of expressions, one for each :n reference within sqlcmd or the text found in the SQL
defintion sqlname, in the form:

inexpr_1 [, inexpr_2]. . .

and where outputvars is a list of variables, record fields, or record object references, one for each column
selected by the SQL command, in the form:

out_1 [, out_2]. . .

Description

Use the SQLExec function to execute a SQL command from within a PeopleCode program by passing a SQL
command string. The SQL command bypasses the Component Processor and interacts with the database
server directly. If you want to delete, insert, or update a single record, use the corresponding PeopleCode
record object method.

If you want to delete, insert, or update a series of records, all of the same type, use the CreateSQL or GetSQL
functions, then the Execute SQL class method.

Note. SQLExec opens a new database cursor each time it executes.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 655

Limitation of SQLExec SELECT Statement

 SQLExec can only Select a single row of data. If your SQL statement (or your SQL.sqlname statement)
retrieves more than one row of data, SQLExec sends only the first row to its output variables. Any subsequent
rows are discarded. This means if you want to fetch only a single row, SQLExec can perform better than the
other SQL functions, because only a single row is fetched. If you need to SELECT multiple rows of data, use
the CreateSQL or GetSQL functions and the Fetch SQL class method. You can also use ScrollSelect or one of
the Select methods on a rowset object to read rows into a (usually hidden) work scroll.

Note. The PeopleSoft record name specified in the SQL SELECT statement must be in uppercase.

Limitations of SQLExec UPDATE, DELETE, and INSERT Statements

SQLExec statements that result in a database update (specifically, UPDATE, INSERT, and DELETE) can
only be issued in the following events:

• SavePreChange

• WorkFlow

• SavePostChange

• FieldChange

Remember that SQLExec UPDATEs, INSERTs, and DELETEs go directly to the database server, not to the
Component Processor (although SQLExec can look at data in the buffer using bind variables included in the
SQL string). If a SQLExec assumes that the database has been updated based on changes made in the
component, that SQLExec can be issued only in the SavePostChange event, because before SavePostChange
none of the changes made to page data has actually been written back to the database.

Setting Data Fields to Null

SQLExec does not set Component Processor data buffer fields to NULL after a row not found fetching error.
However, it does set fields that aren't part of the Component Processor data buffers to NULL. Work record
fields are also reset to NULL.

Using Meta-SQL in SQLExec

Different DBMS platforms have slightly different formats for dates, times, and date/times; and PeopleSoft has
its own format for these data types as well. Normally the Component Processor performs any necessary
conversions when platform-specific data types are read from the database into the buffer or written from the
buffer back to the database.

When a SQLExec statement is executed, these automatic conversions do not take place. Instead, you need to
use meta-SQL functions inside the SQL command string to perform the conversions. The basic types of meta-
SQL functions are:

• General functions that expand at runtime to give you lists of fields, key fields, record fields, and so on.
%InsertSelect or %KeyEqual are typical examples.

• In functions that expand at runtime into platform-specific SQL within the WHERE clause of a SELECT
or UPDATE statement or in an INSERT statement. %DateIn is a typical example.

PeopleCode Built-in Functions Chapter 1

656 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Out functions that expand at runtime into platform-specific SQL in the main clause of SELECT statement.
%DateOut is a typical example.

Following is an example of a SQL SELECT using both and "in" and "out" metastring:

select emplid, %dateout(effdt) from PS_CAR_ALLOC a where car_id = '" |⇒
 ®ISTRATION_NO | "' and plan_type = '" | &PLAN_TYPE | "' and a.effdt = ⇒
(select max (b.effdt) from PS_CAR_ALLOC b where a.emplid=b.emplid and b.effdt <=⇒
 %currentdatein) and start_dt <= %currentdatein and (end_dt is null or end_dt >=⇒
 %currentdatein)";

See Chapter 2, "Meta-SQL Elements," page 747.

Bind Variables in SQLExec

Bind variables are references within the sqlcmd string to record fields listed in bindvars. Within the string, the
bind variables are integers preceded by colons:

 :1, :2,. . .

The integers need not in numerical order. Each of these :n integers represents a field specifier in the bindvars
list, so that :1 refers to the first field reference in bindvars, :2 refers to the second field reference, and so on.

For example, in the following statement:

SQLExec("Select sum(posted_total_amt)
 from PS_LEDGER
 where deptid between :1 and :2", DEPTID_FROM, DEPTID_TO, &SUM);

:1 is replaced by the value contained in the record field DEPTID_FROM; :2 is replaced by the value
contained in the record field DEPTID_TO.

Note the following points:

• Bind variables can be used to refer to long character (longchar) fields. Long character fields are
represented in PeopleCode as strings. You should use %TextIn() meta-SQL to ensure these fields are
represented correctly on all database platforms.

• Bind variables can be passed as parameters to meta-SQL functions, for example:

SQLExec(". . .%datein(:1). . .", START_DT, &RESULT)

• If a bind variable :n is a Date field that contains a null value, SQLExec replaces all occurrences of ":n"
located before the first WHERE clause with "NULL" and all occurrences of "= :n" located after the first
WHERE to "IS NULL".

Inline Bind Variables in SQLExec

Inline bind variables are included directly in the SQL string in the form:

:recordname.fieldname

The following example shows the same SQLExec statement with standard bind variables, then with inline
bind variables:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 657

Rem without Inline Bind Variables;
SQLExec("Select sum(posted_total_amt)
 from PS_LEDGER
 where deptid between :1 and :2", deptid_from, deptid_to, &sum);

Rem with Inline Bind Variables;
SQLExec("Select sum(posted_total_amt)
 from PS_LEDGER
 where deptid between :LEDGER.DEPTID_FROM
 and :LEDGER.DEPTID_TO", &sum);

Inline bind variables, like all field and record references enclosed in strings, are considered by PeopleTools as
a "black box". If you rename records and fields, PeopleTools does not update record and field names that are
enclosed in strings as inline bind variables. For this reason, you should use standard bind variable in
preference to inline bind variables wherever standard bind variables are available (as they are in SQLExec).

Prior to PeopleTools 8.0, PeopleCode replaced runtime parameter markers in SQL strings with the associated
literal values. For databases that offer SQL statement caching, a match was never found in the cache so the
SQL had to be re-parsed and re-assigned a query path. However, with PeopleTools 8.0, PeopleCode passes in
bind variable parameter markers. For databases with SQL caching, this can offer significant performance
improvements.

If you use inline bind variables, they will still be passed as literals to the database. However, if you convert
them to bind variables, you may see significant performance improvements.

Output Variables in SQLExec

If you use SQLExec to Select a row of data, you must place the data into variables or record fields so that it
can be processed. You list these variables or fields, separated by commas in the output part of the statement
following the bindvars list. Supply one variable or field for each column in the row of data retrieved by
SQLExec. They must be listed in the same order in which the columns will be selected.

The number of output variables cannot exceed 64.

Selecting Columns with Leading Spaces

When you execute a select SQL statement that returns data from a column that has leading spaces, the leading
spaces will be removed from the column in the resulting text.

Using Arrays for Bind Variables

You can now use a parameter of type Array of Any in place of a list of bind values or in place of a list of
fetch result variables. This is generally used when you do not know how many values are needed until the
code runs.

For example, suppose that you had some PeopleCode that dynamically (that is, at runtime) generated the
following SQL statement:

&Stmt = "INSERT INTO PS_TESTREC (TESTF1, TESTF2, TESTF3, TESTF4, . . . N) VALUES (:
1, :2, %DateTimeIn(:3), %TextIn(:4), . . .N)";

Suppose you have placed the values to be inserted into an Array of Any, say &AAny:

&AAny = CreateArrayAny("a", 1, %DateTime, "abcdefg", . . .N);

You can execute the insert by:

PeopleCode Built-in Functions Chapter 1

658 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SQLExec(&Stmt, &AAny);

Because the Array of Any promotes to absorb any remaining select columns, it must be the last parameter for
the SQL object Fetch method or (for results) SQLExec. For binding, it must be the only bind parameter, as it
is expected to supply all the bind values needed.

SQLExec Maintenance Issues

SQLExec statements are powerful, but they can be difficult to upgrade and maintain. If you use a SQL string
passed in the command, it's considered a "black box" by PeopleCode. If field names or table names change
during an upgrade, table and field references within the SQL string are not updated automatically. For these
reasons, you should use a SQL definition and the meta-SQL statements provided in PeopleTools 8.0, instead
of typing in a SQL string.

Generally, you should use SQLExec only when you must interact directly with the database server and none
of the ScrollSelect functions, or record class methods (which are somewhat easier to maintain) will serve your
purpose effectively.

Be Careful How You Use It

 SQLExec performs any SQL statement the current Access ID has database privileges to perform. This
normally includes SELECT, INSERT, UPDATE, and DELETE statements against application data tables.
However, you can set up users to use Access IDs with more privileges (typically, AccessIDs have full
database administrator authority). In such cases, the user could alter the structure of tables using SQLExec, or
even drop the database.

Warning! The PeopleSoft application will not stop the end user from doing anything that the Access ID has
privileges to do on the database server, so be very careful what you write in a SQLExec statement.

Parameters

Parameter Description

sqlcmd | SQL.sqlname Specify either a String containing the SQL command to be executed or a reference
to an existing SQL definition. This string can include bind variables, inline bind
variables, and meta-SQL.

bindexprs A list of expressions, each of which corresponds to a numeric (:n) bind variable
reference in the SQL command string. It can also be a reference to a record object
or an array of Any containing all the bind values. See Bind Variables in
SQLEXEC for more details.

outputvars A list of PeopleCode variables or record fields to hold the results of a SQL
SELECT. There must be one variable for each column specified in the SELECT
statement. It can also be a reference to a record object or an Array of Any that
contains all the selected values.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 659

Note. Not returning a row is not considered an error. If this is a concern, consider using the %SqlRows
system variable after your call to SQLExec.

Example

The following example, illustrates a SELECT statement in a SQLExec:

SQLExec("SELECT COUNT(*) FROM PS_AE_STMT_TBL WHERE AE_PRODUCT = :1 AND AE_APPL_ID =
 :2 AND AE_ADJUST_STATUS = 'A' ", AE_APPL_TBL.AE_PRODUCT, AE_APPL_TBL.AE_APPL_ID,
 AE_ADJ_AUTO_CNT);

Note the use of bind variables, where :1 and :2 correspond to AE_APPL_TBL.AE_PRODUCT and
AE_APPL_TBL.AE_APPL_ID. AE_ADJ_AUTO_CNT is an output field to hold the result returned by the
SELECT.

The next example is also a straightforward SELECT statement, but one which uses the %datein meta-SQL
function, which expands to appropriate platform-specific SQL for the :5 bind variable:

 SQLExec("SELECT 'X', AE_STMT_SEG FROM PS_AE_STMT_B_TBL where AE_PRODUCT = :1 AND
 AE_APPL_ID = :2 AND AE_SECTION = :3 AND DB_PLATFORM = :4 AND EFFDT = %datein(:5)
 AND AE_STEP = :6 AND AE_STMT_TYPE = :7 AND AE_SEQ_NUM = :8", AE_STMT_TBL.AE_
PRODUCT, AE_STMT_TBL.AE_APPL_ID, AE_STMT_TBL.AE_SECTION, AE_STMT_TBL.DB_PLATFORM,
 AE_STMT_TBL.EFFDT, AE_STMT_TBL.AE_STEP, AE_STMT_TBL.AE_STMT_TYPE, &SEG, &EXIST,
 &STMT_SEG);

This last example (in SavePreChange PeopleCode) passes an INSERT INTO statement in the SQL command
string. Note the use of a date string this time in the %datein meta-SQL, instead of a bind variable:

SQLExec("INSERT INTO PS_AE_SECTION_TBL (AE_PRODUCT, AE_APPL_ID, AE_SECTION, DB_
PLATFORM, EFFDT, EFF_STATUS, DESCR, AE_STMT_CHUNK_SIZE, AE_AUTO_COMMIT, AE_
SECTION_TYPE) VALUES (:1, :2, :3, :4, %DATEIN('1900-01-01'), 'A', ' ', 200,
 'N', 'P')", AE_APPL_TBL.AE_PRODUCT, AE_APPL_TBL.AE_APPL_ID, AE_SECTION, DB_
PLATFORM);

In the following example, a SQLExec statement is used to select into a record object.

Local Record &DST;

&DST = CreateRecord(RECORD.DST_CODE_TBL);
&DST.SETID.Value = GetSetId(FIELD.BUSINESS_UNIT, DRAFT_BU,
RECORD.DST_CODE_TYPE, "");
&DST.DST_ID.Value = DST_ID_AR;
SQLExec("%SelectByKeyEffDt(:1,:2)", &DST, %Date, &DST);
/* do further processing using record methods and properties */

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165; Chapter 1, "PeopleCode Built-in
Functions," FetchSQL, page 273; Chapter 1, "PeopleCode Built-in Functions," GetSQL, page 418; Chapter 1,
"PeopleCode Built-in Functions," StoreSQL, page 664 and Chapter 1, "PeopleCode Built-in Functions,"
ScrollSelect, page 591

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

PeopleCode Built-in Functions Chapter 1

660 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Sqrt

Syntax

SQRT(n)

Description

Use the Sqrt function to calculate the square root of a number.

Parameters

Parameter Description

n A number of which you want to find the square root.

Returns

Returns a number equal to the positive square root of n. If n is a negative number, Sqrt displays an error.

Example

The examples return 15, 4, and 8.42615, respectively:

&NUM = Sqrt(225);
&NUM = Sqrt(16);
&NUM = Sqrt(71);

StartWork

Syntax

StartWork()

Description

Use the StartWork function to mark the start of a unit of work.

Once this function is executed, no updates to the database are allowed until a unit of work is completed. A
unit of work is completed by an event completing (such as a FieldChange event) in which case all the
Updates are saved.

A unit of work can also be completed using the CommitWork built-in function.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 661

If a SQL failure occurs anytime during the unit of work, after the StartWork function has been called and
before the unit of work completes, all updates are rolled back, up to when the StartWork function was
executed.

This function can be used for nested component interface calls, such that if the lower level component
interface fails, any database changes made by the calling component interface can be rolled back.

Parameters

None.

Returns

None.

Example

&oCI = &SESSION.GetCompIntfc(CompIntfc.CUSTOMER);

 If &oCI <> Null Then
 .
 .
 .
 For &i = 1 To &rsCustomer.RowCount
 &recCust = &rsCustomer(&Transaction).GetRecord(Record.CUSTOMER);
 StartWork();
 If &oCI.Create() Then
 rem ***** Set CI Properties *****;
 .
 .
 .
 If Not &oCI.Save() Then
 rem ***** Error Handling *****;

 End-If;
 End-If;

 rem ***** CommmitWork ensures that all transactions between *****;
 rem ***** StartWork and CommitWork get committed to the database *****;

 CommitWork();

 &oCI.Cancel();
 .
 .
 .
 End-For;
 End-If

See Also

PeopleTools 8.52: PeopleCode API Reference, "Component Interface Classes"

PeopleCode Built-in Functions Chapter 1

662 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

StopFetching

Syntax

StopFetching()

Description

The StopFetching function is called during Row Select processing, during which rows of data that have been
selected down from the database can be filtered as they are added to the component. This function is valid
only in RowSelect PeopleCode. If StopFetching is called without DiscardRow, it adds the current row to the
component, then stops adding any more rows. If StopFetching is called with DiscardRow, the system skips
the current row and stops adding rows to the component.

 StopFetching has the same functionality as the Error function in the RowSelect event. The anomalous
behavior of Error is supported for compatibility with previous releases of PeopleTools.

Note. Row Select processing is used infrequently, because it is more efficient to filter out rows of data using a
search view or an effective-dated record before the rows are selected down to the client from the database
server.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 663

RowSelect Processing Logic

Returns

None.

PeopleCode Built-in Functions Chapter 1

664 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," DiscardRow, page 221 and Chapter 1, "PeopleCode Built-in
Functions," Error, page 253

PeopleTools 8.52: PeopleCode Developer's Guide, "PeopleCode and the Component Processor," Row Select
Processing

StoreSQL

Syntax

StoreSQL(sqlstring, [SQL.]sqlname[, dbtype[, effdt [, ownerid [, description
]]]])

Description

Use the StoreSQL function to write the given sqlstring value to a SQL definition, storing it under the name
sqlname, with the database type dbtype and the effective date effdt. If sqlname is a literal name, it must be in
the form SQL.sqlname or in quotes ("sqlname").

To specify a generic statement, that is, one that is overridden by any other matching statement, specify dbtype
as Default and effdt as the null date (or Date(19000101).

You must commit all database changes prior to using this function. This is to avoid locking critical Tools
tables and hence freezing all other users. You receive a runtime error message if you try to use this function
when there are pending database updates, and your PeopleCode program terminates. You need to commit any
database updates prior to using this function. The CommitWork PeopleCode function has been enhanced to
allow this.

Parameters

Parameter Description

sqlstring Specify the SQL string to be saved as the SQL definition. This parameter takes a
string value.

sqlname Specify the name of the SQL definition to be created. This is either in the form
SQL.sqlname or a string value giving the sqlname.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 665

Parameter Description

dbtype Specify the database type to be associated with the SQL definition. This parameter
takes a string value. If dbtype isn't specified or is null (""), it is set by default to the
current database type (the value returned from the %DbName system variable.)

Values for dbtype are as follows. These values are not case-sensitive:

• APPSERVER

• DB2

• DB2UNIX

• INFORMIX

• MICROSOFT

• ORACLE

• SYBASE

Note. Database platforms are subject to change.

effdt Specify the effective date to be associated with the SQL definition. If effdt isn't
specified, it is set by default to the current as of date, that is, the value returned
from the %AsOfDate system variable.

ownerid Specify the four character ownerId associated with this SQL statement. If not
specified, no ownerId is associated.

description Specify the description text associated with this SQL statement.

Returns

None.

Example

The following code stores the select statement as a SQL definition under the name SELECT_BY_EMPLID,
for the current database type and effective as of the current as of date:

StoreSQL("%Select(:1) where EMPLID = :2", SQL.SELECT_BY_EMPLID);

PeopleCode Built-in Functions Chapter 1

666 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateSQL, page 165; Chapter 1, "PeopleCode Built-in
Functions," DeleteSQL, page 209; Chapter 1, "PeopleCode Built-in Functions," FetchSQL, page 273; Chapter
1, "PeopleCode Built-in Functions," GetSQL, page 418; Chapter 1, "PeopleCode Built-in Functions,"
SQLExec, page 654 and Chapter 1, "PeopleCode Built-in Functions," CommitWork, page 96

Chapter 3, "System Variables," %DbName, page 817

Chapter 3, "System Variables," %AsOfDate, page 813

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

String

Syntax

String(value)

Description

Use the String to convert any non-string data type (except Object) to a string.

Normally the Component Processor automatically handles data type conversions. However, for some
operations, such as comparisons, you want to specify the data type explicitly. Assume, for example, that you
have two fields FIELD_I and FIELD_J containing number values 5000 and 10000. As character fields, 10000
is less than 5000 (because the first character in 10000 is less than the first character in 5000). As numbers,
however, 10000 is of course greater than 5000.

Note. Due to the internal representation of numbers, sometimes String represents numbers differently. If you
want to control exactly how a number is represented, use the NumberToString function.

Parameters

Parameter Description

value A value of any type other than object, to be converted to its String representation.

Returns

Returns a String value representing value.

Example

To force the comparison of the two fields as strings, you could use:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 667

if string(FIELD_1) > string(FIELD_2). . .

You can use the String function with a field object as follows:

&DATE = GetRecord(RECORD.DERIVED_HR).GetField(FIELD.EFFDT);
&STR = String(&DATE.Value);

See Also

Chapter 1, "PeopleCode Built-in Functions," Char, page 81; Chapter 1, "PeopleCode Built-in Functions,"
Exact, page 260; Chapter 1, "PeopleCode Built-in Functions," Find, page 280; Chapter 1, "PeopleCode Built-
in Functions," Left, page 477; Chapter 1, "PeopleCode Built-in Functions," Substring, page 668; Chapter 1,
"PeopleCode Built-in Functions," Value, page 725 and Chapter 1, "PeopleCode Built-in Functions,"
NumberToString, page 523

StripOffHTMLTags

Syntax

StripOffHTMLTags(HTML_text)

Description

Use the StripOffHTMLTags function to strip all HTML tags in an HTML-formatted string. The function
removes all tags in the form of "<text>" and returns plain text.

If the HTML string was generated by a rich text editor, any "<" and ">" characters in the original text are not
stripped because the rich text editor generates "<" as "<", and ">" as ">".

Parameters

Parameter Description

HTML_text A String consisting of HTML-formatted text.

Returns

String

Substitute

Syntax

Substitute(source_text,old_text,new_text)

PeopleCode Built-in Functions Chapter 1

668 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the Substitute function to replace every occurrence of a substring found in a string with a new substring.
To replace text that occurs in a specific location in a text string use the Replace function.

Parameters

Parameter Description

source_text A String in which you want to replace substrings.

old_text A String equal to the substring of source_text you want to replace.

A tilde character (~) used in the old_text parameter stands for an arbitrary number
of white spaces. For example, the following substitution: Substitute("2003*
0723* * * * ~", "* ~", "~") produces the result 2003~0723~~~~~,
not the result 2003* 0723* * * ~.

new_text A String with which to replace occurrences of old_text in source_text.

Returns

Returns a String resulting from replacing every occurrence of old_text found in source_text with new_text.

Example

The following example changes "Second Annual Conference" to "Third Annual Conference":

&newstr = Substitute("Second Annual Conference","Second","Third");

The next example sets &newstr to "cdcdcd":

&newstr = Substitute("ababab", "ab", "cd");

See Also

Chapter 1, "PeopleCode Built-in Functions," Replace, page 569

Substring

Syntax

Substring(source_str,start_pos,length)

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 669

Description

Use the Substring function to extract a substring of a specified number of characters beginning at a specified
location in a source string. If the string contains Unicode non-BMP characters, each code unit of the surrogate
pair is counted as a separate character, care should be taken not to split a surrogate pair using Substring.

If you know the exact length of source_str, and that it is null terminated, you can set length to 1 plus the exact
length of source_str to get everything from start_pos to the end.

Parameters

Parameter Description

source_str A String from which to extract a substring.

start_pos A number representing the character position in source_str where the substring
starts, starting at 1.

length A number specifying the number of characters in the substring.

Returns

Returns a String equal to a substring length characters long beginning at character start of source_str.

Example

This example sets &PAGE_NAME to the first eight characters of the name of the current page:

&PAGE_NAME = Substring(%page,1,8);

See Also

Chapter 1, "PeopleCode Built-in Functions," Char, page 81; Chapter 1, "PeopleCode Built-in Functions,"
Exact, page 260; Chapter 1, "PeopleCode Built-in Functions," Find, page 280; Chapter 1, "PeopleCode Built-
in Functions," Left, page 477; Chapter 1, "PeopleCode Built-in Functions," Right, page 580; Chapter 1,
"PeopleCode Built-in Functions," String, page 666 and Chapter 1, "PeopleCode Built-in Functions,"
Substringb, page 669

Substringb

Syntax

Substringb(source_str,start_pos,length)

PeopleCode Built-in Functions Chapter 1

670 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Note. This function has been deprecated and is no longer supported.

SwitchUser

Syntax

SwitchUser(UserID,Password, AuthToken , ExtAuthInfo)

Note. Password is not encrypted: it is passed as a string.

Description

Use the SwitchUser function to change the user ID of the current user logged onto the PeopleSoft system.

Note. SwitchUser changes the Portal user rather than the content specific user. This means it changes the user
ID in all databases to which the user is connected.

Note. If you use SwitchUser with the AuthToken parameter, the local Integration Broker node must have a
Password or Certificate Authentication option. If the local Integration Broker node authentication option is
None, SwitchUser always fails and returns false.

The SwitchUser function might be used as follows. Suppose there is a special user ID in the system called
REGIST. REGIST only has access to the self-registration component. The self-registration component has
logic that asks the user a list of questions and information based on data in the database. Are you a customer,
vendor, or employee? Enter your customer name. Enter other information related to this customer account
(such as information only this customer knows or information this customer just received from a workflow
email). After the program verifies the information, create a User ID for this customer. After the user ID is
created, the program should take the user directly into their transaction without having to logoff, by using
SwitchUser.

Considerations Using SwitchUser

You must never call SwitchUser from Signon PeopleCode. SwitchUser calls Signon PeopleCode, therefore
creating an infinite loop.

Do not use SwitchUser in Application Engine or in asynchronous notification PeopleCode.

Do not use SwitchUser in a Component Interface. The user is only switched for the duration of the service
call. During the next call, the user reverts to the original user.

Do not try to use the PeopleCode Debugger with the SwitchUser function. Only the first user is logged into
the PeopleCode Debugger. Once the switch occurs, any breakpoints, logging, and so on, are no longer
executed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 671

Parameters

Parameter Description

UserID Specify the User ID to be started. This parameter takes a string value.

Password Specify the Password for this User ID. This parameter takes a string value.

Note. Password is not encrypted: it is passed as a string.

AuthToken Specify a single signon authentication token used to authenticate the user. If you
are authenticating the user by Userid and password, specify a NULL value for this
parameter, that is, two quotation marks with no blank space between them (""). If
you specify a token, and the token is valid, SwitchUser switches to the User ID
embedded in the token. All other parameters are ignored if a token is used. This
parameter takes a string value.

ExtAuthInfo Specify binary data (encoded as a base64 string) used as additional input to
authenticate the user. If your application doesn't use external authentication
information, specify a NULL value for this parameter, that is, two quotation marks
with no blank space between them ("").

Returns

A Boolean value: True if user ID is switched successfully, False otherwise.

Example

The most common use of SwitchUser specifies only a Userid and Password. If the SwitchUser function
executes successfully, you should check to see if the password for the new user id has expired.

If Not SwitchUser("MYUSERID", "MYPASSWORD", "", "") Then
 /* switch failed, do error processing */
Else
 If %PasswordExpired Then
 /* application specific processing for expired passwords */
 End-If;
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetPasswordExpired, page 631

Chapter 3, "System Variables," %UserId, page 837

Chapter 3, "System Variables," %PasswordExpired, page 827

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

PeopleCode Built-in Functions Chapter 1

672 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SyncRequestXmlDoc

Syntax

SyncRequestXmlDoc(&XmlDoc,Message.MessageName [, Node.NodeName])

Description

Use the SyncRequestXmlDoc function to send a synchronous message that is based on an XmlDoc object.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class SyncRequest method instead.

See PeopleTools 8.52: PeopleCode API Reference, "Message Classes," SyncRequest.

The XmlDoc object must already be instantiated and populated. The message included in the function call
should be an unstructured message, that is, one that isn't based on a hierarchical record structure.

If you want to handle an XmlDoc as a Message object, you need to define a Message object with a
hierarchical structure and migrate the data in the XmlDoc object into the Message object.

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object that you want to
send as a synchronous message.

MessageName Specify an already existing nonrowset-based message, prefixed with the reserved
word Message.

NodeName Specify a node. This is for Sender Specified Routing (SSR) prefixed with the
reserved word Node. The node defines the target for the published message.

Returns

A reference to an XmlDoc object that is the response.

Example

Local XmlDoc &reqdoc, &respdoc;

. . .

&respdoc = SyncRequestXmlDoc(&reqdoc, Message.MY_MESSAGE, Node.MY_NODE);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 673

See Also

Chapter 1, "PeopleCode Built-in Functions," PublishXmlDoc, page 540 and PeopleTools 8.52: PeopleCode
API Reference, "Message Classes," SyncRequest

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

Tan

Syntax

Tan(angle)

Description

Use the Tan function to calculate the tangent of the given angle (opposite / adjacent).

Parameters

Parameter Description

angle A value in radians.

Note. In theory, values of angle such that angle mod pi = pi/2 are not valid for this function, because inputs
approaching such values produce results that tend toward infinity. In practice, however, no computer system
can represent such values exactly. Thus, for example, the statement Tan(Radians(90)) produces a
number close to the largest value PeopleCode can represent, rather than an error.

Returns

A real number.

Example

The following example returns the tangent of an angle measuring 1.2 radians:

&MY_RESULT = Tan(1.2);

PeopleCode Built-in Functions Chapter 1

674 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," Acos, page 35; Chapter 1, "PeopleCode Built-in Functions,"
Asin, page 57; Chapter 1, "PeopleCode Built-in Functions," Atan, page 58; Chapter 1, "PeopleCode Built-in
Functions," Cos, page 138; Chapter 1, "PeopleCode Built-in Functions," Cot, page 139; Chapter 1,
"PeopleCode Built-in Functions," Degrees, page 200; Chapter 1, "PeopleCode Built-in Functions," Radians,
page 550 and Chapter 1, "PeopleCode Built-in Functions," Sin, page 650

throw

Syntax

throwexpression

Description

Use the throw statement to throw an exception. This can be used to create your own exceptions, instead of
using ones generated by the system.

Parameters

Parameter Description

expression Specify the exception object that you want to throw. This can either be an already
defined and created exception object, or one that you create with the Throw
statement.

Returns

None.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 675

Example

Local Exception &ex;

Function t1(&i As integer) Returns number

 Local number &res = &i / 0;

End-Function;

Function t2
 throw CreateException(2, 160, "'%1' doesn't support property or method '%2'",⇒
 "SomeClass", "SomeMethod");
End-Function;

try

 /* This will cause a divide by 0 leading to an exception */
 /* This code will never be caught since t1(2) will resume execution */
 /* in the catch block below. It is here to show how an exception can */
 /* be thrown directly bythe PeopleCode itself. */

 t2();

 Local number &res = t1(2);
catch Exception &caught
 MessageBox(0, "", 0, 0, "Caught exception: " | &caught.ToString());
end-try;

See Also

Chapter 1, "PeopleCode Built-in Functions," CreateException, page 149 and Chapter 1, "PeopleCode Built-in
Functions," try, page 711

PeopleTools 8.52: PeopleSoft Integration Broker, "Managing Messages"

Time

Syntax

Time(n)

Description

Use the Time function to derive a Time value from a Number value. Use it to assign values to Time fields and
variables, since Time values cannot be directly represented as constants.

PeopleCode Built-in Functions Chapter 1

676 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

n A Number in the form HHMMSS[.SSSSSS], representing a time to a precision of
up to .000001 second, based on a 24-hour clock.

Returns

Returns a Time value based on the number n.

Example

The example sets &START_TIME to 12:34:56.123456:

&START_TIME = Time(123456.123456);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
DateTimeValue, page 186; Chapter 1, "PeopleCode Built-in Functions," Time3, page 676 and Chapter 1,
"PeopleCode Built-in Functions," TimeValue, page 679

Time3

Syntax

Time3(hours,mins,secs)

Description

Use the Time3 function to derive a Time value from three supplied numbers. It can be used to assign values
to Time fields and variables, since Time values cannot be directly represented as constants.

Parameters

Parameter Description

hours A Number in the form HH between 00 and 23, representing hours on a 24-hour
clock.

mins A Number in the form MM between 00 and 59, representing minutes of the hour.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 677

Parameter Description

secs A Number in the form SS[.SSSSSS], between 00 and 59.999999, representing
seconds.

Returns

Returns a Time value based equal to the sum of the three input values representing hours, minutes, and
seconds, to a precision of .000001 second.

Example

The example sets &START_TIME to 11.14.09.300000:

&START_TIME = Time3(11,14,9.3);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date3, page 177; Chapter 1, "PeopleCode Built-in Functions,"
DateTime6, page 178; Chapter 1, "PeopleCode Built-in Functions," Time, page 675 and Chapter 1,
"PeopleCode Built-in Functions," TimeValue, page 679

TimePart

Syntax

TimePart(datetime_val)

Description

Use the TimePart function to derive the time component of a DateTime value.

Parameters

Parameter Description

datetime_val A DateTime value from which to extract the time component.

Returns

Returns a Time value.

PeopleCode Built-in Functions Chapter 1

678 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

The example set &T to 15.34.35.000000:

&DT = DateTimeValue("12/13/1993 3:34:35 PM");
&T = TimePart(&DT);

See Also

Chapter 1, "PeopleCode Built-in Functions," DatePart, page 178; Chapter 1, "PeopleCode Built-in
Functions," Hour, page 444; Chapter 1, "PeopleCode Built-in Functions," Minute, page 506 and Chapter 1,
"PeopleCode Built-in Functions," Second, page 595

TimeToTimeZone

Syntax

TimeToTimeZone(OldTime, SourceTimeZone, DestinationTimeZone);

Description

Use the TimeToTimeZone function to convert a time field from the time specified by SourceTimeZone to the
time specified by DestinationTimeZone.

Considerations Using this Function

This function should generally be used in PeopleCode, not for displaying time. If you take a time value,
convert it from base time to client time, then try to display this time, depending on the user settings, when the
time is displayed the system might try to do a second conversion on an already converted time. This function
could be used as follows: suppose a user wanted to check to make sure a time was in a range of times on a
certain day, in a certain timezone. If the times were between 12 AM and 12PM in EST, these resolve to 9 PM
and 9AM PST, respectively. The start value is after the end value, which makes it difficult to make a
comparison. This function could be used to do the conversion for the comparison, in temporary fields, and not
displayed at all.

Parameters

Parameter Description

OldTime Specify the time value to be converted.

SourceTimeZone Specify the time zone that OldTime is in. Values are:

timezone - a time zone abbreviation or a field reference to be used for converting
OldTime.

Local - use the local time zone for converting OldTime.

Base - use the base time zone for converting OldTime.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 679

Parameter Description

DestinationTimeZone Specify the time zone that you want to convert OldTime to. Values are:

timezone - a time zone abbreviation or a field reference to be used for converting
OldTime.

Local - use the local time zone for converting OldTime.

Base - use the base time zone for converting OldTime.

Returns

A converted time value.

Example

The following example TESTTM is a time field with a value 01/01/99 10:00:00. This example converts
TESTTM from Eastern Standard Time (EST) to Pacific Standard Time (PST).

&NEWTIME = TimeToTimeZone(TESTTM, "EST", "PST");

&NEWTIME is a time variable with a value of 7:00:00AM.

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," ConvertTimeToBase, page 126; Chapter 1, "PeopleCode Built-in Functions,"
FormatDateTime, page 286; Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings, page 461;
Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185 and Chapter 1, "PeopleCode
Built-in Functions," TimeZoneOffset, page 680

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities"

TimeValue

Syntax

TimeValue(time_str)

Description

Use the TimeValue function to calculate a Time value based on an input string. This function can be used to
assign a value to a Time variable or field using a string constant, since a Time value cannot be represented
with a constant.

PeopleCode Built-in Functions Chapter 1

680 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

time_str A string representing the time. It can either be in the form HH:MM:SS.SSSSSS,
based on a 24-hour clock, or in the form HH:MM:SS indicator, where indicatoris
either AM or PM.

Returns

Returns a Time value based on time_str.

Example

The example sets &START_TIME to 12.13.00.000000:

&START_TIME = TimeValue("12:13:00 PM");

See Also

Chapter 1, "PeopleCode Built-in Functions," DateTimeValue, page 186 and Chapter 1, "PeopleCode Built-in
Functions," DateValue, page 188

TimeZoneOffset

Syntax

TimeZoneOffset(DateTime {[, timezone | "Base" | "Local"]})

Description

Use the TimeZoneOffset function to generate a time offset for datetime. The offset represents the relative
time difference to GMT. If no other parameters are specified with datetime, the server's base time zone is
used.

Parameters

Parameter Description

datetime Specify the DateTime value to be used for generating the offset.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 681

Parameter Description

timezone | Local | Base Specify a value to be used with datetime. The values are:

timezone - a time zone abbreviation or a field reference to be used with datetime.

Local - use the local time zone with datetime.

Base - use the base time zone with datetime.

Returns

An offset string of the following format:

Shh:mm

where

 S is + or -, with + meaning East of Greenwich

 hh is the hours of offset

 mm is the minutes of offset

See Also

Chapter 1, "PeopleCode Built-in Functions," ConvertDatetimeToBase, page 123; Chapter 1, "PeopleCode
Built-in Functions," ConvertTimeToBase, page 126; Chapter 1, "PeopleCode Built-in Functions,"
FormatDateTime, page 286; Chapter 1, "PeopleCode Built-in Functions," IsDaylightSavings, page 461;
Chapter 1, "PeopleCode Built-in Functions," DateTimeToTimeZone, page 185 and Chapter 1, "PeopleCode
Built-in Functions," TimeToTimeZone, page 678

TotalRowCount

Syntax

TotalRowCount(scrollpath)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the TotalRowCount function to calculate the number of rows (including rows marked as deleted) in a
specified scroll area of a page.

PeopleCode Built-in Functions Chapter 1

682 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. This function remains for backward compatibility only. Use the RowCount rowset property instead.

Rows that have been marked as deleted remain accessible to PeopleCode until the database has been updated;
that is, all the way through SavePostChange.

 TotalRowCount is used to calculate the upper limit of a For loop if you want the loop to go through rows in
the scroll that have been marked as deleted. If the logic of the loop does not need to execute on deleted rows,
use ActiveRowCount instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," ActiveRowCount, page 36; Chapter 1, "PeopleCode Built-in
Functions," For, page 286 and PeopleTools 8.52: PeopleCode API Reference, "Rowset Class," RowCount

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

Returns

Returns a Number equal to the total rows (including rows marked as deleted) in the target scroll.

Example

The example uses TotalRowCount to calculate the limiting value on a For loop, which loops through all the
rows in the scroll area:

&ROW_COUNT = TotalRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1),
 RECORD.BUS_EXPENSE_DTL);
for &I = 1 to &ROW_COUNT
 /* do something with row &I that has to be done to deleted as well as active rows⇒
 */
end-for;

See Also

Chapter 1, "PeopleCode Built-in Functions," ActiveRowCount, page 36; Chapter 1, "PeopleCode Built-in
Functions," CopyRow, page 136; Chapter 1, "PeopleCode Built-in Functions," CurrentRowNumber, page 175
; Chapter 1, "PeopleCode Built-in Functions," FetchValue, page 275 and Chapter 1, "PeopleCode Built-in
Functions," For, page 286

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 683

Transfer

Syntax

Transfer(new_instance,MENUNAME.menuname,BARNAME.barname,ITEMNAME.menu_itemname,
PAGE.component_item_name,action [, keylist] [, AutoSearch]);

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Description

Use the Transfer function to close the current page and transfers the end user to another page, either within
the current component or in another component. Transfer can either start a new instance of the application
and transfer to the new page there, or close the old page and transfer to the new one in the same instance of
PeopleTools.

Note. The Transfer function cannot be used with an Internet script or an Application Engine program.

 Transfer is more powerful than the simpler TransferPage, which permits a transfer only within the current
component in the current instance of PeopleTools. However, any variables declared as component do not
remain defined after using the Transfer function, whether you're transferring within the same component or
not.

You can use Transfer from a secondary page (either with or without using a pop-up menu) only if you're
transferring to a separate instance of a component. You cannot use Transfer from a secondary page if you're
not transferring to a separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly, using
the values provided from keylist as search key values. A valid key means that enough information is provided
to uniquely identify a row: not all of the key values need to be provided. If no key is provided, or if the key is
invalid, or if not enough information is provided to identify a unique row, the search dialog box displays,
enabling the end user to search for a row.

Note. If Force Search Processing is specified in Application Designer for the component, the search dialog
box always displays, whether the keylist is provided or not.

If barname+itemname+component_item_name is an invalid combination, an error message displays
explaining that there were invalid transfer parameters.

In the component_item_name parameter, make sure to pass the component item name for the page, not the
page name. The component item name is specified in the component definition, in the Item Name column on
the row corresponding to the specific page, as shown here:

PeopleCode Built-in Functions Chapter 1

684 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component Item Name

Differences Between Transfer and TransferExact

When you do a transfer, the first thing the system checks is whether all the key field values for the target
component are provided.

If all the keys aren't provided, the search page is displayed. In this scenerio, TransferExact and Transfer are
the same.

If all the keys are provided, a Select is done against the search record for that component using those keys.

• If you use the Transfer function, a LIKE operator is used in the Where clause of that Select for each key.

• If you use the TransferExact fuction, the equals operator is used in the Where clause for each key. Using
equals allows the database to take full advantage of key indexes for maximum performance.

See Chapter 1, "PeopleCode Built-in Functions," TransferExact, page 687.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Considerations for the Transfer Function and Catching Exceptions

Using the Transfer function inside a try-catch block does not catch PeopleCode exceptions thrown in the new
component. Starting a new component starts a brand new PeopleCode evaluation context. Exceptions are only
caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to the
DoModal, but not any exceptions that are thrown within the new component:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 685

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Menu Definitions"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Component Definitions"

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance, or to False to use the
current window and replace the page already displayed.

Menuname The name of the menu where the page is located prefixed with the reserved word
MENUNAME.

Barname The name of the menu bar where the page is located, prefixed with the reserved
word BARNAME.

menu_itemname The name of the menu item where the page is located, prefixed with the reserved
word ITEMNAME.

component_item_name The component item name of the page to be displayed on top of the component
when it displays. The component item name is specified in the component
definition. This parameter must be prefixed with the keyword PAGE.

Action Uses a single-character code as in %Action. Valid actions are "A" (add), "U"
(update), "L" (update/display all), "C" (correction), and "E" (data entry).

PeopleCode Built-in Functions Chapter 1

686 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, or if Force Search Processing is selected for the component,
the search dialog box appears.

If the keylist parameter is not supplied then the destination component's search key
must be found as part of the source components level 0 record buffer.

AutoSearch Specify whether an automatic search on the target search page is executed after the
transfer. This means the search results are already shown without the end user
having to click the Search button. This parameter takes a Boolean value: True, do
an automatic search. The default value is False (that is, the user has to click the
Search button).

Returns

None.

Example

The example starts a new instance of PeopleTools and transfers to a new page in Update mode. The data in
the new page is selected by matching the EMPLID field from the old page.

Transfer(true, MENUNAME.ADMINISTER_PERSONNEL, BARNAME.USE, ITEMNAME. PERSONAL_⇒
DATA, PAGE.PERSONAL_DATA_1, "U");

The following example is used with workflow.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 687

Local Record &WF_WL_DEFN_VW, &MYREC, &PSSTEPDEFN;

If All(WF_WORKLIST_VW.BUSPROCNAME) Then

 &BPNAME = FetchValue(WF_WORKLIST_VW.BUSPROCNAME, CurrentRowNumber());
 &WLNAME = FetchValue(WF_WORKLIST_VW.WORKLISTNAME, CurrentRowNumber());
 &INSTANCEID = FetchValue(WF_WORKLIST_VW.INSTANCEID, CurrentRowNumber());

 &WF_WL_DEFN_VW = CreateRecord(RECORD.WF_WL_DEFN_VW);
 &PSSTEPDEFN = CreateRecord(RECORD.PSSTEPDEFN);

 SQLExec("select %List(SELECT_LIST, :1) from %Table(:1) where Busprocname = :2⇒
 and Worklistname = :3", &WF_WL_DEFN_VW, &BPNAME, &WLNAME, &WF_WL_DEFN_VW);

 SQLExec("select %List(SELECT_LIST, :1) from %Table(:1) where Activityname = :2⇒
 and Stepno = 1 and Pathno = 1", &PSSTEPDEFN, &WF_WL_DEFN_VW.ACTIVITYNAME.Value,⇒
 &PSSTEPDEFN);

 Evaluate &PSSTEPDEFN.DFLTACTION.Value
 When = 0
 &ACTION = "A";
 When = 1
 &ACTION = "U";
 When-Other
 &ACTION = "U";
 End-Evaluate;

 &MYREC = CreateRecord(@("RECORD." | &WF_WL_DEFN_VW.WLRECNAME.Value));

 SQLExec("Select %List(SELECT_LIST, :1) from %Table(:1) where Busprocname = :2⇒
 and Worklistname = :3 and Instanceid = :4", &MYREC, &BPNAME, &WLNAME,⇒
 &INSTANCEID, &MYREC);

 Transfer(True, @("MENUNAME." | &PSSTEPDEFN.MENUNAME.Value), @("BARNAME." |⇒
 &PSSTEPDEFN.BARNAME.Value), @("ITEMNAME." | &PSSTEPDEFN.ITEMNAME.Value), @⇒
("PAGE." | &PSSTEPDEFN.PAGEITEMNAME.Value), &ACTION, &MYREC);

 End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699; Chapter 1, "PeopleCode Built-in
Functions," DoModalComponent, page 226 and Chapter 1, "PeopleCode Built-in Functions," TransferExact,
page 687

TransferExact

Syntax

TransferExact(new_instance,MENUNAME.menuname,BARNAME.barname,ITEMNAME.
menu_itemname,PAGE.component_item_name,action [, keylist] [, AutoSearch]);

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

PeopleCode Built-in Functions Chapter 1

688 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the TransferExact function to close the current page and transfers the user to another page, either within
the current component or in another component. TransferExact can either start a new instance of the
application and transfer to the new page there, or close the old page and transfer to the new one in the same
instance of PeopleTools.

Note. The TransferExact function cannot be used with an internet script or an application engine program.

 TransferExact is more powerful than the simpler TransferPage, which permits a transfer only within the
current component in the current instance of PeopleTools. However, any variables declared as Component do
not remain defined after using the TransferExact function, whether you're transferring within the same
component or not.

You can use TransferExact from a secondary page (either with or without using a pop-up menu) only if you're
transferring to a separate instance of a component. You cannot use TransferExact from a secondary page if
you're not transferring to a separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly, using
the values provided from keylist as search key values. A valid key means that enough information is provided
to uniquely identify a row: not all of the key values need to be provided. If no key is provided, or if the key is
invalid, or if not enough information is provided to identify a unique row, the search dialog box displays,
enabling the end user to search for a row.

Note. If Force Search Processing is specified in Application Designer for the component, the search dialog
box always displays, whether the keylist is provided or not.

If barname+itemname+component_item_name is an invalid combination, an error message displays
explaining that there were invalid transfer parameters.

In the component_item_name parameter, make sure to pass the component item name for the page, not the
page name. The component item name is specified in the component definition, in the Item Name column on
the row corresponding to the specific page, as shown here:

Component Item Name

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 689

Differences Between Transfer and TransferExact

When you do a transfer, the first thing the system checks is whether all the key field values for the target
component are provided.

If all the keys aren't provided, the search page is displayed. In this scenario, TransferExact and Transfer are
the same.

If all the keys are provided, a Select is done against the search record for that component using those keys.

• If you use the Transfer function, a LIKE operator is used in the Where clause of that Select for each key.

• If you use the TransferExact fuction, the equals operator is used in the Where clause for each key. Using
equals allows the database to take full advantage of key indexes for maximum performance.

See Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Considerations Using Exceptions and the TransferExact Function

Using the TransferExact function inside a try block to transfer a user to a page in another component does not
catch PeopleCode exceptions thrown in the new component. Starting a new component starts a brand new
PeopleCode evaluation context. Catches are only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to using
the DoModal function, but not any exceptions that are thrown within the new component.

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

PeopleCode Built-in Functions Chapter 1

690 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Menu Definitions"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Component Definitions"

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance, or to False to use the
current window and replace the page already displayed.

Menuname The name of the menu where the page is located prefixed with the reserved word
MENUNAME.

Barname The name of the menu bar where the page is located, prefixed with the reserved
word BARNAME.

menu_itemname The name of the menu item where the page is located, prefixed with the reserved
word ITEMNAME.

component_item_name The component item name of the page to be displayed on top of the component
when it displays. The component item name is specified in the component
definition. This parameter must be prefixed with the keyword PAGE.

Action Uses a single-character code as in %Action. Valid actions are "A" (add), "U"
(update), "L" (update/display all), "C" (correction), and "E" (data entry).

Keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, or if Force Search Processing is selected for the component,
the search dialog box appears.

If the keylist parameter is not supplied then the destination component's search key
must be found as part of the source components level 0 record buffer.

AutoSearch Specify whether an automatic search on the target search page is executed after the
transfer. This means the search results are already shown without the end user
having to click the Search button. This parameter takes a Boolean value: True, do
an automatic search. The default value is False (that is, the user has to click the
Search button).

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 691

Returns

None.

Example

The example starts a new instance of PeopleTools and transfers to a new page in Update mode. The data in
the new page is selected by matching the EMPLID field from the old page.

TransferExact(true, MENUNAME.ADMINISTER_PERSONNEL, BARNAME.USE, ITEMNAME.PERSONAL_⇒
DATA, PAGE.PERSONAL_DATA_1, "U");

Using the following PeopleCode program:

&MYREC = CreateRecord(RECORD.QEOPC_9A2FIELDS);
&MYREC.QE_TITLE.Value = "KEY";

Transfer(False, MenuName.QE_PEOPLECODE_PAGES, BarName.USE, Item⇒
Name.QEPC9PROPSTESTS, Page.QEOPC_9A2FIELDS, "U", &MYREC);

The following SQL is produced:

SELECT DISTINCT TOP 301 QE_TITLE, QEPC_ALTSRCH FROM PS_QEOPC_9A2FIELDS
WHERE QE_TITLE LIKE 'KEY%' ORDER BY QE_TITLE

If you change the Transfer to TransferExact:

&MYREC = CreateRecord(RECORD.QEOPC_9A2FIELDS);
&MYREC.QE_TITLE.Value = "KEY";

TransferExact(False, MenuName.QE_PEOPLECODE_PAGES, BarName.USE, Item⇒
Name.QEPC9PROPSTESTS, Page.QEOPC_9A2FIELDS, "U", &MYREC);

The following SQL is produced:

SELECT DISTINCT TOP 301 QE_TITLE, QEPC_ALTSRCH FROM PS_QEOPC_9A2FIELDS
WHERE QE_TITLE=:1 ORDER BY QE_TITLE

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699; Chapter 1, "PeopleCode Built-in
Functions," DoModalComponent, page 226 and Chapter 1, "PeopleCode Built-in Functions," Transfer, page
683

TransferMobilePage

Syntax

TransferMobilePage([MOBILEPAGE.]PageName,Tab,&CIObject);

PeopleCode Built-in Functions Chapter 1

692 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Note. PeopleSoft Mobile Agent is a deprecated product. This mobile function currently exists for backward
compatibility only.

Use the TransferMobilePage function to close the current Mobile Page Detail View and transfer the end user
to another Mobile Page Detail View. This function is only supported in the OnChange event or on the OnInit
event for level 0 objects.

A new working set is not started when transferring between objects in the same component.

The Tab parameter takes the definitional number, not the number of the tab that is displaying. For example, if
there are three tabs defined, but only tabs one and three are showing (you've hidden tab number two) you
would specify a 3 for the Tab parameter to transfer to tab number three, even though it is displaying as tab
number two.

Note. When a user is transferred using TransferMobilePage, the Return To list hyperlink is not displayed on
the Mobile Page.

Parameters

Parameter Description

PageName Specify the mobile page definition used to display the page. This parameter takes a
string value. It is good programming practice to preface this parameter with the
keyword MOBILEPAGE, since it provides automatic rename support, however,
it is not necessary to use it.

Tab Specify an integer (1 to n) that determines what tab to make active. This parameter
takes a number value.

&CIObject Specify an already instantiated mobile object.

Returns

None.

Example

&MyCI = %Session.GetCompIntfc(COMPINTFC.myci);

&MyCI.Key1 = "x";
&MyCI.Ket2 = "y";

If Not(&MyCI.Get()) Then;
 errorstuff();
End-if;

Transfer(MOBILEPAGE.MyCIPageName, 1, &MyCI);

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 693

TransferModeless

Syntax

TransferModeless(MENUNAME.menuname,BARNAME.barname,ITEMNAME.menu_itemname,PAGE.
component_item_name,action [, keylist] [, AutoSearch]);

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Description

Use the TransferModeless function to open a new page in a modeless window on top of the parent window.
Only one modeless window can be opened per browser session.

The modeless window is different from a modal window launched by the DoModal and DoModalComponent
functions. The modeless window does not grey out the parent window, which allows the user to update the
modeless and parent window from the same browser session at the same time. Similar to the new_instance
parameter of the Transfer function, TransferModeless instantiates a separate instance of the component
processor so that the parent window and secondary window are completely independent PeopleCode contexts.

Important! Calling TransferModeless from a DoModal or DoModalComponent window is not supported.

However, similar to modal, secondary windows opened by the DoModal and DoModalComponent functions,
the modeless window does not include the browser title bar, browser menus, and the browser tool bars, status
bar, and tool icons associated with most browser windows.

Note. The TransferModeless function cannot be used with an Internet script or an Application Engine
program.

 TransferModeless is more powerful than the simpler TransferPage, which permits a transfer only within the
current component in the current instance of PeopleTools. However, any variables declared as component do
not remain defined after using the TransferModeless function, whether you're transferring within the same
component or not.

You can use TransferModeless from a secondary page (either with or without using a pop-up menu) only if
you're transferring to a separate instance of a component. You cannot use TransferModeless from a secondary
page if you're not transferring to a separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly, using
the values provided from keylist as search key values. A valid key means that enough information is provided
to uniquely identify a row: not all of the key values need to be provided. If no key is provided, or if the key is
invalid, or if not enough information is provided to identify a unique row, the search dialog box displays,
enabling the end user to search for a row.

PeopleCode Built-in Functions Chapter 1

694 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. If Force Search Processing is specified in Application Designer for the component, the search dialog
box always displays, whether the keylist is provided or not.

If barname+itemname+component_item_name is an invalid combination, an error message displays
explaining that there were invalid transfer parameters.

In the component_item_name parameter, make sure to pass the component item name for the page, not the
page name. The component item name is specified in the component definition, in the Item Name column on
the row corresponding to the specific page, as shown here:

Component Item Name

Differences Between TransferModeless and TransferExact

When you do a transfer, the first thing the system checks is whether all the key field values for the target
component are provided.

If all the keys aren't provided, the search page is displayed. In this scenerio, TransferExact and
TransferModeless are the same.

If all the keys are provided, a Select is done against the search record for that component using those keys.

• If you use the TransferModeless function, a LIKE operator is used in the Where clause of that Select for
each key.

• If you use the TransferExact fuction, the equals operator is used in the Where clause for each key. Using
equals allows the database to take full advantage of key indexes for maximum performance.

See Chapter 1, "PeopleCode Built-in Functions," TransferExact, page 687.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 695

Considerations for the TransferModeless Function and Catching Exceptions

Using the TransferModeless function inside a try-catch block does not catch PeopleCode exceptions thrown
in the new component. Starting a new component starts a brand new PeopleCode evaluation context.
Exceptions are only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to the
DoModal, but not any exceptions that are thrown within the new component:

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Menu Definitions"

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Component Definitions"

Parameters

Parameter Description

Menuname The name of the menu where the page is located prefixed with the reserved word
MENUNAME.

Barname The name of the menu bar where the page is located, prefixed with the reserved
word BARNAME.

menu_itemname The name of the menu item where the page is located, prefixed with the reserved
word ITEMNAME.

component_item_name The component item name of the page to be displayed on top of the component
when it displays. The component item name is specified in the component
definition. This parameter must be prefixed with the keyword PAGE.

PeopleCode Built-in Functions Chapter 1

696 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Action Uses a single-character code as in %Action. Valid actions are "A" (add), "U"
(update), "L" (update/display all), "C" (correction), and "E" (data entry).

Keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, or if Force Search Processing is selected for the component,
the search dialog box appears.

If the keylist parameter is not supplied then the destination component's search key
must be found as part of the source components level 0 record buffer.

AutoSearch Specify whether an automatic search on the target search page is executed after the
transfer. This means the search results are already shown without the end user
having to click the Search button. This parameter takes a Boolean value: True, do
an automatic search. The default value is False (that is, the user has to click the
Search button).

Returns

None.

TransferNode

Syntax

TransferNode(new_instance,NODE.nodename,MENUNAME.menuname,MARKET.marketname,
COMPONENT.componentname,PAGE.component_item_name,action [, keylist]);

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the TransferNode function to transfer the user to a page in another Node, but within the same portal.

TransferNode can either start a new instance of the application and transfer to the new page, or close the old
page and transfer to the new one in the same instance of PeopleTools.

Component scoped and Global scoped variables are not available if the new page is in a different node.

Entering null values ("") for the node opens the new component within the current node or portal.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 697

If you want to transfer the end user to another portal, use the TransferPortal function.

If you provide a valid search key for the new page in the optional fieldlist, the new page opens directly, using
the values provided from fieldlist as search key values. If no key is provided, or if the key is invalid, the
search dialog displays, allowing the end user to search for a row.

Note. If Force Search Processing is specified in Application Designer for the component, the search dialog
always displays, whether the keylist is provided or not.

If TransferNode is called in a RowInit PeopleCode program, the PeopleCode program is terminated.
However, the component processor continues with its RowInit processing, calling RowInit on the other fields.
The actual transfer won't happen until after that completes. You may want to place any TransferPage
functions in the Activate event for the page, or later in the Component Processor event flow.

See PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Component
Definitions."

Restrictions on Use with a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Restrictions on Use with SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Considerations Using Exceptions and the TransferNode Function

Using the TransferNode function inside a try blockdoes not catch PeopleCode exceptions thrown in the new
component. Starting a new component starts a brand new PeopleCode evaluation context. Catches are only
caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to using
the DoModal function, but not any exceptions that are thrown within the new component.

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

PeopleCode Built-in Functions Chapter 1

698 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance, or to False to use the
current window and replace the page already displayed.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

component_item_name Specify the component item name of the page to be displayed on top of the
component when it displays. The component item name is specified in the
component definition. If you specify a page, it must be prefixed with the keyword
PAGE. You can also specify a null ("") for this parameter.

action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a null ("") for this parameter.

keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied then the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 699

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPortal, page 701; Chapter 1, "PeopleCode Built-in
Functions," TransferPage, page 699 and Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683

TransferPanel

Syntax

TransferPanel([PANEL.panel_name])

Description

Use the TransferPanel function to transfer control to the panel indicated by PANEL.panel_name_name
within, or to the panel set with the SetNextPage function.

Note. The TransferPanel function is supported for compatibility with previous releases of PeopleTools. New
applications should use the TransferPage function instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferPage, page 699

TransferPage

Syntax

TransferPage([PAGE.page_name_name])

Description

Use the TransferPage function to transfer control to the page indicated by PAGE.page__name or to the page
set with the SetNextPage function. The page that you transfer to must be in the current component or menu.
To transfer to a page outside the current component or menu, or to start a separate instance of PeopleTools
prior to transfer into, use the Transfer function.

Note. If the visibility of the current page is set to False in a PeopleCode program, then you must invoke the
TransferPage function to transfer control to a visible page.

See Chapter 1, "PeopleCode Built-in Functions," SetNextPage, page 628 and Chapter 1, "PeopleCode Built-in
Functions," Transfer, page 683.

Note. You can't use TransferPage from a secondary page.

Any variable declared as a Component variable will still be defined after using a TransferPage function.

PeopleCode Built-in Functions Chapter 1

700 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Considerations Using TransferPage

The following are important considerations when using the TransferPage function:

• TransferPage always terminates the current PeopleCode program.

• TransferPage is always processed after all events are completed.

Given these considerations, here are some scenarios for how TransferPage executes:

• When called in RowInit: The current RowInit PeopleCode program is terminated, but RowInit processing
continues. In addition, RowInit PeopleCode programs run for the rest of the fields in the row. Then
TransferPage is processed.

• When called in FieldEdit: The FieldEdit PeopleCode program is terminated. The FieldChange program
for that field still runs. Then TransferPage is processed.

• When called in SavePreChange: The SavePreChange program for that field is terminated. SavePreChange
runs for the rest of the fields on that page. Then SavePostChange run for all the fields. Then TransferPage
is processed.

• When called in FieldChange in deferred mode: In deferred mode, changed fields are processed in order.
The FieldChange program is terminated. Then any subsequent fields in the page order are processed with
the normal FieldEdit-Field Change logic. Once that has finished, the TransferPage is processed.

When TransferPage is processed, any PeopleCode associated with the Activate event for the page being
transferred to runs. This always occurs at the end, after all field processing.

If TransferPage is called multiple times during field processing, all the calls are processed at the end, in the
same order the calls were made. The Activate event executes each time. The final active page is the one that
was transferred to by the last call.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Parameters

Parameter Description

page_name A String equal to the name of the page you are transferring to, as set in the page
definition, prefixed with the reserved word Page. The page must be in the same
component as the page you are transferring from.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 701

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The following examples both perform the same function, which is to transfer to the JOB_DATA_4 page:

TransferPage(PAGE.JOB_DATA_4);

or

SetNextPage(PAGE.JOB_DATA_4);
TransferPage();

See Also

Chapter 1, "PeopleCode Built-in Functions," DoModalComponent, page 226; Chapter 1, "PeopleCode Built-
in Functions," SetNextPage, page 628 and Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683

TransferPortal

Syntax

TransferPortal(new_instance,PORTAL.portalname,
 NODE.nodename,MENUNAME.menuname,MARKET.marketname,COMPONENT.componentname,
PAGE.component_item_name,action [, keylist]);

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2]. . .

Description

Use the TransferPortal function to transfer the user to a page in another Node in a different portal.

TransferPortal can either start a new instance of the application and transfer to the new page, or close the old
page and transfer to the new one in the same instance of PeopleTools.

Component scoped and Global scoped variables are not available after this function.

If you want to transfer the end user to another node within the same portal, use the TransferNode function.

If you provide a valid search key for the new page in the optional fieldlist, the new page opens directly, using
the values provided from fieldlist as search key values. If no key is provided, or if the key is invalid, the
search dialog displays, allowing the end user to search for a row.

PeopleCode Built-in Functions Chapter 1

702 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. If Force Search Processing is specified in Application Designer for the component, the search dialog
always displays, whether the keylist is provided or not.

If TransferPortal is called in a RowInit PeopleCode program, the PeopleCode program is terminated.
However, the component processor continues with its RowInit processing, calling RowInit on the other fields.
The actual transfer won't happen until after that completes. You may want to place any TransferPortal
functions in the Activate event for the page, or later in the Component Processor flow.

See PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Component
Definitions."

Restrictions on Use with a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Restrictions on Use with SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Restrictions on Use with Different Releases

You cannot use this function to transfer a user from a PeopleTools 8.42 portal to any base PeopleTools 8.1x
portal that overwrites the expired cookie value when login occurs.

The TransferPortal function is currently supported to transfer users to pages in other nodes to base
PeopleTools 8.18 portals, including all PeopleTools 8.18 versions and patches.

Considerations Using Exceptions and the TransferPortal Function

Using the TransferPortal function inside a try block does not catch PeopleCode exceptions thrown in the new
component. Starting a new component starts a brand new PeopleCode evaluation context. Catches are only
caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to using
the DoModal function, but not any exceptions that are thrown within the new component.

/* Set up transaction */
If %CompIntfcName = "" Then
 try
 &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_⇒
WRK.DESCR);
 &sSearchPage = &oTrans.SearchPage;
 &sSearchRecord = &oTrans.SearchRecord;
 &sSearchTitle = &oTrans.GetSearchPageTitle();
 If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
 Error (MsgGetText(17834, 8081, "Message Not Found"));
 End-If;
 &c_ERMS_SearchTransaction = &oTrans;

 /* Attempt to transfer to hidden search page with configurable filter */
 &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
 catch Exception &e
 Error (MsgGetText(17834, 8082, "Message Not Found"));
 end-try;

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 703

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance, or to False to use the
current window and replace the page already displayed.

PortalName Specify the name of the portal that you want to transfer to, prefixed with the
reserved word Portal.

nodename Specify the name of the node that contains the content, prefixed with the reserved
word NODE. You can also use a string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed with the reserved
word MENUNAME. You can also use a string, such as %Menu, for this value.

marketname Specify the name of the market of the component, prefixed with the reserved word
MARKET. You can also use a string, such as %Market, for this value.

component_item_name Specify the component item name of the page to be displayed on top of the
component when it displays. The component item name is specified in the
component definition. If you specify a page, it must be prefixed with the keyword
PAGE. You can also specify a null ("") for this parameter.

action Specify a single-character code. Valid actions are:

• "A" (add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a null ("") for this parameter.

keylist An optional list of field specifications used to select a unique row at level zero in
the page you are transferring to, by matching keys in the page you are transferring
from. It can also be an already instantiated record object.

If a record object is specified, any field of that record object that is also a field of
the search record for the destination component is added to keylist. The keys in
the fieldlist must uniquely identify a row in the "to" page search record. If a unique
row is not identified, of if Force Search Processing has been selected, the search
dialog appears.

If the keylist parameter is not supplied then the destination component's search key
must be found as part of the source components level 0 record buffer.

Returns

A Boolean value: True if function completed successfully, False otherwise.

PeopleCode Built-in Functions Chapter 1

704 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," TransferNode, page 696; Chapter 1, "PeopleCode Built-in
Functions," TransferPage, page 699 and Chapter 1, "PeopleCode Built-in Functions," Transfer, page 683

Transform

Syntax

Transform({XmlString | &XmlDoc}AE_Program_Name,
Initial_Node_Name,Initial_Message__Name,Initial_Message_Version,
Result_Node_Name,Result_Message_Name,Result_Message_Version)

Description

Use the Transform function to modify one transaction, as specified by the Initial parameters, to another
transaction, specified by the Result parameters, using an Application Engine program. This is used with
Integration Broker.

Generally using this function implies that you're transforming a message that you're not actually sending or
receiving at the current time. By using this method, and specifying the two transactions, it's as if you're
defining a relationship, without having to use the relationship component.

Note. This function does not work on the OS/390 and z/OS batch servers.

Considerations Using the Transform Functions

The Transform function uses an existing Application Engine program to do transformations. This enables you
to break up the flow of Integration Broker and do transformations when you need to. If you wish to reuse
your Application Engine programs, you can invoke them by using this function.

The TransformEx function does not use an Application Engine program to do a transformation. Instead, it
does an Extensible Stylesheet Language Transformation (XSLT.) This enables you to dynamically do
transformations outside of Integration Broker, such as, performing transformations on pagelets in a portal
every time a page is accessed.

The TransformExCache function also does XSLT transformations without using an Application Engine
program, outside of Integration Broker. Use TransformExCache when you have a large volume of similar
transformations to be done. Caching technology is used with this function. You may see an increase in
performance, as well as an increase in memory consumption, using this function.

Parameters

Parameter Description

XmlString | &XmlDoc Specify an already populated XmlDoc object, an XML string, or other text that
you want transformed.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 705

Parameter Description

AE_Program_Name Specify the name of the Application Engine program that you want to use for the
transformation.

Initial_Node_Name Specify the name of the initial node as a string.

Initial_Message_Name Specify the name of the initial message.

Initial_Message_Version Specify the version of the initial message that you want to use.

Result_Node_Name Specify the result, where you want the transformed message to go to.

Result_Message_Name Specify the name of the result message, the one to use for the output.

Result_Message_Version Specify the version of the result message to be used.

Returns

An XmlDoc object containing the resulting XML from the transformation. Null is never returned. If you do
not want to display an error to the user, place this function inside a try-catch statement.

See Also

Chapter 1, "PeopleCode Built-in Functions," TransformEx, page 705 and Chapter 1, "PeopleCode Built-in
Functions," TransformExCache, page 707

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation"

TransformEx

Syntax

TransformEx(XmlString,XsltString)

Description

Use the TransformEx function to do an XSLT transformation of the specified XML string.

This function also strips off any encoding information located within the XML Declaration.

The input, output, and XSL string must all be well-formed XML. If the output is HTML, it is actually
XHTML (which is well-formed XML.)

Note. This function does not work on the OS/390 and z/OS batch servers.

PeopleCode Built-in Functions Chapter 1

706 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Considerations Using the Transform Functions

The Transform function uses an existing Application Engine program to do transformations. This enables you
to break up the flow of Integration Broker and do transformations when you need to. If you wish to reuse
your Application Engine programs, you can invoke them by using this function.

The TransformEx function does not use an Application Engine program to do a transformation. Instead, it
does an Extensible Stylesheet Language Transformation (XSLT.) This enables you to dynamically do
transformations outside of Integration Broker, such as, performing transformations on pagelets in a portal
every time a page is accessed.

The TransformExCache function also does XSLT transformations without using an Application Engine
program, outside of Integration Broker. Use TransformExCache when you have a large volume of similar
transformations to be done. Caching technology is used with this function. You may see an increase in
performance, as well as an increase in memory consumption, using this function.

Parameters

Parameter Description

XmlString Specify the XML string that you want transformed.

XsltString Specify the XSLT string you wish to use to transform the XML string.

Returns

The output of the transformation as a string if successful, NULL otherwise.

Example

try
 &outStr = TransformEx(&inXML, &inXSLT);
catch Exception &E
 MessageBox(0, "", 0, 0, "Caught exception: " | &E.ToString());
end-try;

See Also

Chapter 1, "PeopleCode Built-in Functions," Transform, page 704 and Chapter 1, "PeopleCode Built-in
Functions," TransformExCache, page 707

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 707

TransformExCache

Syntax

TransformExCache(&XmlDoc,FilePath,XsltKey)

Description

Use the TransformExCache function to do an Extensible Stylesheet Language Transformation (XSLT)
transformation of the specified XmlDoc object.

The file specified by FilePath must be in well-formed XML.

Note.

This function does not work on the OS/390 and z/OS batch servers.

Considerations Using the Transform Functions

The Transform function uses an existing Application Engine program to do transformations. This enables you
to break up the flow of Integration Broker and do transformations when you need to. If you wish to reuse
your Application Engine programs, you can invoke them by using this function.

The TransformEx function does not use an Application Engine program to do a transformation. Instead, it
does an Extensible Stylesheet Language Transformation (XSLT.) This enables you to dynamically do
transformations outside of Integration Broker, such as, performing transformations on pagelets in a portal
every time a page is accessed.

The TransformExCache function also does XSLT transformations without using an Application Engine
program, outside of Integration Broker. Use TransformExCache when you have a large volume of similar
transformations to be done. Caching technology is used with this function. You may see an increase in
performance, as well as an increase in memory consumption, using this function.

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object that you want
transformed.

FilePath Specify an XSLT file. You must specify an absolute path to the file, including the
file extension.

XsltKey Specify a key to uniquely name the compiled and cached XSLT in the data
buffers. This key is used both to create the item in memory as well as retrieve it.
This parameter takes a string value, up to 30 characters.

PeopleCode Built-in Functions Chapter 1

708 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

An XmlDoc object containing the resulting XML from the transformation. Null is never returned. If you do
not want to display an error to the user, place this function inside a try-catch statement.

Example

Local XmlDoc &inXMLdoc = CreateXmlDoc("");

Local Boolean &ret = &inXMLdoc.ParseXmlFromURL("c:\temp\in.xml");

Local XmlDoc &outDoc = TransformExCache(&inXMLdoc, "c:\temp\in.xsl", "INBOUND");

See Also

Chapter 1, "PeopleCode Built-in Functions," Transform, page 704 and Chapter 1, "PeopleCode Built-in
Functions," TransformEx, page 705

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation"

TreeDetailInNode

Syntax

TreeDetailInNode(setID,tree,effdt, detail_value,node)

Description

Use the TreeDetailInNode function to determine whether a specific record field value is a descendant of a
specified node in a specified tree.

Note. This function is not compatible with the PeopleSoft Pure Internet Architecture. However, this function
is still available for use with the PeopleSoft Tree Manager Windows client, available in the 8.1 product line.

An equivalent PeopleCode tree class method or built-in function for PeopleSoft Pure Internet Architecture
does not exist, however, you may achieve this same functionality using the tree classes.

Parameters

Parameter Description

setID SetID for the appropriate business unit. This parameter is required. If there is no
SetID, you can pass a NULL string ("", not a blank) and a blank will be used.

tree The tree name that contains the detail_value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 709

Parameter Description

effdt Effective date to be used in the search. You must use a valid date.

detail_value The recordname.fieldname containing the value you are looking for.

node The "owning" tree node name.

Returns

Returns a Boolean value, True if detail_value is a descendant of node in tree.

Example

This example sets the value of &APPR_RULE_SET to the value at the APPR_RULE_LN record and
APPR_RULE_SET fieldname, on the tree ACCOUNT.

&APPR_RULE_SET = TreeDetailInNode("SALES", "ACCOUNT", %Date, APPR_RULE_LN.APPR_⇒
RULE_SET, "test");

See Also

PeopleTools 8.52: PeopleCode API Reference, "Tree Classes"

PeopleTools 8.52: PeopleSoft Tree Manager, "Introduction to PeopleSoft Tree Manager"

TriggerBusinessEvent

Syntax

TriggerBusinessEvent(BUSPROCESS.bus_proc_name,BUSACTIVITY.activity_name,
BUSEVENT.bus_event_name)

Description

Use the TriggerBusinessEvent funciton to trigger a business event and the workflow routings associated with
that event. This function should only be used in Workflow PeopleCode. You can edit Workflow PeopleCode
via the Event Definition dialog while you are defining a workflow event.

Parameters

Parameter Description

bus_proc_name A string consisting of the name of the business process, as defined in the Business
Process Designer, prefixed with the reserved word BUSPROCESS.

PeopleCode Built-in Functions Chapter 1

710 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

activity_name A string consisting of the name of the business activity, as defined in the Business
Process Designer, prefixed with the reserved word BUSACTIVITY.

bus_event_name A string consisting of the name of the business event, as defined in the Business
Process Designer, prefixed with the reserved word BUSEVENT.

Returns

Returns a Boolean value: True if successful, false otherwise. The return value is not optional.

Note. You must check the return from TriggerBusinessEvent to see if you have an error. If you have an error,
all of the updates up to that TriggerBusinessEvent process are rolled back. However, if you don't halt
execution, even if you have an error, all updates after the TriggerBusinessEvent process are committed. This
could result in your database information being out of synch.

Example

The following example triggers the Deny Purchase Request event in the Manager Approval activity of the
Purchase Requisition business process:

&SUCCESS = TriggerBusinessEvent(BUSPROCESS."Purchase Requisition",⇒
 BUSACTIVITY."Manager Approval", BUSEVENT."Deny Purchase Request");

See Also

Chapter 1, "PeopleCode Built-in Functions," GetWLFieldValue, page 432 and Chapter 1, "PeopleCode Built-
in Functions," MarkWLItemWorked, page 496

PeopleTools 8.52: Workflow Technology, "Adding Events and Routings"

Truncate

Syntax

Truncate(dec,digits)

Description

Use the Truncate function to truncate a decimal number dec to a specified precision.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 711

Parameters

Parameter Description

digits A Number value that sets the precision of the truncation (that is, the number of
digits to leave on the right side of the decimal point).

Returns

Returns a Number value equal to dec truncated to a digits precision.

Example

The example sets the value of &NUM to 9, 9.99, -9, then 0.

&NUM = Truncate(9.9999, 0);
&NUM = Truncate(9.9999, 2);
&NUM = Truncate(-9.9999, 0);
&NUM = Truncate(0.001, 0);

See Also

Chapter 1, "PeopleCode Built-in Functions," Int, page 455; Chapter 1, "PeopleCode Built-in Functions,"
Mod, page 507 and Chapter 1, "PeopleCode Built-in Functions," Round, page 581

try

Syntax

try Protected StatementList catch QualifiedID &ID StatementListend-try

Description

Use the try statement as part of a try-catch block to trap exceptions thrown either by the system or by using
the CreateException function.

Parameters

Parameter Description

Protected StatementList Specify the statements that are protected by the try-catch block.

catchQualifiedID &ID Specify the catch statement at the end of the list of statements you want to protect.

PeopleCode Built-in Functions Chapter 1

712 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

QualifiedID Specify what class of exception you are catching—that is, Exception or the name
of a class extending the Exception class.

&ID Specify a variable to be set with the caught exception.

StatementList Specify the steps to be taken once the exception is caught.

Returns

None.

Example

try
 &res = 15.3 / 7 * 22.1;
catch Exception &c1
 MessageBox(0, "", 0, 0, "Caught exception: " | &c1.ToString());
end-try;

See Also

Chapter 1, "PeopleCode Built-in Functions," throw, page 674 and Chapter 1, "PeopleCode Built-in
Functions," CreateException, page 149

PeopleTools 8.52: PeopleCode API Reference, "Exception Class"

UnCheckMenuItem

Syntax

UnCheckMenuItem(BARNAME.menubar_name,ITEMNAME.menuitem_name)

Description

Use the UnCheckMenuItem function to remove a check mark from the specified menu item.

Note. This function has been deprecated.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 713

Unencode

Syntax

Unencode(URLString)

Description

Use the Unencode function to unencode URLString, converting all character codes of the form %xx where xx
is a hex number, to the character represented by that number.

Parameters

Parameter Description

URLString Specify the string you want unencoded. This parameter takes a string value.

Returns

An unencoded URL string.

Example

For the following example, the URL is:

http://corp.office.com/human%20resources/benefits/401kchange_home.htm?FirstName=⇒
Gunter&LastName=D%c3%9crst

The encoded values are those beginning with the percentage sign (%). If you wanted to know the value in the
Target Content's URL for the parameter "LastName", then the following PeopleCode would return the string
"Dürst":

&MENU = Unencode(%Request.GetParameter("LastName"));

This method works for any querystring in the Target Content's URL.

If the link is constructed in a PeopleSoft Pure Internet Architecture page, and the value of a link field, you
should not call EncodeURL to encode the entire URL, as the PeopleSoft Pure Internet Architecture does this
for you. You must still unencode the parameter value when you retrieve it, however.

See Also

Chapter 1, "PeopleCode Built-in Functions," EncodeURL, page 242 and Chapter 1, "PeopleCode Built-in
Functions," EncodeURLForQueryString, page 244

PeopleCode Built-in Functions Chapter 1

714 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Ungray

Syntax

Ungray(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same as
the scroll level's primary record name.

Description

Use the Ungray function to make a gray (non-editable) page field editable, if the field was grayed with a call
to the Gray function.

Note. This function remains for backward compatibility only. Use the Enabled field property instead.

If the page field is made display-only in the Page Field Properties dialog, then Ungray has no effect.

The Gray, Ungray, Hide, and Unhide functions usually appear in RowInit programs that set up the initial
display of data, and FieldChange programs that change field display based on changes the end user makes to
a field.

Generally, you want to put this function on the same scroll level as the field that is being changed in RowInit
(which executes on every row) or FieldChange (which executes on the current row). This simplifies the
function's syntax to:

Ungray(fieldname)

A typical use of the more complex syntax is when looping through rows on a scroll on a lower level than the
program.

Note. This function shouldn't be used in any event prior to RowInit.

See Also

Chapter 1, "PeopleCode Built-in Functions," Gray, page 433; Chapter 1, "PeopleCode Built-in Functions,"
Hide, page 437 and Chapter 1, "PeopleCode Built-in Functions," Unhide, page 716

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Enabled

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 715

Parameters

Parameter Description

Scrollpath A construction that specifies a scroll level in the component buffer.

target_row The row number of the target row. If this parameter is omitted, the function
assumes the row on which the PeopleCode program is executing.

[recordname.]fieldname The name of the field to ungray. The field can be on scroll level one, two, or three
of the active page. The recordname prefix is required if the call to Ungray is not
on the record definition recordname.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The following example checks to see if a person's emergency contact is the same as their home address and
phone, then grays or ungrays the fields accordingly. In a typical case, this program would be in the
FieldChange event.

If SAME_ADDRESS_EMPL = "Y" Then
 Gray(STREET1);
 Gray(STREET2);
 Gray(CITY);
 Gray(STATE);
 Gray(ZIP);
 Gray(COUNTRY);
 Gray(HOME_PHONE);
 STREET1 = PERSONAL_DATA.STREET1;
 STREET2 = PERSONAL_DATA.STREET2;
 CITY = PERSONAL_DATA.CITY;
 STATE = PERSONAL_DATA.STATE;
 ZIP = PERSONAL_DATA.ZIP;
 COUNTRY = PERSONAL_DATA.COUNTRY;
 HOME_PHONE = PERSONAL_DATA.HOME_PHONE;
Else
 Ungray(STREET1);
 Ungray(STREET2);
 Ungray(CITY);
 Ungray(STATE);
 Ungray(ZIP);
 Ungray(COUNTRY);
 Ungray(HOME_PHONE);
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," Gray, page 433; Chapter 1, "PeopleCode Built-in Functions,"
Hide, page 437 and Chapter 1, "PeopleCode Built-in Functions," Unhide, page 716

PeopleCode Built-in Functions Chapter 1

716 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Unhide

Syntax

Unhide(scrollpath,target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the Unhide function to make a field visible that was previously hidden with Hide. If the field was hidden
by setting its Invisible property in the Page Field Properties dialog box, then Unhide has no effect.

Note. This function remains for backward compatibility only. Use the Visible field property instead.

Generally, you want to put this function on the same scroll level as the field that is being changed in RowInit
(which executes on every row) or FieldChange (which executes on the current row). This simplifies the
function's syntax to:

unhide(fieldname)

A typical use of the more complex syntax is when looping through rows on a scroll on a lower level than the
program.

Note. This function shouldn't be used in any event prior to RowInit.

See Also

Chapter 1, "PeopleCode Built-in Functions," Hide, page 437

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Visible

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 717

Parameter Description

target_row The row number of the target row. If this parameter is omitted, the function
assumes the row on which the PeopleCode program is executing.

[recordname.]fieldname The name of the field to unhide. The field can be on scroll level one, two, or three
of the active page. The recordname prefix is required if the call to Unhide is not
on the record definition recordname.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The following example sets security for displaying a person's password:

If (&DISPLAY) Then
 Unhide(EMPLOYEE.PASSWORD);
Else
 Hide(EMPLOYEE.PASSWORD);
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," Gray, page 433; Chapter 1, "PeopleCode Built-in Functions,"
Hide, page 437 and Chapter 1, "PeopleCode Built-in Functions," Ungray, page 714

UnhideRow

Syntax

UnhideRow(scrollpath, target_row)

Where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the UnhideRow function to programmatically unhide a row that has been hidden by HideRow. It unhides
the specified row and any dependent rows at a lower scroll level.

Note. This function remains for backward compatibility only. Use the Visible row property instead.

PeopleCode Built-in Functions Chapter 1

718 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 UnhideRow works by putting the row that you unhide to the last non-hidden row in the list. When
UnhideRow is used in a loop, you have to process rows from low to high to achieve the correct results.

Note. UnhideRow cannot be executed from the same scroll level where the insertion takes place, or from a
lower scroll level. Place the PeopleCode in a higher scroll level record.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Row Class," Visible

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying which row in the scroll to unhide.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

 AE_ROW_COUNT = ActiveRowCount(RECORD.AE_STMT_TBL);
 for &ROW = ActiveRowCount(RECORD.AE_STMT_TBL) to 1 step - 1
 UnhideRow(RECORD.AE_STMT_TBL, &ROW);
 UpdateValue(RECORD.AE_STMT_TBL, &ROW, AE_ROW_NUM, &ROW);
 end-for;

See Also

Chapter 1, "PeopleCode Built-in Functions," HideRow, page 440

UnhideScroll

Syntax

UnhideScroll(Scrollpath)

Where scrollpath is:

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 719

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,] RECORD.
target_recname

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the UnhideScroll function to programmatically unhide a scroll area that has been hidden with HideScroll.
It unhides the specified scroll and any associated scrolls at a lower level.

Note. This function remains for backward compatibility only. Use the ShowAllRows rowset method instead.

See Also

Chapter 1, "PeopleCode Built-in Functions," HideScroll, page 441 and PeopleTools 8.52: PeopleCode API
Reference, "Rowset Class," ShowAllRows

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component buffer.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

This example clears the contents of a level-one hidden scroll, then unhides it:

 ScrollFlush(RECORD.ORDER_INQ_INV);
 UnhideScroll(RECORD.ORDER_INQ_INV);

The following example hides or unhides a level-three scroll:

 If APPR_QTY_SW = "N" Then
 HideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL,⇒
 CurrentRowNumber(2), RECORD.APPR_RULE_QTY);
 Else
 UnhideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_⇒
DETL, CurrentRowNumber(2), RECORD.APPR_RULE_QTY);
 End-If;

PeopleCode Built-in Functions Chapter 1

720 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," HideScroll, page 441; Chapter 1, "PeopleCode Built-in
Functions," RowScrollSelect, page 584; Chapter 1, "PeopleCode Built-in Functions," RowScrollSelectNew,
page 586; Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591; Chapter 1, "PeopleCode Built-
in Functions," ScrollSelectNew, page 593 and Chapter 1, "PeopleCode Built-in Functions," SortScroll, page
651

UniformSeriesPV

Syntax

UniformSeriesPV(int_rate,n_per)

Description

Use the UniformSeriesPV function to calculate the present value of a single monetary unit after a uniform
series of payments at a specified interest rate.

Parameters

Parameter Description

int_rate A Number specifying the interest rate on the basis of which to calculate the return
value.

n_per A Number specifying the number of payments in the uniform series.

Returns

Returns a Number equal to the value of a single unit after n_per payments at an interest rate of int_rate.

Example

The example sets &NUM to 3.790786769408448256:

&NUM = UniformSeriesPV(10,5);

See Also

Chapter 1, "PeopleCode Built-in Functions," SinglePaymentPV, page 650

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 721

UpdateSysVersion

Syntax

UpdateSysVersion()

Description

Use the UpdateSysVersion function to coordinate system changes and changes to system objects maintained
by pages, such as messages and Set Tables. This function is not normally used in standard applications and
should only used in PeopleSoft-provided extensions of PeopleTools.

Returns

Returns the updated system version Number.

Example

The following example could be used to maintain the version number on MESSAGE_SET_TBL, which
controls the refreshing of cache files for the message entries:

VERSION = UpdateSysVersion();

UpdateValue

Syntax

UpdateValue(scrollpath, [recordname.]fieldname,target_row,value)

where scrollpath is:

[RECORD.level1_recname,level1_row, [RECORD.level2_recname,level2_row,]]

To prevent ambiguous references, you can use SCROLL.scrollname, where scrollname is the same as the
scroll level's primary record name.

Description

Use the UpdateValue function to update the value of a specified field with the value provided. The value must
be of a data type compatible with the field.

Note. This function remains for backward compatibility only. Use the Value field property instead.

PeopleCode Built-in Functions Chapter 1

722 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Field Class," Value

PeopleTools 8.52: PeopleCode Developer's Guide, "Accessing the Data Buffer"

PeopleTools 8.52: PeopleCode Developer's Guide, "Referencing Data in the Component Buffer," Specifying
Data with References Using Scroll Path Syntax and Dot Notation

Parameters

Parameter Description

Scrollpath A construction that specifies a scroll level in the component buffer.

target_row An integer specifying the row of the field to update.

[recordname.]fieldname The name of the field that you want to update. The field can be on scroll level one,
two, or three of the active page. The recordname prefix is required if the call to
UpdateValue is not on the record definition recordname.

Value The new value to put into the target field.

Returns

None.

Example

This example updates values in the level-one scroll:

For &I = 1 To &ROW_CNT
 UpdateValue(RECORD.ASGN_CMP_EFFDT, &I, ITEM_SELECTED, "Y");
End-For;

The next example loops through rows in the level-two scroll:

For &I = 1 To &CURRENT_L2
 UpdateValue(RECORD.ASGN_CMP_EFFDT, &CURRENT_L1, RECORED.SOME_L2_RECORD, &I, TO_⇒
CUR, &HOME_CUR);
End-For;

See Also

Chapter 1, "PeopleCode Built-in Functions," FetchValue, page 275 and Chapter 1, "PeopleCode Built-in
Functions," PriorValue, page 536

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 723

UpdateXmlDoc

Syntax

UpdateXmlDoc(&XmlDoc,PubID,PubNode, ChannelName,VersionName [, Message Name [,
SubNode[, Segment]]])

Description

Use the UpdateXmlDoc function to update a message in the message queue with the specified message
version.

Note. This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class UpdateXmlDoc method instead.

If VersionName isn't specified, the default message version is used. This method is commonly used in the
OnRouteSend and OnRouteReceive PeopleCode events.

Note. This function can't be called from notification PeopleCode.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," UpdateXmlDoc

Parameters

Parameter Description

&XmlDoc Specify an already instantiated XmlDoc object.

PubID Specify the PubID as a string.

PubNode Specify the PubNode as a sting.

ChannelName Specify the Channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the message name as a string. This is only used for Pub and Sub contracts.

SubNode Specify the sub node as a string. This is only used for Pub contracts.

Segment Specify an integer representing which segment you want to access. The default
value is one, which means that if you do not specify a segment, the first segment is
accessed.

PeopleCode Built-in Functions Chapter 1

724 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Returns

A Boolean value: True if function completed successfully, False otherwise.

See Also

PeopleTools 8.52: PeopleCode API Reference, "XmlDoc Classes"

Upper

Syntax

Upper(str)

Description

Use the Upper function to convert a text string to all uppercase. This function can be used to perform a case-
insensitive string comparison. Upper does not change characters that are not letters or characters that do not
have case sensitivity.

Parameters

Parameter Description

str A String to convert to uppercase.

Returns

Returns a String value equal to str converted to all uppercase.

Example

The following example converts the contents of two string variables to uppercase before determining if they
are equal to simulate a case-insensitive comparison:

If Upper(&STR1) = Upper(&STR2) Then
 /* do something */
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," Lower, page 485 and Chapter 1, "PeopleCode Built-in
Functions," Proper, page 540

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 725

Value

Syntax

Value(str)

Description

Use the Value function to convert a string representing a number to the number.

To convert a number using the user's local format for the number, use the ValueUser function.

Parameters

Parameter Description

str A String value representing a number.

Returns

Returns the Number value represented by str.

Example

The example sets &VAL1 to 5.25 and &VAL2 to 12500:

&VAL1 = Value("5.25");
&VAL2 = Value("12,500");

See Also

Chapter 1, "PeopleCode Built-in Functions," String, page 666

Chapter 1, "PeopleCode Built-in Functions," ValueUser, page 725

ValueUser

Syntax

ValueUser(str)

PeopleCode Built-in Functions Chapter 1

726 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the ValueUser function to convert a string representing a number to the number, using the locale-specific
format for the current user to interpret the number. For example, if the locale or user level personalization
settings specify to use a comma as the decimal separator, the number will be interpreted based on that setting,
instead of the default for the database.

To convert a number without using the user's format for the number, use the Value function.

Parameters

Parameter Description

str Specify the string value representing a number that you want converted to a
number.

Returns

Returns the number value represented by str.

Example

The example sets &VAL1 to 5.25 and &VAL2 to 12500:

&VAL1 = ValueUser("5.25");
&VAL2 = ValueUser("12,500");

See Also

Chapter 1, "PeopleCode Built-in Functions," String, page 666

Chapter 1, "PeopleCode Built-in Functions," Value, page 725 and Chapter 1, "PeopleCode Built-in
Functions," IsUserNumber, page 476

ViewAttachment

Syntax

ViewAttachment(URLSource,DirAndSysFileName,UserFileName [, NewWindow[,
PreserveCase]])

Description

Use the ViewAttachment function to download a file from its source storage location and open it locally on
the end-user machine.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 727

By using the UserFileName parameter, the copy of the file to be viewed may be given a different name than
the file at the storage location.

Additional information that is important to the use of ViewAttachment can be found in the PeopleTools 8.52:
PeopleCode Developer's Guide PeopleBook:

• PeopleTools supports multiple types of storage locations.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Understanding
File Attachment Storage Locations.

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," File Name
Considerations.

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Attachments
with non-ASCII File Names.

• The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Considerations
When Attaching Text Files.

• Because ViewAttachment is interactive, it is known as a "think-time" function, and is restricted from use
in certain PeopleCode events.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restrictions
on Invoking Functions in Certain PeopleCode Events.

Security Considerations

Viewing a file involves requesting that it be opened. The result of the open action depends upon the extension
of the file name and the application associated with that extension. Keep in mind that the act of opening a file
with certain extensions (for example, .exe or .bat) results in the file being executed when it is opened. If you
do not want specific file type to be handled this way, you must prevent the end user from viewing the
requested file.

When the end user views attachments using the ViewAttachment function, some browsers treat documents as
HTML regardless of file extension, and thus execute embedded JavaScript. You may want to write a
PeopleCode program to allow only specific file extensions to be viewed.

Alternatively, you can use a file extension list to restrict the file types that can be uploaded to or downloaded
from your PeopleSoft system.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Restricting the
File Types That Can Be Uploaded or Downloaded.

PeopleCode Built-in Functions Chapter 1

728 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier in the form URL.
URL_ID, or a string. This, along with the DirAndSysFileName parameter,
indicates the file's source location.

Note. The URLSource parameter requires forward slashes (/). Backward slashes (\)
are not supported for this parameter.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File
Attachments," Understanding URL Strings Versus URL Objects.

DirAndSysFileName The relative path and file name of the file on the file server. This is appended to
URLSource to make up the full URL where the file is transferred from. This
parameter takes a string value

Note. The URLSource requires "/" slashes. Because DirAndSysFileName is
appended to the URL, it also requires only "/" slashes. "\" are NOT supported in
anyway for either the URLSource or the DirAndSysFileName parameter.

UserFileName The name associated with the copy of the file to be viewed (may be different than
the name of the file at the storage location).

NewWindow Specify if the browser should try to use a new window to display the attachment.
This parameter takes a Boolean value. The default is True.

PreserveCase Specify a Boolean value to indicate whether when searching for the file specified
by the DirAndSysFileName parameter, its file name extension is preserved or not;
True, preserve the case of the file name extension, False, convert the file name
extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is important that you use it in
a consistent manner with all the relevant file-processing functions or you may
encounter unexpected file-not-found errors.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 729

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due
to some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error
on the HTTP repository.

If the HTTP repository resides on
a PeopleSoft web server, then you
can configure tracing on the web
server to report additional error
details.

See PeopleTools 8.52:
PeopleCode Developer's Guide,
"Working With File
Attachments," Enabling
Tracing on the Web Server or
Application Server.

2 %Attachment_Cancelled File transfer didn't complete because
the operation was canceled by the end
user.

PeopleCode Built-in Functions Chapter 1

730 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where
%Attachment_FileTransferFailed
could be returned:

• Failed due to mismatch in file
sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where
%Attachment_DestSystNotFound
could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 731

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system
for FTP.

The following are some possible
situations where
%Attachment_DestSysFailedLogin
could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in
certificates used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where
%Attachment_FileNotFound could be
returned:

• Remote file not found.

• Failed to read remote file.

Example

&retcode = ViewAttachment(URL.MYFTP, ATTACHSYSFILENAME, ATTACHUSERFILE);

An example of the ViewAttachment function is provided in the demonstration application delivered in the
FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the PeopleTools
Test Utilities page.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments," Using the
PeopleTools Test Utilities Page.

PeopleCode Built-in Functions Chapter 1

732 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 1, "PeopleCode Built-in Functions," AddAttachment, page 38; Chapter 1, "PeopleCode Built-in
Functions," CleanAttachments, page 88; Chapter 1, "PeopleCode Built-in Functions," CopyAttachments,
page 127; Chapter 1, "PeopleCode Built-in Functions," DeleteAttachment, page 200; Chapter 1, "PeopleCode
Built-in Functions," DetachAttachment, page 215; Chapter 1, "PeopleCode Built-in Functions,"
GetAttachment, page 355; Chapter 1, "PeopleCode Built-in Functions," PutAttachment, page 541 and
Chapter 1, "PeopleCode Built-in Functions," MAddAttachment, page 486

PeopleTools 8.52: PeopleCode Developer's Guide, "Working With File Attachments"

ViewContentURL

Syntax

ViewContentURL(URL_str | URL.URL_ID)

Description

Use the ViewContentURL function to launch a new browser window and navigates to the location specified
by URL_str or URL.URL_ID.

The content specified by the URL is not wrapped by the portal template. Use this function when you want to
connect to third-party content. If you want to wrap the content in the portal template, use the ViewURL
function.

This is a deferred execution command: the browser is launched after any executing PeopleCode has run to
completion. This function automatically launches a new browser window.

Note. The ViewContentURL function does not work if being run on a Window 95 operating system and
Internet Explorer version 3.02 or greater has not been installed.

Considerations Using JavaScript

The JavaScript window open method uses the backslash (\) as a quote for the next character. You must use
double backslashes for the ViewContentURL function to work in a JavaScript. Note the four backslashes in
the beginning of the following code example:

ViewContentURL("\\\\PT-NFS01\\PSUSERWS\\TEMP\\TVN\\81X-PATCHES.TXT");

Parameters

Parameter Description

UR­L_str | URL.URL_ID Specify the location to where you want to navigate. You can specify either a URL
string or a URL saved in the URL table, by specifying the reserved word URL
followed by a dot and the URL Identifier.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 733

Returns

None.

Example

If &MyPage Then
 ViewURL(URL.MYPAGE);
Else
 ViewContentURL("http://www.PeopleSoft.com");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," GetURL, page 430 and Chapter 1, "PeopleCode Built-in
Functions," ViewURL, page 733

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance

ViewURL

Syntax

ViewURL(URL_str | URL.URL_ID [, NewWindow])

Description

Use the ViewURL function to launch the default browser and navigate to the location specified by URL_str
or URL.URL_ID. This is a deferred execution command: the browser is launched after any executing
PeopleCode has run to completion. You can also specify whether the new page launches a new browser, or
replaces the current page in the browser.

Note. This function does not issue any kind of warning to the user about losing data. Your application should
verify that all data is saved before launching a new page.

The content specified by the URL is automatically wrapped by the portal template. If you do not want to wrap
the content in the portal template, use the ViewContentURL function.

Note. The ViewURL function will not work if being run on a Window 95 operating system and Internet
Explorer version 3.02 or greater has not been installed. Portal applications should use the RedirectURL
Response class method instead of ViewURL.

See PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)," RedirectURL.

PeopleCode Built-in Functions Chapter 1

734 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

UR­L_str | URL.URL_ID Specify the location to where you want to navigate. You can specify either a URL
string, or, a URL saved in the URL table, by specifying the reserved word URL
followed by a dot and the URL Identifier.

NewWindow Specify whether the new page be opened in a new in the browser, or launch a new
browser. This parameter takes a Boolean value: True to launch a new browser,
False to replace existing page. The default value is False.

Returns

None.

Example

If &MyPage Then
 ViewURL(URL.MYPAGE);
Else
 ViewContentURL("http://www.PeopleSoft.com");
End-If;

See Also

Chapter 1, "PeopleCode Built-in Functions," GetURL, page 430 and Chapter 1, "PeopleCode Built-in
Functions," ViewContentURL, page 732

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance

Warning

Syntax

Warningstr

Description

You typically use the Warning function in FieldEdit or SaveEdit PeopleCode to display a message alerting
the end user about a potentially incorrect data entry or change. It differs from the Error function in that it does
not prevent the end user from taking an action, and it does not stop processing in the PeopleCode program
where it occurs.

Warning is also used in RowDelete and RowSelect PeopleCode, where its behavior is specialized. See the
following sections Warnings in RowDelete and Warnings in RowSelect.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 735

The text of the warning message (the str parameter), should always be stored in the Message Catalog and
retrieved using the MsgGet or MsgGetText function. This makes it easier to translate the text, and it also
enables you to include more detailed Explain text about the warning.

Note. If you pass a string to the Warning function instead of using a Message Catalog function, the
explanation text from the last call to the Message Catalog may be appended to the message. This can cause
unexpected results.

See Chapter 1, "PeopleCode Built-in Functions," WinMessage, page 738.

Warnings in FieldEdit and SaveEdit

The primary use of Warning is in FieldEdit and SaveEdit PeopleCode:

• In FieldEdit, Warning displays a message and highlights the relevant field.

• In SaveEdit, Warning displays a message, but does not highlight any field. You can move the cursor to a
specific field using the SetCursorPos function.

See Chapter 1, "PeopleCode Built-in Functions," SetCursorPos, page 605.

Warnings in RowDelete

When the end user attempts to delete a row of data, the system first prompts for confirmation. If the end user
confirms, the RowDelete event fires. A Warning in the RowDelete event displays a warning message with
OK and Cancel buttons. If the end user clicks OK, the row is deleted. If the end user clicks Cancel, the row is
not deleted.

Warnings in RowSelect

The behavior of Warning in RowSelect is totally anomalous and maintained for backward compatibility only.
Use it to filter rows being added to a page scroll after the rows have been selected and brought to the
component buffer. Warning causes the Component Processor to skip the current row (so that it is not added to
the page scroll), then continue processing. No message is displayed.

Note. Do not use Warning in this fashion. Use the DiscardRow function for replacement instead.

See Chapter 1, "PeopleCode Built-in Functions," DiscardRow, page 221.

Warnings in Other Events

 Do not use the Warning function in any of the remaining events, which include:

• FieldDefault

• FieldFormula

• RowInit

• FieldChange

• RowInsert

PeopleCode Built-in Functions Chapter 1

736 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• SavePreChange

• SavePostChange

Parameters

Parameter Description

str A string containing the text of the warning message. This string should always be
stored in the Message Catalog and retrieved using the MsgGet or MsgGetText
function. This makes translation easier and also enables you to provide detailed
Explain text about the warning.

Returns

None.

Example

The following example shows a warning that alerts an end user to a possible error, but allows the end user to
accept the change:

if All(RETURN_DT, BEGIN_DT) and
 8 * (RETURN_DT - BEGIN_DT) < (DURATION_DAYS * 8 + DURATION_HOURS) then
 warning MsgGet(1000, 1, "Duration of absence exceeds standard hours for number⇒
 of days absent.");
end-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," Error, page 253; Chapter 1, "PeopleCode Built-in Functions,"
MsgGet, page 508; Chapter 1, "PeopleCode Built-in Functions," MsgGetText, page 511 and Chapter 1,
"PeopleCode Built-in Functions," WinMessage, page 738

Weekday

Syntax

Weekday(dt)

Description

Use the Weekday function to calculate the day of the week based on a date value.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 737

Parameters

Parameter Description

dt A Date value. Weekday determines the day of the week that dt falls on.

Returns

Returns a Number value representing the day of the week. 1 is Sunday, 7 is Saturday.

Example

If &Date_HIRED equals October 30, 1996, a Monday, then the following statement sets &DAY_HIRED to
2:

&DAY_HIRED = Weekday(&Date_HIRED);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days360, page 190; Chapter
1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in Functions," Month,
page 507 and Chapter 1, "PeopleCode Built-in Functions," Year, page 745

While

Syntax

While logical_expressionstatement_listEnd-while

Description

The While loop causes the statements of the statement_list to be repeated until logical_expression is false.
Statements of any kind are allowed in the loop, including other loops. A Break statement inside the loop
causes execution to continue with whatever follows the end of the loop. If the Break is in a nested loop, the
Break does not apply to the outside loop.

Example

The following example counts from 0 to 10:

PeopleCode Built-in Functions Chapter 1

738 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&COUNTER = 1;
while &COUNTER <= 10
 WinMessage(MsgGet(21000, 1, "Count is %1", &COUNTER));
 &COUNTER = &COUNTER + 1;
end-while;

See Also

Chapter 1, "PeopleCode Built-in Functions," Repeat, page 568

WinEscape

Syntax

WinEscape()

Description

Note. This function has been deprecated and is no longer supported.

WinExec

Syntax

WinExec(command_line,window_option [, synch_exec])

Description

Note. This function has been deprecated and is no longer supported.

WinMessage

Syntax

WinMessage(message [, style] [, title])

Description

Note. The WinMessage function is supported for compatibility with previous releases of PeopleTools. New
applications should use MessageBox instead.

See Chapter 1, "PeopleCode Built-in Functions," MessageBox, page 499.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 739

Use the WinMessage function to display a message in a message box.

Use the WinMessage for simple informational display, where the end user reads the message, then clicks an
OK button to dismiss the message box. WinMessage can also be used for branching based on end user choice,
in which case the message box contains two or more buttons (such as OK and Cancel or Yes, No, and
Cancel). The value returned by the function tells you which button the end user clicked, and your code can
branch based on that value.

If WinMessage displays more than one button, it causes processing to stop while it waits for user response.
This makes it a "user think-time" function, restricting its use in certain PeopleCode events.

The contents of the message displayed by WinMessage can be passed to the function as a string, but unless
you are using the function for testing purposes you should always retrieve the message from the Message
Catalog using the MsgGet or MsgGetText function. This has the advantage of making the messages much
easier to localize and maintain.

Note that if you pass a string to the WinMessage function (or a Warning or Error function) instead of using a
Message Catalog function, the explanation text from the last call to the Message Catalog may be appended to
the message. This can cause unexpected results.

The Message Catalog functions MsgGet, MsgGetText, and MessageBox retrieve and store two text strings in
memory: the message text and the explanation text. The MsgGetExplainText function retrieves and stores
only the explanation text. When these strings are displayed by a WinMessage, MessageBox, Error or Warning
dialog, the buffers are reinitialized.

If a Message Catalog function is called without displaying the text, for instance to populate a variable or
record field, the message text and the explanation text remain in memory.

If a subsequent call passes a string to a WinMessage, Warning, or Error function before the buffers are
reinitialized, the explanation text remains in memory and is appended to the message.

The following example shows one way this could occur.

The Message Catalog might contain an entry such as this:

PeopleCode Built-in Functions Chapter 1

740 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example of a Message Catalog entry with message text and explanation text

MsgGetText is used to assign the Message Catalog entry to a variable for further processing.

&PartDesc = MsgGetText(30000, 5, "Amana Radar Range");
/** Process order **/
WinMessage("Your Kitchen Upgrade Order has been processed");

The WinMessage dialog displays the explanation text appended to the intended message:

Example of a WinMessage dialog with explanation text appended

This example shows a simple workaround to clear the buffers using MsgGet.

&PartDesc = MsgGetText(30000, 5, "Amana Radar Range");
/** Process order **/
&Dummy = MsgGet(0,0, " ");
WinMessage("Your Kitchen Upgrade Order has been processed");

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 741

Restrictions on Use in PeopleCode Events

The style parameter is optional in WinMessage. If style is omitted WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid unnecessary restrictions, you
should always pass an appropriate value in the WinMessage style parameter.

If the style parameter specifies a single button (that is, the OK button), the function can be called in any
PeopleCode event.

If the style parameter specifies more than one button, or if the style parameter is omitted, WinMessage returns
a value based on user response and interrupts processing until the user has clicked one of the buttons. This
makes it a "user think-time" function, subject to the same restrictions as other think-time functions which
means that it cannot be used in any of the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or a
Select (or one of its relatives) Rowset class method.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using Methods and Built-In Functions," Think-Time
Functions.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that's been called by a
Component Interface.

Message Box Icons

In the PeopleSoft Pure Internet Architecture, you can't change the icon of a message box. You can change the
number and type of buttons, as well as the default button, but the message always displays with the warning
icon (a triangle with an exclamation mark in it.)

Parameters

Parameter Description

Message Text displayed in message box. Normally you want to use the MsgGet or
MsgGetText function to retrieve the message from the Message Catalog.

Title Title of message box.

Style Either a numerical value or a constant specifying the contents and behavior of the
dialog box. This parameter is calculated by cumulatively adding either a value or a
constant from each of the following categories:

PeopleCode Built-in Functions Chapter 1

742 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Category Value Constant Meaning

Buttons 0 %MsgStyle_OK The message box
contains one pushbutton:
OK.

1 %MsgStyle_OKCancel The message box
contains two pushbuttons:
OK and Cancel.

2 %MsgStyle_AbortRetryI
gnore

The message box
contains three
pushbuttons: Abort,
Retry, and Ignore.

3 %MsgStyle_YesNoCance
l

The message box
contains three
pushbuttons: Yes, No,
and Cancel.

4 %MsgStyle_YesNo The message box
contains two push
buttons: Yes and No.

5 %MsgStyle_RetryCancel The message box
contains two push
buttons: Retry and
Cancel.

Returns

If the style parameter is provided, WinMessage optionally returns a Number value. If the style parameter is
omitted, WinMessage optionally returns a Boolean value: True if the OK button was clicked, otherwise it
returns False.

The return value is zero if there is not enough memory to create the message box.

If the style parameter is provided, WinMessage returns one of the following Number values:

Value Constant Meaning

-1 %MsgResult_Warning Warning was generated.

1 %MsgResult_OK OK button was selected.

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 743

Value Constant Meaning

2 %MsgResult_Cancel Cancel button was selected.

3 %MsgResult_Abort Abort button was selected.

4 %MsgResult_Retry Retry button was selected.

5 %MsgResult_Ignore Ignore button was selected.

6 %MsgResult_Yes Yes button was selected.

7 %MsgResult_No No button was selected.

Example

The following example displays a message dialog box with Yes and No buttons. The message is taken from
the Message Catalog. The message displayed looks like this:

Message with Yes/No buttons

When the end user clicks the Yes or No button, a result is passed back which the example tests and uses to
control branching.

/* Displays Yes/No buttons in message box. */
&RESULT = WinMessage(MsgGetText(30000, 1, "Message not found."), 4, "Test⇒
 Application");
if &RESULT = %MsgResult_Yes then
 /* Yes button was pressed -- do Yes button stuff */
else
 /* No button was pressed -- do No button stuff */
end-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," Encrypt, page 245; Chapter 1, "PeopleCode Built-in Functions,"
MessageBox, page 499; Chapter 1, "PeopleCode Built-in Functions," MsgGet, page 508; Chapter 1,
"PeopleCode Built-in Functions," MsgGetText, page 511 and Chapter 1, "PeopleCode Built-in Functions,"
MsgGetExplainText, page 509

PeopleCode Built-in Functions Chapter 1

744 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

WriteToLog

Syntax

WriteToLog(AppFenceSetting,String)

Description

Use the WriteToLog function to write String to either the application server or the TraceSQL log file.

The WriteToLog function writes String to the TraceSQL log file if AppFenceSetting is less than or equal to
the current application log fence (AppLogFence) setting in the application server configuration file
(PSAPPSRV.CFG.)

Note. This is distinct from the PeopleTools LogFence capability which applies to PeopleTools level logging.

The WriteToLog function writes String to the TraceSQL log file in PSAPPSRV.CFG if any of the following
trace options is turned on.

• TracePPR

• TraceSQL

• TracePC

• TracePIA

If any change is made to the trace options in PSAPPSRV.CFG, you must restart both the application server
and web server so that the change takes effect.

The debugging options for a Web Profile also affects the WriteToLog function. If any of the following page
fields are selected (checked), the WriteToLog function writes String to the TraceSQL log file.

• Show Layout

• Show Overlapping Fields

• Show Stylesheet Inline HTML

• Show JavaScript Inline HTML

• Generate HTML for Testing

• Create File from PIA HTML Page

If the above conditions are not true, the WriteToLog function writes String to the application server log file.

See Also

PeopleTools 8.52: System and Server Administration, "Tracing, Logging, and Debugging"

Chapter 1 PeopleCode Built-in Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 745

Parameters

Parameter Description

AppFenceSetting Specify the level at which logging should occur, if AppFenceSetting is less than or
equal to the current application log fence. You can use either a number or a
constant value. The values are:

Value Description

%ApplicationLogFence_Error Allow all levels of errors to be written to the log. This is the lowest setting.

%ApplicationLogFence_ Warning Allowing only warnings or higher to be written to the log.

%ApplicationLogFence_ Level1 Allow only this level of errors or higher to be written to the log.

%ApplicationLogFence_ Level2 Allow only this level of errors or higher to be written to the log.

%ApplicationLogFence_ Level3 Allow only this level of errors to be written to the log.

Parameter Description

String Specify the message text to be written to the log file.

Returns

None.

Example

WriteToLog(%ApplicationLogFence_Level2, "MYAPP" | &Somestring);

See Also

Chapter 3, "System Variables," %ApplicationLogFence, page 812

PeopleTools 8.52: PeopleCode Developer's Guide, "Debugging Your Application," Using Application
Logging

Year

Syntax

Year(dt)

PeopleCode Built-in Functions Chapter 1

746 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the Year function to derive the year component of a Date value.

Parameters

Parameter Description

dt A Date value from which to derive the year component.

Returns

Returns a Number value between 1900 and 2078 equal to the year component in dt.

Example

The example sets &GRAD_YEAR to 1976:

&GRAD_DATE = DateValue("10/04/1976");
&GRAD_YEAR = Year(&GRAD_DATE);

See Also

Chapter 1, "PeopleCode Built-in Functions," Date, page 176; Chapter 1, "PeopleCode Built-in Functions,"
Date3, page 177; Chapter 1, "PeopleCode Built-in Functions," DateValue, page 188; Chapter 1, "PeopleCode
Built-in Functions," Day, page 189; Chapter 1, "PeopleCode Built-in Functions," Days360, page 190; Chapter
1, "PeopleCode Built-in Functions," Days365, page 191; Chapter 1, "PeopleCode Built-in Functions," Month,
page 507 and Chapter 1, "PeopleCode Built-in Functions," Weekday, page 736

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 747

Chapter 2

Meta-SQL Elements

This chapter provides an overview of meta-SQL and discusses:

• Parameter markers.

• Date considerations.

• Meta-SQL placement considerations.

• Meta-SQL reference.

• Meta-SQL shortcuts.

See Also

Chapter 1, "PeopleCode Built-in Functions," SQLExec, page 654

Chapter 1, "PeopleCode Built-in Functions," ScrollSelect, page 591

PeopleTools 8.52: PeopleCode API Reference, "Record Class"

PeopleTools 8.52: PeopleCode API Reference, "Rowset Class"

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

Understanding Meta-SQL

This section discusses:

• Meta-SQL use.

• Meta-SQL element types.

Meta-SQL Use
Meta-SQL expands to platform-specific SQL substrings, causes another function to be called, or substitutes a
value. Meta-SQL constructs are used in functions that pass SQL strings, such as the following:

• SQLExec.

• Scroll buffer functions (ScrollSelect and its relatives).

Meta-SQL Elements Chapter 2

748 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Application Designer dynamic views and SQL views.

• Some Rowset class methods (Select, SelectNew, Fill, and so on.).

• The SQL class.

• Application Engine programs.

• Some Record class methods (Insert, Update, and so on.).

• COBOL functions.

Meta-SQL Element Types
There are three types of meta-SQL elements:

• Construct.

Constructs are a direct substitution of a value, and help to build or modify a SQL statement.

Examples include %Bind, %InsertSelect, and %List.

• Function.

Functions perform actions or cause another function to be called.

Examples include %ClearCursor, %Execute, and %ExecuteEdits.

• Meta-variable.

Meta-variables enable substitution of text within SQL statements.

Examples include %AsOfDate, %Comma, and %JobInstance.

Parameter Markers

Parameter markers or bind variables are most commonly used in predicates, however some database
platforms allow them in the SELECT list. However, since this is not supported across all platforms, you
should not code your SQL to use bind variables in a SELECT list.

In addition, do not have bind variables as the operands of the same operator. This is not supported on all
platforms. DB2/400 and DB2/OS390 cannot handle this type of operation.

Date Considerations

This section discusses:

• Basic date meta-SQL guidelines.

• Date, DateTime, or Time wrappers with Application Engine programs.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 749

• Date, DateTime, or Time wrappers for SQL views and dynamic views.

• {DateTimein-prefix} in Structured Query Language (SQR).

Basic Date Meta-SQL Guidelines
You can avoid confusion when using meta-SQL such as %Datein and %Dateout if you remember to use "in"
functions in the Where subclause of a SQL query and to use "out" functions in the Select (main) clause of the
query. For example:

select emplid, %dateout(effdt) from ps_car_alloc a where car_id = '" |⇒
 ®ISTRATION_NO | "' and plan_type = '" | &PLAN_TYPE | "' and a.effdt = ⇒
(select max (b.effdt) from ps_car_alloc b where a.emplid=b.emplid and b.effdt <=⇒
 %currentdatein) and start_dt <= %currentdatein and (end_dt is null or end_dt >=⇒
 %currentdatein)";

Date, DateTime, and Time Wrappers with Application Engine Programs
Use date or time wrappers (%Datein, %TimeOut, and so on) when selecting date or time columns into
memory. Different database platforms use different internal formats for these data types. Those different
formats range from 1900-01-01 to 01-JAN-1900. DateTime (timestamp) formats are even more complex.

In PeopleCode (SQLExecs and the like), use both an "out" wrapper when selecting a DateTime value into
memory, as well as an "in" wrapper when referencing the value as a bind variable.

In an Application Engine program, when you populate a DateTime state field in a %Select, you still must use
an "out" wrapper to get the value into the standard format. But when you reference this state field in a %Bind,
Application Engine automatically provides the "in" wrapper around the substituted literal or bind marker (the
latter if reuse is in effect).

Actually, if you use the code %Bind(date) in the select list of another %Select statement, to load the value
into another date field, Application Engine doesn't provide a wrapper (since you are selecting a value that is
already in the standard format, you do not need to use a wrapper).

Date, DateTime, and Time Out Wrappers for SQL Views and Dynamic Views
Dynamic views containing Date, Time, or DateTime fields must be wrapped with the appropriate meta-SQL.
PeopleTools uses the SQL directly from the view definition (view text) and doesn't generate anything, so no
meta-SQL wrapping is done.

SQL views should not contain meta-SQL that wraps Date, Time, or DateTime fields.

{DateTimein-prefix} in SQR
In SQR, if you are using {DateTimein-prefix}, and so on, you need to do the following:

• For string or let statements when using dynamic SQL, you need to use the following:

 {DYN-Date***in/out-prefix/suffix}

Meta-SQL Elements Chapter 2

750 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• For SQL statements, you need to use the regular SQL, as follows:

{Date*** in/out-prefix/suffix}

Meta-SQL Placement Considerations

Not all meta-SQL can be used by all programs. Some meta-SQL can be used only in Application Engine
programs. Other meta-SQL can only be used as part of a SQL statement in a SQL view or dynamic view. The
following table lists available meta-SQL elements and where each element can be used.

If a meta-SQL construct, function, or meta-variable is supported in PeopleCode, it is supported in all types of
PeopleCode programs—that is, in Application Engine PeopleCode programs (actions), component interface
PeopleCode programs, and so on.

Note. Even if a meta-SQL element is used in PeopleCode, you cannot use meta-SQL like a built-in function.
You can use meta-SQL in the SQLExec function, the Select method, the Fill method, and so on.

Note. Meta-SQL is not available in SQR.

Meta-SQL elements that are available for Application Engine only are described in Application Engine
documentation.

Meta-SQL Element Name Used in All
Types of
PeopleCode
Programs

Used in
Application
Engine SQL
Actions

Used in COBOL Used in
Dynamic Views
and SQL Views

%Abs X X X

%AEProgram X

%AESection X

%AEStep X

%AsOfDate X

%AsOfDateOvr X

%BINARYSORT X X X X

%Bind X

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 751

Meta-SQL Element Name Used in All
Types of
PeopleCode
Programs

Used in
Application
Engine SQL
Actions

Used in COBOL Used in
Dynamic Views
and SQL Views

%Cast X X X X

%ClearCursor X

%COALESCE X X X

%Comma X

%Concat X X X

%CurrentDateIn X X X X

%CurrentDateOut X X X X

%CurrentDateTimeIn X X X X

%CurrentDateTimeOut X X X X

%CurrentTimeIn X X X X

%CurrentTimeOut X X X X

%DateAdd X X X X

%DatabaseRelease X X X X

%DateDiff X X X X

%DateIn X X X X

%DateNull X X X

%DateOut X X X X

%DatePart X X X

Meta-SQL Elements Chapter 2

752 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Meta-SQL Element Name Used in All
Types of
PeopleCode
Programs

Used in
Application
Engine SQL
Actions

Used in COBOL Used in
Dynamic Views
and SQL Views

%DateTimeDiff X X X X

%DateTimeIn X X X X

%DateTimeNull X X X

%DateTimeOut X X X X

%DecDiv X X X X

%DecMult X X X X

%Delete X

%DTTM X X X

%EffDtCheck X X

%Execute X

%ExecuteEdits X

%FirstRows X X

%GetProgText X

%Insert X

%InsertSelect X X X

%InsertSelectWithLongs X X X

%InsertValues X X

%JobInstance X

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 753

Meta-SQL Element Name Used in All
Types of
PeopleCode
Programs

Used in
Application
Engine SQL
Actions

Used in COBOL Used in
Dynamic Views
and SQL Views

%Join X X X

%KeyEqual X X

%KeyEqualNoEffDt X X

%LeftParen X

%Like X X X

%LikeExact X X X

%List X

%ListBind X

%ListEqual X

%Mod X X X

%Next and %Previous X

%NoUppercase X X X

%NumToChar X X X

%OldKeyEqual X X

%OPRCLAUSE X

%ProcessInstance X

%ResolveMetaSQL X

%ReturnCode X

Meta-SQL Elements Chapter 2

754 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Meta-SQL Element Name Used in All
Types of
PeopleCode
Programs

Used in
Application
Engine SQL
Actions

Used in COBOL Used in
Dynamic Views
and SQL Views

%RightParen X

%Round X X X X

%RoundCurrency X

%RunControl X

%Select X

%SelectAll X

%SelectByKey X

%SelectByKeyEffDt X

%SelectDistinct X

%SelectInit X

%Space X

%SQL X X X

%SQLRows X

%Substring X X X X

%SUBREC X

%Table X X X

%Test X X

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 755

Meta-SQL Element Name Used in All
Types of
PeopleCode
Programs

Used in
Application
Engine SQL
Actions

Used in COBOL Used in
Dynamic Views
and SQL Views

%TextIn

Note. %TextIn is not
supported on Informix.

X X X

%TimeAdd X X

%TimeIn X X X X

%TimeNull X X X

%TimeOut X X X X

%TimePart X X X

%TrimSubstr X X X X

%Truncate X X X X

%TruncateTable X X X X

%Update X

%UpdatePairs X X

%UpdateStats X X

%Upper X X X

%UuidGen X X

%UuidGenBase64 X X

Meta-SQL Elements Chapter 2

756 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode"

Meta-SQL Reference

This section discusses meta-SQL elements in alphabetical order.

Note. The parameter recname refers to a record name, not a table name. If you specify a table name (for
example, PS_ST_OPTION_PARMS) you receive a SQL error. Use the record name (for example,
ST_OPTION_PARMS) instead. Also, do not use quotation marks around a record name.

See Also

"PeopleCode Language Reference Preface," PeopleCode Typographical Conventions, page xxiii

%Abs

Syntax

%Abs(x)

Description

Use the %Abs meta-SQL construct to return a decimal value equal to the absolute value of a number x.

Note. This meta-SQL construct is not implemented for COBOL.

Example

SELECT INVENTORY_CODE FROM INVENTORY_TABLE WHERE %ABS(NEW_AMOUNT - OLD_AMOUNT) >⇒
 SOME_ALLOWED_VALUE

%BINARYSORT

Syntax

%BINARYSORT(Recname)

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 757

Description

Any in-memory sorting performed using COBOL language functions is performed as a binary sort in the
current character set used for COBOL processing, and may not necessarily match the sort order returned by
the database in response to an Order By clause. Should you require the database to return data sorted using a
binary sort of its encoding rather than the default linguistically-correct sort, you must use the
%BINARYSORT meta-SQL function around each column in the Where or Order By clause where binary
ordering is important.

However, for z/OS implementations, keep in mind that this binary sorting is only equivalent when the
COBOL program is run z/OS server. For example, the binary sort produced in COBOL differs from the
binary sort produced by the database, as the database is encoded in extended binary-coded decimal
interchange code (EBCDIC) and the client is in an ASCII-based encoding. Therefore, %BINARYSORT
should only be used in COBOL programs that are not run using the RemoteCall function, where the z/OS
platform is not supported as a RemoteCall server.

When running against non-z/OS systems, %BINARYSORT can be used in both RemoteCall and non-
RemoteCall programs.

Note. Using %BINARYSORT in Where and Order By clauses negates the use of any indexes, as most
databases can't use indexes for functional comparisons. (For example, WHERE %BINARYSORT(column)
> 'X'). Use this syntax only when sorting equivalence of SQL statement results and COBOL memory order
is required.

Parameters

Parameter Description

Recname Specify the record name to use with the sorting.

Example

SELECT RECNAME FROM PSRECDEFN WHERE %BINARYSORT(RECNAME) < %BINARYSORT('xxx')

SELECT RECNAME FROM PSRECDEFN ORDER BY %BINARYSORT(RECNAME)

See Also

Chapter 1, "PeopleCode Built-in Functions," RemoteCall, page 559

PeopleTools 8.52: Global Technology, "Running COBOL in a Unicode Environment"

%Cast

Syntax

%Cast(source_expr,source_type,target_type[, precision[.scale]])

Meta-SQL Elements Chapter 2

758 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the %Cast meta-SQL function to convert a PeopleSoft data type to a Character data type. A database-
generated error is returned if the function attempts to make an invalid conversion. %Cast can be used
wherever %DateOut, %TimeOut, %DateTimeOut, %CurrentDateOut, %CurrentTimeOut,
%CurrentDateTimeOut, and %NumToChar functions can be used.

Note. %NumToChar will preserve all trailing zeroes. Therefore, use the scale parameter of %Cast to specify
the number of trailing zeroes.

On some platforms the meta-SQL functions %DateOut, %TimeOut, %DateTimeOut, %CurrentDateOut,
%CurrentTimeOut and %CurrentDateTimeOut don't return a Character value. On other platforms, these
functions return a Character string only in certain cases. %Cast returns a Character value on all supported
platforms.

Use %Cast only in the Select portion of query. Do not use it in a Where clause or in Insert or Update
statements.

Parameters

Parameter Description

source_expr Specify the input expression in the form of a Number, Long Character, Date,
Time, or DateTime column name or as a %CurrentDateOut, %CurrentTimeOut, or
%CurrentDateTimeOut meta-SQL variable.

This parameter is not case sensitive.

source_type Specify the source data type. Valid data types are Number, Long, Date, Time, and
DateTime.

This parameter is not case sensitive.

target_type Currently the only target type supported is Character.

precision.scale The precision.scale parameter is currently supported on DB2 UDB for z/OS only
and with a source type of Number. While this parameter can be supplied on other
platforms, it is ignored.

This parameter is optional.

The scale parameter is an optional part of this parameter. Therefore, the expression
precision.0 is equivalent to precision.

%COALESCE

Syntax

%COALESCE(expr1,expr2, ...)

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 759

Description

Use the %COALESCE function to return the first non-null argument provided to the function.

Note. This meta-SQL function is not implemented for COBOL.

Parameters

Parameter Description

expr1. . .exprn Specify the expressions to check.

Note. You cannot specify bind parameters using these expressions.

Example

The following example uses the PRODUCT_INFO table to organize a clearance sale of products. It gives a
10 percent discount to all products with a list price. If there is no list price, the sale price is the minimum
price. If there is no minimum price, the sale price is 10.

SELECT product_id, list_price, min_price, %COALESCE(0.9*list_price, min_price, 10)⇒
 "Sale"
from PRODUCT_INFO
where SUPPLIER_ID = 6009;

%Concat

Syntax

string1 %Concat string2

Description

At runtime, the %Concat meta-SQL variable is replaced by the string concatenation operator appropriate for
the relational database management system (RDBMS) being used. For example, on DB2, the %Concat meta-
SQL variable is replaced with CONCAT, while on Sybase it's replaced with a +.

This meta-SQL variable is supported with the same limitations as the native concatenation operator for the
RDBMS where the meta-SQL is being executed. For example, some platforms enable you to concatenate a
string with a numeric value; others flag this as an error. PeopleTools makes no attempt to check or convert the
data types of either of the operands.

Note. Concat is not available in COBOL, but the DYN-STMT-CONCAT field can be strung into dynamic
COBOL strings to resolve into a platform-specific concatenation operator.

Meta-SQL Elements Chapter 2

760 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

SELECT 'A' %Concat 'B' FROM PS_INSTALLATION. . .

SELECT LAST_NAME %Concat ',' %Concat FIRST_NAME FROM PS_EMPLOYEE

%CurrentDateIn

Description

The %CurrentDateIn meta-SQL variable expands to a platform-specific SQL substring representing the
current date in the Where clause of a SQL Select or Update statement, or when the current date is passed in an
Insert statement.

%CurrentDateOut

Description

 The %CurrentDateOut meta-SQL variable expands to platform-specific SQL for the current date in the
Select clause of a SQL query.

%CurrentDateTimeIn

Description

The %CurrentDateTimeIn meta-SQL variable expands to a platform-specific SQL substring representing the
current datetime in the Where clause of a SQL Select or Update statement, or when the current date time is
passed in an Insert statement.

%CurrentDateTimeOut

Description

 The %CurrentDateTimeOut meta-SQL variable expands to platform-specific SQL for the current datetime in
the Select clause of a SQL query.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 761

%CurrentTimeIn

Description

The %CurrentTimeIn meta-SQL variable expands to a platform-specific SQL substring representing the
current time in the Where clause of a SQL Select or Update statement, or when the current time is passed in
an Insert statement.

%CurrentTimeOut

Description

The %CurrentTimeOut meta-SQL variable expands to platform-specific SQL for the current time in the
Select clause of a SQL query.

%DatabaseRelease

Syntax

%DatabaseRelease([descr_level])

Description

The %DatabaseRelease variable returns the database version of the current database connection. The return
value is a number or a string depending on descr_level.

Optionally specify the description level as MAJOR, FULL, or DESCR.

If MAJOR is specified, %DatabaseRelease returns the major release number as a number value.

If FULL is specified, %DatabaseRelease returns the full release and version as a string value.

If DESCR is specified, %DatabaseRelease returns the full release and version with description as a string
value.

Parameters

Parameter Description

descr_level Specify the level of description to be returned. Valid values are MAJOR, FULL,
and DESCR.

This parameter is optional. The default is MAJOR.

Meta-SQL Elements Chapter 2

762 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

If the current database is Oracle Database 10g Enterprise Edition Release 10.2.0.3.0- 64bit Production With
the Partitioning and Data Mining option:

SQLExec("Select %DatabaseRelease(MAJOR) from PS_INSTALLATION_TR", &DBRel);

Returns 10.

SQLExec("Select %DatabaseRelease(FULL) from PS_INSTALLATION_TR", &DBRel);

Returns '10.2.0.3.0',

SQLExec("Select %DatabaseRelease(DESCR) from PS_INSTALLATION_TR", &DBRel);

Returns 'Oracle Database 10g Enterprise Edition Release 10.2.0.3.0- 64bit
Production With the Partitioning and Data Mining options'.

%DateAdd

Syntax

%DateAdd(date_from,add_days)

Description

The %DateAdd meta-SQL function returns a date by adding add_days to date_from. The add_days variable
can be negative.

Example

SQLExec("Select %dateadd(%datein('2002-02-02') , 12) from PS_INSTALLATION_TR",⇒
 &add);
WinMessage(&add);

%DateDiff

Syntax

%DateDiff(date_from,date_to)

Description

The %DateDiff meta-SQL function returns an integer representing the difference between two dates in
number of days.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 763

Example

%DateDiff(%DateIn('1997-01-01'), %DateIn("1966-06-30'))

%DateDiff(date1_column, date2_column)

%DateDiff (%DateAdd(date1_column, 30), date2_column)

The following usage is illegal (always use %Datein for inputting date literals):

%DateDiff('1997-01-01', '1996-06-30') (should use %DateIn for inputting date⇒
 literals)

%DateIn

Syntax

%DateIn(dt)

Description

 The %DateIn meta-SQL variable expands into platform-specific SQL syntax for the date. Use %DateIn
whenever a date literal or Date bind variable is used in a comparison in the Where clause of a Select or
Update statement, or when a Date value is passed in an Insert statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind parameters
in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPDT = %DATEIN('2002-12-11')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPDT = %DATEIN(:1)

Parameters

Parameter Description

dt Specify either a Date value or a date literal in YYYY-MM-DD format.

Meta-SQL Elements Chapter 2

764 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%DateNull

Syntax
%DateNull

Description

Use the %DateNull meta-SQL variable to specify a null value for a Date field. Only use this meta-SQL in
Insert or Update clauses. Do not use this meta-SQL in a Where clause.

Note. This meta-SQL variable is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

Informix empty string ('')

DB2 NULLIF(CURRENT DATE, CURRENT DATE)

All others NULL

Parameters

None.

%DateOut

Syntax

%DateOut(dt)

Description

The %DateOut meta-SQL variable expands to either a platform-specific SQL substring or datetime value,
depending on the database platform, representing a datetime column in the Select clause of a SQL query

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 765

Parameters

Parameter Description

dt Specify dt as a date column.

Note. You cannot specify a literal value for dt. Code such as
%DateOut('1900-01-01') is not allowed.

%DatePart

Syntax

%DatePart(DTTM_Column)

Description

The %DatePart meta-SQL variable returns the date portion of the specified DateTime column.

Note. This meta-SQL variable is not implemented for COBOL.

Considerations using %DatePart

Use %DateOut meta-SQL when fetching values, as in the following example:

%DateOut(%DatePart(DTTM_COLUMN)) from some_table

If a literal is used as the parameter to %DatePart, it must be wrapped in %DateTimeIn:

insert into some_table values(%DatePart(%DateTimeIn('2001-01-01-12.34.56.789012')))

Parameters

Parameter Description

DTTM_Column Specify the datetime column from which you want to return the date.

%DateTimeDiff

Syntax

%DateTimeDiff(datetime_from,datetime_to)

Meta-SQL Elements Chapter 2

766 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Description

The %DateTimeDiff meta-SQL function returns a time value, representing the difference between two
datetimes in minutes.

Example

The following example returns the difference in hours between the current datetime and the requested
datetime:

%DateTimeDiff(%CurrentDateIn, RQSTDTTM) < " | RECORD.FIELDNAME * 60;

The following example returns the difference in minutes:

%DateTimeDiff(%CurrentDateIn, RQSTDTTM) < " | RECORD.FIELDNAME;

%DateTimeIn

Syntax

%DateTimeIn(dtt)

Description

The %DateTimeIn meta-SQL variable expands to platform-specific SQL for a DateTime value in the Where
clause of a SQL Select or Update statement, or when a DateTime value is passed in an Insert statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind parameters
in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPDTTM = %DATETIMEIN('2002-12-11-11.59.00.000000')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPDTTM = %DATETIMEIN(:1)

Parameters

Parameter Description

dtt Specify either a DateTime bind variable or a string literal in the form YYYY-MM-
DD-hh.mm.ss.ssssss.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 767

%DateTimeNull

Syntax
%DateTimeNull

Description

Use the %DateTimeNull meta-SQL variable to specify a null valuefor a DateTime field. Only use this meta-
SQL in Insert or Update clauses. Do not use this meta-SQL in a Where clause.

Note. This meta-SQL is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

Informix empty string ('')

DB2 NULLIF(CURRENT TIMESTAMP, CURRENT
TIMESTAMP)

All others NULL

Parameters

None.

Example

%InsertSelect(LEDGER_KK_WK2,LEDGER_KK_WRK, CURRENCY_CD = %Bind(TO_CURRENCY)⇒
 ,POSTED_TOTAL_AMT = SUM(POSTED_BASE_AMT),POSTED_TRAN_AMT = 0,POSTED_BASE_AMT =⇒
 0,BASE_CURRENCY = %Bind(TO_CURRENCY),PROCESS_INSTANCE = %Bind(PROCESS_⇒
INSTANCE),DTTM_STAMP_SEC = %DateTimeNull)

FROM PS_LEDGER_KK_WRK

WHERE PROCESS_INST_STG = %Bind(PROCESS_INSTANCE)

AND CURRENCY_CD <> %Bind(TO_CURRENCY)

GROUP BY PROCESS_INST_STG, BUSINESS_UNIT,LEDGER, ACCOUNT, %List(FIELD_LIST, CFCC1_⇒
AK_SBR) ,STATISTICS_CODE, FISCAL_YEAR,ACCOUNTING_PERIOD

Meta-SQL Elements Chapter 2

768 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%DateTimeOut

Syntax

%DateTimeOut(datetime_col)

Description

The %DateTimeOut meta-SQL variable expands to either a platform-specific SQL substring or datetime
value, depending on the database platform, representing a datetime column in the Select clause of a SQL
query

Parameters

Parameter Description

datetime_col Specify a datetime column.

%DecDiv

Syntax

%DecDiv(a,b)

Description

 The %DecDiv meta-SQL function returns a number representing the value of a divided by b, where a and b
are numeric expressions.

If the result needs to be picked up by a bind variable, pick it up using the Character type or PIC X(50).

Parameters

Parameter Description

a Specify the dividend as a number.

b Specify the divisor as a number.

Example

%DecDiv(1000.0, :1)

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 769

In the example, :1 is a bind variable in SQLExec PeopleCode.

See Also

Chapter 2, "Meta-SQL Elements," %Mod, page 787

%DecMult

Syntax

%DecMult(a,b)

Description

 The %DecMult meta-SQL function returns a number representing a multiplied by b, where a and b are
numeric expressions.

If the result needs to be picked up by a bind variable, pick it up using the Character type or PIC X(50).

Note. %DecMult is replaced with a simple multiplication function on all platforms except for the DB2 UDB
for OS/390 and z/OS platform. On this platform, it is converted to MULTIPLY_ALT. The MULTIPLY_ALT
scalar function returns the product of the two arguments as a decimal value. It is provided as an alternative to
the multiplication operator, especially when the sum of the precisions of the arguments exceeds 31.

Note. If you receive an overflow error using this meta-SQL, you may need to use the CAST function on the
MSSQL, ORACLE, DB2UNIX and DB2 UDB for OS/390 platforms, or the CONVERT function for
SYBASE platforms, on your input first.

Parameters

Parameter Description

a Specify a number to be multiplied.

b Specify a number to use for multiplying.

Example

%DecMult(12.3, 34.67)

%DecMult(c1 + c2, c3)

In the example, c1, c2, and c3 are fields of the Number data type.

Meta-SQL Elements Chapter 2

770 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%DTTM

Syntax

%DTTM(date,time)

Description

The %DTTM meta-SQL function combines the database date in the date value with the database time in the
time value and returns a database timestamp value.

Note. This meta-SQL function is not implemented for COBOL.

Example

INSERT INTO TABLE1 (TIMESTAMP) SELECT %DTTM(DATE,TIME) FROM TABLE2

%EffDtCheck

Syntax

%EffDtCheck(recordname [correlation_id1], correlation_id2, as_of_date)

Description

The %EffDtCheck construct expands into an effective date subquery suitable for a Where clause. The value
for as_of_date is automatically wrapped in %DateIn unless as_of_date is already wrapped in %DateIn or
refers to other database columns.

Note. This meta-SQL construct is not implemented for COBOL.

 %EffDtCheck only works with effective dates. It does not take effective sequence numbers (EFFSEQ) into
account. It also does not do effective-status (EFF_STATUS) checking.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 771

Parameters

Parameter Description

recordname Specify the record name to use as the record in the effective-date checking. This
can be a bind variable, a record object, or a record name in the form recname. You
cannot specify a RECORD.recname, a record name in quotation marks, or a table
name.

Note. If you specify a bind variable, it should refer to a record object, not a string
variable.

correlation_id1 (Optional) Specify the letter used inside the effective-dating subselect. If this
parameter isn't specified, recordname is used.

correlation_id2 Specify the letter already assigned to the main record in the From clause of the
SQL statement.

as_of_date Specify the date to use in the effective date. This can be a bind variable, a variable,
or a hard-coded date. The value for as_of_date is automatically wrapped in
%DateIn unless as_of_date is already wrapped in %DateIn or refers to other
database columns.

Example

The following is a generic code sample:

SELECT. . .
 FROM. . .
 WHERE %EffDtCheck(recordname correlation_id, as_of_date)

The example code resolves into the following:

SELECT . . .
 FROM. . .
 WHERE correlation_id.EFFDT = (SELECT MAX(EFFDT) FROM recordname
 WHERE recordname.KEYFIELD1 = correlation_id.KEYFIELD1
 AND recordname.KEYFIELD2 = correlation_id.KEYFIELD2
 AND. . .
 AND recordname.EFFDT <= %DATEIN(as_of_date))

In the following example, &Date has the value of 01/02/1998. The example &Rec object has an EFFDT key
field.

SQLExec("SELECT FNUM FROM PS_REC A WHERE %EffDtCheck(:1, A, :2)", &Rec, &Date);

This example code resolves into the following:

"Select FNUM from PS_REC A where EFFDT = (select MAX(EFFDT)
from PS_REC
 where PS_REC.FNUM = A.FNUM
 and PS_REC.EFFDT <= %DateIn('1998-01-02'))"

The following example uses correlation IDs:

Meta-SQL Elements Chapter 2

772 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SELECT A.DEPTID
FROM %Table(DEPT_TBL) A
WHERE
%EffDtCheck(DEPT_TBL B, A, %CurrentDateIn)
AND A.EFF_STATUS = 'A'

This example code resolves into the following:

SELECT A.DEPTID
FROM %Table(DEPT_TBL) A
WHERE
A.EFFDT =
(SELECT MAX(B.EFFDT)
FROM DEPT_TBL B
WHERE
A.SETID = B.SETID
AND A.DEPTID = B.DEPTID
AND B.EFFDT <=%CurrentDateIn)
AND A.EFF_STATUS = 'A'

%FirstRows

Syntax

%FirstRows(n)

Description

The %FirstRows meta-SQL variable is replaced by database-specific SQL syntax to optimize retrieval of n
rows. Depending on the database, this variable optimizes:

• The query path.

• The number of rows returned.

• The number of rows returned per fetch buffer.

Considerations Using %FirstRows

Consider the following when using %FirstRows:

• Using %FirstRows does not mean only the first n rows are returned.

It means that the SQL is optimized for the first n rows where the platform supports it. More rows might be
returned, depending on the platform.

• It is the application's responsibility to stop fetching when enough rows have been returned.

• This meta-SQL variable is not implemented for COBOL or dynamic view SQL.

• Do not use this meta-SQL variable if the application might require more than n rows fetched.

The results of fetching more than n rows varies by platform. Some return the extra rows, but performance
may be suboptimal. Others return the message "ROW NOT FOUND".

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 773

• Place this meta-SQL variable between the Select statement that begins the SQL statement and the Select
List statement.

Do not use it in subqueries, views, Insert/Select statements, and so on. Do not use a wildcard (*) with the
Select List statement.

• Do not use this meta-SQL variable with Distinct statements, because the code SELECT TOP 1
DISTINCT fails on Microsoft SQL Server and Sybase.

• This meta-SQL variable is implicitly embedded in all Select statements for SQLExecs for all platforms
except Oracle.

Parameters

Parameter Description

n Specify the number of rows to optimize retrieval for.

Example

The following code checks for the existence of a row:

&SQL = CreateSQL("select %firstrows(1) 'x' from PS_EXAMPLE where COL1 = :1",⇒
 &temp);

The following populates a 10-element array:

&SQL = CreateSQL("select %firstrows(10) COL2, COL3 from PS_EXAMPLE_VW where COL1 =⇒
 :1", &temp);

%InsertSelect

Syntax

%InsertSelect([DISTINCT,]insert_recname,select_recname [correlation_id][,
select_recname_n [correlation_id_n]] [, override_field = value]. . .)

Description

The %InsertSelect meta-SQL construct generates an Insert statement with a Select statement. It does not
generate a From statement. You must specify the select records before you specify override fields.

Note. %InsertSelect has a limit of 99 override fields.

The Insert column list is composed of all the fields in the specified insert_recname, with the exception of
LongChar or Image fields.

Meta-SQL Elements Chapter 2

774 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. Because of the way long values (LongChar and Image fields) are handled in the various database
platforms for Insert statements, all long values in insert_recname are skipped in the generated Insert
statement. This implies that these fields should be defined in such a manner as to allow null values.

If you need to include long values in insert_recname use %InsertSelectWithLongs.

See Chapter 2, "Meta-SQL Elements," %InsertSelectWithLongs, page 776.

The corresponding value in the Select list is generated based on the following precedence:

1. If the Insert fieldname appears as an override_field, the corresponding value is used in the Select list.

2. If the Insert field name matches a field name in one of the select_recname variables specified, the
corresponding Select field is used in the Select list.

3. The search order of the select_recname records is the order that they are specified in the %InsertSelect
function.

4. If the Insert field name has a constant default value defined in Application Designer, that value is used in
the Select list.

5. A default value appropriate for the data type of the Insert field is used (blank for characters, zero for
numbers, NULL for Date, Time, and DateTime values, and so on.)

Use the optional override_field variable to specify values for a particular field.

Note. You cannot use bind variables with the override_field.

For each field you specify, the matching logic described in the preceding list is not performed. Instead, the
value that you specify after the equal sign is used for that field in the actual Select list. Use this technique to
let PeopleTools or Application Engine handle most of the fields in the record, while specifying some of them
explicitly. Also, you can use override_field to specify aggregate functions like Sum, Max, and so on.

Note. This meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

DISTINCT Specify if the Select statement being generated should contain a Distinct clause.

insert_recname Specify the name of record being inserted into. You must specify a record name,
not RECORD.recname, a record name in quotation marks, a bind variable, or a
table name.

Note. If the record for insert_recname is a temporary table, %InsertSelect
automatically substitutes the corresponding table instance (PS_TARGETnn
instead of PS_TARGET).

select_recname Specify the name of record being selected from. You can specify more than one
record. You must specify a record name, not a RECORD.recname, a record name
in quotation marks, or a table name.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 775

Parameter Description

correlation_id Identify the correlation ID to be used for the select_recname records and fields.

override_field Specify the name of a field on insert_recname that you want to supply a value for
(instead of using the value supplied from the select_recname.)

Value Specify the value that should be used for the override_field instead of the value
from select_recname.

Example

Here is a basic example:

%InsertSelect(AE_SECTION_TBL, AE_STEP_TBL S, AE_SECTION_TYPE = ' ')
 FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
WHERE. . .

The example code resolves into the following:

INSERT INTO PS_AE_SECTION_TBL (AE_APPLID, AE_SECTION,. . ., AE_SECTION_TYPE)
SELECT S.AE_APPL_ID, S.AE_SECTION, . . . ' '
FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
 WHERE. . .

In the following example, you have a temporary table, PS_MY_TEMP, which is based on a join between two
other tables, PS_MY_TABLE1 and PS_MY_TABLE2:

%InsertSelect(MY_TEMP, MY_TABLE1, MY_TABLE2 T2)
 FROM PS_MY_TABLE1 T1, PS_MY_TABLE2 T2
WHERE %Join(COMMON_KEYS, MY_TABLE1 T1, MY_TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MY_TEMP (FIELD1, FIELD2 . . .)
 SELECT T2.FIELD1, T2.FIELD2, . . .
FROM PS_MY_TABLE1 T1, PS_MYTABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

The following example creates a distinct Select statement.

%InsertSelect(DISTINCT, MY_TABLE, TABLE1, TABLE2 T2)
 FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE %Join(COMMON_KEYS, TABLE1 T1, TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MYTABLE (FIELD1, FIELD2 . . .)
 SELECT DISTINCT T2.FIELD1, T2.FIELD2, . . .
FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

See Also

Chapter 2, "Meta-SQL Elements," %InsertSelectWithLongs, page 776

Meta-SQL Elements Chapter 2

776 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%InsertSelectWithLongs

Syntax

%InsertSelectWithLongs([DISTINCT,]insert_recname,select_recname [
correlation_id][, select_recname_n [correlation_id_n]] [, override_field =
value]. . .)

Description

The %InsertSelectWithLongs meta-SQL construct generates an Insert statement with a Select statement. It
does not generate a From statement. You must specify the select records before you specify override fields.

Use %InsertSelectWithLongs instead of %InsertSelect when the fields in insert_recname include long values
(LongChar and Image fields).

Note. %InsertSelectWithLongs has a limit of 99 override fields.

The Insert column list is composed of all the fields in the specified insert_recname.

The corresponding value in the Select list is generated based on the following precedence:

1. If the Insert fieldname appears as an override_field, the corresponding value is used in the Select list.

2. If the Insert field name matches a field name in one of the select_recname variables specified, the
corresponding Select field is used in the Select list.

3. The search order of the select_recname records is the order that they are specified in the
%InsertSelectWithLongs function.

4. If the Insert field name has a constant default value defined in Application Designer, that value is used in
the Select list.

5. A default value appropriate for the data type of the Insert field is used (blank for characters, zero for
numbers, NULL for Date, Time, and DateTime values, and so on.)

Use the optional override_field variable to specify values for a particular field.

Note. You cannot use bind variables with the override_field.

For each field you specify, the matching logic described in the preceding list is not performed. Instead, the
value that you specify after the equal sign is used for that field in the actual Select list. Use this technique to
let PeopleTools or Application Engine handle most of the fields in the record, while specifying some of them
explicitly. Also, you can use override_field to specify aggregate functions like Sum, Max, and so on.

Note. This meta-SQL is not implemented for COBOL.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 777

Parameters

Parameter Description

DISTINCT Specify if the Select statement being generated should contain a Distinct clause.

insert_recname Specify the name of record being inserted into. You must specify a record name,
not RECORD.recname, a record name in quotation marks, a bind variable, or a
table name.

Note. If the record for insert_recname is a temporary table,
%InsertSelectWithLongs automatically substitutes the corresponding table
instance (PS_TARGETnn instead of PS_TARGET).

select_recname Specify the name of record being selected from. You can specify more than one
record. You must specify a record name, not a RECORD.recname, a record name
in quotation marks, or a table name.

correlation_id Identify the correlation ID to be used for the select_recname records and fields.

override_field Specify the name of a field on insert_recname that you want to supply a value for
(instead of using the value supplied from the select_recname.)

Value Specify the value that should be used for the override_field instead of the value
from select_recname.

Example

Here is a basic example:

%InsertSelectWithLongs(AE_SECTION_TBL, AE_STEP_TBL S, AE_SECTION_TYPE = ' ')
 FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
WHERE. . .

The example code resolves into the following:

INSERT INTO PS_AE_SECTION_TBL (AE_APPLID, AE_SECTION,. . ., AE_SECTION_TYPE)
SELECT S.AE_APPL_ID, S.AE_SECTION, . . . ' '
FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
 WHERE. . .

In the following example, you have a temporary table, PS_MY_TEMP, which is based on a join between two
other tables, PS_MY_TABLE1 and PS_MY_TABLE2:

%InsertSelectWithLongs(MY_TEMP, MY_TABLE1, MY_TABLE2 T2)
 FROM PS_MY_TABLE1 T1, PS_MY_TABLE2 T2
WHERE %Join(COMMON_KEYS, MY_TABLE1 T1, MY_TABLE2 T2) . . .

This code resolves into:

Meta-SQL Elements Chapter 2

778 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

INSERT INTO PS_MY_TEMP (FIELD1, FIELD2 . . .)
 SELECT T2.FIELD1, T2.FIELD2, . . .
FROM PS_MY_TABLE1 T1, PS_MYTABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

The following example creates a distinct Select statement.

%InsertSelectWithLongs(DISTINCT, MY_TABLE, TABLE1, TABLE2 T2)
 FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE %Join(COMMON_KEYS, TABLE1 T1, TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MYTABLE (FIELD1, FIELD2 . . .)
 SELECT DISTINCT T2.FIELD1, T2.FIELD2, . . .
FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

See Also

Chapter 2, "Meta-SQL Elements," %InsertSelect, page 773

%InsertValues

Syntax

%InsertValues(recname)

Description

The %InsertValues meta-SQL construct produces a comma-separated list of the record's non-null field values.
Input processing is applied to the fields in the following ways:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If the field is a string, its value is automatically wrapped in quotation marks.

• If the field has a null value, it is not included in the list.

Note. This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine SQL
actions. Also, this meta-SQL construct is not implemented for COBOL.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 779

Parameters

Parameter Description

recname Specify the name of the record to be used for inserting. This can be a bind
variable, a record object, or a record name in the form recname. You can't specify
a RECORD.recname, a record name in quotation marks, or a table name.

Example

Here's an example:

SQLExec("Insert into TABLE (%List(NonNull_Fields, :1)) values (%InsertValues(:⇒
1))", &Rec);

This example code is expanded into:

"Insert into TABLE (FNUM, FCHAR, FDATE) values (27, 'Y', %datein('1989-11-27'))"

%Join

Syntax

%Join({COMMON_KEYS | COMMON_FIELDS}, join_recname
[correlation_id1], to_recname [correlation_id2]
[, override_field_list])

where override_field_list is an arbitrary-length list of fields to be substituted in the resulting text string, in the
form:

field1 [, field2]. . .

Description

Use the %Join meta-SQL construct to dynamically build a Where clause joining one table to another. At
runtime, the entire construct is replaced with a character string.

Note. This meta-SQL construct is not implemented for COBOL. If date key fields are not marked as required
in the record definition for either of the referenced tables in the %Join clause, a Null clause check is added to
the date field comparison. This additional clause can have a significant impact on the execution time for the
generated SQL statement.

Meta-SQL Elements Chapter 2

780 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

{COMMON_KEYS |
COMMON_FIELDS}

Use COMMON_KEYS to specify that all common primary key fields are used in
constructing a Where clause; use COMMON_FIELDS to specify all common
fields, not just key fields. You can select either COMMON_KEYS or
COMMON_FIELDS.

join_recname Specify the name of the record to be joined. This can be a bind variable, a record
object, or a record name in the form recname. You can't specify a RECORD.
recname, a record name in quotation marks, or a table name.

correlation_id1 Identify the correlation ID used to relate the record specified by join_recname and
its fields.

to_recname Specify the name of the record to be joined to. This can be a bind variable, a
record object, or a record name in the form recname. You can't specify a
RECORD.recname, a record name in quotation marks, or a table name.

correlation_id2 Identify the correlation ID used to relate the record specified by to_recname and
its fields.

override_field_list Specify a list of fields that you do not want used in the join. For example, if fields
A, B, and C were common to two records, and you didn't want to join on C, list C
as an override_field.

Example

Here is an example:

%Join(COMMON_KEYS, PSAESECTDEFN ABC, PSAESTEPDEFN XYZ)

The example code results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.AE_SECTION = XYZ.AE_SECTION
AND ABC.DBTYPE = XYZ.DBTYPE
AND ABC.EFFDT = XYZ.EFFDT

Here's another example:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ)

The second example results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.DESCR = XYZ.DESCR

However, you do not want to perform the join using the DESCR field because it's a long field. Instead use
override_field, as shown in the following code:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ, DESCR)

This example results in the following being generated:

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 781

ABC.AE_APPLID = XYZ.AE_APPLID

You can also specify a value for a field. Suppose you want to join two tables, but not on the field C3. In
addition, you would like to specify a value for C3. Your code could look like the following:

%Join(COMMON_FIELDS, MY_TABLE1 A, MY_TABLE2 B, C3) AND C3 = 'XX'

%KeyEqual

Syntax

%KeyEqual(recname [correlation_id])

Description

The %KeyEqual meta-SQL construct expands into a conditional phrase suitable for use in a Where clause.

The conditional phrase consists of a conjunction (AND) of [correlation_id.]keyfieldname = 'keyfieldvalue'
phrases for each key field of the given record.

No auto-update processing is done, but other input processing is applied to the values, according to the
following:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If a value is a string, its value is automatically wrapped in quotation marks.

• If a value is NULL, the "=value" part is replaced with "IS NULL".

Note. This meta-SQL can only be used in PeopleCode programs, not in Application Engine PeopleCode
actions. Also, this meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to use for inserting. This can be a bind variable, a
record object, or a record name in the form recname. You cannot specify
RECORD.recname, a record name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record specified by recname
and its fields.

Example

Suppose that the record &REC has three keys: FNUM, FDATE, and FSMART. Here is a code example:

Meta-SQL Elements Chapter 2

782 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local record &REC;

&REC = CreateRecord(RECORD.MYRECORD);
&REC.FNUM.Value = 27;
&REC.FDATE.Value = %Date;
SQLExec("Delete from MYRECORD A where %KeyEqual(:1, A)", &REC);

This example expands to:

"Delete from TABLE A
 where A.FNUM = 27
 AND A.FDATE = %Date('1989-11-27')
 AND A.FSMART IS NULL"

%KeyEqualNoEffDt

Syntax

%KeyEqualNoEffDt(recname [correlation_id])

Description

The %KeyEqualNoEffDt meta-SQL construct expands into a conditional phrase suitable for use in a Where
clause.

The conditional phrase consists of a conjunction (AND) of [correlation_id.]keyfieldname = 'keyfieldvalue'
phrases for all key fields of the given record, except that it omits any key field named EFFDT.

No auto-update processing is done, but other input processing is applied to the values as follows:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If a value is a string, its value is automatically wrapped in quotation marks.

• If a value is NULL, the "=value" part is replaced with "IS NULL."

Note. This meta-SQL can only be used in PeopleCode programs, not in Application Engine PeopleCode
actions. Also, this meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to be used for inserting. This can be a bind
variable, a record object, or a record name in the form recname. You can't specify
RECORD.recname, a record name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record specified by recname
and its fields.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 783

Example

The EMPL_CHECKLIST record has three keys: EMPLID, CHECK_SEQ, and EFFDT. Here is a code
example:

&REC = CreateRecord(EMPL_CHECKLIST);

SQLExec("Delete from TABLE A where %KeyEqualNoEffdt(:1, A)", &REC)

The example expands to:

"Delete from TABLE A
 where A.EMPLID = 8001
 AND A.CHECK_SEQ = 00001"

%Like

Syntax

%Like("Literal")

Description

The %Like construct expands to look for literal values. This meta-SQL should be used when looking for like
values. A percent sign character (%) is appended to literal.

Note. This meta-SQL is not implemented for COBOL.

If you're using a bind marker (such as ":1") for the literal argument in a SQLExec, you must wrap the SQL
string with the ExpandSqlBinds function. ExpandSqlBinds replaces bind markers with the actual input values.

%Like generates the following:

like 'literal%'

If the literal value contains a backslash character (\) or percent sign (%), then %Like generates the following:

like 'literal%' escape '\'

See Chapter 1, "PeopleCode Built-in Functions," ExpandSqlBinds, page 271.

Using %Like and Eliminating Blanks

Some platforms require that you use RTRIM to get the correct value. The following characters are wildcards
even when preceded with the backslash (\) escape character:

• %

• _

Therefore, on some platforms, the literal must end with a percent sign (%) wildcard that isn't preceded by a
backslash (\). Here are some examples:

Meta-SQL Elements Chapter 2

784 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• literal = 'ABC%'

There is no need for RTRIM on any platform.

• literal = 'ABC\%'

You need RTRIM on Microsoft SQL Server and DB2.

Using %Like and Trailing Blanks

Not all executions of %Like perform the same. When dealing with trailing blanks, some platforms behave as
if there is an implicit percent sign (%) at the end of the comparison string, while most do not.

In the following example, if the selected column contains the string "ABCD " (with three trailing blanks. The
statement may or may not return any rows:

select * from t1 Where c like 'ABCD'

Therefore, it is always important to explicitly code the percent sign (%) the end of matching strings for
columns where you want to include trailing blanks. The following table shows the use of implicit percent
signs with specific databases:

Database Includes Implicit Percent Sign (%)

PeopleSoft Standard Usage Yes

DB2/400 No

DB2/MVS No

DB2/Unix No

Informix No

Microsoft SQL Server Yes

Oracle No

SQLBase No

Sybase Yes

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 785

Using %Like and Wildcards

SQL specifies two wildcards that can be used when specifying pattern matching strings for use with the SQL
Like predicate. The underscore is used as a substitution for a single character within a string, and the percent
sign represents any number of character spaces within a string. All supported databases use these characters
as wildcards.

Parameters

Parameter Description

literal Specify the value to search for.

%LikeExact

Syntax

%LikeExact(fieldname, "Literal")

Description

The %LikeExact meta-SQL variable expands to look for literal values. Use this variable when exact matches
are necessary, taking into account wildcards in the literal values.

Note. This meta-SQL is not implemented for COBOL.

%LikeExact generates one of the following:

• If the literal contains no wildcards:

fieldname = 'literal'

• If the literal ends with the '%' wildcard:

fieldname like 'literal' [escape '']

Some platforms require that you use RTRIM to get the correct value. The following characters are wildcards
even when preceded with the backslash () escape character.

• %

• _

Therefore, on some platforms, the literal must end with a percent sign (%) wildcard that isn't preceded by a
backslash (). Here are some examples:

• literal = 'ABC%'

You do not need RTRIM on any platform.

Meta-SQL Elements Chapter 2

786 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• literal = 'ABC%'

You need RTRIM on Microsoft SQL Server and DB2.

Considerations Using Bind Markers

If you're using a bind marker (such as ":1") for the literal argument in a SQLExec, you must wrap the SQL
string with ExpandSqlBinds. ExpandSqlBinds replaces bind markers with the actual input values.

The following forms work:

• Application Engine SQL action (with or without the ReUse property enabled).

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, %Bind(AE_⇒
APPL_ID, STATIC))

The STATIC modifier is only required if the ReUse property is enabled, but you can always use it.

• PeopleCode.

AE_TESTAPPL_AET.AE_APPL_ID = "AB_C";

SQLExec("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, :⇒
AE_TESTAPPL_AET.AE_APPL_ID)");

Here is another acceptable form:

SQLExec(ExpandSqlBinds("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LikeExact⇒
(AE_APPL_ID, :1)", "AB_C"));

This form does not work:

SQLExec("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, :⇒
1)", "AB_C");

See Also

Chapter 1, "PeopleCode Built-in Functions," ExpandSqlBinds, page 271

Parameters

Parameter Description

fieldname Specify a field to be used in the first part of the Like comparison.

literal Specify the value to search for.

Example

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'ABC')

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 787

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID = 'ABC'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'AB%C')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE RTRIM(AE_APPL_ID) LIKE 'AB%C'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE LIKEEXACT(AE_APPL_ID, 'AB%C%')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID LIKE 'AB%C%'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'AB%C% ')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID LIKE 'AB%C% '

The following example shows using ExpandSqlBinds:

SQLExec(ExpandSqlBinds("SELECT COUNT(*) FROM PS_ITEM WHERE %LIKEEXACT(BUSINESS_⇒
UNIT, :1)", "M04"), %COUNT);

%Mod

Syntax

%Mod(a,b)

Description

Use the %Mod meta-SQL function to return the remainder (or modulo) of division of one number by another
number. %Mod uses the integer portion of both the dividend and the divisor. If the divisor is 0, %Mod returns
the dividend value.

Parameters

Parameter Description

a Specifies the dividend as a number.

b Specifies the divisor as a number.

Meta-SQL Elements Chapter 2

788 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

Each of the following examples shows the computed result of the %Mod function:

%Mod(10, 3) = 1
%Mod(9, 3) = 0
%Mod(10.1, 3) = 1
%Mod(-10, 3) = -1
%Mod(10, 0)= 10

See Also

Chapter 2, "Meta-SQL Elements," %DecDiv, page 768

%NoUppercase

Syntax
%NoUppercase

Description

When processing a SQL statement, the system automatically casts all field names and possibly record names
to uppercase when processing a SQL statement. When processing records from a third party, fields that are
lowercase are cast into uppercase, which can create a runtime issue on case-sensitive platforms.

To prevent this, use the %NoUppercase meta-SQL statement at the beginning of the SQL statement.

Parameters

None.

Note there are not parameters, as well as no parenthesis, for this meta-SQL.

Returns

None.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 789

Example

%NoUppercase
INSERT INTO PS_RM_APP_ENG_LOG (MAP_ID
, RECNAME
, FIELDNAME
, MESSAGE_SET_NBR
, MESSAGE_NBR
, LANGUAGE_CD)
SELECT %Bind(MAP_ID)
, %Bind(RECNAME)
, ' '
,17834
, 1116
, %Bind(LANGUAGE_CD)
FROM PS_INSTALLATION
WHERE EXISTS (
SELECT 'X'
FROM SW_OPPORTUNITY SW_OPPORTUNITY
, SW_PERSON SW_PERSON
, SW_CUSTOMER SW_CUSTOMER
, SW_SALES_TEAM_VW SW_SALES_TEAM_VW
WHERE SW_OPPORTUNITY.SWCUSTOMERID = SW_CUSTOMER.SWCUSTOMERID
AND SW_OPPORTUNITY.SWSALESTEAMID = SW_SALES_TEAM_VW.SWPROVIDERGRPID
AND SW_SALES_TEAM_VW.SWPERSONID = SW_PERSON.SWPERSONID
GROUP BY SW_OPPORTUNITY.SwOpportunityId
HAVING COUNT(*) > 1)

%NumToChar

Syntax

%NumToChar(Number)

Description

Use the %NumToChar construct to transform a numeric value into a character value. Spaces are trimmed
from Number.

Note. %NumToChar will preserve all trailing zeroes. Therefore, use the scale parameter of %Cast to specify
the number of trailing zeroes.

Parameters

Parameter Description

Number Specify the number to convert to a character value. Signed numbers, as well as
decimals, are acceptable.

Meta-SQL Elements Chapter 2

790 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 2, "Meta-SQL Elements," %Cast, page 757

%OldKeyEqual

Syntax

%OldKeyEqual(recname [correlation_id])

Description

The %OldKeyEqual meta-SQL construct is similar to the %KeyEqual construct, except that it uses the
original values of the record fields, rather than the current values. Since the rules for which values are original
and which are current are not very clear, especially for standalone record objects, avoid using this meta-SQL
construct. You should use separate records to hold previous values. This can make your code clearer and
more maintainable.

Note. This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
PeopleCode actions. Also, this meta-SQL is not implemented for COBOL.

See Also

Chapter 2, "Meta-SQL Elements," %KeyEqual, page 781

%OPRCLAUSE

Description

The %OPRCLAUSE metavariable is used in the view text of dynamic views. In PeopleTools 6, the
%OPRCLAUSE metavariable expanded in the following manner:

SELECT EMPLID, ABSENCE_TYPE, oprid
FROM PS_ABSENCE_HIST
WHERE %OPRCLAUSE

SELECT EMPLID, ABSENCE_TYPE, OPRID FROM PS_ABSENCE_HIST WHERE (OPRCLASS ='⇒
HRADMIN') AND (EMPLID='8001' AND ABSENCE_TYPE='CNF') ORDER BY EMPLID, ABSENCE_TYPE

In PeopleTools 7, to support the new concept of a specific row-level security class, this metavariable now fills
in the Where clause with the value from PSOPRDEFN.ROWSECCLASS.

%OPRCLAUSE must be either all uppercase or all lowercase.

%OPRCLAUSE translates to OprId or OprClass, following the same rules used for security on search dialog
boxes. If OPRID is in the view, %OPRCLAUSE expands to OPRID = 'current operator'. If OPCLASS is in
the view, %OPRCLAUSE expands to OPCLASS = 'current class'.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 791

Example

Here is an example:

SELECT EMPLID, ABSENCE_TYPE, OPRID FROM PS_ABSENCE_HIST WHERE %OPRCLAUSE AND ⇒
(EMPLID='8001' AND ABSENCE_TYPE='CNF')

This code expands to:

SELECT EMPLID, ABSENCE_TYPE, OPRID FROM PS_ABSENCE_HIST WHERE (OPRID =⇒
 'PTDMO') AND (EMPLID='8001' AND ABSENCE_TYPE='CNF') ORDER BY EMPLID, ABSENCE_TYPE

Here's another example:

SELECT EMPLID, ABSENCE_TYPE, OPRCLASS FROM PS_ABSENCE_HIST WHERE %OPRCLAUSE AND ⇒
(EMPLID='8001' AND ABSENCE_TYPE='CNF')

This code expands to:

SELECT EMPLID, ABSENCE_TYPE, OPRID FROM PS_ABSENCE_HIST WHERE (OPRCLASS =⇒
 'ALLPANLS') AND (EMPLID='8001' AND ABSENCE_TYPE='CNF') ORDER BY EMPLID, ABSENCE_⇒
TYPE

%Round

Syntax

%Round(expression,factor)

Description

%Round rounds an expression to a specified scale before or after the decimal point. If factor is a literal, it can
be rounded to a negative number.

Parameters

Parameter Description

expression Specify an arbitrary numeric expression involving numeric constants and database
columns.

factor Specify an integer or bind variable in SQLExec PeopleCode. The range of a factor
is from -31 to +31 for literals. Non-literals can only be positive.

Example

Here is an example:

Meta-SQL Elements Chapter 2

792 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%Round(10.337, 2) = 10.34

%Round(13.67, 0) = 14

SQLExec("SELECT %Round(field_c1, :1) from RECORD_T", field_c2, &Result);

In the example, field_c1 and field_c2 are two fields in the record.

The following cases are illegal, and may cause incorrect results or runtime SQL errors:

%Round(10.337, 2 + 1) (factor can not be an expression)

%Round(field_c1, field_c2) (factor can not be database columns)

%SQL

Syntax

%SQL(SQLid [, paramlist])

where paramlist is a list of arguments that are used for dynamic substitutions at runtime, in the form:

arg1 [, arg2]. . .

Description

Use the %SQL construct for common SQL fragments that you have already defined and want to reuse,
substituting additional values dynamically. SQLid is the name of a SQL definition created using either
Application Designer or the StoreSQL function.

You can only nest up to 10 %SQL statements at a time.

Note. This meta-SQL construct is not implemented for COBOL. A SQL definition is not the same as the SQL
object that is instantiated from the SQL class at runtime. A SQL definition is created either using Application
Designer at design time, or using the StoreSQL function. A SQL object is instantiated at runtime from the
SQL class, and has methods and properties associated with it like any other object.

When a specified SQL definition has more than one version, the database type always takes precedence.

 If one or more versions of a SQL definition are found for the database type of the current database
connection, and if any of the versions have an effective date less than or equal to the value returned for
%AsOfDate, the most recent version is used.

If no versions are found for the current database type, or if all of the versions have effective dates greater than
the value returned for %AsOfDate, the system looks for an effective version of the SQL definition under the
database type Generic.

If no version is found, an error occurs.

See PeopleTools 8.52: PeopleCode Developer's Guide, "Using the SQL Editor."

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 793

Application Engine Considerations

Application Engine programs use the current date to compare with the effective date, not the date returned by
%AsOfDate.

Special SQL Characters

The following meta-SQL meta-variables can be used as part of the %SQL construct to represent special
characters as SQL parameters.

Meta-Variable Description

%Comma Represents a single comma.

%LeftParen Allows you to pass a left parenthesis character to a %P()
variable, without closing the SQL object.

%RightParen Allows you to pass a right parenthesis character to a %P()
variable, without closing the SQL object.

%Space Represents a space.

Parameters

Parameter Description

SQLid Specify the name of an existing SQL definition.

paramlist Specify a list of arguments for dynamic substitutions at runtime. The first
argument replaces all occurrences of %P(1) in the referenced SQL definition, the
second argument replaces %P(2), and so forth. You can specify up to 99
arguments.

Note. For PeopleCode, the %P should not be contained in quotation marks.
'%P(2)' is considered to be a literal, and so isn't replaced at runtime.

Example

In the following example, the SQL definition MY_SQL was created in Application Designer to be the
following:

%P(1).EFFDT = (SELECT MAX(EFFDT) FROM ...)

In the following example, the %SQL statement is dynamically generated:

UPDATE PS_TEMP
SET ...
WHERE ...
AND %SQL(MY_SQL, PS_TEMP)

The previous example resolves to the following:

Meta-SQL Elements Chapter 2

794 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

UPDATE PS_TEMP
SET ...
WHERE ...
AND PS_TEMP.EFFDT = (SELECT MAX(EFFDT) FROM ...)

See Also

PeopleTools 8.52: PeopleCode API Reference, "SQL Class"

%Substring

Syntax

%Substring(source_str,start,length)

Description

%Substring expands to a substring of source_str.

Note. For the DB2 LUW database, you must ensure that the source_str parameter doesn't resolve to an
expression greater than 1000 characters.

Parameters

Parameter Description

source_str Specify the source string.

start Specify the substring's beginning position. The first character of source_str is
position 1.

length Specify the length of the substring.

%SUBREC

Syntax

%SUBREC(subrec_name,corel_name)

Description

%SUBREC is used only in dynamic view SQL, where it expands to the columns of a subrecord. You can't use
this statement in SQLExec or any other SQL statement.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 795

Note. %SUBREC must be either all uppercase or all lowercase.

Parameters

Parameter Description

subrec_name Specify the name of the subrecord.

corel_name Specify the correlation name.

Example

Suppose you have a record definition AAA_VW that is a dynamic view, with fields CHR, SUB, and NUM.
The field SUB is a subrecord with fields CHR_SUB, NUM_SUB, and IMG_SUB. The view text for
AAA_VW could be:

"select a.chr, %subrec(sub,a), a.num from ps_aaa a"

The Create View SQL generated by this view text would be:

"CREATE VIEW SYSADM.PS_AAA_VW (CHR, CHR_SUB, NUM_SUB, IMG_SUB, NUM) AS SELECT⇒
 A.CHR, A.CHR_SUB, A.NUM_SUB, A.IMG_SUB, A.NUM FROM PS_AAA A"

%Table

Syntax

%Table(recname [, instance])

Description

The %Table construct returns the SQL table name for the record specified with recname.

For example, %Table(ABSENCE_HIST) returns PS_ABSENCE_HIST.

Note. This meta-SQL is not implemented for COBOL.

If the record is a temporary table and the current process has a temporary table instance number assigned,
%Table resolves to that instance of the temporary table (that is, PS_ABSENCE_HISTInstance Number).

You can override this value with the instance parameter. For example, if you know you want the third
instance of a temporary table, you could specify it with %Table(&MYREC, 3). You can use the
SetTempTableInstance function to set the instance of a temporary table that is used with %Table.

This construct can be used to specify temporary tables for running parallel Application Engine processes.

Meta-SQL Elements Chapter 2

796 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode," %Table

Parameters

Parameter Description

recname Identify the record that the table name is drawn from. This can be a bind variable,
a record object, or a record name in the form recname. You cannot specify
RECORD.recname, a record name in quotation marks, or a table name.

instance Specify the instance of the temporary table to be used.

Example

The following function deletes records based on two other fields:

Function delete_draft_type(&RECNAME)

&SQL = "Delete from %Table(:1) where " | FIELD.SETID | " =
 :2 and " | FIELD.DRAFT_TYPE | " = :3";

SQLExec(&SQL, @("RECORD." | &RECNAME), SETID, DRAFT_TYPE);

End-Function;

See Also

Chapter 1, "PeopleCode Built-in Functions," SetTempTableInstance, page 640

%Test

Syntax

%Test(Prefix,Test,Suffix)

Description

The %Test construct can be used with records that have no key values.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 797

Parameters

Parameter Description

Prefix Specify a string that is conditionally added before the expansion of the test string.
You cannot use meta-SQL in this parameter.

Test Specify a meta-SQL string to be expanded.

Suffix Specify a string that is conditionally added at the end of the test string. You can
use meta-SQL in this parameter.

Returns

If the expansion of Test produces only a blank (or empty) string, the entire %Test meta-SQL construct is
replaced with an empty string. Otherwise, the %Test meta-SQL construct is replaced by the prefix, then the
expansion of Test,and then the suffix.

Example

The following meta-SQL generates valid SQL even when the given record has no keys:

%SelectAll(:1) %Test(WHERE ,%KeyEqual(:1));

%TextIn

Syntax

%TextIn(BindVariable)

Description

 %TextIn construct, when used with a bind variable, allows the insertion and updating of a text string into a
LongChar field (column).

This construct is mandatory for any LongChar field insertion or update to be compatible on all database
platforms on which it is supported. If you do not use this meta-SQL wrapper, this type of operation fails on
Sybase.

Important! %TextIn is not supported on Informix. In addition, this meta-SQL construct is not implemented
for COBOL.

Meta-SQL Elements Chapter 2

798 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

BindVariable Specify a bind variable.

Example

In the following example, :1 is a bind variable in PeopleCode:

&String1 = "This is a test."

SqlExec("INSERT INTO PS_TABLE1 (STMTID, SQLSTMT) VALUES (1, %TextIn(:1))",⇒
 &String1)

%TimeAdd

Syntax

%TimeAdd(datetime,add-minutes)

Description

This construct generates the SQL that adds add-minutes (a positive or negative integer literal or expression,
provided that the expression resolves to a data type that can be used in datetime arithmetic for the given
RDBMS) to the provided datetime (which can be a datetime literal or expression).

Note. On some platforms, you can use time-value in place of datetime. However, this can give a SQL error on
other platforms (for example, Informix) if the result of the %TimeAdd construct would result in a new date
(for example, 11:59PM + 2 minutes). This meta-SQL construct is not implemented for COBOL.

Parameters

Parameter Description

time Specify a Time or DateTime value to add more time to.

add-minutes Specify the number of minutes to add to time. This must be a numeric value or an
expression that resolves to a numeric value.

Example

SELECT %TimeAdd(%CurrentTimeIn, 60) FROM PS_INSTALLATION

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 799

%TimeIn

Syntax

%TimeIn(tm)

Description

%TimeIn expands to platform-specific SQL for a Time value in the Where clause of a SQL Select or Update
statement, or when a time value is passed in an Insert statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind parameters
in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPTM = %TIMEIN('11:59:00:000000')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPTM = %TIMEIN(:1)

Parameters

Parameter Description

tm Specify a Time bind variable or a string literal in the form hh.mm.ss.ssssss.

%TimeNull

Syntax
%TimeNull

Description

Use this meta-SQL to specify a null value for a time field. Only use this meta-SQL in Insert or Update
statements. Do not use this meta-SQL in a Where clause.

Note. This meta-SQL is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Meta-SQL Elements Chapter 2

800 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Database Resolved Substring

Informix empty string ('')

DB2 NULLIF(CURRENT TIME, CURRENT TIME)

All others NULL

Parameters

None.

%TimeOut

Syntax

%TimeOut(time_col)

Description

 The %TimeOut meta-SQL variable expands to either a platform-specific SQL substring or datetime value,
depending on the database platform, representing the time_col column in the Select clause of a SQL query.

Parameters

Parameter Description

time_col Specify a time column.

%TimePart

Syntax

%TimePart(DTTM_Column)

Description

%TimePart returns the time portion of the specified datetime column.

Note. This meta-SQL is not implemented for COBOL.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 801

Considerations Using %TimePart

Use %TimeOut meta-SQL when fetching from the database:

%TimeOut(%TimePart(DTTM_COLUMN)) from some_table

If a literal is used as the parameter to %TimePart, it must be wrapped in %DateTimeIn,as shown in the
following:

insert into some_table values(%TimePart(%DateTimeIn('2001-01-01-12.34.56.789012')))

Parameters

Parameter Description

DTTM_Column Specify the datetime column to return the time for.

%TrimSubstr

Syntax

%TrimSubstr(source_str,start,length)

Description

%TrimSubstr, like %Substring, expands to a substring of source_str, except that trailing blanks are removed
from the substring.

Note. If you trim a string of blanks, an empty string is returned on all database platforms except Oracle, when
a Null is returned. If a Null result is not acceptable, such as when using the result as a value to insert into a
non-nullable column, you can turn the Null into a single blank using the %COALESCE meta-SQL with
%TrimSubstr, for example: %COALESCE(%TrimSubstr(<expression>), ' ')

Parameters

Parameter Description

source_str Specify the source string.

start Specify the substring's beginning position. The first character of source_str is
position 1.

length Specify the length of the substring.

Meta-SQL Elements Chapter 2

802 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 2, "Meta-SQL Elements," %Substring, page 794

%Truncate

Syntax

%Truncate(expression,factor)

Description

%Truncate truncates an expression to a specified scale before or after the decimal point.

Considerations Using %Truncate

You may get incorrect results or runtime SQL errors if you try to use an expression for factor. The following
code example produces incorrect results:

%Truncate(10.337, 2 + 1)

Parameters

Parameter Description

Expression Specify an expression involving numeric constants and database columns.

Factor Specify an integer or bind variable in SQLExec PeopleCode. The range of a factor
is -30 to +31. A negative number truncates to left of the decimal point.

Example

Here is an example:

%Truncate(10.337, 2) = 10.33

%Truncate(13.37, 0) = 13

%Truncate(19.337, -1) = 10

SQLExec("SELECT %Truncate(field_c1, :1) from RECORD_T", field_c2, &Result);

In the example, field_c1 and field_c2 are two fields in the record.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 803

%TruncateTable

Syntax

%TruncateTable(table_name)

Description

 %TruncateTable deletes all the rows in a table.

Note. You must use a table name, not a record name, with this statement.

On all databases, the use of %TruncateTable causes an implicit commit. The rows deleted by this command,
and any other pending database updates, are all committed. To postpone the commit until subsequent
database updates have been successfully completed, use the SQL statement DELETE FROM table_name
or the statement IMPORT REPLACE WITH NULL instead of %TruncateTable(table_name). The
advantage of using %TruncateTable is that its execution is faster than either of the SQL statements.
%TruncateTable is often used for removing rows from a work table or a temporary table.

If you're calling %TruncateTable from an Application Engine program step, you should commit after the step
that immediately precedes the step containing the %TruncateTable statement. Also, do not use
%TruncateTable on a step that is executed multiple times within a loop. In general, it's best to use this
construct early in your Application Engine program as an initialization task. In addition, avoid using this
meta-SQL when your Application Engine program is started from the CallAppEngine function.

If a commit is not possible, Application Engine replaces the meta-SQL with a Delete From string. This
ensures restart integrity when your program runs against a database where there is an implicit commit
associated with Truncate Table or where rollback data is not logged.

For databases that either execute an implicit commit for %TruncateTable or require a commit before or after
this meta-SQL, replace %TruncateTable with an unconditional delete in certain circumstances.

See PeopleTools 8.52 : Application Engine, "Using Meta-SQL and PeopleCode," %TruncateTable.

Example

If you use %TruncateTable with %Table, you must specify the full name of the table. For example:

%TruncateTable(%Table(BAS_ELIG_DBGFLD))

The following is a code example:

%TruncateTable(PS_TEMP_TABLE)

Meta-SQL Elements Chapter 2

804 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%UpdatePairs

Syntax

%UpdatePairs(recname [correlation_id])

Description

The %UpdatePairs construct produces a comma-separated list of fieldname = 'fieldvalue' phrases for each
changed field of the given record. Input processing is applied to the values in the following ways:

• If the field is a Date, a Time, or a DateTime value, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If the field is a string, its value is automatically wrapped in quotes.

• If the field has a null value, NULL is the given value.

Note. This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
PeopleCode actions. Also, this meta-SQL construct is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to use for updating. This can be a bind variable, a
record object, or a record name in the form recname. You can't specify RECORD.
recname, a record name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record specified by recname
and its fields.

Example

Suppose that the record &REC has one key: FNUM, and the FCHAR field has changed. Here is an example:

Local record &REC;

&REC = CreateRecord(RECORD.MYRECORD);
&REC.FNUM.Value = 27;
&REC.FCHAR.Value = 'Y';
SQLExec("Update TABLE set %UpdatePairs(:1) where %KeyEqual(:1)", &REC)

The example expands to:

"Update TABLE set FCHAR = 'Y' where FNUM = 27"

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 805

The following example updates all the fields on a base record (&REC) that are not also fields on the related
language record (&REC_RELATED_LANG). It creates a holding record (&REC_TEMP), copies the fields
to update from the base record to the holding record, and then uses the holding record for the update.

&UPDATE = CreateSQL("Update %Table(:1) set %UpdatePairs(:1) Where %KeyEqual(:2)");
&REC_TEMP = CreateRecord(@("RECORD." | &REC.Name));
&FIELD_LIST_ARRAY = CreateArray();
For &I = 1 to &REC_RELATED_LANG.FieldCount
 &FIELD_LIST_ARRAY.Push(&REC_RELATED_LANG.GetField(&I).Name);
End-For;

For &I = 1 to &REC.FieldCount
 If &FIELD_LIST_ARRAY.Find(&REC.GetField(&I).Name) = 0 then
 &REC_TEMP.GetField(&I).Value = &REC.GetField(&I).Value;
 End-If;
End-For;

&UPDATE.Execute(&REC_TEMP, &REC);

%Upper

Syntax

%Upper(charstring)

Description

The %Upper construct converts the string charstring to uppercase. You can use wildcards with charstring,
such as the percent sign (%).

Note. This meta-SQL construct is not implemented for COBOL.

Considerations with COBOL and Unicode

COBOL's uppercase function is not Unicode-aware, and corrupts Unicode data. To use an uppercase function
with COBOL, use the function supplied with PeopleTools called PTPUPPER.

The syntax to call PTPUPPER is:

CALL 'PTPUPPER' USING SQLRT

 <any PIC S9(4) COMP field that contains the fields
defined length (non-unicode)>

 <the String field - max PIC X(8192).>

The following is an example from Unicode-expanded source code:

01 W-WORK.

 02 W-DESCR PIC X(90) VALUE SPACES.
 02 W-SIZE PIC S9(4) COMP VALUE +30.
 CALL 'PTPUPPER' USING SQLRT
 W-SIZE OF W-WORK
 W-DESCR OF W-WORK

Meta-SQL Elements Chapter 2

806 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

charstring Specify the string to convert to uppercase.

Example

SELECT EMPLID, NAME FROM PS_EMPLOYEES WHERE %UPPER(NAME) LIKE %UPPER(sch%)

%UuidGen

Syntax

%UuidGen()

Description

Use the %UuidGen function in a SQL Insert or Update statement to generate a universally unique identifier
(UUID) as a globally unique 36-character string.

 %UuidGen can only be used in an Insert or Update statement. You will get an error if you use the function in
any other type of SQL.

%UuidGenBase64

Syntax

%UuidGenBase64()

Description

Use the %UuidGenBase64 function in a SQL Insert or Update statement to generate a universally unique
identifier (UUID) as a globally unique 24-character base64 string.

%UuidGenBase64 can only be used in an Insert or Update statement. You will get an error if you use the
function in any other type of SQL.

Meta-SQL Shortcuts

Take advantage of the following shortcuts to use the entire list of key fields for a record.

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 807

Note. The meta-SQL shortcuts can only be used in PeopleCode programs, not in Application Engine
PeopleCode actions. Also, none of the meta-SQL shortcuts are implemented for COBOL.

%Delete

Syntax

%Delete(:num)

Description

This is a shorthand for:

Delete from %Table(:num) where %KeyEqual(:num)

%Insert

Syntax

%Insert(:num)

Description

This is a shorthand for:

Insert into %Table(:num) (%List(Nonnull_Fields :num)) values (%InsertValues(:num))

%SelectAll

Syntax

%SelectAll(:num [correlation _id])

Description

%SelectAll is shorthand for selecting all fields in the specified record, wrapping DateTime fields with
%DateOut, %TimeOut, and so on.

The pseudocode looks like this:

Select(AllFields, :num correlation_id) from %Table(:num) prefix

This shortcut is only appropriate if the statement is being used in PeopleCode or Application Engine to read
data into memory. Dynamic views should retain the internal database formats for DateTime fields.

Meta-SQL Elements Chapter 2

808 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using %SelectAll with CreateSQL

You can use %SelectAll with the CreateSQL function without a record object. It must subsequently be
executed with the record object with which you want to do the Select statement. Here is an example:

 &REC_PROJ_FUNDING = CreateRecord(Record.PROJ_FUNDING); /* free standing record
 object */
 /* Create SQL objects */
 &SQL_PROJ_FUNDING_SEL = CreateSQL("%SelectAll(:1)" /* bind this later */);
 /* bind the %SelectAll */
 &SQL_PROJ_FUNDING_SEL.Execute(&REC_PROJ_FUNDING);
 While &SQL_PROJ_FUNDING_SEL.Fetch(&REC_PROJ_FUNDING);
 /* Process row content ... /*
 End-While;

You could also move the CreateRecord SQL statements out of the loop (and then move the close statements
out of the loop too).

%SelectDistinct

Syntax

%SelectDistinct(:num [prefix])

Description

%SelectDistinct is shorthand for selecting all fields in the specified record, wrapping DateTime fields with
%DateOut, %TimeOut, and so on.

The pseudocode looks like this:

Select DISTINCT(AllFields, :num correlation_id) from %Table(:num) prefix

This shortcut is only appropriate if the statement is being used in PeopleCode or Application Engine to read
data into memory. Dynamic views should retain the internal database formats for DateTime fields.

%SelectByKey

Syntax

%SelectByKey(:num [correlation_id])

Description

This is a shorthand for:

Select %List(Select_List, :num correlation_id) from %Table(:num) correlation_id⇒
 where %KeyEqual(:num, correlation_id)

Chapter 2 Meta-SQL Elements

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 809

%SelectByKeyEffDt

Syntax

%SelectByKeyEffDt(:num1, :num2)

Description

This is a shorthand for:

Select %List(Select_List, :num1) from %Table(:num1) A where %KeyEqualNoEffDt(:num1⇒
 A) and %EffDtCheck(:num1 B, A, :num2)

%Update

Syntax

%Update(:num [, :num2])

Description

This is a shorthand for:

Update %Table(:num) set %UpdatePairs(:num) where %KeyEqual(:num2)

If num2 is omitted, the value defaults to num.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 811

Chapter 3

System Variables

The chapter provides an overview of system variables and then discusses each variable in detail.

Understanding System Variables

PeopleTools provides a number of system variables that provide access to system information. System
variables are prefixed with the '%' character, rather than the '&' character. You can use these system variables
wherever you can use a constant, passing them as parameters to functions or assigning their values to fields or
to temporary variables.

In this section, we discuss each system variable.

%AllowNotification

Description

Indicates whether the Allow Notification check box for the current role's workflow routing options is
selected. This system variable returns a Boolean value: True if the check box is selected (notifications
allowed), False otherwise.

See Also

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

%AllowRecipientLookup

Description

Indicates whether the Allow Recipient Lookup check box for the current role's workflow routing options is
selected. This system variable returns a Boolean value: True if the check box is selected (recipient lookup
allowed), False otherwise.

System Variables Chapter 3

812 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.52: Security Administration, "Understanding PeopleSoft Security"

%ApplicationLogFence

Description

Returns the current setting of the application log fence (AppLogFence) setting in the application server
configuration file (PSAPPSRV.CFG.)

Note. This is distinct from the PeopleTools LogFence capability which applies to PeopleTools level logging.

You can use this system variable to conditionally determine whether you want to do certain logging from
your application. You generally use it with the following predefined PeopleCode constants.

Numeric Value Constant Value Description

1 %ApplicationLogFence_Error Allow all levels of errors to be written
to the log. This is the lowest setting.

2 %ApplicationLogFence_Warning Allowing only warnings or higher to
be written to the log.

3 %ApplicationLogFence_Level1 Allow only this level of errors or
higher to be written to the log.

4 %ApplicationLogFence_Level2 Allow only this level of errors or
higher to be written to the log.

5 %ApplicationLogFence_Level3 Allow only this level of errors to be
written to the log.

Example

If %ApplicationLogFence > %ApplicationLogFence_Warning then
 /* do some logging */
End-if;

See Also

Chapter 1, "PeopleCode Built-in Functions," WriteToLog, page 744

PeopleTools 8.52: PeopleCode Developer's Guide, "Debugging Your Application," Using Application
Logging

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 813

%AsOfDate

Description

Returns the as-of-date of the environment that the PeopleCode is running in. In most cases, this is the current
date, but for Application Engine environments, it is the processing date of the Application Engine program.

%AuthenticationToken

Description

This system variable returns a single sign on authentication token for the user after SwitchUser is executed.
For example, you can use this system variable to write a single sign on cookie to the http response after a new
user is authenticated.

Note. This system variable returns a valid value only after SwitchUser executes successfully. The value of
this system variable is the authentication token itself. The value of the AuthTokenDomain Request object
property is the domain across which the authentication token is valid, set in the AuthTokenDomain
configuration property in the configuration properties file.

See Also

Chapter 1, "PeopleCode Built-in Functions," SwitchUser, page 670

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)," AuthTokenDomain

%BPName

Description

%BPName is relevant when the user has accessed a page from a worklist entry. It returns a string containing
the name of the Business Process for the worklist entry. It returns an empty string if the user didn't access the
current page group from a worklist.

%ClientDate

Description

%ClientDate returns the current date for the current user, adjusted for the user's time zone. This is the date as
specified with the current user's personalizations.

You can use this system variable as the default constant for a date field, a time field, or a datetime field.

System Variables Chapter 3

814 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. This is potentially one day different than the server date, which is returned with %Date.

See Also

Chapter 3, "System Variables," %Date, page 817

PeopleTools 8.52: Security Administration, "Managing PeopleSoft Personalizations"

%ClientTimeZone

Description

%ClientTimeZone returns the current time zone for the current user as a three-character string. This is
potentially different than the server time zone. This is the timezone as specified with the current user's
personalizations.

See Also

PeopleTools 8.52: Security Administration, "Managing PeopleSoft Personalizations"

%Component

Description

%Component returns an uppercase character string containing the name of the current component, as set in
the component definition.

%CompIntfcName

Description

%CompIntfcName returns the name of the Component Interface, if the currently executing PeopleCode
program is being run from a Component Interface. If the currently executing PeopleCode program is not
being run from a Component Interface, this variable returns NULL (if the program is running from
PeopleCode) or "Nothing" (if running from Visual Basic.)

Note. This system variable is not valid in an iScript.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 815

%ContentID

Description

%ContentID returns the identification of the content for the current context as a string. The format of the
value depends on the type of content.

PeopleSoft Pure Internet Architecture Content Type Content ID Format

 Component Menu.Component.Market/?Page=Page&Action=Action
&Key ID = Key Value …

Script Record.Event.Function/?&Parm ID = Parm Value …

External URL

Homepage tab name

Template template name

Query query name

Worklist worklist name

Navigation Business Process Map name

File file name

%ContentType

Description

%ContentType returns the type of content for the current content as a string.

For example, suppose your PeopleCode is part of the page USERMAIN_SELF, in this URL:

http://serverx/servlets/psp/eprocurement/hrms/c/MAINTAINT_SECURITY.USERMAIN_SEF.GBL

This system variable returns the following:

c

System Variables Chapter 3

816 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The content types are:

PeopleSoft Pure Internet Architecture Content Type Value

 Component c

Script s

External e

Homepage h

Template t

Query q

Worklist w

Navigation n

File f

%Copyright

Description

This system variable returns a string suitable for use as a standard PeopleSoft copyright notice.

%Currency

Description

This system variable returns the preferred currency for the current user.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 817

%Date

Description

%Date returns a Date value equal to the current server date. This is potentially different than the client date,
returned by %ClientDate. You can use this system variable as the default value for a date field.

See Also

Chapter 3, "System Variables," %ClientDate, page 813

%DateTime

Description

%DateTime returns the current server date and time as a Datetime value.

Note. This variable does not return actual milliseconds. It always returns zeros for the millisecond value.

%DbName

Description

%DbName returns the name of the current database as a String value.

%DbServerName

Description

%DbServerName returns the name of the current Sybase or Informix database server as a string. This is not
valid for other database types.

%DbType

Description

%DbType returns a string representing the type of the current database. The valid values are:

• APPSERVER

System Variables Chapter 3

818 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• DB2

• DB2UNIX

• INFORMIX

• MICROSFT

• ORACLE

• SYBASE

Note. Supported database platforms are subject to change.

%DeviceType

Description

Note. PeopleSoft Mobile Agent is a deprecated product. This system variable currently exists for backward
compatibility only.

This system variable returns the type of the mobile device. The values are:

• %MobileDevice_Laptop

• %MobileDevice_PDA

• %OtherDevice

%EmailAddress

Description

This system variable returns the email address of the current user.

%EmployeeId

Description

%EmployeeId returns an uppercase character string containing the Employee ID of the user currently logged
on. This is typically used to restrict access to an employee's own records.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 819

%ExternalAuthInfo

Description

This system variable returns external connect information. Programmers can customize the authentication
process by passing in binary data. This data is encoded with base64 encoding and passed to sign on
PeopleCode as a string using this system variable.

Note. This system variable can be used only in Signon PeopleCode. This system variable isn't applicable with
the PeopleSoft Pure Internet Architecture.

%FilePath

Description

This meta-variable returns the current file path as a string.

Note. This is not a system variable. This is a meta-variable only available in a Application Engine program.

See Also

PeopleTools 8.52 : Application Engine, "Managing Application Engine Programs," Using the Command Line
to Invoke Application Engine Programs

%HPTabName

Description

This system variable returns the name of the last homepage tab visited by the user as a string.

%Import

Description

%Import returns True if an import is being performed by PeopleSoft Import Manager and False if not.

System Variables Chapter 3

820 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%IntBroker

Description

Use the %IntBroker system variable to return a reference to a web services gateway object.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," IntBroker Class

%IsMultiLanguageEnabled

Description

This system variable returns True if the current user is multi-language enabled.

See Also

PeopleTools 8.52: Global Technology, "Working With Language-Sensitive Application Data"

%Language

Description

%Language returns a string value representing the current session's language as selected from the signon
page.

Note. This function remains for backward compatibility only. Use the %Language_User system variable
instead.

See Also

Chapter 3, "System Variables," %Language_User, page 821

Chapter 1, "PeopleCode Built-in Functions," SetLanguage, page 626

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 821

%Language_Base

Description

%Language_Base returns the base language for the current database, as set with the PeopleTools Options
page.

See Also

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," PeopleTools Options

%Language_Data

Description

If multi-language entry is enabled, %Language_Data returns a string value representing the current data
language selected by the user.

If multi-language entry is not enabled, %Language_Data returns the current session language.

Use %Language_Data if your application must know the language any entered application data is stored as in
the component's related language records. Do not use this variable to control the user interface, such as
messages or page text. For determining the language of the user interface, use the %Language_User variable.

See Also

Chapter 3, "System Variables," %Language_User, page 821

%Language_User

Description

%Language_User returns a string value representing the current session's language as selected from the
signon page. This value can be changed for the current session with the SetLanguage function.

Note. The value of this system variable may not reflect the current data language if the user has multi-
language entry enabled.

See Also

Chapter 1, "PeopleCode Built-in Functions," SetLanguage, page 626

System Variables Chapter 3

822 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%LocalNode

Description

%LocalNode returns the name of the local node for the current database as a string.

For example, suppose your PeopleCode is part of the page USERMAIN_SELF, in this URL:

http://serverx/servlets/psp/eprocurement/hrms/c/MAINTAINT_SECURITY.USERMAIN_SEF.GBL

This system variable returns the following:

hrms

See Also

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

%Market

Description

The %Market system variable returns a three-character String value for the Market property of the current
component. This is useful if you want to add market-specific PeopleCode functionality to a component. For
example:

if %Component = COMPONENT.PERSONAL_DATA then
 /* do some stuff that applies to all localized version */
 :
 :
 /* do some stuff that differs by market */
 evaluate %Market
 when = "USA"
 /* do usa stuff */
 break;
 when = "GER"
 /* do german stuff */
 end-evaluate;
end-if;

The Market property of a component specifies a component's target market. This property is set when a
component is initially saved or cloned.

Components that are used on a global basis have a market setting of "GBL". Variations of components
targeted at a specific market can have a local Market setting, for example "FRA". This enables developers to
avoid cloning, renaming, and coding distinct PeopleCode in market-specific components. Instead, they can
create a single component with market-specific PeopleCode, then clone the component, applying different
Market property settings.

Because the %Market string is a three-character string like Country Code, Country Codes can be used as
market settings where appropriate.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 823

Considerations Using %Market in Application Engine Programs

Whenever %Market resolves to no value, it is processing in global ('GBL'). The absence of a value should be
treated the same as if the value is 'GBL'.

To process a non-GBL market, a row must be created in PS_AEREQUESTTBL with the desired market
value placed in the MARKET field of that row.

Note. You must make this change to the table for every application engine program PeopleCode that refers to
%Market.

See Also

PeopleTools 8.52: PeopleSoft Application Designer Developer's Guide, "Creating Component Definitions"

%MaxMessageSize

Description

%MaxMessageSize returns the current size limit of messages, as set on the PeopleTools Options page.

See Also

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," PeopleTools Options

%Menu

Description

%Menu returns an uppercase string containing the current menu name. It can be used to restrict edits or
processing to a specific menu.

Note. Do not use the %Menu variable in the SearchSave event. You may get unexpected results.

%MobilePage

Description

Note. PeopleSoft Mobile Agent is a deprecated product. This system variable currently exists for backward
compatibility only.

This system variable returns the name of the current mobile page.

System Variables Chapter 3

824 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

%ThisMobileObject.QE_MB_RESULTS = %MobilePage;

%Mode

Description

%Mode returns a String value consisting of an uppercase character specifying the action a user selected when
starting the current component. The following values can be returned. You can check either for the string
value ("A", "U", and so on.) or for the constant:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

C %Action_Correction Correction

E %Action_DataEntry Data Entry

P %Action_Prompt Prompt

Note. This system variable is not valid with mobile PeopleCode.

%NavigatorHomePermissionList

Description

This system variable returns the navigator homepage permission list for the current user.

%Node

Description

%Node returns the name of the node from the current request object. This variable can only be used within a
request (%Request). If you need to get the node name for a message, use the PubNodeName message
property instead.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 825

See Also

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

PeopleTools 8.52: PeopleCode API Reference, "Message Classes," PubNodeName

%OperatorClass

Description

This system variable returns a string representing the primary or base class of the current operator.

Note. This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %PermissionLists instead.

See Also

Chapter 3, "System Variables," %PermissionLists, page 829

%OperatorId

Description

%OperatorId returns an uppercase character string containing the operator currently logged on. This is
typically used to restrict access to records or fields to specific operators.

Note. This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %UserId instead.

See Also

Chapter 3, "System Variables," %UserId, page 837

%OperatorRowLevelSecurityClass

Description

This system variable returns a string representing the row-level security class of the current operator. The
row-level security class is now distinct from the operator's primary class.

Note. This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %RowSecurityPermissionList instead.

System Variables Chapter 3

826 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 3, "System Variables," %RowSecurityPermissionList, page 832

%OutDestFormat

Description

This meta-variable returns the current output destination format as a string.

Note. This is not a system variable. This is a meta-variable only available in a Application Engine program.

See Also

PeopleTools 8.52 : Application Engine, "Managing Application Engine Programs," Using the Command Line
to Invoke Application Engine Programs

%OutDestType

Description

This meta-variable returns the current output destination type as a string.

Note. This is not a system variable. This is a meta-variable only available in a Application Engine program.

See Also

PeopleTools 8.52 : Application Engine, "Managing Application Engine Programs," Using the Command Line
to Invoke Application Engine Programs

%Page

Description

%Page returns an uppercase character string containing the current page name. It is typically used to restrict
processing to a specific page, which is often necessary, because PeopleCode programs are associated with
record definitions that can be shared by multiple pages.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 827

%Panel

Description

%Panel returns an uppercase character string containing the current panel name.

Note. This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %Page instead.

See Also

Chapter 3, "System Variables," %Page, page 826

%PanelGroup

Description

%PanelGroup returns an uppercase character string containing the name of the current component, as set in
the component definition.

Note. This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %Component instead.

See Also

Chapter 3, "System Variables," %Component, page 814

%PasswordExpired

Description

This system variable returns a Boolean indicating if the current user's password has expired. This system
variable should be used after using SwitchUser, to verify if the password of the user that the user has just
switched to is expired.

See Also

Chapter 1, "PeopleCode Built-in Functions," SwitchUser, page 670

System Variables Chapter 3

828 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%PerfTime

Description

Use the %PerfTime system variable to return the application server's local system time.

This variable returns only the local system time. This is different from the %Time system variable, which
returns the system time from the database server, which may or may not be the same physical system as the
application server.

PeopleSoft recommends using %PerfTime when measuring performance time for a specific PeopleCode
program. This can enable developers to evaluate which coding logic has better performance time.

Note. Do not assume that %PerfTime returns the same time as the database server. Use %Time if you need to
use a time value for your application transaction.

Example

The following is an example of how to use %PerfTime to check performance of a PeopleCode program:

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 829

&startTime = %PerfTime;

Local number &nbr;
Local Rowset &Table1_rs, &Table2_rs, &Table1_cpy_rs, &Table2_cpy_rs;
Local Rowset &Table1_vw_rs;

&Table1_rs = CreateRowset(Record.PTP_TABLE1);
&Table1_cpy_rs = CreateRowset(Record.PTP_TABLE1);
&Table1_rs.Fill("WHERE PTP_SEQ_NBR <= 10001");

REM
REM Copy using Rowset function from one RowSet to Another
REM;

&Table1_rs.CopyTo(&Table1_cpy_rs);

REM
REM USE ROWSET TO READ RESULTS FROM A JOIN WITH BIND VARIABLE
REM;

&nbr = 10001;
&Table1_vw_rs = CreateRowset(Record.PTP_TABLE1_VW);
&Table1_vw_rs.Fill("WHERE PTP_SEQ_NBR >= :1", &nbr);

REM
REM END OF EXERCISE CODE FOR PERFORMANCE COLLECTOR
REM;

&Rs = GetRowset(Scroll.PTP_TABLE1);

&Rs.Flush();
&Rs.Select(Record.PTP_TABLE1, "WHERE PTP_SEQ_NBR <= 10005");

&timeTaken = %PerfTime - &startTime;

See Also

Chapter 3, "System Variables," %Time, page 836

%PermissionLists

Description

This system variable returns an array object containing entries for all the permission lists to which the current
user belongs.

System Variables Chapter 3

830 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%PID

Description

This system variable returns the process ID of the process that issues it as a number. For example, if an
application server has a process ID of 445656 (as seen on task manager), this system variable would return
445656 for any PeopleCode that ran on that application server (that is, from a component.) Application
Engine PeopleCode run on the Application Engine server, and so on.

%Portal

Description

%Portal returns the name of the portal the current service is being accessed through, as a string. For example,
suppose your PeopleCode is part of the page USERMAIN_SELF, in this URL:

http://serverx/servlets/psp/eprocurement/hrms/c/MAINTAINT_SECURITY.USERMAIN_SEF.GBL

This system variable returns the following:

eprocurement

See Also

PeopleTools 8.52: PeopleSoft Integration Broker Administration, "Adding and Configuring Nodes"

%PrimaryPermissionList

Description

This system variable returns a string representing the primary permission list of the current user.

%ProcessProfilePermissionList

Description

This system variable returns the process profile Permission List for the current user.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 831

%PSAuthResult

Description

This system variable returns the result (True of False) of PeopleSoft ID and password authentication for the
user signing on.

%Request

Description

%Request returns a reference to the request object. This reference can be used like an object, that is, you can
use this as part of a dot notation string. For example:

&LOGOUT = %Request.LogoutURL;

This system variable is applicable only in an internet script.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

%Response

Description

%Response returns a reference to the response object. This reference can be used like an object, that is, you
can use this as part of a dot notation string. For example:

&CookieArray = %Response.CookieNames();

This system variable is applicable only in an internet script.

See Also

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)"

%ResultDocument

Description

This system variable returns a string containing an HTML document displayed to a user. This system variable
is used with SwitchUser to pass any messages from the sign on process (or Signon PeopleCode) to the user.

System Variables Chapter 3

832 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. This system variable can be used only in Signon PeopleCode.

See Also

Chapter 1, "PeopleCode Built-in Functions," SwitchUser, page 670

%Roles

Description

This system variable returns an array object containing entries for all the roles to which the current user
belongs.

%RowSecurityPermissionList

Description

This system variable returns a string representing the row-level PermissionList of the current user. The row-
level security PermissionList is distinct from the user's primary PermissionList.

%RunningInPortal

Description

This system variable returns a Boolean value, letting you know if you're in the portal or not. This variable
works in both frame templates and HTML templates.

%ServerTimeZone

Description

%ServerTimeZone returns the current time zone on the server as a three-character string.

%Session

Description

%Session returns a reference to the current, existing session. If you use %Session successfully, you do not
have to use the GetSession function and Connect method. If you do not have a current session, %Session
returns NULL.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 833

Example

Local ApiObject &MySession

&MySession = %Session;
If Not (&MySession) Then
 /* Application level error handling */
End-If;

%SignonUserId

Description

%SignonUserId returns the value the user typed in at the sign on page.

Note. This system variable can be used only in Signon PeopleCode.

%SignOnUserPswd

Description

%SignOnUserPswd returns the value the user typed in at the sign on page. This value is encrypted. This
ensures end-user passwords can't be "captured" by a Signon PeopleCode program.

Note. This system variable can be used only in Signon PeopleCode.

%SMTPBlackberryReplyTo

Description

This system variable returns the email address used by Blackberry to reply to, as a string, based on value in
the application server configuration file for SMTPBlackberryReplyTo. This value is used in the Blackberry
Response processing when Notification Templates are used.

See Also

PeopleTools 8.52: Workflow Technology, "Designing BlackBerry Email Responses"

System Variables Chapter 3

834 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%SMTPGuaranteed

Description

This system variable returns a Boolean value, based on the value in the application server configuration file
for SMTPGuaranteed. The values are:

Value in Configuration File Value Returned by System Variable

 0 False

1 True

When this value is set to True, the Notification Send method sends emails asynchronously by publishing an
Application Message (EMAIL_MSG).

When this value is set to False, the Notification Send method sends emails synchronously by calling the
SMTP server directly.

See Also

Chapter 1, "PeopleCode Built-in Functions," SendMail, page 596 and PeopleTools 8.52: PeopleCode API
Reference, "Notification Classes," Send

PeopleTools 8.52: Workflow Technology, "Designing BlackBerry Email Responses"

%SMTPSender

Description

This system variable returns an email address as a string. The value is based on the value in the application
server configuration file for SMTPSender. This value is used as the default sender email address for the
following emails:

• TriggerBusinessEvent function

• SendMail function

• Notification class Send method

When using Notification Templates, if the Sender value is set to "System", this is the email address that is
used for the Sender.

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 835

See Also

PeopleTools 8.52: Workflow Technology, "Designing BlackBerry Email Responses"

%SQLRows

Description

%SQLRows returns the number of rows affected by the most recent UPDATE, DELETE, or INSERT
executed through the SQLExec function.

%SQLRows can also be used after SELECT. It returns 0 if no rows are returned, a non-zero value if one or
more rows are returned. In this case, the non-zero value does not indicate the total number of rows returned.

%SyncServer

Description

Note. PeopleSoft Mobile Agent is a deprecated product. This system variable currently exists for backward
compatibility only.

This system variable returns a reference to the SyncServer object. If you do not have a current SyncServer
object, %SyncServer returns NULL.

See Also

PeopleTools 8.52: PeopleCode API Reference, "SyncServer Class"

%ThisMobileObject

Description

Note. PeopleSoft Mobile Agent is a deprecated product. This system variable currently exists for backward
compatibility only.

Returns a reference to the current mobile object, which is the equivalent of a row for a Component Interface
object.

To get the top level object, use %ThisMobileObject.GetTopParent.

To get the immediate parent, use %ThisMobileObject.GetParent.

System Variables Chapter 3

836 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

Local ApiObject &ob, &Session;
Local ApiObject &PropertyInfo;

&ob = %ThisMobileObject;
&Session = %Session;

/***
* Set properties directly on %ThisMobileObject *
***/
%ThisMobileObject.date = "2002.12.06";
%ThisMobileObject.time = "10:30:00";

See Also

PeopleTools 8.52: PeopleCode API Reference, "Mobile Classes"

%Time

Description

%Time retrieves the current database server time.

If your application deals with time-sensitive data, use this value. If you want to measure the performance of a
PeopleCode program, use the %PerfTime system variable instead.

See Also

Chapter 3, "System Variables," %PerfTime, page 828

%TransformData

Description

This system variable returns a reference to the TransformData object. If you do not have a current
TransformData object, %TransformData returns Null.

See Also

PeopleTools 8.52: PeopleSoft Integration Broker, "Applying Filtering, Transformation and Translation"

PeopleTools 8.52: PeopleCode API Reference, "TransformData Class," Understanding the TransformData
Class

Chapter 3 System Variables

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 837

%UserDescription

Description

This system variable returns the description (if any) listed for the current user.

%UserId

Description

%UserId returns a character string containing the user currently logged on. This is typically used to restrict
access to records or fields to specific users.

%WLInstanceID

Description

%WLInstanceID returns a string containing the name of the Worklist Instance ID for the current worklist
entry. It returns a blank string if the current page was not accessed using a worklist.

%WLName

Description

%WLName returns a string containing the name of the Worklist for the current worklist entry. It returns a
blank string if the current page was not accessed using a worklist.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 839

Chapter 4

Meta-HTML

This chapter provides an overview of Meta-HTML and discusses the following topics:

• Variables

• Functions

• Comments

• Alphabetical list of Meta-HTML elements

Understanding Meta-HTML

PeopleSoft Pure Internet Architecture page processing includes functionality to perform certain substitutions
on the generated HTML. These substitutions are known as Meta-HTML. These Meta-HTML elements enable
access to some of the environment, and in some cases, to perform browser-dependent substitutions.

The Meta-HTML processing is performed on the entire page, including the contents of any HTML areas in
the page. Thus Meta-HTML can be used in an HTML area.

Meta-HTML processing is not currently done in the results of an internet script, so the iScript programmer
cannot use Meta-HTML.

A limited subset of the Meta-HTML processing is also done on any JavaScript or auxiliary HTML files
attached and downloaded to the web server. This processing occurs both for files attached to PeopleSoft Pure
Internet Architecture pages and for files attached to an iScript.

An auxiliary file may be attached to an HTML area using the Meta-HTML %JavaScript method.

An auxiliary page may be attached to a iScript page or a PeopleSoft Pure Internet Architecture page using the
Response method GetJavaScriptURL.

Each Meta-HTML element that may be used in auxiliary files is noted in its description.

Find References Tool Considerations

When you specify a definition name in an HTML area, it is not found using the Find References tool. It also
won't be automatically renamed when a definition is renamed. All text within an HTML area is treated like a
quoted string, a literal.

For example, Find References won't find the image PSLOGO or the HTML definition PT_EDITSCRIPTS.

Meta-HTML Chapter 4

840 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

<script src='%JavaScript(PT_EDITSCRIPTS)'></script>

See Also

Chapter 4, "Meta-HTML," %JavaScript, page 845

PeopleTools 8.52: PeopleCode API Reference, "Internet Script Classes (iScript)," GetJavaScriptURL

Variables

A Meta-HTML variable has the form %name, similar to the PeopleCode system variables. It's replaced by the
substituted value wherever it appears. In the following example, the Meta-HTML variable is replaced by the
current component name:

%Component

Functions

A Meta-HTML function has the following form:

%name(parameter, parameter...)

The entire expression is replaced by a substituted value, where the parameters are used in determining the
value to be substituted. The parameters are arbitrary sequences of characters separated by commas. Do not
place quotes around the parameters unless they form part of the value to be used.

In the following example, the entire text is replaced by the contents of the message 126, 45 from the message
catalog, or the phrase "Unable to load images" if that message isn't found.

%Message(126, 45, Unable to load images)

Comments

The Meta-HTML processor recognizes two forms of comments. These comments are deleted from the
generated HTML or JavaScript. They enable the application developer to comment the HTML objects in the
database without increasing the size of the HTML passed to the browser.

The recognized comments are as follows:

Two slashes followed by a percent sign at the start of a line deletes everything to the end of the line
containing the slashes.

//% anything

A less-than sign, followed by an exclamation mark and a percentage sign deletes everything from those marks
to the mark -->, which may be on another line.

<!% anything -->

Chapter 4 Meta-HTML

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 841

These Meta-HTML comments may be used both in HTML areas and attached auxiliary files.

Alphabetical List of Meta-HTML Elements

In this section, we discuss each Meta-HTML element. Throughout this section, typographical conventions are
used to distinguish between different elements of the PeopleCode language, such as bold to indicate function
names, italics for arguments, and so on.

See Also

"PeopleCode Language Reference Preface," PeopleCode Typographical Conventions, page xxiii

%Appserver

Description

At runtime %Appserver is replaced with the name of the application server.

This metavariable is valid for use in attached auxiliary files.

%AppsRel

Description

At runtime %AppsRel is replaced with the application release string.

This metavariable is valid for use in attached auxiliary files.

%Browser

Description

At runtime %Browser is replaced with the browser name as specified by the browser loading the current page.

%BrowserPlatform

Description

At runtime %BrowserPlatform is replaced with the operating system name as specified by the browser
loading the current page.

Meta-HTML Chapter 4

842 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%BrowserVersion

Description

At runtime %BrowserVersion is replaced by the version string as specified by the browser loading the current
page.

%Cols

Syntax

%Cols(n)

Description

At runtime %Cols(n) is replaced with COLS=n.

Parameters

Parameter Description

n Specify the number of columns.

This metafunction is valid for use in attached auxiliary files, but always generates COLS=n, that is, it isn't
Browser-aware when used in attached files.

%Component

Description

At runtime %Component is replaced with the component name of the current component.

%Copyright

Description

At runtime %Copyright is replaced with a string suitable for use as a standard PeopleSoft copyright notice.

This metavariable is valid for use in attached auxiliary files.

Chapter 4 Meta-HTML

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 843

%DBName

Description

At runtime %DBName is replaced with the name of the application database.

This metavariable is valid for use in attached auxiliary files.

%DBType

Description

At runtime %DBType is replaced with the type of the application database.

This metavariable is valid for use in attached auxiliary files.

%Encode

Syntax

%Encode(anything)

Description

At runtime %Encode plus anything is replaced with the encoded string. Encoding is done according to normal
URL encoding rules.

Parameters

Parameter Description

anything Specify the string to be encoded.

This metafunction is valid for use in attached auxiliary files.

%Formname

Description

At runtime %Formname is replaced with the name of the HTML FORM generated for the current page.

Meta-HTML Chapter 4

844 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

This metavariable is valid for use in attached auxiliary files.

%HtmlContent

Syntax

%HtmlContent(ContentName)

Description

At runtime %HtmlContent and ContentName are replaced by the URL suitable for referencing the content on
the web server. In addition, the content is loaded into the web server's cache directory.

Parameters

Parameter Description

ContentName Specify the content you want to access, as a string.

%Image

Syntax

%Image(imagename)

Description

At runtime %Image and imagename are replaced by the URL suitable for referencing the image on the web
server. In addition, the image is loaded into the web server's cache directory.

Parameters

Parameter Description

imagename Specify the name of an image saved as an image definition in Application
Designer.

Example

Chapter 4 Meta-HTML

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 845

%JavaScript

Syntax

%JavaScript(HTMLDefinition)

Description

At runtime %JavaScript and the HTMLDefinition are replaced by the URL suitable for referencing the .js file
on the web server. In addition, the JavaScript is loaded into the web server's cache directory.

Parameters

Parameter Description

HTMLDefinition Specify the name of an HTML definition that contains a JavaScript program.

Example

<script src='%JavaScript(PT_EDITSCRIPTS)'></script>

%LabelTag

Description

At runtime %LableTag is replaced with the text LABEL.

This metavariable is valid for use in attached auxiliary files, but always generates LABEL, that is, it isn't
Browser-aware when used in attached files.

%LanguageISO

Description

At runtime %LanguageISO is replaced with a string value representing the current session's language code or
language code and country code if a country code exists.

Use %LanguageISO to declare the language of a Web page using the HTML lang attribute.

For instance, if the language for the current language is English, then <html lang="%LanguageISO">
resolves to <html lang="en"> at runtime. If the current language is Canadian French then it would
resolve to <html lang="fr-ca"> .

Meta-HTML Chapter 4

846 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example

&html = "<html dir='" | %Direction | "' lang='" | %LanguageISO | "'>";

%Menu

Description

At runtime %Menu is replaced by the menu name for the currently loaded component.

%Message

Syntax

%Message(message_set,message_num,default_msg_txt [, paramlist])

where paramlist is an arbitrary-length list of parameters to be substituted in the resulting text string, in the
form:

param1 [, param2]. . .

Description

%Message retrieves a message from the PeopleCode Message Catalog and substitutes in the values of the
parameters into the message.

The message_set and message_num parameters specify the message to retrieve from the catalog. If the
message is not found in the Message Catalog, the default message provided in default_msg_txt is used.
Message sets 1 through 19,999 are reserved for use by PeopleSoft applications. Message sets 20,000 through
32,767 can be used by PeopleSoft users.

The parameters listed in the optional paramlist are referenced in the message using the % character followed
by an integer referencing the position of the parameter in the function call. For example, if the first and
second parameters in paramlist were MONDAY and 12/5/2001, they would be inserted into the message
string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to indicate an end-of-
string and terminates the string at that point, this is generally used to specify fixed-length strings with trailing
blanks.

The message is obtained using the current user language code.

Parameters

Parameter Description

message_set Specify the message set to be retrieved from the catalog. This parameter takes a
number value.

Chapter 4 Meta-HTML

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 847

Parameter Description

message_num Specify the message number to be retrieved from the catalog. This parameter takes
a number value.

default_msg_txt Specify the text to be displayed if the message isn't found. This parameter takes a
string value.

paramlist Specify values to be substituted into the message.

This is valid for use in attached auxiliary files.

Note. If the message is changed (or a new language version is added) after the auxiliary file has been loaded
to the web server, the auxiliary file still contains the old version of the message. It is necessary to manually
delete the file from the web server cache directory to get it to re-retrieve the (unmodified) auxiliary
component with the (modified) message bindings.

%Page

Description

At runtime %Page is replaced by the name of the current page.

%ServicePack

Description

At runtime %ServicePack is replaced with the application service pack string.

This metavariable is valid for use in attached auxiliary files.

%SubmitScriptName

Description

At runtime %SubmitScriptName is replaced with the name of the JavaScript function that the current page
uses to submit the form when a server action is required.

This metavariable is valid for use in attached auxiliary files.

Meta-HTML Chapter 4

848 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%ToolsRel

Description

At runtime %ToolsRel is replaced with the tools release string.

This metavariable is valid for use in attached auxiliary files.

%URL

Syntax

%URL(URLIdentifier [, NOENCODE | ENCODE | DESCR])

Description

The %URL Meta-HTML function finds the URL specified by URLIdentifier and substitutes its value. The
URLIdentifier must already exist and have been created using URL Maintenance.

Parameters

Parameter Description

URLIdentifier Specify a URL Identifier for a URL that already exists and was created using the
URL Maintenance page.

NOENCODE | ENCODE |
DESCR

Specify any encoding or other processing to be done with the URL. ENCODE is
the default value. If you specify ENCODE, special characters in the URL are
encoded using standard URL encoding rules, that is, blanks are replaced with %20,
and so on.

If you specify NOENCODE, no encoding is done with the URL.

If you specify DESCR, the description from the URL definition is used instead of
the URL itself.

This metafunction is valid for use in attached auxiliary files.

Example

%URL(homepage, DESCR)

See Also

PeopleTools 8.52: System and Server Administration, "Using PeopleTools Utilities," URL Maintenance

Chapter 4 Meta-HTML

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 849

%UserId

Description

At runtime %UserID is replaced with the current UserId.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 851

Appendix A

Viewing Trees From Application Pages

This appendix is for developers of PeopleSoft applications who want to display a tree from an application
page, and enable users to select a node or leaf from the tree. It provides an overview of View Trees and
discusses how to invoke View Trees from application pages.

See Also

PeopleTools 8.52: PeopleSoft Tree Manager, "Introduction to PeopleSoft Tree Manager"

Understanding View Trees

Use a secondary 'Tree Viewer' page, (PSTREEVIEWER), to display an existing PeopleSoft tree from an
application using the same HTML format as PeopleSoft Tree Manager. It enables the user to select a node or
a leaf from a tree and return the selected node or leaf back to the application.

The following PeopleTools definitions are used:

• Secondary Page: PSTREEVIEWER

• Work Page: PSTREEVIEWERWRK

• Work Record: PSTREEVIEWWRK

The work record and work page are used as a way to transfer data between an application page and the
secondary page. The PSTREEVIEWWRK record contains fields that define which tree to display, whether
the user has selected a node or leaf, and control fields that give the application some control over the display
options of the tree.

The following fields identify the specific tree to be displayed. These values should be populated by the calling
application as discussed in the following table.

Field Description

SetID SetID of the Tree to be displayed. Required if the tree is
keyed by a setID.

Viewing Trees From Application Pages Appendix A

852 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Field Description

SetCntrlValue Business unit or SetCntrlValue of the Tree to be
displayed.

Required if the tree is keyed by a business unit or
SetCntrlValue.

Tree_Name Name of the tree to be displayed. Required.

EffDt Specify either the Tree's Effective Date, or the date to be
used for finding the most current effective-dated version
of the tree.

Tree Viewer performs a maximum effective date test
and displays the most current tree whose effective date
is less than or equal to the EffDt value passed in the
PSTREEVIEWWRK record.

Note. If a tree contains branches, they are ignored and shown as regular nodes. However, the root node
displays with the branch icon to indicate that the tree does contain branches.

There are two methods of opening the PSTREEVIEWER secondary page from an application:

• Without 'MultiNode' Selection (Method A): Enables user to select, and application to receive a single
node with level information, or a leaf with parent node information.

• With 'MultiNode' Selection (Method B): Enables user to select, and application to receive multiple nodes
without level information. If user selects a leaf the parent node is returned.

The following fields indicate whether specific nodes or a leaf has been selected by the application. These
fields can be populated by the calling application if it wants the position of a specific node or leaf, identifying
it as the currently selected. The fields are also updated or populated on the Tree Viewer secondary page
(PSTRREVIEWER), when the user selects a specific node or leaf and clicks the Select button.

If the application specifies the node value and the leaf value, the search tries to find the leaf under the
specified node. This is important when a tree contains duplicate leaves. If a tree does have duplicate leaves
and no node is specified, the first leaf occurrence is returned.

Field Name Description Remarks

Tree_Node The Node_Id selected.

Must be an exact match to the
Node_Id stored in the
PSTREENODE table.

Input and/or Output

Tree_Level_Num Level number associated with the
selected node.

Output

Appendix A Viewing Trees From Application Pages

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 853

Field Name Description Remarks

Tree_Level Level name associated with the
selected node.

Output

Tree_Level_Descr Level description associated with
the selected node.

Output

Leaf_Selected Y/N flag.

Indicates whether the application
specified a leaf.

Input

Range_From Range from value of the selected
leaf.

Input and/or Output

Range_To Range to value of the selected leaf. Input and/or Output

Dynamic_Flag Indicates whether the selected leaf
is dynamic.

Output

Message_Set_Nbr Populated in
PSTREEVIEWERWRK if error
occurs. For example, selected node
or leaf is not found.

Collapsed tree is displayed.

Output

Message_Nbr Populated in
PSTREEVIEWERWRK if error
occurs. For example, specifed node
or leaf is not found.

Collapsed tree is displayed.

Output

Multinode Holds list of selected nodes as a
comma-separated string.

Populated if Multinodeselection is
set to "Y".

Output

The following fields (input) can be used to control the appearance and formatting of the Tree Viewer
secondary page:

Viewing Trees From Application Pages Appendix A

854 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Field Name Description

Page_Size Determines the number of lines to be displayed on a
given page.

If no value is specified the default value is 60 lines per
page.

Show_Leaves Y/N flag.

Controls whether the Tree Viewer displays Detail
Values.

Show_Levels Y/N flag.

Controls whether the Tree Viewer should display the
Level Description next to the node description.

Multinodeselection Y/N Flag.

Default = "N"

Invoking View Trees From Application Pages

This section outlines the development steps and provides some sample code to view trees from an application
page. It provides two methods of how to view trees from application pages:

• Without multi-node selection.

• With multi-node selection.

To view a tree from an application page:

1. Add the PSTREEVIEWERWRK page to your component as a hidden page.

2. Add a field to a work record that will then be used as a Command Button or Hyperlink to your secondary
page.

The user selects this button or link to invoke the Tree Viewer page. You also need to add the following
sample code to the FieldChange event for this field.

3. Add the Command Button or Hyperlink to the application page.

4. Add a Secondary Page control to the application page, and set the secondary page to PSTREEVIEWER.

The Secondary Page control must be placed on the page at a level higher than level 3.

In addition, the Command button or Hyperlink to invoke the PSTREEVIEWER secondary page must be
placed on the same level as a secondary page control.

Appendix A Viewing Trees From Application Pages

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 855

5. Add the application PeopleCode, which should do the following:

a. Set the values of the Tree's key fields on the PSTREEVIEWWRK record.

b. Determine whether a node has been previously selected, and if so, setting the Tree_Node field to be
the ID of the selected node:

If a leaf has been previously selected, your code should do the following:

— Populate the Range_From and Range_To fields with the selected leaf values

— Set the Tree_Node field to the parent node

— Set the Leaf_Selected field to "Y"

c. Set any of the display options that you want to use.

d. Display the Tree Viewer secondary page (PSTREEVIEWER) by calling the DoModal PeopleCode
function.

e. Optionally, check the return code value and storing the ID of the selected node if the user selected a
node and clicked the OK or Select button.

Viewing Trees From Application Pages Appendix A

856 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

/* Note: Keys of Tree are stored in &SetId,&TreeName variables.
Assume that application has Leaf selected with values stored in variables &Range⇒
From; &RangeTo and has parent node name stored in &TreeNode variable. QE_TREETEST_⇒
WRK Record holds input and received output values. */

/*Tree to open specification */
PSTREEVIEWWRK.SETID = &SETID;
PSTREEVIEWWRK.SETCNTRLVALUE = " ";
PSTREEVIEWWRK.TREE_NAME = &TREENAME;
PSTREEVIEWWRK.TREE_BRANCH = " ";
PSTREEVIEWWRK.EFFDT = %DATE; /* Get Latest Tree as of Today */

/* Tree appearance specification */
PSTREEVIEWWRK.PAGE_SIZE = 60;
PSTREEVIEWWRK.SHOW_LEAVES = "Y";
PSTREEVIEWWRK.SHOW_LEVELS = "Y";
PSTREEVIEWWRK.MULTINODESELECTION = "N";

/* Leaf input specification */
/* (Assuming QE_TREETEST_WK.LEAF_SELECTED ="Y"; */
PSTREEVIEWWRK.LEAF_SELECTED = QE_TREETEST_WRK.LEAF_SELECTED;
PSTREEVIEWWRK.TREE_NODE = &TreeNode;
PSTREEVIEWWRK.RANGE_FROM = &RangeFrom;
PSTREEVIEWWRK.RANGE_TO = &RangeTo;

/* Opening the PSTREEVIEWER secondary page */
&rslt = DoModal(Page.PSTREEVIEWER, " ", - 1, - 1);

/* populating the application Record (QE_TREETEST_WRK) with output values from⇒
 user selection in Tree */
If &rslt = 1 Then
 QE_TREETEST_WRK.TREE_NODE = PSTREEVIEWWRK.TREE_NODE;
 QE_TREETEST_WRK.TREE_LEVEL_NUM = PSTREEVIEWWRK.TREE_LEVEL_NUM;
 QE_TREETEST_WRK.TREE_LEVEL = PSTREEVIEWWRK.TREE_LEVEL;
 QE_TREETEST_WRK.TREE_LEVEL_DESCR = PSTREEVIEWWRK.TREE_LEVEL_DESCR;
 QE_TREETEST_WRK.RANGE_FROM = PSTREEVIEWWRK.RANGE_FROM;
 QE_TREETEST_WRK.RANGE_TO = PSTREEVIEWWRK.RANGE_TO;
 QE_TREETEST_WRK.DYNAMIC_FLAG = PSTREEVIEWWRK.DYNAMIC_FLAG;
 QE_TREETEST_WRK.MESSAGE_SET_NBR = PSTREEVIEWWRK.MESSAGE_SET_NBR;
 QE_TREETEST_WRK.MESSAGE_NBR = PSTREEVIEWWRK.MESSAGE_NBR;
End-If;

The following is the sample PeopleCode (Method A), which would be part of the FieldChange event
triggered from a Command Button or Hyperlink command on the application page:

In some cases, you may need to use the Component Level Record variable &cPSTREEVIEWWRK to set
values for the tree. For example, if the application added the Tree Viewer secondary page to the application's
secondary page and cannot reach the record from the component buffer. The following is the sample
PeopleCode illustrating the use of the variable:

Appendix A Viewing Trees From Application Pages

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 857

Component Record &cPSTREEVIEWWRK;
Component boolean &gbShowTreeLeaves;
Local number &rslt;

/* opening the Tree Viewer secondary page */

&cPSTREEVIEWWRK = CreateRecord(Record.PSTREEVIEWWRK);

&cPSTREEVIEWWRK.SETID.Value = &SETID;
&cPSTREEVIEWWRK.SETCNTRLVALUE.Value = " ";
&cPSTREEVIEWWRK.TREE_NAME.Value = &TREENAME;
&cPSTREEVIEWWRK.TREE_BRANCH.Value = " ";
&cPSTREEVIEWWRK.EFFDT.Value = %DATE; /* Get Latest Tree as of Today */;
&cPSTREEVIEWWRK.PAGE_SIZE.Value = 60;
&cPSTREEVIEWWRK.SHOW_LEVELS.Value = "Y";
&cPSTREEVIEWWRK.MULTINODESELECTION.Value = "N";

If &gbShowTreeLeaves Then
 &cPSTREEVIEWWRK.SHOW_LEAVES.Value = "Y";
Else
 &cPSTREEVIEWWRK.SHOW_LEAVES.Value = "N";
End-If;

&rslt = DoModal(Page.PSTREEVIEWER, "", - 1, - 1);

/* reading output value in a case when Component Level Record variable &c⇒
PSTREEVIEWERWRK is used. */

If &rslt = 1 Then
 QE_TREETEST_WRK.TREE_NODE = &cPSTREEVIEWWRK.TREE_NODE.value;
 QE_TREETEST_WRK.TREE_LEVEL_NUM = &cPSTREEVIEWWRK.TREE_LEVEL_NUM.value;
 QE_TREETEST_WRK.TREE_LEVEL = &cPSTREEVIEWWRK.TREE_LEVEL.value;
 QE_TREETEST_WRK.TREE_LEVEL_DESCR = &cPSTREEVIEWWRK.TREE_LEVEL_DESCR.value;
 QE_TREETEST_WRK.RANGE_FROM = &cPSTREEVIEWWRK.RANGE_FROM.value;
 QE_TREETEST_WRK.RANGE_TO = &cPSTREEVIEWWRK.RANGE_TO.value;
 QE_TREETEST_WRK.DYNAMIC_FLAG = &cPSTREEVIEWWRK.DYNAMIC_FLAG.value;
 QE_TREETEST_WRK.MESSAGE_SET_NBR = &cPSTREEVIEWWRK.MESSAGE_SET_NBR.value;
 QE_TREETEST_WRK.MESSAGE_NBR = &cPSTREEVIEWWRK.MESSAGE_NBR.value;

 EndModal(1);

Else
 EndModal(0);

End-If;

Note. The name of the variable &cPSTREEVIEWWRK is hard-coded and should not be changed.

The segment of code in italics reads the results that came from the tree. (Node or leaf selected).

View Trees From Application Example−Without Multi-Node Selection (Method
A)

An example of an application that uses the Tree Viewer secondary page (PSTREEVIEWER), with the
Multinodeselection flag set to "N", is the Using Copy/Delete Tree (PSTREEMAINT) component. Navigate to
the component, select any tree and click the View button.

See PeopleTools 8.52: PeopleSoft Tree Manager, "Maintaining Trees," Maintaining Trees.

Viewing Trees From Application Pages Appendix A

858 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding the Tree Viewer page

Page Name Object Name Navigation Usage

Copy/Delete Tree - Tree
Viewer

PSTREEVIEWER Tree Manager, Tree
Utilities, Copy/Delete
Tree

This page is using the
Tree Viewer secondary
page

Copy/Delete Tree - Tree Viewer page

View Trees From Application Example−With Multi-Node Selection (Method B)
An example of an application that uses the PSTREEVIEWER secondary page, with the Multinodeselection
flag set to "Y", is the Using Query Manager component. Navigate to the Query Manager component, select
any query and click the Add Criteria Image. The Edit Criteria Properties page opens. Select field as the first
expression then select in tree as the condition type. Click the New Node List link to display the Select Tree
page. Click the name of the desired tree.

See PeopleTools 8.52: PeopleSoft Tree Manager, "Maintaining Trees."

Understanding the Display and Select TreeNodes Page

Appendix A Viewing Trees From Application Pages

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 859

Page Name Object Name Navigation Usage

Select TreeNodes PSTREEVIEWER Reporting Tools, Query,
Query Manager

Use this page to create a
list of values for Query to
compare to the value
from the first expression.

Select TreeNodes page

The Tree Viewer secondary page (PSTREEVIEWER) in Method B has a frame that holds the Selected Nodes
List with action buttons associated with each selected node.

This page is used to select the set of nodes, get them back to the calling application, (Query Manager), and
use the list of nodes as Query criteria.

To select tree nodes:

1. Highlight the desired tree node and click the Add Node icon.

2. If you know the name of the desired node you can use the manual selection option. Enter the name of the
desired node or use the Lookup button to select from a list of available nodes. Click on the Add to List
button to add the node to the list.

3. The nodes you entered or selected from the list appear in the Selected Nodes drop-down list box.

4. Delete nodes from the list by clicking the Remove Node From List icon.

5. Display the selected node in the Tree by clicking the Find icon.

Viewing Trees From Application Pages Appendix A

860 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

6. Click OK when the list is complete to close the Display and Select TreeNodes (PSTREEVIEWER
secondary page).

The selected tree setID, tree name, effective date, and selected nodes display in the Select Tree Node List
dialog box.

 The list of selected nodes can be read from the Multinode field of the PSTREEVIEWWRK work record
as a comma-separated string. The string can be parsed to get the node names.

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 861

Symbols
%Abs meta-SQL function 756
%AllowNotification variable 811
%AllowRecipientLookup variable 811
%ApplicationLogFence variable 812
%Appserver meta-HTML 841
%AppsRel meta-HTML 841
%AsOfDate variable 813
%AuthenticationToken variable 813
%BINARYSORT meta-SQL function 756
%BPName variable 813
%Browser meta-HTML 841
%BrowserPlatform meta-HTML 841
%BrowserVersion meta-HTML 842
%Cast meta-SQL function 757
%ClientDate variable 813
%ClientTimeZone variable 814
%COALESCE meta-SQL function 758
%Cols meta-HTML 842
%CompIntfcName variable 814
%Component meta-HTML 842
%Component variable 814
%Concat meta-SQL function 759
%ContentID variable 815
%ContentType variable 815
%Copyright meta-HTML 842
%Copyright variable 816
%Currency variable 816
%CurrentDateIn meta-SQL function 760
%CurrentDateOut meta-SQL function 760
%CurrentDateTimeIn meta-SQL function 760
%CurrentDateTimeOut meta-SQL function 760
%CurrentTimeIn meta-SQL function 761
%CurrentTimeOut meta-SQL variable 761
%DatabaseRelease meta-SQL variable 761
%DateAdd meta-SQL function 762
%DateDiff meta-SQL function 762
%DateIn meta-SQL function 763
%DateNull meta-SQL function 764
%DateOut meta-SQL function 764
%DatePart meta-SQL function 765
%DateTimeDiff meta-SQL function 765
%DateTimeIn meta-SQL function 766
%DateTimeNull meta-SQL function 767
%DateTimeOut meta-SQL function 768
%DateTime variable 817
%Date variable 817
%DBName meta-HTML 843
%DbName variable 817
%DbServerName variable 817
%DBType meta-HTML 843
%DbType variable 817
%DecDiv meta-SQL function 768
%DecMult meta-SQL function 769
%DeviceType system variable 818
%DTTM meta-SQL function 770
%EffDtCheck meta-SQL function 770
%EmailAddress variable 818
%EmployeeId variable 818
%Encode meta-HTML 843

%ExternalAuthInfo variable 819
%Formname meta-HTML 843
%HPTabName variable 819
%Image meta-HTML 844
%Import variable 819
%InsertSelect meta-SQL function 773
%InsertSelectWithLongs meta-SQL function 776
%InsertValues meta-SQL function 778
%IsMultiLanguageEnabled variable 820
%JavaScript meta-HTML 845
%Join meta-SQL function 779
%KeyEqual meta-SQL function 781
%KeyEqualNoEffDt meta-SQL function 782
%LabelTag meta-HTML 845
%Language_Base variable 821
%LanguageISO variable 845
%Language variable 820
%LikeExact meta-SQL function 785
%Like meta-SQL function 783
%LocalNode variable 822
%Market variable 822
%MaxMessageSize variable 823
%Menu meta-HTML 846
%Menu variable 823
%Message meta-HTML 846
%MobilePage system variable 823
%Mode variable 824
%Mod meta-SQL function 787
%NavigatorHomePermissionList variable 824
%Node variable 824
%NoUppercase meta-SQL function 788
%NumToChar meta-SQL function 789
%OldKeyEqual meta-SQL function 790
%OPRCLAUSE meta-SQL function 790
%Page meta-HTML 847
%Page variable 826
%PasswordExpired variable 827
%PerfTime system variable 828
%PermissionLists variable 829
%PID variable 830
%Portal variable 830
%PrimaryPermissionList variable 830
%ProcessProfilePermissionList variable 830
%PSAuthResult variable 831
%Request variable 831
%Response variable 831
%ResultDocument variable 831
%Roles variable 832
%Round meta-SQL function 791
%RowSecurityPermissionList variable 832
%RunningInPortal variable 832
%ServerTimeZone variable 832
%ServicePack meta-HTML 847
%Session variable 832
%SignonUserId variable 833
%SignonUserPswd variable 833
%SMTPBlackberryReplyTo variable 833
%SMTPGuaranteed variable 834
%SMTPSender variable 834
%SQL meta-SQL function 792
%SQLRows variable 835
%SubmitScriptName meta-HTML 847
%SUBREC meta-SQL function 794

Index

862 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%Substring meta-SQL function 794
%SyncServer variable 835
%Table meta-SQL function 795
%Test meta-SQL function 796
%TextIn meta-SQL function 797
%ThisMobileObject system variable 835
%TimeAdd meta-SQL function 798
%TimeIn meta-SQL function 799
%TimeNull meta-SQL function 799
%TimeOut meta-SQL function 800
%TimePart meta-SQL function 800
%Time variable 836
%ToolsRel meta-HTML 848
%TransformData variable 836
%TrimSubstr meta-SQL function 801
%Truncate meta-SQL function 802
%Truncatetable meta-SQL function 803
%UpdatePairs meta-SQL function 804
%Upper meta-SQL function 805
%URL meta-HTML 848
%UserDescription variable 837
%UserId meta-HTML 849
%UserId variable 837
%UuidGenBase64 meta-SQL function 806
%UuidGen meta-SQL function 806
%WLInstanceID variable 837
%WLName variable 837

A
Abs function 32
AccruableDays function 33
AccrualFactor function 34
Acos function 35
ActiveRowCount function 36
AddAttachment function 38
AddEmailAddress function 45
AddKeyListItem function 46
AddSystemPauseTimes function 47
AddToDate function 49
AddToDateTime function 51
AddToTime function 52
AESection class function 351
All function 53
AllOrNone function 54
AllowEmplIdChg function 55
Amortize function 56
analytic calculation engine

CreateAnalyticInstance function 140
GetAnalyticInstance function 353

analytic grid
naming 352
populating 352

analytic instance
creating 140
returning a reference 353

API functions
GetSession 416
RemoteCall 559
SendMail 596

application classes function 95
Application Engine

CallAppEngine function 73
CommitWork function 96
GetAESection function 351
SetTempTableInstance function 640

Application Engine programs
CLEANATT84 89

application logging
%ApplicationLogFence system variable 812
WriteToLog function 744

Array functions
CopyFromJavaArray 134
CopyToJavaArray 137
CreateArray 141
CreateArrayAny 143
CreateArrayRept 144
PingNode 533
Split 653

Asin function 57
Atan function 58
attachment functions

AddAttachment 38
CleanAttachments 88
CopyAttachments 127
DeleteAttachment 200
DetachAttachment 215
GetAttachment 355
MAddAttachment 486
PutAttachment 541
ViewAttachment 726

B
BlackScholesCall function 59
BlackScholesPut function 60
BootstrapYTMs function 61
Break 62
BulkDeleteField function 63
bulk functions

BulkDeleteField 63
BulkInsertField 65
BulkModifyPageFieldOrder 68
BulkUpdateIndexes 71

BulkInsertField function 65
BulkModifyPageFieldOrder function 68
BulkUpdateIndexes function 71
Business Interlink class

GetBiDoc function 362
GetInterlink function 379

C
CallAppEngine function 73
Canceling functions

DoCancel 223
Exit 268

CancelPubHeaderXmlDoc function 76
CancelPubXmlDoc function 77
CancelSubXmlDoc function 78
ChangeEmailAddress function 80
character functions

CharType 82
ContainsCharType 110
ContainsOnlyCharType 113
ConvertChar 117
DBCSTrim 192

Char function 81
Chart class functions

GetChartURL 366

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 863

ChartField functions
RenameDBField 564
RenamePage 566
RenameRecord 567
SetDBFieldAuxFlag 607
SetDBFieldCharDefn 608
SetDBFieldFormat 611
SetDBFieldFormatLength 613
SetDBFieldLabel 614
SetDBFieldLength 616
SetDBFieldNotUsed 617
SetPageFieldPageFieldName 629
SetRecFieldEditTable 632
SetRecFieldKey 634

Charting functions
GetChart 365
GetGanttChart 374
GetOrgChart 396
GetRatingBoxChart 409

CharType function 82
Chat functions 448
ChDir function 85
ChDrive function 86
ChunkText function 86
CLEANATT84 program 89
CleanAttachments function 88
Clean function 87
ClearKeyList function 92
ClearSearchDefault function 92
ClearSearchEdit function 93
Code function 94
CollectGarbage function 95
CommitWork function 96
CompareLikeFields function 99
CompareStrings function 100
CompareTextDiff function 104
component buffer functions

ActiveRowCount 36
AddKeyListItem 46
CompareLikeFields 99
ComponentChanged 107
CopyFields 133
CopyRow 136
CurrentLevelNumber 174
CurrentRowNumber 175
DeleteRecord 206
DeleteRow 207
DiscardRow 221
ExpandBindVar 270
FetchValue 275
FieldChanged 276
GetNextNumber 388
GetNextNumberWithGaps 390
GetNextNumberWithGapsCommit 392
GetRelField 411
GetSetId 417
InsertRow 454
PriorValue 536
RecordChanged 551
RecordDeleted 553
RecordNew 555
RowFlush 582
RowScrollSelect 584
RowScrollSelectNew 586
ScrollFlush 589
ScrollSelect 591
ScrollSelectNew 593
SetControlValue 603

SetCursorPos 605
SetDefault 619
SetDefaultAll 620
SetDefaultNext 621
SetDefaultNextRel 621
SetDefaultPrior 622
SetDefaultPriorRel 623
SetNextPage 628
SetTempTableInstance 640
SortScroll 651
StopFetching 662
TotalRowCount 681
TreeDetailInNode 708
UpDateSysVersion 721
UpdateValue 721

component buffer meta-SQL functions
%PID 830
%TruncateTable 803

component buffer system variables
%Component 814
%Menu 823
%Mode 824

ComponentChanged function 107
Component Interface class

%CompIntfcName variable 814
GetMethodNames function 384
StartWork 660

component interface functions
GetProgramFunctionInfo 400

Component statement 106
ContainsCharType function 110
ContainsOnlyCharType function 113
Continue 115
continuing loops 115
Conversion functions

Char 81
Code 94
ConvertChar 117
NumberToDisplayString 519
NumberToString 523
String 666
StripOffHTMLTags 667
Value 725
ValueUser 725

ConvertChar function 117
ConvertCurrency function 122
ConvertDatetimeToBase function 123
ConvertRate function 125
ConvertTimeToBase function 126
CopyAttachments function 127
CopyFields function 133
CopyFromJavaArray function 134
CopyRow function 136
CopyToJavaArray function 137
Cos function 138
Cot function 139
CreateAnalyticInstance function 140
CreateArrayAny function 143
CreateArray function 141
CreateArrayRept function 144
CreateDirectory function 145
CreateDocument function 147
CreateDocumentKey function 148
CreateException function 149
CreateJavaArray function 150
CreateJavaObject function 151
CreateMCFIMInfo function 152
CreateMessage function 153

Index

864 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

CreateObjectArray function 157
CreateObject function 155
CreateProcessRequest function 159
CreateRecord function 160
CreateRowsetCache function 164
CreateRowset function 161
CreateSOAPDoc function 165
CreateSQL function 165
CreateXmlDoc function 168
CubicSpline function 169
CurrEffDt function 172
CurrEffRowNum function 173
CurrEffSeq function 173
Currency and financial functions

%Currency 816
Amortize 56
ConvertCurrency 122
RoundCurrency 582
SinglePaymentPV 650
UniformSeriesPV 720

Current date and time functions
%CurrentDateIn 760
%CurrentDateOut 760
%CurrentDateTimeIn 760
%CurrentDateTimeOut 760
%CurrentTimeIn 761

Current date and time variables
%CurrentTimeOut 761

CurrentLevelNumber function 174
CurrentRowNumber function 175
Custom display format functions

GetStoredFormat 421
SetDisplayFormat 623

D
data buffer access functions

CreateRecord 160
CreateRowset 161
GetField 369
GetLevel0 382
GetPageField 398
GetRecord 409
GetRow 412
GetRowset 413

Date3 function 177
date and time functions

%Cast 757
%DateAdd 762
%DateDiff 762
%DateIn 763
%DateNull 764
%DateOut 764
%DatePart 765
%DateTimeDiff 765
%DateTimeIn 766
%DateTimeNull 767
%DateTimeOut 768
%DTTM 770
%TimeAdd 798
%TimeIn 799
%TimeNull 799
%TimeOut 800
%TimePart 800
AddToDate 49
AddToDateTime 51

AddToTime 52
ConvertDatetimeToBase 123
ConvertTimeToBase 126
Date 176
Date3 177
DatePart 178
DateTime6 178
DateTimeToHTTP 179
DateTimeToISO 181
DateTimeToLocalizedString 182
DateTimeToTimeZone 185
DateTimeValue 186
DateValue 188
Day 189
Days 190
Days360 190
Days365 191
FormatDateTime 286
GetCalendarDate 363
Hour 444
IsDate 459
IsDateTime 460
IsDaylightSavings 461
ISOToDate 464
ISOToDateTime 465
IsTime 473
meta-SQL considerations 748
Minute 506
Month 507
Second 595
Time 675
Time3 676
TimePart 677
TimeToTimeZone 678
TimeValue 679
TimeZoneOffset 680
Weekday 736
Year 745

Date function 176
DatePart function 178
DateTime6 function 178
DateTimeToHTTP function 179
DateTimeToISO function 181
DateTimeToLocalizedString function 182
DateTimeToTimeZone function 185
DateTimeValue function 186
DateValue function 188
Day function 189
Days360 function 190
Days365 function 191
Days function 190
DBCSTrim function 192
DBPatternMatch function 192
debugging

%ApplicationLogFence system variable 812
CreateException function 149
SetTracePC function 641
SetTraceSQL function 645
throw language construct 674
try language construct 711
WinMessage function 738
WriteToLog function 744

DeChunkText function 193
Declare Function 195
Decrypt function 199
Default functions

SetDefault 619
SetDefaultAll 620

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 865

SetDefaultNext 621
SetDefaultNextRel 621
SetDefaultPrior 622
SetDefaultPriorRel 623

Degrees function 200
DeleteAttachment function 200
DeleteEmailAddress function 204
DeleteImage function 205
DeleteRecord function 206
DeleteRow function 207
DeleteSQL function 209
DeleteSystemPauseTimes function 211
DeQueue function 213
DetatchAttachment function 215
DisableMenuItem function 220
DiscardRow function 221
DoCancel function 223
document classes

CreateDocument function 147
CreateDocumentKey function 148

DoModalComponent function 226
DoModal function 223
DoModalXComponent function 234
DoModalX function 231
DoSave function 238
DoSaveNow function 239

E
Effective date functions

%EffDtCheck 770
CurrEffDt 172
CurrEffRowNum 173
CurrEffSeq 173
NextEffDt 511
NextRelEffDt 512
PriorEffDt 534
PriorRelEffDt 536

email functions
AddEmailAddress 45
ChangeEmailAddress 80
DeleteEmailAddress 204
MarkPrimaryEmailAddress 495

EnableMenuItem function 241
EncodeURLForQueryString function 244
EncodeURL function 242
Encrypt function 245
EncryptNodePswd function 246
EndMessage function 247
EndModalComponent function 249
EndModal function 248
EnQueue function 250
environment functions

%Portal variable 830
ExpandEnvVar 271
GetCwd 367
GetEnv 368

Error 253
EscapeHTML function 256
EscapeJavascriptString function 257
EscapeWML function 258
Evaluate 259
Exact function 260
Exception class

CreateException function 149
throw language construct 674

try language construct 711
Exec function 261
executable files function 261
ExecuteRolePeopleCode function 265
ExecuteRoleQuery function 266
ExecuteRoleWorkflowQuery function 267
Existence functions

All 53
AllOrNone 54
None 517
OnlyOne 531
OnlyOneOrNone 532

Exit 268
exiting loops 62
ExpandBindVar function 270
ExpandEnvVar function 271
ExpandSqlBinds function 271
Exp function 269

F
Fact function 273
FetchSQL function 273
FetchValue function 275
FieldChanged function 276
field class function 369, 398
file attachments

AddAttachment function 38
CleanAttachments function 88
CopyAttachments function 127
DeleteAttachment function 200
DetachAttachment function 215
GetAttachment function 355
MAddAttachment function 486
PutAttachment function 541
ViewAttachment function 726

file class
CreateDirectory function 145
FileExists function 278
FindFiles function 283
RemoveDirectory function 562

File class
GetFile function 370
GetTempFile function 425

FileExists function 278
File functions

ChDir 85
ChDrive 86

Financial functions
AccruableDays 33
AccrualFactor 34
BlackScholesCall 59
BlackScholesPut 60
BootstrapYTMs 61
ConvertRate 125
CubicSpline 169
HermiteCubic 436
HistVolatility 443
LinearInterp 479

Findb function 281
FindCodeSetValues function 281
FindFiles function 283
Find function 280
FlushBulkInserts function 284
For 286
FormatDateTime function 286

Index

866 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Forward function 288
functions

declaring 195
defining 290
return values 575

Function statement 290

G
GenABNNodeURL function 292
GenDynABNElement function 293
GenerateActGuideContentUrl function 297
GenerateActGuidePortalUrl function 298
GenerateActGuideRelativeUrl function 300
GenerateComponentContentRelURL function 301
GenerateComponentContentURL function 303
GenerateComponentPortalRelURL function 306
GenerateComponentPortalURL function 308
GenerateComponentRelativeURL function 310
GenerateExternalPortalURL function 313
GenerateExternalRelativeURL function 314
GenerateHomepagePortalURL function 315
GenerateHomepageRelativeURL function 316
GenerateMobileTree function 317
GenerateQueryContentURL function 321
GenerateQueryPortalURL function 322
GenerateQueryRelativeURL function 324
GenerateScriptContentRelURL function 326
GenerateScriptContentURL function 328
GenerateScriptPortalRelURL function 329
GenerateScriptPortalURL function 331
GenerateScriptRelativeURL function 333
GenerateTree function 335
GenerateWorklistPortalURL function 336
GenerateWorklistRelativeURL function 337
GenHTMLMenu function 339
GenToken function 342
GetABNChartRowSet function 342
GetABNInitialNode function 343
GetABNNode function 344
GetABNRelActnRowSet function 345
GetABNReqParameters function 345
GetABNTreeEffdt function 347
GetABNTreeName function 348
GetABNTreeSetid function 349
GetABNTreeUserKey function 350
GetAESection function 351
GetAnalyticGrid function 352
GetAnalyticInstance function 353
GetArchPubHeaderXmlDoc function 354
GetArchPubXmlDoc function 354
GetArchSubXmlDoc function 355
GetAttachment function 355
GetBiDoc function 362
GetCalendarDate function 363
GetChart function 365
GetChartURL function 366
GetCwd function 367
GetEnv function 368
GetField function 369
GetFile function 370
GetGanttChart function 374
GetGrid function 375
GetHTMLText function 377
GetImageExtents function 378
GetInterlink function 379

GetJavaClass function 381
GetLevel0 function 382
GetMessage function 385
GetMessageInstance function 386
GetMessageXmlDoc function 386
GetNextNumber function 388
GetNextNumberWithGapsCommit function 392
GetNextNumberWithGaps function 390
GetNextProcessInstance function 394
GetNRXmlDoc function 395
GetOrgChart function 396
GetPageField function 398
GetPage function 397
GetProgramFunctionInfo function 400
GetPubContractInstance function 406
GetPubHeaderXmlDoc function 406
GetPubXmlDoc function 407
GetRatingBoxChart function 409
GetRecord function 409
GetRelField function 411
GetRow function 412
GetRowsetCache function 414
GetRowset function 413
GetSession function 416
GetSetId function 417
GetSQL function 418
GetStoredFormat function 421
GetSubContractInstance function 422
GetSubXmlDoc function 422
GetSyncLogData function 424
GetTempFile function 425
GetURL function 430
GetUserOption function 431
GetWLFieldValue function 432
Global statement 433
Gray function 433
grid class

changing a grid name 376
GetGrid function 375

H
Hash function 435
HermiteCubic function 436
Hide function 437
HideMenuItem function 439
HideRow function 440
HideScroll function 441
HistVolatility function 443
Hour function 444
HTML

EscapeHTML function 256
GetHTMLText function 377

HTML variables
%Appserver 841
%AppsREl 841
%Browser 841
%BrowserPlatform 841
%BrowserVersion 842
%Cols 842
%Component 842
%Copyright 842
%DBName 843
%DBType 843
%Encode 843
%Formname 843

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 867

%Image 844
%JavaScript 845
%LabelTag 845
%LanguageISO 845
%Menu 846
%Message 846
%Page 847
%ServicePack 847
%SubmitScriptName 847
%ToolsRel 848
%URL 848
%UserId 849

I
IBPurgeDomainStatus function 444
IBPurgeNodesDown function 445
Idiv function 445
If 446
image functions

DeleteImage 205
GetImageExtents 378
InsertImage 451

InboundPublishXmlDoc function 447
InitChat function 448
InsertImage function 451
inserting

rows, turbo mode versus non-turbo mode 454
InsertRow function 454
Integer function 456
Integration Broker functions

EncryptNodePswd 246
FindCodeSetValues 281
IBPurgeDomainStatus 444
IBPurgeNodesDown 445
NodeDelete 513
NodeRename 514
NodeSaveAs 515
NodeTranDelete 516
RelNodeTranDelete 558
Transform 704
TransformEx 705

internet functions
%ContentID variable 815
%ContentType variable 815
%EmailAddress variable 818
%HPTabName variable 819
%LocalNode variable 822
%Node variable 824
%Portal variable 830
%Request variable 831
%Response variable 831
%RunningInPortal variable 832
%UserDescription variable 837
AddEmailAddress 45
ChangeEmailAddress 80
CreateSOAPDoc 165
DeleteEmailAddress 204
EncodeURL 242
EncodeURLForQueryString 244
EscapeHTML 256
EscapeJavascriptString 257
EscapeWML 258
GenerateActGuideContentUrl 297
GenerateActGuidePortalUrl 298
GenerateActGuideRelativeUrl 300

GenerateComponentContentRelURL 301
GenerateComponentContentURL 303
GenerateComponentPortalRelURL 306
GenerateComponentPortalURL 308
GenerateComponentRelativeURL 310
GenerateExternalPortalURL 313
GenerateExternalRelativeURL 314
GenerateHomepagePortalURL 315
GenerateHomepageRelativeURL 316
GenerateQueryContentURL 321
GenerateQueryPortalURL 322
GenerateQueryRelativeURL 324
GenerateScriptContentRelURL 326
GenerateScriptContentURL 328
GenerateScriptPortalRelURL 329
GenerateScriptPortalURL 331
GenerateScriptRelativeURL 333
GenerateTree 335
GenerateWorklistPortalURL 336
GenerateWorklistRelativeURL 337
GetChartURL 366
GetHTMLText 377
GetMethodNames 384
GetURL 430
MarkPrimaryEmailAddress 495
Unencode 713
ViewContentURL 732
ViewURL 733

Int function 455
IsAlpha Function 457
IsAlphaNumeric Function 458
IsDate Function 459
IsDateTime Function 460
IsDaylightSavings function 461
IsDigits Function 462
IsHidden function 463
IsMenuItemAuthorized function 467
IsMessageActive function 468
IsModalComponent function 470
IsModal function 469
IsNumber Function 471
ISOToDate function 464
ISOToDateTime function 465
IsSearchDialog function 473
IsTime Function 473
IsUserInPermissionList function 474
IsUserInRole function 475
IsUserNumber Function 476

J
Java class

CopyFromJavaArray 134
CopyToJavaArray function 137
CreateJavaArray function 150
CreateJavaObject function 151
GetJavaClass function 381

L
language constructs

Break 62
Component 106
Continue 115

Index

868 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Declare function 195
Evaluate 259
Exit 268
For 286
Function 290
Global 433
If 446
Local 482
Repeat 568
Return 575
throw 674
try 711
While 737

Language preferences
%IsMultiLanguageEnabled variable 820
%Language_Base variable 821
%Language_Data variable 821
%Language_User variable 821
%Language variable 820
SetLanguage function 626

Left function 477
Len function 478
LinearInterp function 479
Ln function 479
LoadABN function 480
Local statement 482
Log10 function 484
logging

%ApplicationLogFence system variable 812
WriteToLog function 744

loops
continuing 115
evaluate 259
exiting 62
repeat 568
while 737

Lower function 485
LTrim function 486

M
MAddAttachment function 486
MarkPrimaryEmailAddress function 495
MarkWLItemWorked function 496
Math functions

%Abs meta-SQL function 756
Abs 32
Acos 35
Asin 57
Atan 58
Cos 138
Cot 139
Degrees 200
IsNumber 471
IsUserNumber 476
Max 497
Min 505
Radians 550
Sin 650
Tan 673

Max Function 497
MCFBroadcast function 498
Menu functions

DisableMenuItem 220
EnableMenuItem 241
HideMenuItem 439

UnGray 714
MessageBox function 499
message class

CreateMessage function 153
DeleteSystemPauseTimes function 211
GetMessage function 385
GetMessageInstance function 386
GetPubContractInstance function 406
GetSubContractInstance function 422
GetSyncLogData function 424
IsMessageActive function 468
ReturnToServer function 575

Message display functions
EndMessage 247
Error 253
MessageBox 499
MsgGet 508
MsgGetExplainText 509
MsgGetText 511
Prompt 538
Warning 734
WinMessage 738

messaging
%MaxMessageSize variable 823
AddSystemPauseTimes function 47
CancelPubHeaderXmlDoc 76
CancelPubXmlDoc 77
CancelSubXmlDoc 78
CreateMessage function 153
CreateXmlDoc function 168
DeleteSystemPauseTimes function 211
GetArchPubHeaderXmlDoc 354
GetArchPubXmlDoc 354
GetArchSubXmlDoc 355
GetMessage function 385
GetMessageInstance function 386
GetMessageXmlDoc function 386
GetNRXmlDoc function 395
GetPubContractInstance function 406
GetPubHeaderXmlDoc 406
GetPubXmlDoc 407
GetSubContractInstance function 422
GetSubXmlDoc 422
GetSyncLogData function 424
InboundPublishXmlDoc function 447
IsMessageActive function 468
PingNode function 533
PublishXmlDoc function 540
ReturnToServer function 575
SetChannelStatus function 601
SyncRequestXmlDoc function 672
TransformEx function 705
Transform function 704

meta-HTML
%Appserver 841
%AppsRel 841
%Browser 841
%BrowserPlatform 841
%BrowserVersion 842
%Cols 842
%Component 842
%Copyright 842
%DBName 843
%DBType 843
%Encode 843
%Formname 843
%Image 844
%JavaScript 845

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 869

%LabelTag 845
%LanguageISO 845
%Menu 846
%Message 846
%Page 847
%ServicePack 847
%SubmitScriptName 847
%ToolsRel 848
%URL 848
%UserId 849
comments 840
functions 840
understanding 839
variables 840

meta-SQL functions
%Abs 756
%BINARYSORT 756
%Cast 757
%COALESCE 758
%Concat 759
%CurrentDateIn 760
%CurrentDateOut 760
%CurrentDateTimeIn 760
%CurrentDateTimeOut 760
%CurrentTimeIn 761
%DateAdd 762
%DateDiff 762
%DateIn 763
%DateNull 764
%DateOut 764
%DatePart 765
%DateTimeDiff 765
%DateTimeIn 766
%DateTimeNull 767
%DateTimeOut 768
%DecDiv 768
%DecMult 769
%DTTM 770
%FirstRows 772
%OPRCLAUSE 790
%Round 791
%SUBREC 794
%Substring 794
%Test 796
%TimeIn 799
%TimeNull 799
%TimeOut 800
%TimePart 800
%TrimSubstr 801
%Truncate 802
%TruncateTable 803
date considerations 748
placement considerations 750
shortcuts 806

meta-SQL variables
%CurrentTimeOut 761
%DatabaseRelease 761

Min Function 505
Minute function 506
mobile class

%DeviceType system variable 818
%MobilePage system variable 823
%ThisMobileObject system variable 835
GenerateMobileTree function 317
TransferMobilePage function 691

Mod function 507
Month function 507
MsgGetExplainText function 509

MsgGet function 508
MsgGetText function 511
MultiChannel Framework functions

DeQueue 213
EnQueue 250
Forward 288
InitChat 448
MCFBroadcast 498
NotifyQ 518

N
NextEffDt function 511
NextRelEffDt function 512
NodeDelete function 513
NodeRename function 514
NodeSaveAs function 515
NodeTranDelete function 516
None function 517
NotifyQ function 518
NumberToDisplayString Function 519
NumberToString Function 523
Numeric functions

%DecDiv 768
%DecMult 769
%Round 791
%Truncate 802
Abs 32
Acos 35
Asin 57
Atan 58
Cos 138
Cot 139
Degrees 200
Exp 269
Fact 273
Idiv 445
Int 455
Integer 456
Ln 479
Log10 484
Mod 507
Product 537
Radians 550
Rand 551
Round 581
Sign 649
Sin 650
Sqrt 660
Tan 673
Truncate 710

O
ObjectDoMethodArray function 527
ObjectDoMethod function 526
object functions

CreateObject 155
CreateObjectArray 157
ObjectDoMethod 526
ObjectDoMethodArray 527
ObjectGetProperty 528
ObjectSetProperty 530

ObjectGetProperty function 528

Index

870 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ObjectSetProperty function 530
OnlyOne function 531
OnlyOneOrNone function 532

P
page appearance functions

GetPage 397
Gray 433
Hide 437
HideRow 440
HideScroll 441
IsHidden 463
SetLabel 624
Unhide 716
UnhideRow 717
UnhideScroll 718

page class function 397
personalization functions

GetUserOption 431
SetUserOption 648

PingNode function 533
PostReport class function 632
PriorEffDt function 534
PriorRelEffDt function 536
PriorValue function 536
ProcessRequest class

CreateProcessRequest function 159
GetNextProcessInstance function 394
SetupScheduleDefnItem function 647

Process Scheduler functions
CreateProcessRequest 159
GetNextProcessInstance 394
SetPostReport 632
SetupScheduleDefnItem 647

Product function 537
Prompt function 538
Proper function 540
PublishXmlDoc function 540
PutAttachment function 541

Q
Queue Server functions

DeQueue 213
EnQueue 250
Forward 288
NotifyQ 518

Quote function 549

R
Radians function 550
Rand function 551
RecordChanged function 551
record class

CreateRecord function 160
GetRecord function 409

RecordDeleted function 553
RecordNew function 555
RelNodeTranDelete function 558
RemoteCall function 559

RemoveDirectory function 562
RenameDBField function 564
RenamePage function 566
RenameRecord function 567
Repeat 568
Replace function 569
Report function 632
Rept function 570
ReSubmitPubHeaderXmlDoc function 571
ReSubmitPubXmlDoc function 572
ReSubmitSubXmlDoc function 573
Return 575
ReturnToServer function 575
ReValidateNRXmlDoc function 577
RevalidatePassword function 578
Right function 580
RoundCurrency function 582
Round function 581
row class function 412
RowFlush function 582
RowScrollSelect function 584
RowScrollSelectNew function 586
RowsetCache functions

CreateRowsetCache 164
GetRowsetCache 414

rowset class
CreateRowset 161
GetRowset function 413

RTrim function 588
Running executable files

Exec function 261

S
Saving functions

DoSave 238
DoSaveNow 239

scroll buffer
inserting rows, turbo mode versus non-turbo

mode 454
ScrollFlush function 589
ScrollSelect function 591
ScrollSelect functions

RowScrollSelect 584
RowScrollSelectNew 586
ScrollFlush 589
ScrollSelect 591
ScrollSelectNew 593
SortScroll 651

ScrollSelectNew function 593
Search functions

AddKeyListItem 46
ClearKeyList 92
ClearSearchDefault 92
ClearSearchEdit 93
IsSearchDialog 473
SetSearchDefault 636
SetSearchDialogBehavior 637
SetSearchEdit 638

secondary page functions
DoModal 223
DoModalComponent 226
DoModalX 231
DoModalXComponent 234
EndModalComponent 249
IsModalComponent 470

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 871

Secondary page functions
EndModal 248
IsModal 469

Second function 595
security

%AuthenticationToken variable 813
%EmployeeId variable 818
%ExternalAuthInfo variable 819
%NavigatorHomePermissionList variable

824
%OPRCLAUSE meta-SQL 790
%PasswordExpired variable 827
%PermissionLists variable 829
%PrimaryPermissionList variable 830
%ProcessProfilePermissionList variable 830
%PSAuthResult variable 831
%ResultDocument variable 831
%Roles variable 832
%RowSecurityPermissionList variable 832
%SignonUserId variable 833
%SignonUserPswd variable 833
%UserId variable 837
AllowEmplIdChg function 55
Decrypt function 199
Encrypt function 245
ExecuteRolePeopleCode function 265
ExecuteRoleQuery function 266
ExecuteRoleWorkflowQuery function 267
GenToken function 342
Hash function 435
IsMenuItemAuthorized function 467
IsUserInPermissionList function 474
IsUserInRole function 475
RevalidatePassword function 578
SetAuthenticationResult function 598
SetPasswordExpired function 631
SwitchUser function 670

SendMail function 596
session class function 416
SetAuthenticationResult function 598
SetChannelStatus function 601
SetControlValue function 603
SetCursorPos function 605
SetDBFieldAuxFlag function 607
SetDBFieldCharDefn function 608
SetDBFieldFormat function 611
SetDBFieldFormatLength function 613
SetDBFieldLabel function 614
SetDBFieldLength function 616
SetDBFieldNotUsed function 617
SetDefaultAll function 620
SetDefault function 619
SetDefaultNext function 621
SetDefaultNextRel function 621
SetDefaultPrior function 622
SetDefaultPriorRel function 623
SetLabel function 624
SetLanguage function 626
SetNextPage function 628
SetPageFieldPageFieldName function 629
SetPasswordExpired function 631
SetPostReport function 632
SetRecFieldEditTable function 632
SetRecFieldKey function 634
SetReEdit function 635
SetSearchDefault function 636
SetSearchDialogBehavior function 637
SetSearchEdit function 638

SetTempTableInstance function 640
SetTracePC function 641
SetTraceSQL function 645
SetupScheduleDefnItem function 647
SetUserOption function 648
Sign function 649
Sin function 650
SinglePaymentPV function 650
SmartNavigation charts

GenABNNodeURL function 292
GenDynABNElement function 293
GenHTMLMenu function 339
GetABNChartRowSet function 342
GetABNInitialNode function 343
GetABNNode function 344
GetABNRelActnRowSet function 345
GetABNReqParameters function 345
GetABNTreeEffdt function 347
GetABNTreeName function 348
GetABNTreeSetid function 349
GetABNTreeUserKey function 350
LoadABN function 480

SOAPDoc class function 165
SortScroll function 651
Split function 653
SQL

%FirstRows meta-SQL function 772
%InsertSelect meta-SQL function 773
%InsertSelectWithLongs meta-SQL function

776
%InsertValues meta-SQL function 778
%Join meta-SQL function 779
%KeyEqual meta-SQL function 781
%KeyEqualNoEffDt meta-SQL function 782
%LikeExact meta-SQL function 785
%Like meta-SQL function 783
%Mod meta-SQL function 787
%NoUppercase meta-SQL function 788
%OldKeyEqual meta-SQL function 790
%SQL meta-SQL function 792
%SQLRows variable 835
%Table meta-SQL function 795
%UpdatePairs meta-SQL function 804
CreateSQL function 165
DeleteSQL function 209
ExpandSqlBinds function 271
FetchSQL function 273
FlushBulkInserts function 284
GetSQL function 418
meta-SQL elements 747
SetTempTableInstance function 640
SQLExec function 654
StoreSQL function 664

SQL class
CreateSQL function 165
DeleteSQL function 209
FetchSQL function 273
GetSQL function 418
SQLExec function 654
StoreSQL function 664

SQL date and time functions
%DateIn 763
%DateOut 764
%DateTimeIn 766
%DateTimeOut 768
%DTTM 770
%TimeIn 799
%TimeOut 800

Index

872 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

%TimePart 800
SQLExec function 654
SQL functions

quote 549
SQLExec 654

SQL shortcuts
%Delete 807
%Insert 807
%SelectAll 807
%SelectByKey 808
%SelectByKeyEffDt 809
%SelectDistinct 808
%Update 809

Sqrt function 660
StartWork function 660
StopFetching function 662
StoreSQL function 664
String function 666, 667
string functions

CompareStrings 100
CompareTextDiff 104

String functions
%Concat 759
%NumToChar 789
%Substring 794
%TextIn 797
%TrimSubstr 801
%Upper 805
Char 81
ChunkText 86
Clean 87
Code 94
DBCSTrim 192
DBPatternMatch 192
DeChunkText 193
Exact 260
ExpandBindVar 270
Find 280
Findb 281
IsAlpha 457
IsAlphaNumeric 458
IsDigits 462
Left 477
Len 478
Lower 485
LTrim 486
NumberToDisplayString 519
NumberToString 523
Proper 540
quote 549
Replace 569
Rept 570
Right 580
RTrim 588
String 666
StripOffHTMLTags 667
Substitute 667
SubString 668
Upper 724
Value 725
ValueUser 725

Substitute function 667
SubString function 668
SwitchUser function 670
SyncRequestXmlDoc function 672
system variables 811

%AllowNotification 811
%AllowRecipientLookup 811

%ApplicationLogFence 812
%AsOfDate 813
%AuthenticationToken 813
%BPName 813
%ClientDate 813
%ClientTimeZone 814
%CompIntfcName 814
%Component 814
%ContentID 815
%ContentType 815
%Copyright 816
%Currency 816
%Date 817
%DateTime 817
%DbName 817
%DbServerName 817
%DbType 817
%EmailAddress 818
%EmployeeId 818
%ExternalAuthInfo 819
%HPTabName 819
%Import 819
%IsMultiLanguageEnabled 820
%Language 820
%Language_Base 821
%Language_Data 821
%Language_User 821
%LocalNode 822
%Market 822
%MaxMessageSize 823
%Menu 823
%Mode 824
%NavigatorHomePermissionList 824
%Node 824
%OperatorClass 825
%OperatorId 825
%OperatorRowLevelSecurityClass 825
%Page 826
%Panel 827
%PanelGroup 827
%PasswordExpired 827
%PerfTime 828
%PermissionLists 829
%PID 830
%Portal 830
%PrimaryPermissionList 830
%ProcessProfilePermissionList 830
%PSAuthResult 831
%Request 831
%Response 831
%ResultDocument 831
%Roles 832
%RowSecurityPermissionList 832
%RunningInPortal 832
%ServerTimeZone 832
%Session 832
%SignonUserId 833
%SignonUserPswd 833
%SMTPBlackberryReplyTo 833
%SMTPGuaranteed 834
%SMTPSender 834
%SQLRows 835
%SyncServer 835
%Time 836
%TransformData 836
%UserDescription 837
%UserId 837
%WLInstanceID 837

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 873

%WLName 837

T
Tan function 673
throw language construct 674
Time3 function 676
time and date functions

%Cast 757
%DateAdd 762
%DateDiff 762
%DateIn 763
%DateNull 764
%DateOut 764
%DatePart 765
%DateTimeDiff 765
%DateTimeIn 766
%DateTimeNull 767
%DateTimeOut 768
%DTTM 770
%TimeAdd 798
%TimeIn 799
%TimeNull 799
%TimeOut 800
%TimePart 800
AddToDate 49
AddToDateTime 51
AddToTime 52
ConvertDatetimeToBase 123
ConvertTimeToBase 126
Date 176
Date3 177
DatePart 178
DateTime6 178
DateTimeToHTTP 179
DateTimeToISO 181
DateTimeToLocalizedString 182
DateTimeToTimeZone 185
DateTimeValue 186
DateValue 188
Day 189
Days 190
Days360 190
Days365 191
FormatDateTime 286
GetCalendarDate 363
Hour 444
IsDate 459
IsDateTime 460
IsDaylightSavings 461
ISOToDate 464
ISOToDateTime 465
IsTime 473
Minute 506
Month 507
Second 595
Time 675
Time3 676
TimePart 677
TimeToTimeZone 678
TimeValue 679
TimeZoneOffset 680
Weekday 736
Year 745

Time function 675
TimePart function 677

TimeToTimeZone function 678
TimeValue function 679
TimeZoneOffset function 680
TotalRowCount function 681
Trace functions

SetTracePC 641
SetTraceSQL 645

TransferExact function 687
Transfer function 683
transfer functions

DoModalXComponent 234
TransferModeless 693

Transfer functions
AddKeyListItem 46
ClearKeyList 92
DoModalComponent 226
EndModalComponent 249
IsModalComponent 470
SetNextPage 628
Transfer 683
TransferExact 687
TransferNode 696
TransferPage 699
TransferPortal 701

TransferMobilePage function 691
TransferModeless function 693
TransferNode function 696
TransferPage function 699
TransferPortal function 701
TransformEx function 705
Transform function 704
tree classes

TreeDetailInNode function 708
using tree viewer 851

TreeDetailInNode function 708
Tree Viewer

invoking 854
multi-node example 858
no multi-node example 857
overview 851

TriggerBusinessEvent function 709
Truncate function 710
try language construct 711
turbo mode

inserting rows 454
type checking functions

IsAlpha 457
IsAlphaNumeric 458
IsDate 459
IsDateTime 460
IsDigits 462
IsNumber 471
IsTime 473
IsUserNumber 476
Max 497
Min 505
NumberToDisplayString 519
NumberToString 523

U
UNC shares 356
Unencode function 713
UnGray function 714
UnHide function 716
UnhideRow function 717

Index

874 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

UnhideScroll function 718
UniformSeriesPV function 720
UpDateSysVersion function 721
UpdateValue function 721
UpdateXmlDoc function 723
Upper function 724
User Security functions

%UuidGen 806
%UuidGenBase64 806
AllowEmplIdChg 55
Decrypt 199
EncodeURL 245
ExecuteRolePeopleCode 265
ExecuteRoleQuery 266
ExecuteRoleWorkflowQuery 267
Hash 435
IsMenuItemAuthorized 467
IsUserInPermissionList 474
IsUserInRole 475
RevalidatePassword 578
SetAuthenticationResult 598
SetPasswordExpired 631
SwitchUser 670

V
validation functions

Error 253
RevalidatePassword 578
SetCursorPos 605
SetReEdit 635
Warning 734

Value function 725
ValueUser function 725
variables

declaring 106, 433, 482
ViewAttachment function 726
ViewContentURL function 732
viewing trees 851
ViewURL function 733

W
Warning 734
web libraries function 384
Weekday function 736
While 737
WinMessage function 738
Workflow functions

GenerateActGuideContentUrl 297
GenerateActGuidePortalUrl 298
GenerateActGuideRelativeUrl 300
GenerateWorklistPortalURL 336
GenerateWorklistRelativeURL 337
GetWLFieldValue 432
MarkWLItemWorked 496
TriggerBusinessEvent 709

Workflow system variables
%AllowNotification 811
%AllowRecipientLookup 811
%BPName 813
%SMTPBlackberryReplyTo 833
%SMTPGuaranteed 834
%SMTPSender 834

Worklist system variables
%WLInstanceID 837
%WLName 837

WriteToLog function 744

X
XmlDoc functions

CreateSOAPDoc 165
CreateXmlDoc 168
GetMessageXmlDoc 386
GetNRXmlDoc 395
InboundPublishXmlDoc 447
PingNode 533
PublishXmlDoc 540
ReSubmitPubHeaderXmlDoc 571
ReSubmitPubXmlDoc 572
ReSubmitSubXmlDoc 573
ReValidateNRXmlDoc 577
SyncRequestXmlDoc 672
Transform 704
TransformEx 705
UpdateXmlDoc 723

Y
Year function 745

	PeopleTools 8.52: PeopleCode Language Reference
	Copyright
	Contents
	Preface: PeopleCode Language Reference Preface
	PeopleCode Language Reference
	PeopleCode Typographical Conventions
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: PeopleCode Built-in Functions
	Chapter 2: Meta-SQL Elements
	Understanding Meta-SQL
	Meta-SQL Use
	Meta-SQL Element Types

	Parameter Markers
	Date Considerations
	Basic Date Meta-SQL Guidelines
	Date, DateTime, and Time Wrappers with Application Engine Programs
	Date, DateTime, and Time Out Wrappers for SQL Views and Dynamic Views
	{DateTimein-prefix} in SQR

	Meta-SQL Placement Considerations

	Chapter 3: System Variables
	Chapter 4: Meta-HTML
	Understanding Meta-HTML
	Variables
	Functions
	Comments

	Appendix A: Viewing Trees From Application Pages
	Understanding View Trees
	Invoking View Trees From Application Pages
	View Trees From Application Example−Without Multi-Node Selection (Method A)
	View Trees From Application Example−With Multi-Node Selection (Method B)

	Index

